1

; ;

CIVIL ENGINEER AND ARCHITECT'S

J 0 URNAL,

SCIENTIFIC AND RAILWAY GAZETTE.

VOLUME XI.

1848

LONDON:
R. GROOMBRIDGE AND SONS, 5, PATERNOSTER ROW ; J. WEALE, 59, HIGH HOLBORN; WILEY AND PUTNAM, NEW YORK; GALIGNANI, AND MATHIAS, PARIS.

CIVIL ENGINEER AND ARCHITECT'S JOURNAL:

INDEX T0 VOL.XI.

Ablon's pat. engide-furnaces, 372
Academy, royal, exbibition, 163, 195, 218, 228, 320
Accidents ic coal mines, prevention of, 187
on rail ways, prevention of, $\$ 1$
Adams's brach passenger locomotive
Adie's signal balls, 62
Aerial navigation, 223
Affonso, Brazilian war-steamer, 317
Agricultaral traffic on railways, 386
Air and water of towns, Dr. Smith on, 311
Air-pump and atmospheric railway (rev.), 20
Air-tight gradaries, 42
Alaram for railways-Allen's, 30 ; Baird's, 318 ;
Brett and Little's, 30; Brother's, 30 ; Datton's,
30 ; Hoare's, 30 ; M'Coll's, 32 ; Moffatt's, 32;
Tattersall's, 191
Alban's high-pressare steam-engine (rev.), 211
Algiers, iron ore in, 191
Alleged steam propalsion in 1543, 319
Allen's railway alarum, 30
Amalgamation of railway companies, 373
A merican lakes, 319
American plough, Slocum's, 31
Analysis of phosphates, 104
tion"from cast-iront-iron produced by cementa-
tion from cast-iron, 315
Ancient and modern art, by G. Cleghorn (rev.), 73 n book-binding, Cundall on, 29 "' enamel, Wyatt on, 156
Ancient B"ddhiatarcbitectare,J. Fergussod 0n, 124
Ancient Greek vases, Dr. Harding 0n, 90, 91
Aneient pottery, Dwjer on, 91
Anemometrical researches, by Prof. Phillips, 310
Angell's, Mr., conversazione, 186
Annealing glass tubea, 127
Ansted'a geological lectures,27
Antimony, manufacture of white paint from, 128
Antiquarian and genealogist's companion (rov.), 27
Apparatus for supplying boilers with water, 179
Application of scalptare to architecture, by H. B. Garling, 201
Application of steam-power to mills, Hastie'y pat., 115
Arch at Bockingham-palace, 7
Areh bridge, Comper's inverted, 8
Arehed Limber riaducts, Green's, 83
Archer, on monumeatal brasses, 30
Arches, Snell on the stability of, 132
Architects, Royal Iastitution of British, 29, 60,
89, 124, 150, 186, 221, 380

Architectural benevolent fund, 186
Architectural knowledge, Society for publication
of, 137, $\mathbf{3 2 6}$
Architecture, ancient Buddhist, 121
Architecture and paintiog, 165
Architecture and the "Art-Jonrnal," 218
Architectore, application of sculpture to, 201
Architecture at the Royal Academy, 163, 105,
218, 228, 327
Architecture, Greek, Pedrose on, 150
Architecture, letters on Elmes's history of, 8, 58,65
Arcbitectore, Griffiths on natural system of, 91
Architecture, pointed, Gwilt on, 29
Architecture, history of, Tuthill (rev.), 377
Arch, oblique, Bashforth on, 4
Art, ancient and Modern, by G.Cleghorn(rev.), 73
Art, occasional notes upon, F. Lush, 356
Artificial fuel, Azulay's pat., 52
"Ari- Journal" Ransome 00, 61, 90
"Art-Journal" v. A rchitectare, 218
Art of enamel, ancient and modera, 166
Arts, decorative, Wallace's pat., 303
Arts, Londod Society of, 29, 61, 90,156
Arts mannfacture exhibition, 101, 380
Arts, Scottish Society of, 31, 62, 91, 125, 148, 153, 184
Art-Union distribution, 100
Ashbury's pat. wheels, 369
Assistanl-engideer's railway gnide (rev.), 213
Atmospheric air, dilatation of, 238
" jets, velocity of 110
" railway and air-pump (rev.), 26
$" \quad$ low-pressure, 248
" new, 294
" Valves, Froude's pat., 248
Atmopheric pile-driving machine, Clarke and
Varley's, 341
Atmospheric wares, Birt on, 311
Attwood's pat. iron madufacture, 371
Anstria, mineral produce of, 190
Aathorship of " Lelters of Junius" (rev.), 813
Anxiliary steam-power for vessels, 126
Axle-boxes and jonraals, Normanville's pat., 369
Axle-gnards and buffers, De Bergne's pat., 247
Axles, railway carriage, Berger's pal., 46
Azulay's pat, artifcial fuel, 52
Bacon and Dixon's pat. ateam-eogine, 111
Baine's electro-magnetic mosical instruments, 192
Baird's railway alarum, 318
Baker's pat. steam-boiler farnaces, 247
Baker's railway engineering (rev.), 74

Bakewell's copying electric telegraph, 191, 317
Balance bridge, Sadler's pat., 75
Balancing of wheels, 222
Balloon, improved Archimedian, 223
Banks's pat. ateel tyres, 184
Bann reservoirs, Bateman on, 185
Baptist chapel, Bloomsbury, 129
Barber's pat. paddle-wheels, 168
Bar-irod, Russell's pat., 286
Barlow's pat. railway keys, 304
Baron de Goldsmid's house, 190
Basbforth on oblique arch, 4
Bashforth on laying out widths of lana for railways, 327
Bashforth's earthwork tables (rev.), 296
189" machine for forming teeth of wheels,
188"
Batemad od the Bain reservoirs, 185
Bateman's pat. valves and plugs, 286
Battersea, new park at, 320
Beams or girders, deflection and strain of, 258
Fielder's pat., 189
Beauland's, on setting out railway junctions, 124
Beauty, symmetrical, Hay on, 81
B " Purdie on the fallacy of, 148
Beche, De la, on geology of South Wales, 318
Beechey, on the tides of the English and Irish channels, 147
Bennett, on Irish flax, 31
Benson, on relative pusition of coal in South
Wales, 318
Berger's pat. railway carriage axles, 46
Bergue's pat. axle-guards and buffers, 247
Beyer's cylinder-boring muchive, 88, 182
Birkenhead docks, 318
Birkenhead port and docks (rev.), 68
Birkmyre's pat. for smeltiog ores, 215
Birt, on atmospheric waves, 311
Blackburn new market-bouse, 96
Black's pat. steam-boilers, 304
Blackwall extension railway, 300
Black wall railway machinery, 83
Blest furnace, accident to, 359
Blanting rocks, 288
Blewritt's pat. manufacture of irod, 46
Bloomsbury baptist chapel, 129
Blowing-machines and furbaces, Lloyd's pat., 34
Boiler and condenser, Craddock's pat., 182
Boiler furnaces, Baker's pat., 247
Boilers and engines, Exall's pat., 842
Boilers, apparalus for supply of water to, 179
Boilers, high-pressure, Smith on, 288

INDEX.

Boilers, marine, Dundonald's pat., 286
Boilers, steam, Black's pat., 304
Bone-crushing macinine, 283
Bookbinding, ancient and modern, Cundall on, 29
Boppart, gothic wixdow at, 120
Boring end sinking, Gard's pat., 170
Bowstring girder-bridges, 1, 200
Brandreth, Lt.-col., death of, 96
Brasses, monumental, Archer on, 30
Brazilian war-steamer, Affonso, 317
Break and engines, Taylor's pat., 76
Break, Chaplin's pat., 114; Heath's, 304 ; Hep-
burn's, 82 ; Laignet's triple, 92 ; Lister's, 304
Breakwater in Plymonth sound (rev.), 121
Brees's railway practice (rev.), 57
Brett and Little's railway commanicator, 30
Briant on overcoming break of gauge, 30
Brick and tile traffic on railways 333
Bridge at Saltash, for the Cormwall railway, 96
Bridge, balance, Sadler's pat., 75
Bridge, bowstring tubular, 1,300
Bridge-building, improvements in, 318
Bridge, Clifton suspension, 318
Bridge, Conway tubular, $95,126,154,161,318$, 851
Bridge, Cowper's inverted arch, 8
Bridge, Grainger's cast-iron skew, 62
Bridge, Hungerford suspension, 3, 292
Bridge, overarch suspension, Milne's, 32
Bridge over the Wje, 127
Bridge over the
Bridge, suspension, at the falls of Niagara, 199 288
Bridges, Buchanan on strength of, 125, 153
Bridges, Clark, on wing walls of, 43
Bridees, construction of, Moulton's pat., 23
Bridges, on the most economical forms of suspension, 2
Bristol, sewage and drainage of, 90
Britain, alteration of outline of coast, 186
British architects, royal institution of, 29, 60, 89,
124, $150,186,221,380$
14, association, proceedings of, 284, 308
British isles, hydrographic map of, 315
Brittern's pat., heating, lighting, and ventilating, 370
Britton, on "Letters of Jupius" (rev.), 815
Broad and narrow gauge, Briant on uniting, 80
Broad gange, litigation on, 96
Brockedon's pat. india-ruhber joints, 380
Hroaxing metal surfaces, Salzedes pat., 169
Bronzing of metals by clectricity, 127
Brown, on Irish wants and remedies (rev.), 214
Brown's improvement in compan, 381
Bruce's antiquarian and genealogist's companion
(rev.), 27
Brunton's pat. for dresting ores, 214
Brusels lace, 88
Brjeon's lubricant for machinery, 165
Buehatan, on strength of materials, 185, 153
Buchanan's marine hydrometer, 91
Buckingham-palace, 7. 36, 25T
Buckle, ou the fan blast, 18
on bone-crashing machine, 283
Buddhist architecture, Fergusson on, 124
Buffer, De Bergue's pat, 247
Chestire's safety, 184
Buffers, effects of, 197, 892
Builders' foremen, institution of, 80
Building trafic on railways, 884
Buildings in towes, rogatation of (rev.), 27, 85
Bundett's pat, sewer trap, 25
Bargess, on theatres of ancient Rome, 253
Caen, its quarries and beildings, 89
Caen stone, Donaldson on, 94
Cambrian engine, 580
Candidas, on the rival palaces, 36
Candidus's note-book, 5, 41, 65, 97, 180, 193, 198,
226, 257, 290, 321, 354
Carbonic-acid-gas eagine, 178
Chrboeining wood by high-presure steam, 820
Cariton-cinb deaigre, 127
Carriages, railvay, collition of, 197, 292
Dum's pat, 109
Carriage "trafic oo railvays, 367

Carriage-wheels, railway, Erans's pat., 189
Carrying stock, London and North-Western Railway, 367
Caserta, palace at, 7, 36
Casks or vin, aeso-cock for, 185
Cast and wrought-iron bridgen, Buchanan an, 125, 153
Casting wrought-jron, Rocke's pat, 216
Cathedral at Florence, 29

$$
\text { of Llandaff, Wyatt on, } 141
$$

St. George's, 290
Cattle trafic on railways, 243
Cement, experiments on, 294
Cement, newly discovered, 919
Central railway station, Newcastle-inpon-Tyne, 353
Centre-vent reaction water-wheel, 110, 171
Ceutrifugal force, effect of, 261
Chance's pat. reverberatory furnace, 304
Channel, English, floating tunnel across, 218
Channels, English and Irish, on the tides of, 147
Chapels, new, 285
Chaplin's pat. railway break, 114
Chapman, on gothic window at Boppart, 129
Chat-moss, drainage of, 315
Chemical and electrical forces, Faraday on, 819
Chemical character of steel, 314
Chemical principles of geology, Daubeny on, 146
Chemistry of the sea, 160
Chesshire's safety-buffer, 184
Chloroform, a substitute for steam, 191
solvent power of, 188
Chrimes' pat. fire-cock, 167
Church, new, South Hacikney, 255
Circular sawing, 318
Cisterns, stop-cock for, 185
Civil engincers' college, Putaey, 192, 256
Civil engineers' institution, $61,90,122,155,185$,
291, 283
at the Hague, 187
Irish, 63
Civil and military surveyors, 198,255
Clamps, jointing, Kimberiey's pat., 373
Clarke and Varley's pile-driving machine, 841
Clarke's railway statistics, $241,268,383,306$
Clark, on cross-ections of railways, 67, 187 as embankments for reservoirs, 197
on isometrical perspective, 294
on lerel of distant objects, $\mathbf{2 3 0}, 264$
on wing-walls of bridges, 43
Clegg's pat. ges meters, 368
Cleghorn's ancient and modern ant (rev.), 73
Clifton suspension bridge, $\$ 18$
Clock regiatering machine, Sharp's, 63
Coad's pt. for combustion of fael, 216
Coal beds in Sorth Wales, 313
Cool bed on fre, 820
Coal drops at Middlesbro' docks, 105
Coal formation, fossil footmarks in, 86
Coal gas, Hoffman on composition of, 157
Coal mines, prevention of accidents in, 127
Coal, report of experiments on, 278
Coal trafic on railways, 268
Coast levels, Portlock on, 814
Coast of Great Britain, alteration of outline, 186
Coffee-pot, Waller's pat, 115
Cofferdam, portable, Stevenson's, 62, 291
Coinage, observations on, 315
Coke ovens, Michaut's pat., 246
Coke trafic on Railways, 270
Cole's pat. high-preagure steam-engine, 24
Coleraine, removal of a mill at, 63
College for engineers at Putney, 192, 256
Collision of trains, 196, 292
Colonial railways, 96
Colanial surveying, Whitehead on (rev.), 140
Colouring and preserving wood, Beaand's pat, 14
Commisaion of newers, 82, 89
Compess, Brown's improvement in, 381
Composite ellipse, Hay on, 185
Composition of coal gas, Hoffmann an, 167
Compound beams or girdert, Fielder's pat., 180
Condenser and boiler, Craddock's 188
Condenser, dry, Price's 284
Condenser, Schiele's pat., 114

Construction of bridges, Moulton's pat., 23
Cons" Greek architecture, Penrose, 150
Consuming smoke, Kyan's pat., 113
Contributions to railway statistice, 241, 266, 888, 366
Canversaziose, Mr. Angell's, 186 ; Mr. Flold's. 221
Conway tubular bridge, $95,126,164,161,318,351$
Cooper's glass-blowing apparatus, 92
Copper ores, Rivot's smelting process, 847
Copper sheathing, 256
Copper smelting furnace, estimate of cost, $\mathbf{3 4 0}$
Copper traffic on railways, 270
Copying electric telegraph, 191, 317
Council of health of Paris, 845
Conpling-irons, Pratt's pat., 372
Cousens, Mr., charge of extortion against, 255
Comper's inverted arch bridge, 8
Cox, on study of mechanics, 223
Cox, on suspension-bridges, 2
Cox's notes on engineering, 2, 199, 258, 298
Craddock's boiler and condenser, 182
Craddock, on working expansive steam-valves, 141
Crampton's pat. locomotive-engine, 48
Crane's improvement in railways, 32
Cresy's evidence before sanitary commissioners, 59,81, 115
Cundall, on book-binding, 29
Cutler's pat. iron-tubes, 248
Cylinder-boring machive, Beyer's, 88, 182
Dagoerreotype camera, plate-holder for, 165
plates, 298
" effects of light on, 248
Deabeney, on geological chemistry, 146
Davidson's elevator and fire escape, 98
Davies's pat. rotary steam-eagine, 870
Decomposing power of water 181
Decorative arts, Wallace is pat., 308
Decoration, lectures on, at echool of design, os
Decoration, polygonar, 91
Dee viaduct, 317
Deflection or vibration gauge, 1
Denne's pat lubricating comporition, 169
Desigas for Carlton club house, 197 echoole and achoolbouses (rev-), 67
Design, sorernment sohool of, 96
Dimingatetic coudition of flame and greas, 187
Diamond, conversion of, into coke, $2 e 7$
Diaphragm double sewer, Moffatt's pat., 872
Dinting rale viaduct, by A. 8. Jee, 35
Dissertation on torrents, by Guglielatiai, 59
Dividends, railway, 96
Divining.red, Penay on, 294
Docks and port of Birkenhead (rev.), 68
Docks, Birkenhead, 318; Grimaby, 318 ; Mid-
dlesbro', 105; Plymorth, 818; Susdertand, 288
Doeks, on the entrances to, by J. Redman, 123
Dog traftic on railwaya, 367
Donaldson, l'rof, on caen stone, 94
Dotting electric telegraph, 253
Douche's pat. application of heat, 303
Donll, on railways and railway legicintion 72
Dover refuge harbour, 987
Drainage and sewage of Bristol, J. Greea an, 90
Drainage of part of chat-moss, 815
Niagara river, 101
" Niagara river, ${ }^{\prime \prime}$ narshes by steam, sol
Drain-tiles, new tremches for, 380
Dry condencer, Price's, 284
Dablin termians, fall of roof, 63
Dundonald, Earl of, pat. steam-boiler, 286
Dunn's pat railway-wheels and jocks, 160
Duttom's railway commanicator, 30
Duty on timber, 160
Dwjer, on ascient poltery, 91
Dyer, Charles, death of, 96
Dyer's tinctoria, on the cultivation $\alpha, 81$
Eakthmonk theles, Baker's (rev.) 74
Barhforth's (rev.), 996
Cos's, 190
Sibley and Rutherford'th(rev.) 27

Earthenware piping, 381
Economising fuel, in gas-works, 155
Elasticity, defect of, 263
Electrical and chemical forces, Faraday on, 219
Electricity, lighting by, Staite's pat., 49
of mineral veing, 180
Electric light, Le Mott's, 970
Electric telegraphs, 9, 217
(rev.), 176
Electric telegraph company, 96
copying, 191, 317
dotting, 256
employed by publicens, 127
Holmes's improvements in, 224
Hydraulic, ${ }^{127}$
Electro bronxing of metals, 127
Elevator for raining building naterials, Davids0n's, 92
Elevator, railway, Fothergill's, 380
Elmes, Harrey, death of, 61, 64
Blmes's history of architecture, letters on, $\mathbf{8 , 5 8 , 6 5}$
Embankment for reservoirs of waterworks, 197
" widths of, Bashforth on laying-out,
387 "
Enamei, art of ancient and modern, 156
Engine and breaks, Taylor's pat., 76
boilers, Exall's pat., 342
" carriages, Taylor's paL, 23
" $\#$ " Pearrian's pat., 167
" propellers, Maudslay's pat., 305
trains, Samuel's, 223
Euginé, Bacon and Dixon's pat., 111
conater, Richmond's, 61
". Cramplon's pat. locomotive, 48
Eorine furnacee, blast of, Ablon's pat., 372
governors, 255
" Gustafseon's vibratory piston-rod, 24
", high-pressure, Alban (rev.), 211
hydraulic pressure, Glyn's, 314
") propelled by carbonic-acid-gas, 178
" Healon's pat., 189
" Ritchje's pat., 306
" rotary, fallacies of, 284
" Wiloon's pat., 285
" Ateam, Regnault's theory, 296, 268, 398
" " Siemen's pat. 249
, "Wicksteed's, 104
Engineers, civil College, Putney, 195, 240
institution of, 61, 90, 122, 155, 183, 221
Irish ingtitation of, 63
institation at the Hague, 127
of mechanical, 87, 184, $" \quad 221,283$
railway guide, Haskoll (rev.), 213
Enginéering, notes on, No. VIII., 2 ; IX., 199 ; X., 258; XI, 292
9) of the Rhine and Moselle, 155
") railway, Baker on (rev.), T4
English and Irish channels, on the tides of, 14τ patents, new, lists of, 32, 64, 96, 128, 160, 192, 224, 256, 288, 320, 332, 382
Entrances to docks, Redman on, 123
Erickeon, on supply of water to steam-esgine boilers, 179
Erakine's cocks for cisterns and casks, 185
Esasay on the air.pump and atmospheric railway (rev.), W. Tumbull, 26
Euber, a subatitute for sleam, 191
Erans's pat. railway carriage wheels, 189
Evaporation, Black's pat. for, 304
Erall's pat. steam-boiters and ongines, 349
Exhibition, Royal Academy, 163, 195, 218, 228, 326
Society of Arts, 101
Expañaive and high-pressure steam-engine, Cole's pat. 34
rotary steam-engine, Wilson's pat., 285
" roxaty atonm-engine, \quad stenm valvon, improved mode of morking, 141
working of steam, 158
Experiments on coals, 273
cements, 294
Explonions of ateam-boilers, Widder (rev.), 178

Explosions in steam-engines, prevention of, 381
Export and import of metals, 198
Express, steem-bont, lanach of, 310
Extension of south-western railway, 254
Extinguishing fires at sea, mode of, 318
Extraction of silver from its ores, Perry os, 315
Extraction of gold, new method, 381
Fall or bain, Homersham on, 449
Fan-blast, Buckle on, 19
Faraday, on chemical and electrical forces, 919
" diamagnetic condition of flame and gases, 187
Fenwick's vibration or delection gange, 1
Fergasson, on anciest Buddhist architeetars, 124
Fielder's pat. beams or girders, 189
Field's, (Mr.) conversazione, 221
Findley, on lighthouses, 61
Fires at sea, mode of extioguishing, 318
Fire-cock, Chrime's pat. 167
Fire, curious phenomena of, 127
Fire-escape and elevator, Davidsoa's, 92
Fire-proof buildings, 257 ,
Fire-proof wood, Payne's pat, 282
Fishes, effects of weight of water apon, 160
Fish traffe on railways, 334
Flame and gases, diamagnetic condition of, 187
Flax (Irish) Benuett, on the growth of, 31
Flaxman's works, 06
Fletcher's pal. for silvering speculams, 115
Floating bodies, on the stability of, 357
Floating tunnel across the channel, 218
Florence cathedral, 29
Fluids (elastic) dilatation of, 213
"s resistance to bodies in, 106
Fontainemoreau's pat. tubes, 216
Fossil footmarks in the cond formation, 86
Foreland lighthouses, 319
Fothergill's jacquard perforating-machise, 88,225
Pothergill's railway elevator, 380
Fox's (Dr.), fire-proof buildiags,
France, steam-power of, 352
French railways and French revolutions, 119
Friction-hammer, Jones's, 128
Fronde's pat. atmospheric railway-vaives, 248
Fuel, Azulay's pat., artificial, 52
Fuel, consbustion of, 216
Fnel, economy of, Douche's pat., 303
Fuel in gas-works, Kemp, on economising, 155
Furnaces and blowing-machines, Lloyd's pat., 343
" application of heated gases from, 284
„ reverberatory, Cbance's pat., $30 \AA$
steam-boiler, Baker's pat., $24 T$
Fyfe, on ralae of gases, 184
Galleay, National, 97, 291
Gard's pat. bor boring and sinking, 170
Garting, on the application of scnlpture to archi-

tecture, 201

Gas apparatus, Watson's pat. self-acting, 44
Gas and flame, on the diamagnetic condition of, 187
Gases, density of, 265
Gases, Fyfe, on the ralue of, 184
Gases, beated, application of, 284
Gas from water, 293
Gas improvements, Palmer's pat., 25
, meters, Clegg's pat., 368
Gas motive-power, 128
Gas, purifying with sulphate of iroa, 128
Gas-stove, Brockedon's pat., 143
Gas, Taylor, on the purity of, 89
Gas thermometers, Regnault ou, 389
Gas-works, economising feel in, 155
Gas-worka, matures, 288
Gas-works, mafoty preasure-gange, 382
Gauge, broad and narrow, Bryant's plan for unftring, 30
Geage for steam-boileth, Newton's pat., 68
Gange question, compromise of, 223
Gauge question, litigation on, es
Genealogirt and antiquarian's compasion, by W.
Brace (rev.), 27
Geological chemistry, Prof. Daubemy 0 , 143

Geological discovery, 352
Geological lectures, by Prof. Ansted, 27
Geology of South Wales, 318
Geametry for the million, Tate's (rev.), 188
Geometrical lines and optical corrections of the
Greek architectis, 150
Georges (8t.) cathedral, 200
Gilbert's pat. sack-holder, 111
Girders or beama, defection and strain of, $26 s$
Girders or beams, Fielder's pat., 189
Girders, wroaght-iron bowstring, 1,900
Gladstone's iron lever bridge, 380
Glass-blowing apparatus, Ccoper's, 9 a
Glass, Chaoce's pat. iarprovements, 304
Glass painting, by M. de Ron, 30
Glass perforating, Lockhead's pat., 307
Glass, plate, Hartley's pat., 144
Glass, plate, trade, 316
Glass tubes, on annealing, 127
Glyn, on draining marshes by steam, 301
Glyn, on hydranlic-pressure eagines, 314
Goldsmid's (Baron de) boase, 190
Gold, new method of extracting, 381
Gooch, on resistance to railway tralus, 155, 186
Good's traffic on railways, 306
Gothic window at Boppart, on the Rhine, 199
Governors, steam-engine, 255
Grainger's cast-iron skew-bridge, it
Grain traffic on railways, 335
Granaries, air-tight, 42
Grandi, on the motion of water, 81
Granite, extraordinary block of, 381
Great Britain steamer, sale of, 320
Great-wentern docks, Plymouth, 818
Greek architectare, Penrose, on the peculiaritiee of, 150
Greek, vases, Dr. Harding on, 90, 91
Green's arched timber vinducts, 33
Green, on the sewage and drainage of Bristot, 90
Green sand formation, phosphates in, 191
Gregory's mathematics (rev.), 209, 249
Gresham professorship, 256
Griffiths, on the natural system of architecture, 01
Grimsby docks, 318
Guano, mineral, 285
Gaglielmini on torrents, 59
Golde to the regulation of buildings in towns (rev.), 27, 55
Gun metal, testing of, 381
Gustafseon's vibrating piston-rod engine, 94
Gutta percha boats, 319
Gwilt, on pointed architecture, 29
Gypsum, indurated, 288
Hackney, (south) church, 255
Hagae, institation of civil engincers at the, 187
Haigh's pat. for measuring water, 371
Hammer, Jones's friction, 128
Hammer, steam, Nesmyth's pat., 802
Hann's theoretical and practical mechanics (rev.), 375
Harbour, Dover, 287
Harbours of refage, Earl Lovelace on, $\mathbf{2 2 2}$
Harbours, on shoals at the entrances of, 180
Harding, on gretit rases near Hexamill, 00,91
Harding, on progress of the railway syttem, 308
Harlow's atmospheric railway, 284
Harmonic ratios, Purdie on the fallacy of Key's theory, 148
Harmony of form, Hey on, 150, 186
Harrison, on the coant of Great Britain, 188
Harrison's wrongtitiron tabalar bow-bridge, I
Herthoy's patent plato-gdase, 144
Haskoll's assiatant engineer's railway gaide (rev.), 219
Hastio's pat., applicalion of ateam-power to mill, 115
Hay, on bymmetrical beacty, 81
Hay's theors of aymmetrical beanty, Puritio, an the fallacy of, 148
Hay, on the harmony of form, 160, 185
Health of towns bill, 120
Health of towas commineion, 39

Health of towns, Dr. Smith on, 311
Health of towns, the government and the profession, 17
Heath's pat. railway-break, 301
Heating, lighting, and ventilating, Briltern's pat., 370
Heaton's pal. locomotive-engines, 189
Height of waves, Captain Stanley on, 310
Henwood's pat. for steering vessels, 47
Hepbara, on the prevention of accidents on rail ways, 31
Hepburn's railway break, 32
Heppell, ou resistance to bodies in fluids, 106
High-pressure boilers, Smith nn, 283
High-pressure steam for carbonising wood, 320 generator, Leon's, 360
High-pressure and expansive engines, Cole's pat., 342
Hints to planters, 63
History of architecture, letters on Mr. Elmes's, 8, 58, 05
Hoare's railway telegraph and alarum, 30
Hoffman, on the conaposition of coal gas, 157
Holmes's electric telegraph, 224
Holyhead steam-packet, Llecrellyn, 190
Homersham, on the full of rain, 349
Homersham, on supply of water to Manchester, \&c., (rev.), 177
Horse traffic on railways, 367
Hosking's guide to the regulation of buildings in towns (rev.), 27, 55
Hotel de Ville, Parls (rev.), 90
Houses of parliament, 245, 278, 295
Houses of parliament, expenses of, 92, 228
Howard, on plate-glass trade, 316
Humphrey's pat. screw propellers and pumps, 247
Hangerford suspension bridge, 3, 292, 304
Hunt's pat. gas-burners, 114
Huat, on the plectricity of mineral reins, 180
Hydraulic lifting jack, Thornton's, 87, 217
Hydraulic pressure engines, 314
Hydraulic starting apparatus, 183
Hydraulic telegraph 127
Hydraulic or steam-wheel, Sims's, 351
Hydrographic map of the Britieh Isles, 315
Hydrogen gas as a motive power, 379
Hydrouneter, marine, Buchauan's, 91
1'Anson,on mural paintings in Liogield church, 29
1'anson, oa building sewers, 29
Ice, comparatire value of, 352
Illamination of lighthouses, 173, 205
Illuminating power of gas, mode of estimating, 184
Imperial insurunce-office, Old Broad-street, 193
Import and export of inetals, 198
1 mprovements in bridge building, 318
Improvements of inland navigation, 53
Improvement of stean navigation, 311
Indian railways (rev.), 103
Iodia-rulber tube-cocks, Jennings's pat., 144
Iudia-rubber joints, Brockedon's pat., 380
Indian waterfall, 319
Indurated gypsum, 283
Inland navigation, by A. P. Perceral, 53
Iolaying metals, Motay's pat.. 217
Institute of British architects, 29, 60, 59, 124,
150, 186, 221, 283, 380
Institution of builders foremen, 96,
Inatitution of civil engioeers, $01,90,122,155$, 185, 221, 283
Institation of civil engineers of Ireland, 03
Institation of engineers at the Hagne, 127
Institution, Royal Polytechnic, 96, 160
Institution of mechanical engineers, 87, 182, 222, 283, 380
Invention of tubular bridges disputed, 218
Inverted arch bridge, Cowper's, 8
Invisible musicians, 192
Irish and English chiannels, on the tides of, 147
Irish wants and remedies (rev.), 214
Irish Alax, Beonett ox, 31
Ireland, institution of civil engineers of, 63
Ireland, railways in (rev.), 214
Iron, manufacture of, Allwood'd pat., 371

Iron, Manafacture of, Blewitt's pat., 46; Newton's, 170; Rasseli's, 286 ; Vickers, 47
Iron bridges, Buchanan on, 125, 153
Iron lever bridge, Gladstone's, 380
Iron, Norton's machine for rolling, 101
Iron ore in Algiers, 191
Iron produce of Penusylvania, 254
Iron, Rocke's pat. for casting, 216
lron, sulphate of, for purifying gas, 128
Iron akew bridge, Grainger's, 62
lron, the effects of zinc on, 187
Iron tubes, Catler's pat., 248
Iron tubular bowetring bridges, $\mathbf{1 , 2 0 0}$
Iron traffic on railwass, 270
Iron trass railway bridge, Rider's, 30
Iron vessels, construction of, 225
Isometrical perspective, 230, 294
Jack, Thornton's hydraulic, 87, 217
Jackson on engineering of the Rhine and Moselle, 150
Jackson's hydraulic starting apparatus, 183
Jacquard perforating machine, 88, 225
Jee's Dinting Vale viaduct, 35
Jenning's pat. india-rubber tube-cocks, 144
Jones's friction Lnmmer, 128
Johnson's pat. fur refining silver and lead, 143
Junius's letters, anthorship of (rev.), 213
Kay, Mr., death of, 01
Kemp. on economising fuel in gas-wrorks, 155
Kradah's designs for schools and school-houses, 57
Keys, railway, Barlow's pat., 301
Kiln, porceluin, Newton's pat., 145
Kimberley's pat. jointing clamp, 373
Kinsman's pat. rotary-engines, 210
K yan's pat. for consuming smoke, 113
Lace, Brusbeis, 32
Lakes of America, 319
Latilhorn, new mining. 255
Lap and lead of the slide-valve, 14, 37
Luunch of the Express, 319 ; New Star, 810 ;
Lleacellyn, 193; Taman, 360
Law's mathemotics for practical men (rev.), 209, 2.19

Layard's remaks on Ninevel, oo
Lead uad silver, Juhnson's pini. for refining, 143
Leather hangings, Poynter on, 61
Lecture, Playfair's introductory, 376
Lectures on geologs, by Prof. Ansted, 27
Lectures on civil engineering, \boldsymbol{W}. Ranger (rev.), 378
Leon's high-pressure steam generator, 360
Letters of Junius, authorship of (rev.), 213
Lifting-jack, Thornton's hydraulic, 87, 217
Light, effects of, in photography, 284
" engines and trains, 223
Lighthouse on the Skerryvore rock (rev.), 178, 205
Lighthouses at the South Foreland, 319

$$
\text { Findluy on, } 61
$$

Lighting, heating, and ventilating, Brittern's pat., 370
Lighting by electricity, Staite's pat., 49
Lime, traffic on railways, 270
Lingfield church, mural paintings in, 29
Lists of new palcnts, $32,04,96,128,100,192$, 224, 256, 288, 320, 352, 382
Lister's railway breaks, 304
Little and Brett's railway commanicator, 30
Liverpool, sapply of water from the new red sandstone, 188
" survey, 278
waterworky, 127
Lockhead's pat. for perforating glass, 807
Locomotive carriage apparatos, Wrighton's pat., 246
Locomotive-engines Wheela, Erans's pat., 189
carriag, Taylort., 76
23; Peärson's, 107
Locomotive-engines, Crampton's pat., 48; Hea-
ton's, 189 ; Ritchie's, 306
Locomotive propelled by manual labour, 102

Locomotives, branch passenger, 982
London and North-Western railway carrying stock, 367
London, ordnance survey, 90, 108, 255 society of arts, 29, $01,80,156$
Lovelace, Earl, on harbours of refoge, 222
Lowe's pat., manafacture of ores, $\mathbf{2 1 4}$
Low-pressure almospheric railway, 284
Lubricant, new, for machinery, 155
Lubricating composition, Denne's pat., 169
Lush's notes upon art, 356
Lyell, on fossil footmarks in the coal formation, 86
Llandaff cathedral, Wyatt on, 141
Lleucellyn steam. packet, 190
Lloyd's pat. furnace and blowing-machine, 343
M'Coll's railway alarum, 32
M'Connell, on balancing of wheels, 222
Machine for rolling iron, Nortun's, 191
, for quarrying. 160
Machinery, Blackwall rail way, 83
" new lubricant for, 155
Madder, colouring property of, 284
Mail conveyance on railways, 338
Malleable iron railway chair, Robb's, 31
Malleable iron lever bridge, Gladstone's, 380
Mammoth machine, 192
Manchester, \&.c., supply of water to (rev.), 177
367 and Sheffield railway, goods traffic on,
Manual power locomotive, 192
Manure iraffic on railwass, 336
Map, hydrographic, of the British isles, 315
Maps of the ordanace survey, 287
Marble arch at Buckingham palace, 7
Marine engines and propellers, Maudsley's pat., 305
" hydrometer, Buchanan's, 91
Market-houmse at Blailers, Dundonald's pat., 286
Market-house at Blackbura, 96
Marshes, drainage of, by ateam, 301
Mathematica for practical men, Gregory's (rev.) 209, 249
Maudsley's pat. engines and propellers, 305
Measurement of temperatures, 338
Mechanical engineers, institution of, 87, 182, 222, 263
Mechanics, study of, $\mathbf{3 2 3}$
theoretical und practical, Hann's (rev.),
375
Mechanism, new element of, 315
Medals of R. I. B. A., award of, 12 $\downarrow, 125$
Mercury, density of, 267
Metals bronzed by electricits, 127
import and export of, 198
" Motay's pat. for iolaying, 217
", process fur uniting, 187
", Salzede's pat. for bronzing, 169
Melropolitan sanitary commission, 17

$$
\text { Bewers act, } 287
$$

Michnut's pat. for manufacture of coke, 246
Middiesbro' docks and coal drops, 105
Mill, removal of, near Coleraine, 63
Miller, on analyeis of wrought-iron,
Mills, application of steam-power, Hastie's pat., 115
Military surveyors and civil sarveyors, 198, 255
Milne's overarch suspension bridge, $\mathbf{3 2}$
Mineral guano, 285
produce of Austriu, 190
") truffic on railways, 334
") veins, electricity of, 189
Mines, ventilation of, Whlcock's pat., 22
Mining apparatus, Puis's pat., 248
lanthorn, new, 255
Mints, observations on, by Mr. Smith, 315
Miscellaneous goods tralfic on railways, 366
Mitchell's safety-wheel ring revolver, 63
screw-pile and moorings, 122
Mode of extinguishing fire at sen, 318
Moffut's railway alarun, 32
" pat., improvements in sewers, 372
Monumental brasses, Archer on, 30
Moselle and the Rhine, engineering of, 155
Motay's pat. for inlaying metals, 217

Motion of water, by Guido Grandi, 81
Motive power obtained by gaa, 128
Moniton's pat, for costroction of bridges, 93
Maral paintings in Lingtetd chareh, 1'anson, 29
Masical instruments played by electro-magnetism,
192
Naswytr, on chemical character of steel, 314 on the effects of sinc on iron, 187
Nasmyth's pat. steam-hammer, 302
steam pile-driver, 889
National Gallery, new, 96, 291
Natural gasnorks, 298
system of architecture, by W.Grifiths, 91
Navigation, inland, Perceval on, 53
Navy, "steam, 75
Newall's pat. aash-lide, 156
New beptist chapel, Bloonsbury, 129
Neweasule-apon.Tyne central railway station, 353
New cement, 319
New element of mechanism, by R. Roberts, 315
New electric light, Le Mott's, 379
New houses of parliament, 92, 298, 245, 278
New lubricant for machinery, 155
New market-house at Blackborn, 96
New method of cattiog trenches for drain-tiles, 923
New method of treating the ore of platioum, 183
New National Gallery, 96, 291
New palace of Weatminster, 245, 278, 295 Baltersea, 320
New park ate lists of English,32, 64, 96, 128, I60
$192,224,256,248,320,352,382$
New patents, register of, $22,45,75,111,143,167$,
$214,246,285,302,342,368$
New red sandstone, supply of water from, 188,381
New ritte barrel, 192
New Star steamboat, 319
New steam or hydraulic-wheel, 351
New steam-ship basio, Portsmonth, 191
New theatre at the Polytechaic Jostitution, 00, 159
Newland, on sorvey of Liserpool, 278
Newton's pat., manufacture of irod, 170
manofacture of pigments, 215
porcelain kila, 144
railway-wbeels, 114
water-gauge, 52
Niagara river, sudden draiaing of, 191 suspension bridge, 191, 288
Ninéreb, remarks on, by Mr. Lagard, 60
Normanville's pat. axle-boxer and jouraals, 369
Norton's machine for rolling iron, 191
Note-book, Candidus's, Fasciculus LXXVII, 5 ;
LXXXIII., 41 ; LXXIX., 65 ; LXXX., 97 ;

193; LXXXIV., 226 ; LXXXV., 267;
LXXXVI., 290; LXXXVII., 321 ;

LXXXV11I., 354
Notes of the month, $32,95,127,160,190,223$,
$255,287,317,351,381$
Notes on engineering, No. VIII., 2 ; IX., 199 ;
X., 258 ; XI., 292

Notes opon art, by F. Lush, $3 j 0$
Oeituary : Harvey L. Elmes, 61, 64 ; Mr. Kay, 61 ; Charles Dyer, 96 ; Heary Brandreth, R.E.,
96 ; George Btepheason, 297, 329, 861
Obliqge arch, Bashforth on, 4
Occurrence of vanadinm in the refinery slag, 319
Oniorfs rotary engine, 294
Orduance maps, 287
" survey of London, 00, 198, 255
Ore, "opper, Norwegian mode of smeltiog, 320 Rivot's process for smelting, 317
Ore of platinom, new method of treatiog, 128
"Wall's pat. for separating iron from, 144
Ores, Birkmire's pat. for smelting, 215
Branton's pat. for dressing, 214
" manafacture of, Low's pat., 214
Ormerod on draioage of Chat-moss, 315
Orerarch saspeosion-bridge, Milne's, 32
Oxides of zinc, Rochaz's pat., 348

Paddle-wheels, Barber's pat., 168
Paint manofactored from antimony, 128
Paiating and architecture, letters on, 165
Paintiags in Lingfield chnrch, I'Anson, 29 on glass, by M. de Rod, 30
Palace at Caserta, 7, 36
, Buckingham, 7, 36, 257
$\# \quad$ of Westminster, 245, 278, 295
Palmer's patent a"s improrements, 25 expencer 228
Paper-hangings coloured with nitrate of silver 100
Parcels traflic on railways, 336
Paris, council of health of, 345
Hotel de Ville (rev.), 99
Park at Battersea, new, $\mathbf{3 2 0}$
Parker on the velocity of atmospheric jets, 110
Parker's reaction water-wheels, 110, 171
Parliament houses, new (rev.), 295
"' ${ }^{\prime \prime}$ " $92,228,245,278,295$
Passengers and'fares" on railways, 241
Pussenger locomotives, 382
Patents, English, lists of, 32, 64, 96, 128, 100, 192, 224, 256, 288, 320, 352, 382
register of new, 22, 45, 75, 111, 143, 167, 214, 2 16, 285, 302, 342, 368
Patents:-
Atmorpheric rallway ralves, Froade, 248
Axle boxes and journala, Normanvilie, 309
Axle guards and boffere, De Betgue, 247
Bulance bridge, Sadior, is
Bar \{ron, Rustell, 2e6
Beams or giriert, Firlder, 189
Borlng and sinking, Gerrl, $1 \% 0$
Bridge, balance, Sadler, 75
Bridges, constractlon of, Mfoulton, 23
Bronsing metal earfaces, Salzede, 169
Coke ovent, Michanh, 246
Condenaing stesm, Schiche, 114
Coupling Irons, Pratt, 372
Decorative arti, Wallace, 303
Electricity, Itgh:ing by, Stelte, 49
Enginet, rotary, Kingusen, 216
Pire cock, Carimes, 167
Fuel, artidcial, Azulay and Solomons, 82
If combustion of, Loed, 216
Furnacet and blowing macbines, Lloyd, 343
Furnaces, blast of, Ablon, $\$ 7{ }^{2}$
Gas apparatus, eclf-actlug, Watson, 342
ing buipers, liunt, 114
Gas, improvementa in, Palmer, 2)
Gas meters, Clegs, 368
Gas stove, Brockedon, 148
Gauge for steam-bollers, Newton, 32
Glase manufacture, Chince, 304
Glass, perforating, Lockhead, 307
Iron, manufacture of, Atwood, 371 ; Blewitt, 46 ; Newton,

$$
1 \% 0, \text { Vickers, } 47
$$

Iron, wrought, casting of, Rocke, 216
Jointing clamps, Kimberiey, 373
Locomollve carriage wheela, Evans, 189
Locomotive enginet, Crampton, 48; Heaton, 189; Bit.
chie, 306
Locomotive engines and breake, Taplor, 76
Locomotive englaes and carriaget, Perrion, 167; Taylor,
Lubrication composition Denne, 160
Metale, Inlaying and coatiog, Motay, 217
Mils, application of steam power to, Hastie, 115
Mining apparatus, Pulf, 248
Ores, dreaslog. Brunton, 214; Low, 214
Ores, drenidg, Branton, 21t;
Ores, meiling, Birkmyre, 215 , $1+1$
Peddie wheela, Barber, 165
Pigments, manufacture of Neveton, 1
Plate glase, Hartley, Ith
Prate giatic, Hartley, Id
Pneumatic apring. Poole. 45
Porcelain ktio, Newton, 145
Propellag blades, Stont, 386
Rade, laying down of, Gordon, 370
Rallway apparatus, Wrighton, 246
Radlway bare and chalrs, Shaw, 170
Rallway break, Chaplin, 114; Heath, 304; Lister, 804
Rallway cerriage axles, Berger, 46
Ralway carringes, De Bergue; 247; Dunn, 169
Rallwey keys, Barlow, 004
Refining allyer and Jesd, Johnson, 143
Rotary engioes, Klatman, 216; Wition, 285; Daviet, 870
8ack holder, Gllbert, 111
Screw propellers and pumps, Humphrey, 84
Sever, diephregnu double ection Moratt, 378
Sewer trap, Bupaeth, 25
Silvering epeculume, Fietcher, 115
Smoke consuming, K yin, 113
8team boilers, Black, 304; Earl of Dondonald, 296;
Steam bollers and engines, Exall, 342
Steam boiler furpaces, Baker, 247
Steam engines, Bacon end Dixon, 111; 8iemen, 249
8 team englaes, hlgh-prensure, Cole, 842
Steam furuaces, economy of fuel in, Douche, 303

Patents (continued):-
Steam bammer, Nasmyth and Gatkell, 302
Tubes, lap-welded, Cailer, 248
Tobes, manufacture of, Fontalnemorean, 216
Tubular faes, Pote, 868
Tarn-tables, Thorold, 300
Valves and plugs, Bateman, 280
Valres, eelf-acting, Walmsley, 371
Ventlation and Highting, Brittern, 870
Ventiation of mines, Wilcoct, 22
Vibrating pleton-rod epgipe, Gustafason, 24
Water gaoge, Newton, 32
Water, metruremeat of, Halgh, Sil
Wood, preserving and colourius, Renard, 145
Wheele, manufacture of, Aehbury, 269
Zine, oxide of, Rochas, 307,348
Paving of streets, 272
Pavement, wood, action for infringement of patent, 256
Payue's pat. tireproof wood, 287
Pearson's pat. locomotive engines and carriages, 167
Peck and Pardee's pat. Iever vice, 373
Peculiarities in the construction of Greek archilecture, by F. Pedrosc, 150
Penny, on the diviniog rod, 224
Penrose, on the geoastrical lives and optical cor-
rections of the Greek architects, 150
Penosylrania, iron produce of, 284
Perceval, on inland narigation, 59
Percy, on extraction of silper from its ores, 815
Perforating glase, Lockhead's pat., 807
machive. Jacquard, 88, 225
Permanent-way deterioration of, 381
Perspective, isometrical, 250, 294
Peterman's hydrographic map of the British isles, 315
Phenomena of fire, 127
Phillips's prof. anemometrical researches, 810
Pbosphates in the green sand formation, 191
Anelysis of, 192
Photography, effect of light in, 884
Pigmeats, mannfactore of, Newton's pat., 215
Pile driver, steam, Nasmyth's, 289
", driving machioe, Clark and Varley's, 84
Hipen for sewage, 06
Fiston, on the infuence of the rapid motion of, 168 rod engine, Gustafsen's vibrating, 24
Pitter's archimedian balloon, 223
Plan-pricking igstrument, 272
Planters, hints to, 03
Plants, sult a poison to, 312
Plate-glass, Hartley's pat., 144 trade, Howard on, 316
Plate-bolder for the daguerreotype camera, 155
Platioum, new method of treatiog the ore of, 188
Playfair's introdactory lecture, 370
Plough, American, Slocum'a, 31
Plymouth docks, 818 sound, breakwater in (rev.), 121
Poeumatic spring, Poole's pat., 45
Pointed architecture, Gwilt's remarks on, 22
Pole's translation, Alban's high pressure steamengine, (rev.), 211
Poole's pat. prenmatic spring, 45
Polygonar decoralions, 91
Polytechnic institutions 96, 159
Porcelain kiln, Newton's pat., 145
Port and docks of Birkenhead (rev.), 68
Portable cofferdam, Stevenson's, 68, 231
Porticoes of ancient Rome, 233
Portland cement, 294
Portlock, on const levels, 314
Portsmonth, new steam-ship basio at, 191
Polt's pat. tobular flues, $\mathbf{3} 8$
Pottery, ancient, Dryer on
Poynter, on leather bangings, 61
Pratt's pat. conpling irons, 872
Precentions on railways, Harding'a, 89
Preservation of wood for sleepers, 224
Preservlug and colonring wood, Renard's pat., 148
Pressure engides, hydranlic, 314
Pressnre-gange for gas-works, 382
Prevention of accidente in coal mines
Prevention of explosions in steam-engines, $\mathbf{3 8 1}$
Price's dry condenser, 284
Principles and practice of building severs, l'anson on, 29

Principles of geometry, Acc., T. Tate (rev.), 136
Proceedings of scientific societies, $29,00,87,122$, 182, 221, 283, 980
Production of the beautiful, Purdie oe, 142
Progress of the railway system, W. Harding, 300
Propellers and engines, Mandslay's pat., 906
pumps, Humphrey's pat, 247
Propelling blades, Stow's pat. 286
Provision by means of gan, 128
Publication of architectural knowledge, societs for, 137
Puis's pat. mining apparatus, 248
Pulley, a new application of, 98
Pomps and screw propellers, Humplarey's pat., 24
Punching machine, Jacquard, 88, 225
Purdie on the fallacy of Hay's theory of symmetrical beanty, 148
Pardie, on the prodaction of the beantiful, 148
Quadrant, Regent's, removal of, 291
Quarrying machine, 160
Railway Companies, amalgamation of, 373
Railway alarom, Allen's, 90 ; Baird's, 818 ; Brott and Little's, 30 : Broihers's, 30 ; Dutton's, 30 ; M'Coll's, 82 ; Moffat's, 32 ; Tattersal's, 191
Railmays and railmay legishation, Donll (rev.), 72
Railway and steam navigation defences, 43 apparatos, Wrigbton's pat., 246 average rate and mileage on, 367 ban and chairs, Shaw's pat., 169 break, Chaplin's pat., 114 ; Heath's, 304 ; Hepbarn's, 32 ; Laignet's triple, 192 ; Lister's pat., 304
Railway bridge, iron trase, Rider's, 90 " broad and narrow gavge, Briant's plan for uniting, 30
bufiers, De Bergre's pat, 247
carriage axlen, Borger's pat., 46
carriages and locomotive engines, Taylor's pat., 23
carriage-wheels, Evans's pat., 188
Himaton's pat., 189 ; Newton's,.pat., 114 chair, malleable iron, 31
Railways, Crane's improvements, 32 Colonial, 96
Railway dividends, 96
engines, Heaton's pat., 189 " and breaks, Taylor's pat., 76 ," und carriagen, Taylor's, 83
Rail"way elevetor, Fothergill's 380
Railway enginepring, Baker's (rev.), 74
Railways, formula for laying out widths of, 827 to calculate area of cross-section on, 137
Railvay girders, dellection and strain of, 258 guide for aseistant engineers (rev.), 213 " Gordon's pat. improvements, 370 " government system in Ir eland (rev.), 214
Railways, Hepburn on the preveation of accidents, 31
Railway junctions, on setting ouf, by A. Beasland, 124
keys, Barlow's pat., 304
machinery, Blackwall, 83
Railways, negotiation of directors of, 352
new atmospheric, 224, 284
of Iudia (rev.), 103
opened, 223, 254, 288, 351, 352
passengers and fares, 241
practice, Brees (rev.), 57
precautions ou, by W, Harding, 32
progress, South-Eastern, 318
Railwas rescue (rev.), 346
sections in sidelong ground, 37, 67
siguale, Baird's pat., 318
n sleepers, preservation of wood for, 284
of, $\mathbf{3 5 3}$ station, Newcastle-upon-Tyne, account
Railways, Smith on government loan to, 1g7
Railway, 8outh-Western, extersion of, 254
" atatistics, by H. Clarlse, 241, 268, 333,

Railway statistics, W. Harding, 308 switches, Nicoll's, 32
telegraph and alarum, Hoare's, 30 timesignals, 256
trains, colliaion of, 106
Gooch, on the resistance to, $185,186,208$
wheels and jacks, Dann's pat., 169 wheels, Astbury's pat., 369
Rain gauges, on the construction of (rev.), 177 Homersham, on the fall of, 349 the cause of, 191
Ramsay, on submergence of land in Wales, 814
Randall, on salt, a poinon to plants, 312
Ranger's lectures on civil engineering (rev.), 378
Rankine, on the construction of sea-mralls, 123
Ransome, on artificial stone, 61, 90
Rare shot, 127
Reaction water-wheels, Parker's, 110,171
Red candstone, new, supply of water frow, 188
Redman, on entrances to docks, 123
Refinery, slag, occurrence of Vanadium in, 319
Refining silver and lead, Johnson's pat., 143
Regent's quadrant, removal of, 291
Register of new patents, 22, 45, 75, 111, 143, 167,
$214,216,285,302,342,268$
Registering machine, Sharp's, 63
Regnault's theory of steam-engines, 236,205,388
Regulation of buildings in towns (rev.), 27, 55
Reaard's pat. for colouring and preserving wood, 143
Rennie, on breakwater in Plymonth Sound (rev.), 121
Reports on coals for the steam navy, 273
Report on supply of water to Magchester, Bo. (rev.), 177
steam-engine boilers, 179
survey of Liverpool, 278
Theservoirs at Bann, Ireland, $\mathbf{1 8 5}$
Reservoirs, embankments for, 197
Resistance to bodies in llaids, $\mathbf{1 0 6}$
railway trains af different velocities, $155,186,20 \mathrm{~s}$
Reverbratory furnaces, Chance's pat., 304
Ileviews, 26, $55,68,120, \mathbf{1 3 8}, \mathbf{1 7 3}, \mathbf{2 0 5}, 295$

Reviews:-

Alr pump and atmospherle rallway, Turnbull, 20
Antlquarian and genealogiti's companlon, Bruce, i2
Arehiftecture, blatory of, Tathill, \&7
Art, muclent and modern, Clegborn, 78
Birkenbead port and docks, Webster, 60
Breakwater In Plymouth Sound, Rennie, 121
Beildinge in towns, Buile to the proper regulation of Hosking. 27, 85
Earthwork tables, Baker, 74; Bashforth, 296; Stbley and Rutherford, 27
Englaverlug, syllabus of lectures on, Ranger; 378
Geometry, prloctples of, Tate, 188
Gregory's mathematics for practical men, Law, 200, 249 Hotel de Ville, Parls, Calliat, 92
Indian Rallways, Old Indlan Postmaster, 10s
Iriah wants and practical remedles, Brown, 21 -
Jualus's letters, on authorship of, Britton, 218
Lecture at College of Cifil Englneers, Playfalt, 376
CAghthouse on Skerryvore fock, Stevenson, 175, 205
tiverpool, sewerage of, Newland, 278
Mechanles, theoretical and practical, Hann, 373
Mlats, observatlons on, Smich, 315
Plymouth sound, breakwater in, teasle, 121
Paince of Westminster, $\pm=295$
Rallway englneering, Buker, 74
Rallway guide, assistant engiseat's, 2 LI
Rallway practice, Brees's, of
Rallways and rallway teglalation, Dooll, 72
Ralliway rescue, $+4,37$
Schooli mend schoolhouses, desigus for, Kendall, 07
Steam-boiler explosions, causes of, Wilder, IT
Steam-englne, Altan's high-pressure, Pole, 21
Steam-boller, studles or, Templeton, 200
Ship-building, theory and practice of, White, 120
Skerry vore IIghthoase, account of Stevenion, 173, 05 Surveylog a treatise on, colonial, Whitehead, 140 Telegraphs, electric, 175
Water, supply of to M ancheater, \&c., Homersham, 177 Young surveyot's preceptor, Held, 122
Thine and Moselle, engincering of, 166
Richards's letter on Cowper's inverted arch bridge, 8
Richmond's engine coanter, 61
Rider's iron Iruss railway bridge, $\mathbf{2 0}$
Rille-barrel, Lancaster's pat., 192
Ritchie's pat, locomotive eagines, $\mathbf{8 0 6}$
Rival palaces, by Candidus, 30

Rivers and harbowcs, an shoals at the entraseas of, 186
Roberts's new element of mechanism, 815
Jacquard perforating zachine, 225
Robertson on Bleckrwall railvay machinery, 88
Robb's malleable iron railway chair, 31
stop-cook for corrosive fluids
Rochas's pat. for obtaining oxide of sinc, 307,343
Rocks, blesting of, 288
Rocke's pat. for casting wrought iron, $\mathbf{2 1 6}$
Rolling iron, machise for, 191
Rome, ancient theatres and porticoes of, 238
Roof of the Dublin terminus, fall of, 63
Rope, compera:ive strangth of wire and hemp, 352
Rotary engines, expansive, Wilson's pat., 285

Davies's pat., 870

allacy of, 284
Kinsman's pat., 216
Rotary heels, 192
Royal Academy exhibition, 163, 195, 218, 228, 326
Royel inslitate of British archilects, 29, 60, 89 , 124, 150, 186, 221, 380
n Iastitution of ongineers at the Hague, 127
" Polytechaicinstifution, 96, 159
" Scottish mouiely of arts, 31, 62, 91, 125, 148, 163, 184
Russell's pat. ber iron, 286
on improvements in steam navigation, 811
Rutherford and Eiblej's earthwork tables (rev.), ir
Sack-holdea, Gilbert's pat., 111
Sadler's pat. balance bridge, 75
Sefety lamp, history of, 329
valves, Wilsod'e, 285
wheel ring-revolver, 63
Salt a poison to plants, 312
Saltash bridge for the Cornwall railway, 66
Salt spring at Droitwich, 319
Salzede's pat. for bronzing metals, 169
Samuel's ligbt engines and trains, 223
Sandstone, new red, supply of water from, $\mathbf{1 8 8 , 3 8 1}$
Sand traffic on railways, sss
Sanitary commissioners, Cresy's evideuce before, 59,81. 115, 17
improvements in the sewage, 252
Iaws, at home and abroad, 202
Sash-line, Newall's pat., 156
Saws, circular, 318
Schoois and schoolhouses, designs for (rev.), 57
Schiele's pat. condenser, 114
Scottigh society of arts, 31, 62, 91, 125, 148, 163, 184
Screw cutting machige, 295
pile and moorings, Mitchell's, 122
" propellers and pumps, Humphrey's pat., 24
Sea-walls, Rankine on the constroction of, 123
Self-acting gas apparalu, Watson's pal., 342
Separating iron fros ore, Wall's pat., 144
Setting out railway jonctions, Beauland on, 124
Sewage and drainage of Briatol, 93
Liverpool, 278
» \quad рірёя, 96
" sanitary improvements in, 76
Sewers, commission of, 32
," diapbragm double, Moffatt'a pat., 372
" (metropolitan) act, 287
" On the principles and practice of building, by E, l'Anson, 29
Sewer trap, Bunnett's pat., 25
Sharp's letter on Buckingham palace, 7
registering machine, 03
Shaw's pat. railway bars and chairs, 170
Sheathing for ships, 256
Ship-brilding, theory and practice of (rev.), Is0
Ships, Renwood's pat. for steering, 47
Ships without keels, Zerman's, 375
Shrewsbury and Chenter railway, opening of, 881
engine, 382
Bibley and Rutherford's earthwork tables (rev.), 87
Sidelong ground, a theorem to calculate the area
of a crose section, 67, 137
" Cor's tables for calculating of earthworke is, 199

8idelong ground, railway sections in, Clark'm, 07
Siemen's pat. steam-engines, 249
Signal balls, Adies, 62
Slas's new hydraulic wheel, 35 I
Silver and lead, Johnson's pat, for refining, 148 extraction from its ores by the "wet way," 315
" nitrate of, colouring paper-hangings with, 160
Silvering speculums, Fletcher's pat., 115
Skerryvore lighthouse, acconnt of, 178, 205
8kew bridge, Grainger's, 62
Slag, occurrence of vanadium in, 319
Slate trafic on railways, 538
Sleepers, preservation of wood for, 224
Slide valve on the lap and lead, 14. 37
Slocarn's American plough, 31
Smelting copper ores, Birkmyra's pat.e, 215 furnace, cost of, 840 Norwegian method, 380 Rivot and Phillips's process, 847
8nith, Dr., on air and water of towns, 311 observations on mints, 315 on government loans to rallways, 127 on bigh-pressure boilers, 283
Smoke consuming, Kyan's pat., 113
Suell, on stability of arches, 132
Soap plant, 255
Society of Arts, London, 29, 61, 90, 156, 380

$$
\text { exhibition, } 101
$$

" Scottish, 31, 62, 91, 125. 148, 153, 184
Society for the pablication of, Architectural knowlodge, 187
Solomon's pat artificiel fuel, 52
Solvent power of chloroform, IS8
Bomerset-honse, 257
Somersetshine, geology of, 813
Soned made visible, 128
Sonth-Zactern railway, 818
Sooth-imeland Lighthomees, 810
Epain, opening of frst railway in, 352
Bparite's pintebholder for the daguerrotype camern, 165
Specninms, Fletcher's pat, for silvering, 115
8 phervidal state of water, application of to steam.
Springs, Poole's pat. pneumalie, 45
8rability of arches, by G. Smell, 182
Stability of floating bodies, 357
Stanley, Captain, on height of waves, 310
Stale's pat. lighting by electricity, 49
Startiog apparatus, Jackson's hydraulic, 183
8tatintics of railways, 211, 203, 333,366
Steam-bollers and engines, Exall's pat., 342
3 Black's pat. 304
n furnaces, Baker's pat., 247
Douche's pat., 303
tnbes, Cutler's pat., 248 marine, Dundonald's pat., 286
then-encriages, collision of, 197, 292
comdenser, Schiele's pat., 11s

- drainage of marshes by, 301
-anearines, Bacon and Diron's pat, 111 " boilers, supply of water to, 179 n causes of explosions in (rev.), 178 Cole's pat. high pressure, 342 governors, 255
high pressure, Alban (rev.), 211
Regnault's theory, 236, 265, 338
rotary, Davies's pat., 370
rotary, Wilson's, 285
Samuel's, 223
Siemen's pat., 249
studies of, Templeton (rev.), 296
treatises on, 172
Wickstead'y, 104
Steam for carbonising wood, 320
" generator, high pressure, Leon's, 860
hammer, Nasmyth's, 289
mevigation defences, 43
Scots ussell on, 311 aavy, 75

Steam-engine, application of water in epheroidal state, 882
Stenmor hydraulic-wheel, Sims's, 251
Steam pile-driver, Clarke and Varley's 841 ; Nasmyth's, 289
Steam-power, auxiliary, 126
Steam-power of France, 352
Steam-power to mills, Hastie's pat., 115
Steam propnlsion in the year 1548, 319
Steam-ship Affonso, 317; Express, 819 Lewellyn, 190; New Star, 110; Taman, 866
Steam-ship, Great Britain, sale of, 320
Steam-valves, expansive, improved mode of wortsing, 141
Steam working expansively, 158
Steel, chemical character of, 314
Steel tyres, Banks's pat., 184
Steering vessels, Henwood's pat., 47
St. George's cathedral, 290
Stephensod, George, life of, 297, 329, $\mathbf{3 6 1}$
Steveuson's account of the Skerryvore lighthomse (rev.), 173, 205
Stevenson's portable cofferdam, 62, 231
Stone, artificial, Ransome on, 61, 90
Stone, caen, Prof. Donaldson on, 94
Stone drilling machine, 160
Stone traffic on railways, 271
Strength of Hungerford-bridge, on the, 36 :
Strength of materials, Buchanan on, 125, 153
Struve's low-pressure Atmospheric railway, 284
Study of mechanic, 223
Stowe, 258
Stow's pat. propelling-blade, 286
Submarine foundations, Mitchell on, 122
Sudden draining of the Niagara river, 191
Sulphate of iron for purifying gas, 128
Sunderland docks, 888
Supply of water from new red sandstone, 188, 381
Sarveying, a treatise on, by A. Whitehead (rev.) 140
Survejors, civil and military, 96, 198, 255
Surveyors preceptor, by J. Reid (rev.), 18 e
Survey of Loodon, Ordance, 98, 198, 255
Survey of Liverpood, 278
Buspension bridge, Clifton, 318 ; Hangerford, 3 292, $\mathbf{3 6 4}$; near the falls of Niagare, 191, 288 overarch, Milae's, 32
Suspension bridges, on their most economical form, 2
Switches, Nicoll's improved, 32
Symmetrical beauty, Hay on, 31
" Purdie on the fallacy of, 148
Tabernacle of Israel, 95
Tables for calculation of eurthworks, Cox's, 199
Baker's (rev.), 74
Tables for earthworks, Sibley and Rutherford's (rev.), 27
Tate's principles of geometry (rer.), 188
Tattersall's railway communicator, 101
Taytor, on the dyer's tinctoria, st
Taylor's pat. engines and breaks, 70 railway carriages, 23
Teeth of wheels, machine for forming, 182
Telegraph and alarum for railways, 30 dotting electric, 25 B
electric, 9, 217
clectric, company, 96
copying, 191, 317
employed by publicans, 127
(rev.), 176
profits, 224
Temperatares, Regnault on measurement of, $\mathbf{8 3 8}$
Templeton's studies of the steam-engine (rev.), 296
Testing gun metal, 381
Theatres and porticoes of Ancient Rome, 239
Theatre, new, Royal Polytechnic Institution, 96, 159
Thermometer, gas, Regnanlt on, 339
Theorem to find the area of cross section of railway on sidelong ground, 137
Theoretical and practical mechanics, Hann's (rev.), 375

Theory and practice of ship bailding, (rev.), 120
Theory of steam-engines, Regrault's, 286, 285, 338
Thornton's hydraulic lifting-jack, 87, 217
Thorold's pat, turatables, 308
Tides of the English and Irish channels, 147
Tile and brick traffic on railways, 388
Tilghman, on the decomposing power of water, 181
Timber duties, 160
Timber traffic on railwage, 870
Timber viaducts, by J. and B. Green, 83
Time sigrala, 266
Tin trafic on railways, 270
Torrents, diceertation on, by Goglielmini, 50
Torrop's time signals, 266
Towns, air and water of, by Dr. Smith, 311
" bill of health, 120
" bealth of, 17,39
" regulation of buildings in (rev.), 27, 35
" ventilation of, 188
Trains, collinion of, 196, 292
Treatise on practical surveying, by A. Whitehend (rev.), 140
Treatises on the steam-engine, 172
Trenches for drain tiles, W'hite's pat., 320
Trigonometrical formula, 230
Triple railway-break, 192
Tube-cocks, india-rubber, Jennings's pat., 144
Tubes, lap-welded, Cutler's pat., 248
" manufacture of Fontainmoreau's pat., 216
Tubular bowstring bridges, 1,300
bridge at Conway, 95, 126, 154, 161, 351
, bridges, disputed invention of, 218
, flues, Pott's pat., 368
Tunael across the channel, 218
Turnball's essay on air-pump and atmospheric railway, (rev.), 26
Turnbuli on Middleabro' dacks, 105
Turn-table, Thorold's pat., 303; Turiff's, 288
Tuthill's history of architecture (rev.), 377
Tyres, steel, Banks's pat., 184
Unromand division of ruaning waters, by B. Zen drini, 113
Uniting metals and metalic alloga, processes for, 187

Valye, slide on the lep and lead, 14, 37
Valves and plugs, Bateman's pat., 286
Valves, atmospheric, Froude's pat., 248
Valves, expansive, improved mode of working, 141, 285
self-acting safety, Walmsley's pat., 371
Vanadium in the refinery slag of, Staffordshire, 319
Vases, ancient greek, Dr. Harding on, 90, 91
Vegetable wax, 352
Velocity of atmospheric jets, 110
Velocity of waves, by Capt. Stanley, 310
Ventilation, lighting, and heating, Brittern's pat., 370
Ventilation of mines, Wieock's pat., 22
Ventilation of towns, 188
Ventilometar, the, 127
Viaducts, arched timber, by J. and B. Green, 33
Viaducts, Dinting vale, by A. S. Jee, 35
Viaducts across the Dee, 317
Vibrating piston-rod engine, Gustafason's, 24
Vibration or deflection gauge,
Vice, Peck and Pardee's pat. Iever, 373
Vickers's pat., manufacture of iron, 47
Waxes, South, geology of, 313
" submergence, and re-appearance of ancient land in, 314
Wallace's improvements in decoration, 303
Waller's pat. coffee-pot, 115
Walls and embankments for waterworks, 197
Wall's pat. for separating iron from ore, 144
Walmsley's pat. self-acting safety-valve, 371
War steamer Affoneo, 317
Water and air of towns, Dr. Smith on, 31
" cisterns, stop cock for, 185

Wator, decompoting power of, 181
Waterfall in India, 319
Water, flow of, by Zendrini, 115
" gat, 293
". gange, Newton's pat., 52
"n instrument for acertaining the comparative saltnem of, 91
measuring of, Haigh's pat., 371
motion of, by Guido Graadi, 81
" pressure of, upon fishes, 160
". Supply of, to steam-ongiae boilers, 179
" \quad from the new red gandstone, 188 ,

* Supply of, to Mancheater, \&ec., report on, (rev.), 177
Waterioo-bridge, extension of Southi-Western railway to, 254
Water-wheela, Parker's reaction, 110, 171
Waterworks, 96
" at Liverpool, 127
" ombankments for reserroirs, 197
Fatnon's pat. self-acting gas apparatus, 342
War, vegetable, 352

Waver, atmospheric, by Mr. Birf; 311 velocity and height of, by Capt. Stanley, 310
Webster, on port and dockn of Birkenhead (rev.), 68
Welding iron and steel, 256
Western gat company, 82
Weatminater, expenses of new palace at, 92, 228
" review, No. XCVII., 245
" new palace, 245, 278, 295
Wheald, balascing of, 222
" machine for forming the teeth of, I82
" railway, Evans's pat., 189; Newton'i, 114
White lead, manufacture of, 192
Wh' paint from antimony, 128
White's new trenches for draining tiles, 320
White's theory and practice of ship-building 120
Whitehead, on practical surveyipg (rev.), 140
Whishaw's telegraph inventions, 217
Wicksteed's ongine, 104
Williams, on the chomistry of the sea, 160
Wileon's pat. rotary atean engine, 285
Wind, inatrument for indicating the direction and force of, 127

Window, gothic, at Boppart, on the Rhine, 129
Window-tax, 1, 96
Wing walls of bridges, Clark on, 43
Wire and hemp rope, comparative strength of, 352
Wood and stone pavement, 272
" carbonized by high-pressure steam, 320
, for sleepers, preservation of, 224
" Payne's pat. fire-proof, 287
" parement, action for infringement of pat.o 256
" 143 Renard's pat. for colouring and preserving, 143
Wrighton's pat. apparatus for railways, 246
Wrought-iron, analysit of, 315
" Roche's pat. for canting, 216
T" tubular bowstring-bridges, 1, 300
Wyatt, on the art of enamel, 156
Wratt, on Llandaff Gathedral, 141
Wye, wooden bridge over, 127
Youna's atmospheric railway, 224
Young surveyor's preceptor, by J. Reid (rev.), 122

LIST OP ILLUSTRATIONS.

Arches, obltque, 1 cut, 4	Fire cock, 2 cuta, 168	Paddle wheeis, 1 cut, 168	Smoke consuming, 2 cute, 118
Arches, etablity of, 13 euts, 282	Fluids, resiatance to bodies in, 1 cut, 107	Paving, 1 cut, 272	Steam-boiler Gre-bars, 1 cut, 304
Axle-boxes and journals, 1 cut, 369	Parnaces, blest of, 1 cut, 372	Perforating mechine, 1 cut, 88	Steam-boiler furnecen, 1 cut, 247
Boring and sinking, 2 cuta, 170	Gan apparatus, self-actlog, 1 cut, 342	Ple-driving machine, 2 cuts, 34	8tean-engines, 5 cuts, 111
Bridgee, construction of, 7 crite, 2, 23	Gas burners, 2 cuts, 114	Plad-pricking lnstrament, 1 cut, 272	Hteam generstor, 4 cuts, 360
Bridges, Sadler's pat, balance, 7 cute, 75	Gas metern, 2 cuty, 368	Paeumatic spriog, 2 cuts, 46	Steam valven, 23 cute, 14, 37, 141
Bridees, wing walls of, 2 cuta, 43	Girders for bridges, 1 cut, 300	Propelleri, 0 crits, 305	8teeriog vescils, $1 \mathrm{cut}, 47$
Bucifioghm palace, 1 cut, 7	Gothic wiodow, 1 cut, 129	Rallway bara and chaira, 2 cuta, 170	8tephenson (Greo.), portrait of, 829
Cement, experiments on, 8 cuts, 294	Fydraulle lifleg jeck, I cut, 217	Rallway bufferr, 1 cut, 246	Vibrating platon-rod engine, 1 cut, 24
Cofferdam, 2 cuts, 242	India-rubber tube cocks, 2 cuts, 144	Rallway carriage axlen, 5 cnts, 46	Vice, 1 cut, 873
Coffer-pot, Waller's, 1 cut, 115	Iron, mannfacture of, 1 cut, 171	Rallway sections in sidelong ground, 8	Water, flow of, 9 cuts, 81, 115
Condenser for team-engines, 2 cuts, 114	Isometrical perspective, 4 cuts, 230, 294	cuta, 67, 187	Water gluge, 2 cuta, 52
Coupling trona, 1 cut, 372	Jointing clamp, 1 cut, 373	Rallway whoels, 1 cut, 114	Water-wheels, 2 cuts, 110,172
Deflection or vibration gauge, 2 cuta, 1	Lighthouses, 2 cuts, 207	Reservolrs, embankments of, 4 cuts, 197	Wheels, 2 cuts, 369
Docirs, Middienborough, 1 cut, 105	Locomotive carriage wheels, 1 cut, 189	Rotary ateam-engine, I cut, 285	Window, Gothic, 1 cut, 129
Earthworise, 2 cuta, 119	Locomotive engines and breake, 4 cuts, 76	Sack-holder, 1 cut, 111	Wood, preserving and colouring, I cut,
Electricity, lightiog by, 5 cute, 49	Locomotive englote and carriages, 4 cuta,	Sewers and dralns, 15 cuts, 41, 279,372	148
Embankmente and cuttings, 4 cuta, 327 Fan blaat, 1 cut, 18	48, 167, 307 Mining lanthorn, 1 cut, 255	Sewer traps, 2 cuta, 25, 372 Slide valves, 21 cute, 14,37	Zlinc ores, 6 cuth, 343

DIRECTIONS TO BLNDRR.

Plate 1.	Wrought-Iron Tubular Bow Bridge	-	-	oppoaite page		Plate	VII.	Baptist Chapel, Bloombbury	.	-		*	opposite page	129
* 11.	Palmer's Improvements in Gas..-	.	*	"	25	-	VIII.	Conway Tubular Bridge		-				161
" 11.	Wiulngtun and Ouse Bura Vladret	*	-	"	38		$1 \times$.	Imperial Insurance Onmice	-	\because		-	"	191
15.		.	-	",	85		X. XI.	Jacquard Perforatlog Machine	Driper	*	.	.	",	225
" V.	Sanitary Improrements, Plan of Dralnage	.	.	"	80	"		Nasmyth and Co.'s Steam Ple	Driver			.	"	28%
$\because \mathrm{VI}_{6}$	Coal Stalth, Niddiesborough-on-Teee	"	105	"	XIII.	Dalmay Station, Newctutie-on	Tyne,	Pla		*	"	353

CIVIL ENGINEER AND ARCHITECT'S

J 0 URNAL.

WROUGHT-IRON TUBULAR BOW BRIDGE.

(With an Engraving, Plate I.)

In consequence of the tubular form becoming a favourite mode of constructing bridges of wrought-iron for railway purposes, we are induced to give an engraving of a wrought-iron tubular bow suspension bridge for crossing the Ouse river in Norfolk, designed by Mr. W. C. Harrison, who has had considerable experience in the construction of some large timber bow suspension bridges on some of the Norfolk railways.

Mr. Harrison observes,-"The facility with which a bow bridge of this construction, with boiler-plate, could be put together, appeared so evident, that he felt convinced of its practicability and usefulness for railway purposes, in crossing rivers and valleys, to almost any extent. A bridge of this kind could be easily put together, by the same kind of workmanship as in steam boilers, in a manufactory in any part of the country, and in certain convenient lengths of 10,15 , or 20 feet each, for the purpose of transporting to its destination so that there will be but a few joints to rivet up when put in its place. The bow being hollow, and also the tie-beam, or string as it may be termed, gives the opportunity for a man to get inside to hold up the rivets for the workmen outside to rivet the parts together.
"The bow and atring are to be made of plate-iron, of such a thickness as is most guitable to the size of the bridge intended to be constructed, and joined at the angles with angle-iron; and it will be perceived from the engraving how perfectly well connected the extreme ends of the tie-beam and bow will be by the manner shown, which is a plate extending over the tie and bow, firmly rivetted to each, thereby answering the purpose of an abutment to the bow, and giving perfect security in a vital part.
"The elevation of the bridge shows both the suspending and crose-brace bars, being all of plate-iron, from the facility of getting bars in this shape so easily made, and requiring so little workman-ship-namaly, the rivet holes made in their ends.
${ }^{4}$ The design is for a span of 170 feet and two lines of rails; consequently, there are three bows. Fig. 1 is the elevation of onehalf the span, with the suspending bars $a a$ and $b b$; $d d$, the abutment plates, as they may be called; c, the cross-b eams, which may be of lron or timber. Fig. 2 , a view on the top of the bows, with some of the crose-beams, c, extending outside (as also seen at fig. 3 , the end elevation), to receive the lower ends of the struts going up to the top of the outside of the bows, to give steadiness to the whole ; but these can be used or not. Fig. 3 shows the distancepieces and crose-frames between the bows. Fig. 4 is a section of the crom-beams or girders, which may also be made of wroughtiron plate and angle-iron, or wood, to carry the timber sleepers of the rail. Fig. 5 is an enlarged section of the bow and string, and the distance-piece between the suspending bars."

Mr. Harrison proposes for a bridge of the span shown in the eagraving, that the bow should be constructed of half-inch plate-
iron, 4 feet deep by 3 feet wide; and the tie-beam or stringer 9 ft .6 in . deep by 3 feet wide.

Next month we will endeavour to offer some remarks on the construction of bridges of the tubular form, as to their applicability for railway purposes.

A DEFLECTION OR VIBRATION GAUGE.
 By Grorge Howard fenwick, C.E.

The accompanying engraving, fig. 1 (drawn to one-third the full size), is a gauge for registering the vibration or deflection of railway girders. A is a piece of wood or metal, made to slide in another piece, B, which is held in position by a slight pressure of two springs, G and F, as shown on plan fig. \mathcal{E} (drawn full size). On the face A are two arrows at C, which can be moved to anry of the holes at D for adjustment. It is supposed to be set at zero, and as it receives the pressure from the girder E it is pressed down, thereby registering the deflection of the girder on a decimal or mechsnical divided scale on B. This gauge may be applied by being supported by a frame let into the sides of the walls which the girders span, and so made to travel to any particular place, such as the centre or springings; or may be placed upon a staff for convenience, similar to a levelling staff.

> G. H. F.
[This simple and ingenious contrivance might, perhaps, be improved by fixing a vernier on the slide D, divided so as to indicate the hundredth parts of an inch; the side scales being divided into inches and tent he.]-Enrior.

Pig. 2, Plan.

NOTES ON ENGINEERING.-No. VIII.

By Homerbham Cox, B.A.

On the most Economical Forms of Suspension Bridges.
Of all kinds of bridges suspension bridges are capable of being constructed with the greatest span. Notwithstanding this advantage and the facility of construction, the use of these structures has been restricted by their flexibility and tendency to undulate. They have fallen into disrepute in the modern practice of engineering, on account of the difficulty (generally deemed insuperable) of making them sufficiently rigid for the purposes of heavy traffic, such as that upon railways. Another, though less obvious, objection is that the ordinary methods of calculating the proper form and dimensions of suspension bridges, and the different strains to which ther are subjected, are exceedingly complicated. The intricacy of the investigations leaves a degree of uncertainty and distrust as to the actual strength which the several parts of a suspension bridge may be assumed to possess.
The object of the present paper is to examine how far these difficulties may be removed, and to show what method of arranging the different parts of the structure secures the greatest amount of strength for the whole.
Suspension bridges may be distinguished generally into two rlasses: 1st., those of the ordinary form, that of a main chain or catenary, with the roadway suspended from it by vertical rods; 2nd., those in which the roadway is suspended directly from the shutments by straight rods, the catenary or ourve chain being altogether dispensed with. It will be shown, on strict statical principles, that the first method involves a great waste of material, and that, by a proper arrangement of straight rods, a given amount of strength may be secured with a smaller quantity of iron, or a greater amount of strength with a given quantity of iron, than by the use of a main catenary. Of course, methods of using straight rods may be employed which involve greater waste of material than even the employment of the curved chain. The most economical arrangement of straight rods is not a merely arbitrary matter, but depends, like every other branch of engineering, on sound deductions from the laws of mechanics.
Before proceeding with the investigation, it may be as well to remind the reader that the object of these Notes on Engineering is to simplify the practical applications of theory, and to explain them, as far as possible, in familiar, untechnical language. This important rule should be constantly remembered by all who teach and all who study the mathematics of engineering-that long formula are never put into practice. In practice, simple general principles are far more useful, because capable of being applied with far more certainty and facility, than the most elaborate results of scientific research.
We not proceed to establish the following important general
Proposition.-In a suspension bridge the material required to sustain a given load will be the least when each point of support in the maducay is directly connected woith a point of suopension in the nearest nbutment by one independent straight rod.

To begin with the simplest case, it will be first of all supposed that only two points of support in the roadway are connected with the point of suspension. Suppose that B (fig. 1) is the point of

FIg. 1.

FIg. 2.
suspension ; A and D the two points of support in the horizontal platform AC. Then it will be shown that to sustain a given load, the most economical arrangement of the suspension bars consists in connecting B with $A D$ independently and directly by two rectilinear rods, A B and D B. If, however, as in fig. 9 , the connection he indirectly made by suspension rods meeting at an intermediate point E, more material will be required for a given amount of strength.

In order to prove this proposition, which has so important a relation to the most usual methods of constructing suspension bridges, it is necessary to ascertain the quantities of material in the rod AB and B D (fig. 1), and the rods AE, DE, and BE (fig. \&), and to compare the aggregate amount of material used in both cases. It is, of course, presupposed that the strength of the rods is proportioned to the strain upon them. In ascertaining the thickness to be given to the rods of a suspension bridge, the first point to be settled is the amount of strain which the material will bear on each square inch of the sectional area. For the purpose of mere comparison, it is indifferent what amount be assumed: it may therefore be supposed that the rods are to be calculated to bear a strain or tension of $t \mathrm{lb}$. per square inch of their sectional area. Consequently, multiplying the sectional area of any rod by t, we have the whole stran to which it is subjected. Further, for purposes of comparison it is indifferent what be the load on the bridge, so that in both cases the weights at corresponding points of the platform be supposed the same: let it therefore be assumed that both in fig. 1 and fig. 2 the point A has to sustain a vertical weight w, and also (for the sake of simplicity) that the point D in both figures has to sustain the same weight w.

It will (at first) be taken for granted that the platform contributes nothing by its rigidity to sustain the load; that the whole weight is borne by the suspension rods, which are kept in their oblique position by the connection of the platform. The amount of material requisite to support wo at the point A will first be considered.

Commencing with the case of fig. 1 , we have, since the $\operatorname{rod} A B$ sustains the weight wo at A, the vertical component of the tension of AB equal to w. Supposing the sectional area of this rod to be k square inches, its tension, by what has been already said, will be $k t$.

Consequently, the mass of the rod $=$ its sectional area multiplied by its length $=\frac{\boldsymbol{m}^{2}}{t} \frac{\mathbf{B}^{2}}{\mathbf{B} \mathbf{C}}$

Proceeding now to the case of fig. 2 , and still confining attention to the suspension of the point A, by reasoning exactly the same as that for fig. 1 , the mass of the $\operatorname{rod} A E=\frac{w}{t} \frac{A E^{z}}{E_{0}}$, (Ee being drawn vertical.)

It is clear that the connection between the point B and the point E may be supposed to be established, not by a simple bar, but by a compound bar of two or more parallel lengths. In fact, this method is that usually adopted in actual practice, the several links of the chain commonly consisting of several bars or iron plates laid side by side, and connected at their extremities. Their relative thickness is a matter of indifference, provided that the total thickness be sufficient to sustain the strain. In fig. q the rod BE, provided it have the thickness necessary to sustain the united effects of the two weights at A and D, may be supposed to be made up of any number of parallel bars of any relative thickness whatever. Now, supposing $B E$ to be a compound bar, let k^{\prime} be the sectional area or thickness of metal due to the effect of the weight at A, $k^{\prime \prime}$ the thickness due to the weight at $\mathrm{D}: k^{\prime}+k^{\prime \prime}$ will be the total thickness of BE.

Taking the thickness k^{\prime} to be that requisite to sustain wat A, and $k^{\prime} t$ the consequent amount of tension of that part of the compound bar, we have the vertical component of $k^{\prime} t$ (=vertical component of teusion along $A E$) $=w$. Hence, if $E f$ be drawn horizontal, w $=k^{\prime} t \sin \mathrm{BE} f=k^{\prime} t \frac{\mathrm{~B} f}{\mathrm{~EB}}, \quad \therefore k^{\prime}=\frac{w}{t} \frac{\mathrm{~EB}}{\mathrm{~B} f}$.
Multiplying this quantity by the length $\mathbf{E} B$, and adding the mase of the rod ascertained above, we have the total mass of metal required to connect A and $B=\frac{w}{t}\left\{\frac{A E^{2}}{E e}+\frac{E B^{2}}{B f}\right\}$
Hence subtracting the expression (1) from the expression (8), it will be easily found by some simple analysis, which is here omitted for the sake of brevity, that the mass required for the indirect connection A E B, fig. q, exceeds the mass required for the direct or rectilinear connection, A B fig. 1, by a quantity

$$
\frac{(\mathrm{BC} \cdot \mathrm{E} f-\mathrm{AC} \cdot \mathrm{Ee})^{2}}{\mathrm{BC} \cdot \mathrm{~B} f \cdot f \mathrm{C}} \cdot \frac{*}{t},
$$

which is positive in all cases. Hence, more material is always required for the indirect than for the direct connection of A and B.
The same mode of reasoning applies to the weight suspended at $\dot{\mathrm{D}}$.

The form of the analysis is such that it applies to this case as well as the last, and leads to a similar conclusion-that the indirect or bent connection, DE B, requires more material than the direct or rectilinear connection, D B. Now it is evident, that what is true of the several parts of the system individually, is true of the whole collectively-that if less material be required for each of the direct connections than for each corresponding indirect connection, the total material required for all the former will be less than the total material required for the whole of the latter. In other words, the system of suspension in fig. 1 is the mast economical.
The same result might have been obtained by supposing BE a simple, undivided bar, and the amount of material given by that hypothesis would be the same as that on the hypothesis here adopted. But the method of investigation given above leads more easily to the general results for which we are seeking. It has the advantage of admitting immediately, and without any more mathematical analysis, the following important
Corollary.- The method of suspension (fig. 1) is more economicnl than the method (fig. 8), for ANy number of points of support in the platform.
For the reasoning given above is not affected by supposing the rod $\mathbf{B E}$ to divaricate at E into three or more radial bars proceeding to as many points of support in the roadway. Whatever might be the number of indirect connections by this method, each of them would require more material than the corresponding direct connection of fig. 1: and therefore the total quantity of metal required by the former method exceeds the total quantity required by the latter method.

We have hitherto considered, in the second or indirect method, only one point of divarication, \mathbf{E} : the inquiry will be completed by considering several other such points to exist-as at $B, B^{\prime}, B^{\prime \prime}$, B", \&c., fig. 3.

Fig. 3.
The connection of A and D with B, by bars meeting at E, has been already considered. Less material would have been required to support the weight at A and D, if, instead of the method shown in fig. 3 , there had been separate straight rods from A and D to B. In this latter case, B^{\prime} (the next point of suspension) would be connected with the three points A, D, b, by three straight rods, divaricating from the end B of a common rod $B B^{\prime}$.
The "Corollary" given above shows that this triple divarication involves a waste of material. Had there been in the place of it, three straight rods from A, D, and b, to B^{\prime}, less material would have been required to support the corresponding weight. But this triple divarication itself requires lesa material than the method shown in fig. 3. Hence, a fortiori, the direct connection with \mathbf{B}^{\prime} would require still less material than the method shown in the figure. And ro, by continuing the same mode of reasoning for the other points, $\mathbf{B}^{h}, B^{n \prime}$, \&c., we come at last to the general conclusion that, if all the points of support had been directly and independently connected with K (the ultimate point of suspension), less material would have been required to sustain given loads than by the method shown in fig. 3 .

This conclusion is independent of the inclination of the rods $\mathbf{E D}, \mathbf{B} b, \mathbf{B}^{\prime} b^{\prime}, \mathbf{B}^{\prime} b^{\prime}, \boldsymbol{L}^{\prime} \mathbf{c}$., and remains true when they are vertical. Hence, in the common suspension bridges, such as those at Charingcross, Hammersmith, \&c., with a main chain or catenary hanging between the abutments, and connected with the platform by vertical rods, there is a waste of material. The same conclusion applies to all suspeasion bridges having radial bars radiating from any point except the points of ultimate suspension at the abutmentsand, therefore, hold with respect to the bridges on Dredge's principle, some of which are erected in the Regent's-park, and of which one recently gave way and was destroyed near Calcutta.

The amount of saving effected by connecting all the points in the platform with the abutments by independent straight rods, may be hest shown by an example. The Hungerford bridge, at Charingcrose, may be taken as a familiar example-and we will, therefore,
proceed to compare the material required for that bridge by the method actually adopted, and the quantity which would be required by the method here advocated.

The quantity of material required for auspending the bridge by a catenary and vertical rods will firat be considered. The position of the centre of gravity of the half-span depends on the form and weight of the chain, and the manner in which the load is distributed along the platform. When the load is small compared with the weight of the chain, the centre of gravity of half the bridge and load will be nearer the abutment than the centre of the bridge: for the curvature of the chain, its increase of thickness near the point of suspension, and the increased length of the vertical rods, all tend to make the weight preponderate towards the abutment. But when the bridge is supposed to be loaded with a breaking weight greatly exceeding the weight of the chain, and uniformly distributed along the platform, it may be assumed, without sensible error that the horizontal distribution of the weight of the whole system is uniform. In this case, the centre of gravity of the halfspan will be midway between the abutment and centre of the bridge.

At this latter point the tension of the catenary is horizontal. Let moments be taken about the point of suspension for the equilibrium of the half-span: then, since the horizontal tension in question acts below the point of suspension, at a vertical distance equal to the deflection of the chain, and since the weight acts at a horizontal distance from the same point equal to the quarter-span, the products of each of these forces into the corresponding distance will, by the Principles of Moments, be equal. Hence, calling W the total weight of the half-span (including the half-chain), T the horizontal tension, d the deflection, a the quarter-span,-it follows that

$$
\begin{equation*}
\mathrm{W} a=\mathrm{T} d ; \quad \text { or } \mathrm{T}=\mathrm{W}^{\frac{u}{d}} \tag{1}
\end{equation*}
$$

That is, the horizontal tension = the weight of the half-spun multiplied by the ratio of the quarter-span to the deffection; a simple rule, from which the horizontal tension of the chain of may suspension bridge loaded with its breaking weight may generally be calculated with sufficient accuracy.

It has been assumed that the load is uniformly distributed, or that any portion of the weight is proportional to the length of the corresponding portion of the platform. It follows, that if any distance, x, be measured along the platform from the lowest point
of the chain, the weight corresponding to that distance is $\mathbf{W}_{\boldsymbol{q a}}^{\boldsymbol{x}}$.
Also, if y be the vertical ordinate of the chain at the same distance, a known principle which applies to catenaries of every form gives

$$
\begin{equation*}
\frac{d y}{d x}=\mathrm{W}_{2 \dot{a}}^{x} \div \mathrm{T}=\frac{\mathrm{W} x}{T 2 n} \tag{2}
\end{equation*}
$$

By another known principle which also applies to all kinds of catenaries, the tension at the point (x, y) is equal to

$$
\text { T. }\left(1+\frac{d y}{d x}\right)^{\frac{1}{2}}
$$

And since the sectional area of the chain at any point is supposed proportional to the strain at the same point, we have, if K and k be sectional area at point (x, y), and the lowest point of the chain respectively

$$
\mathbf{K}=k\left(1+\frac{d y^{2}}{d x^{2}}\right)^{\frac{1}{2}}
$$

The mass of each small portion of the lepgth of the chain is the product of that element of length, and the corresponding sectional area: hence it will be easily seen that the

$$
\text { mass of the half-chain }=k \int_{0}^{19 a}\left(1+\frac{d}{d} \frac{y^{2}}{x^{2}}\right) d x .
$$

And this quantity by substitution from (2) will be found equal to $2 a k\left(1+\frac{W}{3 T}\right)$. Finally, if the tencion per square inch be t, and consequently $T=k t$, and if a be put $=170$ feet, and $d=50$, it will be readily ancertained that the

$$
\text { mase of the half-chain }={ }_{t}^{\omega} \times 1189 \cdot 3
$$

(which are almost exactly the values of those quantities in the Hungerford Bridge.)

To obtain the whole quantity of material required for the purposes of suspension, we must add to the quantity last obtained, the
mass of the sumpension rods. The length of these increases from the centre to the abutment, and is equal to that of the vertical co-ordinates of the catenary.
The integration of equation (8) gives the relation of y to x, which will be found such that the proportion between any two vertical eo-ordinates is equal to the square of the proportion betwoen the correoponding horizontal co-ordinates-a very simple rule for determining the form which the chain will nearly assume when subject to its breaking weight.
It follows from this rule, that when x is gh th of the half-span, y is ${ }^{2}$ th of the deflection

Now, if we suppose the half-platform attached to the half-chain at every 20 th of the length of the former, we shall, by adding up all the y 's in the above scheme, get the total length of all the vertical rods together, which, therefore, is equal to
${ }^{2}+2^{2}+3^{2}+4^{2}+$ \qquad $\left.+19^{2}\right) \times$ deflection; and this by actual calculation is equal to the deflection $\times 6.175$. Therefore, since the deflection is 50 feet, the total length of all vertical rods is 308.75 feet. This supposes that the platform meets the chain at the centre, the value of y at that point being zero.

Each rod sustains one-twentieth of the weight of the half-span, and therefore has a tension $={ }_{3}{ }_{3} w$. Therefore, if, as before, t be the tension per square inch of the sectional area, that area, by principles already laid down $=\frac{1}{\frac{w}{i}}$. The mass of all the rods equals this quantity \times the length 308.75 feet, just obtained $={ }_{t}^{\infty} .154$. Adding this to the mass of the half-chain, we have finally
the mass of the half-chain and its rods $={ }_{t}^{w} \times 1204 \cdot 7 \ldots \ldots \ldots(A)$. Next, let it be ascertained what is the quantity of material required when the load is supported

Mi. 4. by straight rods exclusively. It has been shown that if to to sustained at A by a straight rod AB, the mass of that rod $=\frac{1}{20} \cdot \frac{w}{t} \cdot \frac{A B^{\prime}}{\mathbf{B C}}$. This expression (since ABC is a right angled triangle, and therefore $A_{B}{ }^{2}=A C^{2}+\mathrm{BC}^{2}$,) is equivalent to $\frac{1}{20} \frac{20}{t}\left(\frac{A C^{2}}{B C}+B C\right)$. When

$$
\begin{aligned}
& \mathrm{AC} \text { is }{ }_{10} \text { th of the half-span, } \mathrm{AC}^{2}=10(8 a)^{\text {? }}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \&c. \&rc. }
\end{aligned}
$$

Adding up all the values of $A C$, we get for the total mass of the rods

$$
\begin{align*}
& \frac{1}{20} \frac{w}{t}\left\{\left(1+2^{2}+3^{2}+\ldots \ldots . .19^{2}\right) \frac{(2 a)^{2}}{400 . B C}+19 \mathrm{BC}\right\}= \\
& \frac{1}{20} \frac{w}{t}\left\{6 \cdot 175 \frac{(8 a)^{2}}{\mathrm{BC}^{-}}+19 \mathrm{BC}\right\}=\frac{{ }^{2}}{t} 761 \cdot 9 \ldots \ldots \ldots \ldots \ldots(\mathrm{~B} \tag{B}
\end{align*}
$$

Comparing the expression (B) with (A), we see that the material required in one case is about $\frac{1}{18}$ ths of what is required in the other case. In other words, if a suspension bridge, of the dimensions of the Hungerford bridge, were sustained by independent oblique rectilineal rods, instead of a main chain and vertical rods, a saving of nearly half the material woold be effected.

It will be hereafter shown, that great as is this advantage with respect to the power of the bridge to sustain a statical load uniformly distributed, still greater advantages belong to the method of suspension here advocated, when the effect of moveable loads is taken into consideration.

THE OBLIQUE ARCH.

On the Focus to which the Joints on the Face converge.

Suppose a right-angled plane triangle formed of any flexible material, having its two sides respectively equal to L, the axial length, and πr, the semicircle obtained by taking a section of the bridge perpendicular to the axis. If the side L be placed along the top of the abutment of an oblique bridge, and the triangle wrapped over the laggings, the hypothenuse will form a spiral line, which is the intersection of the coursing joints and soffit. If a straight line move along the axis of the cylinder, so as always to intersect it at right angles, and pass through the hypothenuse of the above triangle, it will generate the twisted surface proper for the beds of the stones. Mr. Buck was the first to show that the joints that appear on the face of the arch, pass through a point O, below the centre C, when the "section on the square," or section perpendicular to the axis, is a circle. A similar expression for the length of the line C O may be obtained when the sections of the intrados and extrados, made by a plane perpendicular to the axis, are similar ellipses.

Let the figure represent the elevation of an oblique bridge, circular or elliptic "on the square"-if it be segmental, the ellipses must be supposed completed. Take the axis of the cylinder for the axis of y, and let the plane $x y$ be horizontal. A, $B ; a, b$, are the semi-axes, major and minor, of the extrados and intrados respectively. $A \times E, a \times E$, the lengths of these semi-ollipses. $S=\operatorname{arc} A^{\prime} P$, where $C N=A \cos \theta$; and $s=$ arc $a^{\prime} p$, where $C x=$ $\operatorname{arc} a^{\prime} p . L=$ axial length. $\Omega=$ acute angle between the directions of the roads. $\quad=$ angle of extrados; and, therefore, $\tan \bullet=\begin{gathered}A E \\ L\end{gathered}$.
The equations to the extradosal and intradosal spiral are, respectively,

$$
\left.\begin{array}{l}
X=A \cos \theta \tag{8}\\
Y=\frac{L}{A} \mathbf{S} \\
Z=B \sin \theta
\end{array}\right\}\left(\begin{array}{l}
x=a \cos \theta \\
y=\frac{L}{a E} \\
z=b \sin \theta
\end{array}\right\}
$$

and the equation to the face of the arch is $y=x \cot \Omega+\alpha$. (3)
Let $X^{\prime} Y^{\prime} Z^{\prime}, x^{\prime} y^{\prime} x^{\prime}$, be the co-ordinates of the points in which the corresponding extradosal and intradosal spirals meet the face of the arch. Then $X^{\prime} \mathbf{Y}^{\prime} \mathbf{Z}^{\prime}, x^{\prime} y^{\prime} z^{\prime}$, are co-ordinates of a point in the face of the arch, and must satisfy equation (3).

$$
\begin{gathered}
\therefore Y^{\prime}=X^{\prime} \cot \Omega+d ; \text { and } y^{\prime}=x^{\prime} \cot \Omega+d ; \\
\therefore X^{\prime}-x^{\prime}=\left(Y^{\prime}-y^{\prime}\right) \tan \Omega=\frac{L}{E}\left(\frac{S}{A}-\frac{s}{a}\right) \tan \Omega= \\
\frac{A}{\tan }\left(\frac{S}{A}-\frac{s}{a}\right) \tan \Omega .
\end{gathered}
$$

In order to determine the length of CO , it will be sufficient to confine our attention to the projection on the plane $x x$, of a straight line passing through $X^{\prime} Y^{\prime} Z^{\prime}, a^{\prime} y^{\prime} z^{\prime}$. The equation to this projection is

$$
\begin{gathered}
x-Z^{\prime}=\frac{Z^{\prime}-z^{\prime}}{X^{\prime}-x^{\prime}}\left(x-X^{\prime}\right) ; \\
\text { and if } x=0, x=C O, \therefore C O=-\frac{Z^{\prime} x^{\prime}-Z^{\prime} X^{\prime}}{X^{\prime}-x^{\prime}}=
\end{gathered}
$$

$-b \cot \Omega \tan \cdot \frac{\sin (\theta-\theta)}{\left(\frac{S}{A}-\frac{8}{a}\right)}=-b \cot \Omega \tan +$ nearly, since the
difference of θ and θ is always very small.
Hence, whether the "section on the square" be circular or elliptic, at the point b make the angle $f b C=90-\Omega$; and at the point f, where $b f$ meets $C a$, make the angle $C f O=\phi$, the angle of the extrados; the point O where $f O$ meets $b C$ produced is the focus to which the joints on the elevation converge. $C O=C f \tan \phi=$ $\mathbf{C B} \tan (90-\Omega) \tan \phi=b \cot \Omega \tan \phi$

If the section perpendicular to the axis be circular, f will be the focus of the ellipse $a^{\prime} b a$, and may be readily found by describing from the centre b, with radius $C a$ an arc of a circle which will cut $C a$ in f, the focus of the ellipse $a^{\prime} b a$. If we had considered this case alone, the preceding calculations would have been much simplified, for then $A=B=R ; a=b=r ; A E=\pi R ; a E=\pi r ;$ $\mathrm{S}=\mathrm{R} \theta ; \quad=r \theta ;$ and $C O=-r \cot \Delta \tan \phi \frac{\sin (\theta-\theta)}{(\theta-\theta)}$.

The line $f O$ may be readily and accurately drawn by setting off with any scale of equal parts $f h=a x i a l$ length, and erecting a perpendicular $h k$ equal the semicircle or semi-ellipse in which a plane perpendicular to the axis cuts the extrados.
F. Bashforth.

CANDIDUS'S NOTE-BOOK.

FASCICULUS LXXVII.

> "I must have liberty Withal, a largr a ehurter as the wiars, To blow on whom I pleabe."
I. I must confess to being completely disappointed by Hay's book on the "Laws of Harmonious Colouring; nor at all the less so for its having reached a sixth edition, when had reviewers reported of it conscientiously at first, its futility for any purpose of real instruction would have been pronounced long ago. It is not to be denied that it contains some useful information in regard to the coloure-that is the pigmente, employed in house-painting; which may have caused a demand for the book among the operatives in that humble branch of art. But as to any direct insight which it affords into the theory and principles of artistic colouring, as one main auxiliary to architectural design and effect, it is altogether null. Or, at the very best, it merely affords a faint glimmering here and there of something like approximation to the subject promised by the title-page. Possibly, Mr. Hay is fully capable of clearly explaining to others the doctrine which, it may be presumed, he has satisfactorily established for himself. Nevertheless, he has thrown very little, if any, light upon the matter. To say the truth, his book shows no disposition to communicate more than he can possibly help; in which respect, however, he is by no means singular, there being many other books of a similar description, in which the information is studiously concealed, either evaded, or else wrapped up in oracular brevity, or in verbiage overclouded by more than oracular obscurity. Had Mr. Hay, instead of theorixing so much, ins blane, as the Germans say, condeacended to exemplify harmony of colouring in decoration by a few positive instances-both such as were distinguished for the observance, and others which proved its value by showing the errors arising from neglecting it-he would have supplied his readers with some really useful lessons; whereas now he leaves them entirely to themselves to take their chance for making out what he, as their professed instructor, should have carefully explained step by ftep. Where he ought to have been most of all full and explicit, he is more vague and brief than elsewhere. On the other hand, he is somewhat loquaciously prolix in regerd to the work done by him at Abbotsford, notwithstanding that it does not in the slightest degree serve to illustrate the Laws of Harmonious Colouring, the painting being there confined to the mere imitation of osk and wainscotting. In short, the book is a rather humbuging affair, for the light which Mr. Hay has thought proper to afford os amounts to no more than "darkness visible," and there he leaves us to grope about
II. The fresco scheme for the decoration of the Palace of Westminster does not, it seems, angwer expectation,-at least so does not what has been done in the House of Peers, where the experiment has been first of all made, instead of the artist acquiring proficiency in that mode of painting, by being employed in less important parts of the building before touching that which ought to display, not the efforts of "'prentice hands," but the mastery acquired by matured proficiency. Among other defects and oversights complained of, it is now discovered that, partly owing to the profusion of gilding and vivid colours of the other decorations, the frescoes do not produce the anticipated effect, they being in a great measure overpowered and eclipsed by what is mere embellishment. Thus they are in a manner converted from principal objects an works of art, into quite secondary ones as regards the general ensemble, - a serious defect, that will be further increased when all the windows shall have been filled with stained glass, whose brilliant hues will inevitably cause the frescoes to appear, by contrast, feeble and faded, more especially as the windows occupy so very large a proportion of surface. The only remedy which is now left, is to moderate the scheme of colouring for the windows, by expcuting them nearly entirely in chiaro-scuro, with only a few touches of positive colour here and there. Yet even this would be unsatisfactory in another respect, because such sparing application of colour in the glass would be out of keeping with the showiness in regard to colour of much of the ornamental work. The fact is, the decorations of the "House" have been studied only piecemenl, and those employed upon them have considered no more than their own particular share, without at all calculating the general effect. As far as the frescoes are concerned, it would surely have been easy enough to ascertain their effect beforehand, by filling in all the six compartments with the cartoons for the respective subjects. Yet, obvious and simple as such mode of preparatory trial was, it seems, somehow or other-perhaps owing to the fatality which hangs over all our public undertakings in art-to have been overlooked. Bold as it may be thought to say so, a determined system of blundering seems to be established for them. Certainly not the slightest pains are taken to prevent blunder, by proper experiment previous to the work being actually commenced. On the contrary, the chief precaution taken is to keep matters entirely in the dark, until some irreparable mischief has been committed; and the only satisfaction left us is to amuse ourselves by wondering that they should have been managed so perversely.
III. Of so-called religious subjects in painting, some are audaciously profane, others the most trivial in matter, and one and all equally fabulous; giving us only the fancies of artists for the representations of historical events. Religion may have been the patron of art, but art has been but a very questionable, if not positively treacherons, ally to religion. It served Popery during the middle ages, for the impostures of the one were in keeping with the impostures of the otber. But for pure Christianity, art can do just as much and no more than it can for the advancement of pure mathematics. There is a great deal of very palpable and maudlin cant afoat in regard to religious art. Hardly were any of the great masters inspired; on the contrary, many of them were anything but exemplary in their lives, and exercised their pencils on the lewd traditions of pagan mythology with quite as much gusto as they did on the traditions of the Church. Medimval art has, besides, contributed not a little to that fundamental superstition of popery, Monolatry, against which worship of the pretended "Queen of Heaven," the Salic law ought to be enforced amongst Catholics.
IV. Notwithstanding their piddling and minikin pedantry, architectural writers are apt to be exceedingly careless in their language, frequently employing expressions and terms after a truly nonsenical fasbion. They will speak, for instance, of an order as being "of colossal proportion"! the proportions being all the while precisely those which are generally followed for the particular order in question. Of course, they mean "dimensions" or "scale;" therefore, to use the other term, betrays strange confusion of ideas and the meaning of words. Nothing, again, is more common than the truly barbarous solecism-one for which a schoolboy would be corrected as a dunce-of employing the term "Intercolumniation, not in its own proper sense, but in that of "Intercolumn;" which is nothing less than marring technical language, and doing away with those distinctions in it which are essential to its accuracy. If there be anything that can excuse such a truly vulgar blunder, it is the authority it receives from our architectural-dictionarymakers, some of whom among their other qualifications seem to have been totally ignorant of the languages from which most of the terms of the art have been borrowed for our own. The confounding together the terms "Intercolumniation" and "Inter-
column"-or rather the rejection of the latter altogether, notwithstanding they are quite distinct in meaning-is peculiar to English writers, those of other countries properly observing the distinction between them. Just as well might we use "Columniation" in the sense of "Column," and speak of a portico as consisting of so many columniations, as call "Intercolumns" "Intercolumniations" -the latter term signifying, not the actual spaces between the columns, but the mode of spacing adopted for the columns. The inaccuracy of language here corrected may be thought a fault of no consequence; yet, as it is just as easy, it is surely just as well to employ terms correctly as not ; and the correctness thus recommended is surely also far less finical than that puerile affectation of antiquated orthography, which insists upon a final k in the word "Gothic," now invariably written "Gothick" by those who pique themselves upon their orthodoxy; the k serving as a badge of itperhaps, like other badges, as a substitute for it.
V. If Bunning's design for the new Coal Exchange be not wickedly caricatured in a wood-cut of it that has been published, it must be a mortally queer one, still more queer than the Gothic exhibited by him in the City of London School, the taste displayed in which can be accounted for only by supposing that Guldhall diffuses an architectural malaria throughout the whole of that neighbourhood-a supposition rather coufirmed than contradicted by the specimen of Italian at the corner of King-street. -To keep to the Coal Exchange, it seems the design of some architectural coal-heaver. I say "seems," for though it is made to appear such, it may prove the contrary; and that is all the more likely because, as has been shown, a good deal in it is utterly unintelligible. There is room, therefore, for suspecting that it has been greatly misunderstood and misrepresented. According to what, it is to be hoped, is a very gross caricature, Mr. Bunning's design is absolutely architecture run mad-madder than any of Borromini's freaks. In short, it is impossible to believe that such extravagant uncouthness and unmeaningness of forms as are there exhibited, will be actually perpetrated; therefore judgment ought to be suspended until the work shall have been executed. Still, it is difficult to conceive how such a degree of misrepresentation could have occurred. Surely the wood-cut in question must either have been taken from an exceedingly rough and random sketch indeed, or have been the work of some arrant bungler.
VI. A story is told of a lecturer who was cut short in a longwinded rambling preamble, consisting of truisms and commonplace dressed up in high-flown phraseology, by one of his auditory getting not only impatient, but also getting up and saying: "You will excuse the interruption, Sir, but 1 must beseech you to bear in mind that we have not come provided with nightcaps!" This sally was succeeded by such a grand chorus of laughter, that before it had subsided the unfortunate lecturer had thought proper to vanish. Like many other so-called anecdotes, the above may be pure invention, it being, perhaps, too good to be exactly true. Its moral, however, is a tolerably significant one, and deserves to be attended to. If it be not an Hibernianism to call that strange which is so generally practised, it might well be called strange that so much mere school-boy stuff should be served over and over again in lectures and written essays; sometimes to the exclusion of anything besides such frothy matter, it being poured in so unsparingly, that there is actually no room for what would be substantial and nutritious. Now, people may be excused for not knowing more than what is already familiar to every one at all acquainted with the subject professedly treated of; but there is no occasion for them to hetray to others that such is really the case. It was not very long ago that conversing with an acquaintance who had been to bear some lecture upon architecture, he told me that little as he himself knew of the subject, he kuew enough to be able to engage to produce something infinitely more to the purpose than what he had heard, it being utterly stale, and barren of the least fresh information; much of it consisting of mere metaphysical moonshine, better calculated to mystify than to enlighten the auditory.
VII. It may fairly be questioned whether sculpture for the pediment of the British Museum inight not just as well be spared, inasmuch as such partial decoration will only serve to render the absence of ornament in the rest of the structure all the more painfully striking. Even without such addition to the main building, there is a most unartistic want of keeping between that and the wings,-a defect which it is now so utterly beyond the power of any mere ornamentation to remedy, that it is more likely to be increased by attempting it. At present it is not so apparent as it will be when the old buildings, which serve in some degree as a foil to the new ones, shall have been completely cleared away, and the entire line of the latter become fully exposed to view. What sort of a tout ensemble may easily enough be guessed, since it may even
now be plainly foreseen. If there be any doubt at all in regard to it, it is only because it still remains to be seen how it is Intended to inclose the court from the street. Should it be done by any such sort of palisading as that before the Post-office, the effect will be mean and tasteless in the extreme. Whatever it is to be, that and the sentry-boxes were probably not included in the model, which, it might reasonably be fancied, did not even so much as exhibit the wings, otherwise their incongruousness with the central structure could hardly have failed to be noticed and objected to by those to whom the model was submitted-at any rate, if they were at all qualitied for exercising any judgment in the matter. One question not wholly undeserving deliberate consideration there is which does not seem to have occurred to any one, namely, whether it would not have been more advisable, instead of adhering to the arrangement of the original edifice, to advance the new façade up to the street or nearly so, thereby extending the plan, by taking in the court-yard. That would have provided the accommodation that will in a few years be required, should the collections continue to increase as they hitherto have done. Much available space has also been thrown away elsewhere, since without entirely filling up the inner court, it was obviously practicable enough to occupy a portion of that quadrangle (317 and 238 feet) by one or more ground floor galleries within it, lighted from above, and not so high as to obstruct the windows towards the court, which are besides at a considerable height from the ground. Or the apartments there formed might have been on a somewhat lower level than the court itself. It will, perhaps, be said that should it be found requisite, this may still be done, but certainly not so well as it might have been, had it been planned at first, since it would call for some alterations in what is already built ; besides which, had it been thought of at first, the cost of the inner facades of the quadrangle might have been spared, since plain brick walls-quite shut out of view, as they would have been-would have been just as well in such a situation as the present ones faced with stone. Even had the court been partly built upon below, the upper part of it-that is, as much of its sides as could be seen from within through the windows, might still have been finished as at present, with the omission however of the columns and antm, so that its general appearance as so viewed would have been quite as satisfactory as it is now ; nor need buildings within the quadrangle have been at all visible from any of the surrounding galleries or other apartments.
VIII. The plan of the National Gallery was in a great measure sacrificed to the unlucky and obstinately-persisted-in whim of letting St. Martin's church be seen from Pall-Mall East. Since it has been thrown open by the removal of the Mews, that building, said the wiseacres, must on no account be shut out of sight again as it was before; as if such would really have been the case were it not visible from Pall-Mall East, when it would have shown itself as well, or perhaps even better-more picturesquely than it does now, from Cockspur-street and Trafalgar-square. But for that stupid whim, which prevented the architect from bringing his portico at all forwarder than he did, and also compelled him to set back the extremities of his facade very considerably, the buildiug might have been nearly twice as much in depth as it now is, and in some parts even more than that. It must be admitted that notwithstanding the disadvantages forced upon him, Wilkins might have arranged it much better, there being at present a great deal of space thrown away, that might by a fittle contrivance have been turned to good account. As to the dome, I have not a word to say in excuse of it, it being so decidedly bad. Excuse for Wilkins, upon the whole, there is much, for never, perhaps, was architect more worried and thwarted than he was in that unfortunate building.
IX. "Eminent" must be an epithet of exceedingly doubtful meaning when we find it applied to an individual recently deceased, who, as an architect, was of no note whatever. However eminent Mr. * * * may have been in the profession, he was certainly not at all eminent out of it, his uanie being totally unknown to the public. Rather was he eminently obscure, siuce su far from being quoted in evidence of his talent, not a single building by him has ever obtained notice at all. As a man, he may have been a very worthy character: so he might, had he been an "eminent cheesemonger," in which case eminence and obscurity mifht have been allowed to go hand-in-hand tugether. Truly grievous is it that harmless nobodies should be so vilely daubed over as soun as they are dead. It looks two much like thasuking then lor going out of the world and leaviug their snug places und apporntments for others. The professional life of the eminent architect alluded to, would, 1 fancy, form a more curious than intereating contioution to the biography of artixts.

BUCKINGHAM PALACE AND THE MARBLE ARCH.

But one opinion has been expressed of this unfortunate Palace, for if it finds favour at all with any, they have not the courage to utter so much as a gyllable in defence of it. We may accordingly spare ourselves further censure of what is actually done, our present purpose being to point out what might have been done, and doubtless would have been, had aught like due or decent consideration been given to the matter, the idea here submitted being so very obvious a one that it is difficult to conceive how it could have by any possibility been overlooked. Or if it was not overlooked, but parposely rejected, it becomes desirable to know on what gronnds it was set aside, since the reasons must have been more than ordinarily cogent ones to lead to its rejection.
Looking at the Palace as it stood before the alteration was commenced, no one would have ever imagined that the blocking it up by another building, merely in order to obtain additional rooms, and thereby depriving all the original portion of the building of those advantages of situation and prospect which in some degree atoned to its occupiers for its architectural deficiencies, would have been resorted to without all other expedients being first tried. The preserving the same view as before into the Park should have been made a sine qua non; instead of which Mr. Blore seems to have had a carte blanche to do just as he pleased, and he seems to have studied nothing more than merely providing the extra accommodation required, in an additional building merely tacked on to the first one. To say that he at all considered the circumstances of the case-the opportunity which it held out for architectural improvement, would be to accuse him of downright incapacity. The most prudent excuse for him is that he was called upon so suddenly to prepare drawings for the purpose, that he had no time to collect his thoughts, much less any ideas, those which he might else have had being put to flight by the expeditiousness imposed upon him. Whereas had he been allowed to apply himself to the task leisurely and quietly, he would have devised some means of preserving the Marble Arch, and not only retaining it, but giving it increased value and importance, as the focus point of a new facade.
General, vague suggestions of this kind, it will perhaps be said, are very easily made, but we here offer somewhat more than a mere shapeless, unembodied idea, by showing in the annexed cut

how the Arch could have been retained and connected with the sdvanced line of new buildings. We would have continued the stylobate and order of the Arch by two sweeping double colonnades (quadrant in plan). This would not only have given greater privacy to the court-yard, the stylobate being sufficiently high to prevent its being looked into, but would also have given it greater apparent space than before, when that space was so indistinctly defined by the palisading, that as seen from the Palace the Arch appeared to tand as quite a distinct and insulated object in the Park. According to the plan here shown, it would, on the contrary, in connection with the colonnades attached to it, have formed a highly scanic piece of architecture, full of play of light and shade and perspective effect, and admitting a view of the landscape scenery in the Park in the background. As an embellishment to the court there might have been parterres in the quadrant portions of it,
with a fountain in the centre of each quadrant. To specify othey matters of decoration not indicated in the plan-statues and candelabra for gat-burners placed alternately in the intercolumns of the colonnades, and a colossal sitting figure of Britannia on the summit of the Arch, giving to the latter what it has all along wanted, a pyramidal teimination to its mass, would have produced a more than ordinarily striking architectural picture, whether viewed from the Palace or the Park. As seen from the latter, it would have been a sufficiently effectual screen to the buildings within the court, and after the sun had passed off from the east side of the Palace, would have been continually lighted up by its rays striking upon some of the columns during the whole day. In combination with additional buildings carried out to the right and left in extension of the original wings, such a colonnaded centre might have been made to produce a façade not at all inferior to, perhaps even more picturesque, than that of any other royal palace in Europe; whereas now-but we can hardly speak with decent patience of the miserable and truly contemptible abortion which Blore has perpetrated, both to his own disgrace, and the disgrace of those who employed him. Had such a design for enlarging the Palace been sanctioned by William IV., though our mortification would have been the same, our surprise would have been considerably less. His taste and feeling for art never extended beyond the figure-head of a ship. That it should have been perpetrated under the auspices-at least under the very nose of a Prince who affects the character of a connoiseeur and patron of art, fills us not only with astonishment, but dismay. We account for it only by supposing that he was overruled in the matter, he being no more than Prince Consort.

To show, as we have, what might have been done, when the opportunity for doing it has passed away, may seem ungracious. Our reply is, it is no fault of ours that the opportunity was not afforded us, and not ourselves alone, but others also perhaps far more able, of making suggestions at a time when advantage might have been taken of them. At any rate, we hope that Buckingham Palace will now prove an efficacious lesson for the future; and it is also some consolation to find that it is not only poor, but so desperately bad, that there is very little danger of its corrupting public tuste, because it will be now more mocked, and more an object of general derision than ever. Admiration it will excite none whatever, that's certain; but then it is equally certain that it will excite a vast deal of astonishment. It will completely astonish the natives, and all foreigners into the bargain.

As the Marble Arch-which might have been so easily retained, and not only retained but greatly improved, and nade the nucleus of an extended piece of decoration in the foreground of an extended line of facade- is to be taken down, the question now is, is it to be destroyed, or re-erected on some other spot? Nubody except those actually in the secret, knows; though why it should be made a secret at all nobody can tell, unless it be because the intention in regard to it is so preposterous that were it divulged it would excite strong opposition. Our idea is that the street front of the Horse Guards would be a very suitable situation for it. It would there fill up what is now too much of a gap, and the two smaller arches would serve admirable as the recesses for the sentinels on horseback. It has, indeed, been rumoured that both the Horse Guards and Admiralty are to undergo architectural transformation by Mr. Barry. But instead of that interposing any obstacle, it would rather facilitate such application of the arch, since Barry would only have to bring it into his design, and treat the rest of the com. position in accordance with such feature.

BUCKINGHAM PALACE.

Sin-It seems not a little singular that none of the critics who are disposed to animadvert in such severe terms on the new front of Buckingham Palace, not even your lynx-eyed "Candidus" himself, should have discovered that it is only a reduced copy (about two-fifths in length) of the Palace at Caserta; so that the faults or merits, be they which they may, are not Mr. Blore's, but Vanvitetti's. In proof of which, 1 beg your acceptance of tracings of the perspective view of the front and of the plan, after Vasi.

It is to be feared that the imitation will be confined to the part of Vanvitetti's design upon which he appears to have bestowed the least pains, that is the ontside, and that there are but faint hopes of an equal imitation of the splendid staircase and vestibule.
Vasi states the length of the north and south fronts of Caserta to be 918 palms (Neapolitan, I presume), which, at $10 \mathrm{~S}_{\mathrm{3}}$ inches,
would give 873 ft .10 in . for the length of the front. The east and west fronts, by the same reckoning, would be 618 ft .10 in ; and, ${ }^{n}$ e the length of Buckingham Palace is stated in the Journal at 350 feet, the proportion is exactly two-fifths, The height of Caserta is 180 feet ; of Buckingham Palace, 77 feet.
I visited Caserta thirty years ago, in company with Mr. Woods and M. Soiss, the eminent Belgian architect, and the notes of that day are now before me.
"The central passage or vestibule leading from the entrance is 94 feet wide, and 24 feet high to the springing of the semicircular vault. The steps of the middle flight of the stairs are 29 feet long, and the two return flights each 14 feet long (100 steps in all), and are of white and reddish variegated marble : there are statues, trophies, \&cc. The vestibule above is handsome, but (in my eyes at that time) in bad style. The chapel (which is opposite to the staircase) has coupled columns, of Sicilian marble. The lower part of the chapel is lined with slabs cut from the Giallo Antico columns, removed from Purruoli," \&cc. \&cc.
Let Mr. Blore give to the Palace a staircase at all resembling this, and the world will forgive him the faults of his front ; many of which have, no doubt, been forced upon him, as upon his great predecessor, by the necessity of providing accommodation for so many people.
I have read Mr. Elmes's Epitome of the Lives of English Architeots with great satisfaction, and beg to express my hope that he will carry out his "present intention" without delay. I would take the further liberty of suggesting to him that the illustrations he promises ought to consist mainly of unedited specimens, or at least of those of which the engravings are least accessible, or the works containing them least known. A list referring to the books in which the most meritorious of each architect's productions are to be found, would be very valuable.

It should be remembered that size is not the criterion of merit. How many of us country architects are forced to take the counsel of our excellent friend, Percier, and in despair of executing large works, to bestow greater care upon lesser ones ?

I am, \&c.,
York, Dec. 1S, 1847.
Robert Sharp, Architect.

COWPER'S INVERTED ARCH BRIDGE.

Sir-In reflecting on the construction of Mr. Cowper's bridge, I think it is interesting to notice that the boiler plates are rivetted together, so that the pressure on the piers and abutments must now be vertical instead of oblique, as in the common suspension bridge.

Hence, then, in principle it may be said to coincide with the ordinary girder bridge, but its alteration in form suggeats an important advantage, which it possesses; for, in the girder bridge (and especially when dealing with long bearings), there must always be this objection, viz., that by reason of the gravity of the material itself, independently of any additional influence of a load placed upon it, it is constantly tending to assume a curved form, and such curved form not being the natural position of its particles, it is constantly tending to rupture; but in the "inverted arch bridge" the material is thrown into that form (or nearly so) which it would take if perfectly flexible, and then is made perfectly rigid. So that, as regards its own gravity, there is no further alteration of form, of any practical importance, to be apprehended.

With regard to the alteration of form which might result from a load being put upon it, Mr. Cowper has already pointed out the preventive measure, viz., the giving to the vertical dimension of the plate such a magnitude as to bring the line of strain within the plates.

I think the name might have been more aptly choeen: "Inverted arch" is suggestive ouly of form, and not of principle, and might (it seems to me) with equal propriety be applied to the ordinary suspension bridge. I am, \&c.
G. W. Riceard.

* It is not clear that it would he practicable to make the "inverted arch bridge" so rigid as to exert only vertical pressures on the abutments, and to act as a curved girder.

Suppose its span 800 feet and depth 4 feet, and that a weight of 30 tons (engine and tender) rests at its centre. Then, by the ordinary principles of statice which apply to girders, we may easily find the horizontal etrains of tension and compression which this weight alone produces at the centre. Considering the half-atructure 28 a separate statical system, the forces acting upon it have equal moments about the point of support in the abutment : or half the weight X the half-span $=$ the moment of the couple of tension
and compression created at the centre of the bridge. The length of the arm of couple is indeterminate, but (since the total depth is 4 feet) it is a favourable supposition to take it at 3 feet. Hence, calling the horizontal strain P, we have

$$
\mathrm{P} \times \mathrm{s}=15 \times 100, \text { or } \mathrm{P}=500 \text { tons }!
$$

The metal must be tolerably thick to resist five hundred tons pressure on the upper, and tension on the lower, side of the bridge at its centre! This difficulty is formidable enough when the structure is considered as all one piece, but becomes insuperable when the effect of joints is taken into account, It is not to be overcome by any system of rivetting and dove-tailing, however intricate.
Though it be easy to calculate the amount of the horizontal strains at the centre of the curved beam, it is not easy to estimate the sectional or transverse dimensions necessary to resist those strains; for our knowledge of the transverse strength of wrought-iron is much less than of cast-iron. Some idea may, however, be obtained from analogy. The "inverted arch," if it sustains itself by its rigidity as a girder, may, for all purposes of calculating the strength at its centre, be considered as a horizontal beam 200 feet long and 4 feet deep, with an effective width of 1 foot to 1 foot 6 inches at the utmost. Now, the proposed Menai tubular bridge will be 450 feet long, but its depth will be thirty feet, and width fifieen foet: also its upper and lower sides will be composed of several thicknesses of metal, as the former will consist of two, and the latter of one, series of cellular compartments. The saslugy between the Menai bridge and the inverted arch is complete in several respects: both are tubular, both are to be composed of rivetted wrought-iron plates, and both are designed for railway traffic. The sectional dimensions of the Menai bridge are suggested by actual experiment, and are never considered too great. Is it not, therefore, abundantly evident that a beam of sths the span of the Mensi tube, but with only an eighth or twelfth its depth and width, would not be rigid enough to sustain itself as a beam?

If suspended from, instead of resting upon, the abutmenta, it might perhaps be prevented from actually falling, but it would certainly bend. If the point of suspension be supposed to be at the upper edge of the end of the beam, the transverse strains of deflection will be somewhat reduced by the carvature of the beam; but it would be difficult to show that this advantage would not be far more than compensated for by the increase of length, and therefore of material, which the curvature renders necessary,

It is important to remark, that if the only requisite for security were that the depth of the chain should "include any alteration in the curve of the strain," that depth should not be uniformly 4 feet. It should be nothing at the centre of the span and the point of sagpension, and gradually increase up to some intermediate part. The highest and lowest points of a catenary may be always chosen arbitrarily.

The argument that the chain would not be distorted because it is "of such depth as to include any alteration in the curve," is vague and inconclusive. It certainly cannot stand ground against deductions from the fundamental equations of statical equilibrium. The reasoning given above is a simple, ordinary application of the elementary principles of mechanics ; these are not to be opposed by a mere hypothesis, which is too subtle to be made the subject of rigid investigation. All that can be said of this hypothesis is, that it is not necessarily true. A number of independent chains might be hung from the abutments, and to each might be given that form which it would, if perfectly free, assume of itself when the load at some particular stage of its transit hung from that chain alone. Then it is clear that, while no connection existed among the several chains, the load acting on each in succession would not tend to distort any of them, i. e. would not produce transverse strains. But it does not follow that this would be the case when all the chains were bound up together in one connected maes.

The "inverted arch bridge" does not seem to be an advantageous compromise between the principle of the girder and the suapension chain. An intermediate condition misses the advantages of both those structures : for if the inverted arch be only partially rigid it is subject to needless and prejudicial transverse strains; if it be as rigid as a girder, why unnecessarily increase its length
by curving it? The ides of our correspondent that by curving it? The idea of our correspondent that the curvature obviates its tendency to deflect by its own weight, seems to us unfounded ; for however much the structure was bent when first put up, it would tend to bend still more when its ends merely rested upon the abutments. We cannot positively undertake to assert that the suspension of a curred beam has no peculiar advantages; but they have not yet been pointed out, and we are unable to discern them.-Editor.

ELECTRIC TELEGRAPHS.

It is extraordinary that we should have had to wait so long for the introduction of a system of electric telegraphs, seeing that a century ago it was known that the electric fluid could be sent through a coil of wire two miles long, as was done in the experiments at Hampstead, while a coil had also been carried across the Thames. Papin, too, in the beginning of the last century, had sought a means of communicating power and motion to a distance. Had, however, such a means of communication as that by the electric telegraph been adopted, it would have languished in the then state of the roads, and the then state of society, for it would not have answered commercially, and its failure might bave been most prejudicial. It has been reserved for our day to apply this invention, and to give one to the many characteristics which make it an era of progress. Beside the locomotive, the steamship, and the daguerreotype, the electric telegraph may take its place; and the day is perhaps not very distant, when our furthest islands will by the telegraph be brought under our immediate rule.

Having been among the first in the field, and having by the slough line proved the practicability of the system, we have allowed the Americans to get in advance of us, for they had in 1846 sixteen hundred miles in practical commercial working, while we can hardly be asid, even at present, to have any great extent of telegraph in nse, although we have a great length laid down. Next year will redeem us from this charge, for we shall have two thousand five bundred miles, but it will not exculpate the government for having so long neglected this admirable invention. It is some comfort that we are ahead of France and all the European kingdoms. In the want of machinery for extending electric telegraphs we have to regret the neglect of the government in withholding the introduction of railways in India, where the telegraph would be invaluable in governing, territories so vast, and where the number of English functionaries is unhappily limited.

We have now arrived at an era in the telegraph, for at the date of this publication, the metropolis has been brought into immediate communication with Liverpool, Manchester, and many of the great centres of trade and manufactures. The Electric Telegraph Company have brought their operations to that stage that they can convey intelligence to sixty great towns, and this seems an appropriate time for laying some account of their proceedings before the public, the more so as the full effect of this admirable invention does not seem to be so well appreciated as it might be in comparison with its vast capabilities, and the influence which it will exercise upon every class of the community, both morally and physically.
The operations may be considered as having begun with Mr . Cooke and Professor Wheatstone, who, after labouring singly for come time, in 1837 took out their first patent. It is understood that Professor Wheatstone applied himself more to the purer philosophical experiments, and that Mr. Cooke has taken charge of the practical detail, and at last brought the invention to its present bearing. We say nothing of other parties who have laboured on this subject, for our business is now with the Electric Telegraph Company. Soon after Messrs. Cooke and Wheatstone took out their patent, they laid down a line nineteen miles long on the Great Western railway, between London and Slough, the working of which was most successful, although of course it did not satisfy those who thought the system might fail if extended to Liverpool or York. It touk many years to urge the system forward, and it was not till 1846 that a company was incorporated, called the Electric Telegraph Company, for carrying it out on a large scale. Contracts had however been made, and works carried on, so that before the act of incorporation the company was already in activity, and had by the end of 1848 laid down 1000 miles of telegraph. At the same date Professor Morse, in America, had laid down 1600 miles.

The system has been chiefly carried out in connection with railways, because the value of the telegraph to the railway companies has induced the latter to adopt it, and to make advantageous arrengements for laying it down. The years 1846 and 1847 have therefore been chiefly employed in laying down the wires, and their working on a large scale has been retarded until now by the noncompletion of the wire between London and Rugby, on the North Western railway. On the 13th November this link was completed, and the London prices were at once conveyed to Manchester. The new metropolitan station has likewise been partially opener, and by the new year the whole plan will be in full operation. During the present year the metropolitan station has been in the Strand, and the working has been chiefly for government purposes along the South Western line to Gosport, although
latterly much general business has been transacted. The organization of a new system has called for the exercise of much labour and ingenuity in the engineering and the signals departments, the principal officers of which are Mr. Hatcher, recently of King's College, and Mr. Whishaw, author of the "Railways of Great Britain." and the inventor of the hydraulic telegraph. In the standard work on the "Railways of Great Britain,"Mr. Whishaw proposed uniformity of railway time, and a mode of communication between guard and driver, whicb with many other practical suggestions are now carried out. At a given time every morning a signal will be made from the central station, and the needle will be brought to the vertical indicating Greenwich mean time, by which all the telegraph clocks will be set. As this arrangement, most important to travellers, will now he carried out over the country, we may observe that local clocks and watches can be made with a double minute-hand, so as to show local time and mean time. Although much controversy has been raised about mean time, and many eminent men have opposed it, it has received the sanction of the astronomer-royal, who bas proposed the adoption of it for the great clock at the palace of Westminster, which is to be set by electric telegraph from Greenwich. The system of codes adopted by the Electric Telegraph Company, has been, we believe, entirely constructed and arranged by the same gentleman. Un account of the extent of the operations of the company a great many mechanics have been employed in making the various apparatus aud in laying down the wires, and many works of great nicety in their execution have been carried out.

The company is not restricted to Messrs. Cooke and Wheatstone's patents, but has power to avail itself of all inventions in which electric power is used. They have therefore purchased many patents and inventions, among the chief of which may be mentioned Bain's electrical clock, an invention, the full value of which is far from being known. At the offices in the Strand is a model-room, which contains a large collection of telegraphs of various construetion, and of clocks. This model-room does great credit to the company, and is a museum of great value to the practical man. It will be recollected that at Sir John Rennie's conversaziones in the spring, among the many novelties which the learned president brought before his guests, was a collection of telegraph apparatus. This was contributed by the Electric Telegraph Company, and formed not the least interesting contribution to the temporary museum in Whitehall Place.

In the model-room in the Strand, the collection in which will, we presume, be removed to the city, there is every thing necesary to illustrate the subject, though of course it does not contain every telegraphic invention. Several apparatus show the improvements which have been gradually made in the needle instrument, so as to make it capable of working. Two ingenious telegraphs communicate by sound. One of these, the invention of Professor Wheatstone, strikes two bells of dissimilar sound, the combination of the two producing the letters, as in the double needle telegraph. Another, the discovery of a workman, gives a humming noise from a wire. The effect is singular, and was a chance discovery. At present it is of no moment, but the preservation of a model by the company serves to encourage the spirit of discovery, while what is now merely trivial may become the germ of a valuable application. It is deserving of note that already the officers and workmen employed on telegraphs bave been the means of making many useful suggestions, and we may anticipate the best results from an energetic body of employees, if the company are liberal. Notwithstanding all that has been said about railway improvements, it is well known to practical men that very great improvements have been effected by railway officers, and that a large amount of talent is constantly and energetically directed to the perfection of the system. The names of George and Robert Stephenson, Brunel, Braithwaite, Booth, Gooch, Gray, Edmonson, are only a few as a specimen of those who bave contributed to the practical improvement of railways. In a few years the Electric Telegraph officers will, we hope, have given equal proofs of zeal and ingenuity.
The printing telegraphs in the model-room are illustrated by several apparatus of various forms, some for printing by letters, and others by signs. The company make use at their stations of the needle telegraph, but as the working of this is doubtful, and other telegraphs move quicker, it is quite open to them to change their instruments, as they have the wires laid down, and the wires are used under whatever system. While adverting to printing telegraphs, which print their message in black, we may observe that it is perfectly competent to make a telegraph which shall use different colours, and indeed a mode of shading was long ago suggested by Mr. Hyde Clarke.
The business of the company in electric clocks will no doubt be
very large in the end, as they admit of such useful application in public and private establishments. In the course of a short time no public office will be without a clock dial in every department, and when the example has been set wide enough there will be few private houses without a dial in every room. It is a small thing, but it is no mean thing to increase habits of punctuality in a population. Those who have noticed in foreign countries the disregard of the value of time among unenterprising populations, know the worth of our greater luxury in time-pieces. The Electric Telegraph Company, however, will be satisfied with the pecuniary result, without seeking further as to the public benefit they may effect. The price of a clock is at present of course rather high, namely, sixteen guineas, and of companion clocks, ten guineas each. A great objection to electric clocks at present is, that depending on the electric currents of the earth or on a battery, their regularity cannot be depended upon.

The metropolitan station, designed by Mr. Hunt, is very well situated. It occupies what was lately Founders' Hall and the adjacent premises, having entrances in Lothbury from Founders' Hallcourt, and in Moorgate-street. The doorway in Founders Hallcourt is handsomely carved in stone, and though small makes a good farade. The central hall or counting house is one of the handsomest works lately executed. This station is within a few minutes' walk of the Bank, Stock Exchange, Royal Exchange, Lloyd's, the joint stock and private banks, assurance offices, in the heart of business, and not far from the Corn Exchange, Commercial Rooms, Coal Exchange, and the seat of the Manchester warehouses and colonial produce warehouses. The newspaper offices are further removed, but in the end means will be found of accommodating this class. The government offices, houses of parliament, courts of law, and places of west-end business are also at a distance, but the city is the district which will pay best, and it is impossible to provide for all at once. So far as the city office is concerned, the judgment of the managers has been well shown in its selection.

The principle of Cooke and Wheatstone's telegraph is founded on the discovery of Professor Ersted in 1819, that a magnetised needle has a tendency to place itself at right angles to a wire along which a current of electricity is passing. By the movements of such a needle on a dial an alphabet is formed, which serves as the mesns of communicating messages.

In the other forms of telegraph a disc is made to rotate, bearing on it letters or signs, and this is effected in virtue of the property soft iron has of becoming temporarily magnetised by an electric current being passed along a wire coiled in a spiral around it. The same principle is adopted in all the apparatus for ringing the alarum in order to give notice that the telegraph is in action. It is to be observed that the telegraphs in the United States, France, and Prussia, are on the disc system ; in Baden Highton's telegraph has been used. Most of the telegraphs in England are needle telegraphs, that on the South Devon is a disc telegraph, and that in the Box Tunnel on Nott and Gamble's plan.

The disc telegraphs are worked either by the voltaic battery or the magneto-electric machine, power being derived from a permanent magnet. With these telegraphs, two wires only are necessary, one for the telegraph and one for the alarum; but the needle telegraphs, for commercial purposes, require three wires, two needle-wires for the telegraph and one wire for the alarum.

As now laid by the Electric Telegraph Company, on their best system, two wires are employed for each principal station, the wires used being of iron, of No. 8 grage, and one-sixth of an inch diameter. These are galvanised, and come very cheap. The weight is about 38 lb . to the hundred yards, or 480 lb . per mile. The wire is welded together in lengths of about a quarter of a mile each. These wires are fixed to staudards, at distances varying from 45 to 55 yards apart, and at each quarter of a mile is a stronger standard, where a connection is made. The wires are kept taut by a simple arrangement, which it is unnecessary to describe. In consequence of this mode of suspending the wires on standards, which was first adopted in 1848, a great economy is effected, and the system adinits of a more extensive application, as now it may be laid anywhere wherever the standards can be put up; and as the population get accustomed to this invention, it can be put up as safely in the streets, or in the roads, as gas-lamps are now left; though of course it is premature to anticipate such advancement at present. Under Brett and Little's system it can, we believe, be laid much cheaper than now.

The original method of laying the wires was to cover them with silk or cotton thread, and then with pitch, resin, caoutchouc, or some other non-conducting substance, enclosed in earthenware tubes, in wood trunks, or in iron pipes. At that time, there were several inventions for laying the telegraph wires in saphalt. The
great expense of the system was one of the obstructions to its extension at an earlier period. Our readers will recollect that pipes were used on the Great Western and Blackwall Railways. One puryose in the pipes was to prevent any interference with the telegraph wires; but this precsution is now considered unnecessary. The connecting wires between Nine Elms and the Strand stations, and between Euston-square and the metropolitan stations, are laid in pipes (Mr. Freeman Roe being the contractor); but, as we have already observed, they will in the end be, in most cases, laid on standards in the streets. At the present moment, our main streets are filled with cast-iron pipes for gas, for water, and for electric telegraphs. Liquid manure is also to be laid on, and we believe Professor Wheatstone contemplated a sound telegraph, which should play music. The professor contemplated the conduction of sound; but waiting till that is accomplished, it is quite easy to play music at a distance by the present resources of science. With a sufficient number of wires, a grand piano might be played in London and Liverpool at the same time; and nothing would be easier than for one organst to play in two cathedrals, or to play a set of chimes in St. Paul's and in York Minster simultaneously. Professor Wheatstone's bell telegraph, in the modelroom of the Electric Telegraph Company, gives the elements of such an apparatus. In Flanders, every town has its set of carillons or chimes, playing elaborate tunes, and having its carilloneur, who plays on Sundays. In time, the whole of these may be worked together, or perhaps the towns of England supplied with the luxury of carillons. Professor Wheatstone, however, proposes to go beyond this, and to convey musical sounds to a distance.

A great economy has already been effected in the number of wires used. In the earliest Slough instrument, five needles were used, and double wires for each. The application of the principle that the earth could be made to serve as half of the circuit, and its adoption by Mr. Cooke in his patent of 1842, at once abolished half the wires, and by successive improvements, the number of needles was brought down to four, to three, and to two, and, for some purposes, even one. Thus, where twelve wires were necessary in 1842 for one station, two are now sufficient, while the cost is decreased in a very much greater ratio by the wires being galvanised instead of wound in cotton or silk, and by their being suspended in the air instead of being laid in pipes. Perhaps, in the end, a lighter wire will be used, and the system will be indefinitely extended. It is impossible to consider the system as being otherwise than in its earliest infancy, and we may expect, as in railways, to see very great modifications. The locomotive, after being increased in size to the magnitude of the "Great Western," is now likely to be brought down to the proportions of a steamcarriage. Nothing is so dangerous in new inventions as to projudge.

The instruments used are Cooke and Wheatstone's, and are either single or double needle instruments. The latter is preferred. They are both on the same principle, except that the latter is double the former. As seen from the outside, the double needle telegraph shows two needles suspended like clock-hands on a dial. Each of these needles is the duplicate of another within the instrument, and behind the diab, and which latter is the real needle. This needle is suspended in a light hollow frame of wood or metal, round which are wound two sets of fine copper wire, coated or insulated with silk or cotton. About 900 yards of wire, Ito th of an inch diameter, is used for these purposes. This coil is connected with an electro-galvanic battery. A great difficulty of the needle telegraph is to stop the oscillations or vibrations of the needle when set in motion. This is attempted by giving a greater extension and weight to the lower limb of the needle.

On the instrument, below the dial, is a handle, which is 80 formed as to turn on or break off the connection of the battery with the conducting wires, and so to transmit motion to the needle, which, according to the way in which the current is passed, may be deflected to the right or left.

In the double-needle instrument, the alphabet is formed by the production or repetition of three combinations. The needles being placed parallel, the right-hand needle may be worked or the lefthand needle, the two together, or the two alternately; accordingly as this is done once, twice, thrice, or four times, a large number of alphabetical or other characters is obtained. The double needle has this additional economy over the single needle, that in many combinations the two handles are worked together; in other telegraphs of a simpler construction the saving would be still greater.
The needle being itself a magnet, is subject to disturbance from the free electricity of the atmosphere in particular states of weather, so that its working is very uncertain; and although some modifications and improvements are made, this does not obviate
the objections. To prevent the needle from traversing too far, it is confined by pins on either side. On a recent occasion all the telegraphs throughout England were deflected for $\begin{gathered}\text { eo long a period }\end{gathered}$ that husiness was wholly stopped.

It is to be noticed, that the communication is carried through the instrument, which is a part of the chain of connection. At each station used, must be an instrument; hut where the correspondence is small, several instruments may be used with the same wires; but of course two stations cannot be worked together, one only can use the telegraph at a time. Where there is larger correspondence, separate wires and instruments are used for each station. An objection at present is that one instrument being disordered, which is not unfrequently the case, the whole set suffer.

Where several instruments are put on one set of wires, there is an advantage in sending a simultaneous message. Thus, in the case of the Queeu's speech and proroguing Parliament next year, it may be simultaneously communicated to sixty stations by one clerk in Lothbury; and we may conceive the period when a public functionary may simultaneously convey instantaneous instructions to a thousand subordinates, thus surpassing all that the printingpress has ever yet accomplished. Already, the superintendents of railways, seated in their London offices, can give general instructiona every morning to their station-masters attending in the telegraph-rooms. For most of the purposes of the subseribers'rooms, the whole system of telegraphs put in communication will allow of one message or list of prices or quotations being used for all, which is a great economy. Thus the price of shares at Manchester, of cotton at Liverpool, of sugar in Mincing-lane, or of corn at Wakefield, will be simultaneously announced all over the country.

The bell, or alarum, may be considered at present an essential part of the telegraph system. By setting the alarum in action, notice is given to the telegraph clerk that a message is going to be sent. We question, however, whether the bell will in the future be necessary at large telegraph stations, where clerks are on duty day and night, and the instruments, perhaps, in constant use. At present, the alarum may be set in action from the telegraph wire, or a separate wire may be used. The defect of the former plan is, that if the clerk, on finishing his message, does not leave his alarum in the circuit, the alarum cannot be set in action, and the only way to attract his attention is the chance of his seeing the needles working. As this contingeney virtually neutralizes the nee of the alarum, it is considered preferable to have a separate bell for the alarum. The alarum is a piece of clock-work, to be set in action by the connection or disconnection of two pieces of soft iron, formed into a horse-shoe magnet, and covered with a coil of fine copper wire insulated with silk or cotton. When this horse-shoe is magnetised, it attracts an armature of soft iron, which moves on an arbor, and lets loose a catch, which sets the clock-work in motion. Formerly, the magnet was made to act directly on the hammer of the bell. Lately, great improvements have been made in alarums by other inventors.

The single needle telegraph is sometimes used for railway purposes, where a limited number of signals is required; but for all others, the double needle is used, and the difference in price is not sufficient to justify the use of a less effective instrument. As, however, in the case of the double needle instrument, accident may happen to one of the wires, the clerks are taught the use of the single needle signals, so that communications may still be carried on. This is the more necessary from the liability to disorder. We may observe, that in case of injury to a particular line of wires, as that on the old Manchester and Birmingham Railway for instance, the communication with Manchester could still be carried on by forming a circuit with Sheffield, Leeds, Liverpool, or any other of the places remaining in connection with it and the metropolis. Unless all the wires round a town be disturbed, the communication cannot be stopped, so readily can a line of correspondence be formed; and it is at present considered of little importance to send a message round by any distance, as no perceptible difference in speed or efficiency is found between a direct or a circuitous route in the transmission of electric messages. Hitherto, all correspondence with Manchester has been sent circuitously by Rugby, and over the Midland Railway. In a political, and even in a commercial point of view, this fact is of some importance, as it guarantees the stability of this mode of communication. It is to be noted, however, that the Electric Telegraph Company have hitherto worked their messages by relays, and this is the case on the South Eastern, which argues some defecte. The company's telegraph is a failure on the South Devon line, and in the Summit Tunnel on the Sheffield and Manchester
railway. Nott and Gamble's telegraph has also failed in the Box Tunnel.

The mode of transmitting messages by telegraph has already been subjected to revolutions. When the idea was put forward of spelling words, of course it was suggested that combinations might be formed of signals standing for words. This was not, however, then found to work well, and the competent author of the article on electric telegraphs, writing in "Weale's Pocket Book," in the end of the year 1846, says-"This method has been fully tried, and has been relinquished only upon a conviction of the greater certainty and eventual quickness of the literal communication." At the present moment, the company are again working by signals or words, and with great success, upon Mr. Whishaf's system. It will strike every one who has given his attention to the subject, that each subject relating to shipping, to the stock exchange, to produce markets - will have its own technical language, in the cognate business of short-hand writing, called "arbitraries" and for which signs may be used as they are in short-hand. The merit of Mr. Whishaw's system consists in its special application, while the failure of the previous attempts was in their generalization. All successful codes of signals, or telegraph communications, have been special; and the same may be said of short-hand arbitraries. Alaw short-handwriter will find constantly recurring-" plaintiff, defendant, affidavita, plea," and a number of other terms, which it would be a work of supererogation to write in full; and so in each department; but this has been left to systematization by the individual rather than made a work of science. Sea signals have been rendered very simple by their application to nautical purposes, though the attempts to apply them to more extended communications have failed.

In Mr. Whishaw's system for the Electric Telegraph Company, a code of signals is applied to each class of communications. Thus there is a code for shipping intelligence, a code for racing, a code for share lists, a code for corn-market prices, and so forth. On the message being commenced, a signal is made what code is used, so that the clerk who receives the message is prepared for the nature of the signals. As the number of signals which can be made in a given time is limited, it is evidently of great importance to economise time by the adoption of arbitraries, instead of spelling every word, letter for letter. Indeed, if an expedient of this kind were not adopted, it would be inipossible to carry on the correspondence between the great towns. As it is, it may be reasonably expected that business will so far increase on the organization of the system, as to require the adoption of more than one line of telegraphs between the metropolis and such towns as Manchester and Glasgow. We may note here, that it will be curious to observe whether the number of telegraph messages will bear any correspondence with the number of post letters sent to each town. There can be no doubt, however, that to give accommodation to the public new companies will be formed, as in other branches of enterprise.
On a message being delivered in writing at the telegraph office, it is "translated" into telegraph language, transmitted by a telegraph clerk, received by a telegraph clerk at the other end, retranslated there, and written out and given to a messenger for delivery. Each message is accompanied by preliminary signals, to call the attention of the clerk to be addressed, and to signify to him the nature of the message, and the code to be used. It may readily be conceived that it is of great assistance to the clerk to know the class of message he is going to receive, as he is thereby better prepared to understand its import. It is like a reporter in the gallery of the House of Commons understanding the speaker whom he is following, and which enables him more fully to catch and express his meaning, than if the subject were unfamiliar to lim. In time, no doubt, the telegraph clerks will divide among themselves the labour of transmitting the several classes of intelligence, and this will have a tendency to ensure greater accuracy and rapidity. In order to obtain more accurate delivery of a message, the company offer, on the payment of an advanced price, to have it repeated, so that there may be a security for its being fully understood; and this is necessary, as errors must be expected to creep in from frequent imperfection in the instruments, from unintentional error on the part of the sender, and from misinterpretation on the part of the receiver. These kinds of messages will be peculiarly open to those "equivoques," now known as "errors of the press," in printing, where the insertion of one wrong letter alters the whole meaning of a word or sentence. We may be prepared, therefore, for letters addressed to the great censor of the age, headed, "Shameful Mis-
management of the Electric Telegraph Company," "Shameful Oppression," "Shameful Negligence," "Shameful Monopoly," and so forth, in which the real or fictitious correspondents declare the dreadful sufferings to which they have been exposed by the errors and delays of the telegraph clerks-how "owls" were ordered for dinner, instead of "fowls,"-" pigeon" for "widgeon,"," veal" for "teal," "cats" for "skates," "swipes" for "snipes," and many sundry grievances, which could not be complained about hitherto, as there were no telegraph offices to be belaboured by the querulous, dissatisfied, and inconsiderate. The telegraph grievance will be a great safety-valve to the railways, for the former will so occupy the Times and Punch, as to leave no room for the last case of neglect by Mr. Hudson, or the last instance of being five minutes behind time on the Eastern Counties. When telegraphs come to be abused as well as railways, it will be a sign that they have done some service, and have merited well of the public.
The lowest charge for the delivery of a message at present is half-a-crown, for which thirty words are sent thirty miles-though it is to be hoped for the public accommodation that the prices will be reduced. The charge increases, of course, in the double ratio of the number of words and number of miles. In many cases, the charge will not be greatly above that which was made a few years agu for general post letters for mercantile purposes; and, indeed, merchants will have been relieved from the charge of postage, to give them a revenue for telegraph purposes. If there are any who doubt that the mercantile classes will be ready to avail themsalves of the telegraph, they should be put in mind of the large sums formerly disbursed for postage, and, indeed, of the large sums still dishursed for Indian and foreign postage.

The Electric Telegraph Company, as a matter of necessity, give notice, that they do not hold themselves responsible for the speed with which the messages are transmitted, nor for delay caused by the state of the weather or apparatus. At present, the state of the weather often affects the rate of working of the machines, and sometimes to a serious extent.

The rate at which messages can be transmitted is rather lower than might be anticipated, and this arises from using the needle telegraph. It is found that about six words a minute is as much as can be practically telegraphed at present, the words being apelled literally. The last Queen's Speech was sent seven words n-minute. By using the codes, longer messages can of course be ment. The number of words which can be written by short-hand in a minute is seventy; the number of words which can be read rapidly in one minute is 880 . The number of characters passed by Professor Morse is 117 as a maximum, 99 as an average. We may be prepared for the much greater rapidity of the electric telegraph in other hands. Mr. Bain promises, in the course of time, 1,000 characters: but the present rate of speed is ample for all present purposes, though we have that faith in the extension of telegraph business, that we believe it must be shortly increased. By using well-trained clerks at the chief stations, and by frequently relieving them, the utmost use will be made of the telegraphs; and they are likely to be worked night and day. For many classes of correspondence, all the words must be spelled, and no arbitraries or codes can be used; but still a large mass of correspondence will admit of profitable abridgment. Professor Morse, and many telegraphers, undertake to do a much greater number of words than those assigned by us as the present rate in England; but what one individual can do in an isolated case, is very different from the working of a miscellaneous correspondence, through a public office.

That the undertaking will turn out productive, we have no manner of doubt, because, in many cases, the company have not the property of the lines, which belong to the railways, but work them at a toll, while the revenue to be received must be very great. A line between two principal stations will yield five thougand a-year; and as the outgoings are chiefly in clerks, it will be seen that there must be a large surplus to pay the wear and tear of instruments, the cost of management and superintendence; and after yielding a toll to the railway companies, afford a very handsome return to the Electric Telegraph Company for all the capital they may be called upon to employ. They enjoy, too, the advantage of a ready-money business. A thousand a-year would, however, yield a dividend. At present the company have not wires enough for the public business, and great complaints are made of the delay.
The length of line laid down by the Electric Telegraph Company, or in progress, is now, we believe, about 9,000 miles; and the following is a list of telegraphs, with the date when laid down, and the length of line, though the materials from which we have compiled it are imperfect. It will, however, in some degree, serve to thow the progress of the system:-

The length of line laid down previously to 1845 , was not more than 45 ; in that year, about 500 miles; in 1846, 600 miles; and in 1847, 1,100 miles. The total done and in hand is above 2,300 miles.

The towns to which communication will be made are above sixty, including London, Manchester, Glasgow, Liverpool, Edinburgh, Leeds, Sheffield, Birmingham, Bristol, Newcastle, Hull, Wolverhampton, Wakefield, Derhy, Leicester, Norwich, Nottingham, Portsmouth, Northampton, Bradford, Coventry, Dover, Canterbury, Halifax, Rochdale, Maidstone, Southampton, Gloucester, Cheltenham, Yarmouth, Cambridge, Colchester, Ipswich, York, Darlington, Margate, Staffurd, Barnsley, Hertford, Ramsgate, Deal, Folkestone, Hotherham, Tunbridge, Winchester, Dorchester, Peterborough, Huntingdon, Chesterfield, Wisbeach, Lowestoff, Chelmsford, Berwick, Scarborough, Burlington, Stamford, and St. Ives. With Bristol, the communication is circuitous round by Birmingham and Gloucester, as the Great-Western, although first in the field with the Slough line, have neglected to apply the telegraph throughout, which seems to arise from diesatisfaction with the needle telegraph, for they have allowed partial applications of two other systems. Every town in the country having above one hundred thousand people, is brought into communication with the metropolis; and the only great towns atill
unsupplied are Plymouth, Chatham, Preston, Exeter, Bath, Brighton, and Oxford. The number of shire towns brought into connection is near thirty; all the chief seaports and seats of manufactures, and several watering-places.
Besides the places already enumerated, many considerable towns can be served, being already placed on the line of telegraph, as Worcester, Sunderland, Stockport, Kingston, Lichfield, Tunbridge Wells, Poole, Croydon, Watford, Maldon, Droitwich, Thetford, Beverley, Braintree, Ashford, Newark, Alnwick, Dunbar, Loughborough, Crewe, Wolverton, Leighton Buzzard, Driffield, Reigate, ltomford, Bishops Stortford, Thirsk, Northallerton, Market Weighton, \&c. In fact, within a very short period, the company will be able to supply the prices of above a hundred market towns, if wires enough are laid down.
In the United States, New York, Philadelphia, Boston, Baltimore, Washington, Albany, Newhaven, and Hartford, have the means of intercommunication, and a line of a thousand miles long runs to Quebec.
With regard to submarine telegraphs their practicability is indisputable. The great essay will be the line between Dover and Calais, when the two great cities of western Europe will have instant parley. Already the money markets of the two sympathise, the capitalists of the two cities are bound up with each other, and it is to be hoped these ties will be drawn closer, and the peace of the two great nations be maintained. A continuous line between London and Vienna is talked off as in progress; at any rate, we uhall soon have, by a telegraphic communication with Marseilles or Trieste, the means of abridging our East Indian correspondence. The value of such correspondence to the London houses engaged in East India business and expecting remittances would have been very great during the late crisis.
If the steamboat threatens us with greater hazard of invasion during any future war, the telegraph comes in good time to counteract any unfavourable influence, by giving us instant intelligence of any danger to our coasts, and allowing of immediate, and as it may be called, personal communication between the statesmen of England and France, so as to allow negociations for peace to be carried on with more rapidity than by mean of envoys.
To the Admiralty the electric telegraph offers the means of soperseding the cumbrous semaphore, and of rapid intercourse with the naval stations. We consider the Admiralty greatly blameable in not having sooner availed themselves of the system, after the success of the Slough experiment. As it is, they have only a line to Gosport. There is none to Plymouth, Chatham, Sheerness, or Milford. We do not see why a submarine telegraph should not be carried out to the anchorage at Spithead, so as to allow of readier correspondence with the admiral or officers afloat. It is no testimony in favour of government management in England and France that the clumsy semaphores, useless at night and in a fog, and useable only for a fifth of the year, should have been so long persisted in ; but we entertain no doubt that so soon as the electric telegraph system is fully applied for public service, the governments will become candidates for taking its control into their own hands, or for interfering with it as they have with the railways.
A submarine telegraph which will be of great use will be between England and Ireland, and nothing but the want of energy of the government prevents them from applying it in the present crisis, when it will be a means of economising money, and most probably of saving human life. Such a telegraph is properly a government experiment, and not a commercial experiment; and for that reason it is not likely to be done until it cannot be put off any longer, and when done to be badly done.
It is to be remembered that the telegraphic establishment will be a new post-office, operating almost instantaneously, and with this advantage-that instead of the whole business being restricted to one fixed time, or to two fixed times, communication will be made at the moment desired by day or night. The way in which such an establishment must operate on society must be most beneficial. All those interested in markets, whether belonging to the agricultural interest or the mercantile interest, will, in every part of the kingdom, wherever they may be, know the state of all the markets open within a few minutes of operations being effected, while they will have the means of making yurchases or sales hundreds of miles off, whereby transactions will be much quickened, and a general and uniform rate of prices will be established throughout the country. The charge for subscription is only two guineas yearly, and the subscriber, wherever he may be, has admission to the subscription rooms, in which are posted the shipping Lists, the share lists from the London and provincial share exchanges, the prices current, the prices of corn, live stock, and produce, and every eveat of public or mercantile interest. No one con-
cerned in any business can well avoid this payment, for it will in the end become de facto a tax, for no one will dare to be placed under a disadvantage to his neighbour. It will be as common ss to read the newspapers.

It will readily be seen that even the man of pleasure cannot escape contributing to the revenues of the telegraph company, for political intelligence and sporting intelligence will be recorded, and wherever he may wander he will always have access to information. On going into the telegragh station he will see the state of bets at Tattersalls, and regulate his own proceedings accordingly, or learn who is the winner at Epsom or Newmarket. During the late general election, had the system been in full work, intelligence would have been sent of the state of the poll from sixty boroughs and thirty places of county elections, which are now telegraph stations. A parliamentary division will be known within a few minutes all over the country, and the faction which triumphs or which falls at St. Stephen's will within a brief period be brought under the comment of thousands of its supporters or opponente. Now the divisions are telegraphed to Liverpool and Manchester, and posted in the rooms.
The sending of private messages must be most various in its influence, and the effect of time and experience only can enable ite bearing to be fully appreciated. New modes of doing business will spring up, new branches of business will be created, some perhaps be superseded, but that the result will be beneficial on the whole no reasoning man can doubt. Whoever has a sick relative at a distance, in the hourly peril of death, with life quivering on a breath, in all the agony of hope and fear, will know the value of an establishment which can give him frequent and immediate intelligence of the state of one whom he holds dear. After this example it is of little moment to picture the many ways in which personal interest will soek gratification in a correspondence which extends the power of wealth and enterprise, and widens their sphere of action. A Rothschild, a Goldsmid, or a Baring, may rule by agents in London, in Paris, in Madrid, and in Lisbon at once; but henceforth their most distant affairs will be under their own guidance, and their personal influence will be made to act in cities they have never entered, and with men they have never seen. The confidential agent or the junior partner will be a zero, and the means of safely conducting an available operation will no longer be limited by the necessity of intrusting it to a subordinate. Indeed it is impossible to contemplate, without excitement, the new world which is as it were opening before us, and to which the effects of railway and steamship intercourse, great as they are, are as nothing.
To the press the electric telegraph will be a new arm of power : the money which is now spent in horses and expresses will be appropriated in a large proportion to keeping up a greater number of agents and correspondence. It may appear at first sight that the telegraph rooms by affording so much intelligence will be curtailing the sphere of the newspapers, but they will only be interfering with them in some departments to give them greater facilities in others. The Electric Telegraph Company may announce that the mail steamer has brought to Liverpool the American president's speech, and its purport, bnt the special edition of the Times must give its words sent up by telegraph. Country meetings of importance will be sent up by telegraph, and it is not impossible that before long such arrangements may be made as to allow of the reporter's notes being used for telegraphic transmission. The difference in the number of signs between long-hand and short-hand (discarding most of the arbitraries), is as 275 to 170 , or nearly as 5 to 3; this gives a saving in favour of short-hand of two-thirds, and allows five hours' work to be done in three, for it is to be observed in telegraphic communication, the great object is to econonise the time used at the telegraph. The short-hand system was tried on the South-Western and found to answer.

It seems by no means improbable that an influence will be exerted on the jurisprudence and police of the country by the telegraph system. Perhaps we ought to say that it has already done so. The arrest of Tawell, the quaker, for murder, and the arrest of so many other criminals has given a greater efficiency to the law; the respite and afterwards execution of the convict at Maidstone, show the ready means of communication with the central authorities. But though a telegraphic message may be a sufficient authority to arrest for felony, it will be necessary to provide some new process to make this establishment available in casee of misdemeanour, and in the end it is likely to be applied in civil cases, in which already it is calculated to quicken many stages of proceeding. It may hereafter not be uncommon to have a witness at Edinburgh examined by telegraph during a trial at Westminster Hall, and other evidence be sought for five hundred miles off, It may cease to be necessary to bring up a prisoner to the superior
courts on ordinary applications, when a correspondence may be made with him at any distance.
As a means of railway administration the electric telegraph has proved its efficacy, and it is impossible to conduct single lines properly without it. Already the convenience to passengers has been very great, and that to the companies cannot be undervalued. It extends the supervision of the central authorities, and allows the most effective action to take place on every emergency, whether of accident or otherwise. Lately, some half-dozen gentlemen were on business at a minor station on the Eastern Counties line, and being desirous of proceeding early to Cambridge, they made application to stop the next train, which would otherwise have passed the station. The message was passed to the superintendent at Shoreditch, leave granted, and within half an hour the gentlemen were on their way to Cambridge, where it was of great importance they should arrive early. A lesser case, which happened on the South Eastern a month or two ago, may be worth notice. An old woman proceeding from Minster to Tunbridge, or some intermediate station, after paying her second-class fare, in her hurry left her money on the counter. On arriving at Canterbury she found out her loss and wished to return to Minster, but the superintendent persuaded her to go on, in the hope that she might be able to learn something of it at Ashford. On her arrival there she was told that the money had been found on the counter at Minster to the amount she deacribed, and at the next station the sum was handed to her; but though glad to receive the money, she could not repress her fears that the railway officers to whom she was indebted had dealings with the powers of evil. In the United States it is said that a marriage was contracted by railway between two parties hundreds of miles apart. Under the law of Scotland a telegraph marriage might, we believe, legally take place. Telegraph clerks are sometimes however able to help themselves, and a case lately occurred of a superintendent, having to convey to a branch bank notice of stoppage, drawing out his own balance before he delivered the notice.
In the progress of such an invention, and in its greater economy, its application must be very extensive. In the last session a telegraph was worked between the House of Commons and the committee rooms, and it is evident that it can be usefully employed in large offices and factories, where in time the telegraph wire will be as extended as the bellwire. The greater the extension the greater the prospect of improvement and economy to the public, and we can only wish, though we scarcely hope, that a system so valuable will be received in a favourable spirit on the part of the public, and meet with a greater degree of encouragement than is usually afforded to new inventions.

ON THE LAP AND LEAD OF THE SLIDE VALVE.

The slide valve is that part of a steam engine which causes the motion of the piston to be reciprocating. It is made to slide upon a smooth surface, called the cylinder face, in which there are three openings to as many pipes or passages: two for the admission of steam to the cylinder, above and below the piston, alternately; while the use of the third is to convey away the waste steam. The first two are, therefore, termed the induction or steam ports, and the remaining one the eduction or exhaustion port.

The slide is enclosed in a steam-tight case, called the slidejacket ; and motion is communicated to it by means of a rod working through a stuffing-box.

The steam from the boiler first enters the jacket, and thence passes into the cylinder, through either steam port, according to the position of the slide, which is so contrived that steam cannot pass from the jacket to the cylinder through both steam ports at the same time, or through the eduction port at any time.

Cage 1.-When a Slide hab neither Lead or Lap.
Fig. 1 represents the cylinder face for a "Murray slide" without lap; a and b being the induction ports, and c the eduction.

Figs. \&, 3, and 4, are similar sections of the nosle, showing the slide in its central and two extreme positions. It occupies the mid-position, fig. 2, when the piston is at either extremity of its stroke; the extreme position, fig. 3 , when the piston is at halfetroke in its descent; and that shown in fig. 4 , when the piston is at half-stroke in its ascent.

When a alide has no lap, the width of its facing, at f and g (fig.
2), equals that of the steam ports; the lap being any additional width whereby those ports are overlapped.

That the waste steam may have unobstructed egress, the exhaustion port c must be made of no less width than the steam ports; and, for the same reason, the bars d and e should correspond with the slide face at f and g. The three ports, together with the bars between and beyond them, are therefore drawn of equal width; the total length of the slide being equal to the distance between the steam sides of the steam ports.
The distance through which the slide moves, in passing from one extreme position to the other, is called its truvel; which, in this case, equals twice the port.

When the motion of a slide is produced by means of an eccentric, keyed to the crank shaft and revolving with it, the relative positions of the piston and slide depend upon the relative positions of the crank and eccentric.

Let $a b$, diagram 1, represent the crank; then b being the crankpin, and a the centre of motion, the larger circle represents the orbit of the crank, and its diameter $b c$ the stroke of the piston. Supposing the cylinder to be an upright one, having the crankshaft immediately above or below it, the connection between the piston-rod and crank being merely a connecting-rod, without the intervention of a beam, it is evident that when the position of the crank is $a b$, the piston will be at the top of the cylinder, and at the bottom when its position is ac. The relative positions of the crank and piston, at any point of the stroke between the two extremes, depend upon the length of the connecting-rod: for the present, however, let us suppose the connecting-rod to be of infinite length, and therefore always acting upon the crank in parallel lines, so that when the crank is at d, e will be the apparent position of the piston, and f the same when the crank is at g; the piston being represented by the sine of the arc described by the crank from either of the points b and c, in the direction of the arrow.

The diameter $h ;$, of the inner circle of the diagram, represents the travel of the slide, and its radius the eccentricity of the eccentric; or, regarding the eccentric as a crank, the radius may be said to represent that crank, as ab represents the main crank. The travel of a slide, without lap, being equal to twice the port, the two steam ports are represented by the spaces $a h$ and $a i$, but transposed, $a i$ being the passage to the top of the cylinder, and $a h$ that to the bottom.
Supposing the piston to be at b (the top of the cylinder), the position of the slide will be that shown in fig. 2 , the direction of its motion being downward, so that the port a (same figure), or $a i$ in the diagram, may be gradually opened for the admission of steam above the piston, until the piston has arrived at half-stroke, when it will be fully open, as shown in fig. 3. The direction of the slide's motion is then reversed, so that when the piston has completed its descent, the port b, figs. 1 to 4, or $a h$ in the diagram, will begin to open for the admission of steam beneath it, and exnaustion will commence from above it through the port a, or $a i_{\text {, }}$ and exhaustion port c, the slide being again brought into its central position, fig. $\%$.
Now the slide being at half-stroke, when the piston is at either extremity of its stroke, if we make $a b$ the position of the crank, $a k$ will be that of the eccentric; and the axis of the crank being
likewise that of the eccentric，they must necessarily revolve in equal times，and always at the same distance apart；therefore， When the crank has reached the point d（supposing it to move in the direction of the arrow）the eccentric will have advanced to l ， and $e d$ and $l m$ represent the positions of the piston and slide re－ spectively；showing，that when the piston has descended to e ，the steam port $a i$ in the diagram，or a fige． 1 to 4，will be open to the extent $a \mathrm{~m}$ ．Again，－when the crank is at n ，and the piston conse－ quently at half－stroke，$a i$ will be the position of the eccentric，the port $a i$ being fully open，and the slide occupying the extreme posi－ tion shown in fig．3．The direction of the slide＇s motion is now reversed，and the port is again gradually covered by the slide face until the positions of the crank and eccentric are $a c$ and $a 0$ ，when the piston will have completed its descent，and the port $a i$ will be completely closed，the slide being again brought into its central position，fig．2．The opposite steam port ah now begins to open for the admission of steam，and the direction of the piston＇s motion is reversed ；the port continues to open until the crank and eccen－ tric reach the points p and h ，when the piston will again be at half－ stroke，and the slide in its extreme position，fig．4．Meanwhile， exhaustion from above the piston has been taking place，to the same extent，through the port $a \mathrm{i}$ ．Finally，－the piston having com－ pleted its ascent，the slide again occupies its original position，fig． 2 ， and，its course being downward，steam is again admitted into the cylinder，through the port a ；the piston then begins to descend， end，at the same instant，exhaustion ceases from above，and com－ mences from below it，through the port b ．
It is sometimes urged against the use of the eccentric，as a means of actusting the slide，that the steam ports are opened and closed too slowly；but it must be remembered that the piston does not move at a uniform velocity，as the crank does；for example，while the crank describes the arc $b d$ ，the piston descends only from b to e，the versed sine of that arc ；and its velocity is gradually increaed as it approaches the middle of its stroke，where it is greatest， being equal to that of the crank．Again，－as the piston approaches the end of its stroke，its velocity is diminished in the same ratio as that in which it had previously increased，until the completion of its stroke，where it remains stationary during the small space of time in which the direction of its motion is reversed．
Now，it must be obvious that less steam is required to impel the piston at a slow rate than at a rapid one；and a glance at diagram 1 ahows that the steam admitted into the cylinder，when the slide is actuated by an eccentric，is at all times proportioned to the velocity of the piston，the port being least open when the piston is near the end of its stroke，and fully open when it is at half－stroke．

When an eccentric，instead of being set，as in the preceding case， so that the steam port shall only begin to open when the piston commences its stroke，is so placed that the port shall be open to come extent prior to the commencement of the stroke，the width of that opening is termed

The Lead．
The non－use of lead is disadvantageous，chiefly because at the commencement of every stroke，the steam has to contend with the whole force of that which had impelled the piston during its pre－ vious stroke．But，besides obviating that disadvantage，the lead is of essential service in locomotive engines，＂where it is found neceasaryito let the steam on to the opposite side of the piston before the end of its stroke，in order to bring it up gradually to a stop，and diminish the violent jerk that is caused by its motion being changed so very rapidly as five times in a second．The steam let into the end of a cylinder before the piston arrives at it，acts as a spring cushion to assist in changing its motion；and if it were not applied，the piston could not be kept tight upon the piston－ rod．＂－Description of Stephenson＇s Locomotive Engine，＂Tredgold．＂

Cabe q．－When a Slide has Lead without Lap． Dingram 2.

Let a b，diagram 2，represent the stroke of the piston ；$c d$ the travel of the slide；and ef the lead；then，sup－ posing the piston to be at the top of the cylinder，$e a$ is the position of the crank，and eg that of the eccentric． Following the course of the crank，in the direction of the arrow，we find the port ed fully open，not，as in the former case，when the piston is at half－stroke，but when it has descended to the point h ，－the arc ai，described by the crank，being equal to the arc $g d$ ， described by the eccentric．Again，－ we find the port re－closed when the
pieton has degcended to i ，at which puint exhaustion commences
from above the piston through ed，and steam enters below it through $e c$ ，for the return stroke，at the commencement of which the port $e c$ is open to the extent el（equal to ef）for the admission of steam，while ed is open to the same extent for exhaustion．
It is to be remarked，that the amount of lead is necessarily very limited in practice，its tendency being to arrest the progress of the piston before the completion of its stroke．The greatest possible amount of lead equals half the travel of the slide．The eccentric would in that case be set diametrically opposite to its first position， which would have the effect of reversing the direction of the pis－ ton＇s motion．
In the case of a slide having lead without lap，the distance of a piston from the end of its stroke，when the lead produces its effect， is proportional to the lead as the versed sine of an arc is to ita sine，supposing the radii of the crank and eccentric to be equal．

Demonstration．

Let $a b$ ，diagram 3，represent both the travel of the slide and the piston＇s stroke；then $c a$ and $c b$ represent the steam ports．And let cd represent the lead；then $c a$ and $c e$ represent the crank and eccentric，the piston being at the top of the cylinder．Now，steam will enter the cylinder，below the piston， when the eccentric is at f ，and the crank at g ；for the arcs aeg，and ebf are equal．Again，－the arc $g b$ is equal to $h e$ ；therefore，ig is equal to $k e$ ，and is to $k h$ ．Now，$k e$ is the sine of the arc $h e$ ，and $k h$（equal to $i b$ ）is its versed sine：hence

Rule I．－To find the distance of the piston from the end of ito stroke，when the lead produces its effect ：－

Divide the lead by the width of the steam port，both in inches， and call the quotient sine；multiply its corresponding versed sine， found in the table，by half the stroke，and the product will be the distance of the piston from the end of its stroke；when steam is admitted for the return stroke，and exhaustion commences．Or，

Rule 11．－To find the lead，the distance of the piston from the end of its stroke being given ：－

Divide the distance in inches by half the stroke in inches，and call the quotient versed sine；multiply its corresponding sine by the width of steam port，and the product will be the lead

Example 1．－The stroke of a piston is 48 inches；width of steam port $2 \frac{1}{\frac{1}{2}}$ inches；and lead $\frac{1}{2}$ inch：required the distance of the pig－ ton from the end of its stroke，when exhaustion commences．

Here，$\cdot 5 \div 9 \cdot 5=9=$ sine ；and versed sine of sine $9=-0208$ ． Then， $0808 \times 94=\cdot 4848$ inches．
Example 9．－The stroke of a piston is 48 inches；width of steam port $2 \cdot 5$ inches；and distance of piston from the end of its stroke， when exhaustion commences， 4848 inches：required the lead．

Here，${ }^{-4848} \div 94=-0 z 02=$ versed sine； and sine of versed sine $0002={ }^{\circ}$ ．

Then，${ }^{\prime 2} \times 2 \cdot 5=\cdot 5=$ lead．
When the lead of a slide is equal to the width of steam port multiplied by any number in the first column of the following table，the distance of the piston from the end of its stroke，when steam is admitted on the exhaust－side，will be equal to half the stroke multiplied by the corresponding number of the second column．Or，if the distance of the piston from the end of its stroke，when steam is admitted on the exhaust－side，be equal to half the stroke multiplied by any number in the second column， the width of steam port multiplied by the corresponding number of the first column equals the lead．

きて	$r 0625$	E E \％	$\int .0019$
	．09375	c㤩 ${ }_{\text {d }}$	． 0044
c	－125	－	－0078
百	－1875		．0176
，	－21875	詥莫员	－0242
\％	25	－¢	． 0317
2．	－28125		． 0403
드d	－3125	－\％	－0501
$\stackrel{\text { a }}{4}$	$\cdot 34375$	¢ ${ }_{\text {¢ }}$	－0609
$\stackrel{\square}{\text { ¢ }}$	－375	它可口	－0730
	－40625		－0862
	－4375		－1008
E	－46875		－1166
	$\cdot 5$		－ 1339

The distance of the piston from the end of its stroke，when ateam equals half the stroke maltiplied
by

The Lap.
A slide is said to have lap when the width of its face is greater than that of the steam ports, the ports being thereby overlapped, as in fig. 7.
It is to be remarked that slides should have some degree of lap on both the steam and exhaustion sides of the passage, because, although in theory an aperture may be said to be completely closed when covered by a bar of similar width, yet, in the construction of a slide without lap, we cannot insure such accuracy of fit as to preclude the possibility of steam entering or leaving both steam ports at the same time.
Lap on the steam side has the effect of cutting off the steam from the cylinder, by closing the port before the completion of the stroke, the remainder of the stroke being effected by the expansion of the steam already admitted.

Demonstration.

Cabe 3.-When a Slide has Lap on the Steam bide, without Lead.
Let $a b$ and $b c$, diagram 4, represent the lap at both ends of the slide; and let $a d$ and $c e$ represent the two steam ports; then $d e$ whll represent the travel of the slide, which, in this case, equals twice the steam port, plus twice the lap.

Supposing $d e$ also to represent the stroke of the piston, and that the piston is on the top stroke, then $b d$ and $b f$ are the respective positions of the crank and eccentric; for the slide, instead of occupying its central position, when the piston is at the end of its stroke (as in Case 1), must be set in advance of that position to the extent of the lap, that steam may enter the cylinder when the piston begins to move. (See fig. 5.)

When the eccentric has advanced from f to e, the crank will have reached the point g; the piston is therefore at a when the port $c e$ is fully open, the slide being then in the position fig. 6,

Again,-when the eccentric has reached the point h, the port is will be re-closed (fig. 5), and i will be the position of the piston; therefore, the distance of the piston from the end of its stroke, when the steam is cut off, is proportioned to the whole stroke, as $i e$ is to $d e$.

When the eccentric arrives at k, the slide will occupy its central position (fig. 7), and the piston will be at m, where exhaustion commences from above it ; but steam is not admitted below it, for the return stroke, until the eccentric has reached the point n where the port ad begins to open, the position of the slide at that moment being that shown in fig. 8 .

When the eccentric arrives at d, the port will be fully open, the slide being then in its extreme position, fig. 9 ; and it will be reclosed when the eccentric arrives at g, and the piston at p, where the steam is cut off, the position of the slide being again that shown in fig. 8. Again,-when the eccentric reaches the point r, exhaustion ceases from above the piston, which is then at 8 , and commences from below it, the slide being then in its central position, fig. 7, and moving downward. Finally,-the crank having arrived at d, and the eccentric at f, the piston will have completed its ascent, and the slide will occupy the position fig. 5 , as at starting.
The steam was shown to be cut off when the piston had descended from d to i, the crank having described the arc $d g u$, and the eccentric the arc $f e h$. Now, $d i$ is the versed sine of $d g u$, and $e c$ is the versed sine of half $f e h$; and $d g u$ and $f e h$ are equal arcs. Hence

Rule III.-To find at what part of the stroke steam will be cut off with a given amount of lap:-

Divide the width of steam port, by itself, plus the lap, and call the quotient versed sine. Find its corresponding arc in degrees and minutes, and call it arc the first. If arc the first be less than 45 degrees, multiply the versed sine of twice that arc by half the stroke in inches, and the product will be the distance of the piston from the commencement of its stroke, when the steam is cut off.

If arc the first exceed 45 degrees, multiply the versed sine of the difference between double that arc and 180 degrees by half the stroke, and the product will be the distance of the piston from the end of its stroke when the steam is cut off.
Rule IV.-To find the amount of lap necessary to cut off the steam at any given part of the stroke:-

If it be required to cut off the steam before half-stroke, divide the distance the piston moves before steam is cut off, by half the stroke, and call the quotient versed sine. Find the arc of that versed sine, and also the versed sine of half that arc. Divide the difference between the versed sine last found and unity, by the versed sine, and multiply the width of steam port by the quotient; the product will be the lap.
If it be required to cut off the steam at a point beyond halfstroke, divide the distance of the piston from the end of its stroke, when steam is cut off, by half the length of stroke; call the quotient versed sine; find its corresponding arc, and subtract it from 180 degrees. Find the versed sine of half the remainder, and subtract it from unity. Divide the remainder by the versed sine, and multiply the width of the steam port by the quotient; the product will be the lap.
Example 3.-The stroke of a piston is 36 inches; width of steam port $1 \frac{1}{2}$ inch; and lap 6 inches: required the point of the stroke at which steam will be cut off.

Here $1.5+6=7.5$; and $1.5 \div 7.5=2=$ versed sine; arc of versed sine $q=36^{\circ} 52^{\prime}$ (arc the first);
and $36^{\circ} 52^{\prime} \times-2=73^{\circ} 44^{\prime}=$ arc of versed sine, $\cdot 7198$.
Then $7198 \times 18=12 \cdot 95$ inches $=$ distance of the piston from the commencement of its stroke when the steam is cut off.
Example 4.-The stroke of a piston is 36 inches; width of steam port $1 \frac{1}{\frac{1}{2}}$ inch; and extent of lap $1 \frac{1}{4}$ inch: required the point of the stroke at which steam is cut off.
Here $1.5+1.25=2.75$; and $1.5 \div 2.75=-5454=$ versed sine of arc $68^{\circ} 58^{\prime}$ (arc the first).
Then $62^{\circ} 58^{\prime} \times 2=125^{\circ} 56^{\prime}$; and $180^{\circ}-125^{\circ} 56^{\prime}=54^{\circ} 4^{\prime}=$ arc of versed sine, ${ }^{4} 1131$; $-4131 \times 18=7 \cdot 43$ inches $=$ distance of the piston from the end of its stroke when the steam is cut off.
Example 5.-The stroke of a piston is 36 inches; width of steam port 1.5 inches; and distance of the piston from the commencement of its stroke, when the steam is cut off, $12 \cdot 95$ inches: required the lap.

Here $12.95 \div 18=7198=$ versed sine of arc $73^{\circ} 44^{\prime} ;$ $73^{\circ} 44^{\prime} \div 2=36^{\circ} 52^{\prime}=$ arc of versed sine q.
Then $1-2=8 ;$ and $\cdot 8 \div 2=4 ; 1 \cdot 5 \times 4=6$ inches $=$ lsp.

Example 6.-The stroke of a piston is 36 inches; width of steam port 1.5 inches; and distance of piston from the end of its stroke, when steam is to be cut off, 7.43 inches: required the lap.

Here $7.43 \div 18=-4131=$ versed sine of arc $54^{\circ} 4^{\prime}$.
Then $180^{\circ}-54^{\circ} 4^{\prime}=125^{\circ} 36^{\prime}$; and $185^{\circ} 56^{\prime} \div 2=69^{\circ} 58^{\prime}=$ arc of versed sine $\cdot 5454$.
$1-\cdot 5454=\cdot 4546$; and $\cdot 4546 \div \cdot 5454=\cdot 8895$; $\cdot 8895 \times 1 \cdot 5=1 \cdot 25$ inches $=1$ lap.
Exhaustion was shown to commence when the piston was at m in its descent, and at s in its ascent ; l and t being the corresponding positions of the crank at those times. Now d and f were the respective starting points of the crank and eccentric; and the arc $\boldsymbol{f} g l$, described by the crank, is equal to the arc $f e k$, described by the eccentric. Therefore, $t f$ and ol are equal arcs. Hence,

To find the distance of the piston from the end of its stroke When exhaustion commences, subtract arc the first (found by Rule III.) from 90 degrees, and multiply the versed sine of the remainder by half the stroke. The product will be the distance required.

Example 7.-Arc the first (Example 3) $=36^{\circ} 59^{\prime}$; and $90^{\circ}-$ $36^{\circ} 58^{\prime}=58^{\circ} 8^{\prime}=$ arc of versed sine ${ }^{\circ} 4$

Then $4 \times 18=7 \%$ inches, the distance required.
Exmmple 8.-Arc the first (Example 4) $=62^{\circ} 58^{\prime}$; and $90^{\circ}-$ $68^{\circ} 58^{\prime}=97^{\circ} \mathcal{Z}^{\prime}=$ arc of versed sine ${ }^{\circ} 1092$.

Then $1092 \times 18=1.9656$ inches, the distance required.
From the foregoing examples, it is obvious that whatever may be the relative proportions of the length of stroke and width of steam port, the lap must be some multiple of the port, that the steam may be cut off at any given point of the stroke.

The annexed table exhibits a series of multipliers for determining the amount of lap necessary to cut off the steam at any part of the stroke from th to $\frac{7}{8}$ ths, when the slide has no lead.

We shall next month proceed to examine the conditions of the slide valve with both "lead and lap."
R. B. C.

HEALTH OF TOWNS-THE GOVERNMENT AND THE PROFESSION.

Now that the sanitary movement is likely to bear fruit, it will be well for our professional readers to turn their attention to the share which they are to have in the rewards, after having borne their part of the labour. While engineers, architecta, and surveyors have been working hard in carrying out sanitary reform, in improving the drainage, in reducing the cost of sewers, in mitigating the smoke nuisance, in warming, in ventilating, in the construction of dwellings, in the application of sewage manures, and in many other ways,-medical men and members of parliament have been making speeches, and claiming the honours of the campaign, as it seems they claim the emoluments. With what justice members of the constructive professions can be kept out of sight, we do not know; but there is a determined set on the part of the medical men to keep them out, and to monopolise the merit and the patronage. Of the five Metropolitan Sanitary Commissioners, two are medical men, viz., Dr. Southwood Smith and Professor ()wen ; and not one is engineer, architect, or surveyor. The commissioners, at page 51 of their First Report, speak as follows :-
"It has appeared to be our duty to state, that we have had presented to us ground of exception against one class of appointments to these commissions, namely, that of surveyors, of architects in practice, of builders, traders, agents, and professional persons connected with building operations in their respective districts."

We think the hias of this passage is readily to be seen, though it does not impugn the appointment of engineers, architects, or surveyors, as paid commissioners, such officers not practising. There is no reason given why an architect and an engineer should not be appointed on the Metropolitan Sanitary Commission in addition to the physician and surgeon, or naturalist. We will
show afterwards what reason there is why the two former should be appointed.

The following paragraph of the Report contains an insinuation, well worthy of notice, for it has its object :-
"The more the investigation advances, the more is it apparent that the progressive improvement and proper execution of this class of public works, together with the appliances of hydraulic engineering, cannot be reasonably expected to be dealt with incidentally, or collaterally to ordinary occupation, or even to connected professional pursuits, but require a degree of special study which not only place them beyond the sphere of the discussion of popular administrative bodies, but beyond that of ordinary professinnal engineering and architectural practice. In justification of this conclusion, and to show the evil of the perverted applications of names of high general professional authority, we might adduce examples of the most defective works which have received their sanction."

The aim of this is, that the abuse shall be an argument against the use : because some architects have laid down expensive sewers, engineers, architects, and surveyors shall be excluded; because Prufessor Donaldson and Mr. Juseph Gwilt approve of the old system, those who have fostered and executed the new system shall nut be employed. This is what the commissioners mean, though they do not say it fully; and we put it to the public whether it is fair to professions, which by their talent and their intelligence have so much contributed to the reputation of the country.

It may be taken as a matter of course that Crown Commissioners recommend the employment of the government Caleb Quotem, "the Corps of Royal Engineers," to execute a survey of the metropolitan districts. This we conceive to be the finishing touch to the wrongs and insults which the Sanitary Commissioners have in this Report, and in their proceedings, heaped upon highly honourable professions.

If it be needful to show that engineers, architects, and surveyors can be of come use, we shall appeal to the Report of the Sanitary Commissioners, the recommendations in which are based on the evidence of Mr. Roe, the Surveyor of the Hulborn and Finshury District, Mr. Phillips, the Surveyor of the Westminster District, and other able officers. In truth, as our pages would show, Mr. Hoe has, hy his indefatigable exertions, already carried out much of the plans now advocated by the Sanitary Commissioners, and has only been prevented by the Commissioners of Sewers from doing more. Surely these officers are to be balanced against those who have adhered to a practice which has only recently been opposed and condemned. What do the commissioners tell us ?
"All the improvements which the public have yet obtained in this branch of public works, have been the result of the special and undivided practical attentions of well-qualified paid officers, and it appears to us that further improvement must be sought by the same means, and that one of the chief objects of future administrative arrangements must be to secure, protect, and encourage the zealous, undivided attention and efficient labour of such officers."

If engineers and surveyors have already effected "all the improvements which the public have yet obtained in this branch of public works;" and if to them, as scientific officers, the public have to look for future improvements, we can see no reason for the slur cast on them by their exclusion from the present commission, by the announced exclusion from future commissions, and by the employment of the Corps of Royal Engineers, of whom-with all respect be it said-the reputation is not European. We cannot hold the appointment of Mr. Austin to the secretaryship of the commission, nor the compliment paid to the executive officers of the Commissioners of Sewers as any alleviation of the intended slight. We hope Mr. Edwin Chadwick, as commissioner, and Mr. Austin, as secretary, both of whom have done well in the cause of sanitary reform, have had no part in the exclusive policy of the commission.

We have the highest regard for the medical profession; we have the strongest feeling of the good it has done in promoting sanitary reform ; but we cannot stand still while medical men arrogate to themselves the merits, the honours, and the rewards of sanitary reform. Their agitation has done good, we admit; their disinterested advocacy of the cause claims the highest praise; their evidence has given a body and strength to the movement; but it is our professions which have worked while theirs have talked, which have improved the forms of the sewers, and reduced the price -which have cleansed them by flushing, and which by a mass of individual labour have perfected and carried out plans of improve-
ment in every branch of construction, ministering to the public comfort, health, and life. Our pages have had their share in these discussions, and we have co-operated with our professional readers in carrying out a measure of reform, which is already great. In the Holborn and Finsbury and Westminster divisions of sewers alone, a reform has been effected, such as has not yet been seen in these matters; and we are ignorant of the share the medical profession have taken in carrying them out.

Within a period not very distant, the new Sanitary Commissioners, or Commissioners of Sewers, will lay down works to the amount of half a million, perhaps a million sterling, upon the advice, it is true, of competent professional officers, though under what competeut supervision on the part of the commission, we are unaware. When Mr. Roe proposes his plan for spendiug a quarter of a million in getting a new outfall, which of the conmissioners will consider it his special department to examine the estimates, and share in their responsibility? It will not be Lord Robert Grosvenor-it will not be Mr. Edwin Chadwick, great as is his capacity as an administrator-it will not be Mr. Richard Lambert Jones, though he is Chairman of the Bridge Committee in the City-jt will not be Dr. Southwood Smith or Professor Owen. The two latter will, we apprehend, be of little use in matters like these, and will take no part in them. Thus, a member of parliament, a naturalist, a barrister, an auctioneer, and a physician, are to superintend the disbursement of hundreds of thousands of pounds in public works, and to appoint "well-qualified paid officers" in the engineering and surveying departments; who are to have "a degree of special study which [shall] not only place them beyond the sphere of the discussion of popular administrative bodies, but beyond that of ordinary professional engineering and architectural practice."

The government have not thought it necessary to give a fair representation to the profession in the new Commission of Sewers, though the names of Mr. Robert Stephenson, M.P., Mr. Locke, M.P., Mr. George Rennie, Mr. Cubitt, and others, are well enough known at Whitehall.

The constitution of the Metropolitan Sanitary Commission is, in reference to the sphere of its future duties, more monstrous than that of the Railway Commission, where three parties, who know nothing of railwayg-a member of parliament, an East India judge, and an officer in the army-are entrusted to meddle with railway works and administrations. We have so many of these absurd appointments of late, that we have a strong impression that unfitness is adopted as the government rule for office, and have some expectation of seeing Monsieur Jullien prime minister. Why the engineering profession should be exposed to the contumely and neglect from which it suffers at the hands of the government, we do not know; but the enumeration of the Railway Commission, the Tidal Harbour Commission, and the Metropolitan Sanitary Commission, is a sufficient proof that a degree of unfairness is displayed, which demands immediate and effective opposition. A1though the reputation of English engineers is well known to the world-although their professional skill is sought in every country -it may be that they are thought by the home government a body too inconsiderable and contemptible to withstand oppression or demand fair play.
The misconduct of the government on this head has reached that height, that the professions, if they wish to maintain their public character, cannot do otherwise than take instant steps to obtain justice. They have no security at present for the appointment of competent commissioners, or efficient officers, or for the employment of professional men at all ; there is no security that officers of the Royal Engineers, and other branches of the army, will not be appointed surveyors of the sewers and other public works, the present officers being superseded. We think it is the duty of the Institutions of Architects and Civil Engineers to call meetings of their members, to memorialise the government, and send deputations to Whitehall, and take every other necessary step to vindicate the rights of their members. Aggregate meetings of engineers, architects, and surveyors, should be held in the metropolis, and in provinces petitions sent to parliament, and memorials to the Treasury. The members of parliament interested in the welfare of the sury. The members of parniament interested in the we the bequested to take steps in parliament for obtaining explanations from the ministers. Mr. Robert Stephenson, Mr. Locke, and Mr. Cubitt, would no doubt, on application, give their cordial support to any necessary measure.

While we urge these strong remarks on the injustice done to engineers by the Metropolitan Sanitary Commissioners, it must not be thought that we undervalue their Report on the practical points to which they apply themselves. We are glad to acknowledge it as a step forward in the right way.

THE FAN BLAST.

Series of Experiments relative to the Fan Blast, presented by Mr. Buckie, of the Soho Works, to the meeting of the Institute of Mechanical Engineers, Birmingham, May 17, and October 27, 1847.
(Paper No. 1.)
The subject of this paper has reference to a portion of a series of experiments on the Fan Blast, -a subject which many members of this Institution are conversant with; but it is hoped that hints here thrown out may be serviceable in leading to such constructions of the fan as shall insure the greatest useful effect with the least expenditure of power. The fan has become an indispensable machine in smithies and foundries, it abridges time and labour, and is otherwise a great improvement over the old system of bellows. The uniform stream of the former admits of no comparison, by the puffy blasts of the latter. By means of the fan the smith can heat his work with precision; he can vary at discretion the size of his nozzle tweyere, without deteriorating the density of his blast. He can conveniently heat one piece of work while shaping another.
In a well-regulated smithy, the main pipe from the fan is furnished with an air chest and with nozzle pipes, varying from one to three inches diameter. The pressure of the blast is made to range from four to five ounces per square inch. A nozzle pipe of $1 \frac{18}{8}$ inch diameter is found a suitable size for general engine forcings.

The position of the fan in its chest, or the one preferred and generally made use of, is an eccentric position. The continual increasing winding passage between the tips of the vanes and the chest, serves to receive the air from every point of its circumference, and forms, as it were, a general accumulating stream of air to the exit pipe. The particles of air having passed the inlet opening, and entering on the heel of the blade, would retain the same circular path were it not for the centrifugal force of the air due to its weight and velocity, impelling them forward towards the tips of the vanes; and this continued action is going on, particle following particle, till they are ultimately thrown against the fan chest, and are impelled forward to the exit pipe. It is by this centrifugal action that the air becomes impelled and accumulated into one general stream. But, as will be presently shown, there is a certain velocity of the tips of the fan which best suits this action.
An ordinary eccentric-placed fan, 4 feet diameter-the blades 10 inches wide and 14 inches long-and making 870 revolutions per minute, will supply air at a density of 4 ounces per square inch, to 40 tweyeres, each being $1 \frac{5}{8}$ inches diameter, without any falling off in density. The experiments herein detailed were made with a fan 3 feet $101 \frac{1}{8}$ inches diameter, the width of the vanes being $10 \frac{9}{4}$ and the length 14 inches; the eccentricity of the fan $1 \frac{1}{18}$ inches, with reference to the fan case, the number of vanes being 5 , and placed at an angle of 6^{\prime} to the plane of the diameter; the inlet openings on the side of the fan chest $17 \frac{1}{2}$ inches diameter, the outlet opening 12 inches square; the space between the tips of the blades and the chest increasing from $\frac{8}{8}$ inch on the exit pipe to $3 \frac{1}{\frac{1}{2}}$ at the bottom, in a line perpendicular with the centre. To the blast pipe leading to the t weyeres a slide valve was attached, by means of which the area of the discharge was accurately adjusted to suit the required density.

The guage to indicate the density of the air, was a glass graduated tube, primed with water, it being more sensitive and having a greater range than the mercurial one.
These experiments were made with a view to ascertain what density of air could be obtained, with the vanes moving at given velocities, the outlet pipe being closed, and also at given velocities with the outlet open; but its area varied at discretion. And further, to ascertain the horse-power required to drive the fan under the varied condition.
The horse-power was ascertained by an indicator, the friction of engine and gearing being deducted in each experiment. With reference to the term Theoretical Velocity, as used in the table, it may be necessary to observe, that therely is meant the velocity which a body would acquire in falling the height of a homogeneous column of air equivalent to the required density. Having given the necessary preliminary explanations of the blast above that of the atmosphere, we come to the experiments as recorded in the table, No. 1 a.
The first column is the number of experiment.
The second is the number of revolutions of the fan per ninute.
The third is the velocity of the tips of the vanes in feet per second.
The fourth is the density of the air in ounces per square inch, as indicated hy the gauge.

The fift is the area of the discharge pipe in inches.
The sixth is the indicated horye power.

By this paper it is intended to be shown that there are certain velocities with which the tips of the vanes of a fan should move according to the required density of air, and that there are certain laws which govern these velocities.

First.-Water is 827 times heavier than air; mercury is 13.5 heavier than water: consequently, mercury is 11164 heavier than nir. A column of mercury, one inch in height, would therefore balance a column of air 11164 inches, or $930 \cdot 3$ feet in height. Let A be a column of mercury equal in height to any given density, and let B represent $930^{\circ} 3$, and $C 64^{*}$; then $\mathcal{N}(A \times B \times C)=V$ or the velocity that a body would acquire in falling the height of a column of air equivalent to the density.

Second.-The centrifugal force of air coincides with the results obtained by the laws of falling bodies, that is when the velocity is the same as the velocity which a body will acquire in falling the beight of a homogeneous column of air equivalent to any given density. To obtain the centrifugal force or density of air apply the following general rule.

Having given the velocity of the air, and the diameter of the fan, to ascertain the centrifugal force, -

Rece.-Divide the velocity by $4 \cdot 01$, and again divide the square of the quotient by the diameter of the fan. This last quotient multiplied by the weight of a cubic foot of air, at 60° Fahrenheit, is equal to the force in ounces per square foot, which, divided by 144, is equal to the density of air per square inch. Or, substituting the following formula, we have

$$
\mathrm{D}=\mathbf{N} V \times \cdot 000034
$$

Where D is the density of the air in ounces per square inch, and \mathbf{N} the number of revolutions of fan per minute, and V the velocity of the tips of the fan in feet per second.

Let us now compare the results of the foregoing table. To do this, we will first take the velocity of the tips of vanes per second, and the power necessary to drive the fan. We will first take Nos. $1,8,3,4,5$, and 6 , and we shall find by inspecting the table that the corresponding velocities to these numbers are $236 \cdot 8,990 \cdot 8,902 \cdot 1$, 185%, $171 \cdot 5$. and $144 \cdot 1$, and the corresponding densities of air per square inch are $9 \cdot 4,7 \cdot 9,6 \cdot 9,5 \cdot 6,4 \cdot 5$, and $3 \cdot 5$ ounces. The fan, it must be understood, is discharging no air; the velocity of the fan is merely keeping the air at a certain density or pressure per square inch. Under these circumstances, it requires a certain velocity of the tips of the fan to maintain a certain density of air, but not in a direct ratio.

The law which governs the velocity of the tips of the fan appears from these experiments to be $\frac{0}{80}$ of the velocity a body would acquire in falling the height of a homogeneous column of air equivalent to the density. This we have called the theoretical velocity, and by comparing Nos. $1,4,3,4,5$, and 6 experiments as above, that is, by comparing the velocity of the tips of the fan per second with $\frac{p}{i}$ of the theoretical velocity, we shall find them to agree tolerably near. Thus, if the velocity of the tips of the fan per second be represented by 1 , then $\frac{p}{10}$ of the theoretical velocity will be represented by
$\left.\begin{array}{ccc}1.004 & \text { in No. } 1 & \text { experiment, } \\ .986 & 2 & " \\ 1.008 & 3 & " \\ .990 & 4 & " \\ .960 & 5 & " \\ 1.0007 & 6 & "\end{array}\right\}$ The mean 1.008

But we shall not only find that the $\frac{\circ}{20}$ of theoretical velocity governs the fan when it is not discharging air, but that the theoretical velocity governs it also when the outlet pipe is open; that is, that the maximum effect of the fan is when the vanes move from the theoretical velocity to $\frac{p}{10}$ of that velocity due to the density of the air, that the greatest quantity of air is discharged by the fan under these conditions with the least expenditure of power. To illustrate this more fully, let us refer to the table of experiments, and for our example we will take Nos. 9, 10, and 11 ; here the density in each is six ounces. In No. 10 the velocity of the tips of the vanes is 213.33 feet per second, while the theoretical velocity is 211 feet per second, being nearly the same. The quantity of air diecharged is 77.9 cubic feet per second, and the power empluyed in this case amounts to $18 \cdot 5$ horses.

We take now No. 11 experiment. Here the velocity of the tips of the fan is 192 feet per second, and $\frac{p}{10}$ of the theoretical velocity 190 feet per second. Now these two experiments are in proportion to each other nearly, viz., in No. 11 the quantity of air discharged amounts to $35 \cdot 7$ cubic feet per second, and takes $6 \cdot 4$ horse power, while No. 10 discharges 77.9 cubic feet per second, and takes $12 \cdot 5$

[^0]horse-power. Thus the discharge of air is nearly 2 to 1 , and the horse-power employed in the same proportion.

In the following examples we shall call the theoretical velocity per second unity, beginning with No. 15. In this example we shall also call the quantity of air discharged in cubic feet per second unity, and also the horse-power.

	Theoret!cal Velucity.	Density of Alr per eq. in.	Velority of tise of Fan.	Quantity of Ale diacharged.	Horsepower.
No. 15	1	5 u2.	.906	1.	
14	1	5	$1 \cdot 007$	$2 \cdot 34$	1.93
12	1	3	$1 \cdot 150$	$2 \cdot 67$	$3 \cdot 16$
20	1	4	900	1	1
19	1	4	1.029	$2 \cdot 4$	$3 \cdot 42$
18	1	4	1133	2.02	3. pearly
17	1	4	1.225	$2 \cdot 30$	4 d
16	1	4	1.280	$2 \cdot 12$	$4 \cdot 27$
11	1	6	-913	1.	1
10	1	6	1009	2.18	2 nearly
23	1	3	1050	1.59	2.53
22	1	3	$1 \cdot 160$	2.	3.56
21	1	3	1.338	1.47	3.40
7	1.028	1.	1	1.	1.
9	-950	-857	1	1.203	1.03
12	-869	$\cdot 714$	1	$1 \cdot 35$	$1 \cdot 06$
16	$\cdot 777$	$\cdot 571$	1	$1 \cdot 40$	$1 \cdot 11$

To give a further illustration of this part of our subject, we will take Nos. 7, 9,12 , and 16 experiments. Here the velocity of the tips of the fan is the same, which we shall denote unity. The corresponding densities are $7,6,5$, and 4 ounces; we shall call the highest unity, also the cubic feet discharged per second, and the horse-power.

Nearly all the preceding examples justify our conclusion, that the greatest results are obtained when the theoretical velocity and the tips of the vanes are nearly equal. It carries its own conviction that if we increase the velocity of the tips of the vanes, and only double the cubic quantity of air delivered, that it must take more than double the expenditure of power, the density of air remaining the same.

We shall now give examples of the data dictated by our table of experiments. And first, having given the density of air per square inch to determine the velocity of the tips of the vanes per second; also the horse power requisite to drive the fan under these circumstances, the fan not discharging air, but its velocity merely keeping the air at a certain density.
Let D denote the density of the air in ounces per square inch, and A a column of mercury equivalent in height to that density. Then by the laws of falling bodies $\mathcal{N}(\mathrm{A} \times 930 \cdot 3 \times 64)=\mathrm{V}$ the velocity acquired by a body falling through a column of air of the corresponding density.
Then $\frac{38 \times \mathrm{D}}{16}=P$ the number of pounds acting on the vanes, and $\frac{{ }^{\circ} \mathrm{f} \text { V. } \times 60 \mathrm{P} .}{33000}=\mathrm{H}$. P. or horse-power required.

The constant number 38 is obtained by the following formula.

$$
\frac{\mathbf{H P} \times 33000}{\frac{9}{10} V \times 60}=P . \quad \text { Then } \frac{P \times 16}{D}=38
$$

Example.-Let $\mathrm{D}=9.4 \mathrm{oz}$. per square in., and $\mathrm{A}=1.175 \mathrm{in}$. of mercury, to determine the velocity of the tips of the vanes per second, and also the horse-power.
Then $\mathcal{\checkmark}(930.3 \times 64 \times 1.175)=964 \cdot 4$, the theoretical velocity, to of which is $=837.96=V$, or velocity of tips of vanes per sec. Now $\frac{38 \times 9.4}{16}=29.32=P$, or pounds acting on the vanes of fan. Then $\frac{237.96 \times 60 \times 28.39}{33000}=9.6$ the horse-power required.

Having given the velocity of the air in feet per second (or as it has been termed the theoretical velocity) to determine the density of the air in accordance with the laws of centrifugal force.
Let the velocity be $\mathbf{2 6 4 \cdot 4}$ feet per sec, and the diameter of the fan $3 \cdot 9$ feet. Then by former rules we have

$$
\frac{264 \cdot 4}{4 \cdot 01}=66 \cdot 2 \text { and } \frac{66 \cdot 89}{3 \cdot 9}=11169=\text { and } \frac{11169 \times 1 \cdot 909}{144}=
$$

9- ounces density, the answer required.
Or by the second rule, take the velocity of the fan in feet per second, multiplied by the number of revolutions of the fan per minute, the product multiplied by $000034=$ the density required.

Here we must remark, that according to our table of experiments, that when the tips of the vanes are to move at for of the theoretical velocity, that not more than 220 lb .' of air are discharged per minute; but this is without any attenuation in the density.

To determine the horse-power necessary to drive the fan when discharging air, the velocity of the tips of the vanes not to exceed Io of the theoretical velocity, having given the density of air required, also the cubic feet,
F irst find the horse-power, as directed in former examples, when the fan is not discharging air.

Then multiply do part of the weight of air to be discharged by the fan per minute in pounds by $\frac{p}{10}$ of the theoretical velocity, and divide by 33000. The quotient will give the horse-power necessary to discharge this quantity of air, which add to the horse-power necessary to drive the fan when not discharging air, for the answer required.

Example.-Let D be the density of air required $=4 \mathrm{oz}$. A, a column of mercury equal to the density $=.5$ and $W=$ the weight of air to be discharged $=980 \mathrm{lb}$. perminute, and V_{20}° the velocity of fan in feet per minute.

$$
\frac{38 \times 4}{16}=9.5=P=\text { the pounds acting on the vane. }
$$

Then by former rule, $V=\frac{9815.0 \times 9.5}{33000}=8.67$ horse-power necessary to drive the fan without efflux.
Now a cubic foot of common air at 60° Fahrenheit weighs 1-209 oz., therefore a cubic foot of the given density will be equal to 1.511 oz , and $\frac{220 \times 16}{1.511}=2330$ feet $=$ the cubic quantity of air discharged per minute. And $\frac{220}{60}=\frac{3.66 \times 9315.0}{33000}=1.0$ horsepower necessary to discharge the given weight of air, and $1 \cdot 0+2 \cdot 67=3 \cdot 67=$ the total horse-power required

When the velocity of the tips of the vanes is to move equal to the theoretical velocity, then we proceed as in the last examples, only we take $\frac{1}{x}$ instead of $\frac{1}{\delta 0}$ (as in former examples) of the weight of air discharged, which added to the horse-power requisite to drive the fan when no efflux takes place.

We should here again remark, that when the fan is moving at this velocity, that it is capable of discharging 480 lb . of air per minute without any falling off in density.

In a recent set of experiments, the inlet openings in the sides of the fan chest were contracted from $17 \frac{1}{6}$, the original diameter, to 12 and 6 in. diameter, when we obtained the following results.

First, that the power expended with the opening contracted to 12 in. diameter, was as $8 \frac{1}{2}$ to 1 compared wiih the opening of $17 \frac{1}{d}$ in. diameter; the velocity of the fan being nearly the same, as also the quantity and density of air delivered.

Second, that the power expended with the opening contracted to 6 in. diameter, was as $2 \frac{1}{2}$ to 1 compared with the opening of $17 \frac{1}{2}$ in. diameter; the velocity of the fan being nearly the same, and slso the area of the effux pipe, but the density of the air decreased one-fourth.

These experiments show that the inlet openings must be made of sufficient size, that the air may have a free and uninterrupted action in its passage to the blades of the fan, for if we impede this action we do so at the expense of power.

(Paper No. 2.)

In resuming the subject of the fan blast, I shall endeavour, as far as I conveniently can, to avoid detailed statements of the pneumatic laws involved in its consideration, as they would occupy more time than would be consistent with the present occasion; and shall proceed to remark on the most important points connected with the construction of the fan, viz. : the adoption of such forms and proportions, as shall insure the greatest results with the least expenditure of power; and effect a diminution of the intolerable noise that generally arises from the working of the fan. And although I have not been able to carry out such leading principles to the fullest extent, I trust that I have furnished materials that will be found of value to those members whose greater leisure may enable them to do so.

From a contemplative view of the action and apparent effect of that very useful apparatus, a fan blast, it wonld appear that the air in the fan case is impelled by the vanes along the transit pipe, or channel, to the chest provided for the blast; and that the continuous rapid motion of the vanes, compresses air in the pipe and chest, to a degree that may be shown and accurately measured, by a water, or mercurial gage, attached to the blast chest.

In my first communication, the principal investigation rested on a theoretical question, viz.: whether the tips of the blade should partake of the same velocity as a body falling freely a certain height, such height being governed by the density of air required. Recent experiments (the rosults of which accompany this paper)
justify the conclusions then made, as will be seen on examining tables Nos, $2 a, 3$ a, and $4 a$.

Having satisfied myself with respect to the velocity a fan ought to have, when a certain density of air is required, I purpose in this paper to examine the fan under other varied conditions, the object being to establish the best proportions of inlet openings in the sides of the fan chest, and the suitable corresponding length of vanes. For this purpose, I caused the openings in the sides of the fan chest to be made of a large diameter, und I was enabled to vary those openings, by fitting in rings of wood; and I varied the fan by attaching to its arms, vanes of corresponding lengths. The experiments are classed in the following tables:-
Iable Nu. $1 a$, Contans the first wel of experimentu.
" $2 a$, Experimenta made with an inlet opening 30 inches dimeter ; the length of rane being reduced to 8 inches.
" 3 a , With an inlet opening of $24 \frac{1}{4}$ inches diameter, and the length of the rane 11 inches.
" $\quad 4 a$, With an inlet opening of 201 inches diameter, and the length of the vane 13 inches.
" I b, Shows the effect produced by narrowing the blades to 6 inches, the length heing 16 inches, with outlet to transit pipe 4 inchen deep.
" $26,3 \mathrm{~b}, 4 \mathrm{~b}$, we experiment thowing the effect produced by contracting the outlet opening. The inlet opening, and the length of vane, being the same as the table under which it is classed.
In the concluding part of the first paper it was stated that, by impeding the free admission of air into the vane, it was done at the expense of power. Thus, by contracting the inlet opening to 18 inches diameter, we expended more than twice the power. This led to an extension of the openings, the results of which will be seen on comparing the former state of the fan, in table No. $1 a$, with the present tables Nos, $8 a, 3 a$, and $4 a$.

In the first five experiments, no effux of air takea place; and if, in these experiments, we take the mean of the density of the air and the horse-power, and call them unity, their proportions with the corresponding experiments represented in tables 2,3 , and 4 , will stand thus:

Table No. 1	$1 \cdot$	Denaity of air.	$1 \cdot$	Horse-power.	
$"$	2	-69	$"$	$1 \cdot 21$	$"$
$"$	3	-8	$"$	-9	$"$

Here the "results are in favour of "the fan in its original "hape, and similar results appear when the fan is discharging air.

I will now proceed to examine the inlet opening, and the best length of vane.

From the experiments enumerated in the tables it will be seen that the longer vane possesses a preponderating power over the shorter one, in condensing air of the greatest density, with the least proportion of power. Thus, with a vane 14 inches long, the tips of which revolve at the rate of $236 \cdot 8$ feet per second, air is condensed to $9 \cdot 4$ ounces per square inch above the pressure of the atmosphere, with a power of 9.6 horses; but a vane 8 inches long, the diameter at the tips being the same, and having, therefore, the same velocity, condenses air to 6 ounces per square inch only, and takes 12 horse-power.

Thus, the density of the latter is little better than $\frac{d}{n}$ of the former, while the power absorbed is nearly 125 to 1 . Although the velocity of the tips of the vanes is the same in each case, the velocity of the heels of the respective blades are very different; for whilst the tips of the blades in each case move at the rate of $\mathbf{8 3 6 . 8}$ feet per second, the heels of the 14 inch blades move at the rate of $90 \cdot 8$ feet per second; and the heels of the 8 inch move at the rate of $151 \cdot 75$ feet per second; or, the velocity of the heel of the 14 inch, moves in the ratio of 1 to $1: 67$, compared with the heel of the 8 inch blade. The longer blade approaching nearer the centre, strikes the air with less velocity, and allows it to enter on the blade with greater freedom, and with considerable less force than the shorter one. The inference is, that the short blade must take more power at the same time that it accumulates a less quantity of air.

These experiments lead me to conclude that the length of the vane demands as great a consideration as the proper diameter of the inlet opening. If there were no other object in view, it would be useless making the vanes of the fan of a greater. width than the inlet opening can freely supply.* On the proportion of the length and width of the vane, and the diameter of the inlet opening, rest the three most important points, viz.: quantify, and density of air, and expenditure of power.

[^1]TABLES OF EXPERIMRNTS.

In the 14 inch blade, the tip has a velocity of $2 \cdot 6$ greater than the heel; or, by the laws of centrifugal force, the air will have $2 \cdot 6$ times the density at the tip of the blade that it has at the beel. The air cannot enter on the heel with more than atmospheric density, but in its passage along the vanes, it becomes compressed in proportion to its centrifugal force. The greater the length of vane, the greater will be the difference of the centrifugal force between the heel and the tip of the blade; consequently, the greater the density of the air.

Reasoning, then, from these experiments, I recommend for easy reference, the following proportions for the construction of the fan:-Let the width of the vanes be one-fourth of the diameter of the vanes.-Let the diameter of the inlet openings in the sides of the fan chest be one-half the diameter of the fan.-And, let the length of the vanes be one-fourth of the diameter of the fan.

In adopting this mode of construction, the area of the inlet openings in the sides of the fan chest, will be the same as the circumference of the heel of the blade, multiplied by its width; or the same area as the space described by the heel of the blade.

The following tables gives the sizes of fans varying from 3 to 6 feet diameter:-
table 1.

Dlag etet of Pan.	Width of Vanc.		Length of Vade.		Dameter of Inlet opening	
ก. in.		10.	Ω	fi.		
30	0	9	0	9	1	6
36	0	101	0	101	1	9
40	1	0	1	0	2	0
46	1	$1{ }^{1}$	1	11	2	3
50	1	3	1	3	2	6
60	1	6	1	6	3	0
Table 2.						
30	0	7	1	0	1	0
36	0	81		11	1	3
10	0	92	1	31	1	6
46	0	102	1	41	,	9
50	1	0	1	6	2	0
60	1	2	1	10	2	4

1 recommend the proportions in table 1 , for densities ranging from 3 to 6 ounces per square inch, and for higher densities, viz.: from 6 to 9 , or more ounces, the sizes given in table q.

The dimensions of the above tables are not laid down as prescribed limits, but as approximations obtsined from the best results in practice.
In some cases, two fans fixed on one spindle would be found preferable to one wide one, as by such arrangement, twice the aren of inlet opening is obtained, compared with a single wide fan; and they may be so constructed, where occasionally only half the quantity of air is required, that one of them may be disengaged by a clutch, and thus a saving of power effected. In a single fan of great width, the inlet opening must either be made too small in proportion to the width of the vane, or if it be made large enough for the width of the vane, the length of the vane becomes so short as to be quite incapable of producing air of the required density.

It has been stated that the air from the fan chest is impelled by the vanes along the transit pipe, to the blast chest, \&c.: I beg attention to the results of an experiment very recently made by me, with reference to the edmission of air into the transit pipe, and which, I think, may lead to an important improvement in the fan. The experiment alluded to, was made to enable me to ascertain the result of varying the area of admission to the transit pipe, in proportion to the quantity of blast required for use; and I effected this by adapting a segmental slide to the circular chest of the fan, as shown in the sccompanying section, by means of which, I vary the width of the opening into the transit pipe, from 12 to 4 inches.

The object of this arrangement is, to diminish the transit pipe opening at pleasure, in proportion to the quantity of air required, and thereby to lessen the power necessary to work the fan. The results will be seen by experiments inserted in tables $1 b, 9 b, 3 b$, and $4 b$. The inlet opening to the transit pipe having been contracted from 12 inches to 4 inches deep, so that the tip of the vane and the bottom of the outlet opening were nearly in a direct horizontal line, nearly the same quantity of air was impelled, as with the original opening; the noise produced by the fan had, however, nearly ceased. It therefore appears, that the less this opening is made-provided we produce sufficient blast-the less noise will proceed from the fan; and by making the top of this opening level with the tips of the vane, the column of air has little or no reaction on the vanes.

With respect to the degree of eccentricity which the fan should have, with reference to the fan chest, to of the diameter of the fan
has been found in practice to answer well; that is, the space between the fan and the chest should increase, from ? 3 of an inch at the top of the inlet to the transit pipe, to dof the diameter of the fan at the bottom of a line perpendicular with the centre. The tunnel, or main pipe, from the fan chest may for short distances,

varying from 50 to 100 feet in length, be made not less than $1 \frac{1}{4}$ times the area of the transit pipe in the fan chest ; and in distances varying from 100 to 200 feet in length, $1 \frac{1}{2}$ times the area of the transit pipe. The length of a tunnel may be continued to 300 or more feet, provided it be made of sufficient dimensions to allow the air to pass freely along it. The experiments accompanying this paper were made with a tunnel 18 inches diameter and 160 feet in length, and no difference could be detected in the density of the air, when the gage was applied at any part of the tunnel.
Having investigated the leading characteristics of the fan, it may not be out of place to give a few hints respecting its mechanical construction.

First.-It is one of the greatest essentials, that all parts maintain a just and proper balance.

Second.-That the arms of the fan be as light as is consistent with safety : round arms are decidedly objectionable; I have known instances when their centrifugal force has torn them from the centre boss. I prefer the rectangular arm, about the proportion of $2 \frac{1}{\frac{1}{2}}$ times the width, for the depth at the centre, with sufficient taper towards the tips.

Third.-The bearings and journals of the fan spindle should be made of a length not less than four times the diameter of the necks of the spindle.

Finally.-The driving pulleys should be made as large as circumstances will admit of, so that the strap may have sufficient surface to prevent slipping.

The fan from which my experiments were collected, was made with these proportions. It has been at work nine years without any perceptible wear.

The application of the fan has hitherto been chiefly applied to smithies and foundries; and in but few instances has it been applied to the smelting of iron ore. I am aware that differences of opinion exist as to the applicability of the fan to that purpose. The principal reason urged agpainst it being the limited density to which the blast can thereby be compressed, compared with the blast sup-
plied by the cylinder. It remains, however, to be proved whether such high densities are absolutely necessary for the smelting of iron ore; whether we may not produce as good iron by a diffused soft blast, as by the strong, and generally applied, concentrated blast. I hope it will not be thought presumptnous on my part, in thus doubting long established practices. The old maxim of "there's no way like the old way," is not always based on unerring principles.
As I have before stated, the density of blast afforded by the fan, is limited to the force arising from the centrifugal motion of the air, in passing along the vanes of the fan; the quantity not exceeding what is due to its velocity and magnitude. But may not this density be increased by using a succession of fans, so cunstructed and arranged, that the air may be passed successively through each; the air from the first fan being made to enter the second; the air from the second to enter the third; and the blast finally emitted of adequate density?
I cannot here enter into a further investigation of this important subject; neither are the limits and character of this paper suited to the minutia connected with the principles and practice of a smelting furnace; but I hope that the observations which I have made, and the principles I have endeavoured to enunciate, will be the means of instituting further inquiry; and, as the expense of constructing a fan can be no barrier, I trust that a fair trial will be made, where convenience is suited to its application for smelting purposes.

BTGIEMTB OF עTV PATMNTE:

VENTILATION OF MINES.

Joan Wilcocs, gentleman, in the county of York, for "certain Improvements in the ventilation of mines."-Granted June 12; Enrolled Dec. 18, 1847. [Reported in the Patent Journal.]

The patentee, in this specification, states his invention to be for the purpose of improving, and more effectually securing, the better ventilation of mines, and consists of elongating the upcast shaft of the mine, by the addition of stacks, towers, or other similar buildings, erected above, or in connection with such upcast shaft, by which the upper orifice of the upcast shaft is elevated very considerably above the upper orifice of the downcast shaft, proportionably to various circumstances-as the relative depths of the two shafts, the velocity of the current of air through the mine, the nature of the gases, \&c. The ventilation of mines is effected by the passing of a stream, or current, of atmospheric air through the various ramifications of the mine, carrying with it, in its course, the various noxious gases-as carburetted hydrogen, carbonic acid, and also the vitiated air, in its course, and escapes through the upcast shaft into the atmosphere. This current is, in most cases, caused-or the velocity of it is increased-by the application of heat to the upcast shaft, either at the bottom thereof, or at the orifice at the surface. The patentee proposes, hy his invention, to inerease the velocity of the currents through the upcast shaft, by erecting a stack, tower, or other similar building, above, or in connection with, the upcast shaft, which forms a continuation of the shaft, and through which also continues to flow the current of air. The height to which, in most cases, it will be sufficient to raise the elongated portion of the shaft the patentee states to be from 60 feet to 100 feet, though this will be governed much by circumstances, varying in different mines. The patentee gives several drawings, descriptive of his invention, as applied to several descriptions of mine shafts; as, first, to its application to mines having only one shaft; in this case, it is customary to make partitions down the shaft thus forming downcast and upcast shafts. The patentee proposes leaving these arrangements as usual, but erecting over, or in connection with, the part of the shaft, a stack, tower, or other building, as a continuation of the upcast shaft. Secondly, to a mine in which the upcast shaft is also the working one; in this case, the minerals and workmen pass out of the lower part of the stack, or tower, by an aperture in the wall of it ; and, thirdly, to a mine in which the upcast shaft is only employed for that purpose; in this case, a plain stack, or tower, is employed. In all cases, the patentee states, it is necessary that the sectional area of the stack, or tower, should be, at least, equal to the sectional area of the upcast shaft; and that, when it is necessary to have any openings into the lower part of the stack, or tower, the sectional area of the upper part of the stack, or tower, above the
apertures, must be increased by the size of the apertures, for the purpose of not interfering with the upward current from the upeast shaft. The patentee, after describing his invention, claims the mode, or modes, of elungating the upcast shafts of mines, for the better ventilation of such mines, as described in the specification.

CONSTRUCTION OF BRIDGES.

Stephen Moulton, of Norfolk-street, Strand, Middlesex, gentleman, for "Improvements in the construction of bridges."-Granted April 8; Enrolled Oct. 8, 1847.

The improvements are for constructing bridges in the manner shown in the annexed engravings. Fig. 1 is a side view of a bridge

Pig. 1.
constructed according to the invention. Fig. 2 shows two trangverse sections thereof, by which it will be seen that the top rail B, and the bottom rail Λ, are combined together by a series of diago-
 nal bars D, so that the bottom rail A, is suspended from the upper rail B, by means of such diagonal bars D; and the rails, A and B, are kept apart by means of the uprights C, which uprights are not fixed to the upper or lower rails B, A, but simply come in between them as supports to retain the parts A, B, at the correct distance apart ; and in the event of the chain being formed to act unequally on any of the diagonal bars D, by driving in wedges, as shown at E, fig. 1 , the whole must be correctly adjusted. The diagonal bars D, proceed

Fig. 2. in opposite directions, and cross each other, as is shown, but they are not fixed to each other, they being simply fixed at their ends by means of pins passing through them; and the top and bottom rail, \mathbf{B}, \mathbf{A}, fig. 1 , shows part of the side framing of the bridge.

Fig. 3 shows the diagonal bars D, with the screw pins and nuts, by which they are attached to the rails A, B. The upper rail may be formed of δ wo angle-irons, as shown at fig. 2 , or in one double angle-iron, as shown at fig. 3 , the diagonal bars D passing between the parts B B, and such parts will be held together by the pins and nuts J, as shown. The lower rail is composed of two

Fig. 8. Fs. ${ }^{8}$. such uprights C.
It will be found by examining the peculiar arrangement of the parts that great strength with lightness are obtained by construct-
ing bridges in the manner described, for it will be evident that as the rails A, B, are kept separated by the uprights C, which act as stretchers, they will be rendered stiff and secure from flexure by the diagonal bars D.

LOCOMOTIVE ENGINES AND RAILWAY CARRIAGES.

Georoe Tayior, of Holbeck, near Leeds, for "Improvements in locomotive engines and railway carriages."-Granted June 3; Enrolled Dec. 3, 1847. [Reported in the Mechanics' Magasine.]

The patentee states that his invention consists: Firstly-In certain improved arrangements of the steam cylinders of locomotive engines, and the parts which communicate the reciprocating motion of the pistons of the cylinders to the axle or axles of the driving-wheels, which arrangements have for their object to concentrate the driving power of the actuated pistons, so as to communicate an even rotating motion to the driving-wheels, or to distribute the noving power (before concentrating it), in an even and uniform manner to one, two, or more pairs of wheels. The advantages which the patentee states he believes to result from this part of his invention are, diminished wear and tear of the eugine, and the attainment, with safety, of a greater degree of speed, in consequence of the decreased amount of oscillation of the locomotives. The construction is as follows:-Above the boiler, and near the smoke-box, are placed, horizontally, and in juxta-position, two steam cylinders of equal capacity, each having its piston furnished with cross heads sliding in guides supported by the frame of the engine. The pistons are connected by rods to two cranks, which are attached on either side to a wheel having cogs or indentations on its periphery, and which gears into another wheel fastened on the centre of the axle of the driving-wheels. The axle is placed above the boiler, and allows of the employment of driving-wheels of larger diameter (say from 10 to 15 feet), with even a diminished amount of oscillation, in consequence of the weight of the engine being brought near the line of rails. All the wheels may be made to drive by being coupled in the ordinary manner. In order that the cog-wheels may work properly, and the bearing-springs of the engine act freely, the guides, in which are supported the journals or axle-boxes of the driving-wheels, are made slanting. Two modifications of the mode of connecting the piston-rods of the steam cylinders with the axles of the drivingwheels are specified by the patentee. The first consists in forming a slot in the centre of each of the piston-rods, in which works a short vibrating link, connected to a vertical frame on either side of the engine, which is made fast underneath the boiler by means of a pin, on which it vibrates-and in connecting each of these vibrating vertical frames by rods as is usual with the bosses of the driving-wheels, or in attaching one end of a connecting-rod to the outside end of the cross head of the piston-rod, and the other to the boss of the driving-wheel. Secondly-This invention has reference to the construction of an apparatus applicable to the locomotive, tender, and carriages, which serves to retard the progress of the train when necessary, and to support, in the case of the breakage of an axle, the weight of the carriage. To effect this, two levers are made fast to the bottom of the carriage in such manner as to allow of their acting freely, and have each at the outer end a flanged skid placed directly over the line of rail. These skids have on the under surfaces blocks of hard wood with the grain placed vertically, and are moreover connected by a strong spring. From the centre of this spring rises a vertical shaft, consisting of two pieces joined by a threaded connection, whereby it can be lengthened or shortened, as required. The top of this shaft is forked, and has between the prongs at top and bottom two anti-friction rollers; between these rollers is a cam, fastened to a horizontal rod, which is made to rotate by apparatus brought under the control of the driver or guards, after any ordinary and well-known means. When the longest radius of the cam is brought to bear upon the lower anti-friction roller by means of the rotating of the horizontal shaft, it follows that the vertical sliaft is forced downwards and the flanged skids thereby depressed on to the line of rail which they bite, and thus retard the progress of the train. The flanges serve to retain the carriages on the line of rails, and the skids to support the carriage in the case of the breakage of an axle; but, In order that the vertical shaft may be relieved from the weight of the carriage, stops are inserted in the lower part thereof at the most convenient point, against which the skids catch. Thirdly-The pateutee proposes to divide the tender horizontally into two parts, using the upper or open portion for coals, and the lower to contain the water, and to pass the axle of the wheels through the water or above it, in order that the weight
of the tender, as in the case of the locomotive before described, may be brought nearer the rails. Fourthly-To employ axles for railway carriages composed of two pieces, one solid and the other tubular, to slide over it ; one of a pair of wheels being attached to each piece, so that they may revolve independently of each other.

VIBRATING PISTON-ROD ENGINE.

G. V. Gubtapsson, of 15 , William-atreet, Regent's-park, late engineer, R.N. "Improvements in the steam engine."
The improvements relate, first, to "the mode of connecting a pis-ton-rod to a piston by means of a ball-and-socket joint." The advantage of this plan over the old one (where the piston-rod is connected to the piston by means of straps and keys like the crank and connecting-rod) will easily be perceived; a large bearing surface, its facility for adapting itself in the centre of the piston, being bored and turned at the same time, and also the convenience for holding a lubricating substance, such as oil or tallow, and thereby lessening the friction, and causing a less wear of the ball and socket. Secondly, "The manner of keeping the piston tight within the cylinder by the combined mechanical forces of steam and metallic springs." The advantage of this arrangement will also be perceived without difficulty: the skeleton of the piston is formed like a wheel; the nave receives the end of the piston-rod, from which proceeds the arms, to the extreme ends of which a ring is attached, and to which ring is bolted the top and bottom cover of the piston, which for lightness should be made of wrought-iron; within these covers, and at the outer periphery, are fitted two metallic rings of light construction, and kept in their places by means of spiral and horizontal springs but not necessarily steam-tight, as that will be effected by admitting steam into the chamber, which incloses the packing-rings by means of a double acting valve; this will cause a more uniform pressure on the packing-rings than could be effected by springs alone ; it also requires very littie fitting and grinding, only the side of the ring nearest the cover: it has also another, though perhaps not very great advantage, of partially pulling, instead of entirely pushing the piston. Suppose the piston is moving upwards, a portion of the pressure trom under it will be removed to the upper cover, which is considerably above the centre of the globe; hence the pulling property, which in such case is preferable to pushing: the same, of course, takes place on the down stroke. Thirdly, "The construction of a moveable apparatus to be adapted to the top or cover of the cylinder through which the piston-rod is to slide, and at the same time vibrate. The advantage of this apparatus over the old slide-rest shaped one is, first, being curved as to present nearly a rectangular base to the different positions of the piston-rod, whereby the friction is considerably diminished; secondly, having a fat bearing surface to act against, instend of the dovetailed edges in the old plan; thirdly, and last, its facility of keeping in contact with the bearing surface, which is effected in condensing engines by connecting the narrow chamber, between the two slides, with the condenser, whereby the slides are kept in their places by the pressure of steam and the atmosphere : in noncondensing engines this chamber should be in communication with the atmosphere, which may be effected by causing the upper slide to bear in the middle only, allowing a passage to the chamber under it, which will also lessen the friction of the upper slide: it will be perceived that the slides are portions of circles, and consequently easy of construction. And fourthly, "An apparatus (or self-acting damper) for regulating the draught of the flues and furnaces, and thereby tempering the pressure of steam in the boiler, and also giving such due notice of the state of pressure in the boiler as may prevent accidental explosion." This being a distinct apparatus, may be used with or without the other improvements, and is applicable both for land and marine engines.

The inventor states that, "a plan, somewhat similar in principle, though differing in details, was tried many years ago, but in consequence of the ill-adaptation of the slides-somewhat like the slide-rest of a turning-lathe-to the motion of the piston-rod, being at right angles to the latter only at the dead points of the engine, or top-and-bottom stroke, it was a very great defect."

The three first improvements are shown in the annexed engraving of a vertical section of the steam cylinder. a, the cylinder; b, the skeleton of the piston, formed like a wheel for the purpose of rendering it of light construction; c, a hollow cast-iron globe, fitted to the end of the piston-rod and secured to it by a plug d, or it may be cast on to the end of the piston-rod : in the centre of the piston is a hemispherical socket, into which the globe c is fitted
and secured to it by means of a cap e firmly bolted to the hemispherical socket; the arms have strengtheuing flanges on their under sides, and to the outer ring, at the extremity of the arms, is bolted the top and bottom covers $g g$, which, for lightness, may be made of wrought-iron. To render the piston steam-tight, two

metallic rings are placed in the annular chamber between the covers $g g$, and held in their places by means of vertical and horizontal springs, but not necessarily steam-tight, as that will be effected by admitting steam into this annular chamber of the piston by means of a double-acting valve, by which a more uniform pressure on the packing-rings is obtained than could possibly be effected by springs alone $: i$ is the cylinder cover, which is made spherical, with segmental pieces to complete the arc of a circle; k is a segment slightly hollowed in the middle and bolted to the cylindercover; l are slides attached to the cups $m n$. To keep the radius slides $l l$ constantly in contact with their bearing surface, the hollow space o should be in communication with the condenser, which is effected by fixing a small tube in any convenient place: in noncondensing engines this space should be in communication with the atmosphere.

It will be seen that as the piston ascends and descends, the piston-rod will be enabled, by the lateral motion of the radius slides, to vibrate, and thereby act directly on the crank ; in consequence of the angular position of the piston-rod the wear of the cylinder would be greater on one side than the other, but this may be avoided by giving to the latter an inclined position. It will be perceived that this peculiarity of the piston is of great advantage, especially for horizontal engines, as the weight of the piston would be supported by the pressure, and consequently prevent an unequalizing wear of the cylinder and piston, which in common horizontal engines cannot be avoided ; hence the vibrating piston-rod is particularly adapted for the screw-propeller and locomotive engines. To prevent an unnecessary waste of steam, the space between the piston and the cylinder cover, where the former is on the top stroke, as shown by the dotted lines, may be filled up with hard wood and bolted to the cylinder cover.

PALMERS IMPROVEMENTS. IN GAS.

BUNNETTS SEWER TRAP.

Mr. Bunnett, of the firm of Bunnett and Corpe, of Lombardstreet, has invented a very simple and cheap "Self-acting Effuvia Trap ${ }^{2}$ which differs from all previous contrivances. The fault of the old invention was that they were so arranged that a very small quantity of water caused the pan of the trap to fall, and consequently during a shower of rain, or water falling upon it, the action was intermittent, continually opening a communication with the sewer, and liable to be held open permanently by any light matter being caught by the rising of the pan. In Mr. Bunnett's improved trap this is avoided by introducing a peculiar mechanical
 arrangement of the leverage connected with the form of the moveable pan, and application of the weight, which admits, under ordinary circumstances, of a constant flow of water through the grating into the pan of the trap and over the edge of the same into thesewer or drain, the lower part of the trap being immersed into the water, so as to form a most effectual water sealed joint, of sufficient depth to withstand the effects of evaporation from
long drought, and should a stoppage be caused by a deposit of silt or other matter, the water will rise in the body of the trap, until it is about two-thirds full, at which point it raises the balanceweight, and obtains considerable leverage by the peculiar formation of the moveable pan, insuring a rapid discharge of a large body of water, which by its force most effectually cleanses the trap, and flushes the sewer or drain, and instantly recovers its position, with sufficient water to form the joint again, resuming its former action till another stoppage occurs; the form of the trap also insures on the commencement of a thaw the ready ejection of any ice that may have formed therein. The annexed figure is a sectio nal view of a street grating and gully hole with the trap, which is represented in its ordinary position, the water flowing from the grating into the body of it, and over the edges of the moveable part into the sewer or drain. The lower part of the body of the trap is immersed in the water which is retained in the moveable part by the counterbalance weight, thereby forming a perfectly sealed joint and effectually preventing any smell from rising.

Another advantage attending this trap is that it can easily be fired to any gully hole, and the price is very moderate, being about \boldsymbol{L}_{1} each.

GAS IMPROVEMENTS

(With Engravings, Plate II.)

Grorge Holworthy Palmer, of Weatbourne-villas, Harrowroad, Middlesex, civil engineer, for "an improved method or mode of producing inflammable gases of greater purity and higher illuminating power, se."-Granted April 17; Enrolled October 17, 1847.

The first part of this invention relates to an improved mode of setting and arranging the retorts in conjunction with additional vessels called "regenerators," so as to insure their being heated uniformly to the required temperature (as shown in figs. 1 to 6), by which method not only an increase of volume, but also an increase in the illuminating power of the gas is obtained. The heating surface of the regenerators may be further increased by the introduction of metallic chippings, or by sheet iron partitions.

By this arrangement, the gas passes direct from the retorts into the regenerators, where it receives a second dose of caloric, and then flows in the usual manner through the sealed pipes in the hydraulic main, and then into the mechanical precipitator, to be next explained. The patentee recommends the retorts to be kept at a bright cherry-red heat, and the regenerators at a dull-red heat, visible by daylight.

The second improvement relates to an apparatus called a "mechanical precipitator," combined with a refrigerator (as shown in
figs. 7 and 8), for the purpose of abstracting the vapours of tar and naphtha, as well as the gaseous ammonia and its compounds.
The third improvement relates to apparatus called "ammoniacal filtering towers," through which the gas passes from the precipitator, being washed in its course by liquid ammonia, descending like rain through one or more perforated plates, as shown in Nos. 1, 8 , and 3, in figs. 9, 10, and 11. By this process a further portion of ammonia, contained in the gas, is absorbed without subjecting the gas to an increased pressure, and the liquid ammonia is increased in strength.

The fourth improvement relates to an apparatus consisting of a series of steam chambers and condensers, Nos. 4,5, and 6, as shown in figs. 9 and 10 , through which the gas passes from the filtering tower; each of these chambers is to be charged with a volume of pure steam equal to the volume of gas. The crude gas, with a volume of steam, passes first into No. 1 steam chamber, and then into its condensing chamber, where the steam will be condensed into water, which in its descent will carry with it a great portion of the remaining gaseous ammonia and its various compounds; after which, the permanent gases flow from No. 1 condenser into No. $\&$ steam chamber, when the gas will be again saturated with steam, and will again flow into its proper refrigerator, to deposit the steam, charged with another portion of the product in a liquid form. The gas will then pass into No. 3 chamber as before, and thence into No. 3 condenser, where is deposited the remaining ammonia and its compounds, together with a portion of sulphuretted hydrogen. All these liquid products are to be made to flow, as fast as they are deposited in the condenser, into a suitable receiver, sealed by an hydraulic joint to prevent the gaseous vapours and gas from returning into the condenser. From this last apparatus the gas will pass, freed from impurities, into the "lime machines" or purifiers, charged with dry lime, where it is divested of the remaining deleterious gases-viz., sulphuretted hydrogen and carbonic acid, and proceeds thence to the gas holder, and lastly to the mains.

The gas now purified goes into the gas-holder, and, in its transit to the mains, may be naphthalised if required; for this purpose, apparatus may be employed similar to that described as the "ammoniacal filtering towers."

The fifth improvement is for avoiding the inconveniences which arise on opening the purifiers and removing the refuse lime from the sieves preparatory to recharging them with lime, and which is to be effected by causing atmospheric air, heated or otherwise, to be blown through the material employed for purifying the gas, and discharged through the furnace-bars or chimney-shaft, by means of a "centrifugal bellows" or other suitable pneumatic apparatus, the blast-pipe being connected to the exit pipe of the purifier; thus blowing out the contaminated air, \&c., through the pipe by which the gas enters the purifying vessel, an extra pipe and valve being attached to the entrance and exit pipes for this purpose.

Reference to the Engravings.

Figs. 1 to 6 show the mode of setting and heating the retorts and regenerators: fig. 1 , a sectional elevation, and fig. 8 , a front elevation each figure shows one-half of a set of retorts; fig. 3, a longitudinal section; fig. 4 , a plan of one of the retorts, showing the opening through which the flame rises; fig. 5 , sectional plan of the top retort ; and fig. 6, sectional plan of the regenerators.-Similar letters refer to similar parts :- $-a, b, c$, retorts; d, e, f, regenerators, showing the plates k to increase the heating medium, over which the gas flows from the retorts; g, g, the furnaces; h, i, flues through which the flame rises from the furnaces, and, as indicated by the arrows between and over the retorts and regenerators, to the shaft, and l, the blow-holes. There is one regenerat-r to each retort, of the capacity of about two-thirds the latter.
Fig. 7 is a vertical section of the "mechanical precipitator," and fig. 8, plan of the same ; a, a, perforated revolving fans, to agitate the gas in the chamber b, b, -the shaft is stepped into the lower chamber and passed through an inclined plane, d, d, under which the gas blows through the tar passing from the pipe x; and adjoining is a chamber, e containing a convoluted worm, or refrigerating pipe, g, to cool the gas after escaping from the chamber b, through the curved pipe f. To prevent the gas blowing through the aperture in the inclined plane where the shaft passes, the shaft is inserted in a pipe z, bolted to the inclined plane, being of an altitude sufficient to overcome the pressure of the gas; and instead of the usual stuffing-box for the shaft, an hydraulic seal t, is used.
The pipe is kept cool by a supply of water passing through the chamber e, by the pipe h, entering at the top and discharging by the pipe j. The pipes h and j, together with the chamber e, form a syphon; the legs or pipes, h and j, are furnished with cocks p, to admit or cut off the supply of water. An air-pump is used to romove the small quantity of air that may be in the syphon; it is
wooked as well as the agitating apparatris, by the descent of water flowing from the long leg of the syphon, which gives motion to a small water-wheel in connection with the bevel wheel, gearing, and hand; or they may be worked by a steam engine or other power. All the condensable products collected in the agitating chamber and refrigerating pipe g, flow through the pipe n, into the ohamber c, and through the opening r, at the level of the dotted line; into a receiver.

Fig. 9 is a plan, and fig. 10 a sactional slevation, of the ${ }^{4}$ ammoniacal filtering towers," steam chambers, and condensers, combined in one apparaturs. The gas takes the conrse indicated by the arrows in the towers 1,2 , and 3 , entering each at the bottom and out at the top, and thence into the steam chambers 4, 5,6 , undergoing the steaming and condensing before explained; a, a, steam pipes, with cocks to regulate the steam ; b, the entrance steam pipe from the boiler; c, a, c, separate condensers, with the entrance and exit pipes; d the tank for the ammoniacal liquor, pumped up through the pipe e; the tank has two divisional plates f, f, fixed to the top and sides, and descending to within a few inches of the bottom of the tank, and is sesled at the level of the dotted line by the liquid ammonia.
To ingure the gas flowing from one tower to the other, each hes a pipe, g, connectad with the tank and rising in it to the height of the dotted line, at which level the ammonis-flows through the pipe g, into its particular tower.

Instead of the arrangement of the filtering towers, several perforated divisional plates, n, as shown in fig. 11 , may be adopted, the gas flowing from the tower into the chamber through the pipe 20 , in order finally to escape at the pipe y.

RTMTMA.

An Essay on the Air-pump and Atmospherio Railuay; containing formulae and rules for calculating the various quantitios contained in Mr. R. Stephenson's report on atmospheric propulsion, for the Directors of the Chester and Holyhead Railuay Company. By Withum Tuanbuli, author of a treatise "On the Strength of Cast-Iron," 8c. London: Williams. 1847. 12mo. pp. 96.

The object of this ezcellent little treatise is a general exposition of the theoretical principles of atmospheric railways. That the loakage of the main tubes of these railways involves a loss of power, is obvious to every one in the slightest degree acquainted rith the subject; but it requires much more than superficial knowledge to extimate the precise amount of loss corresponding to a given rate of leakage. Mr. Turnbull has addreseed himself very successfully to the task of substituting exact principles for general notions respecting the mechanical defects of stmospheric propulsion.

The first part of this work comprises a history of the air-pump, and demonstrations of several known formula by which its effects are estimated. In the second part, these formuloe are applied in detail to the case of the Kingstown and Dalkey Railway. Notwithstanding the imperfect success of the method of gubstituting stationary air-pumps for locomotive engines, the subject is one of permanent interest to the engineer, on account of the number of beautiful scientific and mechanical problems which it presents to his attention. Considered merely as an instructive exercise, the theory of atmospheric propulsion deserves to be thoroughly mastered by every student of practical science. It is this consideration which induces us to give a brief sketch of Mr. Turnbull's method of investigation.

When a train on the atmospheric railway has attained its uniform velocity, it is obvious that, if there were no leakage, the pump-piston and the train-piston must both describe the same space in a given time-that in, the roid made by the one in a given time must be filled up by the other. For example, if the relative diameters of the main tube and pump were such, that ten feet of the length of the former had the same cubic capacity as one foot of the length of the latter, the train-piston would travel ten feet while the pump-piston travelled one. Otherwise, if the pumppiston travelled at a greater relative velocity, the degree of vacuum would be raised, and the train accelerated; if the pumppiston travelled at a smaller relative velocity, the degree of vacuum would be diminished, and the train retarded : and either case is contrary to the hypothesis of uniform velocity of the train.

The exact relation, however, between the uniform velocities of the two pistons only obtains on the hrpothesis that there is no
leakage. The principal problam is to ascertain the modification due to that defect of the apparatus. The requisite data for this investigstion are obtained by the following experiment:-After the tube has been exhausted to a oertain extent, tha whole apparatus is suffered to remain quiescent, no train being dispatched: The leakage will then go on till the equilibrium of the air inside and outside tube be reetored. By observing the rate at whiah the barometer-guage falls during the interval, we get-not the rate of leakage-but data from which that rate may be calculated.

The density of air is proportional to the weight, and therafore heights of the column of mercury. Take 30 incties as the height of meroury corresponding to the atmospherio presenure; then, if the bemmeter-guage of the exhausted tube show, for the pressure in it, a height equivalent to 10 inches of meroury (for example), the density in the tube would be to that of the external air as 10:30, or would be $\frac{1}{3}$ rd the ordinary demity of air. If after the leakage has gone on some time, the barometer-guage show a height equivalent to 90 inches for the presmurs in the tube, the density will be 88 , or $\frac{9}{3}$ rds that of common air: The difference between the densities in the tube at the two respective periods is $\frac{2}{5} r d s-\frac{1}{3} n d\left(=\frac{1}{3} r d\right.$) that of common air. Consequently, if the quantity of air which has entered the tube in the interval, be supposed to have diffinsed itself equably thinoughout the tube, that quantity is equivalent to the tube full of air at a density $\frac{1}{3}$ rd that of common air, or, which is obviously the anme thing, one-third the tube full of common air. This reasoning applies generally, and gives this simple rule-that the oubic quantity of air admitted by laakage during any interval, is equal to the cubic capacity of the tube multiplied by the fraction expressing the difference of dansities during that interval. (The barometer-guage is 80 gra duated, that for the words, "fraction expresaing the difference of densities" in the sbove rule, wa mos substitute, "diffensnce of gauge-lraighte divided by $30 . "$)

If this quantity of air were divided by the numben of minutas of the interval, the result would be the rete of influs per minute, supposing that rate uniform. This method of investigation is, however, liable to an objection, whioh our author well states an fal-lows:-
"We have celculated for the extreme indications of the vacuan gangey and divided by the nawber of minate that elapead daring the obeervation, for the averege leakage per minute. Now thie method would be perfeedif just, on the supposition that the quantity of leakage is censtants of of the same amount in equal times; brot the iden of a constant amount of leakage is altogether inoompatible with what we know to take place, when air of atmonpheric density is allowed to fiom into a ressel containing air of a lese. density. Here it is obwious that tha air in the reaeel it-continually approaching to a atate of equilibrium with that withaut, and consequently the vedocity of inflox is continualy diminishing until the equitibrium obtains."

He then proceods to show, that in those oxperiments or the connecting pipe of the Dalkey line, in which the heighte of the gauge were taken every mimute, though the successive differences of those heights for successive minutes were nearly equal, they do not indioste a uniform rate of leakage, but lead to the directily. opposite conclusion, that the leakage was far more rapid at the beginning of the experiment than at its conclusion : and he then makes the following important remark in reference to Mr. Stephenson's report:-"We are somewhat apprehensive that, by assuming a constant amount of laakage for the conneoting pipe, some very erroneous deductions must have been made."
"But with regard to the valve tabe the case is very different; for it is easy to conceive that, as the longitudinal slot or aperture is covered with a fexible substance, this substance will resdily accommodate itself to the pressure as the exhanstion goes on, and by thus diminishing the area of the aperture as the velocity of influx increases, a constanl amount of leakage, or nearly so, may happen to be maintained : at all eventa, it is not inconsistent with the maxims of accurate science, to admit thas such may be the case, and it actually appears from experiment that the supposition is not far from the truth."

If it be conceded that the leakage of the conneoting pipe is an ayoidable evil, and may therefore be assumed to be wholly remedied, we have very simple means of caloulating the effect which the leakage of the main tube has on the velocity of the train. As the assumption of uniform leakage in this tube is somewhat dangerous, let the leakage corresponding to any proposed worling vacuum be ascertained by a separate experiment with the barome-ter-gauge. We have explained how to calculate, from the fall of the gruge, the quantity of external air which enters the tube per minute. It may be oalculated by very simple arithmetic what, length of tube this quantity of air would by itself occupy, if dilated. to the supposed working density. And that length of tube is the meagure of the lose of speed of the train during the minute; for

If there hed been no leaknge, the train-piston would have advanced that length further during the minate.

This is a brief and imperfeot sketch of Mr. Turnboll's system. We must observe, however, that the results will agree only approximately with actual practice. The fundamental hypothesis of wniform velocity of the train, is not unobjectionable : it is true that in calculating the motion of locomotive engines, the hypothesis will lead to results of specific value; but, on atmospheric railways, the distances performed with accelerated or retarded speed must bear so large a proportion to those performed with uniform speed, that the latter can hardly be considered the normal condition. There are other seasons for concluding that calculations of the motion of trains on atmospheric railways cannot be exact. However, the partial applioation of sound theoretical principles to prectical subjects, of which a perfect theory is unattainable, is a most important advantage. The skilful research exhibited in Mr. Turnbull's treatise, is the nore welcome for being applied to a subject which has, in a pre-eminent degree, suffered the martyrdom of parliamentary and nowsprper philosophy.

A Guide to the Proper Regulution of Buildings in Towns as a mease of Promoting and Securing the Health, Comfort, and Safoty of the Irhabitants. By Wm. Hossino, Architect and C.E. London: Murray, 1848.
This wort of Mr. Hooking evidently contains so much practical and useful matter that we do not like to dismiss it with a passing notice, but we intend to devote a little time to its consideration. Meanwhile, whatever opinion we may entertain with regard to some of its recommendations, we have seen quite enough of it to feel justified in recommending it to our professional readers.

Earthaork Tables. By C. K. Slbley and W. Rutaebford.
The authors have publighed an appendix to these very useful tables, thowing how the tables may be applied to sido-lying ground, for which they give the following rule :-" Ascertain the ratio of the area of oroes seations of the side-lying ground to the areas of similar cross sections, that is with same height on centre line, of level-lying grownd, and multiply by that ratio the complete quantity furnished by the tables."

The Antiquarian and Genoalogist's Companion. By Wuluy Downing Bruce, Esq., F.R.S.L. \& E.
This is a novelty for the antiquarian student, which will be very favourably received at the prement season, as it contains many curious memorands and an arch mological calendar for the year. The work is small-which may, perhaps, be an additional recommendation.

LECTURES ON GEOLOGY

By Professor Anered. Delivered at King'a College, London.
On the Application of Geology to Engineering and Architecture, and the Supply of Water to Towne and Cities.
Profemor Angted commenced his fifth lecture, by considering the quastion of drinage, more paticularly with reference to general engineering, Which depended, in many cases, very distinotly on the geologioal structure of the rocks. And it did so natarally, as, for instance, in an ordinary rond, property made, where the drainage would ultimately bave reference to the structare of the material and to the rocks in the noighbourhood. With regerd to greological structure, it might happen that the bods which ceme close to the surfice woald have a strong inolination; and, in that case, where the beds were permeable, the road would be druined naturally, and, where one pert lay on an impermeable bed, and the other on a material which suffered the water to percolate through it, an attention to geological atructure would emable them to carry off all the water very astisfuctorily. This would illattrate the applicability of geological knowledge, erea to common road making; but that knowledge was still more directly available in the cace of railroeds, which, ranniag trrough a long axteat of country, involved the neomalty of frequent and deap cattiogs, in the execution of which draisage, at consected with etructore and goological conajderations, must always come in. Suppone, then, they were to take a tranevarse section of a railway outtiof, similar to one of the tiegrams exhibitad-if the bods were horizontal, the two sides would be sitwated in ssimilar mexnar with ragard to scoidente ertiong from anequal presure ; but if that were not the ceme, and the bank
wha composed of mond, cley, sand, or any alippery earth, in beds inclimed to the horizon, rome parts of the superincumbent mase would be more apt to alip down thas others. Some strate would carry water, and others would allow it to drain through; and if the road did not go dirootly on the strike, in which case there was no inclination as far as the parposes of the road were concarned, there would be a greater tendency to "slip" on the one side than on the other. Supponing the uppermont beds were composed of sowe heary material reating upon a bed of sand, the rain, in draining through the sand, would wah it amay gradonlly, and, a portion of the aupport belog removed, the upper mase would naturally have a tendency to slide down upon the lower part. If once it began to slide, no matter how alowly-if the movement ware only an inch per day, or an inch per month-atry proventive measurea were too hate, and there would be a slip sooner or liter, and eapecially in heavy raiss, or rains combined with frowt. But before the enperincumbent mase were set in motion, if by any means the water could be prevented from pasaing through the sand, it might be prevented. That mas bent done by cutting a drain on the other side, by which ell the water which came on the surfice might be oarried off before it reached the mand. There would then be anficient cohesion to prevent the upper part from being ret in motion.

A kuowledge of grological structare, in making thewe cuttingr, was enceedingly useful, not only in preventing slips, but in redacing the cont of work. Por instance, when the dip was in a cortain direction, a slip whe manifectly impowible, and in that case the slope of the bank might be very mach steeper, and the expense of ite removal suved. On the contisent, it wes not unusual in cuttiogs to meke the banks in a cuccestion of termees; bet, in this country, that plan, thoagh exoeedingly umeful, was ncarcely ever adopted. It win, however, being partially tried at New Cross, a pluce where much miachief had boen done by alipe, and he bolieved with a proepect of succeas. That was, however, a plan which could not be cearied ont without. a reference to goological science.

On the subject of embanknenta the came principlen of drainage were applicable, though anotber element of conatruction was brongbt into metion. If a large mass of material were heaped in a particular way, it misht be perfectly safe, and anower the parpose intended very well; while if it wert placed in a different way, mischief woold arise. The structure of embankmonts ought also to be regulated by the nature of the rocks on which they rested, an well at thoce of which they were formed; and although, as yet, fow sccidents had ariwen, engineers might fud it worth while to pay attention to this anbject. Again, if an ombankment wes placed on a hill side, there ought to be particular adaptation to the way in which the bods lay. If a heary premure were put upon beda so vitualed, which had already a tendency to alip, that tendency would be increased, and, anlesa attention were paid to the drainage, cerious sceidents would inevitably occar. The hind of draining reqnired was much of the charecter of that nececeary to ordiary ronds-ammely, by cutting off apringa which had a tendency to ran between bands of impermeable rock.

The subject of canals, and the way in which they were affected, introduced another element. Io making canala, the engineer would conatantly have to cut aurons apripgs, and through nome atrata which allowed water to percolate, and through othera which actually produced water. In going across a distriot where there was mach leakage, it was necenvary to have a perfect knowledge of the nature of thoee rocts which yielded water and abounded in springs; and of thase atrata and substances which were impermeable. On such circumatances depended many groant practical difficulties in the construction of canals. It was a remartable fact, that Mr. William Smith, who dourished about a contary ago, and who was called the father of English geology, was himself a mining engineer, and firnt observed the geological atracture of the country, as it affected the formation of eanala. His life, kately pabliabed by Profemor Philips, his (the lecturer's) predecessor at King'i College, would be fonnd very useful and interesting, as it regarded the praotical application of so mach of geological science as was known at that day. In the life of Smith would be found some account of the construction of canals in his day, then as important an ruilweys were now. They would see how he brought hit knowledge to bear upan the problems at insue, and in that way they might themeelves learn how to apply a great deal of that knowledge of geology which they might ponsess.

Supply of Water.-The Profestor next treated of the sapply of water as an engineering subject, apart from the supply obtained from land-springs, or amall Artesian wells, conaidered hitherto on a comparatively amall scale, and rather with relation to agricultural purposes than engineering. The subject of draiuage and water supply was, perhape, connected aa much with architecture as enginoering ; but, when he had discussed ite relationa to the one, it would scarcely be nooemary to touch upon the other.

With respect to the supply of water, the Profesior thougtt he could not do better than give them a short outine of what had been done lately with regard to the large and most important town of Liverpool, which had been noted, for some time, as a place which was bady supplied with water, and had been more remarkable than any other town in Bagland, for the prevalence of ferern, the more than average illmeas of it in inabitanta, and the short daration of life in the major part of it. The members of the corporation appeared very anxious to do all in their power to remedy that which Wes certainly ove soarve of those evil-namely, the defeiency in the aupply of water. Aceordingly, they resolved to obtain an Act of Parliament, empowertog them to adopt some mesure, which should give the town a larger quantity of that important element. The town wim stanted on the new
candstome, and had bitherto been applied from wells aunk isto that stratum, which consisted of a red sand rock, sometimes very soft, sometimes rather hard, intersected with occasional bands of marl, vory mach fanled with large and continuous veins, often alled up with clay, and many of them completely impermeable. The new red andstone reated upon coal measures, and certainly contained a great deal of water, which wat aborbed from the immediate aurface, of drained into it from the hills in pretty large quantities, of which the sctual limits were ascertainable, since they know how much fell from the clouda, and how much was eraporated; and they could calculate how much was lost by drainage into the rivers. The supply thus obtained was fonnd to be very inanficient for the necensities of the town, and it was supposed that the quantity could not be materially increased from this source. This point, however, had to be decided upon hy reference to the atructare of the district, and by calculating whether they got all the available water of the diatrict, or only a part, and it turned out that the latter was the fact. The mode in which this water was obtained was by wells, with horizontal galleries at their bottoms, to allow the admission of a large quantity of water, which was then pumped to the surface. Tbe water obtained from the new red sandstone contained oxide of iron and some salts of lime and magnesia, which made it exceedingly hard, and ill adapted economically for many useful purposes connected with the manufactures of that neighboushood, and in all operations in which soap was required. It was very good to drink, but unfit for otber domestic purposes. The question was, whether a sufficient supply, oven of this water, could he ohtained from the diatrict? The proprietors of the wells attempted to show that an incressed quantity could not be obtained. It was to their interest that that should be the case, and they very naturally believed that it was so-consequently. tbey opposed all measures, the object of which was to obtain water from any other source. The corporation gathered all the information that could be obtained locally, and then called upon several scientific men for their opinion; and it is a fact of great interest, as illustrating the present practical position of geology, that it was thought necessary to have the opinion of persons, more noted for their geological knowledge than for aimply a practical mequaintance with engineering. Profescor Phillips was first invited to give his atteution to the aubject, but was prevented from doing so by bis engagements with the Go. vernment. He (Professor Ansted) wes then applied to, and after close examination and full consideration, he came to the conclusion that a sofficient aupply could not be obtained from the new red sandstone formation, he being of opinion that, though a somewhat larger quantity might be had of the water which fell on the district, yet that would not be nearly enough for the requirements present and prospective of a town like Liverpool. What wes pext to be done? Then came in that admixture of engineering with geological science, now necessary indeed to every engineer, who wished to do bis work satisfactorily, and with the consciousness that, whatever the result, cvery means had been adopted wbich the circumatances of the case would allow. The engineers looked about the neighhourhood far and near, their object being to discover where the necessary supply was to be found. One scbeme, which met with considerable favour at first, was to take the water from the Bala Lake, in North Wales, and couvey it to Liverpool, a distance of 60 miles, hy closed canals. Great natural obstacles, however, intervened, and it was found that this plan incolved an enormous expense, with the chance of incurring atill greater outlay in overcoming several of those natural obstacles, which could not be well estimated until the work was attempted. This scheme, after exciting much diecussion, was at length abandoned, and the engineers began to look nearer bome. After again considering the supply from the wella, and again convincing themselves of its utter inefficiency, they found they must resort to other means, and thus originated the somewhat celebrated Rivington Pike scheme. The Rivington Pike district presented a billy surface of 17 square miles, admirably adapted by nature for such a project. The plan pursaed in this case was to take the district and measure its area of drainage, then to estimate the quantity of water that could be obtained from it, and, finally, to consider how the water might be hest accumulated. This wes a benutifully scientific problem, perfectly practical indeed; but one which had rarely, if ever before, been tried to the extent nuw proposed. First of all, they bad to see whether the quantity of water would be sufficient; and this was effected by accurately marking the water shed, ohserving where all the rills and streams could be caught conveniently, and, when caught, considering whether they could be conducted into some sound and sufficient reservoir. The model on the table, which was an accurate represention of the district, would thow that all those points were readily attainable. The drainage was regulated by the shape of the country, and it might be seen either by the Ordnance Map, a contour map, or a model. In this case, ho was able to exbibit model, which was the bent; but the Ordnance Map was the goide originally used. Having then found the area, the queation whetber it would yield a sufficient quantity of water to supply the town of Liverpool was next to be decided. This calculation involved a considerable amount of knowledge of geological structure. It wastany to tell bow many inchea of rain deacended from the aky on a certain space and in a given time; and they bad only to multiply that by the whole ares in. tended to be drained, and they would bave the exact quantity which fell upon the whole. That was simple enough; hut they bad then to ascertain what was the nature of the aurface on wbich the water alighted; for if it were permeable, as and, for instance, it was obvious that a large proportion would be absorbed and lost; or, if there were many bollows, the water Tould lie in them and evaporate. These and other geological considerations had all to be well considered; hut geological science showed that the dis'.
trict, being composed of the bed of hard andetone, called millatose grit, partially covered over with shaley beds belonging to the conl measares, the whole of it might, for practical purposes, be regarded as impermesble. The andstone rock, oftentimes very toft, wat here very hard, a good deal fanlted bnt not open-so that it would allow almost the whole of the water to ron off the surface. The consequence was, that almost all the rain that fell ran into the atreams, which a further examination showed might be readily collected into two principal reservoirs on the tide of the district nearent to Liverpool, which would be 24 miles diatant. The natural valleys, in which it was intended to place these reservoirs, had, no doubt, held water before, as the bottoms were covered with fresh water ailt. There were also beds of alluvial clay-an additional indication that a considerable quantity of freah water had at some period been there. By means of two or three embankments, these lower districts would thus accumulate that water, which the structure of the upper distriet allowed to run off. The whole of the rain Which falls upon an area of 47 square miles would thus be collected, producing a supply of $20,000,000$ gallons per day, sufficient for the town of Liverpool were it twice the sire, and alao for the supply of more useful and economical article to the mills, bleacb-worka, and other works in the neighbourhood. Here advantage was taken of the peculiar natural circumstancea of the district, to make the minimum quantity of surface produce the maxrimum amount of water; but which could never have been aecomplished, but for a distinct geological knowledge of the structure of the district. Had it not been for a practical application of geological acience, that on a certain description of stone the whole of the water would run off, the selection of the Kivington Pike district would never have been made, and tbe probability wat, that Liverpool would have remained for a much longer period suffering from the want of a sufficiency of so vital a Auid. This was a remarkable instance, in whicb a knowledge of structure had been applied to superficial objects of thin kind.

The Profensor dismissed the subject of draining by explaining the natare of the operation of a newly-iovented draining pipe (Wateon's draining pipe), which was remarkably effective. It wat cylindrical, with a great numher of longitadinal slits, which were wider inside than outside, and thus counteracted any tendency to clog. These pipes were most useful to insert in beda of clay, and, even after a considerable length of dry weatber, might be sean giving out water very plentifully. This efficient draining caused the beds to contract and crack, and, by thus making openings for the water, rendered the draining perfect. To the proper use of these pipes anowledge of the dip of the beds was indiapensable.

The next subject was connected with materials as required for variows engineering operations, and ubed for a vasl number of economical purposes. These be would divide in the same manner as he bad divided the various rocks, and he shonld commence with the clays.

Clay was either mixed with limestone or with sand, in various proportions, and was a very important material. All clays contained alumina, but a considerable number of materials existed, some known by the name of clays, and othera, thougb belonging to the class, not recognised by the general appellation. Of clay, properly so called, there wore several distinct kinds. One was the clay found in the shape of subsoil, chiefly used for agricultural purposes. In this case it consisted, not only of silicate of alumina, the base of all clays, but of limestone, magnesia, potash, iron, \&c., and wes none the worse for a little phosphorus; while it contained alio a quantity of carbon. This admixture was indispensable for vegetation; but for " materials" clays were better without these foreign suhatances. The most common clay considered as a material was known by the name of brick clay; it was a silicate of alumina, with a certain amount of free sand in very variahle quantities, which might, however, be easily determined by washing. A good brick elay should consist solely of these materiala, without lime or potesh, and if the free sand was not in sufficient quantities, it must be mixed with it to make it work; and, generally speaking, the purest, in the common sense of the word, was the best for making bricks. The clay derived from the decomposition of some of the old rocks was particularly valuable, and that derised from the decomposition of slate was generally most pure, and was aseful, in certain districts, in the manufacture of fire-bricks. The best kinds were the purest, and contained neither alkanes nur salte, either of which make it run, in the great heat to which it was subjected in the furnaces. The presence of such substances helped the action of the fire, and the surface of the brick would be turned to glass. Pure clay and sand was thus the best for firebricks, and it was obtained, as he had observed, from slate. The London clay, one of the tertiary series, was for the most part tolerably well adapted for bricks-indeed, all London was built of it; but it was not well suited for the making of fire-bricks, though it possessed many separate portions that were so. The mischievous ingredienta might indeed be separated, but generally it was not worth the trouble and expense, as there was no great diffculty in outaining clay for fire bricke.

Pipe-clay or potters'clay, snother of this class, was used in the manofacture of the rougber kinds of earthenware. This was a most useful material, and did not require to be so carefolly selected as that uned for fine pottery and porcelain. It contained a considerable quantity of water, and it was unctious and soapy to the feel. It was neceasary for the jporposes of the potter that it should contain a considerahle quantity of water, which usually amounted to 18 per cent. It did not contain sand; but it usually had about 1 per cent. of oxide of iron, snd a amall quantity of lime. Tbe chemical composition of materials of this kind, however, was not very accurately atscertained, as they were for the most part accidental mizturen, and were aps
to vary in diferent localities. Pipe clay was obtained from beds situated in the midst of other clays, and thoy appeared to form a band of finer materina amocisted with the coarser clays. There wat a great deal of this clay found it Paris, where it wascalled argile plastigue. The lower beds of the London clay were also described as platic elay; but they consisted, for the most part, of gravel or pebble beds, for which that was not at all a proper name. Still, some of them contained this material.

Fullere' earth was another and a finer kind of clay, used in the fulling of cloth, on account of ite power of absorbing grease readily from woollens. It contained an unusually large quantity of silica, as compared with the ordinary pipe-clay, the proportion of the latter being 43 per cent. of silica, and 33 of alomina; while that of the former was-silica, 53 ; alumina, 10 ; the other parta being made up of Iron (about 94 per cent.), magneaia (1 per cent.), and water (24 per cent.). Fullers' earth was derived from the Weald clay at Notfield, in the neighbourhood of Reigate, and from the lower part of the oolite rocka in Wiltabire. In each case there was a considerable variation in the colour, occasioned by the condition of the oxide of iron; but the texture was the ame, and the colour was a matter of very little consequence.

Porcelain clay was another important material. This was derived from decomposed felapar, obtained generally from gneiss, or granite. It was the parest of all the clay rocks, being a pure silicate of alumina, consisting of 60 per cent. of silica, and 40 of alumina. A large quantity (8,000 tons annually) of the finer kinds was obtained in Cornwall by artificial washing. Besidel this, upwards of 25,000 tons of the coarser kinds was obtained from beds formed by the natural washing of the rains. The decomposed felspar was mized with water in the artificial process, and moved along at a certain velocity, when the whole was gradually deposited in the shape of porcelain clay. The conrser parts were deposited first, when the masas moved most rapidly; next, the tiner parts, as the masi moved slower; and, lastly, the finest of all.

There were other clay! worthy of notice, as, for inatance, the ochres, red and yellow, the colour being decided by the condition of the oxide of iron, Which was present in them in considerable quantities. These, however, were not important as materials.

From some clays, the substance called alum was derived; but that, like the ochrea, was not an important material, geologically speaking, although interesting from the chemical proceas by which it was obtained. The talented lecturer conclnded by briefly describing this process.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Nov. 29.-A. Poynter, Esq., V.P., in the Chair.

The Secretary read the Report of the Committee appointed to examine the deaign aubmitted by the Cavalier Nicolò Matas for the completion of the weatern front of the Cathedral at Florence. The report expressed in general terms an approval of the design; and atated that the architect bas shown judgment in adopting the style of the other parts of the exteriorthes seeking to complete the noble edifice in one congruous character, in barmony with the Campanile and the Baptistery. By this unity of sentiment, the deaign for the western front appeara a consistent and integral part of the atructare.

A paper was read by J. Gwint, Esq., entitled, "Some discursive Remarks on Pointed Architecture, in relation to its Symmetry and Stability."

The easay was of considerabie length, and traced in a general way the origin of Gothic architecture. Mr. Gwilt stated that of a great number of writers on that subject whom he had consulted, he found that twenty were of opinion that it originated in Germany, fourteen that it wat of Eastern or Saracenic origin, six that it arose from the hint suggented by the intersection of Norman archen, four that it was the invention of the Gotha, and three that it arose in Italy. Mr. Gwilt was of opinion, with M. Michelet (" Histoire de Prance"), that when the power of the Cburch diminiahed about the year 1200 under Innocent IIl. the arti, particularly architecture, fell into lay hands to a considerable extent; that the impetus thus given changed its character; and that in the hands of the lodges of Freemasona which then arose Gothic architecture and all its development were originated and taught. By the aid of diagrams and drawings the gradual growth of the fine forms of Gothic architecture were developed and its prisciples explained; the leading fact seeming to be that the number of sides in the polygonal apsides of the cathedrals was the governing number for all the parts of the pian and even the details of the architecture. Maby curious inatances of these analogies were given. Mr. Gwilt combatted the "Venica Piscis" theory, as well as the vagaries, as he called them, of the symbolists.

A commanication was read from R. I'anson, relative to some mural paintings discovered by him in the church of Lingfeld, in Surrey. Shese paintings, fac-similen of which were exhibited by him, represented draped figuret, about three feet in height, on a diaper gronndwork, and appeared to have been executed in dintemper. They had at nome period been covered
over with whitewash; on which the Commandments and scriptural texts had been inccribed.

Dec. 13.-S. Ancell, Esq., V.P., in the Chair.

A paper wat read "On the Principles and Practice of Building Sewers." By E. I'anson, jun., Fellow.

The iniention of the author was to show that sewers might be offectually constructed with a moderate fall; that no one form of section is applicable undor all circumatances, bat that no form should materially depart from that of the semicircalar invert ; that all main sewers should be of sufficient altitude to allow a man to pase through; that no impediment ahould be offered to the continuous fow by cross streams or accumulating deposits; and that cleansing by "flushing" is an efficient means of removing the silt and other matters in the sewert. Mr. I'anson particularly alluded to the aecessity of all sewers being of sufficient, bat not of more than sufficient, tectional area to contain the greatest quantity of water that may at one time bave to pass off $-0 r$ that, as in the case of districta below the level of high water, they may have at one time to contain. In reference to the idea of constructing sewers of amall size and removing the contents by continued pumping, Mr. I'anion remarked, that as the pumping power should be at all times equal not only to discharge the average quantity of water, but alao that of the greatest quantity which may at any time be required to be passed off, it was obvious that there would be an enormous continued waste of power at a cost more than commensurate to the saving effected by constructing the sewert of amaller size.

SOCIETY OF ARTS, LONDON.

Nov. 10.-Thomas Wehstra, Eaq., B.R.S., in the Cheir.
The Secretary read an address on the opening of this the 94 th Semsion of the Society.
Mr. J. Cendall read a paper "On Ormamental Art as applied to Ancient and Modern Bookbinding."
The anthor commenced by stating that the earlient records of bookbinding prove that the art has been practised for nearly 2,000 years; previous to which time, books were written on scrolls of parchment. Some inventive genius, bowever, to whom the Athenians erected a statue, at length found out a means of binding books with glue : the rolls of vellum, \&c., were cut into sheets of two and four leaves, and were then stitched somewhat an at the present day. Then came the necestity for a covering, The firat hookcovers appear to have been made of wood, probably merely plain oaken boards, which were afterwarda aucceeded by valuable carved oak bindinge; these were followed by boards covered with vellum or leathor, and specimens of such of great antiquity still exist. The Romass carried the art of bookbinding to considerable perfection, and some of their public officers had books called "Diptycks," in which their acts were written. An old writer bays that about the Christian era, the hooks of the Romans were covered with red, gellow, green, and purple leather, and decorated with ailver and gold. In the 13th century some of the gospels, missals, and other service books for the use of the Greek and Roman churches, were covered in gold and ailver; some were also enamelled and enriched with precious atones and pearls of great vaiue. In the 15 th century, when art was universal, such men al Albert Dorer, Raffaelle, and Guillo Romano, decorated books. The use of calf and morocco binding seems to bave followed the introduction of printing, and there are many printed books hound in calf with oaken boards about the 15 th and beginning of the sixteenth centuries; these are mostly stamped with gold and bhad tools: the earliest of these tools generally represent figares, such as Christ, St. Paul, costs of arms, \&cc., according to the contents of the book. In the reign of Heary VIII., aboat 1538, Grafton, the printer, undertook to print the Great Bible, for which purpose he went to Paris, there not being aufficient men or types in England; he had not, however, proceeded far when he was atopped in the progress of this "heretical book," upon which he returaed to England, bringing with him presses, type, printers, and bookbinders, and finished the work in 1539. Henry VIII. had many books bound in velvet, with gold boases and ornamenta ; and in his reign the stamping of tools in gold appears to have been introduced. In the reign of Elizabeth, some exquisite bindinge were done by embroidery, the queen herself working the covers with gold aud silver thread, spangles, \&ec. Count Grolier seems to have been a great patron of the art on the continent, and all his books were bound in mooth moroces or calf ornamented with gold. The style of the books of Maioli was very similar to that of Grolier, or those of Dinne of Poictiers, the specimens done for her being among the finest ever produced, and were no doubt deaigned by Petit Bernard. Rogar Paine was the first Englishman who produced a really good binding, and some of his best works, such as French romances, were powdered with the fleur-de-lis. His books on chivalry bad suitable ornaments; on poetical works he used a simple lyre, and carried the emblematical style of binding as far as emblems ought to be used. The following bill of his for binding a work is a curiosity, and thows how moderately he charged :-
" Vaneria prodium Ranticum, Parisiis, mpccicxiv.
"Bound in the very best manner in the fineat green morocco, the back lined with red morocco. Fine drawingpaper and very neat morocco joints inside. Their was a few leaven ataind at the foredge, which is washed and cleaned

006
"The subject of the book betag 'Boattoam,' I bave rentured to putt the Vine Wreath on it, I hope I have not bound it in too rich a manner for the book. It takes up a great deal of time do these Vine wreaths; I gueas within time I am certain of measuring and working the diferent and various small tools required to Gill up the Vine wreath, that it takea very near 3 days' work in flaishing the two sides only of the book-bat I wished to do my best for the Tork, and at the amme time I cannot expect to charge a foll and proper price for the work; and hope that the priee will not only be found reasomble bat cheap
$0180^{\prime \prime}$
Of the binders of the present century, the following deserve to be mentioned with reapect-vil., Mr. Mrekeuzie, Mr. Carke, Mr. Bedford, and Mr. Hayday; the binding by the latter consist almost invariably of adaptations and modifications of ancient examplea. Among the many splendid specimens of his wort exhibited, that of "the 8herift of 8hropshire," in imperial folio, deserves apecial notice, as being enriched with the armorial beartags beantifully coloared. The binding is of blood-coloured moroceo, extending an ineh and a half all round the inside of the cover, on which in stamped a bold, open border, tooled in gold.
The author, after alluding to the numerous specimens of modern bindings which have of late been produced to the pablic, and regretting their want of originallty, concluded hy urglog the recensity of attempting something original and saitable to the adrancing and improving taste of the time. Then we may hope that ere long ornamental art in bookbinding will be wedded to our present perfect execution, and that the 19th century will be able, like the 15th, to boust of a atve of ithown.
Mr. H. Cols, atalstant keeper of the Pablic Recorda, exhibited a number of very curtwas and beantiful specimess of boakbinding, among which was one comtaining the deods relating to Henry the Seventh's Chapel at Westminster, in which the monks undertake to pray for the soul of ita founder.es long as the werld is.

Not. 17.-W. H. Bodxim, Rsq., V.P. in.the Cheir.
The firt communioation read was by Mr. Bewant, on his "Plan for owor. coming the diffleultion of a Break of Gaugt, and of Uniting the Broad and Narroso Gauge Raihoays."
Mr. Baianr commenced hir pepper by pointing out the diffoulties whioh had arien from. the adoption of the two gauges in this conatry, and the objections which have been urged againat the varions plans-viz, the telescopic arles for the wheels; the shifting of the carriages from one gange on to that of another; laying down donble lines of raile ; \&ec. He then proceeded to describe his own plan, which in as follows:-At the point of junction of the two gauses, \& platiform is to be fixed in the centre of the rails; the carriages are then to be pleced upon whecia, the two ends of the axien of which are to be made as mile screws ; on the centre of the arle a pinionwheel is to be fixed, and under it atiched to the frame of the carriage a lover, opon the apper side of whiob in a rack, and at-the lowar end an antitriction roller. The asve of the wheels is to extend under the carriage in the form of a femmie serovi, to roceive the axlen. By thin arsapgement, While the train is travelling on the parrow gauge, the wheols would be screwed up to the required vidth, the racked lover banging loosely uoder the pinion-wheel, and the axle would turn with the wheels; but when the train reached the point of junction, the lever mould be eaught ap by the platform (which is to be 40 yards lang), and with it the rack. The axle would thus be provented from turaimg by the pinion-wheel and rack, and the wheelo, from the weight of carringe, pamengers, loggage, sce. proming upon them, would immediately begin to unwind the scrowh, which, by the time the carriage has reached the other ead of the platform, will have extended the arle to the required width-the bover would drop and free the pinion-wheel, and the axle woold then turn with the wheels as before. The wheele are kept in thair porition when unwound by coupling-rode. In buoking the train, the acrew is prevented from acting by means of a stop fased to the carriage and bloeking the axle. A working model was exhibited.
The recond paper read was by D. J. Hoare, Eaq., "On a Railway Tobgraph and Alarmi, to be weed as a means of Communicating between the Guard and Driver of Railhoay Curriages."
The plan proposed is that a series of rods should be pased through the oarriages of a train, and united at their extremities by a teleceopo-joint, so as to allow of extension and costraction: the rode being made with a untvermal joint, admit of a rotary motion, the only motion which a railway train has not. At the end of the rod on the guard's carriage is a crank, which, when the rod is tarned, comes in contract with a hammer, and causes it to atrike a bell. A signal is then to be maised, indicating the carriege from which the signal is made; the guard will then immediately ascortain whether it is necessary that the train should be stopped, and $t f$ so, by turning the rod in the reverse direction to what the person signelling had done, will ring another bell at the driver's end of the traim, or sound the whistie of the engine.-Mr. Hoare stated that it is immaterial what the curve of the nillwhy may be, an the univeral joint admits of the rod varying from a right line. It wonld also not. in ease a carriage got off the line, or even on to the buffers of. the carriage preeeding it.

Not. 24.-T. Wrbeter, Beq., P.R.S., V.P., in the Chair.
The firat communication read whe on Mr. Dutros's "Raihoay Commmanicator."
Mr. Dutron proposes that a small metal pipe ahould be fixed in anome
convenient part of each railway oarrige, end connested at ith extremitian with the carriage preceding and following it by mana of a start lacgth of vutemised iadiarubber tubiag and a kind of bayonet fastening; at the end of the tube, near to the guard's aent, a whintle is to be fixed, which will be olpable of being sounded by the pescengers on their blowing into a antall branch tube, to be fixed in eech carriage in convection with the matal pipe. A model was exhibited.

The recond commanication was by Mr. F. Buorzers, "On-7his phan for formaing a Commanicution between the Pamengers, Guwerds, and Drivera of a Refliway Train."

Mr. Bnotaras proposea, by means of aty-wheel, to be worked by the rapid current of air passing through it, to set in motion a multiplying power which shall work a small air-pump, and compress air into a chamber in connexion with which two whistles shall be fixed; one of these the passenger are to be capable of sounding, by allowing the compressed air to escape. The second whistle is to be of a different size and sound, and entirely under the control of the guard, and only to be used when it is necessary to stop the train.

The third paper was by Mr. E.E. Aurns, on his means of effecting a nimilar communication.

Mr. Aluse propones to make use of electricity as a mans of sounding the ateam whithe. Galvanised mires are to be carried along each of the carriages of a train, and the electric circuit is to be completed by the one of galvanised coupling chain, which, 50 long as the cirenit is complete, may netises a piece of seft iron and holde a detent attached to the steamaocki but whenever the cirenit is broken, the iron is demagnetised, and the detent allowed to go free, upon which thes steam ascapes, and the whintle thereby sounded.

The fourth paper read was by Mears. Besirt and Lirtis, on their methed of forming a similar communication.-In this plan, as in Mr. Allen'a, it im proposed to une an electric carrent, the circuit of which is to be completed by means.of wirss and chain, but is to act only when the circuit is com. plete, when a bell is reag.

Dec. 1.-W. Wron, Bag., R.A., in the Cbair.
Five specimens of "Painting on Glase", by M. De Ron, of Musicer, were exhibited,-The Secretary stated that the coloums uad by M. De Bon are peculiar, and the method of preparing them tuown only to himeelf, and which colours are glasees of different degreet of hardness, care being haken in using them never to put a harder upon a softer metal. He also usea both sides of the glass, which enables him to obtain clearness and decision of colour.

Mr. Haw offered some remarks on the history of atained glans, and exhibited exveral opecinens of modern manfacturo.

Mr. S. Mouluton exhibited a model-ef an "Iron Truer Raihoay Bridge," the in reation of Mr. Rupan, of Now York. The peopliscisies of thin bridge are ite simplicity, lightness, and gtrength. The directors of the New York and Harlem railroad have erected a bridse on this priaciple, the apan being 70 feet, and haring a double track or roadway upon it ; the entire weight of metal used in its construction was 13 tons, while its cost whes under $£ 500$.

A paper wes read by Mr. Anogri, "on Engrasing wilh referemes to Mmernontal Brasses and Ireised Stomen."

The author commenced by referring to the very early period at which the art of engraving appears to have been known and precticed by the lapidary and goldsmith, and the probebility that those to whom therart westrown were subject to a precise code of lawt and comested with the priastly aftioe, these lawa baving the effect of regulating the productions aecording to a gtren etandard up by the heads of thair order; thas giving a aingular uniformity to the numerove orsmples of antique art, whether in paintiog, scalpterre, or engraving. After alluding to the Rgyptian, Btrosean, Greek, and Roman specimens of engraving, and their similarity and common origin, he proceeded to point out the varions parposes to which the art of eagrato. ing on bress was employed, such as the repmentation of grogrephical disgrams. In the time of Herodotos, edicta and public records were saratimea inseribed on brass tablets, a striking instance of which oecurs in the preserration down to the precent time of the will and sote of the emperor Angottos. Having tonched upon some fow inatances of the anciont praotice of the caleorraphic azt, the author proceeded to detail mome partieolars of that process ta it appeared at the general revival of art during the middle agen In the 8th century, by a law of Kenneth, king of Scotiand, it:wes enjoined that a cross should bo put on exery graventope-i.e.cofin-lid; and this appean to have been done in three whas :-1st. By the ume of incised linee drawn around the object. 2ndiy. By producing the form in low relief. 3rdily. By a wholly excised fignes-The use of sepulchral bracess appears to have originated with the geasral revival of art in the 13th century, one of the earliest spectmens being that of Sir Roger de Trompington, who died is 1289. The brases of the 14th and 15th eenturies contain, beaidoe the efingien of warriost, churchmen, ladies, and civilians, meny enamplea of beantiful decoration, derived from the architectural prectiee of the time. Difioreat combinations of the letters I.H.S., eomponing the mored monogram, appear in the terasees of the 15 th and beginning of the 16 th centuries. In the 18 th eentary, at the time of the Reformation, these eacred monumenta appear to bave become abnoxion, and were aceordingly awopt out of the ohurches with an onsparing hand-fow (comparatively) havias ascaped de-
etriction : of some of these, howerer, the author prodinced rubbings ; and, baving traced the history down to the 19th century, and referred to the latest of that period (prior to those produced ander his own direction), he proceeded to arge the desirableness of possessing as a nation a complete collection of the rubbings of the brames of this conntry, as illuatrative of the costome and history of bygone times, and the propriety of such a col. leotion being deposited in the British Museum. The anther then concloded his paper by calling attention to the cartoons of several monument recently erecuted by himseff, by a new proceses of working on brase, and whioh he promised to commurieate to the Society at an early period.

Dec. 8.-T. Hoblyn, Esq., in the Chair.
Mr. H. Cons made some remarks in refarence to Mr. Archer's paper on sapelchral brestet and incised stones, read at the last meeting. He observed that abont too years since the study of brasses re-commenced in this country. During that period, however, almost all that is known respecting the brassea has been axhansted, and several works have been written on the sabjoct; so that there is scarcely anything to find out, unless the brasses happen to lay under pews or in parts of the churches which at present are concealed, The moat remarkable have bean publiabed by the Cambridge Camenen Society, and on the walls are exbibited engravings from a book of great excellence by Waller: others have also paid attention to the subject. The ordinasy proces of obtaining rabbings is as follows:-A sheat of paper is laid upos the brast, and kopt in it position by wraights; it is thon rubbed over with a composition known as beel-ball. By this means, the whole of the peper where the brase under it is not cut awey becomes blackened, while the incised lines remsin, the colour of the paper. In some cases, a kind of brosec competition is uned apon a bleck paper, and by this meabs as nearly sosaible a fecaimila of the bress is obtained. The most important breases to be found in London are ir Weatminstar Abbey, St. Helen's, Binhopagato, Allhnilows, and St. Andrew': Undersbaft. Pascing out of London, the neareat churches where any remarkable brasses are to be found are, Willesden, Harrow, South Minas; St. Alban's, Brombemrne, Cheshunt, Royatead, Chigwell, Windsor, Stoke-Pogis, Taplow, Weaterham, Penshurat, and Cobham.

Mr. Hall mendo nome remarte reletive to tho history of copper-plate en. graving, and the probahility that it grew out of the art of angraving monumental brasses.

Mr. Slocum exhibited two ploughs, a acythe and cradle for reaping corn, a gras soythe, three spring tempared manure and bay forks, a cast-ateel hand boe, and an American axe. He stated the peculiarity of these implemanta to coastist in their lightneas, cheapnesa, and durability, thas onsbling the agricaltural labourer to accomplish a larger amount of daily work at a leat cost. The implementa be exhibited were such as are commonly used in the United Staten.-A lettor was read from Mr. Love, of Manor House, Naseby in which he states that the ploughs were tried on a clay soil, in rather a dry state, againat Adamis Northampton plongh, and one of Howard's Champion ploaghs. Howard's, when working five inches deep by eleven inches wide had a dragght of 31 stone ; and Adams's plough, at the same width and depth, a draught of 30 stone; while the American plough, at five inches deep end fourteen wide, drew only 26 stone. "In justice to the American plonghs, I muit any," observes Mr. Love, "that they cut np and cleaned their furrow quite as well as the other ploughs, and also turned the earth, cempletaly breaking it, and patting the soil in capital position for drilling or dibbling; they are the mast simple, strong, light, and effective plougha it is poanible to conceive: other experiments were aleo made, and the draught terted by the dynanometer."-The cont of the ploughs Mr. Slocum atated to be s2 each.

A commanication wha read from Mr. W. Tarlor, F.L.S., fec., "on the Cultination of the Polygonum Tinctorium, or Dyer's Tinctoria."
"This plat," observes Mr. Taylor, "is a native of China, and wea introduced into this country in 1776, by John Blake. It is used in China and Japan for the parpose of dying a blue aimilar to that of the fineat indigo. The colour in obtained from the leaves of the plant, whicb are dried, pounded, and made into cakes. 'With these cakes,' Hunberger sayt, 'they dye linen, silk, and cotton.' When the cakes are boiled, they add ashes; and the stronger the decoction is made, the darker is the colour. The plant grows buet in this coantry on soils of a medium texture, which must also be well manured before the seed is sown, which is best sown in rows about the middle of April. Two pounds of seed to tise acre is sufficient, hut the plants may be planted ont in rows from the hot bed, at the rate of about 16,000 to the acre; and unless they are brought forward and planted out, they will not prodace seed in England. The plant onn be prepared for the market in three ways, vis.-lat, it may be cot in a green state and sold to the dyer, in which case an acre would produce five tons of leaves and stalks, worth about $\$ 30$-2nd, if cut and placed in vatt, so as to precipitate the fecnla, or in digo, the acre would prodnce 3 cwt . of colour, which, at ls. per lb., would be worth $£ 1616$ s.-3rd, the plants may be cut $u p$, dried, and packed in bendles : the acre wonld then yield three tons of dyeing matter, aud be worth about $\mathbf{2 1}$. The colonring matter may be extracted either by fer mentation or acalding." Specimens of the plant and colour were exhibited.
The lant communication rend was by Mr. W. Bennety, "on aome semples of Plos grown in Ireland in 1847."
Specimean. of the fiax were exhibited, and Mr. Bennott stated they were prodaced ander every diasdrantage ponible, and in one of the most remote
and deatitute corners of the whale island, viz, the baroay of Eoris, county of Maro, on the western coast, and under the superintendence of Mr. G. S. Bourns, the peasantry being wholly unacquainted with its mode of cultare and proparation. The fiax is of good quality, and worth from 6s. to 8s. per atone. The introduction of its culture hat also afforded emplogment to a large number of poor women in spinning. The peasantry are also being employed to manufacture linen from looms erected in the stables of a clergy. man, in another most distressed locality, specimens of which were exhibited.

ROYAL SCOTTISH SOCIETY OF ARTS.

Noo. 8, 1847.—David Maclagan, M.D., F.R.S.E. Prenident, in the Cheir. The following commanications were made :-

1. On the first principles of Symmetrical Bearty, at developed in the Geometric Harmony of the Human Head and Cowntenance. By D. R. Hax, Esq.

Mr. Hay commenced his peper with a quotation from Dr. Reid's "Intellectual Powers of Man," showing that it was the opinion of that great philosopher, that, st taste might be true or false according as it was founded on true or false judgment, it must have first principles. He then observed, that by truth being properly inveatigated in the natural sciences, natural philosophy had arrived at its prasent advanced state, and its application in the useful arts had consequently produced the happient results. But that in our search after truth in the soionce of aothetica, a very different conrse had been followed, and that our idens of beanty were olothed in mystery, and our attempts to prodace the fermer in the various branches of art, depend in a great measure apon chance. This he attrituted to the practice of eervile copying in opr schoole of art, insteed of atudying the first principles or teachable laws of beanty; in short, that we study and imitace resulte without inveatigating causes. He amerted that thero oxint procise mathomation principles of a precticel' metere, by which the external form of the hamam head and countemance maty be delmeated, and by which the propertiona and relative ponitions of the features may be arranged upen the facial surfice 00 as to produce a primary species of symmetrical beenty; and that these prin. ciples were identical with those which produce benty in arehiteetare and ornamental design. This he demonstrated by combining in a diagram the Platonic triangles and the curvilineal figuren that belong to them, ahowing at the same time, that those triangles were the root of all aymmetrien beauty and harmony in geometry. Ha showed that this disgran corremponded in all ity parta to the anatomy of the human head, and that the countenamoe thereby produced ponsessed the beau ideal beanty of the fineat Grecisa sculptures. Mr. Hay stated that he believed the principles be explained were known to the anciont Greeks, and were introduced by Pythagoras, and taught by Plato in connection with mathematics, and by Pamphilus as connectod with art. The drawings by which Mr. Hay exemplified hia principle wert larger than life, and very numerons, and we underatand it ia bis intention to publinh them on a amall scale.
2. The Report of the Prize Committee, awarding the Prizes for Semion 1846-7, was read.

Nov. 22.-G. Buchanan, Esq., Pretident, in the Chair.

The following communication were made :-

1. Suggestione for preventing Accidents on Raihoaye. By J. Stewant Hepburn, Esq., of Colquhalzie. Thase suggeatiqns have reference to the injudicions practice of mixing light with heary carriages in different parts of thetrain, and to the injudicious applications of the break, and the orderin which it is applied; and propose the clasaification of the light and heavy carriages, and the working of the break from the rear to the front of the train. They bave also reference to the permanent works of most railwas an originally constructed, being too light and intufficient for the heavier loads and high velocities which are now used; and propose to give increased stability to the rail by a well haid pavement of beavy blocks of atone, along the outside of each rail. They have also reference to what is celled "jumping" which is often the cause of carriages running off the line-to unequal sabnidence of the roadway, and proposes Telford's plan for forming the embankmente in concave layers, or that the earthworks should be allowed ample time to anbside of themselves before the rail is used. Mr. Hepburn also proposes lopgitudinal supports under the joinings of the raila, which he considers their weakest part. The suggestions have also reference to the outanglement of the buffern, and "riding" on each other ; and propese to enlarge vertically the surface of the buffer, by having in ite place three elliptic aprings on the lower frame of the carriage, and two on the apper part, each set connected with a horizontal bar of wood, and the whole covered with boarding. Mr. H. holds that this arrangement would prevent the carriage from turning up and rolling over each other when a collision takes place.
2. Description of a Model of a Malleable Iron Railway Chair. By Mr. Rose, Haddington. The advantages are stated to be grester strength, and thus giving additional security in pacsing sharp curves: the rails would fit much better from the chairs being all cut true to the pattern, thus securing a uniform bearing to the bead of the rails: the superior manner in which the wooden keys will fit, and with less rigidity. Mr. Robb think they conld bo made cheaper then cant-iron chairs, and that they would be atronger, although one-half lighter, wheroby a saving in cost of carriage would be effected to an axtent of 50 per cent.
3. Description of a proposed Improvement fn Railway Shoitches. By Mr. Nicoll, Arbroath. These switches are placed on iron chairs so constructed as to move along with the awitch, whereby the motion of the switch is not prevented by it getting jammed with dust or rubbish; and the chairs, from their peculiar form, push aside the dust and clear a way for the switeh. Mr. Nicoll also gives a deacription of the apparatus for opening and cloning the switch, so as to prevent accidents by the motion of them by unanthorised persont.
4. ARailway Alarum Communicator. By Mr. Morfat. The object is accomplished by a tube sunk in the roof of each carriage, and to connect these are tubes of India rubber with screms. Inside the tube is a wire, and atteched to it inside of each compartment of the carriage are bell-pulls or knobs. At each guard's seat are bells and knockers, and the aame at the driver's, fixed near the engine. A passenger wishing to give a signal, pulls the knob, by which means the whole bells are rang. The tube can alao act as a speaking-trumpet, mouth-pieces being inserted in each compartment, and the same to the guards and drivers-so that a pasaenger having rung tbe bell, communicates to the guard and driver, \&c., his reason for so doing.
5. Description and Drawing of an Alarwm Rein for Railway Trains. By Mr. M'Coll. The rein is attached to a whistle valve on the engine, and ex. tends along the whole train on the locked side; so that any person, by pulling the rein, opens the whistle, and informs the driver that something is wrong.

Dec. 13.-G. Buchanas, Esq., F.R.S.E., President, in the Cheir.
The following communications were made :-

1. Detcription of the Overareh Suspension Bridge. By Mr. Minne. This bridge is so constructed that the roadway runs under the arch, and is connected to it by suapending rods, which are so disposed that a large portion of the arch sustains a small portion of the roadway, thus enabling the bridge to bear a concentration of weight at any point. The main rods of the arch lean against each other at the centre (where the key-stone of a stone bridge is situated), giving mutual support, which is continued towards each end of the arch by circular extenders, enlarging as they approach the piers. The pressure of the main roris against each other is thus turned to the utmost advantage, and gives the greatest stability possible; and from this construction the leeside will resist a gale of wind with the full power of the arch. The model is twenty inches in length, on the scale of ten feet to an inch. The entire weight of iron is six ounces, and it safely bears a load of 56 lb .-nearly 150 times its 0 wn weight.
2. Supplementary Explanatione of an improved Railway Break. By J. Stawart Heppupn, Esq. This is an improvement of break submitted by the inventor to the Society last session. It consisted of a rubber block of wood attached to railway carriages by a moveable frame-work; and applied, not to the wheel, like the commou break, hut to the rail, by a gradual presaure capable of being increased to auch a degree, on an emergency of danger, as to raise the hind wheels from the rail.
3. Improvements in Raihoays. By Mr. Joun Cranr. The first improvement is for locomotive engines to ascend or descend steep inclines. It consists in laying along the incline a toothed rail, outside of the common rail, and keying on additional wheels with teeth on the shaft of the driving wheels of the engine, outside of the bearing wheels, and working in the toothed rails, and the teeth of which are to work in the teeth of the rail; thus pulling on the train.-The second improvement consists in making the Wheels with double flanges, one on the outside of the rails, as well as the usual one within them. Thus the wheels would be less liable to go off the rails.-The third improvement consiste in laying the rails on longitudinal sleepers, connected together by cross sleepers, and forming a series of strong square frames. -The fourth improvement is for a break. Iustead of pressing against the wheels, and thereby retarding them by friction, and eventually locking them, the break falls down at once between the wheel and the rail, inserting itself between them like a wedge, and thereby locks the wheels, and, at the same time, rubs upon the rail. Four wedges are required for ordinary carriages, one pair at each end; each pair of wedges is connected by a bar of wrought-iron, in the centre of which a chain is fastened, which can be raised by the guard, and fastened by passing one of the links over a hook. When the cbain is detacbed from the book or button, the break, by ita own weight, and guided by a rod attachad to the carriage, falls under the wheels and prevents them revolviog. The guiding rod to have its centre of motion eccentric to that of the wheel, and that centre to he a pin fixed on the axle frame of the carriage, a little above it, 80 that the wedges when raised may be clear of the wheels.

NOTES OF THE MONTH.

Railuray Precautions.-Mr. Wyndham Harding, in a letter to the Institntion of Mecbanical Engineers, recommends, as the most simple and best method of forming a communication between the gusids and enginedrivers, "That the gaards should have the means of readily getting along every train, whether a passenger or goods train, to the engineman, This (he observes) was the original idea in narrow-gauge traing, for the means are afforded of getting from one carriage to another, but the ides has been imperfectly carried out, inasmuch as a horse-box or a luggage van afford no facilities for getting past them. Nothing is easier than to
remedy this by holdfasts and a narrow foothold. In the case of fiat trucks Ioaded with auch goode as cotton, uprights at the four corners, and a rope from one apright to the other, would afford a hold for the guard, and woold also, at the same time, tend to steady the load. In the vehicles which travel in passengerirains evan anch an addition as this would not he necessary. On the broad-gange lines connected with the Great Weatern Railway, there is generally no facility afforded for getting along the train, but such facilities can with equal ease be afforded in broad. gauge trains as on narrow by trifing additions to the vehicles." Mr. Harding caused additions with this object to be made to the broad-gange carriages on the Briatol and Gloucester Railway when he had the control of that line.

Commissions of Sewers.-The old commissions for Westminster, Hol born and Finsbury, Tower Hamlets, and for the Kent and Surrey dis. tricts, were all in one week superseded, and a new commission, consisting of the following, were nominated for all the districts, on the 6th ult. :Lord Ebrington, Lord Ashley, Dr. Buckland, Mr. Hame, M.P., Hon. F. Byng, Dr. Arnott, Dr. S. Smith, Mr. R. A. Slaney, M.P., Sir J. Clark, Rev. W. Stone, Profossor Owen, Sir H. De La Beche, Mr. J. Bidwell, Mr. J. Bullar, Mr. W. J. Broderip, Mr. R. L. Jones, Mr. J. Leslie, and Mr. E. Chadwick.-Mr. L. C. Hertslet, Clerk of the Westminater division, and Mr. Staples, Clerk of the Holborn and Finsbury division, were appointed clerks of those districts provisionally; and Messrs. Phillipe and Roe were appointed surveyors provisionally, and Mr. Austin consultingsurveyor.

Brussels Lace.-M. Blanchet gave an account of the serions consequences resulting from the process of whitening Brussels lace to the persons employed in it. In this process the carbonate of lead is used; and a large portion of it is carried into the atmosphere, where it is inhaled, and thus produces a serious affection of the intestines. It is also very injurious to the sight and to the hearing.

ITET OF NEW PATYNTHE

granted in england from November 30, to Deezgber 22, 1847. Six Monthe allowed for Enrolment, unlese otherwise expressed.

William Betta and George Willama Jacob, of Wharf-roed, City-roud, for "Improvementa in the manafacture of capsulea, and in tbe application of certalin deacriptions of surficen." -Sealed Nov. 30.
Whliam Eaton, of Camberwell, engineer, fur "Improvements la machinery for twisting cotton or other g^{2} brous aubstances."-Dec. 1.
Guitavus Moenck, of Welliggton-atreet, Strand, D.LL., for "certala Improvements in clocka and time-keepers."-Dec. 1 .
Thoman Chandler, of Stockton, Wiltahire, for "Improvements in machinery for apply. ing liquid manure."-Dec. 1 .
 chinery for the manufacture of looped fabrics."-Dec. 1 .
Samuel Newiogton, of Frant, Suseex, M,D., for "Improvements in dibbling or sowing seeds."-Sealed Dec. 7.
John Scoffern, of Upper Hollowny, M.B., for "Improvements ln the manufactare and refining of augar."-Dec. 7 .
John Britten, of Birmingham, machiniat, for " certiln Improvements in apparatua for cooking, preparlag, and contalniag buman food and drinka, and in openlog and closing oven doors, parts of which luprovements are applicable to other stmilar purposet."Dec. 7.
Jamea Smith Torrop, of Edinburgh, newspaper prophetor, for "Improved machinery for time algaala."-Dec. 7.
Whillam Dakin, of 1, St. Panl's Church-yard, for "Improvemente In cleaning and washing coffee, in the apparatua and macbinery to be used thereln, and also in the apparatus for maktug infusions and decoctions of coffee." (Commanication.)-Dec. 7.
James Sweetman Eiffe, Esq., of 48, Loonbard-atreet, City, for "Improvements in the manufacture of astronomical and otber clocke, chronometers, and watches."-Dec. 7. John Hickett, of Lelceater, for "Improvements in the nanufacture of pili-bozet." Dec. 7.
David William Wire, of 9, St. Swithin's-lane, Loudon, gentleman, for "an Improved manufacture of candlea and other like articlet used for afording lighte." (A cotomanice-tion.)-Dec. 15.
Heary Winter, of Webridge-gardens, Bark-place, Bayawnter, Middlenex, for "Improvements in the manufacture of rope, cord, line, and twine." (A commualcatiou.) bec. 15.
Gerrge Ambroise Michant, of Epieda, France, but now of New Bond-atreet, Middlesor, gentleman, for "Improvements in the production and application of heat, and in the manufacture of coke."- Dec. 15.
William Maltby, of Tredegarosquare, Mile-end, geotleman, and Thomas Webb, of Mare-street, Hackney, gentleman, for "t certaln improvements in the manufacture of ${ }^{2}$ pirite from graln or other asccbarine mattern, and ln the apparatus to be used thereln." -Dec. 15.
Whiiam Weatbrooke Squires, of 3, Rue Chavean la Garde, Paris, M.D., for a mode or modes of productng a vecuam, which mode or modes may be applied to preumatic, hydrault, and hydrostatle apparatua, and to machtnery for obtainjag motire power."一 Dec. 18.
Hichard Wrighton, of Lower Brook-atreet, Grospenor-square, Middieaex, for wimprovemente in apparatur to be applied to railway carriagen and engines."-Dec. 22.
Charles Andre Felix Rochas, of Parls, for "certaln Improvements in trea甘ng xinc ores, and in manufacturing oxide of sinc."-Dec. 22.
Plerre Angustua Pula, gentleman, of Paria, for "Improvemente in apparatua for raliong and lowering heary bodies tn mines." (Communication.) - Dec. 22.
Henry F. Baker, of Boiton, Uniled SLates of Americs, for "a certaln new and ueefo mprovement in thamboiler furnaceu."-Dec. 22 ,
Richard Baird, of Dundee, Bcotland, for " A new or improved method of commanicedon betveren the guarda, engine-dirvera, and other serrants in charge of trains of carriages and wagsona on rallways, and aleo between the pamengers and englne-drivera, and other servants in charge of such tralna."-Dec. 22.
Hobert 8tamy, of Chelsea, Middienex, hatter, for " Improvements in the manufacture of fobrics to be need for corering hate, caps, and bondets, which fabrica may be used for other articles of wearling apparel."-Dec. 22
Charlea Willism Siemens, of Mancbealer, engiveer, for "Improvementa In edgioes to
be worked by steam and other flulds."-Dec. 22.
,

ARCHED TMMTRER VLADEDGTS.

WILLINGTON \& OUSE BURN VIADUCTS - NEWCASTLE \& N" SHIELDS RAILWA.Y.

ARCHED TIMBER VIADUCTS.

(With Engravings, Plates III. and IV.)
(From papers read at the Institution of Civil Engineers.)
The Arched Timber Fiaducts on the Newocastle and North Shields Raihoay, erected by Mesers. Johen and Brenjamin Gerien, of Nevo cantlo-upor-Tyne.
In the formation of the numerous railways which have been completed within the last few years, perhaps that which has demanded the greatest exertion of skill, judgment, and varied ingenuity, is the construction of the bridges and viaducts, whether of stone, brick, iron, or timber. The excavation of a quantity of earth, or catting through a hill to fill up an adjacent hollow to the required level, is in most cases a work of little more than manual labour, unleas some unforeseen extraordinary difficulties occur in the strata, which may require energy and promptitude in adopting such measures as will overcome them in the most effectual and least expensive manner. But when rivers are to be spanned and ravines to be croased, where there exist uncertain and variable beds, and, in many instances, in the vicinity of towns and populous districts, Where houses, manufactories, and other buildings are on the immediste spot, the space required for filling up such ravines with a mound, (the base extending far on each side, beyond what is required for the width of the railway) would, by the consequent deotraction of property, often involve such ruinous expenses, as to render the adoption of that method impracticable. Recourse must then be had to other and more scientific means, in the erection of bridgen or viaducts, with piers occupying a small superficial aren, builk up to carry the necessary superstructure, and adapted to the locality in which they are placed. Various considerations are involved in fixing on a certain plan : get the cost is that of the utmost importance, and invariably presents itself first in all great works of the kind. It will not be denied, therefore, that the great desideratum for the engineer, is the adoption of such means as will fully answer the purposes and the ends at which he aims, and to effect this without a waste of any kind of material ; for every thing that is not fairly and usefully employed in adding to the stability and gtreagth of an erection, can only be considered as superfluous and injurious matter; and fitness and a skilful disposition of parts, combined with correctness of design, may be said to form the great merit of all structures.
The cost of the construction of viaducts and bridges for railways generally forms so important an item in the gross amount of the cost of a railway, that the engineer is led to devise new means of completing his works in such a manner, as to possess stability and durability, without plunging his employers into unnecessary oxpenses.

Stone has been generally applied as the best material for bridges; in many cases, however, it cannot be used throughout, and in large arches, where the heights are too low for the spans, cast-iron is frequently adopted, and more particularly in forming trusses of various kinds, when tbe under side as well as the upper side of the platform is required to be horizontal, or nearly so, as in the case of a railway and turnpike-road crossing each other, and only leaving space enough between the surface of each to allow of the free pasaage of carriages; but the cost and weight of these bridges is generally equal to that of stone. A wood superstructure, however, effects much in this respect; provided a durable mode of construction is adopted; for the cheapness and strength of the material itself being so great, in proportion to its bulk and weight, the piers of a bridge or viaduct can be considerably lightened, and much leas material be used in their formation than when the superstructure is to be of stone or iron.

Almost all the wooden bridges that have heratofore been executed in this country are constructed with straight timbers, trussed and framed like the ordinary forms of roofing. On account of the chrinking, from the namber of joggles, and the weight of the work itself, the roadway sinks, and the framing generally becomea bent or crippled, often to an alarming extent; besides, such a system could never be carried beyond a certain extent, as the spans of such framing must be limited to what is usually practised in roofing.

A new system of building timber bridges, composed of layers of deals 3 inches in thickness, turned over a centre, into the form of arched ribs, has been introduced and applied extensively, in Northumberland and Durham, and in Scotland, by Mesars. John and Benjamin Green, of Newcastle-upon-Tyne.
This mode of constructing the laminated deal arch suggested
itself to Mr. Green in 1887-8, When he was engaged in designing the bridge for crossing the river Tyne, at Scotswood : where the depth of water, its rapidity during floods, and the uncertainty of the foundations, would have rendered the construction of a number of piers, in the current, a very expensive operation, and Mr. Green was therefore induced to recommend to the company the chain bridge which is now thrown across the Tyne at that place, as being the cheapest durable structure, and possessing advantages over every other kind in such a situation.
The subject of wooden arches continued to engage Mr. Green's attention, and for his own satisfaction, he had a model made of an arch 120 feet span, at a scale of one-twelfth of the real size, which so satisfied him as to the advantages and safety of that mode of conatruction, that in 1834, when the Newcartle and Carliale Railway Company offered a premium for the best plan of a railway bridge, for crossing the river Tyne, above Scotswood, Mr. Grears mbmitted his model and design in competition, when they were approved of and aelected by the directors, and obtained the premium.
This bridge was to consist of five segmental wood arches, each having two ribs of 180 feet span, which were to be erected upon timber piers of piles and framings, with stone abutments. The line of railway could not allow a greater elevation than 21 feet above high-water level, and the platform was in consequence suspended with iron rods between the springing of the wood arch and the cfown; the roadway was therefore partly suspended from and partly sapported by the ribs.
In 1833 Measrs. Green were concerned in projecting a railway from Newcastle to North Shields; and afterwards being employed by the Company for the bridges on that line, where, from the magnitude of two of them and the number that occur, the cost was a very important consideration, they were induced to recommend this plan of the laminated timber arch. Having made designs and carefully studied the details, these bridges were commenced in 1837 ; one at the Ouse Burn in the eastern suburb of Newcastle, and the other at Willington, about four miles further on the railway.
The Oube Burn Vinduct is 918 feet in length, and 108 feet in height from the bed of the burn; it has five timber arches of three ribs each; three of the arches are 116 feet span, and two 114 feet span; there are two stone arches of 40 feet span at both ends of the bridge, which were introduced to give length to the abutments, so as to prevent the mounds endangering them, by coming too close upon the steep banks of the ravine. There are five piers built of drafted and broached ashlar masonry, from the foundations to the full height, with spaces in the middle, leaving an average thicknesa of 5 feet of ashlar work; all the spaces are filled in with rubble masonry, made solid by grouting. On the sides of each pier are buttresses projecting $\&$ feet 11 inches, and diminishing with offeets up to the roadway.

The greatest thickness of the piers at the springing is 15 feet; that of the highest pier at the foundation is 20 feet 3 inches, and at the top, immediately underneath the platform, it is 6 feet 6 inches thick; its width, including the buttresses, is 33 feet 10 inches sbove the footings, and $\mathbf{2 6}$ feet across the last or highest off-set underneath the roadway.

The springing for the arched ribs is 40 feet down the piers, where large off-sets are formed with the inner splays or slopes, radiating from the centre. On these springing stones, cast-iron flanged plates or sockets, each weighing 15 cwt . for each rib, are bedded with oakum, into spaces which are cut 2 inches deep in the masonry, and secured with wrought-iron bolts run with lead, faetened down with nuts and screws on the outer surface; the bolts are $1 \frac{1}{2}$ inch diameter, and 1 foot 9 inches long. The ends of the ribs are inserted into these iron sockets as a springing and are well caulked.
The two middle piers are built upon piles driven into the clay, to an average depth of 35 feet below the surface, and the foundations generally required great attention, for it was found that considerable excavations of old pit workings had been made around and immediately under the line of the bridge. From the extreme eastern pier, a coal seam had been worked out, extending beyond the east abutment; and in digging for the west pier, a pit ghaft was discovered in the centre of the area of the foundation. It was fortunate that it was not so near as to endanger the stability of the pier, and that the construction had not proceeded withont its being observed. This shaft had been worked to a depth of 70 feet, and in order to render the structure secure, both it and the seam on the other side of the ravine were built up with well grouted rubble masonry. All the timber used in the carpentry was of the best
quality from the Baltic, and the whole of it was subjected to the process of Kyan's patent.
The arched ribs are shown in Plate III., figs. 1 and 2 ; and in detail, figs. 3 to 18 . The spans of 116 feet, have a versed sine of 38 feet, the radius being 68 feet. The ribs are constructed of Dantzic deck deals, 11 inches wide by 3 inches thick, dressed and cut to lengths of from 90 feet to 46 feet. The first course of the rib is two deals in width, bent over the centre, and the next is one whole and two half deals, and so on alternately until the whole rib is formed; each rib consists of fourteen deals in thickness, exclusive of the weathering or capping on the top; the ends of the deals throughout are butted against each other, and arranged so that no two of the radiating joints may come together. A layer of strong brown paper dipped in boiling tar, is put between all the joints to bed them and to exclude the wet. The whole of the dealsare well fixed together with the best $1 \frac{1}{2}$ inch oak trenails placed 4 feet apart, and each trenail is of a sufticient length to go through three thicknesses of the deals. The ends of the deals are all inserted into the cast-iron plates already described, bedded in patent felt and tar, and well caulked.

Diagonal side braces $6 \frac{1}{2}$ inches by $6 \frac{1}{2}$ inches, (shown in fig. 2 , Plate III.), are fixed between the ribs with wrought-iron bars $1 \frac{1}{4}$ inch diameter, at intervals of about 99 feet apart, to bind and connect the whole together. From the ribs, a series of radiating and horizontal struts, are carried up in the manner shown in the engravings; the ends of all the struts are double tenoned into proper mortices cut to receive them, in the timbers and ribs. A spandril beam 13⿺ inches square, (figs. 3, 4, 8, and 9, Plate III., is placed nbout the middle of the spandril, inclining upwards to the crown of the arch, and butting against a horizontal piece of the same dimensions at the top. The struts below this beam radiate to the centre, and those above are perpendicular to the roadway. One of the radiating struts in each spandril, called in the drawings the spandril strut, (figs. 5 and 6, Plate III.,) is continued on from the rib up to the longitudinal beams, and is firmly connected by iron atraps and bolts to them and the spandril beams, and the former are then secured down to the masonry with iron bolts, which run 8 feet into the ashlar work. In considering this geometrical arrangement of strutting in the spandrils, it will be evident how much rigidity is produced : a weight coming upon one haunch of the arch is resisted on the opposite haunch, by the spandril strutting, and especially by the main strut, connected as it is with the weight of masonry laid hold of by the bolts, from the main longitudinal beam.

The longitudinal beams, $13 \frac{1}{2}$ inches square, are fired and laid the full length of the structure, to the gradient of the railway, above which the joists, $13 \frac{1}{2}$ inches by $6 \frac{9}{4}$ inches, are laid 4 feet apart from centre to centre, and spiked down upon them. The ends of all the joists are rounded, and project about $\&$ feet 6 inches over the longitudinal beams, fig. 10, and the whole are then covered with planking, 11 inches by 3 inches, laid longitudinally, and properly spiked down and caulked; this platform is then covered with a composition of boiling tar and lime, mixed with gravel whilst it is being laid on; thus forming a coating completely impervious to the wet. At the meeting of the longitudinal beam and the crown piece, an iron strap is bound over them and the longitudinal beam, and it is then run through the rib, and screwed up underneath it. Another strap is put round the rib and the spandril beam, about 12 feet further down on each side, and another at each of the spandril struts. An open railing, 5 feet high, is fixed alongside each side of the bridge, the upright standards are 8 feet apart, fixed to every alternate joist, and five horizontal rails, halved and spiked to them, run the full length.

The total width of the Ouse Burn Viaduct, measuring within the railing, is 26 feet, from which a footpath is taken, 5 feet wide, separated from the railway by a line of railing on the south side, as shown in fig. 8.

In constructing both the masonry and timber work of this viaduct, the scaffolding and the centering used were very light and simple. For the former, a temporary railway, 35 feet high, raised upon upright bearers, struts, \&rc., was laid the full length, on each side of the intended structure; and was afterwards raised, as the building proceeded, to within a few feet of the height of the finished platform. On this railway temporary cranes were placed, spanning from one rail to the other, connected at the top with beams of timber, and fitted up with proper winches, blocks, chains, \&c. \&c.; these cranes were generally worked by four men, The centering for turning the ribs and building all the timber work was exceedingly light; it was composed merely of three ribs, weighing about 18 cwt . each, or 9 tons. 14 cwt . for each rib. A whole centre could
be removed in a day from one arch, and fixed in its place for another arch, by about twenty men, employing the travelling cranes.

The Willington Viaduct is precisely the same in construction and design as that at the Ouse Burn; but differs in its dimensions, and although it is not so high, it is longer, and has two more timber arches of greater span. The total length is 1050 feet, and the height is 82 feet. There are seven timber archea and six stone piers, with two stone abutments; five of the arches are 120 feet span each, and two 115 feet span each; the width between the railing on each side is 21 feet, being just sufficient for the double line of railway, as there is no footpath upon this viaduct. Two of the piers are built upon piles 36 feet long, at a depth of about 50 feet below the surface, as there is a great extent of alluvial deposit immediately on the site, which is frequently covered, during high tides or floods, by the river Tyne flowing up at the amall burn.

Both these viaducts span over numerous houses and manufactories.

The method of building the viaduct at Willington was somewhat different from that adopted at the Ouse Burn, and perhaps not so unique; inasmuch as there were no travelling cranes or temporary railway, and the removal of the centres was attended with greater labour, for while at the Ouse Burn the removal of a centre occupied twenty men, with the cranes, only one day, the same work employed twenty men for ten days at Willington. The masonry of each pier was set with a fixed or jib crane, of a sufficient height to hoist all the stones, having the usual counterbalance at the opposite end of the horizontal beam.

In this system of timber bridge building, the straight trussing in the main principle of support, is dispensed with, for the spandril framing should not be looked upon as partaking of that character; it is merely a continuation of the wood-work, to convey the weight coming upon the roadway, on to the simple curved rib, and all timbers in a state of tension are avoided, for when a weight comes upon the roadway, the whole of the structure undergoes compression.

It is not meant to advocate timber bridges on this or any principle in preference to stone, or other more durable material ; but it will not be denied, that the great saving of capital in the first instance is a very important argument in favour of their adoption.

The actual cost of the Ouse Burn Viaduct, including all contingencies and extras, was :-for the masoury, 17,235l.; for the carpentry, 7,265l.; making together, 24,500l.

The total cost of the Willington Viaduct, was :-masonry, 13,153.; carpentry, 10,349l.; together, 23,502l.

The piers, Mr. Green observes, are stronger than necessary for the weight of the superstructure, for the directors of the Newcastle and North Shields Railway not only being sceptical as to the safety of this novel mode of construction, but having a desire to finish all the bridges on the line with stone arches, wished the masonry to be made of such solidity and bulk as to bear stone arches if required, and the piers and ubutments were, therefore, built accordingly. The additional cost for building stone arches, however, on a fair calculation, was found to amount to 9,0001 . for the Ouse Burn Viaduct, which would have made a total of 33,5001 . The centering would have cost at least 3,000 l. for each viaduct, su that at a moderate calculation the actual saving of capital is upwards of 10,000 l.

Messrs, Green have just completed a large viaduct, on precisely the same principle as those of the Ouse Burn and Willington Dean, for his grace the Duke of Buccleuch, across the South Esk at Dalkeith, in connexion with the Edinburgh and Dalkeith Railway, and for the transit of coal from the collieries of his grace in that neighbourhood; it has only a single line of railway and a footpath. The total length of this work is 830 feet, the height is 87 feet to the platform, and the width across between the railing is 14 feet. It has seven arches, five of 180 feet, and two of 110 feet span each, with a versed sine of 30 feet. There are only two ribs, 8 feet 4 inches apart, in each arch, and of a deal and a half (1 foot 4 inches) in width, and ten deals (2 feet 7 inches) in depth. The longitudinal beams are half balks of timber, $13 \frac{1}{2}$ inches by $6 \frac{3}{4}$ inches. There are two stone abutments, each 40 feet long, and tive stone piers. The largest pier is 91 feet high from the foundation, which is 5 feet below the surface. All the piers are 10 feet thick at the springing, 12 feet 10 inches wide, and 5 feet 4 inches thick at the top, underneath the roadway. The total cost was:-masonry, 3,6174 .; carpentry, 3,3581 ; together, $6,975 \mathrm{l}$., which is a very small amount for a work of such inagnitude.

The great height and length of this bridge, and the extreme lightness of its construction, render it an imposing object, spanniug a beautiful and thickly wooded ravine near Dalkeith Palace, with the river Esk streaming through it, and appearing as a mere line of water in passing under the centre arch, which is the largest and bighest.
The system of arching with planks, may be carried to almost any extent, and in Messrs. Green's design for the proposed bridge across the Tyne, to connect the towns of Newcastle and Gateshead, at a high level, the largest arch over the middle part of the river was intended to have been 980 feet span, with a versed sine of 70 feet, the total length of the bridge as designed was 1,280 feet, and the height 110 teet.

Fig. 1.
The annexed wood engravings show an oblique bridge on the Newcastle and North Shields Railway, crossing the Shields road, at Walker. The angle of the skew is 25°, and the span is 71 feet. Fig. 1 is an external elevation of one of the ribs and the piers, and

$\boldsymbol{F I}_{\mathrm{g} .} 2$.
fig. \&, a plan of the joisting and piers. The joists of the platform rest upon the longitudinal beams, which are suspended by queen posts and iron straps, from two arched ribs, one on each side of the railway, and stiffened by struts and braces. The ribs are formed of deals 11 inches by 3 inches, dressed one deal and a half for the width of the rib, and nine deals in depth, as shown in figs. 3 and 4.

Pig. 8.
They spring from cast-iron sockets, bolted to the ends of the longitudinat heams, on which they abut. An iron strap is also keyed over each foot of the ribs, for additional security. The width for
the railway on the bridge is 81 feet 6 inches. In the centre, at intervals of about 7 feet, the platform is strengthened by trusses, which are marked bb, fig. 2, and constructed in the manner shown in fig. 4, with wrought-iron bars keyed at the ends of the beame, and coming underneath, having three iron bearers in the full length. The cost of this bridge was about 1,3001 .

FIg. 4.

The Dintino Vale Viadtect, on the line of the Sheffield and Manchester Railuay. By Alfred Stanibteeet Jee, M. Inst. C.E

(With an Engraving, Plate IV.)

This viaduct consists of sixteen arches, five of which are of timber and eleven of brick, faced with stone quoins. The whole of the large piers, wings, outside spandrils and parapets, are of ashlar stone, of excellent quality, from the quarries in the neighbourhood. The foundations of some of the piers are laid upon the hard shale, and of others upon a bed of wet sand of considerable depth; in the latter cases masses of concrete were formed to receive the masonry. Several of the smaller piers are founded upon the marl; also with beds of concrete beneath them. The piers for the large arches are built solid, up to the surface of the ground, and above that level they are hollow, nearly up to the impost ; the hollow portion having an inverted arch at the hottom, and being also arched over at the top. The portion above the impost in the large piers is solid to the top, (see fig. 3.) The smaller piers are cased with ashlar on the outside, and are filled in solid with good flat-bedded rubble, well grouted, and with through stones at intervals of 6 feet horizontally in each course.
The smaller semicircular arches of brick, at each end of the viaduct, are 50 feet in the span and 3 feet in thickness, with stone quoins, and are built in a curve of 40 chains radius. The face of each pier is parallel to that of the next, the piers themselves being wedge-shaped, on account of the curve. The abutments between the large and the small arches are hollow and are arched over in the interior, to carry the roadway. The abutments and wings at each end of the viaduct, are alay hollow, being composed of longitudinal and cross walls, flagged over on the top. They are surrounded on the outside by the slope of the embankment, the material of which being clay, is kept out by a wall at the ends.
The five large arches are each 125 feet span and 25 feet versed sine, of the best Memel timber, the whole of which has been immersed in a solution of the sulphate of copper, according to Dr. Margary's patent, for the prevention of decay. There are four main ribs in each arch, composed of planking 3 inches thick, laid longitudinally, with a layer of brown paper and tar between the planks, which are fastened together with oak trenails at intervals of 4 feet. These ribs are 4 feet 6 inches deep, and 18 inches wide, and are firmly stayed by diagonal and cross braces, screwed up tight, by means of wrought-iron rods, 2 inches in diameter, passing through and secured by nuts on the outside. The uprights and diagonals in the spandrils are also stayed by iron rods, and are morticed into the longitudinal beams which carry the crose joisting. These longitudinal beams are fastened down upon the piers by iron bolts, let 18 feet into the solid stonework, to resist any tendency of the arch to rise in the haunches, when the weight of a train comes upon the centre, The cross joists are placed 5 feet apart, from centre to centre, and are bolted to the longitudinal beams underneath. Upon them is placed longitudinally a half balk of timber to which the rails and chairs are fastened, and also a guard rail to prevent the carriages getting off the road. The whole is covered over with planking 3 inches thick, and is coated with a mixture of lime, asheß, and sharp sand, which has set hard and does not crack.
The centering used for turning of the arches is of iron, of light construction, and is shown in fig. 1.

The total length of the viaduct is 484 yards, and its greateat
height from the brook-course to the railg, is about 185 feet. The roadway is level throughout. It was commenced early in 1848, and was opened for traffic on the 8th of August, 1844. Mesars. Buxton and Clarke, of Sheffield, were the contractors, and great credit is due to them for the very excellent manner in which they have completed the work.

The area of the section of the valley crossed, between the level of the rails and the ground, is 13,068 gquare yards, which gives an average cost of about 9 . 14s. per superficial yard, and as the viaduct is 8 yards wide, the cost per cubic yard is 68.9 .

The following is a detailed account of the cost of construction of the Dinting Vale Viaduct, on the line of the Sheffield and Mancheater Railway.

THE RIVAL PALACES,

 ob Biorg's and Vanvitrluis.
By Candidus.

Neither Mr. Sharp himself nor any one else will be at all surprised at my taking some notice of the oversight imputed by him to those who have apoken of Buckingham Palace, for not discovering that it ia "only a reduced copy of the Palace at Caserta." Willing as I am to accept the compliment of "lynx-eyed," I think that in this instance it rather belongs to him, though at the same time I fancy his sharp-sightedness has overshot the mark, and made that kind of discovery which is called finding out a mare's nest. What appears to Mr. Sharp to be such perfect similarity of design between the two buildings, that all the faults or merits of Mr. Blore's fairly belong to Vanvitelli, completely vanishes upon a critital examination and estimate of them, nothing remaining but that general or generic resemblance of forms and features which they poseess in common with many other buildings in the same style. Those who talk merely at random might perhaps liken Buekingham Palace to that at Caserta, for much stranger resemblances have been fancied ere now,-one traveller having likened the palace of Charles V. in the Alhambra, to Jones's Whitehall; and another, the great temple at Balbec to St. Paul's, Coventgarden! But that an architect should be more struck by the resemblance, such as it is, than by the prodigious difference between the two buildings in question, is quite astonishing.

Let us inquire to what the resemblance amounts:- to nothing more than the general disposition of parts, both vertically and horizontally, which surely is not sufficient to constitute such similarity of design or character as to justify our calling the one a copy at all, much less "only" a reduced copy of the other. If it does, we ahould be warranted in setting down all the porticoes ever erected as only so many verbatim transcripts of one original; or

We might call-as perhap: Mr. Sharp does-che two terracen at Carlton-gardens a copy of the Garde-meuble in the Place de is Concorde. In fact, it requires Fluellen's ingenuity in arguing to convict Mr. Blore of being, I will not say Vanvitelli's apes but hia Dromio. "There is a river in Macedon," says the Welshman, "and there is also moreover a river at Monmouth;-and there is salmons in both." Even were Mr. Blore's elevation a mere reduced draught of the other, as far so what actual resemblance there is between them extends, as a copy it could be received only as an exceedingly maimed and imperfect one, some of the mont striking parts of the original being altogether omitted. One exceedingly important accompaniment to the edifice at Caserts, and which gives it an air of completeness and consiatently-kept-up stateliness in regard to emplacement, greatly surpassing that of any other royal palace in Europe, is the spacious oval piazza in front of it on its south side, where it forms an expanding amphitheatrical area, somewhat after the manner of the piama before $\mathbf{S t}$. Peter's at Rome. Many other royal reaidences, on the contrary, are so disadvantagevusly located, as to have an air of meanneas about them in spite of their own grandeur.

One point, then, of the resemblance contended for is ntterly wanting, since Mr. Blore's building has no architectural precinet or properly defined enclosure before it, but is made to stand immediately in the Park, and moreover stands out very awkwardly and abruptly from Nash's building behind, from which it appears quite distinct, except that it is tacked to it; so that instead of making the entire mass look larger than before, it causes it to have a singularly confused and huddled-up appearance. Even taking the mere elevation of the front alone, there is a prodigious difference as to outline, the angles of the building at Caserta being carried up much loftier than the general mass, by the addition of a tecond order, comprising two stories, and making the entire height there not less than one hundred and ninety English feet. My calculation is from the scale given in the large work containing plans, \& $c_{\text {, }}$ of the palace, entitled "Dichiarazone dei Disegni del Reale Palazso di Caserta \&c.," and which, strange to say, is not mentioned by either Milizia or Quatremère de Quincy. In the "ConversationeLexicon fur Bildende Kunst," which professen to give account of individual buildings of note, the Palace of Caserts obtains only three lines !-one of which is to tell us that there is a picture by Mengs in the chapel.-With regard to Mr. Sharp's statement as to the length, there seems to be some miscalculation or else misprint, since 918 palms (taking the palm at $10 \frac{1}{3}$ inches) give only 790 feet.

Now that so much fault has been found with his building, and no merit whatever discerned in it, Mr. Blore may poesibly be disposed to acquiesce in the charge of plagiarism brought against him, in order to transfer all blame from himself to Vanvitell. If he has copied or borrowed, he has at least, it may be said, gone to a noble model-one which is eapecially singled out by Mr. Gwilt, in his "Encyclopsedia of Architecture," as the most complete example of a royal palace. So far, however from reconciling us to Mr. Blore's work, by what may be thought to afford sufficient precedent for one or two objectionable points, Caserta-any comparison with or even mention of it-is likely to put us more out of conceit with it than ever. By diminishing the acale so very greatly, Mr. Blore has exaggerated the defects and entirely miseed all the merits of his supposed original, transmuting grandiosity into insignificance and triviality. In the mere design of Caserta, there is little to excite particular admiration: it is one of those things of which a "reduced copy," however accurate, can no more couvey the aotual impression it makes than a life-sized copy of it can that of an enormous colossal figure.

Caserta is especially distinguished by a union of qualities that rarely meet together in other edifices of the same class-namely, emphatic vastness of mass and uniformity of design throughout. Its mass is such, that were the several ranges of building which compose its exterior, together with those that separate the inner courts, placed beside each other on a single line, similar to the plan of the Tuilleries, they would form a facade full three times the length of that of the last-mentioned palace, or considerably more than three thousand feet in extent. What enhances astonishment, although it adds nothing to the merit of the structure, is the extraordinary energy with which the works were carried on, the whole of the vast pile being completed in about half-a-dozen years; whereas many others, of far less magnitude, have either grown up piecemeal, or have occupied a long series of years; so as not to have been begun and terminated by the same architect.

From the way in which Mr. Sharp has expressed himself, it seems to be his opinion that-the similarity of design which he insists upon being admitted,-Blore's fafade so fairly represents

Venvitelli's (i e. one of them), so to exhibit all its merita, notwithetanding that it exhibits qualities precisely the reverse. Yet, aurety litileness and magnitude are very different in effect; or ahall we may, that if he be similarly shaped and proportioned, a dwarf can give us a very satisfactory idea of a giant? Those who hold such doctrine, ought to show their consistency by taking a sixpence as a very satisfactory representative of, and equivalent to, a ahilling. Hardly can I bring myself to believe that Mr. Blore had any idea of palming upon us a Tom Thumb Caserta, because, leaving plagiarinm out of the question-and in architecture plagiariam has ceased to be any demerit or disgrace-he must have been perfectly aware that he must fall so greatly short of Vanvitelli's standard, that likeness in other respects would, if detected, only produce ridicule. No, what kind of likeness there is between the two designs is merely a coincidence, and for Mr. Blore rather an unfortunate one. Had it been intentional and "with malice prepense,"-had Mr. Blore really fancied that he could reproduce Caserta, he would no doubt have avowed the imitation, have made it a merit, and have crushed criticism in the bud, by proclaiming that he was about to give Buckingham Palace a facade "after" that of the noblert royal residence in Europe.*In such cases, be it observed, the aftor generally means a long way belind the prototype; and the following comparison of the respective measuremente of some of the parts of the two buildings will show that Vanvitellis afforded no precedent for the merquineric of Mr. Blore's.

Caserta.

After all, had its elevation been ever so much better, Mr. Blore's brilding would still have been open to some of the strongest objections brought against it now, viz., that it seems to encroach upon the Park in such a very awkward manner, as to appear a more lumpiah mass than it otherwise might do, and that blocking up all the rest of that side of the Palace, so far from improving the main edifice, it has frustrated that opportunity for improvement which previously existed, and which, since alteration to such extent was determined upon, ought to have been made the most of. As a range of building the new facade is scarcely more effective than the neighbouring barracks in the Birdcage Walk, to which it may in fact be likened quite as correctly as to Caserta; nor would that comparison be, though less flattering, quite so injurious as the other, inasmuch as it must then be admitted that, instead of there being any falling off, the model had been refined upon.

One defect in regard to position, now rendered very prominent by the building being brought so much forwarder into the Park, is that the Palace is not in the axis of the Park itself, but only of the Mall; whereas, were Mr. Blore's structure planted at the other extremity of the enclosure, on the site of the Horse Guards, it would there show infinitely better in every respect, and, with some slight corrections, might pass for a handsome piece of architecture. As it is it is altogether out of place, out of character, and the reverse of aatisfactory in effect ; nor can I agree with Mr. Sharp that were Mr. Blore "to give the Palace a staircase resembling that at Caserta, the world would forgive him all the faulte of his front;" because while those faults would be just as evident na ever, the public would have no opportunity of admiring the staircase. Beaides which, it would require the architect to be the Bottlo-Conjuror to get ruch a staircase into Buckingham Palace ; and even could it be effected, it would reduce all the rest of the interior to utter in-significance.-One other remark, and I have done: for what will perhaps be considered lengthiness and loquacity I have no precedent in what Mr. Sharp's companion, Woods, says in his "Letters" of Cacerta for he dismisses it with little more than a bare mention of it, with a degree of chilling indifference that does not asy much for him either as an architect or a critic.

[^2]
ON THE LAP AND LEAD OF THE SLIDE VALVE.

(Concluded from page 17.)

Thr Lead and Lap.

Having separately investigated the two cases of a slide having Lead without Lap, and Lap without Lead, we now proceed to consider the effect of both in combination, together with that of lap on the exhaustion side.

Demonstration.

Cage 4.-Weren a Slide bab Lap on motr the Steay and Eliaustion sideg, tooether witi Lead.
Let $a b$, and $a c$, diagram 5 , represent the double lap on the steam side; $a f$, and $a g$, the same on the exhaustion side; ba, and $c d$,

Disgram

the steam ports; and the line $e d$ both the travel of the slide and stroke of the piston. Then, supposing $c h$ to represent the lead of the slide, $a i$ will be the position of the eccentric when that of the crank is ae; the slide occupying the position shown in fig. 10 , and the piston being at the top of its downward stroke.

When the eccentric reaches the point k, the port $c d$ will be fully closed (as ahown in fig. 11), and the piston will have descended to l, the arc $e m$ being equsl to the arc $i k$. Again, -when the eccentric arrives at n, the slide being then brought into the position fig. 12, exhaustion commences from above the piston, which has descended to o; the arcemp being equal to the arc $i k n$. When
the eccentric arrives at a, the port $b e$ begins to open for the admission of steam beneath the piston (see fig. 13), which has then descended to r; the arc $e m s$ being equal to the arc $i k q$. When the eccentric has reached the point i, opposite to i, the port b e will be open to the extent of the lead $b h^{\prime}$, equal to $c h$, and the piston will have completed its descent.

Steam continues to enter the port $b e$ during the ascent of the piston, until the eccentric reaches the point k, when the port $b e$ will be reclosed (fig. 13), the direction of the slide's motion being downward, and the piston having ascended to $l^{\prime \prime}$. Exhaustion ceases from above the piston when the eccentric reaches the point t, the piston being then at u, and the slide again in the position fig. 12. When the eccentric reaches the point n^{\prime}, opposite to n, exhaustion commences below the piston, the slide being then in the position fig. 14, and the piston at 0^{\prime}. Finally,-when the eccentric reaches the point q^{\prime}, and the crank the point s^{\prime}, opposite to s, steam begins to enter the port cd for the return stroke, at the commencement of which the port $c d$ will be open to the extent of the lead $c h$; the crank and eccentric occupying their original positions, $a e$ and $a i$.

It is here shown that four distinct circumstances result from the use of a slide having lap on both sides of the port, with lead, during a single stroke of the piston. These are-

First : The cutting off the steam, for the purpose of expansion.
Second: The cessation of exhaustion on the exhaustion side.
Third: The commencement of exhaustion on the steam side.
Fourth : The re-admission of steam for the return stroke.
With regard to the first of these results, we found the steam port cd closed, when the crank and eccentric had described the equal arcs $e m$, and $i d k$. Now, $c d$, the steam port, is the versed sine of $d k$; and $h d$, the steam port minus the lead, is the versed sine of $i d$. Hence,

Rule V.-To find the point of the stroke at which steam will be cut off:-

Divide the width of the steam port, and also that width minus the lead, by half the slide's travel, and call the quotients versed sines. Find their corresponding arcs, and call them arc the first, and arc the second, respectively. Then, if the sum of those arcs be less than 90 degrees, multiply the versed sine of their sum by half the stroke, in inches, and the product will be the distance of the piston from the commencement of its stroke, when the steam is cut off.

If the sum of arcs the first and second exceed 90 degrees, subtract it from 180 degrees; and the versed sine of the difference, multiplied by half the stroke, equals the distance of the piston from the end of its stroke, when the steam is cut off.

Example 8.-The stroke of a piston is 60 inches; the width of steam port 3 inches; lap on the steam side $2 \frac{1}{2}$ inches; lap on the exhaust side $\frac{1}{8}$ th inch; and lead $\frac{1}{8}$ inch : required the point of the stroke at which steam will be cut off.
Here $\frac{3}{3+2.5}=-5454=$ versed sine of $62^{\circ} 58^{\prime}$ (arc the first);
and $\frac{3-5}{3+2.5}={ }^{-4545}=$ versed sine of $66^{\circ} 57^{\prime}$ (arc the second).
Then $62^{\circ} 58^{\prime}+56^{\circ} 57^{\prime}=119^{\circ} 55^{\prime} ;$ and $180^{\circ}-119^{\circ} 55^{\prime}=60^{\circ} 5^{\prime}=$ arc of versed sine, $\cdot 5012$. $\quad 5012 \times 30=15 \cdot 036$ inches $=$ distance of the piston from the end of its stroke when the steam is cut off.

Exhaustion was shown to cease, during the ascent of the piston, When the eccentric had reached the point t, and the crank the point x; the crank having described the arc $d k x$, equal to $i^{\prime} e t$ described by the eccentric.

Now $i^{\prime} e$ is equal to arc the second (Rule V.) ; and $e t$ is equal to 90 degrees minus $t t^{\prime}$, or the arc of versed sine $e f$; and $e f$ is half the slide's travel minus the lap on the exhaust side. Hence,

To find the point of the stroke at which exhaustion ceases:-
Divide half the slide's travel, minus the exhaustion lap, by half the travel, call the quotient versed sine, and add its corresponding arc, calling it arc the third, to arc the second. The versed sine of the difference between their sum and 180 degrees, multiplied by half the stroke, equals the distance of the piston from the end of its stroke when exhaustion ceases.

Example 9.-The several proportions being as in the preceding example,

Here $3+2.5=5.5=$ half the slide's travel;
and $\frac{5 \cdot 5-125}{5.5}=\cdot 9772=$ versed sine of arc $88^{\circ} 42^{\prime}=$ (arc the third),

Then $88^{\circ} 42^{\prime}+56^{\circ} 57^{\prime}$ (arc the second) $=145^{\circ} 39^{\prime}$; and $180^{\circ}-$ $145^{\circ} 39^{\prime}=34^{\circ} 91^{\prime}=$ arc of versed sine, $\cdot 1743$. $\quad 1743 \times 30=5.229$ inches $=$ the distance of the piston fiom the end of its stroks when exbaustion ceases.

Exhaustion was shown to commence from above the piston when the crank and eccentric had described the equal arcs $e k^{\prime} p$, and $i d n$.

Now $i d n$ is equal to 180 degrees minus $n i^{\prime} ; n i^{\prime}$ is equal to $n^{\prime} i$; and $n^{\prime} d$ is equal to arc the third. Hence,

To find the distance of the piston from the end of its stroke when exhaustion commences:-

Subtract arc the second from arc the third, and multiply the versed sine of their difference by half the stroke. The product will be the distance required.

Example 10.-The propertions being as in the two preceding examples.

Here $88^{\circ} 42^{\prime}-56^{\circ} 57^{\prime}=31^{\circ} 45^{\prime}=$ arc of versed sine, $\cdot 1496 ;$ and $\cdot 1496 \times 30=4 \cdot 488$ inches, the distance required.

Steam was found to be re-admitted, for the return stroke, when the piston had reached the point r in its descent, the crank and eccentric having described the equal arcse $e k^{\prime} s$, and $i d q$.

Now, $i d q$ is equal to 180 degrees minus $q i^{\prime} ; i^{\prime}$ being diametrically opposed to i. And $q i^{\prime}$ is equal to $i q^{\prime}$, the difference between arcs the first and second. Hence,

To find the distance of the piston from the end of its strake when steam is re-admitted for the return stroke:-

Multiply the versed sine of the difference between arcs the first and second by half the stroke, and the product will be the distance required.
Example 11.-The proportions being as before.
Here $62^{\circ} 38^{\prime}-56^{\circ} 57^{\prime}=6^{\circ} 1^{\prime}=$ arc of versed sine ${ }^{\circ} 0055$.
Then $\cdot 0055 \times 30=\cdot 165$ inches $=$ the distance required.
Rule VI.-To find the proportions of the steam lap and lead; the points of the stroke where steam is cut off, and re-admitted for the return stroke, being known :-

When the steam is cut off before half-stroke, divide the portion of the stroke performed by the piston, by half the stroke, and call the quotient versed sine. Likewise, divide the distance of the piston from the end of its stroke when steam is re-admitted for the return stroke, by half the stroke, and call that quotient versed sine. Find their respective arcs, and also the versed sines of half their sum and half their difference. The width of the steam port in inches, divided by the versed sine of half their sum, equals half the travel of the slide; and half the travel, minus the width of port, equals the lap. The difference of the two versed sines last found, multiplied by half the travel of the slide, equals the lead.

When the steam is to be cut off after half-stroke, divide the distance of the piston from the end of its stroke by half the stroke; call the quotient versed sine, and subtract its corresponding arc from 180 degrees. Divide the distance the piston has to move when the steam is admitted for the return stroke, by half the stroke; call the quotient versed sine, and find its corresponding arc. Then proceed with the two arcs thus found, as in the former case.

Example 12.-The stroke of a piston is 60 inches; the width of steam port 3 inches; distance of the piston from the end of its stroke when steam is cut off 15.036 inches; and when steam is admitted for the return stroke $\cdot 165$ inches: required the lap and lead.

Here $15 \cdot 096 \div 30=.5012=$ versed sine of arc $60^{\circ} 5^{\prime}$;
and $180^{\circ}-60^{\circ} 5^{\prime}=119^{\circ} 65^{\prime}$.
Then $\cdot 165 \div 30={ }^{-0055}=$ versed sine of $6^{\circ} 1^{\prime}$.
$119^{\circ} 55^{\prime}+6^{\circ} 1^{\prime}=125^{\circ} 56^{\prime} ; \quad 119^{\circ} 55^{\prime}-6^{\circ} 1^{\prime}=113^{\circ} 54^{\prime}$.
$\frac{125^{\circ}}{8} 56^{\prime}=62^{\circ} 58^{\prime}=\operatorname{arc}$ of versed sine $\cdot 5454 ;$
$\frac{113^{\circ} 54^{\prime}}{q}=56^{\circ} 57^{\prime}=$ arc of versed sine -4545.
$3 \div 5454=5 \cdot 3$ inches $=$ half the slide's travel ; and $5 \cdot 5-3=9.5=$ lap.
$\cdot 5454-\cdot 4545=\cdot 0909$; and $\cdot 0909 \times 5 \cdot 5=\cdot 5$ inches $=$ lead.
To find the Lap and Lead by Construction.
The stroke of the piston; width of steam port; and distances of the piston from the end of its stroke when the steam is cut off, and when it is re-admitted for the return stroke, being known:

Let the circle（diagram 6）represent the crank＇s orbit，and its dimeter $a b$ the stroke of the piston，to some known scale．Make

ac equal to the part of the stroke performed before the steam is eat off；and $b d$ equal to the distance of the piston from the end of its stroke when steam is re－admitted for the return stroke．Draw de and $c f$ at right angles to $a b$ ，and mark the point g at the dis－ tance b e from f ．Bisect the arc $a g$ ，and from the point of bisec－ tion，h ，draw the diameter $h i$ ．Make $i k$ equal to be；draw im and $k l$ at right angles to $a b$ ；and draw iland ibindefinitely．From the point m ，set off $m n$ equal to the width of steam port，full size； from n draw $n o$ parallel to $i m$ ，and meeting $i b$ ，and also op pa－ rallel to $a b$ ，and meeting $h i$ ：then will o p equal the lap，and or r the lead．
In all the foregoing cases，we have taken the versed sine of the arc described by the crank，from either extremity of the stroke，as the portion of the stroke performed by the piston；but，as has heen already observed，the relative positions of the piston and crank depend apon the length of the connecting－rod，which will be seen by reference to diagram 7，where A B represents the stroke of the piston，CD the connecting－rod，and D O the crank．Now，

Dingrem 7.

by supposing $a d$ to be the arc described by the crank when the piston has performed one－fourth of its stroke，and from the length of that arc，calculating the amount of lap required to cut off the steam at that part of the stroke，we appear to be in error－for， from the oblique action of the connecting－rod，the piston would have descended only to the point c ．But the engine being double－ acting，we have to take into consideration the position of the crank When the piston has performed one－fourth of its stroke in the opposite direction from the point B ：and here we find，that by supposing the crank to have described the arc be（equal to ad）， instead of the true arc $b E$ ，we cause the steam to be cut off when the piston has reached the point f ；and the distance $\mathrm{B} f$ being precisely as much more than BF as Acc is less than AC，the seem－ ing error is self－corrective．

A Table of Multipliers to find the Lap and Lead，when the Steam is to be cut off at $\frac{1}{2}$ to $\frac{7}{1}$ ths of the Stroke．
The Lep must he equal to the width of the steam port multiplied by Col． 1 ． The Lead must be equal to the width of the steam port multiplied by Col． 2.

Halr－Stroke．		Plve－Eighthe of the Stroke．		Three－Puurthe of the Stroke．		Seven－Eighthe ot the Strike．		
1	2	1	2	1	2	l	8	
Lap	lead	Lap	Leal	Lap	Lead	Lop	Lead	
$2 \cdot 41$	－000	1.58	－000	1.000	－000	540	－000	플．00000
$2 \cdot 16$	$\cdot 145$	$1 \cdot 41$	$\cdot 124$	－893	－105	－477	． 089	匂氝島－00208
$2 \cdot 06$	$\cdot 198$	$1 \cdot 33$	$\cdot 170$	－851	－146	$\cdot 450$	－123	마ㄹㅡㅡ․00416
1.94	－268	$1 \cdot 27$	$\cdot 231$	$\cdot 795$	－200	－413	$\cdot 170$	¢5．00833
1.84	$\cdot 318$	$1 \cdot 21$	－276	－754	－240	－385	－204	¢ ¢ E 01250
$1 \cdot 77$	$\cdot 358$	$1 \cdot 16$	$\cdot 312$	$\bullet 23$	－271	－363	． 232	穴评•01666
$1 \cdot 71$	$\cdot 391$	$1 \cdot 12$	－342	－691	－299	－344	－257	＊氝或•02083
$1 \cdot 65$	－420	1.08	－368	－668	－322	－327	． 277	最宫空－02500
$1 \cdot 60$	－444	1.05	－391	－644	$\cdot 343$	－313	． 296	
$1 \cdot 56$	$\cdot 467$	1.02	$\cdot 412$	－623	－362	－298	－313	
1.48	． 505	．968	－449	． 586	－396	$\cdot 273$	－343	
$1 \cdot 41$	． 540	－921	$\cdot 480$	－554	－425	－251	－370	
$1 \cdot 35$	．570	$\cdot 881$	$\cdot 508$	． 526	． 451	－232	－393	¢ 者云－05833
$1 \cdot 30$	． 595	$\cdot 844$	． 532	－500	． 473	－215	－414	喪吅•06666
$1 \cdot 25$	． 617	－810	－354	－476	－495	$\cdot 198$	－434	否枵 07500
$1 \cdot 21$	－638	$\cdot 779$	$\cdot 372$	． 454	－514	$\cdot 183$	－452	\％${ }^{5}$
$1 \cdot 17$	． 657	－751	． 592	－434	．5：32	－160	－468	\＆
$1 \cdot 13$	．674	－724	． 607	$\cdot 415$	． 548	$\cdot 156$	． 483	

Example of its application．－Stroke 36 inches；width of port 2 inches；steam to be cut off at half－stroke；distance of the piston from the end of its stroke when steam is re－admitted for the return stroke， 1.5 inches．
$\frac{1.5}{18}=0833$ ．Find that number，or the one nearest to it，in
the right－hand or last column，and take out the multipliers on the same line under the head Half－stroke．

> Then $2 \times 1.21=2.42$ inches $=$ the lap.
> And $2 \times 638=1.276$ inches $=$ the lead..

R．B．C．

HEALTH OF TOWNS COMMISSION．

We may seem to be rather late in noticing the first report of the Metropolitan Sanitary Commissioners，but the first number of our new volume was so filled with other matter，that we were unable to do more than to call attention to the unfair way in which the profession has been treated by the commissioners and the governi－ ment．Since then we are sorry to find that the design of employ－ ing military engineers in making the survey of London is persister in，and that at a time when numbers of experienced and well qualified surveyors in the metropolis are without employment．

The first part of the Report is devoted to a consideration of the means necessary to resist the cholera．After a careful investiga－ tion，they come to the conclusion，which appears to us to be well founded，that cholera is not contagious，and that the great means of lessening its ravages are to be found in improved sanitary arrangements，particularly in connexion with the sewage．
To improve the sewage is their first step，and they have recom－ mended and obtained the revocation of the old commissions of sewers．This is a measure to which we have already given our strongest advocacy，but we do not think that the commissioners have gone far enough．The Regent－street and Regent＇s－park dis－ trict remains a narrow slip，running up from the Thames across the drainage of the Westminster and Holborn districts，and having a grand and deep sewer of nearly the capacity of the Fleet，which being employed as an outfall，would as we have before pointed out be immediately available in improving the drainage of a very large district．It is true that this is under the virtual jurisdiction of the Commissioners of Woods and Forests，but the commission ought to be at once revoked，and the jurisdiction transferred to the new metropolitan commissioners．The maintenance of this commission by the government is a reason which will be used for the maintenance of the City of London Commission，which is like－ wise left untouched，because，as the commissioners say，they have not had time to look into the case，but because，as we presume，Mr． Lambert Jones prevented it，and because the commissioners did
not choon to get themeaiven involved in a conteat with the corporation of London.

The City Comminaion of Sewers has certainly been among the bent managed, and this, perhapa, for the reason that they have alwayn had a regular corps of officers; but atill there is no reason why the city should not derive the benefit of an amalgamation with the reat of the metropolis. Let the corporation choose a commissioner, and they will get a share of the infuence, control, and petronage, as well as of the economy attendant on the new cummi mion. If they do not accede at once they will not be able to secure the few dinners which they receive, while they will lose the power and patronage. At present the street sewers of the city are imperfect and unfushed, the gratings and gully-holes unerapped, the courts and alleys undrained, the footways and footparements not cleansed, the house draine and ceappools in a dangerous condition, while the sewers convey miasma into most of the heuses. The statistics of the city in the latter respect are most unfavourable, and show a fearful influence on the public health.

The commismioners have given such evidence as to the necesaity of consolidating the districta, that on the etrength of that evidence we call upon them to complete their measure of amalgamation. They may-
c'Taking the works of cleansing as they now are the preventive measure to which those works may be immediately applied with the greatest advantage is that of flushing. But to the general and effectual application of this most important operation, the state and separation of the several districts under the district commisalons, presents itself as an insuperable obstacle; and, in fact, the operation of cleaning out the sewers by fushing them with water is in systematic use in only one of the upper districts, the Holborn and Finsbury district.
"One district may flush its sewers, but the operation will be at many points only a removal of a portion at least of the refuee into the eewers of the adjacent districts, unless the operation be continued through the intermediate districts to the outfall. The lower districts complain of being encumbered by the flushing operations in the upper districts.
"In the lower districte, which are flat, there are fenerally accumulations of refuse, and if in an upper district, which is under a separate jurisdiction, a part of the line of sewer is flushed to keep it free from deposit, the effect upon the lower district in which the fush exhausts itself, is to disengage more copiously the offensive emanations, for a time, by disturbing and adding to the deposit there, without removing it. Whilst the sewers of one district are left unflushed, or uncleansed, the emanations are driven by the wind into other districts, particularly from the depositg at the mouth of sewers in the lower to an upper district. When the sewers in the Holborn and Finsbury division have been clean flushed, it is stated that the inhabitants of that district, even up to the New River Head, have been annoyed by the cnrrents of offensive gases up the sowers from the accumulations in the lower districta, where the same cleansing operations have not been carried on. For obvious reasons, additional supplies of water would require to be provided in the upper districts, and regulated, for application throughout the whole lines to the outfalls, without staying for separate and intermediate co-operation."

One great evil of the present system, and a cause of fearful expense, is the disproportion between the area of the sowage sent through sewers and the ares of the sewers themselves.
"Works to effect town drainage must be constructed for the removal of surplus or waste water from two sources; the natural rain-fall on the town area, together with water from the springs derived from sources beyond the area which may often require separate arrangements ; and the pipe-water, brought into the town, and any refuse matter which it may have received in suspension or chemical combination. Setting aside for the present the consideration of the house drainage, and taking in the first instance, the secondary sewers, we give the following cross section, fig. I, of a sewer draining two or three streets comprehending between one and two hundred houses. The depths of the ordinary run of sewerwater when there is no rain, is only about three inches, and the depth of the increased run of water on the occasions of the greateat storms, just covered the invert.
"The cross section, fig. $\&$, is a section of a main line of sewer in the Weatminster district, draining about 90 acres of town ures. The ordinary run of sewer-water does not cover the invert, and on the occasion of the grestest thunder storm of which there is any historical record in the metropolis, namely, that on the let of August, 1846, the flow of water was only 9 ft 3 in . deep.
c In general the flow of water in the collateral sewers of branch lines of street, even where all the housen drain into them, are mere
dribbles, and rarely rise above the invert of the wide bottomed cewers as at present constructed, even in streets where all the houses drain into the sewers. The following are the consequencea which take place in various degrees in nearly all the collateral eewers of every form of construction, though the beet is the eggshape form.
"The flow of water, being impeded, by the extent to which it is spread, is retarded, and a deposit is created ; this deposit becomes indurated to a degree which prevents its being removed by the flow of water occurring in ordinary rainfalls, and is not often considerably affected by any other than the extraordinary storms which occur in intervals of several years.
"The sccumalations continue, and during the process, the doposit from the house draing spreads on the wides, and decomposition ensues.
${ }^{6}$ The accumalations in the sewers, as well as in the large house drains which communicate with them, are exposed to the action of mach air, usually at such a temperature as greatly to facilitate decomposition.
"The accumulations increase until the house drains are entirely stopped up, when the deposit in the sewers is usually removed by the offensive process of hand labour and cartage, leaving the deposit in the house drains untouched."

It is well observed that very small currents muffice to keep eewers clear of deposit, if the inclination be good, and the flow be concentrated and kept regular, for which it is considered that additions of small quantities of water would be sufficient at particular intervals and seasons. The commissioners therefore recommend the use as far as possible of glazed earthenware tubes. These were long since tried by Mr. Roe in the Holborn and Finsbury division, and afterwards by Mr. Phillips in the Westminster division, and found to discharge the water more quickly and to keep clear of deposit. They also prevent the pascage of rats from the sewers into houses, because they afford no hold, and do not, like the common brick drains, allow them to make burrows.

Mr. Roe and Mr. Phillips also made observations on the flow of water from the main and side sewers and draing, which the former began so long as five years ago.

In Mr. Roe's experiments he ascertained the rate of flow of water, through the common brick drains for houses, as well as through earthenware drains of the same capacity, and with the same run of water. As a general result it may be stated that the rates of discharge through earthenware pipes are very much increased, sometimes as much as one-third. In the application of water for flushing, this is an important consideration, as by the use of the improved drains, a great saving of water will be effected.

The house drains receive the water from small il $\frac{1}{2}$ inch lead pipes from the kitchen sinks, and yet they are often made as much as 60 times the capacity of the pipes in the smaller houses. In theae, square brick drains are put in, costing from $6 d_{\text {. to }} 11 d_{\text {. per }}$ foot run, exclusive of digging, while in the larger houses brick barrel drains of 9 or 12 inches diameter are put in, costing 1 s . 4 d . or $18.7 d$. per foot run. As the bottom joints are put in without mortar or cement, the sewer water percolates through the drain. and infiltrates into the houses, while the solid matter, unwashed by any stream of water, festers at the bottom, and acts as a retort for supplying nauseous gases to the houses. It is true that the object in leaving the bottom of the sewers "dry," or without mortar, is to let in the land drainage, but the effect is what we have stated, while it is rare to find a house drain free from deposit. The rats, too, by burrowing in the drains, put them out of order, 80 as to require their more frequent repair, and the whole working of the drains is as unfavourable as can be conceived, and as far as possible from the designs of the builders. A common house drain cannot be considered otherwise than as a nuisance.

A twelve-inch drain is an expensive nuisance, while an earthenware pipe of four inches diameter (or, proportional to the house, of from three to six inches diameter,) keeps perfectly clear, and a three-inch pipe is found quite large enough to carry away the refuse from middle-sized houses. In consequence of the adoption of this improvement, the cost of drains from houses to sewers in the Westminster division, which used to be from \&10 to $\mathbb{E} s s_{1}$ has been brought down to a charge of from \&\& 18 s . to $\mathbb{E} 410 \mathrm{~s}$, and even this is considered too high.

Nothing shows the error of the old system more atrongly than a case given by Mr. Phillipe of drains in Langley-court, Long-scre, An old small sewer, 18 in. wide by 9 ft . high, having a good fall, was nearly clean, while a new sewer, 5 ft .6 in, high by 3 ft . wide, contained an Everage depth of three feet of soil, and the emanations from it caused the death of a poor man, and led to an inquest.

We think Mr. Phillips fully justified in stating [p. 30], that the serers are bad in construction, but the house drains are worse. He states that in going along the sewers, he has often tried whether the currents of air were flowing into the sewers, or out of them into the houses. By placing the light which he had in his hand by the side of the house drains, he almost invariably found the flame carried into the mouths of the drains-showing that there must have been direct currents from the sewers through the house drains into the houses. Many of the gully drains showed an outward current into the streets, though some have a downward draught.

Mr. Phillips gives his support to the statement that some neighbourhoods are at times afflicted with more noxious effluvia from the sewers, than if there were no sewers whatever. He thinks the great remedies are to keep a constant supply of water in the sewers, and to circulate it through them; and to carry all the outlets under the side beds of the river, to discharge into the main stream under low-water level. Mr. Phillips has found that the atmosphere of districts near the outlets of the sewers is liable to be affected with effluvia, when the wind happens to blow up the sewers. By carrying the outlets into the stream, he expects, moreover, to get rid of the filthy mud-banks, and the myriads of worms sweltering upon them.

The Report notices the extended use of the egg-shaped sewer in the Holborn and Finsbury and Westminster divisions, but remarks that the new sewers constructed are generallv of the same internal capacity as the old forms, and therefore disproportioned to the extent of the drainage. Λ further great saving will consequently be made in the new operations by reducing the size of the sewers. The commissioners observe, with justice, that the mere view of the ordinary run of sewer water in the sewers, or of the run of water on the occasion of heavy storms, might have led to some amendment in the construction of sewers without any gaging, had a view been taken of the flow in the lateral, as well as in the main lines of sewer; but the sizes of sll classes of sewers have been maintained on the view of the main lines alone. Mr. Hertslet, the clerk to the Westminster commission, well observes that he has been perfectly at a loss to conceive in traversing the sewers, why such immense snwers should be built to carry off such mere threads of drainage. He has scen sewers 5 ft .6 in . high by 3 feet wide, built where, even during heavy rain, a 3 or 4 -inch pipe would have carried off all the water.
Mr. Phillips makes some curious remarks with reference to the size of current which would suffice to keep an ordinary sewer clean. In passing through the branch sewers, he has noticed that the currents of water are mere dribbles, and being spread over a flat surface are not strong enough to remove the soil. Looking at the currents, and comparing them with the extraordinary sizes of the sewers, it was easy to decide that the currents might be passed through pipes of from 3 to 9 inches diameter. Indeed, in a large number of the sewers, the currents have cut narrow and deep channels for themselves, leaving the bulk of the deposit untouched, but showing, as Mr. Phillips says, that nature was trying to remedy the faults of art. Sometimes it is necessary to cut such channels through the deposit, to allow of the flow of water. Acting upon this view, Mr. Phillips proposes to improve the flat-bottomed sewers, by bedding channel tiles along their bottoms, and filling them in behind with concrete, In the middle he would place a channel tile of say 1 foot diameter, having other flat tiles sloping down to it on each side. By this neans, the currents wonld be concentrated on smaller sized channels, kept regularly in action, and therefore clear.

Mr. Roe proposes to reduce the expense of sewage for one side of a sewer for a house of 17 feet frontage, which lately with upright-sided sewers was $\mathfrak{£ g} 118.3 d$., and now is with egg-shaped sewers $\mathfrak{L 6} 08.5 d$.,-this he proposes to reduce to $\mathscr{L}^{\circ} 2198.6 d$. for first-class houses, and $\mathfrak{£ 1} 148$. for sixth-class houses. In these latter charges is included the supply of water. The buttom portions of the larger sewers Mr. Koe proposes should be of wellprepared clay, moulded in blocks two feet long, and well burnt; the upper portions to be formed of radiated bricks, laid in blue lias mortar. The smaller sewers are to be likewise egg-shaped, but to be made entirely of brown stone-ware glazed. Mr. Roe's first-class largest sewer is 3 ft .9 in . by 2 ft .3 in ., with an area of 6.6 feet, and costing 78. per foot run; his seventh-class, or smallest sewer, is 15 in . by 9 in ., with an area of 9 inches, and costing 38 . per foot run.
The greater part of the duties of the officers, Mr. Roe states, is taken up by attending to complaints of the stoppage of drains and sewers, and in superintending the removal of the soil; when, with a proper system of sewerage and house drainage, nearly the whole of the duties in that respect may cease. We agree with him that it is far better that a staff of officers should be constantly engaged in making examinations, in order to prevent filth from depositing and accumulating, than in waiting for it to collect and annoy the publio with its noxious emanations, perhaps for weeks and months before complaint is made and steps are taken to remove the evil.
We think a great deal may be done by Mr. Guthrie's plan, mentioned in the Health of Toons Magazine. In this he proposes to separate the house drainage from the surface drainage. The house drainage being conveyed in tubes, as stated by Mr. Roe, would, under the pressure of water, be carried to the outfall, without gully holes or other communications with the external atmosphere. The surface drainage in the secondary streets could be conveyed by the kennels, and in the main streets be received by the large sewers.
The commissioners come to no decision, at present, as to the use of chimney shafts, with currents of air created by heat, for ventilating the sewers and carrying off the noxious emanations, though they express their approval of the principle.

In conclusion, we must again urge upon the commissioners the necessity of coming to some immediate decision respecting the use by the public of all sewers which have been built at the expense of the commissions, and at once abandon the extortionate demand of 108. per foot run on the frontage of a house, which, if it happen to be a corner house, may amount to the sum of $\mathfrak{£ 2 0}$, besides $\mathfrak{£} 5$ more for making the drain, for a fourth-rate building that cost only £200. Every facility and encouragement ought to be given to the owners of house property to make drains into the public sewers, and so to abandon the pest of cesspools.

CANDIDUS'S NOTE-BOOK FASCICULUS LXXVIII

$$
\begin{aligned}
& \text { Withal, as large a charter a the winds, } \\
& \text { To blow on whom I please." }
\end{aligned}
$$

1. Some have acquired a reputation for having a style of their own, merely because they have repeated the very same ideas over and over again, on occasions the most dissimilar; and, so far from improving upon them, that their latest applications have been less appropriate and judicious than their earlier ones. Such decided mannerism ought rather to be taken not so much for consistency of style as for sterility and inactivity of mind. He who at all deserves the name of artist-and architects claim it by courtesy, at least-is slways enlarging the stock of his ideas, and is always studying, throughout the whole of his career. Without copying others he profits by what they have done, both by shunning the faults they have committed, and into which he himself might have fallen but for such evidence of them, and by borrowing from them hints and motifs, -after a very different manner, be it observed, from the mere plagiarist. There is no merit in not availing ourselves of ideas thrown out by others, more especially if it has been done so very imperfectly and at random, that very much more than was at first thought of remains to be made of them. "He," says Reynolds, "who resolves to ransack no mind but his own, will
coon be reduced, from mere barrenness, to the necessity of copying himself."-Unvaried uniformity of ideas is not so much a sign of consistency as of limited power of conception and expression, and, moreover, occasions not only wearisome repetition but inconsistency likewise, the same mode of treatment being resorted to upon occasions and for subjects totally dissimilar from each other.
II. "How many of us country architects," says Mr. Sharp, "are forced to take the counsel of our excellent friend, Percier, aud in despair of executing large works, to bestow greater care upon lesser ones?" Well was it that the remark was put interrogatively instead of affirmatively, for in the latter case it ought to have been, not "How many," but "How few." Were Percier's excellent advice to be followed by country architects-and for the matter of that, by town ones also, -did they invariably strive to make the utmost of the occasion offered them, however inconsiderable it may be in it gelf, there would be far less of slovenly or else downright trumpery design than there unfortunately now is. The " making the most" of the occasion must not be misinterpreted : it is not to be underatood as recommending or consisting in ambitious aim and pretentiousness of design, and in mimicking larger things, as is frequently very absurdly done now, but on the contrary, in attempting no more than can be thoroughly accomplished, and so well accomplished that for intrinsic merit of design and captivating effect the work may notonly vie with, but surpass many others of greater note in ordinary estimation-chiefly, perhaps, because their size alone renders them conspicuous and imposing objects. Were this to be duly considered and acted upon, we should have less of vulgar architectural swaggering, and far more of real study of design, than we find now. It is precisely because there is so little of the latter, and because architects do not know how to impart to small or comparatively small buildings such character as shall be both striking and appropriate, that we have so much random copying, and injudicious imitation, which serves only to remind us of merits belonging to the original that are altogether missing in the copy.-There is much more room for fearing and also for saying that, taken in general, our smaller provincial buildings show, if not ignorance of design, very great negligence of it-sometimes to a degree almost incredible, if we may believe what profess to be portraits of them. The Masonic Hall at Cowes, and the new Ipswich Museum, are so far from bearing out what Mr. Sharp says, as rather to prove that architectural taste must be at the very lowest ebb in those places, if not in anyother parts of the country. Such doings in the provinces are, it must be confessed, kept in countenance by similar Pecksniffian achievements here in town, one of the most egregious of them being the College of Agricultural Chemistry in Oxfordstreet, which, small as it is, is any thing but an architectural miniature, for it has neither the delicacy nor refinement of one, but is no better than a vulgar and coarse architectural daub. Exceptions there are; and for one of them, we may point to the elegant screen fa;ade of Dover House; or, to take a quite recent one, there is Mr. Hodgkinson's newly-erected house in Park-lane, which affords striking evidence of what may be done within a very limited space -how much beauty of composition and elegance of detail may be displayed in a narrow frontage.
III. Music has, perhaps, been far more fortunate than Architecture, having escaped from the surveillance and trammels of archacological pedantry, in consequence of no musical compositions of the ancients remaining. No doubt they were altogether different in style from anything in modern European music; therefore, had they been preserved and followed as wholesome precedents, would have checked rather than at all advanced the progress of the art in later times. To say that had the architecture of the Greeks and Romans perished as well as their music, it would have been all the better now for the former art, would incur for me the epithet of ultra-reprobate, and would, besides, be doing violence to my own feelings. Yet it is sincerely to be wished that its examples were studied more, and aped less,-studied rationally and mathetically; and then it would be perceived that admirable as they are in themselves, and with reference to the purposes for which they were erected, they are either ill-adapted to, or furnish but very little towards, such an enlarged and complex architectural system as we now require. For actual practice, they afford us little more than a few varieties of column and entablature, arches, pediments, and such features, in regard to which we pique ourselves upon scrupulously adhering to the authority of some one particular antique example, although the structure to which they are applied is in its composition and physiognomy the very reverse of antique. As I have aaid, I believe, more than once before, modern architects have converted the orders into mere patterne, from which they have only to choose, without being put to the trouble of shaping out a single idea of their own. So that as far as the orders are concerned,
they neither are nor are called upon to act as artists at all; and as to the merit of truthful copying, that belongs rather to the operative stonemason than to themselves. There are many ancient examples that might be modified to greater or lesser extent, and in a variety of ways, without losing sight of the character of the type $s o$ followed. Nay, some might be considerably improved upon, and more consistently finished up than they appear to have been, unless they have been greatly mutilated. Take, for instance, the Ionic order of the Erechtheum,-surely such an exceedingly simple and severe cornice accords very ill indeed with such luxuriantly rich capitals, which seem to demand a corresponding florid character in what is the corresponding division of the entablature, and the crowning to the entire order. Together with want of keeping as to character, there is a falling off of effect where it ought, if any thing, to be increased rather than at all diminished. Obvious as this appears to myself, not one of those who have taken that example have ventured to depart from the exact letter of it, by supplying such a cornice as would complete and perfect it. Of the two, even an exaggerated cornice is a more pardonable fault than a starveling one. The reproach of heaviness is preferable to that of poverty and meanness.

AIR-TIGHT GRANARIES

Three conditions are essential to the process of putrefaction of grain, viz. : heat, moisture, and still air. With wind, moisture is carried off ; with cold, the decomposing process is checked, as may be seen by the carcases of animals that lie through the winter in suowy mountains, and dry up to glue. Without air, everything is locked up and remains in statu quo; as reptiles have been buried for ages in blocks of stone or ancient trees, and then resumed their vital functions, unchanged by time. In direct opposition to these principles are the granaries of Great Britain and other countries constructed. Their site is generally the bank of a river, or the sea side. They are built of many floors, at a vast expense. Men are continually employed to turn the grain over, to ventilate it, and clear out the vermin ; and the weevil is naturalised in every crevice, as surely as bugs in neglected London beds, or cockroaches in West Indian sugar ships. It is the admisaion of air that permits this evil, that promotes germination, that permits the existence ot rats and mice. In the exclusion of air is to be found the remedy. Granaries might be constructed under ground as well as above ground; in many cases, better. They might be constructed of cast-iron, like gasometer tanks; or of brick and cement; or of brick and asphalte, like underground water-tanks. It is only required that they should be air-tight, and consequently water-tight. A single man-hole at the top is all the opening required, with an air-tight cover. Now, if we suppose a large cast-iron or brick cylinder sunk in the earth, the bottom being conical, and the top domed over; an air-pump adjusted for exhausting the air, and an Archimedean screw pump to discharge the grain, we have the whole apparatus complete. If we provide for wet grain, a water-pump may be added, as to a leaky ship. Suppose, now, a cargo of grain, partly germinating, and containing rats, mice, and weevils, to be shot into this reservoir, the cover put on and luted, and the air-pump at work, the germination would instantly cease and the animal functions would be suspended. If it be contended that the reservoir may be leaky, we answer, so may a ship; and if so, the air-pump must be set to work just as is the case with a water-pump in a leaky ship. One obvious cheapness of this improved granary over those existing is, that the whole cubic contents may be filled, whereas, in the existing mode, not above onefourth of the cubic contents can be rendered available. But many existing structures might be rendered eligible. For example : the railway arches of the Eastern Counties, the Blackwall, and the Greenwich. Reservoirs might be erected in farm yards, or inasmuch as it is a certain thing that all farms must ultimately communicate with railways, by means of cheap horse-trains, or steam sidings, in order to work to profit, it would be desirable that the granary should be erected at some central railway station, where a steam mill would do the work of exhausting the air, discharging the grain by Archimedean screw when required, and grinding it into meal. No better purpose could be found to which to apply the atmospheric enyines and stations of the Croydon Railway, with their existing air-pumps. Communicating with all the southern wheat-growing counties of England, and also with the Thames, no spot could be more eligible as a central depotWestminster Review.

ON WING WALLS OF BRIDGES.

By R. G. Clark, C.E.

As the drawing of wing walls to railway bridges offers some difficulty when the embankments or cuttings are very high, to obviate this is the object of the present paper, which relates to the investigntion of some simple formulm to determine the angles made by the exterior lines of wing walls with the face of a bridge; the plane of projection being taken on a level with the rails or ruad, when the latter is level.
There are two cases to be considered.-1st. When the coping of the wing wall makes a given angle with the face of the bridge, or is parallel to the abutment, as in the case of a skew bridge.endly. When the coping is perpendicular to the face of the bridge.
3st. Let BH be the line of the face of the bridge on HIBED , the plane of projection as before mentioned; CD the exterior top line of wall; Ce the given batter, perpendicular to BD. The $\angle H C D$ being given, or D C drawn parallel to $B B^{\prime}$, as in the case of a skew bridge, draw $E D$ parallel to $B H$; nnd $B E, C F$, respectively, perpendicular to ED. For the sake of simplicity, we will first determine the $\angle \mathrm{CDB}$.
Let the slope of embankment or cutting be as m to 1 , and the batter of wing wall as 1 to n; height of slope equal h. Now, $\angle \mathrm{CDE}=\angle \mathrm{HCD}$. Let $\angle C D E=0$. Also, base of slope $C F=m h$; and batter C_{0} of wing wall $=\frac{1}{n} h$.

Then, by the right-angle triangle C F D, we have

$$
\sin \theta: m h:: 1: \frac{m h}{\sin \theta}=\mathrm{DC}
$$

Also, by triangle CeD, right-angled at e, we have

$$
\begin{gathered}
\frac{m h}{\sin \theta}: 1:: \frac{1}{n} h: \frac{\sin \theta}{m n}=\text { nat. } \sin \angle C D B \ldots \ldots \ldots(1) . \\
\therefore \angle H B D=\angle H C D \text { or } \angle C D E-\angle C D B .
\end{gathered}
$$

Erample. Given the angle of obliquity HCD $=20^{\circ}$, slope 1 to 1 , and batter 1 in 5 , to determine the angle of wall HBD : By formuls $\frac{\text { nat. } \sin 20^{\circ}}{1 \frac{1}{2} \times 5}=\frac{2 \times{ }^{\cdot 34802}}{15}={ }^{\circ} 04560=$ nat. $\sin 2^{\circ} \leq 7 \frac{1}{2}^{\prime} ;$ therefore, $\angle \mathrm{HBD}=20^{\circ}-2^{\prime} 37 \frac{1^{\prime}}{\frac{\prime}{\prime}}=17^{\circ} 22^{\prime} 30^{\prime \prime}$ required.

2ndly. When the coping is perpendicular to the face of the bridge.

> Then $\sin \theta=1 ;$
> consequently, $\sin \angle \mathrm{CDB}=\frac{1}{m n}$.

Hence, \cos C B D $=\frac{1}{m n}$

Examples.

When the slope is 1 to 1 , and batter 1 in 5 .
Then nat. $\cos \angle C B D=\frac{1}{8}=q=$ nat. \cos of $78^{\circ} 27^{\prime}$.
When the slope is $1 \frac{1}{8}$ to 1 , and batter 1 in 5 .
Then $\angle C B D=82^{\circ} 20^{\circ}$.
When the slope is 2 to 1 , and batter 1 in 5 .
Then $\angle \mathrm{CBD}=84^{\circ} 15^{\circ}$.
From the above it appears, that the actual height of the slope, and the batter in feet, \&c., have no occasion to be taken into consideration; but only their respective ratios, as above given.

RAILWAY AND STEAM NAVIGATION DEFENCES.

The course which the Duke of Wellington has thought fit to take, in furtherance of the measure of increasing the army under his command, has given a new strength to the alarmist party. We say, advisedly, that the Duke's letter to Sir John Burgoyne can only be taken as the statement of an advocate, using every means to make out a case; for there is evidence enough in that letter to show the impracticability of an invasion, if it were consistent to suppose that a commander so experienced could countenance a scheme, which the youngest staff-officer knows is in no way feasible. In considering the subject, we do not think it necessary to analyse the Duke's letter, because we do not look upon him as a believer in the invasion scheme; but we shall take up the question upon its own merits, which are certainly small enough, compared with the clamour which has been made by so many parties, and of which the Commander-in-Chief has so skilfully availed himself, to further the views of his own department.

It is one of the consequences of thirty-two years of peace, that the present generation know little of war or of military affairs, and it is therefore open to ignorant or restless officers to impose upon them statements, which do not meet with the countenance of nien well informed in their own profession, and which are not consistent with historic proof. With the public an officer is taken as an authority in virtue of his epaulettes; but, nevertheless, he is as an officer no more an authority on this question of invasion, than the most ignorant civilian. It is one of the misfortunes of the English army, that there is no guarantee for the qualifications of its officers; and, notwithstanding the growing deaire of improvement among military men, it cannot be denied that it is much rarer to find a man well acquainted with his profession than otherwise, for there is no security, and it may be said no encouragement, for proficiency. In the navy, and in the artillery, an examination must be passed; but, under the system by which the army is officered, except the few college cudets, a man may be put in command of an army, whose only qualification is that he can mancuvre a battalion on parade. Neither is the service of the English army calculated to qualify an officer for European warfare, for the staff arrangements even of an Indian campuign will give no schooling for a war in the old battle-field of Flanders. One of the defences we most want is a good staff of officers, and money cannot be better laid out than in enlarging the military colleges, and encouraging the studies of officers. In the meanwhile, we hope the public will not allow themselves to be frightened out of their wits by men who know no more of the organization of an army of fifty thousand men than a drummer-boy does; and, at any rate, to accept with caution any statements which have not the support of common sense and historical evidence.

It is very easy to start with the hypothesis of 50,000 Frenchmen on the Sussex coast, and to talk of the capitals of France, Austria, Russia, and Prussia having fallen into the hands of an enemy; but it is so difficult to conceive how a French army of 50,000 men, or of any other force, could be brought to London, that any general being offered the command of such an expedition, would give it up in despair. In order that a French army may land upon the Englishis shore, there must be no political disorganization in France, and there must be political disorganization in England. Our great protection hitherto against invasion from France, has been the political disorganization of that country by the League, the Protestants, the Camisards, the Girondists, or the Chouans, or by the irruption of Prussians, Spaniards, or Savoyards. Napoleon never hoped to be able to make an effectual invasion of this country, unless he could make a political diversion, by seouring the neutrality of parties in opposition to the government. How futile was that dependence is well known; and though some may, in the present time of calm, believe that political factions might hereafter be brought to sympathise with an invader, yet such coalition would become impossible when war shall break out, and the old feelings of bitter hatred be awakened. This is a disturbing influence which cannot be readily overcome. There is nothing more difficult than to overcome a people in their own country, with whatever force, if united in resistance. France will give the ex. ample. If, in 1814 and 1815 , the allies were able to make their way to Paris in the then political disorganization of the country, yet, in the early part of the war, under the Duke of Brunswick, though France was unprepared, the invaders were driven back with loss.

The circumstances under which an invasion of England will be practicable are-the union of the French, High Dutch, and Russians, the destruction of the naval power of England, our political disorganization, and the agreement of a large part of the people
to welcome the invader, This country has not yet had an enemy on its shores, and it is not to be judged like France, Flanders, Holland, Italy, Germany, and Spain.

Before coming to our own particular view of the question, we have a few observations to make upon the military and naval part. The hypothesis of an invasion must be under these forms:-0f an urmy of 200,000 men, or of an army of 50,000 ; of an army with cavalry, artillery, pontoons, provisions, and train, or of an army with light mounted artillery. Confining ourselves to an arniy of 50,000 under either of the latter two conditions: such an army, with 10,000 horses for cavalry, 400 or 500 pieces of artillery, horses and carriages for artillery, ammunition, provisions, and train, would require greater steam accommodation, and take greater time in landing. It would, consequently, defeat itself, by giving more time for the muster of forces against it. On the other hand, a mere incursive light force of 50,000 men, would be defeated by want of means to overcome the usual obstacles of delay. It would want cavalry to drive off the swarms of local mounted skirmishers, and to make its reconnaissances; it would want means of crossing rivers; and when its brigades before concentration were brought in front of a regular force in position, it would want heavy cavalry and artillery. If the wounded men were picked up they would encumber the march, and if left behind they would be massacred by the local skirmishers hanging on the rear; so that the men would soon become demoralised. Three days stay in a wasted country would leave such an army, even if concentrated, without provisions or ammunition, with its ranks thinned and dispirited by death and fatigue. If it attempted to fight, every man would be butchered. Indeed no worse fate can be wished for any man than to have the command of a brigade in an army of invasion of England.

Persons who are ignorant or ill-advised, may say that we have no regular force and no military spirit in the country; but those who take the trouble to calculate know that this country has at all times had great military resources, and at no time so much as at the present. Turn back the pages of the history of England, and watch the progress of preparation. The regulars in England are increased by scores of thousands at a time; sixty thousand militia are embodied and used as regulars; an army of reserve is called out; local militia are brought into the ranks of the regular arniy; three or four hundred thousand volunteers are enrolled; and, in 1808 for example, seven hundred thousand men are in arms in the islands, besides a vast fleet patrolling around. Since then, the population has doubled, and that seven hundred thousand men will become a milliou and a half, with the levy en masse to back them. England, without allies, can never be lost, if only true to herself, though the nations of Europe should be poured on her shores. No enterprise could be more dangerous than to land troops in a thickly-peopled country, among a brave and warlike population, strengthened with all the resources of knowledge and wealth. For what would this to be attempted? To take the land, but to fill the shores of the Atlantic, and the waters of the deep, with a fierce people, who, as the Hollanders once threatened to do, would take to their ships and seek a new country, whence they could turn upon their oppressors.

It should be noted that it is an old regulation, always renewed in time of war, that in case of invasion, all corn, cattle, and people, within twenty miles of the shore, must be driven up the country, and the district wasted, and efficient means are provided for effecting this. England in time of war, and England in time of peace, are different countries, and it is certainly not matter of blame that the government, in the thirty-second year of peace, do not harass the country with the troubles of war-time. Why are martello towers, shot furnaces, and batteries to decay upon the cosst, heavy artillery to rust, and men to be taken from their shops and homes to the drill ground, when all that is wanted in this way can be done when the time comes?

As to sudden invasion at this moment, it is a bugbear; but we are always ready to urge that a consistent system of preparation for war shall be carried on: but then in our opinion the means are simpler than those usually put forward, and are not to be sought in the army estimates, but more immediately within the scope of what are commonly called the engineering operations of the country. We do not advocate an increase of the standing army; we have no faith in the fortification of Portsmouth, Plymouth, and other towns, as strong places; we do not think it necessary to lay down batteries on the coast, or to mount them with heavy artillery; still less do we advocate the calling out of the nilitia. We may observe, that the government of this country have always wisely shown an indisposition to put arms into the hands of the people in time of peace, because they are not under the boud of a
feeling of hostile invasion, which in time of war prevents a misapplication of arms to interference in the civil government.

We consider that a due attention to railways, steam navigation, and the telegraph system, will in time of peace be the most efficient means of providing for the defence of the country. We are no longer in the position we were a few years ago, when the sudden growth of steam navigation threatened military and naval men with a new instrument of aggression, against which they had no means of defence. Then there might have been occasion for alarm, had war broken out; but since then, the development of the railway system has provided an adequate power of resistance; while, more recently, the establishment of electric teleyraphs has thrown the scale of preponderance in favour of the defensive resources. We can no longer be in doubt in what direction we are to apply our means and make provision. We must avail ourselves of those three great branches of national enterprise which we have already named. Do not let any think us over-professional in taking this view of the matter, for this is the side on which the Duke of Wellington looks at it. He takes his case on a steamnavigation invasion, on this new development of scientific resources; and the fair way to meet it is to consider what resources of such kind are available for the purposes of defence. Engineers and manufacturers have created the means of invasion, and they must provide us, to some extent, with the means of defence.

Considered in reference to the defence of the nation, nuthing can be more unwise than that legislative interference which has restricted railway enterprise. Even were it true that there was an undue competition for railways, and that capital was diverted into this branch of investment, still, so far as the country is concerned, it is desirable that as many railways as possible should be made. If we are asked whence the capital comes for railway construction, we can have an answer which springs from the very matter now under discussion. In time of war, we keep a couple of hundred thousand regulars and militiamen, giving no productive return. In time of pence, we can employ two hundred thousand navigators, or, in reference to our present means, four hundred thousand navigators, in making railway works. At present, out of an income of fifty-five millions, thirty millions are a mere transfer of capital, in the shape of interest on the debt; the remainder is the effective drain upon the energies of the country; and every addition of twenty thousand men to the military forces is a deduction of so many men, and of one million yearly, of so much productive labour and capital rendered unproductive. We can carry on such great railway works while other countries cannot, because France, for instance, keeps three hundred thousand, or four hundred thousand, men under arms,-doing no good, but, on the contrary, weakening its resources.

The less interference with railway legislation and management the better, for it results only in public inconvenience. Had it not been for this interference, we should now have had coast lines all round the island, and been provided with sufficient converging lines from the great seats of population. As we stand now, the southern coast line is incomplete, the line to the west coast is incomplete, the eastern coast is neglected, and indeed the communications are left in such a state, that in time of war they will require to be completed at the national expense. If erroneous views of policy had not prevented it, we should have had at present the following lines available for the south coast defence:A line along the south bank of the Thames, to Dover, to Hastings, to Brighton, to Shoreham, to Fareham, to Portsmouth, and to Southampton, giving the means for pouring down troops most rapidly; whereas, through the fear of competition, we are left with the present inadequate accommodation. If the plan of traffic estimates and investigations had not been followed, and parliantent had not undertaken the futile inquiry whether a line would pay or no, we should have had lines enough made by those who are the best judges how to invest their money. It is, however, the consequence of the meddling policy, that it always reacts to produce serious inconvenience to the country, without doing the slightest good.

Now that railway enterprise has been suppressed and knocked down, it becomes the duty of the government to aid the companies in carrying out the necessary works. Among them are the bridge over the Thames to connect the north and south railways; the branch of the Brighton railway from Croydon to Wandsworth; the union of the Portsmouth and Gosport lines; and the extension of the Brighton and II astings line through Rye to Ashford. London is the seat of a population which will afford four hundred thousand able-bodied soldiers, between fifteen and sixty, to be poured down to any point of the coast between Dorchester and Harwich; and it is therefore necessary to provide accommodntion
for bringing this great reserve to bear upon any point attacked. The metropolis also is the reserve for defending the whole of the northern and west coasts, in case of insufficiency of local force.

It has been recommended that the railway companies should be encouraged to adapt their wagons so as to carry heavy artillery; but this is unnecessary, though they should have provision for carrying light artillery. This country, yielding more than one million and a half tons of iron yearly, can supply any number of heavy carronades to carry 68 lb . hollow shot or solid red-hot shot. In case of need, a thousand carronades could be cast daily. The coasts can be lined with heavy ordnance, and provided with furnaces for heating shot, the guns being worked by the local fencible artillery. If the enemy effected a landing, the guns would be spiked and left on the spot. Guns would likewise be brought up along the line of the enemy's march, and upon the fortified lines and camps, and as each position was abandoned the guns would be spiked. There would be no object in lngging about heavy pieces, and the enemy would not move spiked iron guns, if they had the train to do it.

Every encouragement should be given to telegraph companies to lay down wires, for although we have got to a certain stage of adrancement, the electric telegraph system in this country is far from being in a satisfactory state. It seems very desirable that it should not be left a monopoly in the hands of the Electric Telegraph Company or the government, who, by inveterate adherence to one system, may check the course of improvement. The use of the needle telegraph by the company we believe to be fraught with great inconvenience, and indeed, in particular conditions of the weather, as the needle telegraph will not work, it may become aseless either to announce an invasion or to communicate orders. It is to be observed that the electric telegraphs for the south coast are in a bad condition. The coast line is not completed, and the Gouth Devon line is said to work imperfectly. The telegraph on the South-Eastern is worked in a complicated manner; there is no telegraph on the Brighton. There is a telegraph on the SouthWestern; but on the Great Western, none bevond Slough. We say nothing about military communications with the inland stations, or with Chatham, Plymouth, and Milford. All this requires looking to, so that every encouragement be given to complete the system; and in case of need, the government must thenselves lay down wires.

The steam navigation resources of the country must be cultivated by a prudent legislation. On this head, as on railways and telegraphs, private enterprise is ready enough to work without requiring any great expenditure on the part of tbe state; but, unhappily, legislation has generally been unfavourable to private enterprise, or so tardy, that private resources have been exhausted before public aid was afforded. The Great Western Steam Navigation Company was allowed to drop, when slight aid from the public would have given it an impulse, and we might had a weekly line to the United States before now. Mr. Waghorn is still urging upon the government the packet line to Sydney, and Mr. Wheelwright has not too much reason to congratulate himself on the aid afforded to Pacific steam navigation. From the tardiness of the government, the Great Western, the Cape of Good Hope, and the Bahia Steam Navigation Companies have been ruined, the Pacific Steam Navigation Company has been kept in difficulties, and the Royal Mail and Peninsular Companies long had to struggle amid depression and neglect.

The line to Australia should at once be authorised, as also one to the Brazils. Already a steam marine has sprung up in Sydney, and it would be much extended under the impulse of a steam communication with the mother country, while a slight encouragement would fill with steamers the harbours of our possessions on the Indian ocean, and greatly augment their defensive resources.

It is very desirable that examinations should be established for masters, mates, and enginemen of steamers, but accompanied with the distribution of such prizes for proficiency as should stimulate the acquirement of professional knowledge, and raise the character of the persons employed.

With a population of fifteen or sixteen millions on sixty thousand square miles, and with vast material resources, nothing but the imbecility of a government, or the treachery of a party, would make a foreign invasion possible; and one great source of moral strength and confidence is a knowledge of those resources. What can be more desperate than the embarkation of landsmen in steamers and amall craft, which, if the sea-force of England be annihilated, must still be landed on a hostile shore under a well-directed fire of red-hot and hollow shot and shells from heavy pieces. By the time a landing is effected, the local force is mustered, troops pour in from all quarters, the people, cattle, and corn are driven,
the roads and bridges broken up, and the enemy would have to advance under the fire of mounted and dismounted sharpshooters, lurking in a country full of hedges, ditches, and enclosures. Every bridge and culvert would form an obstruction, every grove of trees near the roads be cut down for an abattis; barriers would be formed at the hamlets and villages, and guns mounted in the churchyards, mills, and on the hill-tops. In the face of such obstacles the enemy would have to advance, each man carrying sixty rounds of ammunition and three days provision. firalleurs would have to be thrown out around the column of the moving brigade, and, after two or three miles' advance, more must be kept in the rear, as the skirmishers would get behind, in order to slaughter the wounded, for it is well understood in such affairs that no quarter is given. The brigades landed at various points along the course, would have their communications interrupted by the deep and wide mouths of the rivers, and their progress imperled by gorges and steep passes in the chalk range, which would admit of a stand being made by the local forces. The brigades would not know whether their whole army had made good its landing, and would not in many cases know the fate of the brigades on their flanks; while, at the points named for the concentration of the divisions, many brigades would not be able to get up, and movements would be necessary in flank and rear to extricate brigades which were cut off and surrounded. Every hour lost to the invaders would be thousands of men added to the protecting force, and if divisions could be got together for an advance, they would then have to carry entrenched camps and fortified positions, ugainst a superior force well provided with cavalry and artillery, and knowing that the carrying one strong position was only shifting the field of battle to another strong position in the rear. When it is considered that in a broken country, swarming with skirmishers, a force weak in cavalry could not keep up communications without moving such a body of men as could defend themselves and cut their way through, the demoralization of the invading force within twenty-four hours would be certain. A very hard day's work would have to be done; nothing would be known as to the fate of other portions of the force; many of the men would have become the victins of the infuriated skirmishers; and a night would come on, when a large force would have to be detached for piquets and outposts, of which the sentries would be picked off on their guards, while the outposts would be driven in by night attacks. The next morning would offer the choice of a surrender, a retreat, or an attack from a superior force; and this without having got more than twenty miles from the coast. This is rather a different picture from that drawn by Lord Ellesmere, of the guards marching out of London ; but then it is the true one, which those who have had experience in such matters will recognise.

EEGISTER OF DEW PATENTR

PNEUMATIC SPRING.

Moses Poole, of the Patent Office, London, gentleman, for "Improvements in the construction of pneumatic springs."-Granted May 22; Enrolled November 22, 1847. (A communication from a foreigner.)

The nature of this invention consists in applying the elasticity of atmospheric air, or any permanently elastic gas by means of air expanding and contracting chamber or chambers, made in one, two, or more parts, and connected together by means of two or more belts of india-rubber cloth or other flexible or impermeable material. with alcohol or other liquid interposed, the more effectually to prevent the escape of the gas or air contained in the apparatus, ant to aid in relieving the flexible connexion, and preventing its rupture from the action of the weight or force on the spring.

This mode of connecting two vessels being applicable without the air to other purposes, such as hydrostatic presses, \&c., by forcing the water into or between the two vessels.

And the improvement also consists in providing this apparatus with one or more of what is denominated a respiratory chamber or chambers, attached to one or both ends of the apparatus, and separated from the main chamber of the apparatus by a diaphragm or diaphragms perforated with holes, which will check the passage of the air, and thus relieve the apparatus from the injurious effects of sudden shocks.

The manner in which it is preferred to construct this apparatus
is represented in the accompanying drawings, in which δ, fig. 1 , is a metallic conical vessel, with a concave

Fig. 1. plate or disc at bottom. The upper edge of this vessel is bevelled inwards around its circumference to receive the edge of the belts f and g, the inner edges of which are there secured by a plate e, depressed or sunk in the centre, which has a bevelled and grooved flanch, so that when the plate e, is drawn towards the bottom plate by four or more screw-bolts h, the belts are griped and firmly held between the grooved edge of the vessel und the bevelled or grooved flanch. The outer edges of the belts f and g, are connected with and held by the cylindrical vessel a, which surrounds the vessel b, having space enough between the two for the working of the belts, which by the pressure of the contained air are alternately pressed against and sustained by the inner periphery of the conical vessel. The belts are secured in vessel a, by making its cylindrical part in two portions. The edges of these two parts, where they come together, are bevelled or grooved to receive the outer edge of the belts, which are there griped and firmly held by drawing the two parts a and a together by means of screw-holts i, that pass through the head of the vessel a, and a flanch in the part a.
The connecting-belts f and g, are flexible hoops of india-rubber or other flexible substance impermeable to air, and the edges being firmly held, the space j between the two is filled with alcohol or other liquid, which not only prevents all possibility of air passing through, but brings an equal pressure on all parts to prevent rupture.

The connexion of the two vessels a and b, by means of the belt, divides the apparatus into two parts or chambers a^{\prime} and b^{\prime}, the plate or diaphragm e being the division, the inner and depressed circumference of which is perforated with holes to break the passage of the air, as the chamber a^{\prime} is enlarged or contracted by the movement of the two vessels on each other; this perforated plate is, therefore, termed a respirator, as it permits the passage of the air from one chamber to the other, and at the same time checks its too sudden passage, and therefore avoids to a certain extent all sudden jars in cars or other bodies having such springs interposed.

The motion of the two vessels on each other is guided by a rod k, attached to the head of the vessel a, which passes into a tube l, which tube arises from the bottom and centre of the vessel b, extending through the centre of the respirator or plate e; or guiderods may be applied outside. The vessel b, instead of being conical, may be cylindrical, but the two vessels should be so formed as to present alternately a supporting surface to the belt, which in consequence of the pressure of the air in the chamber a^{\prime}, rolls gradually from one surface to the other, and is therefore at all times supported by either one or the other, or both of these surfaces.

Instead of one respirator or perforated diaphragm two or more may be employed, the more effectually to ease off the passage of the air as it is compressed or expanded, and this respirator may be of any desired form, and may be located in any part of the two

ભhambers.

PIg. 2.

Instead of the double belt above described connected together at the edges, it is contemplated to place two or more single belts separated from each other, as represented at fig. 2 , with the liquid in the space t; the holes t, being made through the outer casing for the introduction of the liquid and closed by a screw-plug. When this apparatus is used as a hydrostatic press, the water is forced into the chambers a^{\prime} and b^{\prime}, by any of the known means which forces apart the two vessels a and δ, in the same manner as in the cylinder and piston press, except that the friction of the moving part is avoided. Air is to be forced into the chambers when the apparatus is used as A spring.

MANUFACTURE OF IRON.

Reoinald James Blewitt, of Llantarnam Abbey, Newport, Esq., M.P., for "Improvements in the manufacture of malleable iron." -Granted May 27 ; Enrolled November 27, 1847.
The usual mode of preparing pig or cast-iron for malleable iron is by melting such iron, or by mixing together and melting different qualities of pig or cast-iron with coke, in furnaces called refineries, and keeping it there in a state of fusion, at a great heat, with a strong blast; and the produce, run into moulds, is called refined iron, or metal plate. The patentee uses this, either alone, or mixed with different qualities of pig or cast-iron, in the puddlingfurnace, and subjects it to the after process of puddling, by which it is brought into the first state of malleability. He states, he has discovered that a better quality of refined iron, or metal, may be obtained from an air furnace-such as is commonly used for casting, or foundry purposes-than from the refinery, by which there is less waste of metal, and less expense of fuel, in the mannfacture. He lights and hests an air-furnace in the usual manner. For each charge about four tons of pig or cast-iron is put in of such qualities as the manufacturer may think most desirable to produce the required quality of malleable iron, as has hitherto been the practice in using refinery furnaces; and the charge, when fully melted and mingled together at the bottom of the furnace, is run into sand, or iron moulds, of any convenient size, and then subjected to the after process of puddling, which is conducted as if using refined metal produced from ordinary refinery furnaces. The fuel employed for heating the air-furnace is a white-ash, semibituminous coal of excellent quality, to which may be added, with good effect, 1 or 2 cwt . of charcoal to each charge.

RAILWAY CARRIAGE AXLES.

Samuel Benjamin Edward Berger, of Abchurch-lane, London, merchant, for "Improvements in the construction of railucay carriages." (A communication.)—Granted June 3; Enrolled Dec. 3, 1847. [Reported in Newton's London Juumal.]

This invention relates to a mode of connecting the axle-boxes of railway axles with the framing of the carriage, whereby the axlee will have a slight horizontal play, sufficient for them (when travelling over curves) to take a line parallel to the radius of the curve over which they may be passing. This is effected by connecting the axles to the carriages in the manner shown in the annexed engravings. For four-wheel carriages the apparatus is

Fig. 8. Pig. 2.
Fig. 1.

Fig. 4.
shown in figs. $1,9,3$, and 4. A, A, is one of thetwo main sidebeams of the framing of the carriage; and as side case of the carriage is similarly furnished for the support of the axles, a description of the parts pertaining to one end only of an axle will suffice to explain the nature of the invention.
a, a, are four arms or brackets, bolted, two on each side, to the beam A; and at their lower ends they are coupled together, in pairs, by a bolt or pin b. These pins each carry two links, c, c; and through their ends a coupling-pin is passed, and secured in ita place by rivet-heads or otherwise. d, d, are two rods or bars, provided at each end with eyes, for the purpose of being connected respectively at their outer ends by the coupling-pins of the links c, c, and at their inner ends, of being jointed together by the coup-ling-pins e, e, and intervening links f, f. These coupling-pins e,

Which are secured in their places by screw-nuts, also pass through the eyes of pendant-links h, h, which pass through the step or axlebox k, and hold it in suspension. I is the bearing-spring, composed of layers of steel plates, piled one above the other, and embraced by the links h, h, which, when screwed tight to the axle-box by the nuts (shown in the drawing), cause the horizontal links f to bind tightly upon the middle of the steel plates, and hold them securely together. It will now be understood, that when it is desirable for the axle to take a position other than a right angle with the side of its carriage, such movement will be permitted by the links c, c, being free to oscillate. In order, however, to check an undue horizontal movement of the axle, and allow of its adjustment only to a line parallel with the radius of the curve over which the carriage is passing, elastic stop or check-pieces m, m, are provided, as ahown at fig. 1; and placed in such a manner, as to allow of a free motion of about a $\frac{1}{4}$ to $\frac{1}{2}$ inch; so that, whenever the axle may have a tendency to sway too much, either forward or backward, the links c, c, will come in contact with the pieces m, and be prevented from moving further. This horizontal movement of the axle will only occur when the railway deviates from a straight line; but when the carriage again pursues a straight course, the axle will regain its position at right angles to the length of the carriage.

Another modification of the invention, applicable to a six-wheel carriage, is also described in the specification, fig. 5 being a side

Fig 8.
elevation; to allow the axles to move laterally, as well as in a forward and backward direction, in order that, in a carriage having three or four pairs of wheels, the hind wheels may follow the front pair, not always in a straight line, as they are now obliged to do (whereby a continuous abrasion of the flanges against the rails is caused when passing curves), but that they may take a position on the rail suitable for compensating for the difference in radius of the two sides of the curve of a railway, and permit the cone peripheries to work efficiently for that purpone. In this modification, the same or analogous parts are marked with similar letters of reference. Instead of the four arms a, fig. 1, forked arms a, are made to embrace the beam A; and at the junction of the prong, filling-pieces are provided, and cross-rods are also employed, to insure the rigidity required for the arms a. The lower ends of the arms a are hook-shaped, and are intended to receive respectively the shackles or links c, c, which, together with the coupling-hooks r^{4}, pendant from the bars d, perform the same office as the links c, in fig. 1. From the peculiar construction of this coupling, it will be seen that a lateral play or movement is allowed to the axle, entirely independent of the carriage-franing (no fixed point of vibration being employed, as at fig. 1); and, consequently, the object desired, viz., giving a lateral as well as a backward and forward motion to the axle, will be obtained. In order to limit the borizontal motion of the axle, the space for oscillation is contracted at x, x, (fig. 5). To guard agaiust the danger which would result from the breakage of either of the shackles c, a block of wood is attached beneath the framing, which, in falling, will be caught by a block resting on the coupling-links of the bars d. q is a whield for preventing the step or axle-box k, from getting displaced, in the event of such an accident as above alluded to.
The patentee claims the modes, herein described, of connecting the steps or axle-boxes to the framing of railway carriages, whereby the axles of such carriages are enabled to shift their positions, with respect to the frames of the carriages, for the purposes above ret forth.

MANUFACTURE OF IRON.

Williak Vickers, of Sheffield, for, "Improvements in the manu fucture of iron."-Granted June 19; Enrolled December 19, 1847.

The improvements consist in melting pig-iron with wroughtiron, and running the melted mixture (when divided into streams) into water; and then converting the product into malleable, or wrought iron, in the following manner:-Pig-iron is to be melted with scrap of wrought-iron or turnings, in any suitable furnace, (a cupola furnace is recommended); and the proportions of wroughtiron with pig-iron may vary greatly, but that a very small addition of wrought-iron to pig-iron, run into water, will be found to produce a great iroprovement in the quality of iron manufactured therefrom. Sometimes the following proportions are employed:-To 30 parts of wrought-iron are added 70 parts of pig-iron, by weight and, although this may not be found to answer for some purposes, it has been found to answer well. If however, the iron should be intended to be made into steel, it will be necessary to increase the proportion of wrought-iron, by mixing with the pig-iron about 40 per cent. of wrought-iron. In the mannfacture of irou intended for general purposes, there may be used, with advantage, a mixture of 30 per cent. of scrap of wrought-iron, or turnings, with pigiron; and such mixture, when melted, may be divided into small streams, and run into water, in any convenient manner. For this purpose, the patentee states he has used the following arrangement :-He takes a cast-iron tray, perforated with holes of half-an-inch in diameter, and this is lined about half-an-inch thick, with sand or composition, such as is used for stopping cupola furnaces with; which is punctured with holes about a quarter of an inch in diameter-such punctures being immediately over the holes in the tray, and then the tray is placed about 15 feet above the level of the water in the tank (employed for solidifying the iron), which is of wood, and about 4 feet deep; and the melted metal passing from the furnace, through the perforated tray, into the water in the said tank, will be found therein in a divided state. This product is used in the manufacture of wrought-iron, and is treated the same as in the manufacture of wrought-iron from pig, or refined iron. The patentee adds, that he has used, with advantage, in the melt. ing of pig-iron with wrought-iron, trom 3 to 5 per cent. of black oxide of manganese, which he believes will be found to be advantageous. This may be added from time to time, by placing small pieces in the tuyere holes-the blast dividing it in the furnace as the mixture becomes melted. The patentee does not claim the melting of wrought-iron with pig, or cast-iron, nor the running of melted cast-iron into water, when separately considered; neither does he claim the precise mode set forth, so long as the peculiar character of his invention be retained; but what he claims, is melting pig-iron with wrought-iron scrap, or turnings, and then rutning it into water, and using the product in the manufacture of wrought, or malleable iron.

STEERING VESSELS.

William Henwood, of Portsea, naval architect, for "Improrements in propelling vessels, and in steering vessels."-Granted May । Enrolled November 4, 1847.

The first improvement in propelling and steering relates to screwpropelled ships or vessels, and consists in placing the screw-propeller at the aft-side of the sternpost, where the rudder is in vessels generally, and in applying the rudder on the fore-side of the screw-propeller, in the lower and aftermost part of the run, and below the propeller-shaft, the rudder being substituted for the same part of the run of the vessel, as shown in fig 1 . The lower end of the sternpost meets the keelson, or timber running under the shaft, at about the height of the centre of the shaft; and the one may be united very securely to the other, by a flanch or flanches on the shaft cylinder, let into and bolted to the sterupost and keelsoh. This keelson, or timber, should be large in siding, because of the hole through it for the rudder-head to pass through; and it must have a rabbet to receive the bottom plank.

The propeller is connected with the sternpost and vessel very firmly by a metal coupling-box a, which has a metal-frame b, attached to it for raising and lowering the propeller; the couplingbox and hoisting-frame being formed with tongues, to slide in metal-faced grooves in the sides of the sternpost 8 , and the coup-ling-box having an interior collar, of the utmost requisite strength, fitted against a corresponding exterior collar round the propeller. The union of the propeller to the ship is thus made abundantly strong for pressing the shaft into the propeller, and "backing
astern." An after-bearing for the shaft may be formed by the metal-rod e, set up with a screw to the stern; which rod would also form an additional stop for the propeller on the shaft in backing astern. Or a rod might be attached to the upper and afterpart of the hoisting-frame, and set up with a screw to the vessel's stern; and a small rod may be applied at the aft-side of the hoist-ing-frame, for inserting a forelock in the end of the shaft, to secure the propeller in backing astern, which forelock would revolve with the shaft on the pin at x. The surface of the rudder may be as large as that of the immersed part of the common rudder, although as the pressure of the water on such a rudder would be once and a half as great as on the common rudder, a much smaller surface would be sufficient for steering, and the lower part might be reduced.

A large and very strongly formed rudder-band is fitted at the upper part of the rudder, with a large hole through it, of a square, hexagonal, or other form, into which the rudder-head r is fitted for turning the rudder; the lower rudder-bands might also be tormed similarly, and the braces fitted with an internal ring, that the rudder-head being extended downward as a substitute for the rudder-pins, may revolve in the braces, whilst it is fixed in the rudder-bands for turning the rudder. The rudder-head above the upper rudder-band is cylindrical, and passes through a metal cylinder with a stuffing-box. It then surrounds the propeller-shaft so that the rudder may turn sufficiently in steering; and it extends to any convenient height to receive the tiller. Should the rudder be carried away a temporary rudder could be applied, by taking up the propeller, using sails only, and having the temporary rudder prepared with braces to slide down the sternpost grooves; by which it would be held securely to the ship, its lower end being secured with guys.

The advantages to be obtained from this improvement are, the maximum effect of the screw-propeller in propelling; the avoidance of risk of serious damage from a vessel's grounding, and the preservation of the strength, and the form, and the displacement of the after-part of a vessel.

The claim is for the right of applying a screw-propeller and a rudder conjointly to a ship or vessel in the positions above-menrudder conjointy and as shown in the engraving. The improvement in steering vessels consiste also in applying a similar rudder to a ship or vessel not propelled by a screw.

Such a rudder could be either shipped or unshipped afloat, by attaching a water-tight hose or cylinder to the rudder-head cylinder, so that the rudder-head r, with the rudder-pin or pins attached to it, may be drawn up in unshipping the rudder, or replaced in to it, may be drawn up may extend under the rudder, as shown in the engraving, to protect it in grounding.

The advantages of such a rudder are, much less first cost, indefinite durability, through being always under water, being below the impulses of waves, so that the steering would be uniformly steady, and without hazard to the helmsman, both when a ship is
laden, and when she is light; and it is quite below the reach of shot.
Another improvement in propelling vessels consists in making that part of the immersed volume, which is abaft the vertical and transverse plane in which the centre of gravity of the vessel is, of such a form, that the longitudinal stability of the after-end of the vessel may be practically equal to that of the fore-end :-in order that the pitching motion, so far as it may be caused by the form of the immersed volume, may be prevented; and that there may be the least possible resistance of the water to the propelling power. This is of especial importance in screw-propelled vessels, because pitching raises the screw above the water's surface.

The equal stability of the fore and the after-ends of a ship, is obtained by making the area of the load-water section abaft the above-mentioned vertical and transverse plane, equal to the area of the remaining part of the same water section, on the fore-side of the same plane; and the moments of those areas, from the same vertical and transverse plane also equal ; and by forming the lower horizontal sections or water-lines in a similar manner; or so that the cubic contents of the inmersed volumes, on each side of the same vertical and transverse plane, and the moments of the came immersed volumes from the same plane, shall likewise be equal, the one respectively to the other. A vessel of remarkably beautiful form may thus be produced. As the propelling power of the wind on the sails always depresses the fore-end of a ship, when it impels her onward, just as it depresses the lee-side, when the wind acts obliquely, it appears contrary to the dictates of reason and of science, that ships should have, as they commonly have, less stability at the fore-end than at the after-end. By making the stability equal at both ends of a ship the pitching would be reduced to the least possible degree, the propelling power would produce greater speed, the decks or gun-platforms would be kept more nearly in their horizontal positions, and the dangers and discomfort and expense of "wear and tear," in rough weather, would be materially diminished.
The claim is for making ships or vessels of the form above described, so that the longitudinal stability of the fore-end may be practically equal to that of the after-end.

LOCOMOTIVE ENGINES.

Thomas Russell Crampton, of Adam-street, Adelphi, engineer, for "Imprivements in locomntive engines."-Granted June 19 ; Enrolled Dec. 19, 1847.
The improvements relate to the construction of the locomotive engine.
The first improvement consists in introducing two pairs of driving-wheels, one pair to be placed behind the fire-box, and the other pair forward, in such manner that the weight of the boiler and machinery may be borne equally by each pair of drivingwheels. By this arrangement, the adhesion of the wheels upon the rails will be more uniform. The two pairs of driving-wheels are to be connected on the side by rods in the usual manner, or connected separately to the driving cylinders, or in any other convenieut manner. The mode preferred by the patentee is shown in the seventh improvement. If it be desirable to construct the engine with six or more wheels, the patentee proposes to place thein between the two pairs of driving-wheels, but recommends that they should bear but little of the weight, by the employment of light elastic springs.
The second improvement is in the construction of the fireboxes, for the reception of the axles of the driving-wheels, the driving-wheels of the locomotive engine being placed more forward than the back of the fire-box. If large wheels are to be used, a recess is to be formed transversely in the upper part of the firebox for the axle; and for smaller wheels, a recess is to be formed in the lower part of the fire-box: this latter arrangement divides the fire-bars into two parts. By either arrangement, the heating surface of the interior fire-box is increased, and the evaporative power of the boiler augmented.
The third and fourth improvements consist in such arrangement of the various parts of the locomotive, that the axle of the fore or leading wheels may have outside bearings, and the axle of the drawing or after-wheels behind the fire-box, inside bearings.

The fifth improvement consists in placing the eccentrics for working the valves on the outside of the driving-wheels, by elongating the axle some distance through the boss of the drivingwheels; the crank-pin, instead of being fixed to the boss of the driving-wheel, is fixed to a separate crank fastened to the end of the elongated part of the axle, leaving sufficient space between
the crank and the boss of the wheel for the reception of the eccentrics upon the axle.
The sixth improvement is for transmitting the power from the steam cylinders to the driving-wheels, by introducing a vibratory shaft in the centre between the driving-wheels, as shown in the annexed figure. The steam cylinders a are fixed to the under-

side of the boiler, with short connecting-rods b, which act on cranks or levers keyed on to the central shaft c; and on the ends of the latter are two arms or levers $d d$, which, through the two connecting-rodsee, cause the two driving-wheels $f f$ to revolve.

LIGHTING BY ELECTRICITY.

Wibliam Edwards Staite, of Lombard-street, gentleman, for " certain Improvements in lighting, and in the apparatus or apparatuses connected therewith."-Granted July 3, 1847; Enrolled January 3, 1848. [Reported in the Mechanics' Magazine.]
This invention relates to a method of lighting by electricity, as shown in the annexed engravings. Fig. 1, an external elevation of

the apparatus ; fig. 8 , a sectional elevation on the line $\mathbf{W} \boldsymbol{x}$ (fig. 3); and fig. 3, a horizontal plan on the line $y z$ (fig. 1). The patentee describes his apparatus as follows:-
M, and N, are two cylinders of carbon, prepared as is afterwards described, which are used as the electrodes, that is to say, the current of electricity is passed from one to the other as they stand end to end, their ends being separated by an interval of from less than one-twentieth to about half an inch, according to the power of the electric current used. The upper electrode, N, is passed vertically through a hole in the summit of the metallic support, or tripod, K, and fixed by binding screws. The lower ends of the legs of the tripod are passed through holes in the circular mainplate, \mathbf{A}, of the apparatus, and secured in their positions by collars and nuts, but are carefully prevented from coming into metallic contact with the plate A, by means of washers a a, of some dry, hard, non-conducting wood. The legs terminate at bottom in set screws L L, which connect them with a conducting wire, which passes round through the extremities of all the lega, and is connected with one end of the coil of the regulator R. The other end of this coil is led to a clamp B^{2}, with a set screw fixed at one side of the square wooden basement B , on which the whole of the apparatus is built, and which is mounted on four short supports, $66 b b$, at its corners, to allow room for some parts of the apparatus which project below the hasement. The main-plate A is firmly attached to the basement B, by four pillars, cccc. C, and D, are cones which spring from opposite sides of the apparatus, their common axis passing at right angles through the centre of the main-plate, A, which is bored out for the purpose. The apices of these conem are pertorated, to admit the perpendicular central shaft, O, which

has a socket for receiving and holding the lower electrode M , at its upper end ; and this socket is furnished with set screws for securing the electrode in an upright position in its centre, even though that electrode should happen to be of smaller size than the socket. At the bottom the nocket is made of a conical form, in order to keep the lower end of the electrode steady and concentric, so that it may be properly adjusted by the set screws, d d. This shaft 0 has a smooth straight part, below its socket, for a length equal to the distance between the apices of the fixed cones, C and D, which is equal to the amount of rise which the shaft admits of to compensate for the wear or shortening of one of the electrodes, while the light is in action; this smooth part of the shaft moving freely through the hole in the apex of the upper cone. Below this smooth part the shaft is continued for an equal length, screwed; the threads of the screw giving about one-twelfth of an inch of rise for every turn. This screwed part works through a nut ε, which is set tight in the apex of the under cone D, and passes down the centre of a hollow cylinder or tube \mathbf{P}, which is slotted internally (as shown at $f f$ in figs. \mathcal{Z} and 3). A little cross piece of metal, Q, is set tight on the bottom of the shaft O, by being screwed fast into its end, and this cross-piece Q (which is afterwards more particularly described) fits acrose the tube P, taking into the slots or grooves on each side, so that it can slide up or down in them. When, therefore, the tube P is made to revolve, it carries the shaft O round with it, by means of the sliding cross-piece Q, and makes it to rise or sink by its screw working in the fixed nut e, so that the shaft O, carrying the electrode M in its socket, has a rotary motion combined with its vertical motion, for the purpose of equalizing the wear of the electrodes on all sides. The tube P turns on a pivot g, which works in the bottom of a circular box of metal H, which is screwed into a hole of sufficient size in the bottom of the brass-plate G, which is fixed to the upper surface of the wooden basement B. The touching surfaces at the pivot g are coated with silver, as that metal presents a surface peculiarly fitted for receiving the current of electricity. The upper end of the tube P receives the outer part of the fixed nut e, on which the tube turns, and is steadied as on an axis. On the upper part of the tube P, a worm-wheel S, carrying forty teeth, is attached, which is made to revolve by a horizontal double-thread tangent-screw T, the pitch radius of which is one-tenth of an inch. To one end of the screw is attached a crown-wheel U, carrying forty teeth, which is actuated by pinions V and W, on an upright spindle X. The pinions are at a somewhat greater distance apart than the diameter of the crown-wheel U , and gear into it from opposite sides, so that when the spindle \mathbf{X} is raised a little, the lower pinion V (having eight teeth), is geared into the lower side of the crown-wheel; but when the spindle is sunk, the lower pinion is thrown out of gear, and the upper pinion W gears into the upper side of the crown-wheel; and the spindle continuing to revolve in the same direction as before, imparts a reversed rotation to the crown-wheel. When the spindle is kept at a medium degree of elevation, neither of the pinions is in gear with the crown-wheel, so that it remains quiescent. This spindle X is kept in its position by working through a hole in the middle plate, F, of the apparatus, which plate is attached firmly to three of the pillars c. The upper end of the spindle works through a hole in the centre of the bottom of a circular brass box I, which is fixed to the side of the under cone D, or to the under side of the main-plate A. The box I contains a centrifugal regulator Y, which consists of a bit of watch-spring bent into the form of the letter S, carrying two little weights $h h$ at its ends, and fixed horizontally across the top of the spindle by the middle part of the spring, which fits into a cleft in the top of the spindle, and is secured by a small nut. When the spindle is made to revolve too fast, the weights at the end of the spring fly outwards by their centrifugal force, and begin to touch and rub against the sides of the circular box I, which friction checks the motion. This description of governor preserves the motion more uniformly than the ordinary sort of fly, which acts by the resistance of the air. Just below this centrifugal governor there is a cross-piece i, inserted through a transverse hole in the spindle X, so that when the spindle is at its medium degree of elevation, that is to say, when its two pinions V and W are neither of them in gear with the crown-wheel, the ends of the cross-piece i meet a stop k, which may project from any fixed part of the apparatus, such as the cone D, and so stop the revoln-

M8. 4

tions of the spindle; while, as soon as the spindle is raised or low ered, the cross-piece i no longer meets the stop k, but passes over or under it, amd allows the spindle to commence its revolutions just before one of the pinions gears into the crown-wheel. The spindle \mathbf{X} is actuated and kept with a constant tendency to revolve in one direction by a toothed wheel Z, keyed on to it just below the middle plate F, and this wheel is driven by a train of wheelwork \mathbf{W}^{\prime}, supported between the middle and bottom plates \mathbf{F} and \mathbf{G}, similar to ordinary clock work, and which is driven by a spring in a barrel l, acting on a fusee m, driven by a cord or chain; or the wheelwork may have any other contrivance as its prime mover, as, for instance, a common barrel with a cord and weight. The wheel Z is of such thickness that the motion up and down, which the spindle X admits of, will not ungear it from the next wheel in the driving train.

The mode in which the spindle X and its pinions are raised or lowered, so as to vary the motion of the crown-wheel U, and thereby of the electrode M, according to the exigencies of the light, is as follows:-The bottom of the spindle X terminates just below the driving-wheel Z, and rests on a plate of ivory n, which is supported on a short upright stem of brass o, which has its lower end screwed into a hole in the top of a solid cylinder of soft iron, p. This iron can move freely up and down in the central hole of a reel q, round which a quantity of insulated copper wire is wound: one end of this wire is led to the binding screw B, as before mentioned, which connects it with the positive wire of the galvanic regenerators, and the other end to the wire which passes through the binding screws L. The reel g of the regulator is fixed firmly to the wooden basement B, and a cap r of soft iron fits over it; but the iron of the cap does not extend quite to the centre of the hole in it
(through which the brass stem o passes), the central part of the top of the cap being of brass soldered to the iron of one-half of the diameter of the iron cap iteelf. The action of the electricity in the coil of the regulator R causes the iron centre p to rise or fall, according to the quantity of electricity passing and in so doing, the spindle X, which reste on it, to rise or fall with it. There is a little eye attached to the bottom of the iron centre, to which is suspended a counterpoise $F^{\prime \prime}$ (an assortment of such counterpoises being kept for use), of such weight as to allow the iron centre to be just in equilibrium, or just ready to rise, when the diatance between the electrodes is such as to allow the electric current to flow freely enough to produce a steady and certain light. There is also a little ledge s, around the lower ond of the iron centre, on which rests a disc t, of brase, of ubout the size indicated in the drawing, fig. 9 ; which (when the iron centre falls below the neutral point) becomes supported around its outer edge by a circle of braes u, and is left behind on it, when the iron centre continues to descend, thus relieving it of its weight; while on the other hand, if the iron centre is disposed to rise above the neutial point, it has to lift the whole weight of the brass disc t. This arrangement gives the iron centre a tendency to remain stationary at the neutral point, which is that point at which the elevation of the spindle \mathbf{X} enables the crose-arm i to come into contact with the stop k, and arrest the rotation, and so prevent unnecessary working of the machinery, until the electric current has varied so much as to render desirable an adjustment of the distance between the electrodes; which the iron centre effects, as before described, by rising or falling.
The neutral position at which the iron centre p should rest, is When the top of the iron centre is as far below the top of the regulator reel as is represented in fig. 2.
The brass ring u, which supports the equilibrium weight, that is the brass disc t, is secured at the proper height by being attached to a sufficiently stiff strip of brass ω, of a certain length, and which is fixed by its other end to the other side of the wooden basement B. The brass ring u can be adjusted to the requisite height exactly, after the apparatus is made, by a milled-headed scrow passing through the wooden basement, and screwing down on the supporting brass strip (not far from u), so as to depress it to the right position.
The sliding cross-piece Q, before adverted to, is constructed in the manner separately represented in fig. 4. A spring Q (of thin hard brass, for instance,) is attached to one side of the cross part by a small screw, so that when the crose-piece is placed in the glots of the tabe P, the spring always remains in close though not forcible contact against the sides of the slots, so as to insure a good conduction to the electric current which has to travere the shaft, and enter from the cross-piece into the slotted tube.

The tangent-screw T is made not quite horizontal, but inclined at an angle of one in twenty, because the lower pinion V is smaller than the upper one; and therefore it is necessary that the lower edge of the crown-wheel U should be tilted nearer to the axis of the spindle X. The lower pinion is made smaller, in order that it may the better wind down the main shaft 0 , after it has screwed itself up, until the ends of the electrodes come into firm contact, lest it should stick in that position.

The screw No. 1 , which fastens the stand 3 of the tangentscrow to the middle plate F, passes through a hole 4, enlarged sideways in the stand; bo that by only loosening the screw 1 , the stand may turn on the other screw 2 , as a centre, so as to allow of the tangent-screw T being adjusted to the right distance from the centre of the wheel S , in order that it may work properly into its teeth, or, when required, to throw the tangent-screw out of gear with it altogether.
The thread of the screw of the main shaft O, should be of a square form, so that it shall work with as little friction as may be, when supporting the weight of the shaft and electrode.

A cone of white glass or porcelain, E^{\prime}, is made to slip over the upper cone C of the main plate, and is turned up at the edges (as shown in figs. 1 and z), to reflect the light better, and to catch any dunt and ash which may be thrown off from the electrodes.

A glass shade, which may be ground partially or not, as desired, fits over the electrodes, M and N, and the stand K, and is screwed down to the main-plate A, by the brass circle E, into which its lower edge is cemented, whereby the electrodes are enclosed entirely from the outer air. As soon as they have exhausted the oxygen which is within the glass shade, they are no longer so rapidly consumed. When the electrodes, however, are composed of some inferior sorts of carbonaceous preparations they give light more steadily if a very small quantity of atmospheric air is continually allowed to enter; that is to may, just euficient to burn away the
button of carbon which sometimes forms on the end of that electrode which is not undergoing decomposition by the electric current. When there are no holes in the glass shade to admit of a small quantity of atmospheric air, two light valves may be inserted in the main plate A, one opening inwards and the other outwards, which would provide for the varying pressure of the air when the temperature is altered by the presence or absence of the light within.

The coil of insulated wire of the regulator R, should be composed of wire of such thickness as to conduct the electric current quite freely. For an apparatus of the size represented in the engravings it may be about three-sirteenths of an inch in diameter; but if electrodes of a larger size are employed, the wire should be proportionally increased in thickness, and the regulator $R_{\text {, made as }}$ large as the dimensions of the apparatus will admit of, in order that the reel should take a sufficient number of turns of the thick wire ; for with wires too thin, considerabre heat is evolved from them when transmitting the current. Two circular brass weights, $a a$, fitone over the other around the ivory top $n n$, which carries the pivot of the spindle \mathbf{X}; their use is to enable an easier and more precise adjustment of the weight on the iron centre than can be effected by altering the large weight F^{\prime}, which is hung at the bottom of the iron centre.

When it is intended to use small currents of electricity, the spindle X, and all its appurtenances, should be made very light, and the iron centre may for the same object be made hollow with advantage; its silles, however, should not be less than one-twelfth of an inch in thickness.

The electric current may be obtained from a galvanic apparatus of any of the known sorts, or from any other convenient source; and it may be used of varions intensities and quantities. A good degree of intensity to use, is snch as would be afforded by one hundred cells in a series of the usual sort employed in galvanic apparatuses; and the quantity of the current may vary from that evolved by the consumption of less than one-and-a-half grains of zinc per minute in each cell, to that evolved by the consumption of mure than fifteen grains of zinc per minute.

The wire from the positive, that is, the zinc pole of the galvanic apparatus, is clamped with the binding screw at B^{2}, which serves as the conductor through the regulator coil, and then up to the upper electrode N. The wire from the other, or negative pole of the galvanic apparatus, is to be clamped with the other binding screw at B^{3}, which is connected by a slip of metal (copper) to the bottom plate G of the apparatus, so that the current passing from the lower end of the upper electrode N to the top of the lower electrode M, then traverses the central shaft 0 , passes through the cross piece Q, at its lower end, into the slotted tube P, and thence through its pivot at bottom into the metallic box or cavity H, which being in metallic connection with the bottom plate G, leads the current to that plate and thence by the slip of copper to the other clamp, from which it passes in return circuit through the negative wire of the galvanic apparatus. The current, when first applied with the electrodes in contact, flows freely, and that causes the regulator (being properly weighted) to raise the spindle X, and thus put the apparatus into gear for screwing the centre shaft 0 downwards, and gradually separating the electrodes, whereupon the light begins to appear between them.

The patentee then describes the method of preparing the carbon for his electrodes:-About equal quantities are taken of coal of a medinm quality, and of the prepared coke, known as "Church's Patent Coke,"" and both reduced to a state of fine powder and intimately mixed together. The mixture is then placed in close wrought-iron moulds, which may be made either to give the mixture the form of a block, to be afterwards cut into pieces of the required shape, or to give at once to the mixture the form of the intended electrode. In all cases it preferred to make the moulded mass of not more than 3 or 4 inches in its least diameter, for when larger it is liable to have fissures, and not to be of such uniform density. The mixture being placed in these moulds is subjected to heat and heary pressure until it becomes consolidated into a very dense and firm mass. And when the mass is in a heated state it is plunged into sugar, melted by heat (without the aid of any liquid,) and kept therein for a short period. It is then taken out and allowed to become cold, when it is placed amongst pieces of charcoal in a close vessel, which is gradually heated until it attains a full red heat, after which the temperature is increased to an intense white heat ; at which it should be kept for many hours, or even two or three days, according to the hardness and compactness desired. Or the mass may be a second time immersed in the melted sugar while hot, and the remainder of the process be again repeated as before.

By coating the mass in this way with melted sugar, any pores that may be in it (on its external surface at least), are filled up with carbonaceous matter, and any subsequent drying rendered unnecessary.

The following the patentee states to be the best dimensions for the electrodes:-The lower electrode should be as long as can be conveniently manufactured (8 inches for instance,) when used for ordinary purposes, and it should be of a cylindrical form. The maller the diameter is, the better the light; but the larger the electrode is (in cross gection), the longer it will last with a given current of electricity. The upper electrode need not be of any great length ; it is well, however, to have it about one-third as long as the lower one, and of half the diameter.

The patentee concludes his specification with the following account of a method of employing currents of electricity to actuate apparatus for effecting the speedy lighting up and extinction or obscuration of eignal lamps in which oil, camphine, or other like inflammable fluid is the illuminating substance employed:-Suppose, for example, there are three such lamps with different coloured glasses, say white, green, and red, which are required to be sometimes lighted, and at other times extinguished or obscured, as is nsual on railways, and not all at once, but in a particular order of sequence, or each under particular circumstances only, I effect this in the following manner. The three coloured signal lamps are placed side by side, or they may be placed one above the other. A sectional elevation of one of these is given in fig. 5. A' is a bar of

Fig. s .
metal, having a drop bar B^{\prime}, attached to it. These bars are for the purpose of working three extinguishers, one to each lamp. The figure shows one of these extinguishers as applied to a lamp; the dotted lines in the figure indicate the position which it assumes when raised up. The drop bar B^{\prime} is attached to a clockwork escapement, the detent of which is alternately retained and liberated by the passage of electric current, and by its mechanical force raises up the bar \mathbf{B}^{\prime}, and causes the light, in whichever lamp it may be, to be put out. The three extinguishers are made to move together, to save the necessity of each being provided with a separate extinguishing mechanism. In the centre of the burner of each lamp is a ring a, of fine platinum wire, which is so contrived as to touch the wick of the lamp, and the current of electricity being made to pass through this platinum ring, it becomes intensely heated, and thereby ignites the wick of the lamp. I do not restrict myself, however, to the employment of platinum wire, as carbon for this purpose may be used, or any other difficultly-fusible material ; neither do I limit myself to the employment of a ring of any particular form. The wick may, for instance, be a flat wick, and in that case a straight piece of wire would be suitable for the arrangement.

ARTIFICIAL FUEL.

Bondy Azulay, of Rotherhithe, Surrey, printer, and Abrabax SoLomons, of London, merchant, for "Improvements in the mumufacture of charcoal and other fuel."-Granted June 10; Enrolled Dec. 10, 1847.

This invention relates, first, to the manufacture of charcoal, to avoid waste caused by breaking it. This is effected by reducins, the waste to powder, and then compressing it, by an hydrauli: press or other apparatus, in moulds, until the mass is reduced to from one-fifth to one-eighth of its original bulk.

The second invention relates to making fuel of small coal, breeze, coke, and cinders, with or without charcoal, by pulverizing the whole, and then compressing the powder into blocks.

The third invention relates to making a fuel for lighting fires, by mixing charcoal powder, small coal, breeze, coke, and cinders (all or any of them), with tar, pitch, resin, or other suitable inflammable substance, and compressing the mixture in moulds; and when taken from the mould, the block is dipped in the tar, \&c., and covered with saw-dust and wrapped in waste paper: a block so prepared will readily ignite on the application of a lighted match.

WATER GAUGE.

Alfbed Vincent Newton, of 66, Chancery-lane, Middlesex, mechanical draughtsman, for" Improved apparatus to be applied to steam-boilers."-Granted April 15; Enrolled Oct. 15, 1847. (A communication.)

The principle upon which the apparatus is constructed is that of a percussive horizontal action of a flat surface upon a portion of the water to be gauged. One form of apparatus on this principle is shown in the annexed engravings, figs. 1 and 2, being an external view and section. a, the steam-boiler; b, a small cylinder

Fig. 1.
$\mathrm{Fl}_{\mathrm{g}} .2$.
communicating therewith by two tubes $c d$, the upper one with the steam, and the lower with the water; e, a piston, moving freely in the cylinder b, and connected by a rod f, to a vibrating lever g, enclosed in a quadrant-shaped chaniber. The pivot of the lever g, passes through a stuffing-box j, made at the small end of the quadrant, and carries externally another lever h, furnished with an index for indicating, on a graduated scale, the height of water in the boiler. A rod i is suspended from the lever h, for enabling the attendant to raise the piston in the cylinder, and bring it down with percussive force on to the surface of the water, in order to ascertain its exact height. It will be at once understood that the same pressure of steam and water must exist in the cylinder and its quadrant case as in the boiler, and that the working of the apparatus cannot be affected thereby.

ON THE IMPROVEMENT OF INLAND NAVIGATION. By Hon. \& Rev. A. P. Percetal, B.C.L., Chaplain to the Quees.
Canpter I.-On the Comparative Praspective Value of Railways and Canals.
In the month of December, 1844, while a party of travellers and traders were waiting at the Crewe Station the arrival of the uptrain, and eagerly discussing railway matters, that mania being then at its height, they were startled from their propriety, by hearing an individual in the room address them thus: "Well, gentlemen, I will back the canals against the railways now; I intend to invest wholly in them, and I advise you all to do the same." If a pistol had been discharged in the midst of the company, it could hardly have produced a more striking effect. All stared; and most, by movement or ejaculation, gave token of extreme surprise. Some looked with pity upon the speaker, a clergyman, as though the saying, "Ne sutor ultra crepidam," was passing in their minds, and they contemplated one about to ruin himself and his family by meddling in matters out of his sphere. But when he proceeded to propound, for the consideration of the company, his grounds for the opinion which he had expressed, none were found ready to gainsay the reasonableness of them. They were these:
I. That the wear and tear on canals is so inconsiderably less than on railways, that the former, if properly conducted, must be able to undersell the latter.
II. That while lines of railway may be multiplied ad libitum, occasioning unlimited competition, and consequently unlimited reduction of profits, such multiplication of lines of water conveyance is almost physically imposssible: consequently, that canals must always retain a comparative monopoly.
III. "Remember, gentlemen," he said, "that human talent and ingenuity have been taxed to the utmost to bring all the appliances that science can afford, to promote locomotion on railways; while, ns yet, nothing, or next to nothing, of the sort has been attempted on canals."

Three years have elapsed since these opinions were expressed at Crewe: let us see what light can be thrown upon the soundness of them, by comparing, 1st, The present state of railways with its condition at that time; sndly, The respective condition and prospects of railways and canals, then and at the present time.
I. To take three old and well-established lines for illustration: The value of the under-mentioned was, in Dec. '44; is, in Dec.' 47 $\begin{array}{llllll}\text { London and Birmingham } & \ldots . & " & 288 & & 150 \\ \text { Great W estern } & \ldots & 150 \\ \text { London and South-W } & \ldots & " & 157 & " & 90 \\ \text { Lestern } & " & 77 & " & 50\end{array}$

11. Let us take for illustration the Birmingham Railway and the

 Birmingham Canal:In December 1844, the Birmingham Railway furnished to the proprietors, not merely in actual dividends, the 10 per cent. (to which it had been sought by Act of Parliament to restrict the profits on railway enterprise), but advantages in new shares, \&c.in general estimation certainly not less than another 10 per cent.

We have now before as the Report of this company for the halfyear ending Midsummer 1847; announcing in the plainest terms, that the second of the causes alleged at Crewe as a reason for regarding railways as offering doubtful security for investment, namely, the liability to unlimited competition, has begun to tell with fearful effect against the prosperity of this most prosperous of railway undertakings, which is no onger able to pay even the legal 10 per cent. The Chairman is stated to have said: "He huped that before Parliament sanctioned any further extension of the principle of competition, or of reduced fares, they would bear in mind the inevitable results which must follow from pursuing such a course. They saw its effect upon their receipts now......... Competition might go on in consequence of rivalry and contention between different companies; but what would be the effect? The proprieturs would interfere and furce the directors to reduce the eatablishments of the two companies to the lowest possible point; trains would be taken off, servants would be discharged, the whole machinery of the companies would be deteriorated, and what would become of the public safety?. This would be the result of those dootrines of competition which had been taken up by the legisla-cure."-Here, then, we have the confession of the most intellixent of railway chairmen, at the head of the most influential of railway companies, avowing in the face of Europe that railways afford so insecure an investment for capital, that they cannot possibly be
relied upon, unless in their behalf the doctrine of Free Trade, to which all mankind, to speak generally, have given in their adhesion, be repudiated; and an artificial protection be afforded to them, which has been denied, not only to the inland navigation, but even to the agriculture of the country!

Meanwhile, how has the Birmingham Canal been faring? In December 1844, in consequence of the railway mania, it had so fallen in public eatimation, and apprehensive value, that projects for draining off the water, and converting the channels into railway beds, were seriously discussed.
We have also before us the Report of this Company for the halfyear ending Midsummer 1847: from which it appears, that notwithstanding its operations have been impeded by a very questionable (in point of prudence) alliance which it has contracted with the Birmingham Railway, whereby it has placed itself, to a certain extent, under the control of the latter, on condition of receiving from it a guarantee, in perpetuity, of the customary dividend of £4 per share (a guarantee which it is doubtful whether the railway company would be able to make good, should the canal company ever be so reduced as to demand the fulfilment of it), and notwithstanding a "considerable pressure on the mercantile world," to which in common with the railway, it has been subjected, its affairs are in a state of unexampled prosperity. "The account for the last half-year," the Report says, "exhibits a considerable increase of revenue, the amount for the six months ending 30th of June last, including renta, being $£^{86,425} 78$. $\mathbf{3}_{\mathbf{2}} \mathrm{d}$. [being an increase of ${ }^{\prime}$ '21, 192 above the corresponding half-year in 1846]. The balance of the accounts, after providing for the payment of the half-year's interest, and the usual dividend of $£ 2$ per share (which the committee now recommend to be paid free from the income-tax), shows a surplus of upwards of $£ 9,000$."
In other cases, where the canal companies have not tied their hands from competing with rival ruilways, as the Birmingham Canal Company have done by their compact with the Birmingham Railway, the truth of the first of the reasons alleged at Crewe has had opportunity of being tested: and the result has been, to speak generally, to confirm and establish its truth; and Lord Ellesmere on his waters, and the Birmingham and Worcester Company on theirs, to name no others, can tell the world that they have ceased to dread any evil effects from railway competition, through fear of Which the former received (according to report) from $£ 80,000$ to £100,000, by way of compensation; and the latter unprofitably expended several thousands in an abortive railway speculation.
It remains to be seen whether the third of the reasons alleged at Crewe in 1844, for preferring canals to railways for investmentnamely, " that while human ingenuity has been taxed to the utmost to facilitate locomotion on railways little or no attention has been bestowed upon the improvement of inland navigation,"-is as sound as the others (apparently) have proved to be: in other words "whether inland navigation is not capable of very great improvement." This shall be the subject of the next chapter: before entering upon which, let it be well-considered, by way of encouragement to turn attention to the subject, that a very little improvement will suffice to bring upon the canals the whole or almost the whole of what forms the chief source of revenue on many railways-namely, tae conveyance of live stook. No grazier, or butcher, it is believed, will be found to affirm otherwise than that, if the choice were offered to him, he would choose rather to convey the stock that he has to sell, or kill, by water than by rail.

Chaptes II.-On the Improvement of Inland Navigation.

When the mind has once been directed to devise means of rendering our lines of inland navigation more available than at present they are found to be for the commerce of the country, the small degree of attention which has as yet been bestowed upon them is apparent at every turn. Of the matters calling for amendment, some are obvious to every passer-by; otheis require consideration to be noted; others again require argument and proof. Again, some are in the power of the parties trading upon the waters; others in that of the proprietors or trustees of the waters; others again require either extension, combination, or the interference of the legislature.
I. Let those matters in which the want of amendment is manifest to all be first considered. Of such let these be named :- lst. The style and condition of the animals usually employed in the traffic. Generally speaking, these are the worst of their kind, divabled, low in condition, ill-groomed, ill-fed,-a striking contrast to those employed in land carriage.- 2 ndly. The state of the trackways. Natural earth, mud, water, deep sand, slippery chalk. Contrast these with the roads and ways employed in land traffic. By the sides of other roads care is taken to keep the cattle from trespase-
ing; here nothing of the sort is attempted. On other roads, all gates, except in cases of extreme necessity, and then with some person to watch them, are carefully excluded. On these, there is usually a gate at the end of every field, the hedges running down to the water: as if a premium had been offered for the multiplication of causes of obstruction.- 3 rdly. The attendance at the locke, which correspond to the turnpikes on land roads. On landtravelling a turnpike-house is a necessary adjunct to a turnpikegate, as close as possible. But where in water-travelling do we find lock-houses-or, if found, at what distance are they situated from the locks intrusted to the care of the occupiers? - ithly. The construction of the bridges so low down to the water, as to lesve no room between them and it for an ordinary load to pass.
II. Among the matters in which the necessity of alteration will, probsbly, be admitted as soon as pointed ont, are these:-lst. Tho application of artificial locomotive power. In this respect, it must be acknowledged that England is somewhat in advance of her neighbours, for she has attained to horse-power on trackways; wheleas, in the inland navigation of the continent, when the wind fails, the means of locomotion usually had recourse to are either shoving with long poles; or ropes made fast to posts and drawn in by direct hand draught; or men and women yoked like brute beasts, with broad belts over their breasts, upon which (even women's breasts) the weight of the draught appears to be borne, -a sight sickening and revolting. England is in advance of these, and for such brute labour has applied hrutes instead of human beings; but still only for direct draught: the living horse has as yet not been applied to leverage in this service [as is used in Canada]; nor have those cheapest and most obvious of all artificial powers, the waterwheel and the wind-wheel, been as yet applied for a purpose for which in so many cases they are so admirably adapted; nor stationary steam-engines, except in one or two instances. In a few cases, paddle-wheels have been called in, which, on many accounts, are the most undesirable of all for this particular service.-2ndly. The construction of the barges: first, as to their material, which, in almost all cases, now is of wood, more expensive, less durable, heavier, and more bulky than iron, to a very considerable proportion; secondly, so that the barge may float on the water, and not below its level, necessitating the drawing through it. What the specific gravity of atmospheric air is, seems a point not easy of solution, seeing that the barometer exhibits a perpetual fluctuation; but the specific gravity of water is stated on good authority to be $68 \frac{1}{1} \mathrm{lb}$. to the cubic foot. When it is considered that for every cubic foot of barge below the water-level, $62 \frac{1}{2}$ lb. weight of water has to be moved at every inch, one would have thought the attention of all concerned would have been directed to carry as much of the cargo above and as little below as possible. But, somehow or another, a diametrically opposite course is almost universally adopted : about three inches of the barge appears above the waterline, and all the rest is sunk below-so that the greatest resistance which the case will permit is carefully secured.-3rdly. The means of ascending or descending from one water-level to another. As yet, in England, we have attained only to the old lock, and that so constructed as to afford the chief cause of detention in water conveysiructed as to aford
ance. The consumption of time, the strain upon the cattle, the wear and tear of tackle, now required in drawing a deep-laden barge into a lock, are well known to all who have to do with inland navigation. Yet, apparently, it requires little contemplation of a lock, to see how (even without altering the construction of the barges, and still dragging the goods through the water) an immense saving of time and labour may be effected, by a slight alteration : while the field for invention and experiment in perpendicular lifts and inclined planes is as yet almost unoccupied; only our neighbours in the United States of America have Lately adopted one apecies of the former, while those in China have of long time very extensively employed the latter-of which some account and drawings are to be found in Lord Macartney's Embassy.-4thly. The supply of water: both in the saving it at the change of levels, and in securing supplies in dry weather, all must see how much remains to be done; while, few, probably, who apply their minds to it, will consider any great dificulty to lie in the way of improvement.
III. Of matters calling for improvement, which it requires argument or experiment to establish, it will suffice to suggest one, of a mechanical nature-which is, the point of draught; to which, at present, as far as appears, no attention has been paid; but which, it is hard to conceive to be a thing indifferent. But of this class, it is hard to conceave to the jointed systerm of our lines of inland navigation-broken into short pieces, under distinct governments, like the turnpike trusts; but attempting against one another a system of injury, which the trustees of turnpike roads have, appa-
rently, never contemplated. Between London and Birmingham, for instance, there are as many as four such, at least. It is in vain that one, two, or three of these concur in meeting the public convenience and their own general interests, by reduction of tolls or any other combined improvement, as long as it is in the power of the remaining portion or portions to profit by the reductions of the others, by either maintaining their own tolls at the unreduced rate, or even raising them in the face of the reduction of others; both of which cases are found not unfrequently to occur.
Chapter III.-On the Formation of Inland Navigation Conveyance Companies.
The only apparent method of overcoming the last-named difficulty in the way of the improvement of inland navigation-namely, that arising from the division of interests at work upon all our chief lines (apart from.direct legislative interference, which is the last and least-desirable remedy, -is the formation of conveyance companies throughout a whole line; offering to all the different navigation companies along the line, shares according to their mileage; and to all the parties already trading on those navigations, shares according to the amount of capital already embarked in this employment. By this means it should seem not merely practicable but easy to unite, for the common benefit of all, thuse intereste, the confliction of which at present is found to be injurious to all.

The writer, who is a clergyman, and who has turned his attention to the improvement of this department of human industry, chiefly, or rather solely, with the view of making it subservient to the best interests, present and future, of mankind, has already in several quarters privately put forward suggestions for the formation of such companies, which have hitherto been generally favourably received; -he now desires to submit them more extensively to the consideration of his fellow-men, based upon this condition, which he has invariably exhibited-namely, That provision for the spiritual and educational wants of all the employies of such a company, and of all who are called into being (by the encouragement ginen to marriage) by its prosperity-and also for their bodily cants, in sickness, accidents, and superannuation-shall form a first and necessary item of such company's expenditure to an extent not exceeding onetenth of the whole.

How extensively such a principle, if generally adopted by our great companies, would tend to the amelioration of society, and the comfort and well-being of all classes, drawing them together by the surest bonds of Christian faith and love, there can be no need of words to demonstrate. The more each man contemplates it in his own breast, the more (the writer believes) it will be found to commend itself, alike acceptable to God and approved of men.

Taking Birmingham as the centre of British industry, such companies may obviously with advantage be formed, respectively, on the following main lines, omitting for the present the consideration of the less important :-1. Birmingham, Worcester, Gloucester, and Bristol; 2. Birmingham, Chester, and Liverpool; 3. Birmingham, Manchester, Leeds, Halifax, and Hull ; 4. Birmingham and London; 5. Birmingham and Chichester. Again, 6. Hull and Liverpool; 7. Hull and London ; 8. London and Bristol; 9. London and Chichester.

To complete the line of inland navigation from Birmingham and the manufacturing districts to the British Channel, there needs but to connect the Grand Junction with the Colne, a cut of one or two miles, which falls into the Thames at Egham, from which the outlet is at Weybridge ; and so by Guildford and Arundel. This at present neglected, but surely most important, line from London to the British Channel, either into Arundel or Chichester-that is to say, Langston harbour-is quite complete. By it, if a proper company were formed, and the commonest appliances brought to bear, goods discharged in either of those harbours could be landed at London-bridge easily within twenty-four hours, at a bighly remunerative charge of ten shillings per ton, covering all. Thus, in time of war, all the hazard to our merchandise which the Duke of Wellington has prognosticated from French steamers in the little French ports, with the sun always on their backs, would be obviated, and the incalculable expenditure contemplated in the acknow-ledgedly-hopeless undertaking of making a Harbour of Refuge at Dover would be superseded. And at all times the risk of insurance from weather, the chief part of which from China to London is calculated on the passage through the Straits of Dover and round the coast of Kent, to say nothing of delays incalculable, would be removed. The present unoccupied harbour of Langston is of size to receive in safety the whole merchant fleet of the country. Again, by continuing the navigation of the Wey beyond Godalming in the direction of Alresford, and extending the navigation of the Itchin, with a cut of five or six miles to unite them, another line of inland
navigation from London to the Channel would be completed; and by continuing the navigation of the Test or Auton to Whitchurch or Ash, with a cut of five miles to the Basingstoke canal, a third line would be completed: and Langston, Arundel or Littlehamptom, and Southampton become the ports of London.
On the other side of the Irish Channel, conveyance companies between Dublin and Waterford (by the Barrow navigation, as thriving a water concern as any in the kingdom, and the receipts on which last year were greater than ever); and between Dublin and Limerick (by the Grand Canal, one of the finest in the kingdom, and the Shannon), obviously present themselves. A cut of three miles, or thereabouts, connecting the Slaney with the Barrow, would bring Wexford within inland navigation of Dublin. A cut of about the same length from the Grand Canal at Ballinasloe, into one of the sinall rivers that run into Galway Bay, would connect, in the shortest line, the Atlantic with the Irish Sea.
It is believed by the writer that every one of the twelve or fifteen lines here enumerated will be admitted by all practical men to present, if properly conducted, as safe openings for capital and industry as any in the kingdom.

RETVETVA.

A Guide to the Proper Regulation of Buildings in Towns, as a means of Promoting and Securing the Heallh, Comfort, and Safety of the Inhabitants. By Wx. Hosking, Architect \& C.E. London : Murray, 1848.
Mr. Hosking's book may be taken as one of the signs of the times, and therefore we give our attention to it, and recommend it to our readers. The outcry for sanitary reform can no longer be unheeded ; it has led to a practical movement, which must go on. The architects, engineers, and medical men, who created this movement, and have fostered it-and we rejoice that our publication has been found among the earliest advocates-may feel justly gratified that their proceedings have at length received the countenance and co-operation of the legislature. Those, however, who have held back, or thought that the agitation had no practical authority, aud was merely a noise about trifles, must now bestir themselves, or they will be left behind by their more enlightened compeers. Obstinate adherence to old prejudices has already brought public ridicule on several men of standing; and reputations which have cost scores of years to build up are at once knocked down, when it is found that the parties have for scores of years been wasting the public money, in the despite of every warning. The public are now awakened, and they require at the hands of architects and builders a degree of knowledge as to structural arrangements, which formerly was never thought of. For all the better class of buildings it is no longer enough to run up a set of walls and to line them, but the buildings must be made habitable otherwise than by being mere shelters against rain. They must have proper provision for lighting, warming, ventilation, and sewrge; matters about which employers and builders thought very little mome years ago. The reports of the Sanitary Commissioners, the labours of Messrs. Roe and Phillipg, the work of Mr. Hosking, are landmarks, whereby professional men may note the set of the current, and observe the disposition of the authorities to carry out to the full what used to be laughed at as the theories of sanitary reform. Mr. Hosking, of course, disclaims any official character for his book; but his station as one of the Official Referees for Metropolitan Buildings, will, in the eyes of the public, give an official character to his book in despite of himself; and most of what he says is so reasonable, that it will work its way with the legislature, the public, and the profession, all of whom his book interests.
Although it is perfectly true that the improved system of structural arrangements has arisen mostly from the labours of architects and engineers, yet it has not been fostered so generally among the profession as is desirahle. Indeed, the public at this moment are ahead of architects and builders-a state of affairs which cannot long continue with comfort to the latter. This arises, we fear, from a want of appreciation of the value of professional literature, and therefore the want of a laudable spirit of investigation and information. If it be remembered that until our Journal was established, no architectural periodical had been able to maintain itself, this will show what the state of affairs formerly was; but though the number of years which this Journal has existed is a proof that we have effected a change for the better, we cannot but
be sensible that architects are not so much alive as they ought to be to the cultivation of professional learning. To advert, as an instance, to our own publication, we feel well assured that by a great number of our readers our earlier remarks on sanitary and structural arrangements were passed over as being of no interest, or as not being immediately practical, because the reader did not take the trouble to investigate and search out for himself the truth or justice of our arguments. The consequence has been that many, instead of being gradually led and prepared to a practical appreciation of the subject, wake up as it were suddenly to a consciousness that they have got to learn a great deal immediately and with some trouble, which they might have learned slowly and easily. We have sometimes met with remonstrances because we have given attention to questious which were thought the whims of the day, but the importance of which is now recognised by all, though it should be remembered, that a periodical like our's is a link between the public and professional men, for those of the public who feel an interest in professional pursuits, or seek for information, naturally apply themselves to such a recognised source. Hence we have been enabled on many occasions to forward professional interests, and to awaken attention among the public, so as to insure co-operation in carrying out measures which were desirable. In reference to the present question of sanitary reform, however, it is particularly incumbent on professional men to apply themselves to it, or otherwise medical men and others will put themselves forward to secure, if they can, some greater share than fairly belongs to them in the new arrangements.
Mr. Hosking's book must be read by the architect and builder, because it-is just the kind of book which will be read by the employer. The committee of a club who desire a superior house, the gentleman who wants a comfortable mansion, the merchant who requires a safe warehouse, the board of guardians who advertise for a healthy workhouse, are likely to look into the work before us, as a guide to the best modes of securing the health, comfort, and safety of a building. Perhaps Mr. Hosking has a leaning in favour of timber and against iron, and in favour of brick and against stone; but we hardly like to say this, for there is so much candour in stating the case, and so much practical knowledge displayed throughout, that we believe Mr. Hosking is about as fair a guide as we have yet had upon structural arrangements. There is very little of his book which is new, and it is hardly likely that there should be; but what there is new, is the careful and close consideration of what is the best and most practical mode of reaching any given end: and this may be called new, for we fear it is too general to run up buildings without the least consideration of their fitness. for the purposes to which they are applied. It may be said shortly that the houses of the metropolis are made dangerous to life from their combustibility, and to health from their want of ventilation; while the sewers are so made as to form an elaborate machinery for poisoning the population, for cutting off the infant in its cradle, and taking years away from the life of every inhabitant of this immense and thickly-peopled city.

We have said that Mr. Hosking is unfavourable to the use of iron under some circumstances, and it will be useful to lay before our readers his remarks upon the subject. He says-

[^3]soften and gield, as well at to snap; in either and in any case, involving the min of the buildings, the destruction of the property confided to them, and danger to the lives of Gremen or others within reach of the ruin.

So great is the danger apprehended from the treachery of cast-iron in buildings on fire, that the men of the London fire-engine eatablistment, who go unhesitatingly, in the execution of their duty, into burning buildinga, are prohibited from going into parts or places which depend apon supports of cast-iron, whilat they are allowed to trast themselves to burning timber almost at their own discretion-a quality for which they are not, indeed, so remarkable as they are for headlong and gallant daring.

Cast-iron is constently recurred to, nevertheless, as means of economising space in the formation, and largely also in the sapport of the floors of building: which it is desired to render proof against fire; and it is certain that the use of beams, girdera, and atory-posta of cast-iron seads to that effect: that is to say, the liability of the building to take fire is lemened by the use of iron in place of wood, but for the parpose ander conulderationpower of reaisting the action of fire when it occurn to matters stored in a building, and is fed by such matsers independently of the subatances employed in the structure of the building-iron requires to be iteelf protected from the action of the fire."

Mr. Hosking goes on to suggest the mode in which iron can be safely used for floors and ceilings; but he adheres to the opinion that if pillars must be used, they should be of brickwork.

We ourselves have witnessed the danger of using cast-iron in exposed situations in buildings. We recollect, within the last four or five years, the fire at Fenton's wharf, London Bridge, where the warehouses were supported upon cast-iron bressummers, and which, through being heated by the fire, and the cold water of the engines falling upon them, were cracked, and in consequence the superstructure was obliged to be taken down. In other situations, we have seen the fronts of houses erected on timber bressummers which have withstood the ravapes of the fire, an external coating of about an inch in depth of the timber being only injured by the flames.

The preservation of life from fire is an object in which Mr. Hosking deservedly takes great interest, and he has brought to bear the results of his remarks on buildings at Paris, which we wish we could transfer at some length to our own pages. After recommending that party-walls shall be reduced to one-brick thick, on condition of cross-walls or partitions being built throughout the house of one-brick thick, and after stating the danger of the hollow quartering partition generally used, he describes the system he observed in Paris.
*The plan referred to is, to frame and brace with timber quarteringt much in the manner practised in Bagland, except that the timber used in Paris is commonly oak, and is very generally seasoned before it is applied in building in the manner referred to ; and that, as befora remariced, the carpenter's work, or carpentering, of the French is not so good as that of the Engliah. The framed structure being complete, atrong oak batten-laths, from two to three inchea wide, are nailed up to the quarteringe horizontally, at fuar, six, or even eigbt inches apart, scoording to the charecter of the work, throughout the whole height of the enciosure or partition; and the apaces between the quarterings. and behind the laths, are loosely buile np with rougb stone rubble, which the laths, recurring often enough for that purpose, hold up, or prevent from falling out until the next process has been effected. This is, to apply a strong mortar, whicb in Paris is mainly composed of what we know under the name of plater of paris, but of excellent quality, laid on from or upon both siden at the same time, and pressed through from the opposite sides so that the mortar meets and incorporates, imbedding the stone rubble by filling up every interstice, and with $s 0$ mach body on the surfaces as to cover upand imbed also the timber and the laths;-in anch manner, indeed, as to render the concretion of atone and plaster, when thoronghly set, an independent body, and giving strength to, rather than re. ceiving support from, the timber."

The same plan is applied in Paris to the stairs, and Mr. Mosking recommends it for adoption here. He likewise gives a detailed account of the French mode of making ceilings and floors.
"But the Prench render their floors also so nearly fire-proof as to leave but little to desire in that respoct, and in a manner attainable with oingle joista, a well, at the least, as with joists framed into girders. According to their practice, the ceiling numst be formed before the apper surface or foor in laid, inasmuch as the ceiling is formed from above, inatead of from below. -The carpenters' work being complete, atrong batten-laths are nailed up to the under sides of the joists, as laths are with ut; but they are mach thicker and wider tban our lathe, and are placed so far apart, that not more, perhaps, tusn one-half of the space is occupied by the laths. The laths being atfixed-and they must be soundly nailed, st they have a heary weight to carry-a platform, made of rough boards, is strutted up from below parallel to the plane formed by the lathr, and at about an inch below them. Mortar is then laid in from above over the platform, and between and over the lathe, to a thickness of from two inches and a half to three inches, and is forcod in under the latha, and under the joists and girdert. The mortar being ganged, as our plasterers termit, or rather, in great part composed of plaster of paris, it 2000 sete sufficiently to allow the platform-which, it will be readily ua-
deratood, has performed the enme office to the mortar which contering parforms to the parts of an arch or vanlt-to be removed onwards to another compartment, until the whole ceiling of any room or atory of a building it formed. The plaster ceiling thus formed, is, in fact, a strong olab or table, in the body of which the batten-lathe which hold it upanfely in the air are incorporated, and in the back of which the joista, from which the mase is anspended, are imbedded. By the procest, the under surface of the plaster table bas taken from the rough boards of the platform the roughneet requisite to facilitate the adbesion of the faishing cont of plastering, which is of course, laid on from below.

Whether the eventual surface is to be a boarded foor or not, however, the flooring joista are covered by a table of planter above, as completely an they are covered by a plaster ceiling below.-Rough battens, generally split and in thort lengths, lookjng like enda of oak pales, itout enongh to bear, when laid from joist to joist, the weight of a man wlthout bending, are laid with ends ahutting upon every joist, and as close together as they will lie without having been shot or planed on their edges, to as to joint them. Upon a rough loose floor thus formed, mortar of nearly similar consistence to that used for ceilings, but not necessarily of the same good quality, is spread to a thickness of about three incbes; and as it is made to fill in the voids at the ends and sides of the foor-laths apon the joista the laths become bedded upon the jointa, whilat they are to some extent also incorpo. rated with the plaster, and the result is a firm foor, upon which, in ordinary buildinga, and in the public and commoner apartments of almost all baildings, paving. tiles are laid, bedded and jointed in a tenacious cement to form the working floor.

It may be added in explanation of the statement, that in Paris the practice of forming a table of plaster over the jointa when tiles are to be used as the thoring surface, is employed also when a boarded floor is to supervene,that as the surfaces of the trne joists lie under the mortar or planter table, a base is formed for the boards of what English carpenters would call atout fllets of wood about 21 inches square, ranged as joists, and strutted apart to keep tbem in their places, over the mortar table, to which they are sometimen scribed down, and that to these fillets, or false joiats, the flooring boards are secured by nails; so that in truth the boarded floor is not at all connected with the atructure of the loor, but is formed upon its upper cont of plaster. The wooden foor thus becomes a mere fitting in an apartment, and not extending beyond the room nor over the pasages and landinga to the stairs, the floor in any room might harn witbout communicating fire to the stairs, which, in their turn, if they could burn, could hardly endanger the immediate afety of any inmate of the building, because of the complete separation which the tiled and plastered fioor of the landinge effects betwren the wooden stairs and the several apartments."

The author remarks that a similar fioor is used at Nottingham, where the houses are said never to be burnt, and are free from damp and vermin.

Mr. Hosking objects to timber being laid bedwise in walls, or joists being let into them, but recommends that the rafters be let in and properly secured against fire.

We may observe, upon a note of Mr. Hosking's as to Flemish bond, that he says he never saw Flemish bond in Flanders, at Rotterdam and the Hugue, Antwerp, Brussels, Liege, Cologne, Mentz, and Frankfort. Now there is only one of these towns in Flanders, and this is no proof that Flemish bond is not to be found at Ghent, Bruges, Courtrai, Ostend, Ypres, Dunkirk, Lille, or other towns in Flanders.

Of French carpentry, Mr. Hosking says that it is much behind our's, so that in framing the floors no important bearing is, or indeed may be, trusted to the framed joint, dognailed stirrup-straps of iron being always brought in aid. He says, however, that their boarded floors are always tongued in the joints, and almost always parquetted, and so resolved into compartments of various figurea, and being tongued and edge-nailed, no nail or bradheads appear upon the surface to dot over and disfigure the floors, which being for the most part of wainscot, are far more sightly than the best executed deal battened floor with us.

With regard to Parisian masonry our author states,
"It is by means of the girder bearing apon the solids of the walls, though with bad carpentera' work, or carpentering rather, that the French are able to carry up their soft stone rabble wall to heigbts that would frighten even a London builder, and that would certainly be unsafe if the walla were seamed with wooden plasea, and sbaken by floors of single joists. The author, being at Paris in 1846, measured the thickness in the gronnd-toor story of a newly-built coursed-rubble party-wall, in the Rue de la Benque (the Gresbam Street of Paris), and found it to be exactly 18 English inchea in that part, whilst the total beight of the wall was not less than 85 feet. The wall ran up of that same thickness through sir stories, a height of not less tban 65 feet, and was terminated by a gable of from 12 to 15 feet bigh, of the same kind of atructure; and there was besidea a vanlted basement atory, throughout which the wall might have been 20 inches thick, as other similar walls then in progress to neigbhouring buildinge proved to be. And it is by means of the solidity given to the floors by the girdert, and the sold bearinge which the girders obtain, that the floors are able to carry the doed
meight of matter which renders them practically freproof, in addition to the movints weights to which the thoors of baildiogs are necenaurily exposed 10 use"

Among Mr. Hosking's objections is that to the use of concrete as a mere footing for walls, from the notion that a foundation is thus rendered strong by depth; whereas he advocates the use of a thinner layer of concrete over the whole foundation, so as to grin strength by an increase of base.

Another objection he entertains is to the wooden skirting-board, which causes filth, diacomfort, and danger, as it is often too close to the chimney fue. He also considers that the deep boxings for它indow shuttera gratuitously make a house more inflammable, and he recommends metal roller-blinds instead.

We do not think Mr. Hosking dwells too much upon the precantions to be taken against fire; and if any of our readers do, we recommend to them the following justification :-

4 It appeara from an eutimate appended to a Report liy Mr. Pairhairn on the Coantraction of Fireproof Baildinga, with Introductory Remarks bp Mr. Simuel Holraes, published at Lirerpool in 1844, that the insurance-offirea paid for losses by fire in Liverpoal alone, in the ten geara ending December, 1842, the sum of $1,121,4271$. This sum does not, of course, include the losses of, and other injuries to, the poor who do not insure, but who are always great sufferers in cases of fire; and snme of the fires which occssioned the losses were extensive conflagrations, in which lives were lost in the attempts made to subdue the fire; nor does it include a probably large mount of property not suefieiently insured to cover the losses.

Urged by successive calamities by fire, and by the bigh rates of premium which the insurance offices were compelled to exact to enable them to meet the loses, the people of Liverpool spplied to Parlisment at leagth, and obnined, in 1843, an Act to compel themselves to abide by certain wholesome regulations, as it regarded the security of haildings fronj fire. The effect of this Act, 6 \& 7 Vict. c. 109, and the provioion of a supply of water available in case of fire, has been to reduce the rates of insurance considerably; but the protective measoret are eatimated to have cost from 200,000l. to 300000 l ., which beisg added to the losses above stated, with a trifing addition for the Justes not included in the eatimate, will show an annihilation of property in one town alone, and within ten sbort years, to the enormons amount of a million and a half of money."
The author is not quite clear upon the subject of ventilationbut then it is in its infancy: still his remarks are well worthy of perusal.
In conclusion, we may observe that Mr. Hosking has rendered a great service to the profession by the publication of this book, as a useful work of reference, and as a vindication of the practical claims of the architectural profession to their proper share in structural arrangements.

Raileay Practice. By S. C. Brees, C.E. London: Williams and Co., 1847. T'hird and Fourth Series.

These are two large volumes with a profusion of plates, forming the third and fourth of the series of railway practice. They are translations from the Portefeuille des Chemins de Fer, by Messrs. Perdonnet and Polonceau, but derived from English materials. It is a curious thing that we should be indebted to the Freach for the description of our own railway works, and that there should be a want either of enterprise or zeal to publish an original account. So it is however that we are particularly deficient in accounts of our great engineering works, and this from three causes: that our great engineers have no time to write, that our young engineers have no ability to write, and that engineers generally do not buy nor read works when published. Thus we are often served at second-hand with accounts of our own works by Frenchmen, Americans, Germans, or Rugsians, and after the experiment has been made abroad, we get confidence enough to make a trial here. We are, perhaps, the more indebted under such circumstances to those who, like Mr. Brees, take the trouble and the risk of making us acquainted with our own works. In the present instance, we have from Mr. Brees two volumes, which will be found invaluable as records of the best practical examples of railway engineering. If we have any fault to find it is that he has not sufficiently reduced the French measurements, a labour which if performed by him or his assistants would have saved that of his readers.

The third volume is devoted to earthworks, permanent way, blocks and sleepers, rails and chairs, with turn-tables, sidings, and switches. The fourth volume describes stations, carriages, trucks, wrater cranes, and station plant.

When we say that there are more plates than text, we think we offer a rery strong recommendation of the work to the practical man. These plates too are filled with details, so that nothing is wauted to give a correct idea of everything described.

Among the plates are :-The forms of every kind of rall in use in England and elsewhere; machinery used for making raila; navigators and platelayers' tools; nwitches on various plans by Robert Stephenson and others; turntables of the London and North Western, Midland and Great Western railways; locomotive turntable; weigh-bridge; level crossings and gates; double and single hoist bridges ; crossings for temporary works; earthwagons of the London and North Western and Grent Western; Mr. Jee's Garton atation on the Manchester and Sheffield ; bridges over the Wear. Clyde, and Meuse; viaducts on the Manchester and Sheffield, and Manchester and Leeds; culverts on the London and North Western. Among the carriages are those of the London and North Western, Birmingham and Gloster, Great Weatern, of French, German, and Belgian railways, with details of the wheels, axlea, frames, buffer-springs, and breaks. These plates of carriages include passenger and mail carriages, horse-boxes, trucks and goods wagons. This part is of particular value at a time when the influence of the carrying stock on the structure and working of a line is the point which most affects the engineer. As the plant increases, and the necessity for economy in the working becomes greater, the attention of the engineer is well bestowed on a knowledge of the best construction of carriages, and the most efficient means of improving them. Hitherto very much attention has been given to the locomotive, and to systems of atmospheric traction, but a more immediate reference to the load to be carried is the point to which the engineer will for some time have most to direct himself. The eatablishment of lighter engines and smaller trains will call for a great deal of ingenuity to provide plant suitable for such a different aystem of traction.
Mr. Brees gives many examples of large stations and their details. Among them are the South Western at Nine Elms, the Euston-square terminus, the Birmingham terminus, the Nordbahn station at Vienna, the Brunn station on the latter line, stations at Versailles and Pecq, the terminus of the Versailles line at Paris, the Dublin and Kingstown terminus, and the Leeds station. Bosides these leading termini and stations, plans are given of intermediate stations, as Tring, Watford, Wolverhampton, Newton, and Coventry, on the London and North Western; Thames Ditton, on the South Wentern; Keading and Slough, on the Great Western, and numerous places on foreign lines. Many of these stations, as those on the Paris and Rouen, are the work of English engineers, and it is gratifying to perceive that many details introduced by them have served as an example to their foreign brethren. The study of the foreign plans by Euglish engineers will enable them to return the compliment, because the experience and ingenuity of the many men of ability employed abroad cannot fail to be pron ductive of many valuable improvements.
In conclusion, we can only repent what we have said in the be, ginning, that Mr. Brees's work will be found most ueffal to the engineer. It is a repertory of every practical detail connected with railway works, and it has the advantage of presenting copious examples under every head of reference. With these words we commit the work to the hands of our readers, being fully satisfied that it is well worthy of their support.

Designs for Schools and School-Houses, Paroehial and Nationat. By H. E. Kendall, jun., Architect. London : Williams and Co., 1847. Folio.

Next to churches, schools are perhaps the class of buildings most in request, owing to the necessity that is felt for providing education for the poorer and humbler ranks of society. Numerous buildings of the kind have accordingly been founded and erected of late years, yet very few are so satisfactory in point of design an they might have been rendered, at the same, or very nearly the same cost, merely by the application of a little study and judicious taste. Or if it be deemed of no moment of what kind the taste shown in such structures be, it is safer as well as more economic to attempt nothing more than what utility abeolutely demands. We agree with Mr. Kendall when he says, "although sume of the national schools lately erected are very creditable to their respective architects, the general result of the great movement apparent in the building of churches, schooks, \&c., redounds rather to the honour of resuscitated zeal than to that of architectural talent. So great is the tameness, and so apparent the mediocrity of conception, both in arrangement and style, in many of them, that were it not for the good they effect, we aheuld regret their very existence." As regards the utter tastelesonem frequently shown in things of the kind, blame rests as much with the employers as with the employed, since it is the ignorance of
the former-their incompetency to judge of denigns submitted to them, together with their childish determination to exercise the privilege of pleasing themselves without being accountable to any one for what they do-that encourages so much paltry design. The tel eat notre plaisir will not excuse deformity in the eyes of others, who will in turn exercise their own privilege of expressing censure and ridicule where they are deserved-a consideration that ought to be seriously taken to mind by those who have the directing of far more important edifices than school-houses.
"Something of external comeliness"-we again quote from the preface-" should be assigned, as matter of course, to the humblest of such erections; and, under the direction of good taste, usefulnese of purpose and beauty of design may be made mutually to subserve to each other, even when the latter is but a secondary consideration." It may be further observed, that it is not so much positive beauty as well-marked character and effectiveness of ensemble, that ought to be studied for buildings in which a certain degree of homeliness is no more than becoming. And this has upon the whole been well accomplished by Mr. Kendall-though, as was to be expected, more happily in some instances than in others. The collection consists of both executed and unexecuted designs, each of which is shown in a perspective or pictorial view of it, as well as by a plan and elevation; and there is also letterpress to each subject, containing remark as well as mere explanation. The unexecuted designs are five in number; the others are thoee of the following buildings which have been erected by the author: Childerditch School, Essex; the Poor Boys' School, the Poor Girls' School, and the Commercial School, all at Bury St. Edmund's; the building for the Battle and Langton National Bchools, at Battle; Willesden School; and the Infant School at Stanmore, which last is said in the account given of it to have been erected in 1845, "at the sole expense of Miss Martin, a lady distinguished during her residence in that beautiful village for her benevolence and extended charities."

All the designs may be designated Old English in style, although it is not that of one and the same period; nor do they all show the same mode of construction, some of them being in imitation of the "half-timbered" houses, others of red brick with stone dressings and quoins. The Elizabethan style has been applied very happily in what strikes us as being the best design of all-namely, the school buildings at Battle, in which, while the character of the style itself is not only well kept up but expressed with gusto, the character of the particular kind of building is most unmistakenably pronounced. Although perfectly regular, both in the arrangement of its masses and the features of its elevation, the whole composition, as shown in the perspective view, is pleasingly varied and highly picturesque, yet sufficiently sober withal. The last subject, design No. 5 , shows a rather extensive and complex group of buildings in the Tudor style, and in perspective makes a very picturesque composition. Independently of the interest and merit of the designs themselves, the artistic skill displayed in the pictorial representations of them cannot fail to excite admiration. They are very superior productions of their kind, -studies of trees and figures as well as of buildings. Owing to which, to the subject itself, and to the tasteful manner in which the work is got up in every respect, we may anticipate for it a highly-favourable reception even among those who hardly make any pretensions to amateurship in architecture.

HISTORY OF ARCHITECTURE.

We have received the following communications in reference to Mr. Elmes's papers, and which we lay before our readers :-
Sir-In your Journal for November last, page 338, there is a statement which, I fear, may lead some of your readers into error. In the life of Stuart it is said, "Preparations for his works were made with such rapidity, that in 1768 they were presented to the public under the title of "The Antiquities of Athens, Kc. \&c.' 4 vals. folio, $1768 .^{\circ}$ Now, the First Volume was published, as my two original copies show, by Haberkorn, in 1762, and nothing is said in the title-page of four volumes (although in the body of the work two more volumes are referred to, and tovo only); it is distinctly marked Vol. the First. Vol. II. was published by Nichols, in 1787; Vol. III. also by Nichols, in 1794 ; and Vol. IV. by Taylor, in 1816 -that is, not till 48 years after the time above referred $t 0$.

In page 3 30 , in the life of Sir Robert Taylor, is one of those
commonplace and sweeping attacks so const intly directed against the late Building Act, and in which I never did, and do not now, join. That it had some defects, as well as some omissions, I am free to own, as well as that in these respects it required alteration -perhaps in no respect more than in its provision for the payment of expenses of party-walls by the owner of the improved rent, a term which the result proved to be alike uncertain and unjust. But that it was infinitely better as a whole than its successor, is, i believe, now almost universally admitted, and 1 could wish those who so lavisly condemn the late Act in the bulk, would condeacend to explain more fully those particular parts of it against which their attacks are directed, or to which they object.

A Constant Reader.

Sir-The series of articles entitled a "History of Architerture in Great Britain," contains some opinions and remarks that appe \mathbf{r} to have been uttered rather hastily. I hope, therefore, you will allow me to animadvert on what ought not, for the interest of art, to be suffered to pass uncontradicted.

To begin by correcting some of the mistakes:-The design of the India-House is attributed to Jupp, the Company's surveyor, who was only employed to execute the works, the design itself being by Holland, as is explicitly stated in the biographical article on the latter in the Supplement to the "Penny Cyclopadia." Jupp certainly does not appear to have been of any note at all in his profession, therefore it is not very likely that he was the real author of the edifice; or at any rate, if such claim was to be substantiated for him, that of Holland ought to have been not overlooked but formally set aside.-In speaking of the College of Surgeons, Mr. Elmes describes in the present tense the original front, or rather the portico as it oripinally existed previously to the front being extended and re-modelled by Mr. Barry, who, he says, added two columns to the portico; were which the case, it either must have been at first only a tetrastyle, or would now be an octastyle one. The fact is, that instead of adding, Barry merely transposed two of the columns, taking them from the west end of the porticn, and putting them at the other, thereby making what had been the first intercolumu from the east, the centre one, and so bringing it into the axis of the lengthened facade. He also fluted the shafts of the columns, and carved the bed-mouldings of the cornice. The writer's opinion of the College of Surgeons in its original state, appears to be infinitely more favourable than discriminating, he being pleased to refer to it as an "example of the genius of" this tasteful architect," viz. Dance,-whereas, as designed by him, the whole front was a most barbarous and vulgar parody of the style affected for it. So far from the columns being "tastefully adapted" to the building behind them, there was no sort of adaptation at all, nor the slightest coherence in regard to character between the main building and the portico. Many may be unable to recollect what sort of figure the original front cut, but views of it are in existence, which assuredly strongly contradict the praise which Mr. Elmes has implicitly bestowed upon it.

With regard to the front of Guildhall, by the same "tasteful architect," we are told apologetically that it "is amenable to no laws."' That, notwithstanding its aiming at Gothic or something of Gothic character, it is so far from conforming with as to violate its leading principles. Yet that might have been excused, had but consistent and artistic expression of its own been imparted to the facade. Though evidently very reluctant to admit anything wo the disparagement of Dance, even Mr. Elmes is obliged to abandon the exterior of Guildhall to unmitigated censure and ridicule, and remark that its "faults are more than compensated for by his wellproportioned, original, and elegant chamber for the Commoncouncil, \&c." Adinitting that the latter were very greatly superior to what it actually is, it would not indemnify for the positive and striking ugliness of the exterior, which of course stamps the character of the building in general opinion, and is so radical a defect that it adnits of no cure short of an entirely new facade; whereas any defect or falling-short internally in such an apartment as the Common-council-room might have been easily remedied at any time.
In his quality of historian the writer has fallen into a most Wiaring mistake when he says that Jeffrey Wyatt was selected by William IV., as his chief architect, to enlarge and embellish Windsor Castle, it being notorious to every one, that he was employed by George IV., at the time of whose decease the works were adrancing towards completion, for he had begun the new apurtments. Equally notorious is it that it was George, not William, who changed the architect's name to that of Wyattville.

Wilkins is not treated very indulgently by the historian; on the contrary, is spoken of with a degree of asperity that contrasts
rather etrongly with the evident disposition to touch as gently as posaible upon the delinquencies of many other architects Though the general estimate of the abilities and taste of Wilkins may be aequiesced in, it seems to have been dictated by the determination not to spare him. That he was more of the scholar and archseolagist than the architect-far more of the "lookish student" than the artist-is not to be denied. As to Wilkins' pedantry, that charge against him is, no doubt, founded mainly upon his having written and published so much as he did; whereas, had he never taken up the pen at all, he might have been equally pedantic in practice, without incurring the reproach of pedantry. Downing and Haileybury colleges may be abandoned to censure, as equally frigid and tasteless in puint of design; but an exception from the general sweeping condemnation ought assuredly to have been made in favour of the London University College, which exhibits both classical and artistic character, and very effective play of outline. Undeniable it is that it has, even in its present imperfect etnte, obtained the meed of almost unqualified-not to any exaggerated -admiration from Wightwick and other professional men. Even Mr. Elmes himself did not always entertain so mean an opinion of that work of Wilkins as at present ; or if he did, he thought proper to keep it to himself, for gpeaking of it about the time it was erected, he says: "The council obtained designs from several architects, and after due deliberation, finally adopted that of William Wilkins, Esq. R.A., a selection in which their own judgment coincided with that of almost every proprietor who inspected the drawings." This goes far to prove that, at all events, the choice was not a hastily, inconsiderate one, or managed with suspicious secrecy. Neither is there a single remark of the writer's expressive of dissatisfaction with it. Yet he now speaks not a little concemptcously of the building, without condescending to specify other objections than what is meant to be so overwhelming a one as to outweigh all beauties and merita, namely, that "the portico is, from its situation, but of little use"-nay, "a nseleas application, stuck up for the admiration of gazing cabmen and hackneycoachmen, whilst lvitering on their stand." With what sort of reason is the loggia at the south-west angle of the Bank so highly extolled immediately after Wilkins' portico being decried? it being nothing more than a piece of decoration which does not even carry with it any semblance of usefulness.

Of Wilkins' style it is said that it was "the very mummy of the art ;". yet, if it was, he unbandaged it when he designed the building in Gower-street, for even in its present imperfect state it displays no ordinary merit in regard to grouping and the fine focus produced by the central mass. As an example of a decastyle, the portico is unique among those in the metropolis, - a circumstance which an impartial and unprejudiced critic would at least have noticed; -and it acquires additional expression and stateliness from being elevated on a substructure that forms flights of steps leading up to it, which are very picturesyuely disposed. In this latter respect, too, the composition may be said to be uniqueeertainly is very striking and artistic. As to the dome, it is of most elegant contour and design; and if it be objected to that it is a feature unknown to pure Greek architecture, the objection is a proof that those who make such futile objection are still more atrajtlaced and pedantic in their notions than Wilkins himself. The value of it in the composition is such tbat were it removed the whole would become comparatively tame and spiritless. The portico in the east front of St. George's Hospital affords another proof that the "mummy" was occasionally unbandaged. That squarepillared tetrastyle partakes more of architectural heresy than pedantry. Still tlie heresy, if such it be, is a welcome one, and it has been melcomed by being adoptea in the façade of the new Law Courts at Liverpool, where tbe columniation is carried on, on each side of the central portico, in square pillars; therefore producing contrast and variety, at the same time that continuity of design is kept up.
It begins to be time to bring to a close this long letter, wherefore I will be somewhat brief in regard to what is said of Soane. As criticism, it is far more indulgent than discriminating, or in some respects even intelligible. At any rate, it is somewhat puzzling to mace out what is meant by his buildings at Chelsea Hospital, and the National Debt-office, exlibiting "a wild exuberance of novelty," since sw far from any thing like exuberance, they exhibit only very unequal and fitful attempts at it. His building at the Treasury, the Royal entrance to the House of Lords, and "some others of his mrlier works"-though the two just mentioned were almost his very latest-are said to show "exuberance of fancy"-a mere complimentary phrase, for his fancy was in reality exceedingly limited It exercised itself only on one or two piecemeal ideas, which he dragged into all his designs, without making any
thing more of them at last than he had done at first. Soane had no consistency of style,-did not even attend to keeping, but often jumbled together the most finical ornaments and the plainest features. In his building at the Treasury, the windows were as ordinary, bare, and frigid in design, as the order was rich. There was not a single touch of Corinthianism in them.

In speaking of the Lothbury Court at the Bank, Mr. Elmes again falls into inaccuracy, describing it not as it is, but as it was intended, for instead of their being two loggias there is only one, what was meant for the west one being left unfinished-a mere open screen of columns, if that can be called a screen which exposes to view most unsightly naked brick walls and mean, ugly pindows. Even the opposite finished side of the court is very nnsatisfactory, the interior of the loggia, though pretty enough in itself, by no means corresponding to the sober richness and dignity of the order. As to the Rotunda, it is most vilely disfigured by the equally barbarous and nonsensical wavy lines around the arches of the recesses, which seem to have been made by a stick upon some soft material while it was moist. It is admitted that the centre of the south front of the Bank "is by no means the happiest of Soane"s designs," and that is treating it far more tenderly than it deserves, for it is such a decided failure and abortion that it ought to be subjected to the same process of rifacciamento as his Treasury building has been.

Zero.

DISSERTATION ON TORRENTS.-By GUGLiELmini.

Translated by E. Cresy, Esq., in his Evidence before the Metropolitan Sanitary Commiasioners.
I come now to the propositions of Guglielmini, in which he pretends that a body descending an inclined plane, will not acquire a velocity greater than it would have acquired by descending perpendicularly the height of the inclined plane.

This is most true as respects solids. The elements of a solid being bound and tied together, form a heavy mass, the parts of which press each other reciprocally, and the pressure on the plane on which they rest is likewise single, as also is the direction; one velocity, one energy, and one action being common to all the parts. On the other hand, a fluid is a mass composed of lesser solid elements, bit free, and not bound together by any ties, each of which can, so to speak, move in different directions and with varying velocities, press upon each other and oscillate freely. Whence the highest parts press upon the lower, oscillate, and aro easily displaced when there is no impediment. When solids descend by a plane, their individual gravity alone operates; which being less than their absolute gravity, generates, at each instant, a degree of velocity less than that which their absolute gravity would have generated, wherefore solids require a longer time to descend by the inclined plane than by the perpendicular, the length of time multiplies the action of the individual gravity, and compensates for the defect of the velocity. Wherefure a solid descending by an inclined plane, has a velocity equal to what it would have, falling the same height directly. Hence the product of the action of the individual gravity, by the time of the descent by the inclined plane, being equal to the product of the absolute gravity, by the time of the fall along a perpendicular, their velocities must necessarily be equal. But in fluids the case is different. Besides the properties which they possess in common with solids, they have another, to wit, the pressure exercised by the upper on the lower part of the fluid, the which being added to the impact, increases the mution also, and hence generates a greater effect than a solid would. Neither is it absurd to suppose that the gravity of a fluid generates a greater velocity on a plane, than when acting perpendicularly, since this generates in greater time, and with a portion of gravity which in a solid which falls remains, so to speak, idle, but, in the case of a fluid, becomes active. John Bernouilli, in his works, gives a problem to find the velocity generated by a body sliding on the hypothenuse of a triangle, whose base is sustained by a smooth horizontal plane, free from any sensible friction, and moving in the direction of the base. He decompused the force pressing the hypothenuse, or inclined plane, into two parts, one of which is employed in giving motion to the triangle, and sliding it forward ; whilst the body descends on the plane, advances the triangle, and communicates thereto a certain rate of velucity; the descending body thus requires a velocity equal to that which it would have in falling perpendicularly, and the triangle has another force generated by that which presses it, whence it results that the
sum of the two motions is greater than that which a body would acquire by its simple descent. Wherefore, since the aforesaid force by pressing, generates velocity and motion distinct from that which a body, in descending, generates; in like manner it is applicable to water pressing on the lower films, and by pressing, communicating additional force to them. Besides, there are other ressons corroborative of this truth, among which is the fact, that it is necessary to spread the accelerated velocity of water passing from a larger to a narrower section over a mean of pressure.

Galileo says, "I have been carefully considering and going through various problems to investigate the acceleration of water having to pass through a narrower channel, also whether it has the eame declivity in both." The greater number of authors solve the point by increasing the height of the water, and hence the pres*ure, thus generating a greater velocity. Eustace Manfredi thas expresses himself:-"The same water passes through a lesser as throngh a greater mection, wherefore it is forced to pass with a greater velocity, precisely as will be the case in a vase in which the surface of the water may be at a certain height above the summit of the aperture." Guglielmini, to the same effect:-"The upper parts press the lower, and oblige them to receive a force, which being compelled to act, produces the same degree of velocity which the descent would have given them." We might quote other authors, who account for the increased velocity in narrower sections by having recourse to the pressure generated by the height of the upper parts, only they are in doubt on this subject, whether to attain so great a velocity it be necessary that the upper water should increase in height till it becomes stationary; not being able to believe that the upper water which is in the act of running is capable of producing a new increment of velocity in the lower. But experience teaches us that if the breadth of a section be diminished one-half, the water will not rise that half, as would appear necessary; if the velocity does not increase, it increases at least very little, either in section or at the base, where the reduced sections are of the same breadth, since the water retained by the narrowing of the piers of a bridge is but slightly raised. Wherefore it is necessary that the velocity increase without having regard to any new inclination, which is always the same, but only by an increase of height, which causes a pressure on the lower water which is in the act of running; whence 1 deduce the argument to strengthen my opinion in the case in which the velocity, arising from the inclination, is equal or greater than that which might have been generated by the pressure. Let us take two cases, one which allows the same measure of water to pass through one section twice as little as the tirst, preserving the same inclination, the other in which the velocity increases till it becomes twice as much.

But whence comes such an inorease of velocity? what to the principle, what the nature of it? To say with Gennete, that twice the quantity of water doubles the velocity, is not to adduce a proof but to advance a mere assertion, which either supposes or requires it. I do not think that a true philosopher will perceive in the increment of so much water the principle of so great an acceleration. It behoves us to examine the genesis of such a phenomenon, and to observe the mechanism which nature adopts therein. And, firstly, two epochs of time are to be distinguished, one the first perceptible moment in which the section is reduced to half. Now, at this first instant, the water must swell and rise much above its first level, in which rise it generates a proportional velocify. . But in the very act in which such a velocity is generated, the water begins to fall, wherefore the present case holds good, that the sections are in reciprocal proportion with the velocity. The water does not full in this manner, wherefore it returns to its first level, or a little higher, there being a constant principle which compensates for a portion of the velocity destroyed by successive obstacles. Water in its course meets with continual resistance which diminishes its force, wherefore there remains in the water a constant principle which supplies and renews any decrement of velocity which the resistance may produce. Now this principle is, that whatever small increase of height above the original level causes pressure causes also velocity. Arrived at which point the water maintains the same height, which I have elsewhere designated equilibrium and constant state. Observers have not paid attention to the first epoch in which the water swells, is agitated, balances itself, but only have considered the other in which it acquires equilibrium, state, law. All this takes place so quickly that the swelling, sinking, and equilibrating hardly are evident to our perceptions. If, as I believe, the experiments of Genuete were true, uccording to which a river doubles or triples its whter without raising its level, then it would be correct to say that it was free frum any sensible resistance. This might be the case in an urtifi-
cial river of short length, over a level bottom with smooth sides, and furnished with clear water. But in a nutural and turbid stream, where the resistance, and that considerable, will never be wanting, it is not likely that when reduced to half its original section, it preserves its former level. This being determined, to come to the question above proposed, I resolve it thus:- Either the velocity begins to increase by the water beginning to surell, or the whole mass increases. If the first takes place, then the height being small, and hence the pressure being likewise small, the velocity generated will be also small. It is not that so small a velocity is added to so great, which it derives from an inclination, contrary to the sentiment of S'Gravesund. If the second takes pluce, it being then the velocity which increases, is equal to, or is less than that which resulta from an inclination, and not having any other generating principle than the pressure, it is clear that it acts when the velocity which generates itself is less or equal to that which was before generated by the inclined plane. Now I repeat, therefore, that the water as it strikes the bottom presses the lower films which run, spread out upon it, by which the pressure is communicated from above downwards. I agree with what Manfredi asys, that "all the lower strata of water may be regarded as so many bottoms, or actual planes, with regard to the upper planes which run upon them. Hence these fluid planes are sensible of the same pressure of running water which they would sustain if it were stationary at an equal height." To me it appears an inconteatable truth that water which presses the bottom should press all that portion by which the pressure is conmunicated, otherwise if it does not press all that which forms the middle, it will never arrive at the bottom of it, which is contrary to all experience. If this bottom be of a curved form, concave towards the water, the pressure will have the action of a centrifugal force, the which conspiring with the former, will increase the momentum, and thereby its energy and velocity.

PROOBEDIEAR OF BOEEETYFIO BOOLEMTES.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Jan. 10.-Cenrles Fowlen, Esq., V.P., in the Chair.

Many presents were announced. Aniong them were drawings from Mr. B. Perty, of the Town Hall of Morpeth, supposed to be by Vanbrugh, and a work on church building by M. de Lasatulx of Coblentz.

Mr. Layamd, the explorer of Nineveh, was then introduced by Mr. Tite, and at the requeat of the Institute, made nonie remarks on the roins of that city. Of the external architecture, or of the date of the ruina, he could say little, as bardly a fragment remained to guide the judgment, though no doubt of their great antiquity could' be entertained. One proof be could give was, that though the earliest ruins were buried in the soil, graves had been dug in these by a people who lived 700 years before the common era. He was inclined to believe that some of these buildings might be three thou. aand years old. The rooms were covered with marble slabs, sculptured in low relief, like those in the British Museum, and they were joined together by double dovetails of iron, and the doorways were flanked by tall winged figures, higher than the side alabs. She figures were all marked with blood, as if it had been thrown against them, and left to trickle. The wally whieh back the slabn are of aun-dried bricki, and, where they show above the alahs, are plastered over and painted. Such beams as remain are found to be of mulberty. How the slabs have been preserved is a matter of oyatery, lut is perhaps to be explained by their lying under the crumbled remains of the bricks, which have returned to earth. Mr. Layard noticed tbat the buildings were provided with a aystem of sewage, a drain runaing from each room to a main apwer. In a amall chamber which he had ditcovered among the ruins, be har teen vaulting of bricks regularly arched. The date of the deatruction of Nineveh was 700 years a.c., while the bas-reliefs belong to earlier dates. In many cases the alabs have been used before; one slab was found with the sculptured face turned to the wall, and the back re-worked.
Mr. Bonomi observed that in Egspt the cramps were of wood, and he thought it extraordinary that at Nineveb they should be of iron.
Mr. Donaldson remarked that those of the Parthenon were of iron, and proceeded to offer his tribute of thanki to Mr. Layard for bis communications. He thought that gentleman the more deserviog of praise, as so puch of what he had done way by his own labour and expense, and yet he bad successfully competed with the explorers sent out by the French government. Mr. Dodoldson wished to inquire whether the external face of the sun dried bricks were covered with plaster to keep out the wet.

Mr. Lapand had not observed this. The internal face nas partly coloured and eoamelled, and decorated with human figures and other ornamente. As to the vaulted chamber of which he had apoken, it wat envered with an arch of 12 or 14 feet diameter, very nearly a semi-arch. As to the sewers, they were nut arched.

Mr．l＇aksom，in orrection of a statement at a former meetigg，wid the mew evwere at Hamburgh were not ovel，hut egg－ahaped．

Mr．Porntan read a paper on＂Leather Hangings，＂illutrated by a num． ber of sperimens sent by Mr．Pratt．－The author mentioned examples of lastber risboaing among the Egyptians，and in tho middle ages．and also of its exteasive use in the sisteenth and aeventeenth centuries，after its revival． The beather ased was ine，and was either embossed or simply painted．It Tras chiefy brought into this country from Flanders and Prance，and there did aot seem to have been any manufactory of it here．Some thought that the process had been firat revived either at Venice or in Spain，but this is ctill matter of doubt，though at Venice emboased leather bangings were in general use in the seventeenth century．The first stage in the procens was to join the skins，and then to silver the whole surface．Parta to have the appearance of gold were varaiahed with coloured varbish．Anter silvering， the leather was itamped with cat blocks ander a prese．The borders and mare delicate work were executed with metal tools，like those of book－ Bisders．What is eelled the Titian Gallery，at Blenheim，has paintings on leather，but they are not hy Titian．Mr．Poynter exhibited sonse fine exam－ plen，ope being Antony and Cleopatra，from aseries formerly helonging to the great Lord Clareodon．He recommended such apecimens as suitable for eoseams of mediseval antiqnities．

Mr．Cance atated that plaster moulds are used at Patis to embos the leather，and that much fock is worked up to ornament the face．

The Chairman brought to the notice of the meeting the loss they had ceateined in the death of two naembers of the profestion．Mr．Kay，a mem－ ber of the lastitate was the frat whom he should name，one whom they all raew and respected，and who had taken an active part in the eatablishment of the lastitute．－Mr．Longdale Elmes was not a mpminer of the Institute， bat a most promising architect，whase works at Liverpool reflected the great－ eat eredit upon bim．A slight fall in getting uut of a carriage was the more immediate cause of death，but he was suffering from dsceste which would otherwise have carried bim off．

INSTITUTION OF CIVIL ENGINEERS．

Jem．11．－Sir J．Rennir，President，in the Cbair．

The irat meeting of the seanion was held this evening，when the following papers were read ：－
Mr．Prederice Raneome＇s＂procese for making Artificial Stone．＂
The modus operandi appeared to be very simple．Broken pieces of silica （common lint）being suhjected for a time to the action of cauntic alkali， boiling，under preseure，is a close vessel，formed a transparent silicated solu． tion，which was evaporated to a apecific gravity of 1.600 （distilled water belag $1-000$ ），and was then intimately mixed with given proportions of well－ wribed sand，broken granite，or other materials，of different degrees of hard． neas．The paste thos constituted，after being pressed into moulds，from which the most delicate impreanions were readily received，were subjected to a red beat，in a stove or kiln，hy which operation the free or uncombined alica of the raw materiale united with the exceas of alkali exiating in the molotion，thus fosming a semi－vitreous compound，and rendering the artificial stoge perfectly insoluble．This production must evtiently be adaptable to a comprebenoive range of ohjecta for decorative art，and for arehitectural perposes；busts．vasea，fooring tiles．steps，haluatrades，mouldings，capitals， abafis，and besen of columns，\＆c．，even grinding stones and whetstones for acythea，bave been made；and，in fact，from the beauty and variety of the apeciaens exbibited，there would appear to be a vast field opening for anch a production．It was stated to be already extensively manufactured at Ipt． whoh，and it was allowed to admit of extensive application where elaborately carved stone would be too expenaive．
Mr．Riczmond，of Bow，exhibited and explained＂an Bugine Cownter，＂ma－ anfactured by him on an improved principle．The counters in ordinary ure were described as either soniewhat inefficient machines，liable to error，or of tos expeasive constraction to be generally employed．This counter differed from othere chiefly is its simplicity and ito accuracy，whilat，at the anme time，ita low price of 7l．brought it within the reach of every one．With this machine the number of atrokes made by the engine or other nuchine could be read off at one view without calculation．The leading or unit hand traversed the eatire circumference of the large dial，and those of the three sanall diais revolved in the same direction．The first motion was deacribed as being given by a sliding har and fixed spring，instead of by a double pellet， 0 that the firat wheel could not be thrown more than one tooth by one stroke of the engine．The hands were all moved by a train of wheels and pinions，without akip－wheele，so that the notion was regular and progres－ sive．These were admitted to be advantages，and in the diacussion upon the tasehine lit merits appeared to be shown very decidedly．

Jan．28．－Sir J．Remnis，President，in the Cbair．

The annual general meeting of the Institution was held this evening，when the following gentlemen were elected to form the council for the ensuing rear ：－

President－Joshua Field．
Fice Presidents－W．Cubitt，J．M．Rendel，J．Simpson，and R．Stephen－ son，M．P．

Members－J．P．Bateman，G．P．Bidder，I．K．Brunel，J．Cohitt，J．Locke， M．P．．J．Miller，W．C．Mrlne，T．Sopwith，J．R．M＇Clean，and C．May．
Acsociales of Council－J．Clatton，and T．H．Wyatt．
The report of the enancil continuen to be very encouraging，and shows． that the progreas of the society is steadily good．
Telford medals were presented to Mesam．Jackson，Richardson，Murray， Glynn，and Prodsham，and to the two former gentlemen council premiums of books were added．Telford premiums of booki were also awarded to Merars．Ellintt，Heppel，Shears，and Mastert，for the commnnications made during the past seasion．

Memoirs were given of the deceased members and associates．Messri． Thom，Giles，Lipkins，Muabet，Reynolds，Holtrapfiel，Evant，Watkipt，and Ball．The career of several of theie gentlemen had been $⿰ ㇒ ⿻ 二 丨 冂 刂$ varied，and pos－ sessed such points of interest，that the memoirs were necessarily extended beyond their asual length．The report noticed the increased attendance of moent bers and visitort as evidence of ita advancing career，and of the interess felt for the science of civil engincering．A pressing appeal was made to mem－ bers of all clases to contribute papera，to induce animated discussiona，which are the distinctive feature of the meetings of the suciety．The principal events of the past seasiou were touched upon，and several private mattera relative to the internal management of the Institation were fully discussed．The council then explained the changed form of the balloting papers，necessitated by the new bye－laws，and the retirement of Sir John Rennie from the past of preaident，which he had flled with such credit to himself and benefit to the society for the last three years．In conclusion，the report said，＂Let the civil engincers remember that＇union is strength；＇and that，if they are true to each other，and use the Inatitution as the common centre and bond of unity，they may set at nought all efforts to dislodge the civil engineers of England from the proud eminence where tbeir taleato，their practical skill， and their probity have placed them．＂

Before leaving the chair，Sir J．Rennis．，president，addressed the meeting on the selection of the president，and impressed apon them the claims of Mr．Pield；not only as one of the founders of the Inatitution，and who had alled for many yeara all positions in the aociety，nor because he was univer－ sally reepected and eateemed at an upright，honourable，kind－hearted man， but chiefly on scount of his acknowledged celebrity at a mechanical engi－ beer，particularly in that mont important department－steam navigation； and，beceuse hia election wonld anite more firmly the two branches of the profession，which，to ensure general prosperity，muat ever go hand in hand， at they had hitherto done in the Inatitution，in apite of all attempta to make it appear otherwise．He then reviewed the position of the Institution during his preaidentship，offering his beat thank to the vice－presidents and the memhers of conncil，and to the secretary，for the support and asintance afforded hira；and then examined，with mach candour，the relative ponitions of the civil engineers，and of the government boards and commiasions，which had appeared to clash more than was desirable．Tbis be thowed not to rise from any of the acts of the civil engineers，who had ever been ready to afford their best asiatance to the government in any capacity；and forther，that it would be the interest of the government to take advantage of the taient， energy，and practical skill of the civil engineera，by whom they bed ever been well served，rather than incur the baxard and the expense of forming a corps that mould require more time for educating then could be afforded in these active times，when eren hesitation was perdition．

Tbis address was responded to very warmly by the meeting；and a vote of thanks to Sir Jobn Rennie wat received with cheers．Thankn were also voted to the council and the secretary of the Inatitution for their services．

SOCIETY OF ARTS，LONDON．

Dec．15．－P．Le Neve Poater，Beq．，in the Chair．

The Secretary read a paper，by Mr．A．G．Findlat，M．R．G．S．，＂On the varions descriptions of Lighthouses，Beacons，and Light－vegselt，their Con－ strwetion，and the snethods of Illumination employed therein．＂

Mr．Pindlay commenced his paper by alluding to the vast importance to a maritime nation like Eagland of having a durable and efficient mode of constructing and illaminating lighthouses，light－vesmels，\＆c．，and proceeded to point out the general uses of ligbthouses．The oldest atructure apon record is the celebrated Pbaros of Alesandria，which served as a guide to anciont mariners during a period of nparly 1,600 years．Pliny sapa，＂It was square，of white atone，and consiating of many stories，and dirninisbed upwards till it attained the beight of 547 feet．＂The most ancient structure known to exiat in this country is the Roman pharos at Dover castle，and this would still anower its inteaded purpose，after a lapse of 18 conturies． The celebrated Cordouan Tower，in the Baj of Biscay，is another inatance of stability，having been brilt in 1611．The Eddyatone lighthouse has attracted more of the attention of the public than perhaps any other．The frat of these edifices was of wood，and bailt by Mr．Winatanley in the years 1696－8；but，owing to the sea whahing over the lantern，it was subsequently raised to a height of 120 feet．In November， 1703 ，the ontire structare wat weahed away，and in 1706 anction rat obtained for its belng rebwilk， which was accordingly done by Rudyerd，but which was deatroyed by fire in 1753．The present tower，noe of tbe artificial wonders of Eogland，and built by Sweaton，is 100 feet bigh，and has given good proof of its capa－ bility of reaiating the force of the waves．The Bell Rock lighthouse is a
similar struetnre to the Erdyatone; it was built by Stevenson at a cost of $\mathbf{E} \mathbf{6 0 , 0 0 0}$. The mont recent erection of thin description is on the Skerryrore rock, which cost $£ 90,700$.

The author next alloded to the difficulty of constructing permanent lighthouses in exposed situations, and the advantages of them over flosting lights, as well as the much swaller annual expenditure required to maintain an efficient light. The firat foating light was the well known Nore light-vessel, moored in 1734. In order to insare stahility in a lighthouse, Mr. Findlay atated that it is necesaary that the atructure should be capahle of affurding resistance to a pressure of not leas than $6,000 \mathrm{lh}$, to each square foot of surface exposed to the action of waves. This assertion was founded on eaperimenta made by Mr. Alan Stevenson, who ascertained and registered the force of the waves at the Skerryvore rock, on March 25th, 1845, daring a weaterly gale, when it was found to be 6083 lh . per square foot; this, the grestest force bitherto registered, wat cited with many others. He next proceeded to point out the inapplicahility of iron to the construction of lighthoures where the metal was immersed in the sea water, which has the effect of reducing it to a body similar in its chemical properties to blacklead; and instanred the effects produced on a cannon-ball taken from the Mary Rose, after having been aunk off Spitbead for a period of 150 yeara: the iron shot upon being exposed to the air gradually became red bot, and then fell into a red powder resembling burnt clay. -The anthor next deacribed the methods which have been saggested for overcoming the difficulty of exposing large anrfaces to the action of the force of the waves, and also for obtaining a firmer foundation on a aand, and especially Mr. Alexander Mitchell's screw-pile lighthouse erected on the Maplin Sand, and Dr. Putta's method of driving piles by atmospheric pressure, as applied at the South Calliper beacon on the Goodwin sands, in 1847, and to other beacnne on varions shoals at the mouth of the Thames, as on the Blyth sand, and on the shingles in the Prince's channel. Another plan for the erection of lighthouses has been carried into effect at the Point of Ayr by Mr. Walker; it consists in constructing bollow cylinders, which are filled with concrete and then sunk, and from them the piles rise. Capt. Sir S. Brown has also proposed a plan for the erection of lighthouses in deep water upon bronze standerds, and a morlification of his plan was adopted hy Captain Bullock. The author further alluded to Mr. Bugh'a Light of all Nations, and to Mr. A. Gordon's iron lighthonses at Jamaica and the Bermudas, in which the ceses are filled with a aolid mant of concrete; and alluded to the fact that Rennie had proposed iron for this parpose as early as the year 1805 for the Bell Rock.

Having thus shown the different methode employed in the construction and erection of lighthouses, Mr. Findlay proceeds so remark on the various plans of illumination which have been employed: of these the earlient was the coal fire and the Cordoman billets of oak. In 1752 the South Fureland lighthonse, previously illominated uith an open coal fire, was covered with a lantern with large sash windowt, and the tire was kept bright by means of large bellows; the lantern was subsequently removed, and ufterwards, at the commencement of the present century, fifteen large lenses with separate lamps were placed in it. In 1790, the only exception to the coal fire was the Eddystone lighthouse, which had a chandelier with 24 wax candles, and the Liverpool lighthouses with oil lamps and rude paraholic reflectors. An interesting historical fact was then mentioned-viz.. that parabolic refectors were used at the Liverpool lighthouses (huilt in 1763), as Mr. W. Hatchincon, in bis "Practical Seamanship," published that year, describes the apparatus then in use一the larger reflectors of wood lined with small pieces of louking-glass, the amaller of polished tin: this was the more corious, as it had been claimed hy the French for M. Teulere in 1783, and frat used in Scotlind in 1786. The parabolic reffectors, of which some beautiful specimens were shown to the meeting, are now constructed upon the formula of the celebrated Captain Huddart. Having explained the catoptric or reflecting principle of illumination, which received so great an improvement in the invention of the Argand lamp in 1780 or 85 , several other lights were exbihited and described-viz., the Drummond light, the voltaic light, end the causes of their inapplicability. The present mode of lighting is from lamps constructed on a modification of the Argand principle. A firat-order pneumatic lamp with four concentric wicks, showing a most powerful light, was exhihited. The dioptric principle, in which the rays of light emanate from a central lamp, and are controlled and directed by a series of lenses placed before and around it, next occupied attention. The author claims the priority of its suggestion for an optician in London, as mentioned hy Sineaton, who proposed, in 1759 , 10 grind the panes of the Eddystone lighthonse into aphere of 15 feet diameter. The present form of lens, generally koown as Freanel's, was fist suggested by the celebrated Buffon, to whom it ia probable the catoptric zystem owes its origin. Sir David Brewster, in 1811, showed the practicability of constructing a lens of separate piecen, and this was first ased in France hy Fresnel, and has since become qniversal in Prench lighthouses. A comparative view of the catoptric and dioptric srstems is afforded by the fixed lights of the South Poreland, the higher heing from the dioptric principle and the lower from Huddart's reflectors, which to a distant observer appear equally bright-the only test of their efficiency. The cata-dinptric principle was illustrated by a beantiful fourth. order apparatas, lent by Measrs. Wilkins, in which, above and below the light, a syatem of totally reflecting prismatic zones is arranged, the suggettion of Mr. A. Stevenson. Mr. Alexander Gordon'b cata-dioptric systea, a union of the refiector and refractor, was aleo described.-Some particulury respecting the power of light in penetrating mist were also brought forwald.

During fogs the attendants of light-vessels sound a bell at intervels, or, as now used hy the Trinity Board, a Chineac gong. Instead of this, Lieut. Sheringham, R.N., proposed, in 1842, to use mbistle wurked by bellown, and Mr. Gordon proposed to place the whistle in the focus of a parabolic reflector, to direct the sound. Mr. Findlay concluded bis paper by suggetting the use of Mowbray's chemical whistle, which was exbibited and iescribed.

ROYAL SCOTTISH SOCIETY OF ARTS.

Jan. 10.-George Bdebanan, Esq., F.R.S.E., President, in the Chalr.
The following communications were made:-

1. Description wilh Drawinge of a Portable Cofferdam, adapled specially for the wae of Harbour and other Marive Works in exposed situations. By Thoman Stevenson, Esq., C.E.

This cofferdam whas used at Hypish barbour works, Argyllahire, for excevating rock which was seldom left dry by the tide, and was covered with two feet of sagd. It was found impossible to form a common cofferdem, owing to the ahallowness of the sand, which could not afford any support to piles, and to the violence of the sea, which would in a single tide cither Fholly break it up or render it leaky. The cofferdarn adopted being porta. ble, was moved from one compartment of the cutting, when finished, to another. It consisted of t wo double frames of timber, each complete in itself, being bound together with iron rods, forming a dam about 10 feet by 14, and 3 feet bigh. One of these double frames (heing somewhat leas than the other) was placed inside of the larger, so at to admit two piles being driven between them. In this way the piles could, from the depth of the frames, be driren perfectly atraight, and wero also quite independent of support from the sand. As each compartment of the exceration what completed, and before the dam was removed, one tow of piles wis driven down to the bottom of the pit and left standing, so as to be a guide for again soper. imposing the frames orer them, and in this way it was impossible for any of the rock to escape being removed. The peculin advantages are its porta-bility-its ready adaptation to a sloping or to an irregular bottom-the ease and certainty with which the partitions between eacb section of the rock were removed, and the double-framed walings that anpported and directed the driving of the piles. Whenever excavationa require to be coade in a rocky beach covered by a stratum of and, however thin, this form of dam may be usen, as there is no kind of lateral supports such as shore wanted, the structure containing within itself the elements necessary for its stability. It posnesses, indeed, the properties of a caisson, with the additional advantage of accommodating itgelf to an irregular bottom.
2. Description of a Castiron Skew Bridge, of two arches-of 100 fret span each - now being erected to carry the Leeds, Dewsbury, and Manchester Railway, over the River Calder at Ravennohayfe, near Dewsbwry. By Thomas Grainger, Esq., C.E.

This bridge is a skew at an angle of 56 deg., and consists of two arches of 100 feet span, with a pier about the centre of the river; each arch is formed with six cast-iron segmental rihs, having a rise of 12 feet,-each rih is cast in five pieces, having flanges or lugs at the joinings, and bolted together with 2.ioch bolts ; the section of the ribs at the abutments is 3 feet deep, the web 2 inches thick, the top and bottom moulding or fianges 8 inches by 3 inches, presenting an ares of 123 incbes; the section at the crown ia 2 ft .9 in . deep, and otherwise the asme at at the abotments, and presenta an area of $115 \frac{1}{4}$ inchen. The spandrils are cast along with the ribs-the joiots being formed at the aprights instead of at the intermediate apaces, as shown on the model. The ribs have dovetailed eockets cast apon them to receive the castiron braces which are keyed into them; these braces, 10 in nomber, stretch across the bridge at right angles to the ribs ; there are alao 8 wroughtiron tie-roda, 2 inches diameter, placed parallel to the line of the abutraents, to connect the whole atructure together. The rihs abut against and are keyed into masive iron bed-plates sunk into the stone-work of the alsut. ments. The rosdway is supported hy transverse timber beams 12 inches hy 9 inches, bolted to the top of the spandrils at intervala of 3 feet from centre to centre; the plankiag is 3 inches thick, aud is laid diagonally across these beams, and spiked to them with 6 -inch epikes; and over the planking a costing of aphalte is to be laid. The outside ribs are surmounted by a cat-iron cornice to correspond with the masonry, and baving a cast-iron railing on the top. The eatimated weight of the cat-iron in the bridge is 603 tons 4 cwt ., and the expense of fiting up the iron and timber work has been contracted for at $8,598 \%$.
3. Observationt on the meane by which Time may be communicated by Signal Ballifrom one Slation to another. By Joun ADIE, Eiq., P.R.S.E. The author of this paper remarked, that the distance of the Nelson Monament from Leith, and more so from Ieith Roads, would allow a timo-ball placed on the Monument to be distinctly seen only in very clear weather, which is conflued to a limited number of daya, rendering it of little nae to the shipping in the Prith of Forth. He next described a method by which the ball on the Monument, and one at Leith, might be dropped at the same second of time, by a person in charge at the Royal Observatory, Calton Hill. This he proposed to do by making use of the great force induced on artificial iron magnets, the wires surrounding these magnets being brought into contact with the poles of a gelvanic lattery placed in the Observatory, and em -
ployieg this force to draw bolts or catches to free the bulls and allow them in drop; a numher of magnets im commanication will develop their forces at diatant atations at the same moment, and sllow balls at several stations to indicate the same second.
4. Deseriplion of a Sqfety-Wheel Riny-Revoloer, to prevent Whrels of Ceringer from fyying off the Axkes. By Rev. Gratam Mitcrele, A.M.
The object of this invention is to prevent disasters, hy rendering it impoasible for any wheel fying off the axle, whether from tear and wear, or coneasion. Independently of all former contrivances of security for haman life, there is here soperadded a brass or iron ring attached to the wheel bebiad the bush, which apart revolves along with the large wheel itself round a nitch cut in the axle of the rarriage, and which is deaigned to act as a preventive against a wheel ever flying off, whatever be the velocity of revolution.

INSTITUTION OF CIVIL ENGINEERS OF IRELAND.

Dec. 14.-Col. H. D. Jungs, President, in the Chair.

The follnwing papert were read :-

- Description of a Clock with a Registering Machine attached." By Mr. Sanme.-An ordinary cluck was exhihited, with the addition of a certain number of projecting pins on tbe dial; the interval between every two pins expreased a certain portion of time, heing that which elapsed while the hour hand of the clnck, in its ordinary motion, passed from one pin to another ; a lerer mas artached to the back of the dial, by means of which the hour hand could be pushed in at any time against the face of the dial, and, by coming in contact with one of the projecting pins immediately under it push it in also, and the pin so pushed in wowld register. Within but a few minuten, the exa-t time the hand was hrought in contact with the dial. Mr. Sharp explained how, by nueans of a sufficient number of pins on the dial, very small intervals of time might he registered. This invention he conceived could be used for all the purposes of a noctuary, and might, hy means of an additional mechanical contrivance, be niade to register the times of the arrival and departure of the trains, by meant of the trains themselves. He almo explained how the movement of the clock was not in the leant injured by thia addition, and that this means of registering might be also applied to clocks already constructed.
" A atort account of the Fall. during a violent storm, of part of a Roof in progress of erection over the Dublin terminus of the Midland Great Westers Railcoay." By Mr. Hexans, - The totallength of the roof of this hoilding is 475 feet, and the widih 120 feet, divided into two spans of 60 feet esch, the roof resting on walla at either side, and on columns in the eratre. The centre colonins are 62 ft .6 in . apart, and are counected by fiat arches and gutter-plates. The whole structure, with the exception of the onluman, gutter-plates, tie-wasbern, and sockets, is composed of rolled iron. The principa, which are the ooly rafters, are 38 in number to each half-roof, and are 12 ft .6 in . apart. They are formed of what are called "deck beams." The cover of the roof is of corrugated galvanised iron, and connerted by bolts and rivets aimilarly galvanised, and provision is made for expansion and contraction. Twenty-five of the principals were erected on ench side, and the whole centre line of columns and arches complete, when the otorm, the cause of the sceident, began. The principals not bring connected together by temporary diagonal braces (none would be required when the corragated covering was fixed), were exposed to the powerful action of the gale in the direction in which no temporary provision had been made to mithatand laseral pressure; and the consequence was, as might naturally be expected, that the greater portion of them were blown down one over the other, like a pack of carda; and the whole of them had snapped their sockets.

Several members expremsed their astisfaction at Mr. Hemans having placed on reeord thia failare through inattention to the necessary precautions in the ezecution, which would prove an usefal lesson.
"An account of the remowal of a Mill at the Cutto, near Coleraine." By Col H. D. Jonsa. Preaident.-The paper wat accompanied by several drawinge explanatory of the snbject, and detailed the mode adopted for the removal of a large mill, the height of which, to the eaves, was 65 feet, and the walls were of proportionate ihickness, being three feet at the level of the ground story. The execution of the works in connection with the drainage of Longh Neagh, rendered the removal of this mill necessary, and the use of gunpowder was considered the most economical means of effecting this object; but the contiguity of the mill to several hounes by the roadside rendered it necessary to guard againat accident, by limiting the charge of powder. A detailed aceount was given of the quantity of powder ased, the mode of applying the charges, and the effect produced, and very satiafactorily proved the economy of the measare. This work was conducted ender the superiatendence of Mr. C. S. Ottley, the district engineer for Loggh Neagh drainage.-The President stated that he had ased ganpowder with mueb advantege, both an regarded effect and ecomomy, in the romoval of luge bnildinga, bat eapecially in the removal of a large storehouse at Flashass.

Mr. M'Marion atated the great advantage of adopting the plan which had been so succesafully tried in the present instance.

Mr. Clazendon deteribed the mode by which the high dock wall had been remored at the aite of the Dublin and Drogheris railway terminus in

Amiens-street, which had heen effected expeditinusly and econonically, and withnnt the use of gunpnwifr.

Mr. Dran called the attention of the Inatitution to the inefficient state of the sewerage of Dublin.

HINTS TO PLANTERS.

A correspondent of the Gardeners' Chronicle asys, "In rambling throngh the New Furest, I hase heen much struck by observing bow much the heauty of natural woods depends upon the open glades; or intervals bare of treet, which there so freqnently nccur, and have often wondered why the landarape gardener an seldom imitates nature in this respect. In the disposition of the open and the wooded apots, it may be observed that nature coinmonly fills op the valleys with wood, and leaves most of the browi and eminences bare, and in an undulating country, nothing is more pleating to the rye than thos to see the woods creeping up the hollows and gradually feathering off, and disappearing as they approach the summits of the hills, which rise hare of treta ahove them. Tbe landscape gardener alnost invarishly doea the reverse. He commonly plants all the eminences (prohably from the notion of making a more conspicuous show at a distance), leaving his racant spaces in the valleys and lower grounds. By this means (putting appearance out of the question) be subjects his trees to the doable disadvantage of a more exposed situation, and a shallower soil ; consequently his trees grow incomparalily slower than they would do in the deeper soil and mure sheltered situation of the lower grounda. Trees differ so much in the soil and situation suitable to the different kinds, that it is of the atmost consequence to the planter that the one should be adapted to the other; and if planters could be induced to look after these things themselves, inatead of entrusting them to the nurseryman, one would not s: often see plantations filled with such worthless trees as beech and sycamore, where more valuable sorts, such at elm, ath, and chesnut, would fourioh equally well. With thia view. I have thrown together a few observatinns on the sorts of trees commonly planted. The larch would, no doubt, be the mont valuable tree that cmin be planted, were it not unfortunately anbject to that peculiar disease, called the heart-rot, which, I believe, is not known to affect any other kind of tree. After growing vigoronsly for twenty or more yearn, the heart of the tree up to a coasiderable height becomes entirely rotten, witheut any apparent external decay. The cause of this singular disease in as yet unknown. 1 am myself inclined to believe that it usually arises from too great dryness in the soil. In Switzeriand the native habitat of the lerch is in sitastions abounding in moisture, viz., the sides of slaty and granitic mountains; and the plantations in which, in this kingdom, it seems to hourigh beat, are in similar aituations in Scotland and Wales. In England it hat principally been planted on dry sandy heaths-a situation which affords the greatest contrast to its native habitat, and which the preralence of the heart-rot shows to be uncongenial to its nature. In point of beauty little can be said in favour of the larch ; it never forms a handsome mass of foliage; and the spiky outline even of the olriest woods alwaya has a poor, unpleaning effect. It must, however, be acknowledged that a single tree of larch often has an elegant appearance. The Scotch fir is of 50 hardy a natare that it will flourish in almost any soil or situation. It is in very bed repute ata a timber tree when grown in England, which is a very singular fact, as it is well known that the same apecies of pine, when grown in the nortb of Europe and the bighlands of Scotland produces that excellent timber known as the red deal. Different canses are abeigned for this extraordinary difference in the timber grown in England and grown abroad. Some pernons suppose that the howe and foreign grown fir are different varieties of the ame specien, one of which always produces hard and the other soft wood; some suppose that the colder climate and slower growth of the Baltic timber is the casee of its superiority; and any one who will take the trouble of coanting the nomber of annual rings in Baltic timber must see that its growth is in geperal excessively slow; others consider that age alone is wanting to render the timber good, and that if we were to allow English grown fr to attain the age of one or two centuries, as is the case with the Baltic grown, onr timber would be equally valuable. That English fir timber does improve at ithe trees grow older, is a fact well known to timber merchants; and I can instance the roof of the bouse in which I am now writing, which wat framed of Engliah fir, of very lerge scantling, about forty years ago, and which to all appearance is now at aound at the day it was put up. It must also be observed that the English fir is commonly cat down of small dimensions, and full of sap wood, while most of the aap wood is cut away from the Baltic balks before we get them. But there is still one point, which I have never aeen noticed, which, perhapa, may go far to account for the difference of quality. I mean the season in which the timber is felled. It has never yot been ascertained thas reainous trees ought to he felled in winter, an is the mivernal practice in England, and it is not unlikely that the resinous jaices with which fras abound in summer may tend to increase the durability of the timber felled in thas season. I would strongly impress on those who have the opportunity, how denirable it would be to institute experimente on this point. It is stated, on what appears to be good authority, that both in Norway and the reat of the north of Burope fir trees are always felled in summer. In Switzerland, in England, the timber of the Scoteh fir is reckoned of very little value. As an ornamental trea the Scotch fris gone mach out of fashion, yet when allowed to attain a sufficient age ite rounded top and red-coloured bark and contorted
limbs produce a grand and pictaresque effect in the landscape which scarcely any kind of tree can surpass. The apruce fir delighta in a light soil and a very moiat situation. In auch situations, when not crowded by other trees, so sa to have plenty of light, it forms a beautifol mass of thick foliage, towering to a great height. It is quite useless to plant it in very dry, shallow, or rocky wils. I have seen young aptace fire flourishing in atiff clay, though I believe ultimately auch soill do not suit it. It often deceives the planter by growing vigorously for 15 or 20 years, and afterwards becoming atunted, exhibiting nothing hut efew ragged leaves on the ends of the branches, being then one of the most unsightly objects in nature. It is singular that a native of Norway ahould seem in our climate not patient of wind or frost. It affurds a soft wood, useful for many purposes, but alwaya very full of knots, unless it has either been severely praned, or grown in such close woods as to lose its side branches by natural process of decay from want of light. The silver fir flouriskes in stifi wet clays, and throws up ite tall head quite perpendicularly, even in the most expowed situations, apparently uvinjured by the utmost fury of the wind. It is a tree which the landscape painter never thinks of introducing in a picture; yet it is not without a peculiar beauty of its own, and often produces a grand effect, either in the stiff formal avenue, or when seen towering ahove other trees. Its tim. ber is much like that of the proce fir, but of rather better quality."

oblyuary.

MR. HARVBY LONSDALE BLMES.

It is searcely anprising that the death of Mr. Harvey Lonsdale Blmes abould have produced such a atrong feeling of regret, as has been manifested at Liverpool by so many of its leading men, for the death of a man of genius in the early prime of life is well calculater to awaken sympathy, and most in a town adorned by ooble monumenta of his taste, in his devotion 10 which he hatened the progress of disease and death. Onr readera will think that anch an artist deserves at our hands a more lengthened notice than he has yet received, for there is always a sentiment of personal interest, which attaches to the career of one so young in life, and so rich in endowments. Harvey Lonsdale Elmes was horn in 1813, we helieve in London, and was the son of James Elmes, Eaq., the surveyor of the Port of London, and himself distinguished at a large contributor to architectural literature. With bim he was brought ap, and the natural abilities be early showed were fostered by association with the many men of genias with whom his father was intimate, or in connexion. Young Mr. Elmes's talents were decidedly of an artiatic tendency, but chiefly directed towarda architerture and music, and he showed a peculiar delicacy of mind, atimulated perhaps by delicacy of phyaical organization. His zeal was ardent, and his powers of application great, while his love of fame gave him the atimulus for great exertion. With such qualifications Mr. Elmes began under his father's care bis architectural atudies, which he afterwards pursued under Mr. Eiger of Bedford, and Mr. H. E. Goodridge of Bath. He was likewise empluyed by Mr. John Elger, a builder in London, until he acquired the charge of works of his own.-In 1836 or 1837, when Mr. Elmes was in his twenty-fourth year, the Liverpool Committee advertised for designs for St. George's Hall, which was then intended to be a separate building. The advertisement was put into Mr. Elmes's hands by a friend, as being worthy of his notice, and be took it to the late Haydon, one of the earlieat frienda of his youth, to ask his advice whether be should compete, as Haydun knew many persons at liverpool, having received commisions for pictures from the Blind Sebnol and other inatitutions. "By all means, my dear boy," anid Haydon; "they are noble fellows at Liverpool. Send in a detign, and miad, let it combine grandeur with simplicity. None of your broken-up and frittered abortions, but some. thing grand." Following this exhortation Mr. Elmes set to work and when he had made his frit aketch, took it to a friend's house, where a trifing incident gave him the angury of success, for a little boy looking at the drawing very sravely, threw it down, saying emphatically, "Very good, very good, indeed; it's worth five hundred pounds." When the desigu was sent in, it was succeasfui againat eighty-fve competitora, and Mr. Elmes received the premium of five huodred pounds. Afterwards he carried off in other competitions the premiums for the Assize Courts at Liverpool, and for the Collegiate Institution there. He was likewite the winner in a competition for the Absize Conrts and St. George's Hall combined. Theie neveral victories geve Mr. Elmes the preatige of a reputation, which his own attainments were calculated to support. Entered npon a new career, be now deroted bimself zeaiously to carry out in detail the several designs on which te was engaged, and his profecional business greatly incressed. He obtained the prize for the County Lunatic Asylum, at Weat Derby, in Lancashire, and was employed in erecting mansions for Mr. George Hall Law. rence, late Mayor of Liverpool, for Mr. Hardman Barle, and Mr. Hugh Hornby.

These labours, borne by a weak frame, at length brought their own end. In the early part of lat summer Mr. Elmes showed such stroag aymptoms of consumption that change of climate became necessary. He wiahed to gn to ltaly to study the monumente of bis art in that country, but his health was so much ahmken that Dr. Chambers urged him to go immediately to the Went lndies, and travel from ialand to island. Before he left he made
rrang ement! with Mr. Corkerell to superintend the architectural detail of St. George's Hall, for which be had finiabed the whole of the plans.

In 1841 Mr . Elmes had married the daughter of C. D. W. Thrry, Beq.o and accompanied by that lady he aet out on that journey from which be was. never to return, for he died at Spaniah Town, Jamaica, on the 26th of November last, aged 34, leaving one child.

Thus he was cut off in the prime of his life, and when noly beginaing to enjoy the honoura and rewarde due to his exprtions. When Prince Alnert visited Liverpool, he was so delighted will, St. Georye's Hall that he sent a gold medal to Mr. Elmes, and the architect unly awaited the completion of his work to receive plaudits on every hand. As it is, those honours must be paid to his tomb; and indeed the Town Council of Liverpool on the announcement of hia death, gave a public expreation of their atrong feeling of regret for what they felt to he a beavy loss.

IIET OF NEW PATEETHES

granted inemgland from December 30, to Jantaey $20,1848$.

Sis Mouthe allowed for Bnrolment, wollacs otherwice expresoed.

Thomas Hancock, of Stoke Newington, Middieser, and heaben Phillps, of Isligitoo, Middesex, chemist, for "Improvementis in the treating or risnafactare of gutia percin: or any of the varieties of caoutchouc."-Sested December 80.
Fellx Edwarde Pratt, of Fenton Potterles, Staflord, earthenware manufheturer, for "Impruvementa in manufacturing articlen componed of eartheaware or china."-Dec. 31.

Mary Jenkian, of Atton, Warwick, widow. for "Improvementa in the manufucture of pion, hookn, eges, and other fuateniaga."-Dec. 31.
Edward Hamphrye, of Holland-utreet, Surrey, eagineer, for "certuln Inprorementa in steam eagines, and io engines or apparatias for ralalog, exhausting, and forctng liquida ${ }^{\text {n }}$ - Jenuary 4.

William Froude, of Darlington, Devon, civil-engineer, for "Improvemente in the valves ueed in cloaing the tabea of atmonpheric rallway."-Jananry 5 .
Fead Boliday, ot Hudderafeld, manufucturing chemith, for "Improvemente In lampan" -January 5.
Charles De Bergne, of Arthur-street west, chty, engiseer, for "Improvementa in carriagen used on rallwayn."-January 5.
Alexandar Robertion Arrott, manager of the Unlon-place Glans Works, 8t. Hedenis, Lancsater, for "Improvernenti in manufecturing common ealt."-Javoary 5 .
Charifes Lambert, of Two-Mile Bill, St. George's, near Bristol, pen-maker, for "certain Improvemente in machloery for making nalle."-January 5.
Joninh George Jenninga, of Great Cbarlotte-atreet, Blackfriara-road, for " Improvements in cocks or cops for drawting off ilquide and gaces."一Jenuary 5 .
George Bell, of the city of Dubiln, merchant. for "certain lmprorementa in the arrangement of wheele and amien for steano and other carriages, which faclitate travering on railways and common roade, parts of which hinprovementa are applicable to other mas. chinery."-Jnnuary 7.
James Montgomery, of Saliabury-atreet, Middlesex, for "certala Improvementy in planofortes and other aimilar finger-keyed lintrumenta." (Being a commualcation)January 11.
Altred Augustus de Reginald Fely, of No. 11, Cannon-row, Westominater, and Jomeph Emmett Norton, of Salat Mary-le-Strand-place, Kent-road, Surrcy, wiup.merehant, tor "ceertalia Improvemente ta bottes or veacels for contalning liquida, and in the mode of and ramehinery or apparatins for tiling end aloppiag the name." January 11 .
Gardnor Stow, late of Elag-atreet, Cbenpside, but now of Now York, geatleuran, for " Improvemente la apparstus for propelling ships and other vestels."-january 11.
Whillam Thorold, of Norwleh, engineer, for "Improvements in tarn-tablea." Jasoury 13.

Robert Willam, M.A , Greenock, for "Improvementa in certain winds of rotatory entines worked by steam or other elastic Anids, part of whlch lmprovemeots ars applicnlic to rotatory englnea workod by water, or by the wind; also, an itmprovement in amirtyvalves for ateam boilers."-January 13.
Sydney Edwards Morme, of Ampton-place, Gray's-Inn-rond, for "Improvementa In the manufneture of plates or surfaces for printugs or embossing."-Jannary is.
Beajemia Mitchelt, of Funtingdonuhlre, farmer, for "Improvementa ta the manafuctare of mapure."-Jenuary 13.
Bobert Heath, of Heathield, Manchenter, gentleman, for "certafa Improvementy ia the method of applyting and wortiog friction bratien to englines and carriages need apon rallways."-Jenuary 18.
Job Cutier, of Spark Brook, Birmingham, civil engineer, for "certaln Improvements In welded iron plpes or tabes to bo used an the flaes of steam boliern. ${ }^{n} \rightarrow$ Jnouary 18.
Jobn Gilmore, Lienteannt in the Royal Navy, for "certaln Improvements in reatiah. tng ships sod other vestels."-Jenuary 17.
Charlea Crane, of Stratiord, Essex, manufacturiag chemiat, and Jamee Thomen Jaillon, of the same place, ansivical chemiat. for "I roprovementa in the manufactare o certuln acids and aflan, and inew eppyratue applicable to the eaid lmprovemente."-January it. Four monthe.
Samuel Canliffe Lieter, of Mannlagbem Hall, in the parleh of Bradford, enq., for " Improvementa ta stopping railway tratna and other carriagen, and generaly where a undus provementa in stopping railway tratina and ot
John Hickman, of Birmingham, for "Improvements in the maane of constracting and connecting parts of bedscends, couchea, and other articles of furnikure to which mach itn. provementis may be applicable, and aloc in the means of attechlag knobs or handies 10 drawere, doors, and other parts of furpiture."-January 18.
William Newton, of 66, Chancrey-lane, Middleaex, civil englaeer, for "Improvemente In the mannfacture of nugar from the cane." (Being e commonalcation.)-January 18.
John Frederic Bateman, of Manchestar. for "certain Improvementa in ralves or phag for the parage of whiter or other fulds."-Javuary 18 .
Thoman Robert Sevelt, of Carrington, In the parith of Baford, Nottingtam, chemist, for "Improvements in prepuring \mathbf{f} Jur."-January 18.
Josepin Clinton Robertion, of 166 , Fleet-street, London, cifll engineer, for "eertain Improwementa in the magufacture of textle fabrict, atuff, and tissaet, and of certain new products obtalned by the ald of such lmprovimenta." (A cemunnication.)-Jinumery is. John Dancan, of Brentwood, Eamex, genticman, for "certain Improvements In tanalag of hides."-January 20.

CANDIDUS'S NOTE-BOOK FASCICULUS LXXIX.

" I mast have liberty
WIthal, as lurge a charter me the wiots,
To blow no whom 1 please."

I. There is reason for concluding that the peripteral temples of the Greeks were so planned rather for the sake of architectural dignity and effect, than, as is generally supposed, for that of any particular convenience or advantage. The cella itself being narrow, colonnades along its sides served to give greater importance to the edifice by enlarging its entire bulk, its ends or fronts being increased from tetrastyle to hexastyle, or from hexastyle to octastyle, if the lateral colonnades consisted of only a single range of pillars; or if the columniation was of the kind called dipteral, increasing the width of the fronts by four more columns beneath their pediments : thus, a cella, with a tetrastyle in front of it, would acquire an octastyle portico, by having dipteral colonnades erected along its sides. This last-mentioned mode (the dipteral) certainly does provide a greater sheltered-in space on the sides of the edifice; still, hardly sufficient for any real use of it as an ambula-tory-at least, not for a number of persons. Such purpose was far better accomplished by the pseudo-dipteral plan, in which the middle row of columns, or those between the external ones and the walls of the cella, were omitted, whereby a clear space was obtained equal to the width of two intercolumns and one column. Yet, if much was thereby gained in point of convenience, not a little was lost in regard to effect and richness of character; and the body of the temple showed as a comparatively diminutive arracture, standing within an open though covered colonnaded inclosure. As to the single peripteral, its colonnades must have been more for show than for real service, since they were very illcalculated for accommodating a multitude of persons. Even in the Parthenon, the clear space between the external columns and the walls of the cella was not more than six feet wide; consequently a mere passage, rather than either an ambulatory or a shelter for a large concourse of people.
U. With regard to the Parthenon, a most extraordinary error occurs in the Enqlish edition of Gailhabaud's "Ancient and Modern Architecture" (second series), it being there stated that "its length, measured on the top of the steps, is 114 feet, its width 61 feet ;" according to which, the area of the building is not above ane-fourth of what all other accounts make it, for they make it both twice as long and twice as wide! To puzzle us the more, there is a foot-note calling particular attention to those measurements, from which it would seem that pains had been taken to insure more than usual accuracy, they being there said to be upon the authority of a "recent"- and therefore, it is to be presumed, a more correct-measurement by Mr. Travers. Yet, no notice is taken of the enormous discrepancy between them and the usually-reported dimensions, or of the equal discrepancy from the plan and its seale given in the work itself. The scale being in metres-to which one in English feet should have been added to the plates in the English edition-the contradiction between the text and ongraving is not so immediately obvious as it would else be; but, on applying compasses and calculation, we find the length to be σ metres and the breadth 51, which converted into English messure, give 226 and 101 feet respectively, or double what is stated in the text! Had either the English writer or editor compared the description and plan together, their total want of agreement must have been discovered, which done, Mr. Travera's measurements would perhaps have been discarded as quite untenable. Some as strange or even stranger mistake perplexes us a little further on, Where we are told that the external columns are three feet in diamreter (or only half what they are usually stated, viz., six foet and a fraction), yet thirty-four feet four inches high, which would make their beight between eleven and twelve diameters! and how such extraordinary proportions could have eacaped notice when the proof was read over is incomprehensible. Neither does error terminate there, since, besides the palpable contradiction in regard to the diameter and height assigned to the columns, the latter measurement and that of the entablature ($10 \cdot 10^{\prime}$) renders the entire height of the order 45 feet; which, though in itself it may be correct, is altogether irreconcileuble with the width of the front being only 31 feet, or little more than a square in height,-the proportions not of an octastyle but a tetrastyle, and such as it is impossible to give to the former. Here, then, we have a pretty complication of Blunders, and those of the most serious kind, in a publication Which ought to be scrupulously accurate in regard to the measure-
ments which it gives of buildings. There is what looke like sufficient pledge for editorial responsibility and carefulnesg, the titlepage assuring us that "the translations are revised by F. Arundale and T. L. Donaldson, Prof. Arch., Univ. Coll., London;" therefore, to those gentlemen may be left the task of accounting for or explaining away the egregious mistakes here pointed out, and which compromise the credit and character of the work to such degree as to demand correction-if in no other way, by cancelling the pages where they occur. Not the least awkward part of the matter is, a detection of the kind naturally excites mistrust as to other articles, where mistakes either of a similar or different kind may have escaped the English revisors. In that very article on the Parthenon, one paragraph that ought to have been omitted, was uuluckily suffered to remain-namely, that which says: "We give with this notice a splendid specimen of polychromatic architecture of the Parthenon, being a perspective view of the entablature and capitals, restored with the utmost care by Mr. Travers, from traces which he discovered in the monument itself." There is, however, no such plate in the work-at least, not in the English edition, although it would have been particularly acceptable, and far more valuable than all those of such unarchitectural subjects as Cromlechs and Celtic monuments, put together. Of them, two or three specimens at the utmost would have sufficed: still better would it have been had they been excluded altogether from a work which, were it to be extended to a hundred volumes, could not poosibly illustrate all that is worthy of notice in "Ancient and Modern Arcbitecture."
III. It is not only with regard to the notion of Blore's fapade to the Palace being a copy of that of Caserta, that Mr. Sharp and myself differ materially, my opinion of EImes"s "History of Architecture in Great Britain" being so very dissimilar from his, that 1 think the Editor has very great reason to complain of such a carelessly -executed and inaccurate performance being passed-off upon him under the responsibility of Mr. Elmes's name. While there is a great deal of mere garrulous filling-upanecdote, quite out of place in an historic outline, and out of all proportion to the brevity and rapidity of the record itself, there are not a few omissions and some of them truly anaccountable ones. Both Kent and his patron, the Earl of Burlington, may be said to be passed over in silence, since they obtain no further notice than the complimentary mention of their names as " t wo accomplished architects of the Anglo-Palladian achool," without a syllable about any of thetr works-either the "Holkham" of the one, or the "Chiswick" of the other. The name of "Holkham," indeed-and it is the name only—occurs elsewhere, but wrongly, for the credit of that palatisl mansion is taken from Kent, and assigned to Brettingham, who merely published the designs of it, with his own name on the titiopage. It would seem, then, that "accomplished" architects as they were, Kent and Burlington are not entitled to figure at all in a history which brings forward such a mere nobody as John Yenn. Neither is any mention made of Carr, of York, although he was of considerable repute in his day, and erected many inportant mansions and other structures in the northern counties. Harrison, of Chester, too, is similarly passed over without being so much as named; and to him may, among others, be added Porden. Besides omissions of that kind, there is, with just here and there an exception, the general and pervading omission of all attempt at satisfactory critical estimate of the architects and buildings that are recorded. So little real aubstanoe is there in it, that Mr. Elmes's "History" amounts to very little more than a dry catalogue of names. What is worse, it is not trust-worthy : on the contrary, is so full of obvious mistakes as to excite general mistrust, for nothing is to be depended upon it whioh the reader cannot verify for himself. The Royal Exchange at Dublin, which "everybody" knows to be by Cooley, whose talent and taste are very happily displayed in it, is erroneously attributed to Chambers. Gandon is misnamed, for he is called Williams instead of James, a mistake, perhaps, of no very great moment, but which, coming along with so many others, evinces the writer's habitual careleseness. It would, too, have been as well to have stated, that a "Life" of Gandon-such as it is, was published about a twelvemonth ago. Connected with Gandon, there is another mistake, for after he had been spoken of as having edited the two last volumes of the "Vitruvius Britannicus" (viz., the 4th and 5th), we are told that "Colin Campbell published his useful work, the "Vitruvius Britannicus," in four consecutive volumes, between the years 1715 and 1771"-therefore, the last of them abont forty years after his death-" to which, Woolf and Gandon respectively added supplementary volumes of equal skill and correctness." This is so ambiguously worded, that it seems to say, each of the two latter editors separately added more than a volume to the original work,
instead of bringing out conjointly two other volumes to accompany the three that had been published by Campbell. When he was mentioning that collection of designs, Mr. Elmes might as well have observed, that it is by no means so complete as it ought to have been; for while it is made to contain several verydull and uninteresting subjecte, others are omitted which are either of considerable celebrity or merit,--such as Lord Burlington's Casino, ${ }^{\text {at }}$ Chiswick (since altered by W yatt), and St. George's, Bloomsbury:
IV. In speaking of Wyatt's Pantheon-of which greatly, if not extravagantly, admired structure, it is equally matter of surprise and regret that no engraviugs were given, either in Gandon's last volume of the "Vitruvius," or in the subsequent work by Richardson, -Mr. Elmes sadly neglects his proper duty as an architectural historian, to gossip very provokinglyabout Lunardi's balloon, instead of entering into any description of the edifice itself, which he merely calls a "fine work," without particularizing any of its beauties and merits. The only part of it on which he makes any remarks, is that which least of all required notice-namely, the front ; it still remaining pretty nearly what it was at first. He speaks, however, of the portico as having been of the Ionic order ; and if so, the Doric one, which existed before the building was converted into a bazaar, cannot have been that which Mr. Elmes alludes to, although he does not say as much. In what is said of that front, the term "wings" is not very correctly applied, the whole of it forming only a single general mass, without such subdivision into distinct collateral masses as properly answer to the denomination of "wings," which Mr. Elmes elsewhere applies equally vaguely, as when noticing the "Trinity House," and the "Society of Art"" in the Adelphi. Another instance of his indefniteness in what ought to be explicit technical phraseology, is his very untechnical mode of describing a recessed portico or loggia, calling it sometimes an "inverse" portico, sometimes a "retrocessed" one, or by some other more fantastical than intelligible epithet.
V. The admiration professed for what is Soane's happiest piece of composition has not extended itself beyond words. We may say of it laudatur et alget, since no one las testified his estimation of it by borrowing an idea from it, notwithstanding that similar striking effect and picturesque expression might be obtained without falling into direct imitation. Nay, Mr. Elmes would make out Soane himself to have been there only an imitator,- -at least, to have "had in his mind the semicircular porticos of the transepts of St. Paul's," as if, without them, the idea would not have emanated, as no doubt it immediately did, from his studies of the Temple at Tivoli, whose order-an equally beautiful and peculiar example of the Corinthian, that had previously been ignored by all modern architects and all the systematisers of the Five Orders, - was adopted by him at the Bank as a decided novelty, with unimpeachable classical authority for it. Still, though he adopted it, even Suane himself does not appear to have comprehended its character, for it is only at that angle of the Bank that he has exlibited it entire, having in the other parts of the building employed the columns only, without the entablature which belongs to them, not only in conformity with the original example, but in conformity with the laws of asthetic design. By suppressing-as if such change was of no moment at all-the rich embossed frieze, which is absolutely necessary for keeping up harmony and perfect agreement in the ensemble of the order, he converted the entablature altogether into one which contrasts rather than at all agrees with the columns themselves. Their fluted shafts become too rich, and their capitals look too heavg, in comparison with the emasculated entablature. The energy of expression, as well as the degree of decoration assumed for the columns, stops short with them, instead of being carried on consistently, and extended to the horizontal division of the order, where, if anything, increase rather than diminution of decoration is requisite, since otherwise, a most disagreeable falling-off takes place : amphora cappit institui,-urceus exit. If decoration is to be moderated at all, it should at least be done consistently, and so as not to throw one part out of keeping with another; the doing which-and it is by no means uncommon-betrays either downright ignorance, or wilful and most unpardonable disregard of both precedent and principle. What is uut least of all estraordinary is, that those who are gifted with such very microscopic vision astobe struck by the profile of a mere moulding in a cornice, or some equally minute detail, take no notice of such wholesale omissions as the suppression of sculptore on a frieze amounts to. In some portions of the Bank the frieze is not, indeed, left entirely blank, it being ornamented with a Vitruvian fret; which, however, has a tame and insipid look in comparison with the boldness of the capitals. If deviation from the original there was to be at all, it
would not have been amiss, perhaps, to increase the cornice, and also give it something of richness; thereby rendering the entablature equivalent in force of expression to that of the columns.
VI. With regard to that particular feature in the architecture of the Bank which has given rise to the preceding remarks, it has obtained more of professed admiration for its striking effect than of inquiry into the cause of that effect. For such inquiry, perhaps, there is no great need; becanse-no one who has any eye at all for the picturesque in architecture, can be at a loss to determine in what the peculiar piquancy of that composition consists. Still, it is necessary that its merits, in that respect, should be diotinctly pointed out, if only in order to force such earnest attention to them as might lead to similar happy results in composition. Precisely the same columns are used in other parts of the buildings, yet nowhere with anything at all approaching the same effect ; and why? because here the composition is such as to be unusually productive of those "accidents" which give life and spirit to architecture-namely, vigorous chiaro-scuro, play of perspective, and richness of combination. There is not merely light and shade in a greater than ordinary degree, but variety of it-deepening shadows and brilliantly-touched lights when the sun begins to strike upon that angle of the building. Of perspective appearance, also, there is great variety, owing to the apparent changes of position between the external columns and the inner ones, and also to the contrasted disposition of them, the former being upon a curved line, the latter on a straight one. There is also another point of contrast between them which is equally judicious and happy, the outer columns being fluted and the others plain. This, while it adds to the variety of the composition, prevents confusion; and such is the value of the two inner columus, that without them the whole would be many degrees less admirable. They are, besides, both motived by and serve to warrant the mode in which the attic is carried across the loggia in a straight line. The only exceptionable thing is the door, or rather the appearance of door, when there can be no entrance from without, and where therefore a window or window-door-even had that also been only in ap-pearance-would have been less of an impropriety. But a statue of some sort, sufficiently important in size, would not only have been an interesting object of itself, but have done away with all necessity for appearance of access into the loggia, since the latter would in such case have had an ostensible purpose as a piece of decoration.
VII. We get architectural criticism-as far as we do get any of it at all-merely by a mouthful of it at a time. What professes to be such is seldom more than a single condensed opinion expressed in the lump, wrapped up perhaps in a mass of cumbersome verbiage, or else enunciated in a tone of oracular decisiveness, intended $\boldsymbol{\omega}$ awe into silence and stifle inquiry and discussion. Even Horace Walpole's critical verdicts, albeit they were sometimes turned epigrammatically enough, were both flimsy and unjust, shallow and superficial. What he says of the campanile of St. George's, Bloomsbury, amounts to a mere sueer, and convicts him withal of being quite obtuse to picturesque effect in composition, and other architectural merits. As to Gothic architecture, Horace disqualified himself for setting up as a judge of that by his own precious Strawberry Hill, which would have absolutely horrified him had he possessed the slightest feeling whatever for that style. Yet, even vile as it is, Strawberry Hill has been deliberately praised by another discerning critic and writer on architecture, who says that the connoisseur, would there find "all that is fascinating in the Gothick style." All that is fascinating with a vengeance? Were it possible to conceive that Dallaway was there merely joking, we could account for such praise as being condemnatory irony; but he seems to have been quite serions, and must accordingly have been exceedingly stupid also. In what its fascinations consist he does not say, although if any such merits there were, it behoved a critic to point them out, and to do so in such manner as so fix attention upon them. The comfort is, we lose very little by Dallaway's confining himself to only very hurried and superficial remarks on modera English buildings and architects, since what he does say, indicates but very mediocre critical talent and taste. What sort of an architectural critic Allan Cunningham was,-how well qualified to undertake the "Lives of British Architects,"-may be judged from the censure he passes upon the large open arches and loggias above them in the river façade of Somerset Place,-the most striking features, or rather the only striking ones, in that composition. In a fit of hypercriticism, Allan affects to be shocked at those very picturesque parts of the structure, as being quite contrary to all architectural principle and propriety, he asserting that the columns over the void of the arch produce "an appearance of insecurity that is al-
together intolerable;" which is as much as to say, that instead of suggesting the idea of strength and perfect security, the arch looks unequal to the due support of the columns. Nevertheless, it is certain that those arches are capable of safely bearing the weight of the columns, and can also safely bear the weight of what is much heavier still-namely, Allan's own leaden criticism.
VIII. Very great pity is it that St. Martin's Church stands just where it does, because it was in consequence allowed to interfere very injuriously both with the National Gallery and Trafalgar Square. Owing to its being obstinately insisted upon as a sine qua non, that the portico of the church should be exposed to view from Pall-Mall-East, the front of the Gallery was obliged to be set further back than it otherwise needed to be, and the site of the building-at best a very cramped-up one in its rear-considerably reduced in depth; in some parts, to little more than half. Hence, the interior of the structure does not at all realise the promise made by its extent of facade. Admitted it must be, that the architect did not economise what space he had so well as he might have done; still, that does not excuse those whose capricious whims thrust difficulties upon him where, without such addition of them, there were many to contend with.-On the other hand, as regards the "Square," its symmetry and rectangularity have been sacrificed for the sake of keeping its east side in a line with the portico of St. Martin's, which would still have shown itself, even had it not been made to come actually into that corner of it. After all, does the church display itself to such advantage, as to reconcile us to the inconveniences and deformities which it has been allowed to give rise to? The reply will be: "Hardly." Thrown open to view from such a distance as it now is, that portico is not so impressively striking as it formerly was. As it stood originally, the situation seemed altogether unworthy of it, owing to its being much too confined, and to the meanness of the houses huddled-up round the church-a species of contrast more picturesque than becoming or agreeable. Nevertheless, as it was then seen, the portico showed imposingly; and all the more so, because the view was confined nearly to that-the steeple not being seen unless it was directly looked up to; whereas now, as seen from a distance, the entire structure, that is, both portico and steeplethe latter of them anything but a graceful and well-composed object of its kind-are seen together; owing to which, the portico loses considerably, and the classical character that would else stamp it, when beheld at such a distance that only its exterior or columns are visible, is greatly interfered with, if not altogether forfeited, by the uncouth appendage which rises up immediately behind it. By no means is the view of the portico from Pall-Mall-East a prepossessing one.-Trafalgar Square itself falls very far short of what was only reasonable expectation for it. Strange perversity of judgment, bungling, and disregard of architectural disposition have been allowed to manifest themselves in it. Although the area itself seems to have been expressly planned for the reception of the Nelson monument, the column is, after all, not placed within it, but is pushed just out of it. The only assignable reason for such downright preposterousness is, that had it been erected in the centre of the area prepared for it, so lofty an object put just there would have had an unfavourable effect upon the front of the Gallery. Very true; but then that consideration ought to have been a raison de plua, and an all-sufficient reason in itself, for not adopting a column, more especialy as there was another thing of the same kind just by. There were many other desigas which, besides being sufficiently well adapted to the situation, were far more original and artistic. It was, therefore, to be presumed that the second competition was for the purpose of enabling the committee to retrieve the error of their first choice; when lo! to the amazement of every one, the result was just the same as before,which was only making matters worse than before. Far betterfar more honest and honourable would it have been to have abided by their decision, than to make such show of intending to retract it. The least they could in decency have done, would have been to justify by some show of reason for it, a choice so strangly persisted in, and so strangely acquiesced in by those who had been trifled with. The best that can be said of the humdrum Nelson monument is that it serves to render the facade of the National Gallery perfectly satisfactory in comparison with it.

RAILWAY SECTIONS IN SIDELONG GROUND.

On Tables for Setting out the Width of Cuttings and Embankments on Sidelong Grourd; ; and also Formula for Computing the Area of Vertical Section.

> By R. G. Clark, C.E.

The object of this paper is to investigate some simple formula, and from thence to construct some tables, to enable the assistant engineer or contractor to set out the widths of cuttings and embankments on sidelong ground; and also to calculate the solid content of any portion of the ground. The subject may be resolved in the following proposition:-

Given the \angle of inclination of ground, the depth (from fieldbook, \&c.) of ground to the centre of balance or formation level, and the ratio of the slopes; to determine where they will meet the ground at surface.

Let HAFBD (fig. 1) be a vertical section of the ground; AB the formation line, represented by $2 b$; the given angle of inclination of ground $H D$ with the horizon by θ; the given depth $O F$ from the stake O perpendicular to centre of formation level denoted by a.

1. We will proceed first to determine a formula for $O D$. Let it be x; draw DK perpendicular to $A B$ produced; $O f$ parallel to ABK. Let DB be the given slope m base to 1 perpendicular ; draw the vertical BC.
Let $\mathrm{D} f=y$; then $\mathrm{O} c=\mathrm{FB}=b$; ef $=m y$; also by similar triangles, $\mathrm{Ce}=m a . \therefore \overline{\mathrm{O}} \mathrm{f}=\bar{b}+m a+m=m y$.
Now, by triangle $0 f D$, right-angled at f, we have
$1: x:: \sin \theta: y . \quad \because y=x \cdot \sin \theta$.
Again, $1: x:: \cos \theta: b+m a+m y$.
$\therefore x \cdot \cos \theta=b+m a+m y$.
Eliminating y, then $x(\cos \theta-m \sin \theta) \stackrel{y}{=} b+m a$;

$$
\begin{equation*}
\text { therefore, } x=\frac{b+m a}{\cos \theta,-m \sin \theta} \tag{1}
\end{equation*}
$$

From the factor
1
No. I. is computed from 5° to 90°.
2. To find an expression for OH measured from O on the descent.
Draw H M (fig. 2) perpendicular to A B produced, Let HA be

the given slope, ratio as before. Let $\mathbf{H} \mathbf{M}=y^{\prime}$; then will $\mathbf{A} M=$ $m y^{\prime}$. Therefore, $\mathbf{H} \mathbf{G}=\mathbf{N F}=b+m y^{\prime}$; also $\mathrm{O} g=a-y^{\prime}$,

By the triangle $\mathrm{H} g \mathrm{O}$ we have $1: x^{\prime}:: \sin \theta: a-y^{\prime}$; therefore, $a-y^{\prime}=x^{\prime} \cdot \sin \theta$; and $y^{\prime}=a-x^{\prime} \cdot \sin \theta$. Again, $1 \quad x^{\prime}:: \cos \theta: b+m y^{\prime}$.
Eliminating y, we have $x^{\prime}(\cos \theta+m \sin \theta)=b+m a$;
therefore, $x^{\prime}=\frac{b+m a}{\cos \theta+m \sin \theta}$
From this expression, Table No. II. is calculated by the factor 1
$\cos \theta+m \sin \theta$
3. We shall now investigate an expression for the area of the vertical section; the inclination of ground, depth, breadth of formition level, and leagths x, x^{\prime}, and also the ratio of slope, being all given.

Flg. 3.
Through centre O (fig. 3), draw P eparallel to AB; then PO $=b+m a$. . . area of trapezoid PABe $=(2 b+m a) a$; area of triangle $\mathrm{POH}=\frac{1}{b} \sin \theta \cdot x^{\prime}(b+m a)$; and area of triangle DOe $=\frac{1}{2} \sin \theta x(b+m a)$. Consequently, the whole area of trapezium or vertical section $=$ area PABe + area triangle DOe - area triangle POH=
$(2 b+m a) a+\frac{1}{2}(b+m a)\left(x-x^{\prime}\right) \sin \theta$ \qquad
The first column of the table gives the angle of inclination of the ground, and the adjoining column the nat sines to three places of decimals, to facilitate working out the area, as in equation (3). We shall now commence with the following Rules.
I. To find the two lengthe OD and OH :-Rule. Add the halfhreadth of formation level to the product of the slope and given depth; then multiply this sum by the corresponding tabular number, then will each product be equal to each length required.
II. To find the area of rection H A B D:-Rule. 1st. Add the formation level to the product of the ratio and depth, and multiply this sum by the depth. 2ndly. Add half the formation level to the product of ratio and depth; multiply this sum by the difference of the two lengths, and again by nat sine of angle. Add these two products, and their sum will be the area.

Example 1.-Given the angle of inclination of ground 18°; slope, 1 to 1 ; depth, 45 feet; and breadth of formation level, 30 feet. To find distances of centre stake, srea of section, and cubic content, when 100 feet in length.
Here $b+a m=15+45=60 ; m=1 ; \theta=18^{\circ} ;$ its nat $\sin =-309$
$\dot{\cdot} \cdot 1.557 \times 60=93.429=$ OD. $799 \times 60=47.940=\mathrm{OH}$.
By formula (3) we have $(30+45) 45+\frac{1}{4}(15+4.5)(45 \cdot 48) \cdot 309$ $=75 \times 45+30 \times 45 \cdot 48 \times 309=4099 \cdot 5$ area required. Cubic content $=409950^{\circ} 0$.
Example 2.-Given angle of inclination of ground, 20°; slope, $1 \frac{1}{5}$ to 1 ; depth, 50 feet; and breadth of formation level, 30 feet. To determine distances and also area.
Here $a=50 ; b=15 ; m=1 \frac{1}{8}=\frac{1}{8} ; \theta=90^{\circ}$; its nat sin $={ }^{2} 342$

$$
\therefore b+a m=15+75=90
$$

Now, $\mathbf{8 \cdot 3 4 4} \times 90=\mathbf{8 1 0 \cdot 9 6}=$ OD. $\quad 781 \times 90=70 \cdot 29=0 \mathrm{H}$.
By formula (3) for area we have
$(30+75) a+\frac{1}{2}(15+75)(140 \cdot 67) \cdot 342=\cdot 7174$ area required.
Example 3-Given the inclination of ground, 18°; slope to be 2 to 1 ; depth from field-book, 90 feet; breadth of formation level, 30 feet. To find area and distances.

Here $b=15 ; a=20 ; \theta=18 ; m=2 . \quad . \quad b+a m=55$.
$55 . \times 3 \cdot 000=165^{\circ}=0 \mathrm{D} .55 . \times 241=3525=\overline{\mathrm{O}} \mathrm{H}$. By formula (3) we have
$(30+40) 20+\frac{1}{2}(15+40)(189 \cdot 74) \cdot 309=2505$ area required.
Remark.-If the ground should ascend and descend, as in the adjoining diagram (fig. 4), then Table No. II. is to be used to find the distances. Table No. I will in like manner be required for ground descending from centre, as in fig. 5.

Pig. 4.

Fig. 5.

The Tables will likewise do for embankmento-No. I. for the ascent from centre make, and No. II. for the descent.

We shall now discuss the equations (1) and (2). Put them
respectively under the following forms: T, T^{\prime}, being tabular numbers, $\mathbf{A}=b+m a$.

$$
\dot{X}=T \cdot A ; \text { and } X^{\prime}=T^{\prime} \cdot A
$$

Divide by T, T, respectively; then $\frac{X}{\mathbf{T}^{\prime}}=\frac{\mathbf{X}^{\prime}}{\mathbf{T}^{\prime}}$, A being eliminated. Therefore the two distances, x and x^{\prime}, are to each other as their respective tabular numbers; consequently, the d stances can be proved by a second operation. The Tables might have been carried up to 45°, but then they would require a greater number of places of decimals to insure greater accuracy.

Peg. 6.
In taking the angle of inclination, the clinometar or common theodolite might be used; but if the spirit-level should be used, then we have only to measure from \mathbf{O} downwards any distanoe, $0 r$, (fig. 6), and then take the height with instrament; and then will the sine of angle of inclination $\mathrm{Od} \boldsymbol{s}=\mathrm{rOd}=\frac{\text { height }}{\text { distance }}$.

Adple.	Nat. Sin.	TABLE No. I.-For OD. 1 to $1 \frac{1}{2}$ to $1 \quad 2$ to 1			$\begin{array}{r} \text { TABL } \\ \text { \& to } 1 \end{array}$		OH 1 to
5°	-087	1-100	1-156	1.217	-854	-881	-926
6°	-105	1-124	1-193	1.273	-838	-868	- 910
7°	-192	$1 \cdot 148$	1.230	1.323	-802	-851	-895
8°	-139	1-175	1.280	1.404	-780	${ }^{-835}$	-885
9°	-156	1903	1.328	1.496	-761	-880	-873
10°	-174	1-239	1.980	1.570	-758	-804	-856
11°	-191	1265	1.437	$1 \cdot 666$	-736	-790	-850
18°	-208	1.279	1.500	1.778	-700	-780	-844
13°	225	1.330	1.566	1.902	$\cdot 705$	-763	-841
14°	-242	1.378	1.655	2.055	-696	-758	-886
15°	-259	$1 \cdot 414$	1.731	2.230	-676	-740	-818
16°	276	1-459	1.825	$2 \cdot 463$	-663	-787	-800
17°	298	1.506	1.930	$3 \cdot 600$	-645	$\cdot 717$	-801
18°	-309	1.557	2.050	3.000	-641	$\cdot 710$	-799
19°	-386	1.613	2. 186	3.040	$\cdot 630$	-698	$\cdot 787$
80°	-342	1.678	2-344	3.913	-611	-680	-781

Erratum.-The diagrams, figs. 2 and 6 , in the above article, are transposed, for which oversight the printers are accountable; but beyond such tranaposition the error does not extend.

BEVTROWE.

The Port and Dock of Birkenhead; with Maps, Plans, Sections, and Tidal Diagrame, and an account of the Acts of Parliament relating to the Mersey and Dock Estale of Liverpool. By Thowas Webster, M.A.. F.R.S. London : Chapman and Hall, 1848
Birkenhead has been a wonder, and has had its nine days, and very many are quite ready to believe that we have had enough of it. The announcement of such a town springing up in England was calculated to create as much astonishment as that of Aladdin's palace fresh coined by his wonderful lamp. It is not so easy to create great wonders in an old and settled country like this: cities of whitewash and timber-framing, metropolitan centres of slabhouses and log-huts, we leave to the far west of the States, or the sandy regions of Australia; and we should be no more surprised by the flourishing account of a Babylonian capital nowly hatched in California, than by the gight of the three last joints of the seaserpent's tail, or the repudiation of a fresh batch of Pennsylvanian bonds. Towne grow in the virgin soils of the new world; they are a natural production-or at any rate they can be planted an easily as cotton, or what the Americans dignify with the name of corn. We can reooncile ourselves to such creations as Fleetwood, or Kingaton-upon-Railway, Wolverton, or Swindon,-the reasucito

Lion of Folkestone is a piece of the legitimate drama; but the public were truly struck with wonder to hear of the production on the shores of the Mersey of a great town, of the most solid conutruction and of the most magnificent proportions, provided whith all the requisites of a perfect sanitary condition, with its labourers' houses, its park, schools, and market,-and this not a mere city of stone and Roman cement, but provided with such vast eqparatus for commerce, that the envy of the London merchants was excited, and Liverpool gave signs how much she feared so great a rival near her throne. This, certainly, was a new phenomenon in England, for though we can add to London in one year - population equal to New York, or enlarge Liverpool with an addition as big as Albany, yet we do not throw our strength into new civic creations.
Since Birkenhead burst so suddenly on the public gaze the norelty has passed away,-and atill more, from fortuitous circumstances, its glories have been dimmed, and its growth has been cramped; so that the interest it has excited has much worn off, and we shall be suspected of parading before our readers a stale cubject, when we mention Birkenhead ; but as we are not going to describe Morpeth Buildings, nor to investigate the statistics of the trede of the Mersey, nor to recommend the Liverpool merchants to give up and settle at Birkenhead, we may, perhaps, meet with a little attention, for Mr. Webster's book on Birkenhead gives us the opportunity of examining the plan as concerns its bydraulic features. Though Birkenhead may be a great town, and the docks a great speculation, yet there are scientific considerations involved in the harbour plan, which must render it a matter of permanent interest to professional men. If Birkenhead itself bears experiment, the walling of Wallasey is one of not less importance.
To make a dock is, in the hands of some engineers, a very dmple operation; they scoop out a certain space on the shore, they run out piers into the water-way, or take in so much of the merand, and they are satisfied-though, for anything they know or care, the mouth of their docks gets choved up with send, or the Fater at the entrance of the harbour is lessened, and a dock made for ahips drawing eighteen feet will not take in those of fifteen. They have a great idea of dredging and shuicing power; and besides making a dock or harbour which fails in many of its egsentials, they burthen it with a permanent establishment for getting rid of the silt which they have let in, and the sand-banks they have created, for it is surprising what very stupid and very careless people can do without knowing it. Mr. Rendel, when he vas called in to make a plan for Wallasey Pool, thought it his duty to survey the whole water-way of the Mersey, and to make himself acquainted with the action of the currents and tides so that, in laying down a deep-water dock at Birkenhead, he might not be shutting the outer gate to seaward-the Victoria Channel. Nothing is more common among seafaring men than to hear them complajn, and complain with justice, that in consequence of new engineering works in some harbouns, the depth of the water in the channel has been reduced, some dangerous shoal extended, some fixed bank made into a quicksand, or a bar which was troublesome enough before made a greater stumbling-block. If there be any up-navigation, that is sure to suffer when the point of discharge into the sea is injured, and the lighterman complains that the channels are choked, that the tide does not run up so tigh, or that he has less tide to carry him up; and the wharfinger finds that his frontage is stopped with sand and shingle. There is zare bungling under the name of hydraulic engineering than perhaps in any branch of the profession. It is the opprobrium of engineering, that after hundreds of thousands have been spent on no hydraulic work, it is a complete failure; harbours are choked, piers pushed out only to push bars or shingle further seaward, and wen-walls are made with the most solid masonry and with the very smallest modicum of expense or capacity, so that they topple down before the walls are well set. So little is this branch of eagineering appreciated by the public, that large tracts of availade land-two new shires in fact-are left unsecured on the east and west coasts of England, when they ought long since to have been enbanked. There is scarcely a river or water-way in the country which is not kept in a state disgraceful to the engineering cience of England. Let any one leave the metropolis, and look at the shores of the Thames and Medway: marshes badly drained, or not drained at all; river walls made so steep that they are yearly cut into or undermined; and stones put year after year to be washed away, because they are put where they never ought to have been.
We do not know whether the government ought to take in hand, as in Holland, the care of our water-ways, for we place no
confidence in what the government does. The constitution of the Tidal Harbour Commission is not such as to inspire any grent hopes from government interference, for while that commission is ornamented with a military engineer in due course, there is not one civil engineer upon it. The one great remedy is by the exertion of the members of the engineering profession to improve the state of hydraulic engineering, and particularly to execute carefully whatever duties they undertake. This, we think, Mr. Rendel has done; and though we differ from him in some points, we have no doubt that he has carefully, conscientiously, and laboriously exerted himself in this survey for Birkenhead.

It is tolerably well known that Liverprol is one of the worst harbours in the country, with long and tortuous channels, among dangerous banks, and all the doubts and uncertainties of a barharbour, so that its very continuance as a harbour is precarious, and has, before this been endangered. While Liverpool is a bad harbour, it is a bad harbour on a large scale; and those resourcea of science which are available for the improvement of amall harhours can do very little on miles of sea-channel and acres of sandbank; - \rightarrow till they can do a little, and it becomes of great importance, that in any operation within the estuary, all care shall be taken to prevent injury to the outer channels. Mr Rendel has tried to improve them.

The form of the Liverpool estuary is peculiar. It is wide sbove and narrow below, so that it has been compared to a bottle with the neck seaward. It is, however, outside the neck of the bottle that the sea-channels and banks are stretched out. Perhaps we may improve upon the bottle simile, by calling the estuary a curved powder-flask. Liverpool lies on the neck, on the concave side, and Birkenhead opposite, on the convex side. The wide part stretches up to Runcorn. Liverpool formerly had an inlet called the Liver Pool. This has been dammed up, and built upon; by which so much has been taken from the breakwater. The whole of the docks of Liverpool have likewise been taken from the breakwater, being constructed upon the strand. Thus the neck of the bottle has been narrowed very much more than it was originally.
Just above Liverpool a bank and uhelf, called Pluckington Bank and Shelf, have been formed, which are not very advastageous to the docks before which they lie.

The Birkenhead shore has been untouched. It has a large inlet running up, named W adlasey Pool, and this has shown a tendency of late years to silt up. Indeed, considering Wallasey Pool, Pluckingtoa Bank, and the general evidence, we should say that there is a decided action unfavourable to the good condition of the harbour.
The deepest water lies on the Birkenhead ahore, so that it has a depth below the lowest dock-sills on the Liverpool side.
It will be seen, that whatever works are undertaken at Biakenhead, they may act upon the upper part of the flask, upon the neck and so affect Liverpool outside, and so operate upon the Victoria Bar and Channel. Whether this action was to be for good or evil very much depended upon Mr. Rendel; and he might have done as others have done-made his docks, and cared no more about it : but he has wisely taken a wider view, and tried to do all that was possible to improve the state of the harbour. This was done wisely, because the continuance of Birkenhead depends upon the good condition of the Victoria Channel ; and if vessels cannot get over the bar outside, they will never be able to get into docks either on the Liverpool or Birkenhead side. Mr. Rendel's plan, therefore, is not one merely for making the Birkenhead docks, but tor improving the harbours of Liverpool.
Wallasey Pool has a wide mouth, and runs, narrowing as it goes, about two miles inland, taking the drainage of a small district. This Pool is mostly dry at low water. The upening of this Pool is perhaps a mile across.
This Pool may be taken as two parts, the mouth or funnel, and the upper part. Mr. Rendel's plan is to take advantage of a ledge of rock which runs across the neck, and shut off the upper part by a great dam with lock-gates, and having a line of sluices as hereafter described.
The upper part constitutes a float of 150 acres, kept up at highwater mark, and on the sides of which docks, wharis, warehouses, and building-yards may be formed. Around this float a river-wall is to he built as frontage to the wharfs.
The mouth of the Pool is to be embanked, except a low-water basin of 37 acres open to the Mersey.
The sluices in the dam are to be so mrranged as to be near the bottom line of the outer low-water basin, so that on being run out they shall sweep the bottom of it. This they are to do during a part of the tide only, so as to concentrate the action, to keep the basin and its mauth free from silt, and to send the water down to
the Victoria Bar at the best time for action on it. By the construction of the sluices, the water, instead of being poured down to tear up the bottom of the basin, will be sent along in a sheet, so as to prevent the silt from depositing itself. This sheet will be sent below the water in the basin, and Mr. Rendel thinks it will act to sweep the silt 2,000 feet.

It will be seen that by blocking up the Pool and inclosing the greater part of the strand, a considerable body of tidal water is displaced.

Mr. Rendel expects by straightening the shore on the Birkenhead side that the access of the tide to the upper Mersey will be improved, and that the scour being increased Pluckington Bank, on the Liverpool side, will be reduced, a better entrance will be nade to Wallasey Pool, and a more favourable action will be exerted on the Victoria Bar.

The plan seems open to the objection that injury must ensue from the tidal displacement at Birkenhead, particularly as by the construction of new docks on the Liverpool side a further displacement takes place there.

Mr. Rendel says that this is of no importance in the case of the Mersay. If the river were of a funnel shape an obstruction below would impede the passage of the tide up, and diminish the quantity of water available for scour. He allows that injury will ensue if an obstruction takes place in the upper Mersey, because there will be less room for the water to accumulate; and therefore there will be a less body to scour down on its ebb. He contends, however, that the displacement on the neck of the flask is of less importance, as the water there is of less power for the scour than the water returning from the upper Mersey. The tide will always have time and power to force its way up the neck to supply the reservoir in the upper Mersey; and the state of the channels in the neck is determined by the state of the upper Mersey, and not of the neck. He contends on the ground of the improving state of the Victoria Channel, and, notwithstanding the displacentent by the docks at Liverpool, that operations at the neck cannot injure the Victoria Channel. Pluckington Bank, he affirms, is formed by the set of the current on the irregularlyshaped shore of Birkenhead. By straightening the Birkenhead shore, and making it parallel with the Liverpool shore, the neck will be made more efficient, the tidal body passing up will deepen it, and Pluckington Bank will be worn down, though he does not say it will sweep it away altogether.

This is really a summary of the harbour question; and we believe we have put it with wufficient succintness and clearness to enable our readers to exercise their judgments upon it.

The arguments and researches of Mr. Rendel in support of his case are well worthy of perusal, for they exhibit very able treatment and high powers of mind. It is in the preservation of these that the practical value of Mr. Webster's book consists; and it is fortunate that the editorship fell into Mr. Webster's hands; for as it is chiefly an abstract of the evidence, a mere lapyer wauld lave got rid of the practical points, and the book would not have been of the least service to engineers, -whereas it is one which will be usefully added to the library of every member of the profession.

The formation of a harbour at Birkenhead is not new to engineers, for, in 1898, Telford, Stevenson, and Nimmo were employed on a plan by Mr. Laird, sen., and Sir John Tobin, and recommended the formation of a canal from Wallasey Pool to the Dee at Hilbree island, near its mouth, so as to get another access to the sea. This is a resource which Birkenhead still has, and which with its progress it will avail itself, but which will not checkmate Liverpool. Liverpool has, by the plan proposed for an out-harbour at Formby Point, a cheap means of providing more efficiently for all that could be done by a new sea outlet to Birkenhead. Formby Harbour could be made cheaply; while two short cuts to the Leeds and Liverpool Canal, and to the Liverpool and Southport Railway, would allow of goods being carried cheaply and quickly into the Liverpool docks; and for steam traffic, Formby Harbour would beat the Hilbree Canal. Mr. Rendel's plan may be considered as novel in its whole arrangements and treatment. Mr. Telford in looking at the Mersey is reported to have said: "They have built Liverpool on the wrong side of the river."

We shall now take some stray gleanings from Mr. Webster's book. Lieut. Walker, R.N., says that Pluckington Bank is caused book. Lient. Walker, R.N., says from Wallasey Pool meeting and causing the silt beld in suspension to deposit itself. Tho straightening of the Birkenhead shore would remedy this.

Birkenhead, we may note, besides being the deep-riater side, has the advantage of being the weather-side; while the docks on
the Liverpool side, most exposed to the waves breaking over the sand-banks, are the most liable to silt up.

The area of the float at a high tide is 208 acres, the frontage $4 \frac{1}{8}$ miles. In the dam, Mr. Rendel proposes a pair of tide-gates of 70 feet opening, the level of their sills being the same as that of the Prince's dock, at Liverpool. This float would allow steam-tugs to enter, which is not the case at Liverpool. Mr. Rendel calculates on the movement of the steamers likewise in keeping his channels clear. Besides the tide-gates of the great fioat, Mr. Rendel proposes a lock of 50 feet wide and 200 feet long, which could be worked during ten hours out of every twelve, in a spring tide, for vessels drawing 17 feet water.

We shall give in Mr. Rendel's own words his plan of sluicing :-
"It is proposed to run down daily any quantity of water betweet the level of the tide of the day and that which may be conaidered best as the permanent level of the water: so that, supposing the water were retained as a permanent level of thirteen feet above the old dock datum, the average high-water of spring tides being 18 ft .3 in . above that level, there rould be 5 ft .3 in , the difference between the permanent level and the tide of the day. The running off the water is a very important feature in the plan: the idea is to make aluices, or apertures, under the great gates and the tidegates, passing out near the level of the bottom of the great basin, and consequently under the whole of the gatcs. The openings for the discharge of the water will be between the bottom of the basin and the level of the silis of the tide-gates and of the locks, as low as we can conveniently get them; say for argument sake, ten feet below the level of low water of average spring tides. The sluices will be so formed as to be five feet square at the top on the inside, aad they will be gradually widened in horizontal dimensions, so as to produce a kind of sheet of water within two feet of the bottom of the great basin, and inasmuch as the separating piers of those apertures will only be at the point of outfall about two feet thick, the effect will be to have one wide sheet of water of the width of the basin; tbe consequence of that is, that we shall be able to operate upon the bottom of the basin, not in the usual may of a large bore of water tearing up everything before is, but a sheet of water which we can regulate to any degree of force which we like, by the sluices on the inside. I should also say further, that re have the sluices there, because they will operate most efficiently upon the straight part of the basin; we propose to bave the asme kind of sluices between the little dock which we have called the Bridge End Dock, and the arm of the basin running up to it, operating in the same way precisely. I wish it to be distinctly understood, that we do not propose to run those sluices in the ordinary way of sluicing. I want to give the water, which is to be discharged out of this great basin, more the effect of a river passing through with a gentle current, than a great body of rushing water, and I arrange the sluices with this view. It is also manifest that a basin of such capacity as this basin, will have lying in it a number of ressels, say of from six to ten feet draught of water; those very vessels will be the means, with a gentle current, of keeping the basin clear with the daily operations we shall employ in running off this water.

If the basin were unoccupied the effect would not be so great as it will he the basin being occupied. If the basin were formed at the level of low water, or if it were not occupied, the effect of the sluicing would not be sn great as it will be from the fact that vessels are floating in the basin, whether in large quantities, or small; if the quantity of vessels is amall, I would then give the water a greater current; if it is large, I would then give it a gentler current, so that we can command that kind of cuirent passing under those vessels from their being afloat, which will keep the bottom clear of the daily accretions.
Also we can run off the water at those periods that experience will dictate to be the best. We are not bound to run it off at low water, or any particular period of the tide: that would be regulated by a regard to all the circumstances of the case.

I know from considerable experience, that many harbours are kept open entirely by the vessels lying in those harbours; the river is forced to pass under their bottoms, and in that way the water is kept at a proper depth. I believe that is notorious."

There will be the power of running off $1,600,000$ cubic yards of water at spring tides, which will be available for scouring. The most available water for scouring now passing out of ${ }_{\text {W allasey }}$ Pool is $1,390,000$ cubic yards; that is to say, the water passing off after half-tide.

Mr. Rendel's estimate is, for cofferdams and other temporary works, $\mathcal{L} 15,323$; excavations, $\mathcal{E} 80,470$; masonry, $\mathcal{L} 198,513$; gates and bridges, $\mathcal{E} 21,268$; draining, $£ 28,57 \%$; land and contingencies, £53,379. Total, £391,908.

The peculiarity of Mr. Rendel's plan is the damming-up of the upper Pool, so as to make a float, Messrs. Mawdesley and Smith had proposed simply to deepen and wall the Pool, whieh was supported by some of the opposition parties. Mr. Rendel affirmed that this would do no good, but leave the Pool even more liable to fill up, as it would receive the water at an earlier time of the tide, when charged with a larger quantity of matter.

Mr. Rendel's researches on the tidal actions of the Mersey
were very minute; but to be fully understood require the explanatory maps and sections accompanying Mr. Webster's book. We shall; however, attempt to give an abstract of Mr. Rendel's evidence in the House of Lords:-
" The estoary of the Dee, and the eatuary of the Mersey, and the character of the two risers are manifeotly wholly different-their forms are different. They are different in this respect; the Dee is for the whole estent of it a shallow eatuary; the Mersey, from the contraction at its mouth, has an exceedingly deep channel opposite Liverpool, containing an enormous masa of water, hat immediately that it widens out in the same form ss the Dee, it loser its depth and becomes a shallow estuary; therefore, anppose the tide to come up, as I describe it with reference to the large chart, as at preseut -and nothing in our works can prevent that, for the works are within the gorge-it comes up in a large body, presenting to all intents and purposes, the bead of a nedge, and it gradually tapers out, losing its solid and compact form as it advances up the estuary. It is manifest that if we can make that wedge into aniform column, as we shall do by these works, we shall perfect the efficiency of the channel after these works are made; the part outside Seacombe is perfectly untouched; we do nothing to that. Then, in order to ascertain precisely the whole economy of this tidal action in the etary, and to satisfy my own mind, and in order to give evidence before your Lordships, I had tidal ohservations taken at Formby, which is, in fact, the beadland on the Lancashire shore; observation wete sionul:aneously uken at Prince's dock, which is the narrow part of the gorge of the estuary; din at New Brighton, Piddler's Perry, and Warrington Bridge, so that i bare been able to trace the relative heights and the relative times of high waser of the same tides at all those points, and I have done it at spring and at neap tidea. The resulta I will give from the diagrams I have before me.

The width of the river at Egremont-the point which corresponds with the north end of the Liverpool docks-at high water, is 4,030 feet; the sectional area of the channel at that point at high water apring tides is 236,449 square feet. At Seacounbe, only 3,000 feet within that point, the width is reduced to 3,060 feet, and the sectional area to 184,622 feet; it is altogether a gorge at that point ; it is completely the gorge of the estuary, which has heen defined by the works of the dock trustees on the one side and the natural ruck of seacombe on the other. At Wallasey Pool the width is 6,640 , it will be reduced by huilding the wall to assimilate with the other sections, namely to 3,350 feet. At Woodside pier, the width is 3,500 feet, therefore the effect of the wall is to make the shores parallel, and consegqeatly to take off this great width which Wallasey Pool occasiona. That wall, when made, will in my opinion, improve the channel and course of the river; it will directly acconiplish that ohject, and one immediate resalt likely to folluw is the taking away of Pluckington Bank formed by the tide seting into Wallasey Pool and occasioning an eddy. The consequent good effect will be, that the quantity of water at the least, if not more, which now goes into Wallaney Pool, would go up into the estuary, and by going up into the estuary it must necessarily be of greatly more value to the maintenance of the estuary and the scouring power of the river than passing into the pool. There will be nearly 300 feet greater width opposite our works than at Seacombe. The minimum section of the river being at Seacombe, the next smallest section is at Woodside, and the next at Tranmere. The sections at Seacombe and Woodside will continue the smallest sections after the works are completed. If Pluckington Bank be swept awny, it will make a difference greally in favour of the narrown as they exiat at present; it will make a larger section, and improve the estuary above. After Tranmere, the estuary becomes very wide; after you get above the bulh the bottle commences.
This section is the profle of the river; it is on an exaggerated scale as to height compared with length. Here is the Victoria Bar, then the Crosby Channel fall into this enurmous cavity; bere we lave Seacombe, which is the narrowest part of the river; the bed rises up again opposite Garaton to the level of low water. The river has excavated for itself within these narrows, within which it has been confined, a channel quite down to the rock in this particular place. The greatest depth at Egremont at low water spring tides is 67 feet. The greatest depth at Seacombe, which is determined by the rock, for it is scoured down to the rock, is 32 feet; the greateat depth opposite Wallasey Pool in 62 feet; opposite Woodside the greatest depth is 64 ft .7 in ., this is at low water spring tides. At Tranmere, Fe get 61 ft . 4 in . according to our soundings. It would appear that except in bollows in the rocks the sand has been scoured down to the rock, bot as the current passes in and becomes impaired in efficiency by those hollows or irregularities on the sbore, there are parte where banks have begun to sccumulate, and it is only in certain parts that we can detect rocks by the plamwet. The Mersey presents the character of a deep narrow channel sopplying the estuary above; it presents the character of a narrow artificial sorge supplying a shallow extensive eatuary.
According to the observations I have made there can be no doubt that the aupply of water into the estuary above, dependa upon the momentum generated in those narrows. The bulb at Wallasey Pool detrects from the mamentam. The atraightening the wall in the manner described would improve the current and increase the momentum, iunanuch an the presens irregular shores make irregular currents; those irregular currents act upon esch other and impair the general effect. If they can be made direct they are ande more efficient, and consequently they will send a larger body of
water up into the estuary, or at all evente they will send that water up into the estuary which now runs into Wailasey Pool. I am as great an enemy as any one to the general question of absiracting water from estuaries, but there is peculiarity in this case which takes it out of the general class of causes of the abstraction of water from eatuaries.

To ascertain the strength of the currents, I had accurate observations (with watches adjusted) at Egremont, Seaconibe, Wallasey, Woodside, and 'limmere, and having a fleet of hoats and a steamer to attend us, we put down floats, so far submerged that the wind could have no effect upon them, in the centre of the strearn and on either side, far enough from the shore to feel the strength of the current, and the floats were observed as they passed each of the lines of the sections at the above places. The distances were great enough to give as accurate a result as could be obtained ly any experiment of the kind, none of them being less than 2,600 fett, and the greater part from that to 3,000 . The mean velocity of the tide upon the food from Egremont to Seacombe wat 6.173 feet per second, from Seacombe to Wallasey it was $7 \cdot 211$ feet per second; which expresses this, that the tide heaps up on the seaward side at Sescombe Point faster than that section can pass it through, so that it runs faster to relieve itself on the inside of the Seacombe Point than it does from Egremont to Seacombe. You have that increased velocity by the increased bead outside Seacombe. From that section to the section at Woodside, the velocity is reduced to 3.891 feet per second. That arises from the current being impaired by passing into the bulb; it has, in fact, the effect of croas currents and eddies, as 1 have described. From Woodside to Tranmere the velocity is $5 \cdot 33$ feet per second. The ebbs are the very reverse. It will be observed that on the flood the tide was strongest from Seacombe to Wallasey Pool; upon the ebb, the atrongest current is from Seacombe to Egremont; there the velocity of the ebb tide was $6 ; 03$ feet per second; the velocity of the ebb from Wallasey to Seacombe was 6.139 , and from Woodside to Wallasey 549. These are ordinary spring tides. The velocity of the ebb from Tranmere to Woodside was $3 \cdot 54$ feet per second, which proves that the water is beaped up by the tide at Seacombe Point faster than it is vented; anything which can be done to improse the channel of the estuary between those narrows and the upper narrows must necessarily tend to vent that quantity of water with greater facility. Those were the results of actual obserration, the theoretical reaults on a comparison of the sectiona agreeing with thena as nearly as can be expected.

The object of these tidal sections is to show how the tides flowed on the days of observation. At the time stated it was high water at Formby, which is quite at the mouth of the eatuary. At the same time, if you carry on your ege to the Prince'a dock yon find that the tide is heaping up, actually rising ap, at the Prince's dock. Then if you go on to Ellesmere Port, you find that the tide is atill riaing; although at the time it is rising there it has falleu at sea; and so, all the way on to Runcorn and Fiddler's Ferry; and you get the profie at all the points by the different lines laid down here, which in worda ia this : that inasmuch as the tide had by flowing into the estuary attained a velocity in passing through thase narrows at Liverpool, ita own acquired velocity or momentuan carried it forward, and beaped it up in the estuary according to all these lines, for it would be impossible if that were not the case to account for the fact, that the tide does so rise; and it is just this-1 will suppose the fluid to be a solid; if a solid hat acquired a given velocity, we know perfectly well in mechanics that unleas some force interposes to stop the velocity of the body it will be carried on; and it is precisely $s 0$ in this case, the water flows on by the impulse that it has received at that narrow gorge, and it rises above its level. If the eleration were due to nothing more than statical pressure, which is merely the pressure of the head without the velocity, it would terminate ita course, for there ia no law of nature to make it go further. What would be the state of thinga in an estuary like the Dee, would le determined by the form of the shore and otter questions, but bere you bave the pecaliarity so strongly marked, that you cannot mistake the cause. The effect there would be, that as the mouth uf theDee is wider than its bead, it would receive a larger wave than would be due to the upper part of the Dee, and, therefore, if it bad acquired sufficient velocity, the water would accumulate up the Dee to a certain extent; but inasmuch as the extent to which it would accumulate is due to the velocity of the stream, it could not attain the same head in the upper part of the Dee as it does in the Mersey; it depends on the velocity. I should say this, that inasrauch as the profite represented is that which is due to the statical pressure (which is nothing more than head without force or velocity) ; all that is above that must be due to impetus: for we see here in the Mersey what we see in every river, and what we see in the Dee: iustead of the narrow part being at the top, the narrow part in the Mersey ia at the moath; therefore, so far as is due to momentum, if you could make the Mersey and the Dee at all agree, it would follow, that you would in the Deo have an enormons heaping up compared with what you have in the Mersey. If you could by any possibility give to the water entering the Dee the same velocity as the water entering the Mersey, keeping the section the same, it would heap up here quite in the same way as it does in the Severn; but it cannot have that velocity, because there is not the same cause to excite it, nameiy, the contraction.

For determining how much the tide has risen up the entuary above its lesel at the gorge, I take the level at Prince's Basin, which is in the gorge. I will take the tide on the lst of June, which was a spring tide. Suppose we start with the tide at high water at Prince's dock, which is in the gorge
at Liverponl, it would be 1 ft 1 in , higher at high water at Ellesmere Port, and fifteen minutea laterin arriving at that point; 1 ft .10 in . higher at Runcorn, and would be thirty-five minutes later than at Liverpool; it would be 1 ft . 9 in. bigher at Fiddler's Ferry, one hnur after it wat high water at Liverpool; it would he 2 ft .3 in . higher at Warrington bridge, 1 hour 25 minutes after it wat high water at Liverpool. Without going through the detaila of each observation, the mean of thres spring tides was 1 ft . 1 in . higher at Elleamere, 1 ft .10 in . at Runcorn, 1 ft .8 in . at Fiddler's Ferry, 2 ft .3 in. at Warrington. On the mean of the three neap tides, of the 8 th, 9 th, and 10 th of June, there was still an elevation, hut it was reduced on account of the stream not being so strong at the gorge, to 5 inches at Ellesmere Port, 11 inches at Runcorn, 10 inches at Piddler's Ferry, and only 9 inches at Warrington; these differences are due to the differences of the neap and spring tides, or in other words, the differences of the velocities through the gorge are at 8 inches at Rllesmere Port, 11 inches at Runcorn, 10 inches at Piddler's Ferry, 1 ft. 6 in. at Warrington; and it follows, that anything that would strengthen the velocity through the gorge at neaps, would necessarily tend to make the approximation nearer between the elevations at those different places at neap tides, as compared with springs.

The difference in the quantity of water which passes up the estuary at springa and neaps. I have taken from Captain Denham's survey; and if you could get the water at neap tides to stand at all those different points with the same differences above the Prince's dock as it does at springs, you would get an increased quantity of water ($18,000,000$ or $20,000,000$ of yards) up the entuary; any increase of the moinentum in the gorge would tend to increase the quantity going up. The observations led me to that conclusion, and I come to no other from the phenomens; at all events I am perfectly convinced that all the water that now passes into Wallasey Pool, would go up into the eatuary. It is a mathematical question which I am not going to touch, whether more would go up; hut philosophera have endeavoured to show, that a bulb upnn a pipe (all other things being equai) would prevent the same quantity of water being discharged as would be discharged in the same time if the pipe were parallel, and this is a similar cane, but I am not going into that quention."

Random Hints on Railoays and Raihway Legislation. By Alexander Doull, C.E., Assoc. Inst. C.E. London: Weale, 1848.

This is a timely warning against the bill of the Railway Commisstoners, particularly addressed to the engineering profession. It is so clear and practical, that we hope it will not be without its proper effect; at any rate, Mr. Doull deserves the warmest thanks for this exposure of the mischievous measures of the commissioners.

After showing the inconsistencies of the standing orders, and explaining the process adopted in preparing a line of railway for parliamentary examination, Mr. Doull goes on to analyse the amended bill. The chief amendment is the lowering the deposit by way of security from $£ 500$ to $£ 200$; but which for a line of 200 miles, would still leave the enormous sum of $£ 40,000$ in the hands of the Railway Commissioners, to be fooled away in such manner as they may think fit -but which, at all events, is a serious impediment in the way of all new lines of railway. Mr. Doull very well observes, that the commissioners are quite ready enough to do work for the money,-indeed, the way in which they make work would deserve credit for its ingenuity, if it were not so objectionable from its decidedly mischievous tendency.

As is very well known, s preliminary survey, often extending over miles in breadth, is necessary to select the line which is to be surveyed in detail. No provision, however, seems to be made for this, or the bill is inconsistent with its performance. Most probahly, Colonel Brandreth and Sir Edward Ryan are unaware how the survey of a railway is carried out. The fourth clause of the bill requires that "the promoters of any proposed railway shall apply to the commissioners for authority to make the surveys necessary. to enable them to determine the line and level of such railway, ${ }^{\circ}$ \&cc, ; but the fifth clause requires that "ten clear days at the least before making such application, the said promoters shall give notice by advertisements, each in the same words and form, in the London Gazette and in some newspaper published or circulating in each county through which the railway is proposed to pass, such intended application specifying the course of the line of such railway," \&cc.

Of course this cannot be done without a preliminary survey, and how is this to be effected ten clear days before the engineer can apply to the commissioners for leave to go over the ground?
Again, if this notice and this permission be as a protection to the occupiers, it is difficult to conceive how a notice is to be framed to cover the wide extent of country over which it is necessary for the engineer to go, if he is to choose the best line of railway.

It is evident to all practical men that a very large expense must be incurred for advertising voluminous notices (drawn up by lawyers) in the London Gazette and a number of country newspapers.

It will be worth the while of the enterprising proprietor of the Surrey Times to publish it all the year round, instead of bringing it out as now for the occasion of the advertisements of intended applications to parliament for railway bills.
Mr. Doull thinks from the sixth clause that the permission to survey only extends to the very lands through which the proposed line of railway is to pass. If so, a large sum of money has to be paid down, much time has to be wasted, and a cumbrous process to be gone through, for a permission which is worth very little.
The tenth clause, regulating the return of any remaining portion of the £zon, provides that "one month after the bill for giving power to make the railway, in respect of which such deposit was made, shall have passed or been thrown out or withdrawn by leave of either House of Parliament, the commissioners shall by a draft or cheque signed by two of the commissioners order the balance standing to their (the depositors) account, in respect of such deposit, to be paid to the promoters by whom the deposit was made." -Mr. Doull observes, that the framers of the bill do not appear to have contemplated the return of any portion of the deposit to, those promoters who may not advance so far as the threshold of the legislature. We may add, that there is an opening for litigation, in case of any dispute among the promoters of a new company, such as has happened before, and snch as may happen again, under the auspices of Mr. Spackman and others. If Mr. Spackman should give notice to the commissioners not to return the remaining deposit to the committee of the railway company, the commissioners may be very well disposed to act upon the hint, and wait for the direction of a court of law.
The thirteenth clause provides that "before the said promotere, or any of their officers enter upon any lands to survey the same, or to mark out the line of their proposed railway, as hereinafti r mentioned, they shall give to the occupying tenant thereof not less than two nor more than seven days notice in writing of their intention to enter and survey the lands.". The object of giving not less than two days' notice explains itself, but the restriction as w not giving mare than seven days' notice must often be most inconvenient to surveyors and engineers, for within seven days many circumstances may occur to delay the survey, while no inconvenience can accrue to the occupying tenant from any length of notice. Under this clause, it might frequently become necessary to serve a fresh notice, the first seven days' notice having expired.

Mr. Doull contends, and with justice, that the number of occupiers who would require to be noticed previously to commencing the survey or levels, would be considerably more than the number at present necessarily included in a railway book of reference, even supposing the survey to extend only to the usual breadth of 80 or 30 chains. It would therefore be necessary to get up a referencebook before commencing the survey; and this would be attended with very great expense, besides the risk of some occupier being left without a reference.

The fourteenth clause is in keeping with the rest. It enacta that "the said promoters shall mark out the line of the pruposed railway by means of stakes fixed in the ground not more than thirtv yards apart, and in such manner as clearly to point out the proposed line of such railway; and they shall put up posts along tha line, so marked out at convenient distances for the purpose of showing the level of such line, and shall mark on such posts in legible charactera the number of feet and inches at which the rails are proposed to be laid above or below the surface of the ground.

Our readers will agree with Mr. Doull, that staking out a Ine of railway, and exhibiting the levels in feet and inches along the line, is a very difficult and complex operation. He estimates that it would double the expense of preparing parliamentary plans and sections. A higher class of surveyors would have to be employed, and a number of devices must be resorted to and superior instruments used to stake out curves of given radii with accuracy, in the face of the numerous obstacles to be encountered, and of the variety of circumstances to be met with, on an extended survey.

As more damage must be done by staking out the line than by an ordinary survey, another charge will be imposed on the comppnies, and further claims for compensation be given to the landowners and occupiers.
A new set of parties must be employed in painting the levelposts.

What good is to be got from stating, in "inches," a level which will differ whether the land be ploughed or unploughed, whether it be trenched or in grase, we do not profess to see. It can only cause a serious expense without answering auy useful purpose.
At present, staking out is delayed to the period when it can be
asdertaken for a purpoee of practical utility, and when it can be conremiently performed.
As landowners and occupiers can now refer to the plans without having the line staked out, and as engineers can check the levels of rival lines from those plang, going over the ground with the plans in their hands, it does seem very hard upon the companie that they should incur such expense for the officers of Royal Rngineers, who are to be employed to inspect the line. In fact, if ench parties cannot go over the ground without having the line ataked out, they must be utterly incompetent for the discharge of the duties properly belonging to their own profession, and to the performance of which it is desirable they should be restricted. It will be open to a factious opposition to cavil about every one of the posts; and the military engiveers and the whole party may be employed in ascertaining that the port is wrong by two inches above or below the line.

Clause 91 provides that the plans are to be deposited and inspected. The inspector, who knows as much about civil affairs as he does about civil engineering, is to hold courts along the line of the proposed railway "for the purpose of receiving information or suggestions from any persons interested in such proposed railway, diher as the promoters thereof, or as the owners and occupiers of lands on or near to such line or otherwise" A very cheap way of amoying the companies and putting them to expense, will be by the landowners and farmers attending the inspector's court, and occupying the time of the staff by raising all kinds of objections.

The twenty-fourth clause is an ambiguous one, giving the commissioners power to allow the promoters to amend their plans after inapection.

Clause 25 provides that a second deposit is to be made; and this is followed by another ambiguous and inconsistent clause.

Mr. Doull thinks that Clause 32 contemplates a second inspection of the line of railway.

It behoves engineers to be on their guard against this most tyrannical, mischievous, and vexatious measure, which will place them under the inspection of theirinferiors, the military engineers, in every operation of a survey; and they are to be subjected to the judgment of these latter, whether a level be rightly taken or a curve properly laid out.

It will be seen that this bill subjects railway projectors to the following new extent of unprofitable expenditure :-

The depositing of $£ 200$ per mile with the Railway Commissionens.

The advertising of the intention to survey.
The preparing a reference book for the survey, and the serving of the notices on the occupiers.

Staking out the line, marking the levels in feet and "inches," and setting out the curves

Making two deposits of the plans.
Preparing amended plans.
Attending the inspector in his inspection of the line as staked out; and fighting for the acouracy of the line, and against the objeations of the local parties.

After all this has been done, the old preparations for encountering the ordeal of standing orders have to be made; for the new regulation of the Commons, providing for notices being sent through the post is quite inoperative, as service has to be proved, and the Lords require the old mode of service.
Our readers will agree that any system of legislation more disgroceful to a country than that by which railway companies are harassed, was never attempted or perpetrated.

Anctent and Modern Art, Historical and Critical. By Groroe Cleohoren, Esq. Second Edition. Blackwood, Edinburgh and London, 1848.
It is stated that the object of this work is to present, in a popular form, a brief sketch of ancient and modern ast; and to avoid the faults of other publications, which are of no use to the ordinary reader. By way of carrying out this pledge, the two volumes are filled with long passages from the French and Italian, and castches of Greek and Latin, which are not likely to be very well understood by the public, which are not needful in themselves, and which do not even prove the learning of the author. As to the execution of the work, without being original, it is loose and unsatisfactory; there is a hash of the opinions of foreign writers on art, and the only novelty is the criticism of the author on English writers and reviewers. It especially fails in giving a dear idea of any one work, school, or style, and a reader taken from the public would acquire the smallest amount of definite information from its pages. It is a very difficult task to give an
abridged vievi of an extensive subject, so as to communicate exact ideas; indeed, an abridgement requires as high a degree of ability as an extensive work. It is not surprising, therefore, if Mr. Cleghorn should utterly fail in this attempt. As from some petty provincial feeling, there is more space devoted to the buildinga, sculpture, painting, and painters of Edinburgh than of any other place-indeed, a large part of the two volumes-the public who buy this book on its title, will have no more reason to be satisfied with the quantity than with the quality. The work has such small merits, that we should not feel called upon to notice it, if it were not that it is likely to be taken for a popular work, as being a second edition emanating from publishers of reputation.
A popular manual of art has yet to be written and is much wanted; but it mast convey definite information and descriptions suited to practical men, and less general criticism of autists and works unknown to the public and not particularised. Mr. Cleghorn's account of the Munich school is the best that he has given us, but it is quite inadequate; while a proper account of what has been done and is doing there is one of the best incentives to the encouragement of art here.
We must do Mr. Cleghorn the justice 20 say, that so far as his abilities go, he is sincerely desirous of promoting the interests of art. It may be some excuse for his defects that the present work is the offshoot of a pamphlet in favour of the imitation of the Parthenon on the Calton Hill at Edinbargh, under the name of a National Monument for Scotland. He is, therefore, a partisan of pure Greek and what he calls idealism; he allows of Gothic; but seems to hanker most after Italian. If it were not for the metaphysical bent which effects all who are born north of the Tweed, and leads him into the discussions about idealism, he would be catholic in his artistic predilections. His idealism is, however, more confused than that of any German, because he is attached to the study of nature ; and while holding up the imitation of nature as the great end of art, he cannot make out how to reconcile it with idealism. He has been born in the faith of idealism, -and though his convictions are starting arguments constantly against his faith, and though his practice is opposed to it, yet ideslism he persists in maintaining. What it is he has not been successful in describing; in one place it seems to be the genius and imagination of the artist which constitute idealism : but this again does not agree with statements elsewhere. The late Haydon, although he talked very much abouf it, could never make himself underatood. The upshot always was "Nature. and the Elgin marbles." Mr. Cleghorn is strenuous in his abuse of what he calls the sect of naturalists, but without producing any arguments except in their favour.
He seems to be much more successful in reproducing M. Quatremère de Quincy's definition of imitation. This is a fitting introduction to treatise on artistic criticism. Imitation in the fine arts, says M. de Quincy, is the production of the likeness of a thing, but in another thing which becomes its image. It is not a reproduction of the thing, it is not its exact likeness, which cau only be the result of a reproduction; but it is the image of a likeness, to be animated by the mind of the observer. Hence, an attempt at illusion fails because the artist takes on himself to perform the functions of the spectator, and leaves the latter little or nothing to do. The originals of most of the figures of Raffaelle, Rubens, or Murillo would produce much less interest than the paintings : they would often excite the reproach of being ugly or clumsy women. The best illustration of this fundamental principle of the fine arts, but one which Mr. Cleghorn has not adduced, is that derived from the drama. On a small stage, and in a short time, we are made to the greatest men of antiquity, the revolutions of years, and the consummation of the most important events -the actors being men familiar to us even through the disguise of costume. The mind, however, takes its part with the actor, and shares in the realization. We do not want
" A minghom for a stage, princes to ect, And monarche to bebold the awelilns scena.4
These accessaries are useless when the audienoe can supply their absence. The great dramatic poet explains the theory of imitation well, when he says to his audience :
"- TH If your thoughte that now mont deck our kingt,
Carry them here and there; fumping o'er thmee;
lurning the sceumplishment of u.awy yeare
Into an bour flame:"
As a perfect illusion is not necessary, but hurtful, so thera are bounds placed to limit the extent of art, and to limit the extent of each department of art,-bounds best observed in the greatest height of art, and soonest overotepped in its decadence.
On the legitimate apptication of imitation all the fine arts depend, and this is their bond of union; it is only in the vehicle
used, or the semse addreesed, that they differ. We are now agitating for the catholicity of the three arts of design-painting, sculpture, and architecture; but we cannot expect a perfect development of the fine arts, unless their three other branchesmusic, the drame, and poetry-be likewise cultivated. The attempt to sever single arts, which has failed, is a ground for want of confidence in any system which steps short of completeness. In what do all our complaints and all our inquiries as to the low state of art end? In a conviction of the low mental condition of the professors of art. When the painter has once taken his brush in hand, the sculptor his chisel, and the architect his compasses, he bids farewell to education and enlightenment, he gives himself up to what he calls his art and narrows and cramps his mind just at that time when it should be freest in its expansion. Precisely for the reason that the artist has no education, the scholar has no knowledge of art; and art is kept back from this state of affairs, and not from the want of manual capacity in our artista, or of adequate encouragement from the public. There have been opportunities enough lately, but they bring forth only Buckingham Palace or Trafalgar Square, art-union pictures or pigtail monstrosities. The schoolmaster has been sent abroad; but till our artists are better educated men, and more on a level with those of Greece and Italy, art can have little hope. We do not want academies of art so much as we want schools, liberal training, and the power of reasoning justly.

Among the six fine or imitative arta, there are marked distinctions. Painting or design, sculpture, and architecture are material in their production; poetry, the drama, and music are immaterial, and the latter two in their performance are transient or fleeting. The three latter have, however, the power of reproduction of the model work to such a degree as materially to extend their social influence. Painting by the means of engravings, and sculpture by means of casts, have this power of reproduction in a less or more modified degree, but the progress of science promises to give these arts greater resources; and although some look unfavourably on the machinery of copying and piracy, we cannot but believe that the artist will gain by being brought into communion with a greater mass of the public. The artist and the public must work together, they must feel for each other, they must foin to produce the wished effect. Shakspeare working for the public of his day, and Dickens for the public of this, are under a stimulus which the artist at the present time too rarely feels. The incentive to immortality, the conscientious discharge of a patriotic duty, the inspiring influence of the goodwill and fellow feeling of applanding millions ought to operate on the artist as they do on the statesman, the general, or the poet, and ought to produce greater results than the grovelling selfishness which yields up its task on the payment of the stinted and allotted price, careless of anything but the money reward and the personal gratifcation.

Architecture has for its province the execution of single and isolated monuments. It is not easy to reproduce the Parthenon or St. Peter's, and the architect has every inducement to devote himself to the production of works the merit of which he will not divide with the copyist, the printer, or the engraver, -which he wants no translator to make known to other nations, but which are felt and understood by people of all countries and all ages. Architecture has, too, this distinction, that it has an immediate and an obvious utilitarian character.. The painter, the sculptor, and the musician minister indirectly to the uses of society; the poet and the dramatist may propose a moral end, but it is not needful they should do so; whereas there are few works of architecture which do not bear the stamp of usefulness. It may be thought by some enough to appeal to this sense of usefulness, but until the architect can satisfy himself that Newgate or Bedlam engrosses the favour bestowed upon Westminster Abbey and St. Paul's, he will do well not to be unmindful of the artistic relations of his profession. As the mighty dome of St. Paul's is seen from so many points towering over London, how well does it mark the wide expanse of population crowding below. There is a greatness in the sight which cannot pass unacknowledged, while the statesman and the moralist knows too well the influence of great thoughts and great associations on the public mind to neglect those means by which they can be awakened and upheld. Athens, it is true, sank with the glories of the Parthenon untarnished, but not until the living spirit of art had been quenched.

The imaginative or creative power of the artist is what is not allowed for in Mr. Cleghorn's theories. His idealism resolves itself into the study of nature and the adaptation of the fine part of one individual to the fine part of another to constitute an ideal or perfect whole. He quarrels with Hazlitt for affirming
that the ideal is the preference of that which is fine in nature to that which is less so ; but he does not aet up in its place anything which is clearer. Perhaps there is no difference. The naturalists, as represented by Mr. Hazlitt, say, "There is nothing which is fine in art, but what is taken immediately, and as it were in the mass, from nature." Mr. Cleghorn, for the moderate idealists, does not traverse this, but says, that "Ideal art is finer than nature ;" though from what we can make out, ideal art is only selected nature.

As to the question whether it is better to represent individual neture with individual defects, accidents, and peculiarities, or to represent Jupiter with some of the features of the lion, and Hercules with the neck of a bull, to say nothing of fauns, satyrs, and centaurs, this seems to us a question which, if solved in favour of the latter side, does not give any valid support to the idealists. Indeed, there is nothing which has ever yet been brought forward which shows that the Greeks owed their excellence to anything but the study of nature, or that there is any other mode of attaining excellence in art. We are therefore the more hopeful of the future of English art, as at any rate we have the groundwork of a study of nature ; and this, supported by a prudent reference to the old masters, as confirmatory of the course of study, will, with a more liberal education and a more catholic feeling of art, give us artists of whose works we shall not be ashamed.

Railway Engineering; containing a General Table for the Cakewhtion of Earthworks. By T. Baksin, C.E. London : Longman, 1848. 8vo. pp. 64.

We regret to perceive that Mr. P. Barlow has permitted this book to be dedicated to him, for we are sure that he was ignorant of the dubious character of the honour conferred on him by the unscrupulous author. There need not be the slightest delicacy or hesitation in affirming that the whole performance is a collection of gross plagiarisms. The formula for the super-elevation of the outer rail of a railway curve is taken from De Pambour. Metbods which have long been published for setting out curves, the author claims as his own, on the plea that they were prioately communicated to his pupils, and that some years ago he sent to the "Gen. tleman's Diary a paper on the subject, which wose rejected.

The "General Tuble for the Calculation of Earthwork on Railways, $\& \mathrm{c}$." is a direct copy from the "General Table for facilitating the Calculation of Earthworks for Railways, Canala, \&c." by Mr. Bashforth. There is not even a colourable variation from the original in the copy,-it is an exact reprint, line for line and figure for figure; with a few idditions, but not a single omission. Every one of Mr Bashforth's tabular numbers re-appears in Mr. Baker's table. We had intended in order to render the plagiarism palpable, to print a column from one table by the side of the corresponding one in the other table; but after getting half way through the labour of copying the figures, we found that there was not a single alteration or omission, and therefore abandoned the taak as useless.

A general reader, not familiar with the character of earthwork tables, might deem the similarity accidental or inevitable-just as if two persons published different tables of common logarithms or square roots, the tabular figures must coincide where both are correct. The slightest consideration, however, will show that the present is not an analogous case. A great number of earthwork tables has been published, but none except Mr. Baker's has the same figures as Mr. Bashforth's : and for this plain reason,-that other tables, such as Mr. Bidder's or Sir John Macneill's, are applied by methods, and for purposes, entirely different. Sir John Macneill's, for instance, are not general, but have the results for particular slopes and bases, worked out ready to the engineer's hand. Mr. Bidder's table, on the contrary, is general, and considers the prismoid in three separate portions. Mr. Bashforth's is also general, but considers the prismold in two portions; one of which has no real existence, but being merely assumed for facility of calculation, is ultimately subtracted. Now considering the perfect independence of these methods, it is clear that the tables founded on them, though entirely different from each other, may lead to identical results. But the only person who has adopted Mr. Bashforth's very original plan of considering the slopes to be hypothetically continued till they meet in an apex, is Mr. Baker. He therefore is the only person who could use the same figures.
We have too much confidence in the right feelings of engineers, to suppose for an instant that this attempt to take the fruit of high talents and unweared toil from the lawful owner will prove successful. In our apprehension, the literary offence is much aggra-
ated by the attempt made in the work under review to throw dat in the eyes of the reader, by abusing the author whose tables recopied. The attacks commence in the preface, and are concinced at intervals to the end of the book, with all the emphasis which italics and capitals can give them. For example, speaking generally of other previous tables, our author allows that "none of them are accompanied with directions for finding the contents from the sectional areas, which is the most important part of such cubles, except Mr. Bashforth's; but his method of applying them is croncous.- Now, the assertion, which we have given in the author's own italics, is not only untrue, but it would not be uncharitable to assert that it is put forth to disguise the real relation of his own method to Mr. Bashforth's. The supposed error refers to the calculation for side-long ground (or cuttings or embankments on the side of a hill, where the height of the slopes is unequal), and is established by taking a perverse and preposterous example-that of two sections, 4 chains apart, of the areas 10,394 feet and 400 feet, respectively. As if in a length of 4 chains, no intermediate sections would be taken where the first section was mare than twenty-five times the last!
Setting aside the extravagant nature of the case supposed, Mr. Bashforth's method, even if so applied, is just as likely to give a true result as that which Mr. Bater would subatitute. We are told, that by neglecting the area of the triangle, the former method gives a result $7 \frac{1}{6}$ per cent. too small: but it is just as likely that the substituted method gives the result as much too great ; for the ground may undulate so much, that the error may be either in excess or diminution. In a case like the present, where the ground falls so much in the direction of length, that the heights of one end-section are only one-fifth those of the other end-section, great irregularities of surface must be supposed to intervene. For instance, suppose a valley or deep hollow occurred omewhere in this length of four chains of cutting, Mr. Baker would tell the contractor that he had to remove all the contents of the valley, which, in reality, nature had already excavated for him. There is no guarding against such errors, except by the precaution Which every reasonable engineer adopts where the ground varies considerably-which, in the present case, would be practically inevitable-and which Mr. Bashforth's method supposes,-that of taking frequent sections.
Our worthy author has not borrowed his predecessor's table of Proportional Parts, -which, as we explained in a former review, is printed on card, with a moveable index of wood aliding in a groove. It is estimated that by this ingenious contrivance, the table is made to contain all the calculations which, extended, would occupy a surface $42,250,000$ times its present area. To have adopted this table also, would have been too palpable a plagiarism; Mr. Baker, therefore, contents himself with copying, fhgure for figure, the first twenty-one lines of it, which constitute his (!) "Table No. 8 ;" and the reader is informed (p. 48), that in casee which this "Table No. q" does not include, he must work out the calculations for himself.
It is not to be expected that every practical person who calculates quantities for contractors, should understand the mathematical principles on which the particular tables which he uses are based. But it is within the simplest comprehension, that the two methods under comparison-and they alone-proceed on the mumption that the slopes are hypothetically continued to their intersection. It is also not a matter of reasoning at all, but one of mere eyesight, that Mr. Baker has re-printed Mr. Bashforth's calculations identically. The only differences are theseMr. Baker's table is printed in a less distinct manner ; to Mr. Basforth's table of 65 heights (reprinted without a single omission) seven more heights are added: lastly, of the table of Proportional Parts, the first twenty-one lines are reprinted; and as to the 49 millions and odd remaining calculations, which the sliding index ingeniously effecta-why, the reader is left to calculate them for himself.

The Sleam Novy,-Mr. Edward Whitley Baker has been appointed by the government to go out with James Brooke, the Rajah of Sarawak. Mr. Baker is attached as engineer to the Mrander frigate, and is to have charge as a steam launch, to be ured in getting up the small rivers and creeks for surveys and in search of pirates, and is to be at the service of the Rajah in Sarawak and Labuan as mechanical engineer. We are glad to see from this appointment that the Admiralty are really desirous to improve the engineering service of the nary, by employing efficieqt practical men like Mr. Baker.

REGEGTER OP' NTV PATMyTE.

BALANCE BRIDGE.

Jobn Harvey Sadlep, of Holbeck, Leeds, iron merchant, for "Improcements in constructing bridges, aqueducts, und similar struc-tures."-Granted July 7, 1847; Enrolled January 7, 1848.

This invention relates to the construction of cast-iron girders for continuous bridges, viaducts, or aqueducts, and other improvements relating to railways. Fig. 1 , is a side view made according to this invention of cast-iron girders c, strongly jointed and bolted together at a, standing upon piers of stone or brick $b \iota b$, each girder c, being cast from one and the same pattern, or where no very great length is required, two parts $c c^{p}$, may be cast as one piece; in either case from the points d, will constitute one girder, which is from centre to centre of two arches, and the two parts on

FIg. 7.
either side of a bar b, will balance each other, consequently, there is no weight or sway comparatively Fpeaking in the centre of each arch. It will be seen that each girder is loose and at liberty at the centre of each arch $d d$, and though strongly jointed together by means of plates on each side, they will allow for any contraction or expansion required by change of the atmosphere ; and fig. 2 , is a transverse section of this joint, showing how the toothed-plates fit into similar teeth at the ends of each girder where they meet at the centre. Fig. 3, is a plan of the cast-iron flooring for bridges, \&c., consisting of plates of cast-iron. Fig. 4, shows these plates upon an enlarged scale, the underside uppermost and not closed together, the better to explain how strength may be given to these plates to bear the rails and any weight required to pass over them; and fig. 5 , is a transverse section, showing how these plates are fastened together, and bolted to the girders by the brackets i i. The covering or flooring-plates e and h_{4} are shown to be a foot in width, and of the length from girder to girder corresponding to the width required for the railway.

The plate apon which the chairs are securely bolted is seen to have three ribs or flanches cast upon the underside in order to give the requisite strength, and also holes cast through it for bolting and securely fixing the chairs for holding the rails. There are studs about an inch square cast upon the sides of each plate, and each plate has holes cast of a size exactly to fit and receive these studs, (soe h, fig. 5 , which is a side view of these plates, it will therefore easily be understood that if these plates were shut or closed together, these studs would enter into the holes cast in each for that purpose, clearly showing that the whole covering or flooring will be so united and securely fastened, so as to form one general mase of support to the rails and the weight passing over them.

LOCOMOTIVE ENGINES AND BREAKS.

Georar Taylor, of Holbeck, near Leeda, Yorkshire, mechanic, for "Improvements in the construction of engines and carriages to be used on railways."-Granted June 3; Enrolled December 3, 1847.
This invention relates, firstly, to improved arrangements of the rylinders of locomotive engines, and the parts which communicate the reciprocating motion to the driving-wheels, for the purpose of concentrating the driving power of the actuated pistons, so as to communicate an even rotating motion to the axles of the drivingwheals, and also to distribute the moving power (without first concentrating it) to one, two, or more pairs of driving-wheels in a uniform manner. Secondly, this invention refers to an improved break, for stopping the progress of carriages along the line of railway; such apparatus being also suitable for sustaining its carriage on the rails, in case of the breaking of an axle. Thirdly, this invention relates to an improved arrangement of tender. Fourthly, to certain improvements in mounting the wheels of railway carriages.
The improved arrangements are shown in the annexed engravings. Fig. 1 is a side elevation, and fig. 2 a plan, in which the

Fig. 2.

Pr. 1.
motive power, communicated to the pistons of the working cylinders, is concentrated in a line drawn longitudinally through the centre of the plane of the engine. a, a, are a pair of cylinders, placed over the end of the boiler b, nearest to the smoke-box; c, are the piston-rods, with cross-heads, which slide in guides fixed to the outside casing of the boiler; α, α, are rods for connecting the piston-rods to the cranks e, which cranks are attached one to either side of a central wheel f. The periphery of this wheel is provided with cogs, for gearing into or driving a wheel g, keyed to the axle of the driving-wheels h. In order to insure the proper gearing together of the wheels f and g, and allow of the play of the bearing-spring, the guides, in which the axle-boxes or journals of the driving-wheels h slide, are made at an angle, as shown at i, fig. 1. By referring to the figures, it will be seen that the axles are placed above the boiler, and, therefore, wheels of large diameter (say from 10 to 15 feet) may, if required, be employed with arfety; the oscillation of the engine being, in great part, avoided, by the central and uniform driving of the axle of the wheels h, and the weight of the engine being near the ground. When it is desired to make all the wheels driving-wheels, their shafte may be connected together by rods and crank-pins, as now generally employed.

The specification describes two other arrangements of mechan-
ism, for communicating the reciprocating motion of the pistons to the axdee of the driving-wheels.

7. 4.4.

7is. 8.

The improved apparatus or break for retarding and stopping the train is shown at fig. 3 , a side elevation of a tender, with the apparatus attached thereto; and fig. 4 being an end elevation. a is one of two levers, attached to the bottom of the carriage, and intended to vibrate slightly upon centre-pins b. At their outer ends thea levers are connected together by a cross-rod c, and are thereby caused to move simultaneously when any motion is communicated to them. d, d, are flanged skids, attached to the outer end of the levers a; and they are provided, at their under surface, with a block of wood, the grain of which is vertical. These skids are intended to be depressed on to the rails, when the speed of the tratn is to be ckecked ; and the flanges, which are formed on the inner side of the skids, will act as guides and keep the carriages on the line of rails, in case of the breakage of an axle. e is a strong spring, stretching across from one skid to the other, and taking into sloty or openings formed in the upper part of the skids. This spring is embraced, at the middle of its length, by a hoop f, which is jointed to a vertical shaft g, composed of two parts, and capable of being adjusted, in its length, by a threaded connecting-piece h. The upper end of the shaft g is forked, and between its prongs two antifriction rollers i, i, are mounted. In the sides of these prongs, and between the centres of the rollers i, longitudinal slots are cut, for the purpose of receiving the axle k, of a cam l, which is in contact with the peripheries of the antifriction rollers. The axle k is mounted in bearings affixed to the end of the tender, and to its outer end a worm-wheel m is keyed. This wheel gears into a worm n, mounted on one end of a shaft o, which turns in bearinge at the side of the tender; and at its other end a hand-wheel p is keyed, for the purpose of giving it a rotary motion. Let it now be supposed that the skids are required to be let down on to the rail,-the hand-wheel p is turned, in order, by means of the worm n, to move round the wheel m and its axle, which carries the cam l; the larger radius of this cam being now brought into contact with the lower antifriction roller, it will depress the vertical shaft g, and comnunicate, through the spring e, an elastic pressure to the skids, whereby they will be made to bite the rails, and retard the progress of the train.

The third improvement consists in carrying the axles of tenders through or above the water-tank, whereby the weight is brought near the rails, in a manner similar to that of the engines. By this arrangement larger wheels than usual may be employed with safety; the weight of the load which the tender carries being brought much nearer the rails, whereby the oscillation is in great part prevented.

The fourth part of the invention relates to improvemente in mounting the wheels of railway carriages,-the railway axle being composed of two parts, one being solid and the other tubular. The solid axle is made to carry one of a pair of wheels, and the tubular axle, which is slidden over the solid axle, or otherwise placed over it , receives the other wheel. The advantage of mounting wheels in this manner is, that they will be allowed to turn independently of each other. In applying the improvement to axles, as now constructed, one boss is turned down, and a collar merely is left; the axle is then coated with "Paris white," or other suitable substance, and afterwards heated in a furnace to a dull red keat. When in this state a tube or hollow axle is cast around it,-the ends of the hollow tube being inclosed between the boss and the collar of the inner axle. On the contraction of the metals, the inner and outer axles will, by reason of the intermediate filling suhstance, be enabled to revolve independently of each other, but will be in no danger of separating, as the collur keeps them securely together. When, therefore, the wheels are respectively secured in their places by the ordinary means, they will be free to revolve independently, and be as little liable to derangement as if mounted on one solid axle.

SANITARY IMPROVEMENTS IN THE SEWAGE.

(With Engraeing, Plate V.)

The importance of the sanitary question increases every day, and the large extent of works which will evidently be carried out to obtain a perfect system of sewage make it of great consequence to engineers to be well informed of the most approved modes of construction. For this reason we have given copious extracts frum the evidence of Mr. Austin and Mr. Phillips, before the Metropolitan Sanitary Commission, and to which we beg leave to direct the particular attention of the profession.
H. Acstin, Esq, C.E., at the request of the commissioners made a survey of the Surrey and Kent district of sewers, and gave the following evidence relative to the fat district of Lambeth, the Borough, and Rutherhithe, as shown in the plan, fig. I, Plate V.
"There is little doubt that much improvement might be effected in the present system of sewage, but it could only he carried out 3 vast expense; and to extend this system over the whole district, so to to render it general and complete, even under such improved srrangements, would not only be ruinous in cost, but the great evils after all would only be lessened, not removed. With a district so situated, nearly flat, and for the most part several feet under bigh-water mark, an attempts at providing an adequate natural drainage, direct into the river, must end in failure. Do what you will, it must be a ceaspool system still. A small additional current of two or three feet may certainly be obtained in some cases by lowering the outfalls to low-water mark, but the advantage of this, carried over a distance of two miles or more, would scarcely be appreciable, and could be carried out only at immense expense. It appears to be absolute that this artificial state of things should be treated artificially, and mechanical appliances brought to bear to lifi and discharge the refuse constantly as it is produced. Intermittent drainage is somewhat more barbarous than intermittent water supply. It does seem extraordinary, that with the steamengine applied in almost every useful relation of life, its adaptation to this great purpose for the relief of flat districts of towns of its refuse and water should never have been attempted. It was very metisfactory to me to find, on proposing the system to Mr. Chadwek, that the ides of its practicability had already been impressed on his own mind, from observation as to the efficiency and small ecpense of pumping, for the purpose of agricultural drainage. We have ample experience as to the facility with which refuse may be panped, in its application, in several instances, to agricultural parposes. It ouly remains a question as to the best arrangement of the drainuge to realise the object in the most efficient and economical manner.
The district to be drained should be apportioned into convenient mections or divisions, the drainage of which would be totally independent and distinct, converging to the centre of each division with any desired current, and from these centres the liquid would be raised by steam-engines, placed at any convenient point in connection with them by pipes. The skeleton plan (fig. 1, Plate V.) of the populous part of the Surrey and Kent district will best exphain my meaning, it being understood that the divisions of the district there represented, the position of the centre points or Fells, and the situation of the engine power, are only assumed for the purpose of illustration, without at all presuming that they would be the most desirable to adopt. These are matters, the correct determination of which would demand much consideration and sudy of local circumstances and arrangement. Beyond the consideration of these circumstances, the extent of each division would be limited only by the amount of fall that it would be neossary to preserve to allow of a certain maximum size of drain, and the depth of digging that might be thought desirable.
The most important consideration appears to be the size and material of the drains, and I have founded my calculations on the beais that the maximum size of the main outfall drains should not exceed a dimension that would be conveniently manufactured in pottery clay, so as to allow of the establishment, throuyhout, of a complete syetem of pipe drainage rather than of brick severs. I therefore fix the limit of the largest drain at 2 feet diameter, that being a practicable size to manufacture. Taking then a perfectly flat cres-which is the worst case for calculation-assuming a total fall of 15 feet from the extreme points to the centre, upon an area of half of a equare mile or 380 acres, this will give a current of 1 in 250 as a minimum, and a 2 -feet drain, with that fall, will be more than sufficient to discharge the whole refuge of the densest popuLation upon that extent of surface, with an improved constant supply of water of 100 gallons per day per house. With such arrangementas there would have to be discharged from each division of
half a square mile nearly one million gallons per day; but as hy far the largest quantity is used in the busy time, from nine to one o'clock, I calculate a capacity sufficient to discharge the whole quantity in that time.

It would be essential that these drains should be capable of removing also the whole external refuse of the atreets and housew. I assume, therefore, that the system should be capable of accommodating a fall of rain equal to an inch and a-half in 18 hours, a good soaking quantity that would soon cleanse the whole surface of the streets and honses, and convey away the refuse. This amount being added to the house supply of water, the total quantity produced at such times in each division would be 200,000 cubic feet per hour.
The only question for consideration as to fall, would be to fix a safe limit for the tutal inclination of those continuous lines of the drainage that would have to convey the water from the extreme points to the centre. Having decided upon that, the rate of inclination should be graduated from one end to the other; because the accelerated velocity of the stream, as it would approach the centre outfall, would admit of considerably less inclination of the drainage than at the commencement; or, on the other hand, would admit of a great reduction in the size of the pipes. All the collateral or intermediate branch-drains, it will be seen, would have so considerable an amount of fall, as to afford the opportunity of putting them all in of a very small size.
The engines may be fixed in any spot most convenient and advisable, and there need be only one pumping establishment for the whole district (as shown in the skeleton plan, fig. 1), to which main pipes would lead from the several centre wells, precisely as would be practised in raising so much water from a well at a distance. From the engines, one or more discharge-pipea, to convey the whole refuse, would lead to the most convenient outlet in the river, as shown by the double dotted line. The arrangement here submitted would offer this great advantage, that the pollution of the whole southern bank of the river would at once be avoided, as the liquid refuse could, with equal facility, be discharged at any spot lower down the river, where no inconvenience would arise from it. By-and-bye, when the public mind is brought to appreciate the value of this material, and to apply it to its legitimate purpose, instead of throwing it away, there would be nothing more required than to lay down the distributing-pipes from the engines in the direction of the demand. The discharge pipe would then serve its proper purpose of a waste-pipe into the river, when the supply of the liquid exceeded the demand for it, or it would lead into depositing reservoirs

I calculate that it would be necessary to provide four times the amount of steam power for the removal of the refuse during wet weather that would be necessary on dry days, and this is the very amount that would prohably be necessary to raise the refuse the additional height required for its application to agriculture. Thus, in wet weather, when there would be no demand for the sewage manure, the whole power of the engines would be employed in raising the greater quantity of liquid sufficiently high only for its discharge from the district; and in dry weather the full power would be engaged in raising the smaller quantity the additional height necessary for its intended application to agriculture. The system would so work together very satisfactorily as a perfect whole.

The cost of this improved system of drainage will not amount to more than one-fourth of the system now pursued in the Surrey and Kent district. This commission has recently given notice of the intended execution of works, involving an outlay of $£ 100,000$, to be expended in a few main lines of drainage, which, for the real and important purposes of sewerage-the removal of the liquid refuse from the houses-will be of no earthly benefit to the inhabitants, but will serve only to obstruct future improvement; whereas the outlay of this amount on the plan proposed would actually suffice for the construction of the entire street drainage, including every court and alley, of more than one half of the most populous part of the district comprised within an area of four gquare miles immediately south of the river. The perfect drainage of the most crowded district on this system would cost on the average $\& \&$ per house, with an annual charge of 28 . per house, for annual expense of engine power. To repay in 30 years, with interest, the whole cost of the public or street drainage, together with complete private or house drainage, with stone-ware watercloset basin, and including the above annual charge for engine power, would involve a rate of 78 . per annum, or about a third of the annual cost of emptying a cesspool, where at all decently kept."

Mr. Puillipg, C.E., gave the following evidence as to the system of sewage adopted by him :-
"Solidity of execution in construction, economy of materials and labour, combined with strength to bear the lateral and vertical pressures of the ground, and efficiency in affording the best channel for quickly conveying away the sewage, are the essential requisites for a sewer. The circle affords the most capacious area of all plane figures having the same circumference, and conversely its circumference is less than any other figure of the same capacity. It, therefore, supplies the greatest capacity for receiving the water, with the smallest frictional surface, and the least consumption of materials. As regards strength: when the pressure from the ground around a circle is the same, it is equally distributed throughout the entire thickness composing the arch; for, as the extradosal length is greater than the intradosal length, the arch is necessarily made up of a series of wedges all pointing to the centre of the circle; hence the circulnr form prevents the earth outside of it from forcing it in, and from disturbing it, provided the pressure be equal, while upright walls in the same circumstances would most probably be unable to withatand the pressure.

The removal of sewage and prevention of deposit of matter in sewers are entirely dependent on the quantity and valocity of the water running through them. In order therefore to keep them well washed out and cleansed, the utmost scouring force should be imparted to the streams. A semicircular, or still narrower and deeper-curved channel of a semi-elliptical or catenarian form, concentrates the flow on a small area of friction, heaps it up, and so increases its velocity, and makes it more powerful in lifting, holding in suspension, and carrying away all matters which may find their way into the sewers, than a wide and flat channel. A sewer, therefore, having an arched crown, curved side walls, and a narrow and deeply-curved bottom, which, combined together, give the shape of an egg with the small end placed downwards, is, in my opinion, the best and most efficient form for all branch sewers. It would appear however from what has been stated, that the circle, from having a more capacious area and less rubbing surface than any other figure, is the best shape for all sewers. But this is not the case; for although the surface of contact of the egg-shaped sewer is somewhat greater than a circle of the same area, yet by contracting the channel and so raising the height of the stream, the ratio of velocity and consequent power to scour is increased thereby, as will be evident on experiment being made. It is the prerogative of the egg-shaped sewer, therefore, to combine in its form, capacity, economy, strength, and efficiency.

For the short collateral branches of the sewers in street, courts, Nc., the mmaller they are, (provided they be large enough to receive and carry off storm waters in addition to the ordinary run), the less chance will there be for them to choke up. In the course of my experience I have examined hundreds of drains, and I have always found small drains and sewers which had a moderate fall, and anything like a good supply of water, quite clean and perfect in that respect. I anticipate, indeed I confidently entertain an opinion, that with a combination of the water supply and a tubular system of sewerage and house-drainage, the whole of the annoynuce now experienced by the public from defective drains and sewers may be made to cease.

If constant currents of water be carried through the drains and sewers, though the currents may be small, yet provided they be constant and concentrated on very narrow and smouth bottoms, they will keep the sewers clean. Where the supply is intermittent, the matter discharged from the house-drains, meeting with no current, accumulates. In order to prevent deposit in drains and sewers, there must be a certain degree of velocity and force given to each current, so as to produce agitation equal to, or rather greater than the vis inertia, or weight, mass, figure, and superficies, of the sand, silt, mud, and other substances, to be lifted, and kept always moving, or united and incorporated with the running water, added to the friction of the bottom and sides of the channel.

The chance of any sewer keeping itself clean is dependent on four things,-namely, its capacity, its form, its fall, and the quantity and force of the water running through it. It is only from observation and experience, and the application of rules deduced therefrom, to the proportioning the capacity, the form, and the fall, us also the quantity and force of water requisite to prevent deposit, that we can hope to arrive at perfection in sewerage. From observation and experiment, I find that it requires a constant velocity of current to be running through the sewers equal to about $2 \frac{1}{d}$ feet per second, or 19 mile per hour, to prevent the soil from depositing within them.

There is less water running in the sewers on Sundays than on
other days of the week; and most on Saturdays. The height of the flow every day goes on increasing from an early hour in the morning until about noon, when it is highest; it then gradually subsidea to its lowest level. The period of the greatest flow every day is botween 11 a. m. and 1 p. m.
The fall of sewers should be proportioned to the quantity of water that is to pass through them. For, with the same fall, the greater the body of water the greater will be the velocity and scour ; and conversely, the less the body of water the lese will be the velocity and scour. Again, a large body of water will, with a little fall, run with the same velocity as a small quantity will with a great tall. Hence the recipient of many branch sewers may have less fall than the branches themselves. A fall of a quarter of an inch in 10 feet has been considered the least fall that should be given to branch and summit-level sewers; but this fall is not enough to keep the sewers clean. No; such sewers should, in my opinion, have not less fall than half an inch in 10 feet. In some districts it is found impossible to get even so much fall as a quarter of an inch in 10 feet. In districts where proper fall cannot be obtained, it is necessary to resort to flushing to keep the sewers free of deposit and clean.
When a main stream receives a branch stream, the united body of water causes the height of the main stream to increase, consequently the surface rises somewhat higher than the surface of the divided atreams; hence the water flows back, producing deposits of heavy substances about the junctions, which deposits draw beck and impede the flow of the two streams. Now, th order to remedy this evil, the bottom of the main sewer, immediately below the junctions should be made some inches deeper than the bottoms above the junctions. By this mode of forming the bottoms, the surface of the main and branch streams will have a uniform inclination, and the acceleration of this fall will prevent regurgitation and deposit, and the united streams will flow onwards with increased speed.
In order to determine the depth below the junctions, it is necessary to calculate what height the body of water falling from the branches will increase the stream in the main. The capacity of the united stream is very much less than the sum of the capacities of the divided streams, and the velocity in the former is considerably greater than either of the latter. The ratio of increase of velocity follows the ratio of decrease of capacity. It follows, therefore, that a gradually accelerating velocity takes place immediately below the confluence of the sewers throughout the ramified system from their sources to their outfalls, and such I have found to be the case.

Egg-shaped sewers, varying in capacity according to the area, the number of houses to be drained, and the quantity of water to be discharged, from 9 inches wide by 1 ft .3 in . high, to 1 ft .6 in . wide by 2 ft . 6 in. high, would suffice for sewers on summit levels, and also for branch or collateral sewers which had to receive the drainage of from one to twelve or more ordinary-sized streets. Of course the secondary mains which would have to carry off the water from these branch or collateral sewers, as well as the principal main lines into which the secondary ones would dischasge themselves, must be larger in proportion; but under a proper arrangement, fewer principal lines would be required.

Instead of discharging a large body of water uselessly, as to any power of sweep, I would, under the system of constant and concentrated supplies and smaller sewers, economise the water by using it to scour several small sewers instead of one large one. For this reason I would prefer having more outlets, or at least more catch-water sewers, instead of discharging all the drainage by one large main sewer throughout, although at or near the outlet, I might probably be obliged to lead the whole of the water into one main line; but I should not like to part with it into a main line until I had made it serviceable in sweeping as many sewers as possible. As the keeping of all sewers thoroughly washed out is necessarily dependent upon an abundant supply of water, the principle which I have thought it best to follow for that purpose is to tie and connect all the sewers together upon a uniform system of levels so as to use the water running along sewers on high levels for washing out those on low levels. For this purpose, as will be seen by the plans, (Plate V., figs. 2, 3, and 4), 1 wonld connect the heads of adjoining sewers below with the superior sewers above them, and arrange the connections so that, as the currents of water running along the latter sewers arrive opposite the connections, they may divide and subdivide themselves by the ridges or groynes formed by the meeting of the inverts. By this means the water would traverse from one sewer to another, and so keep up a perpetual flow throughout the entire system. There can be no doubt that with much smaller sewers than those now in
use, and a more regular and abundant supply of water, the sewers voald, by this system of arranging them and economising the carrenta, keep themselves thoroughly clean.

All head sewers, from want of backwater, have a tendency to choke up, and their ventilation is also very bad, consequently there chould be as few of them as possible.
The general ourface of the metropolis, on the north side of the Thames, is moet admirably situated for being efficiently drained, athe ground continues to rise with an easy acclivity from the river to the bills some miles to the northward. The surface is divided into several natural areas, each of which has its main outfall sewer menning through the lowest level of the valley, and discharging into the Thames, and into these main or valley sewers the whole of the sewern on the sides of the declivities discharge themselves. This mode of drainage is a very objectionable oue, and should never be resorted to if it be possible to avoid it. The declivities of all natural areas are generally in two directions, namely, transversely towards the valley line, and longitudinally towards the ontfall. Now if attention be paid to the levels, and the sewers on the sidea of the declivities be judiciously arranged, a perpetual arculation of water may be kept flowing throughout the whole of them from the sewer on the summit at the head of the natural area to the outfall in the river; that is to say, a system of collateral or concentric sewers should rise one above another from the valley line to the ridge or water-shed line of the district; each collnteral sewer skirting the entire area, and discharging itself into the river by a separate outlet, or in the manner previously refarred to. It will be seen that, when the sewers running transversely are connected at their upper and lower ends on the same levels with those ranning longitudinally, a facility is afforded for the drainage to circulate from the highest sewer to the one immediately below, from this to the one next lowest, and soon throughout

Mr. Phillips proposes fourteen graduated forms of branch secandary and principal main lines of sewers of the egg-shape for the drainage of a district in which the sewers and the water supply are under one and the same authority. Fig. 13, Plate V., shows the form of one of the sewers together with the radii of the several earves.

No.	Height.	Widtb.	No.	Beight.	Width.
1	$\begin{array}{cc}\text { f. } & \text { fo. } \\ 6\end{array}$	$\begin{array}{cc}\text { f. } & \text { in. } \\ 4 & 0\end{array}$	8	${ }_{3}{ }_{3}$ in.	fr 2 tn.
2	63	39	9	34	20
3	510	36	10	211	19
4	35	33	11	26	16
5	50	30	12	21	13
6	47	29	13	18	10
7	42	26	14	13	09

Mach caution is required in the building of sewers in a clayey soil; otherwise, from the treacherous character of this groundits liability to expand and slip,-the sewers may be forced in. The thickness of a eewer should be proportioned to the nature of the ground and the pressure it has to bear ; but its stability is very much dependent on the goodness of the workmanship. A halfbrick eewer, under ordinary circumstances, will, if executed well and soundly, the joints made thin, and the sewer worked true to the carve, be quite strong enough, and would be found to answer every required purpose. The thicknesses depend upon the material and strata. The equilibration may be altogether destroyed by a want of uniformity in the working of the curve. The greatest pressure of the ground acts laterally from the sides downwards. Wuch of this pressure may be prevented by leaving in the trench from the surface downwards short lengths of earth, say of 10 to go feet, and about 50 to 80 feet apart, to be tunnelled through for the sewer to pass. These benchings, as they are termed, will keep the sides of the trench from sinking and slipping, and so from pressing against the sides of the sewer.

The smoother the surface the less will be the friction, and consequently the greater will be the velocity and discharge; and the friction in a glazed pipe must be considerably less than in a brick drain, as commonly built. I am not prepared to say that the friction would be diminished so much as one-third; I think not so much. The moothent glass pipes throw of transverse motions which greatly impede the flow. There is a difference in the flow of pure clean water and of sewrage water; the latter moves more aluggishly. This is caused by its being thicker and more viscid,
from having matter chemically combined and mechanically sus pended in it.

As the velocity increases, so does the transverse section of the area occupied by the stream decrease. This is a natural law observable in all moving streams, for we see that in a moving mass of water the discharge is the same, whatever form and size the channel may assume, the velocity being greater where the channel is narrow and deep, and less where it is wide, flat, and irregular; but the exact ratio of decrease of area, from decrease of friction aud increase of flow, can only be determined by actual experiment and by taking into account all the attendant circumstanees which influence and govern the motion of the stream.

Have you at all considered the capacities of sewers necessary for draining different areas of ground ?-Yes, I have given the subject much attention. If the consideration of the size of sewers was confined solely to the carrying off the water supplied by the several water companies, then I apprehend that pipes somewhat larger in size than the supply-pipes themselves would suffice; but provision has to be made for receiving and conveying away the waters of heavy rains. In London continuous heavy falls of rain are not of long duration, lasting seldom more than from one to four hours. About one-fifth of the quantity that falls is absorbed partly by the dryness of the surface of the roofs, the paving, and the ground, and partly by the porosity of the ground itself. A farther proportion is also prevented from flowing to the drains and sewers at all by hollows in the surface, and again reascends into the atmosphere as vapour. There is also a small quantity that enters into the composition of animal and vegetable bodies. Then there is the resistance the flow experiences from the friction of the entire surface, being accelerated or detained in proportion as the surface is more or less inclined. To provide for the discharge of a fall of rain of two inches in depth has been considered by Mr. Hawkaley, C.E., the extreme datum upon which to proportion the capacities of town sewers generally. Now I believe that, practically, the sizes in his table, although they may appear theoretically correct, are (excepting for the smallest sizes) too large for sewers in London. It is extremely violent rains alone that produce a depth of two inches per hour, and such rains occur only once in four or five years, if so much. I am of opinion that it is unnecessary to proportion the sizes of the sewers to meet an extraordinary occurrence that may probably happen only once in so many years.. My reason for not fearing any serious damage from an excess of rain at remote intervals being provided for in surface channels, excepting, perhaps, in situations peculiarly liable to inundation (for instance, at the foot of a long or steep declivity, or where the waters may, from any cause, be suddenly congregated at one focus) is, that l have observed, that in towns entirely destitute of underground drains, no such inconvenience is felt as would justify the formation of enormously large sewers, or the expenditure of large sums of money to provide against it. In August 1896, a most extraordinary fall of rain occurred in London. The storm lasted nearly two hours, and from the best information I have been able to obtain, the depth of rain amounted to about four inches. Much damage resulted therefrom, by the water in the principal main lines situate in the valleys flowing up the drains and branch sewers, and inundating the rooms and cellars below its level by the influence of its pressure. The inundation of lands and the damaging of property in the valleys could not happen if there were parallel catch-water lines of sewers on the sides of the declivities to convey the drainage into the river by separate outlets. The average fall of rain in London is about 22 inches in a year, or about $2 \frac{1}{d}$ inches in depth per thousand hours. Now after observing and calculating the depths of different falls of rain in London, it appears to me that if the sewers were of sufficient capacity to receive and discharge, as fast as it falls, a quantity of water equal to the produce of a full of rain of one inch in depth per hour, they would be found large enough, and that more particularly if they were built on the intercepting or catch-water principle, and so as to communicate with each other, and all be filled with running water at the same time. The steps to be taken to proportion the capacities of sewers to receive and convey away the waters of heary rains should, I think, be as follow, although I fully admit our present knowledge of the subject to be very elementary :-

To ascertain the number of superficial yards or acres to be drained by each sewer separately ; progressing in a uniform gradation from the entire natural area to be drained by the largest outfall sewer, to the small tract of land to be drained by the least sewer on the summit. Taking the hourly fall of rain, therefore, upon one acre at one inch in depth, we must provide for the discharge of a quantity of water ($4 \frac{9590}{18}$) $=3630$ cubic feet per hour, or one cubjc foot nearly per acre per second. Then taking into account the loss
from absorption, the detention from friction, and otherwise, that quantity might be reduced to four-fifths of a cubic foot, but as the carrying off the waste water of the entire of London must be provided for at the same time, one cubic foot may, I think, be considered as the datum upon which to calculate the capacities of sewers sufficient for conveying away that quantity of water per second multiplied by the number of acres to be drained. The quantity of rain-water draining from an acre of ground in one eecond of time may be determined by first ascertaining the exact area of surface drained by some large main sewer; and, secondly, during the time of the storm, the quantity of water passing through the sewer in one second; then the number of cubic feet of water discharged, divided hy the number of acres drained, will give the number of cubic teet of rain draining from the surface of each acre per second.

The area of surface that a sewer will drain, and the quantity of water that it will discharge in a given time, will be greater or less in proportion as the channel is inclined from a horizontal to a vertical position. The ordinary or common run of water in each sewer, due from house drainage alone, and irrespective of rain, should have sufficient velocity to prevent the usual matter discharged into the sewer from depositing. For this purpose it is necessary, as 1 have previously observed, that there should be in each sewer a constant velocity of current equal to $2 \frac{1}{2}$ feet per second, or $1 \frac{3}{4}$ mile per hour. The inclinations of all rivulets, brooks, streams, and rivers gradually and proportionally diminish as they progress from their sources to their outfalls. In proportion as the inclinations diminish so does the quantity of water increase. If the inclinations were the same throughout, the velocity of the united stream at each confluence would increase in nearly the same ratio as its quantity, or equal to the sum of the previous velocities of the recipient and the feeder, and thus would the velocity ultimately become so very impetuous as to tear up and sweep away the materials of its bed, and cause destruction along its banks. If the force of the waters of the river Rhone were not absorbed by the operation of some constant retardation in its course, the streqm would have shot into the Bay of Marseilles with the tremendous velocity of $\mathbf{2 4 0}$ feet in a second, or 164 miles every hour; and even if the river Thames met with no system of impediments in its course, the stream would have rushed into the sea with a velocity of 80 feet per second, or $54 \frac{1}{2}$ miles in an hour. The result, however, of the operations of nature is a compensation for the increased body of water by a diminution of the inclination of the bed, and so an economising of the force of the gradually accumulating current. The inclinations of the sewers of a natural district should be made to diminish from their heads to their outfalls in a corresponding ratio of progression, so that as the body of water is increased at each confluence, one and the same velocity and force of current may be kept up throughout the whole of them.

In some situations I would build side entrances to a tubular syetem of sewers; but I believe their use, in some degree, might be superseded. Means of access to the sewers, so as to be able to get at and remove accidental obstructions, would readily suggest themselves. A shaft, having a strong moveable grating on top, could be built over the sewer, with ladder-irons built in the angles, to admit a man to go down and up, with a recess at the bottom on one side to give room. This shaft may be also made to serve as a ventila tor. (See figs. 5 and 6, Plate V.)

Gully Drains.-I have constructed gully drains with terro-metallic and glazed stone-ware pipes of 6 inches and 9 inches diameter, as shown in figs. 7, 8, 9 , and 10. I was led to recommend the adoption of this mode of construction from the following causes :In passing through the sewers I found lying opposite the vents of a large number of the gully drains heaps of stones, and all kinds of streets refuse, which it was utterly impossible for the water to remove. The dams thus formed caused the sewage to accumulate behind them, and the noxious effluvia evolved from the decomposing matter escaped into the streets by the gullies, and occasioned much of the annoyance felt by passengers. The best remedy for this evil appeared to me to be to prevent the stones and street refuse from passing into the sewers, t build the drains so that they would not choke up, and to prevent the emission of foul air from the sewers into the streets by the gullies. We have accomplished these things most perfectly, by reducing the width of the spaces to $\frac{3}{4}$ inch between the bars of the gully grates, by constructing the drains of the form shown by the section from the gully to the cewer, and by fixing at the vent an air-tight cast-iron valve or flap, hung with shackles, as shown in figs. 11 and 12. A grating of trellis-work or cullender is placed under the top grating, at the bottom of the box, for the purpose of catching small stones and rubbish that may pass between the bars of the grate above, and so
to prevent them from falling into and choking up the sewera I have not, as yet, made use of the lower griting, but probably, I should be induced to do so in connection with a tubular system of sewers, as it is important to keep large and heavy substances and refuse out of the drains and sewers. I may state that as a proof of the efficacy of the foregoing mode of constructing the gully-drains with the improved grate, the labour and expense of cleaning, not only of the gully-drains, but of the sewers as well, is now, comparatively speaking, nothing compared to what they used to be, and I confidently entertain an opinion that the labour and expense will be still less and less."

Mr. Phillips has just produced his report on the improvement of the drainage of Westminster, and which has been printed. This document is of great importance, and we are pleased to see that most of our suggestions on this subject have been adopted, particularly with reference to turning part of the drainage into the Regent Street Commissioners' Sewers. Mr. Phillipe proposes to divert the high level streams to a station at the east end of Dun-cannon-street in the Strand, to bring the Westminster drainage to the same station, and to apply the natural power thus to be obtained to work two water-wheels of the most approved construction, with revolving buckets and plunger-pumps attached, to lift the drainage from the well or receiving reservoir below, and discharge the same into channels communicating with the upper stresm on a level with high water, beyond the tail of the wheels. The sewaye will then be carried under the side-bed of the river into low-water stream.

Below we give a summary of Mr. Phillips' estimates, which make a total of $£ 28,874$ 148.

Summary of the Estimates.

Feet Run.	$\begin{gathered} \text { Clises } \\ \text { No. } \end{gathered}$	Internal Diameter.	Sectlonal Area.	Price per Foot.			
8,118	1	$\begin{aligned} & 1 \mathrm{n} . \\ & 50 \end{aligned} \frac{10}{}$	$\begin{gathered} \text { feet } \\ 8 \cdot 19 \end{gathered}$	14 d.	$5,682$	12	d.
4.524	2	40×24	$5 \cdot 23$	100	2,262	0	θ
2,086	3	30×18	$3 \cdot 64$	60	625	16	0
9,599	4	20×12	$1 \cdot 31$	46	2,159	15	6
18,709	5	$17 \frac{1}{2} \times 101$	1.	40	3,741	16	0
53,284	6	15×6	0.73	33	8,658	13	0
7,699	7	12×71	$0 \cdot 56$	26	962	17	6
9,742	8	9×6	029	20	974	1	0
113,761	(-4s. 5d. per foot run, nearly.)				$\mathbf{8 2 5 , 0 6 7} 14$		

Estimate for building a Gully Deain, average length 20 feet.

About 400 Gully Drains will be required, which at, say 21. each, amounts to $£ 800$ 0 0
Eatimate for building a Sewer along Pall-Mall-East, Trafalgar-square, Dun-cannon-street, Strand, and Villiers-street, for diverting the Western and Eastern branchea of the Hartshorn-lane Main sower, -being a length of 2,230 feet, at 18s. per foot 22,007 0 0
Estimate for Two Water Wheris, with completo Lifting Machinery attached, and including all neceasary work.

reprrence to engravings, plate v.
Fig. 5.-Sectlon of Shath on A A.
Fis. 8 .- Plan of Shart.
Fig. 7.-Section of Gully Draln from Grating to Sewer
Fis. 8.- Pien of Gully and Grating.
Pig. 9.-Transrerse section of Gaily and Grating on A B.
Fig. 10.- Longltudinal Seution of Gully and Grating on C D.
Fig. 11.-Section of Draln and Flap at Vent.
FIE. 12.- Front View of Plap.
Fis. 13.-Mode of Strikiag the Curve.

Fig 2.
Fig 3

Fig 4.

Fig 10

B

Fig. 7
$4_{100 \mathrm{r}+1}$ and

Fig 5
ROADWAY

Fig 11

Fig 13

ON THE MOTION OF WATER-By Goido Gbandi.

Transhated by E. Cresy, Esq., in his Evidence before the MetropoLitan Sanitary Commissioners.
Our author has taken considerable pains to construct a parabolic table, given in his work (Book \&, cap. 5); by a reference to which much labour will be saved by those who desire to make similar investigations; he thus describes it:-
"This table is divided into three columns. The first containing a natural series of numbers from 1 to 1800, representing equal parts, as inches or other measures. These numbers are the heights from which the water falls. The second column contains the roots of the opposite numbers in the first, and expresses the velocity of the water, corresponding to the height in the first column, in integers and decimals: when the root is somewhat greater than the truth, the sign + is prefixed, and when less -. The third column contains the product of the first and second, and must be read off as exceeding or falling short of the truth, according as the sign + or - is prefixed to its second factor.

It is clear that if the numbers of the first column express the height of a parabola, the numbers in the second will be its ordinates when its latus rectum, or parameter, is 1 ; or at least, they will be proportional to the ordinates in subduplicate ratio of unity to the latus rectum of a given parabola, and the numbers in the third column will be the rectangles circumscribing the parabola which has unity for its latus rectum, and will be moreover proportional to the area of the parabola, which is always f rds of the circumscribing rectangle.

If the parabola has 24 for its latus rectum in terms of the first column, all its ordinates are to the ordinates of the parabola of the same height, having 1 for its latus rectum, in subduplicate ratio of $2 \frac{1}{4}$ to 1 , that is, as $1 \frac{1}{2}$ to 1 , or as the circumscribed rectangle to the parabols, it is clear that the parabola whose latus rectum is $8 \frac{1}{\text { w }}$ will be equal to the rectangle which circumscribes the parabola whose latus rectum is unity; but such a rectangle is equal to the product of the base by the height, which is the number opposite in the third column, therefore the numbers in the third column express the area of a parabola whose latus rectum is $2 \frac{1}{4}$, and is proportional thereto when the latus rectum is any other quantity.

Moreover, since the numbers in the first column express the height of water standing in a vessel, or the distance of each particle of running water above its base, and the numbers in the second column representing the velocity caused by such a height, the numbers in the third column express the quantity of water which will issue through such a width in a given time, through a hole or section whose height would be equal to the whole distance from the surface of the water or origin of the river, and the base of such a section as the number in the first column.

The difference of numbers of the third column will be the quantity of water which escapes in an equal time through a hole or section of equal breadth, and of a height equal to the difference of the corresponding numbers of the first column.

By adding two or more numbers together of the third column we shall have the sum of the quantity of water carried in a given time through several canals of the same width, whose sections correspond to the numbers of the first column; and in the aggregate of such numbers, or the nearest thereto, in the third column will correspond to that number in the first, which indicates a height capable of comprising the channels united, as will be better understood by the following examples:-
1st. Given two streams, the breadth of the first of which is $L=$ 760 feet. The velocity of the surface B E corresponding to the fall AB of 1 foot (which, according to Guglielmini's table is equiva-

lent to 216 feet 5 inches per minute, that is, $3 \frac{8}{5}$ foet in a second, or q $_{\frac{x}{s}}$ miles per hour), the height of the surface $\mathrm{B} \mathbf{C}=30$ feet, whence AC 31 feet; then the whole parabola A E D C, according
to the third column of our table opposite 31 feet, will be found $7175 \cdot 88$, from which subtracting the parabola $A E B$, which is found in our third column to be $41 \cdot 59$, the parabolic trapezium B E D C will be 7134.36, and this will be the scale of the velocity of the section $\mathbf{B C}$, which multiplied by the breadth L gives a quantity of water $=\$ 42211360$.

The second stream having a width $M=139$ feet, its superficial velocity will be $G K$, depending on the height F. G, 8 inches (which gives, by Guglielmini's table, a velocity of 176 feet in a minute, rather less than 3 feet in a second, and 2 miles 56 perches in an hour). The height of its surface $\mathbf{G} \mathbf{H}$ is 11 feet, and consequently FH 11 feet 8 inches, corresponding in our third column to the value of $1656 \% 0$ for the parabola F K I H, from which subtracting the parabola $F K G$, which our table gives opposite 8 inches as $22 \cdot 64$, there remains the trapezium G K I H 1633.56, which is the scale of the velocity of the second stream, which, multiplied by the width M, gives the quantity of water passing in a given time through this river $=227064 \cdot 84$; whence the two quanties carried by both the rivers will be $5649178 \cdot 44$. Supposing they flow together, without increase of velocity, $\mathbf{B E}=\mathbf{O R}$; and let the height $O \mathbf{P}$, at which the united water runs, be the unknown quantity, then since $O N=B A$ through R, and with the axis N P, describe the parabola NRQP, the truncated parabola OR'QP will be the scale of the velocity of the united rivers, which multiplied by $L=$ the sum of the two quantities $=$ $5649178 \cdot 44$, which divided by L gives a quotient $7433 \cdot 13=$ the parabolic trapezium $O R Q P$, and adding the parabola NRO= 41.52, we shall have the parabola NRQP $=\mathbf{7 4 7 4 . 6 5}$, the nearest number to which in the table is $7464 \cdot 28$, corresponding to a height of 31 feet 10 inches. 'This number sought being rather more than the tabular value, it will be found by proportional parts that $\frac{1}{3}$ must be added. Therefore $\mathbf{N P}=31$ feet $10 \frac{g}{g}$ inches and $\mathbf{O P}=$ 30 feet 10 f inches; therefore the union of the streams raises the level B C $10 \frac{1}{3}$ inches.

But if, at the conflux of the rivers, the velocity \mathbf{B} augments, becoming $O R$, so that the height $N O$ depending on it exceeds $A B$ by 1 inch, the parabola $N O R$, corresponding to a height of 13 inches, will equal 46.93 , which, added to the trapezium $R \mathcal{P Q}$, found previously to be $7433 \cdot 13$, we shall have the total parabola NR QP $=7480 \cdot 06$, the nearest number to which, $7464 \cdot 28$, corresponding to 31 feet 10 inches; but since this is rather too little, we must add $\frac{1}{2}$ for the proportional part of the difference, whence $\mathbf{N} P$ $=31$ feet $10 \frac{1}{4}$ inches; from which $\mathrm{NO}=1$ foot 1 inch being subtracted, there remains $O P=30$ feet $9 \frac{1}{2}$ iuches, making the total increase in this case $9 \frac{1}{2}$ inches.

But if we suppose with Guglielmini, and which is not Improbable according to actual observation, that the scale of a velocity in a given section is an entire parabola and not a truncated one, the velocity, as in the case of vessels depending only on pressure, whence the surface alone acquires velocity when it is communicated by the lower water which transports it, the calculation will then be more quickly effected. Wherefore AC $=30$ feet, the height of the first river, and $F H=11$ feet, height of the second. The parabola A E D C = 6829'20, in our table, which, multiplied by the width $\mathcal{L} 70$ feet, gives for the quantity of water $5190192 \cdot 00$, and the parabola $F I H=1516 \cdot 68$, which multiplied by the width $\mathbf{M}=139$ feet $=210818.52$, whence the sum $=5401010^{\circ} 52$, which, divided by the width L, gives, when the velocity of the surface is not increased, the parsbola $\mathbf{N} \mathbf{Q} \mathbf{P}=7106.59$, corresponding to a height of 30 feet 10 inches, corresponding in the table to the number $7118 \cdot 80$, which is rather more than the preceding; wherefore the rise will be 10 inches.

Then if the velocity of the two rivers increases at their confluence, the height will be reduced in the reciprocal ratio of that velocity; so that if the velocity be increased $\frac{1}{10}$, the height will be reduced to $30 \frac{1}{t}$ feet, that is, the increase will only be about 6 inches; if the velocity increases z^{2}, the height will be 29 feet 8 inches; so that the height, in place of increasing, will actually be reduced about 4 inches by the union of the two streams; so likewise the height 30 feet, will remain precisely the same when the velocity is increased by $\frac{1}{\text { y }}$, since $37: 36:: 30$ feet 10 inches: 30 feet.

Example 2.-The influent C B D R in a given point of its bed has the height $O H$, having a free influx into the recipient $R M$, when it is low, and its superficial velocity in H is what would correspond to a height $A \mathrm{H}$ of 4 feet. Then, raising the level $N S$ of the recipient, regurgitation follows through the level of the influent. It is required to find the increase in the height $\mathrm{OH}=7$ feet? Suppose it to increase as far as Q, draw the parabola $A K R$, with its ordinates $H \mathbf{Y}, \mathbf{Q} \mathbf{K}$; let $O S$, cut off by the prolongation of the level of the recipient, $=9$ feet; the whole height $A O$ will
be 11 feet, and by the table the parabola A O R = 151668; the other, A H Y, 4 feet high, will be 332.64; whence the trapezium HYRO will be the scale of the velocity, and the quantity of water passing in a given time through the section $\mathrm{HO}=1184.04$. If the parabola S PO be 3 feet high, its value in the table $=$ $\$ 16.00$; then the parabolic trapezium $\mathbf{Q} \mathbf{K Y} \mathbf{Y}$, being equal to the aforesaid parabola S P O, will be $216 \cdot 00$, which substituted from the total value of A H Y, there remains the parabola A Q K $=116.64$.

This number not being precisely to be found in our table, find the next highest, $=117 \cdot 60$, which corresponds to a height of 2 feet; whence we arrive at the conclusion that the regurgitation at the point U has raised the water 2 feet more than the first, supposed t° be 4 feet."

To facilitate the practical application of the principles contained in Grandi's proposition, the following rules will be found convenient:-

The height and width of the section of both the influent and the recipient being given in each case and their velocity being equal.

1. When the velocity of the united streams is the same with that of each separately, to find the increased height of the united section.

Find in the table the parabolic value in the third column corresponding to the given height of the recipient in the first. Multiply this value by the given width. Perform the same operation for the influent, we shall then have obtained the quantity of water brought down by each. Add these two quantities together. Divide their sum by the width of their united section, which may be either that of the influent, or of the recipient, or greater or less than either. Find the quotient obtained by such division in the third column of the table, opposite to it in the first will be found the height of the united sections.
8. When the velocity of the united streams is increased, to find the height of their united section.
Divide the height found by the preceding rule by the number of times by which the velocity is increased, the quotient is the height of the united sections.
3. When the velocity of the united streams is diminished, to find the height of their united section.
Multiply the height found by our first rule by the number of times by which the velocity is diminished, the product gives the required height.
4. When the height of the united streams remsins the same, to find their increased velocity.
Divide the height as found by the first rule by the original height, the quotient will give the increased velocity.
5. When the height of the united streams is increased, to find their velocity.
Divide the height found by the first rule by the increased height, the quotient gives the diminished velocity.
6. When the height of the united streams is diminished, to find their increased velocity.
Divide the height found by the first rule by the diminished height, the quotient will be the increased velocity.
To exemplify these rules a small table is subjoined, constructed from Grandi's data, that is, supposing a stream 760 feet wide and 30 feet high to receive successively $1,2,3,4,5,6,7,8,9,10,11,12$, similar influents, The first column contains the number of influents; the second, the height caused by the addition of these successive streams as calculated by our first rule, that is, supposing the velocity to remain the same; the third column shows the increased height found by Genneté, the original height, 80 feet, being
 shows the increased velocity requisite to produce the height shown in the third; thus supposing a stream 760 feet wide and 30 feet high to receive two other similar streams, the increased height,
according to Genneté, will be 30 feet $7 \cdot 6$ inches, and to produce such a height the required velocity will be 1.97233 . Either of these numbers is deducible from the other by one of the preceding rules; thus, supposing the height 30 feet $7^{6} 6$ inches to be given, and the velocity to be required, by Rule 5, dividing 62 feet $4 \cdot 6$ inches by 30 feet $7 \cdot 6$ inches we obtain a quotient of 1.97933. Supposing, on the other hand, the velocity $1 \cdot 97233$ to be given, we obtain the height by Rule 9 , since 62 feet 4.6 inches $\div 1.97833$ $=30$ feet $7 \cdot 6$ inches. The fourth column shows the increased velocity required to maintain a constant height of 30 feet, and is found by Rule 4.

It is found that the several increments of either height or velocity are as the ordinates of a parabola whose axis is divided into the same number of parts as there are required velocities. Hence an elegant method of finding the intermediate heights or velocities when the two extremes are given. Suppose, for example, we require to find the several heights indicated in our first column. Find the height required for twelve streams by our Rule 1. Draw A B, and from a scale of equal parts set off 157 feet 3 inches from

A to C, at A erect a perpendicular A D to A B, and set off twelve equal parts thereon, and draw through the points $1,8,3$, \&e., lines parallel to $A B$, on the parallel I E set off the first height 30 feet from the same scale as A C. Then by Rule 1 find the height of any one of the intermediate streams, as 6 , and set it off from 6 to F, then through the points E, F, C, describe a parabola, the portion cut off on each ordinate by the curve will be the several numbers given in the table as measured by the scale from which I E, 6 F, and A C were taken; the abscisse $1,8,3, \& c$., may be set off by any scale, providing they are equidistant, and according as they are wider or narrower, will the parabola increase or diminish its curvature. It is evident that in the case of 100 additional streams the labour of calculation will be materially shortened, as no more than three values need ever be found arithmetically.

In like manner either of the other values shown in our table may be represented parabolically. Column 5, for example, by setting off $1 \cdot 34803$ on $1 \mathrm{E}, 4 \cdot 33793$ on $A \mathrm{~B}, 3 \cdot 04897$ on 6 F , and describing a parabola through those points.

BLACKWALL RAILWAY MACHINERY.

Dencription of the Machinery erected by Messrs. Maudslay, Sons, and Field, at the Minories Station, for working the London and Blackeal Railuay. By Andrew Jobn Robertson.-(Read at the Institution of Civil Engineers).

The London and Blatkwall Railway is about $3 \frac{3}{4}$ miles in length, and is worked by gtationary engines of the eatimated force of 48 H. P. and 980 H. P.," at the London and Blackwall termini respectively: the carriagea being attached by grips to a rope, which is wound off and on to large drums situated at each extremity of the line. The greater power is required at the London station, in consequence of there being a total rise in the railway, in this direccion, of between 60 and 70 feet (average 68 feet) ; the steepest inclination being 1 in 100. There are seven intermediate stations on this line; the Poplar, West India Docks, Limehouse, Stepney, and Shadwell stations, communicate with the Fenchurch-street terminus; whilst those of the Minories, Cannon-street, Shadwell, and Stepney, communicate with the Blackwall terminus. This arrangement is effected by appropriating a separate carriage from the termini for each internediate station, communicating with the came; these are detached whilst the trains are moving, and by means of breaks they are stopped at their respective destinations; es soon, however, as the terminal train arrives at either end of the line, and the rope ceases its motion, these intermediate carriages are attached to the rope, whilst it is in a state of rest; so that when the engines are again started, the carriages are also simultaneously set in motion, and arrive successively at the termini, in the order and at intervals corresponding with the position of the places from which they started; as they arrive they are released from the rope, though in motion, by the sudden withdrawal of the grip iron, and then their momentum carries them forward to their proper places in the station. It will be perceived, that the intermediate traffic is by this means provided for, without causing any detention to the through trade.

The peculiar mode of working the line, and the circumstance of so many carriages being attached to the rope at different places, rendered it absolutely necessary to provide some quick and certain system of signals between the termini and the intermediate atations. These objecta being deemed attainable by means of the electric telegraph, that system was adupted, although it was of greater extent than any which had been previously tried, and it was executed by Mr. Cooke, one of the patentees. The telegraphic wires are inclosed, for security, within welded iron pipes, with acrewed joints like gas pipes; there is a duplicate set of such wires and pipes, in case of one set being accidentally fractured. One pipe runs along each side of the railway throughout its length.
The machinery at the London end, for working the railway, is dituated at the Minories station. The carriages in coming towards London are disconnected from the rope, a little before they arrive at the Minories, and they perform the rest of the journey to the terminus in Fenchurch-street by their momentum. The upward inclination of the rails at this place is 1 in 150 .

When the down-train leaves the terminus in Fenchurch-street, it descends the incline to the Minories by its gravity, where it is stopped ly the breaks, to allow of the passengers being received at that station, and to permit the attachment of the rope; there the train remains for a short time, until signals have been received by the electric telegraph, from each of the intermediate stations, that the carriages are ready for starting, and are properly attached to the rope in the manner already deacribed. It being thus known at the Minoriex that all is ready, the signal for starting is sent from thence to Blackwall; the engines there are then put in motion and begin to draw the rope with all the carriages towards Blackwall.
At the same time that the down-train leaves the Minories, the up-train leaves Blackwall, the arrangements being similar to those above described. The train runs by gravity from the blackwall station to beyond the enyine-house, where it is stopped by the breaks, in order to attach it to the rope, and as soon an signals have been reccived at Blackwall, from each of the interniediate stations, that all is ready, the signal for starting is sent from Blackwall to the Minories, aud the engines there are put in motion, and begin, to draw the rupe and all the carriages towards London. The machinery at the Blackwall end is situated a little way along the line from the terminal station; the distance from thence to the place where the carriages going to Blackwall are disconnected

[^4]from the rope, being somewhat farther from the station than the engine house, and the carriages run that distance by momentum, in the same manner as at the London end; the rise towards the Blackwall station being there also 1 in 150. During the winter the railway is worked from half-past eight o'clock in the morning until nine at night ; and in the summer, from eight oclock in the morning until ten at night. A train leaves each end every quarter of an hour (giving in winter 51 trains, and during the summer 57 trains per day). The whole time occupied in passing between the termini is thirteen minutes; but the engines are at work only from eight to nine minutes. The engine-house at the Minories is situated beneath the railway. It is 48 feet long by 78 feet wide, and the extreme length, into the recess in front of the drums in 69 feet. The rails are carried over the machinery on cast-iron girders, which are supported at two intermediate points by castiron pillars. The flooring over the engine-house is carried in like manner upon girders.
Beneath each line of railway there is a large drum for the rope, and on the axes of each drum is a mortice spur-wheel, which is driven by another iron spur-wheel of larger diameter, on a prolongation of the axis of the cranks of the steam engines; the prolongation forming a line of shafting which extends all across the engine-room, with a pair of engines at each of its extrenities. Only one pair of engines is worked at a time, the other pair being disconnected at the cranks. Under ordinary circumstances, one pair is worked for about six weeks, and then the other pair for a similar period; the object being to secure the traffic from interruption, by having a duplicate pair of engines always ready to be connected at all emergencies and in case of any accident happening to the other pair, as well as to give time for the urdinary cleaning and repairing of that pair of engines which is nut at the tine in use. When one pair of engines is connected to the axis of the two larger spur-wheels, the other part must be disconnected from it. This is done by removing the pin of the crank on the extremity of the said axis, and also removing the drag-link, by which that pin is connected with the pin of the engine-crank, on which latter pin the connecting-rod is jointed. The rope on one line must be wound up round its drum, whilst that on the other line is allowed to unwind from off its drum, so that the two drums will revolve in contrary directions. The trains travel alternately backwards and forwards on the same line of rails, instead of one line of rails being always travelled over in one direction and the other line in the contrary direction, as is the case on other railways. For instance, if the first train in the morning goes down from London to Blackwall along the north line, the second train down in the same direction will go along the south line, and the third train down along the north line, and so on. One end of each rope is wound around one of the drums at the Minories, and the other end of the same rope around a corresponding drum at Blackwall ; and whenever one of those drums is turned round by its engines for winding up that end of the rupe, the drum at the other end of the same rope must be disconnected, and left free to turn round as the rope is pulled off it. This requires some ready neans of disengaging either of the drums from the engines, which is done by withidrawing the pair of spur-wheels from each other until their teeth becume disengaged. The plummer-blocks, in which the two ends of the axes of each of the drums revolve, are mounted on rollers, and are capable of being moved horizuntally by screws, until the spur-wheels are out of gear. The two screws fur the plummer-blocks of the same drum, are noved simultaneously by gearing, worked by a handle on the platform in the recess in front of the drums; so that a man by turning that handle, either connects or disconnects the gearing, as may be required.
The main axis upon which the two large spur-wheels are mounted, may be considered as a single axis, but is, in fact, two lengths of shaft, connected together by cranks and drag-links at the mid-lensth of the prolonged ases, which two lengths can be disconnected at pleasure, by removing the drag-links and crankpins. Hence there are two sets of machinery exactly similar, and capable of being connected and disconnected in such mammer, as to admit of either of the two drums being worked by either of the two pairs of engines, whilst the other drum is wholly disconnected; each line can thus be worked by either pair of engines, independently of the other line or pair of engines. The engines always revolve in the same direction, causing the drums to wind up the ropes around thent but when the drums turn ruund in a contrary direction for unwinding the ropes, they are disconuected from the engines. A wheel is attached to each drum for the purpose of being acted upon by a break, not only for stopping the motion of the drum, after the arrival and stoppuge of the down-train at
the Blackwall end of the line, but also for maintaining a suitable degree of tension on the part of the rope behiud the train, whilst it is in motion. The object of keeping the tension on the rope is to prevent it from being unwound from off the drum faster than the train proceeds, and to secure the rope against the risk of breakage, to which it would be liable, if it were allowed to become slack and then to be suddenly tightened, by the acceleration which takes place in the motion of the train, after it has commenced the descent of a steeper gradient than that on which it was previously travelling.
The engines being only worked for eight or nine minutes out of every quarter of an hour, the vacuum in the condenser might during the remaining six or seven minutes become imperfect from leakage, or from air contained in the injection water; in which case the restarting of the engines would be difficult, except by previously blowing steam through the condenser, to displace the air, for the greatest power is required at starting, when the machinery, he drums, the rope, and the train, have all to be set in motion from a state of rest, and these must be a good vacuum in the condenser to enable the engines to start promptly. For this object an engine of 12 horse-power is provided, and constantly works two auxiliary air-pumps, which maintain the vacuum in the condensers of the large engines, independently of the action of their own air-pumps.
In the arches upon which the railway is carried to pass over the engine-house, eight water-tanks are placed, all connected together by pipes. The overflow of waste water from the hot cisterns of the engines, is conducted from the usual overflow-pipe into the most distant of the eight tanks. From that tank the water passes into the next, and then to the next, and so on to the last of the eight tanks, in which it is mixed with fresh cold water, and the mingled water is then conveyed into the engine-room, for supplying the injection cocks of the engines. The surface of the water in the eight tanks is exposed to the atmosphere, and the hot water thus becomes cooled in passing through them. At first there were only three tanks, in which, as they exposed a large surface to the air, it was expected the cooling of the water would proceed with sufficient rapidity to render it fit for injection upon arriving at the third tank, and being there mixed with fresh cold water; but, as it was found that there was not a sufficient cooling effect, five more tanks were added, and the eight tanks now in use are scarcely sufficient for cooling the water to the extent required. The supply of cold water, for mixing with the water in the tanks, is pumped by the 12 horse-power engine from a well in the adjoining part of the building, and, in addition to this supply, a small pipe is laid on from the main of the New River Company. The temperature of the injection water in summer is about 80°, and often higher, and the vacuum then obtained is about 24 inches of mercury; in winter there is no difficulty as to the temperature of the water, and the mercury stands at from 87 inches to 88 inches. Each of the tanks is $24 \frac{1}{2}$ feet square and 6 feet deep, so that the capacity is 3,600 cubic feet, and the surface of water exposed is 600 square feet in each tank.
The steam-pipe from the boilers passes through the wall, and is carried inside the engine-room to the right and left to each pair of engines, with a valve-box, from which two branches proceed to supply each engine. The valve in the box is opened and shut by a screw, worked from below by a handle, by which the engineman regulates the speed of the engines.

The governor is placed beyond the outer frame of the pair of engines, and the number of its revolutions is to the number of strokes made by the engines as 3 to 2 . It is worked from the crank of the engines by a pair of bevil wheels on a small axis passing through the outer frame. The governor acts upon a throttle-valve placed in the steam-pipe, immediately beyond the shut-off valve. The resistance the engines have to overcome varies so much, that the governor was found not to be capable by itself of regulating the speed, and therefore it was assisted by the man closing the shut-off valve by its screw handle; but latterly the governor has been disconnected, and is not now used.

To avoid snatching the rope, by which it might be broken, great care is taken to start the engines as gradually as possible, in order that all the slack of the rope may be gathered up around the dram, and then the train be started slowly, and gradually accelerated to the full speed. The valve is therefore only partially opened at first, and is afterwards opened fully by degrees; as the engines acquire speed, the valve is closed again gradually, to restrain the speed, as the carriages arrive one after another, and the resistance diminishes.

The Boilers.-The boiler-houce is beneath the railway, the five poilers being placed under the arches on which the continuation of
the railway is carried beyond the engines. Two of them are square marine-boilers, with the ordinary internal furnaces and rectangular fues; the other three boilers are constructed on the Cornish system, being circular, with two internal tubes through their entire length, and the furnaces in the front ends. The two marine-boilers, which are equal in puwer to the three Cornish boilers, are capable of supplying steam for one pair of engines. The two marine-boilers, or the three Cornish boilers, are worked together as a set, the two sets being used alternately in the same manner as the engines, but for about three months at a time. The chimney is situated between the two sets of boilers. The flue from each separate boiler, enters into a main flue, which extends along the back of each set to the base of the chimney; each is provided with a separate damper, and there is another damper at the end of each main flue, where it joins to the base of the chimney.
On the top of the steam-chest of each boiler is a shut-off valve box, joined by a branch to the main steam-pipe, which leads to the engines. By these valves, any boiler may be shit off from the rest, in case it is required to be cleaned whilst the others are at work. At the mid-length of the steam-pipe are two safety-valve boxes, each having an aperture of 12 inches diameter; they communicate with each other, and from one of them a discharge-pipe proceeds into the chimney; one of these safety-valves is out of the control of the men, but the other may be lifted by means of a lever worked from below, in order to discharge the steam at the end of the day's work.
The feeding of the boilers is effected from a tank situated above the arches, at the side of the chimney, at such a height as to give the column of water entering the boiler a greater pressure than that of the steam. This feeding-tank is 10 feet in diameter, by 6 feet high, and is capable of holding 471 cubic feet of water. The water is raised into this tank by the pumps of the engines, and feed-pipes proceed from the tank to the feed-cocks in the pipes, at the front of the several boilers. During the time the engines are at work, no water is admitted to the boilers, but as soon as they are stopped, the feed-cocks are opened, and the water is allowed to flow in until the proper level is restored. At the same time a fresh supply of coals is thrown on the fires, to raise the steam for starting. This is so managed as to waste very little steam by blowing away ut the safety-valve.
The chimney is 6 feet square inside, at the base, and 4 ft .3 in . diameter at the top, and 164 feet high from the foundation. The draught is exceedingly good. The spaces opposite to the row of furnaces of the five builers are stores for coal. Beneath the centre of the passage, in front of the row of furnaces, is the drain for carrying off the waste water.
The steam-engines of 112 horse-power (nominal power) are on the marine coustruction, with side levers, the same as Messrs. Maudslay, Sons, and Field made for steam-vessels a few years ago. That construction was adopted, as it was requisite that the centre of the shaft should be elevated. The diameter of the cylinders is 56 inches; the leagth of stroke is 5 feet; and the average number of strokes 92 per minute. The motion of the piston is therefore 220 feet per minute. The plunger feed-pump is $6 \frac{1}{5}$ inches diameter, and 2 ft .6 in. stroke; only one pump is worked at a time. The cranks are all of cast-iron, with axes of wroughtiron, 12 inches diameter in the bearings.
The large spur-wheel on the main axis is 17 feet in diameter at the pitch line, with 120 teeth; the pitch of the teeth is $5 \frac{1}{4}$ inches, and their breadth is 83 inches. The centre boss of this wheel consists of two circular pieces bolted together externally, including between them, and closing over the roots of the arms, which are eight in number, cast separately, and bolted to one another, and to the boss. The rim is in eight segments, each having 15 teeth, and the junctions of the segments are made at the ends of the arms. The weight of the wheel is $16 \frac{1}{2}$ tons; that of the rim by itself being 8 tons 13 cwt . The drum is $2 s$ feet in diameter outside, and $16 \frac{1}{2}$ feet in diameter at the bottom of the V-shaped groove, wherein the rope is coiled. The width of this part, at the bottom, is $1 \mathrm{ft}$.6 in ., and at the top $3 \mathrm{ft}$.2 in .; when all the rope is wound on it, the diameter of the outside coil of the rope is 20 feet.

The break-ucheed at the side of the drum is 14 feet in diameter, and 1 foot broad.
The mortice spur-wheel, on the axis of the drum, and at the same side as the break, is 11 feet in diameter at the pitch line: it has 78 cogs, which are also 23 inches broad.
Although the drum, the break-wheel, and the mortice-wheel, have hitherto been mentioned as separate, they are in fact all framed together su as to form one combination. The total weight
is $\mathbf{8 0}$ tons. The axis of the drum is of wrought-iron, 12 inches diameter in the bearings. The cogs of the mortice-wheel are made of hornbeam.
The break is formed of two straps of wrought-iron, side by side, each 5 inches wide, to which are rivetted plates of copper in lengths of 3 feet each, 12 inches wide and $\frac{s}{4}$ inch thick; the copper applies to the lower half of the circumference of the break-wheel. One of the extremities of the break is suspended by rods from the girder above, and the other end is connected to the hoop around an eccentric-wheel, the axis of which is mounted in a frame fixed to the girder. On the axis of this eccentric-wheel is a spurwheel, into which a pinion works, and on the axis of the pinion is a ratchet-wheel, to be worked by a lever-handle and click, by a man standing on the platform over the engine-room, the handle end of the lever passing up through the platform. The length of this lever-handle is 6 feot; the diameter of the pinion is $11 \frac{1}{2}$ inches, and that of the wheel is 16 inches; the eccentricity of the eccentric-wheel is $2 \frac{3}{4}$ inches. Hence the force of the man's arm applied at the upper end of the lever-handle is multiplied about 36 times $\left(\frac{72 \times 11}{2.75 \times 11.5}=36.4,\right)$ when the leverage is the leastnamely, when the eccentric-wheel has made a quarter of a revolution ; but for obtaining a greater power on the break, a piston is fitted into an air-cylinder 10 inches in diameter, which is fixed under the girder; one end of the cylinder is open to the atmosphere, and the other is closed, but communicates by a pipe with the condenser of the steam-engine below. In this pipe is a cock, which can be opened by the breaksman when necessary; a chain connected to the rod of the piston of the air-cylinder, is carried round the spur-wheel and fastened to it. If the breaksman opens the cock to establish a communication with the condenmer, the air is exhausted from the air-cylinder, and the pressure of the atmosphere on the area of the piston acts by the chain on the circumference of the wheel. Supposing the vacuum to be 87 inches of mercury, this pressure is $1,060 \mathrm{lb}$., equivalent to about 100lb. applied to the upper end of the lever-handle.
Each of the moving plummer-blocks, in which the drum-shaft revolves, is mounted on six rollers; three on each side. Beneath the plummer-blocks and attached to it, in the space between the rollers, is a long nut in which a screw 3 inches in diameter works; the pitch of this screw is such as to move the nut and the plummer-block 3 inches by seven revolutions. The axis of the screw is prolonged by a shaft to reach the platform, and this prolongation has on its end a bevil-wheel ε feet in diameter, into which works a bevil-pinion 6 inches in diameter; the cross axis of this pinion extends across the breadth of the drum, parallel to its axis, and carries another such bevil-pinion of 6 inches diameter, which acts in another bevil-wheel of 2 feet diameter, on the prolongation of the axis of another screw beneath the plummerblock, for the other end of the axis of the drum. By this connection both screws are turned round simultaneously and act on both plummer-blocks alike. On the cross axes of the two bevil pinions is a cog-wheel q feet in diameter, into which works a pinion 16 inches diameter, on the axis of which is a winch-handle, so that to produce one revolution of the screw, the winch-handle must make six revolutions. The thread of the screw making seven turns in 3 inches, and the winch being 10 inches long, the pressure applied to it is multiplied 868 times. The winch is worked by one man, and the time occupied in disconnecting one drum and connecting the other, is little more than a minute.

The rollers on which each plummer-block moves, are made of Wrought-iron, case hardened, $3 \frac{1}{4}$ inches in diameter, and $2 \frac{1}{\frac{1}{2}}$ inches broad. At first, the rollers worked against the cast-iron surfaces of the frame and of the plummer-block; but after having been at work two or three years, the pressure had caused so much indentation into the two surfaces of cast-iron, as to render it difficult fur a man to connect and disconnect the large spur-wheels. To remedy this defect, a strap of steel was let into the frame and another into the underside of the plummer-block for the rollers to act against, and no inconvenience has been since found. The weight upon each of the rollers is about 5 tons. The weight of the drum, break-wheel, and mortice-wheel being 30 tons, and of the axes 3 tons 7 cwt ., the rope remaining on the drum when unwound 1 ton, and the additional weight of rope when the whole is wound on, $28 \cdot 10$ tons, makes a total weight of $57 \cdot 17$, or 58 tons, to be sustained on the twelve rollers beneath the two plummer-blocks; and, therefore, supposing each set to bear the same weight, each roller has to carry nearly 5 tons; each end of the axis of the drum being 12 inches diameter in its bearing, the breaks must sustain 89 or 80 tons.

Power-When all the train is in motion, the engines making 22 strokes per minute, the pressure of the steam on entering the cylinder being $2 \frac{1}{\frac{1}{2}} \mathrm{lb}$. above that of the atmosphere, and the mean pressure 9.95 lb . per square inch, the power for the engines, rope, and train, is 323.74 horse-power.

When the rope, without any carriages attached to it, is drawn by the engines making 24 revolutions per minute, the pressure of the steam being 6 lb . above the atmosphere, and the mean pressure 7 lb . per square inch, che power expended on the rope and machinery is 250.76 horse-power.

When the drum is disconnected from the engines, and they are allowed to make 82 strokes, the pressure being $13 \frac{1}{\frac{1}{2}} \mathrm{lb}$. above the atmosphere, and the mean pressure 8 lb . per square inch, the power expended on the friction of the engines unloaded, is 26.09 horse-power.

Since the power expended on the engines, rope, and train, is 323.74 horse-power, and on the engines and rope, 250.76 horsepower; the difference, namely, $72 \cdot 98$ or 73 horse-power is due to the train alone.
The number of revolutions made by the engine-shaft per minute being 28 , the number made by the drum in the same time is $33 \cdot 84$. The circumference of the drum when the rope is off, is 52 feet; when all the rope is wound on, it is 63 feet, the velocity of the rope will therefore vary from 1,760 feet per minute, to 2,132 feet, that is, from 80 miles to 24 miles per hour.

The Rope-When the railway was first opened, the rope employed was of hemp, $5 \frac{3}{4}$ inches in circumference, or $1 \frac{3}{4}$ inches in diameter. After it had been in use for a very short time it broke, and continued to do so frequently; in consequence of which, a wire rope was substituted. This rope $3 \frac{5}{5}$ inches in circumference, or $1 \frac{1}{4}$ inch diameter, is formed of six strands, each composed of six wires, or thirty-six wires in the rope. It is covered over with small hempen rope or tarred yarn. The breakages of this rope are much less frequent than with the hempen rope, but still they do occur occasionally. In order to make the rope wind evenly on the drum, it is guided by two levers mounted on one centre pin, and crossing one another in the form of a pair of scissors, the levers having rollers on their inner side. These levers are worked by a man, standing on the platform below, and he guides the rope by pressing them alternately against either side as his eye directs, so as to wind the rope evenly around the drum. The weight of the hempen rope was 8 lb . per yard, that of the wire rope is $6 \frac{1}{2} \mathrm{lb}$. per yard; therefore, the weight of the rope lying on the railway was, in the former case, $19 \frac{1}{2}$ tons, and in the latter, $16 \frac{1}{2}$ tons. Swivels are introduced at intervals in the length of the rope, to allow it to twist and untwist itself in working. The weight of the rope is sustained by bearing-sheaves, disposed at intervals along the line, in the middle of the space between the rails; some of them being laid at angles to suit the curves of the road.

The auxiliary engine.-The cylinder of the 12 horse-power engine is 20 inches in diameter, the piston makes a stroke of 3 feet, and 34 strokes per minute. The two air-pumps which are worked by it are 13 inches in diameter, with a stroke of $10 \frac{1}{8}$ inches, and are placed one on each side of the centre of the main lever.
The air-pumps of the large engine are 31 inches in diameter, with a length of stroke of 2 ft . 6 in ; ; so that the capacity of the stroke of each pump is 13.1 cubic feet, or 26.2 cubic feet for the pumps of a pair of engines; therefore, the capacity per minute, is 26.2×22 strokes $=576.4$ cubic feet. In like manner, the capacity of the small pumps, per minute, is 55 cubic feet, or nearly foth that of the large pumps in the same time.

The well from which cold water is obtained is 10 feet dismeter inside, and is steined partly with brick and partly with iron. In this well are two sets of three-barrelled pumps, but only one set is worked at a time. The barrels are each 7 inches in diameter, the stroke is 18 inches, and they make t wenty strokes per minute; so that the quantity of water raised by one set, per minute, is 150 gallons. These pumps are worked constantly throughout the day.
The marine-boilers are 10 ft .3 in . wide, 10 ft .8 in . high, and 24 feet long; the steam-chests are 5 feet in diameter and 4 ft . 10 in . high; each boiler has three fires within it.

The circular boilers are each 7 ft .6 in . in diameter, by 94 feet long; the two circular flues, through their whole length are 2 ft . 6 in. diameter. The steam chests are 3 ft .9 in. diameter, and 4 feet, 5 feet, and 6 feet high respectively. The average consumption of fuel, is, per day, for the two marine-boilers together, $7 \frac{1}{2}$ tons, and for the three circular-boilers together, 8 tons. In these quantities is included what is required for getting up the steam in the morning.

The time of working, corresponding to this average is 13 hours. The weight on the safety-valve is $4 \frac{1}{2} \mathrm{lb}$. per square inch.
The engines and machinery at Blackwall are similarly arranged, but on a smaller scale. The railway there passes by the side of the engine-house on the ground, and therefore the ropes are gathered on at the lowest part of the circumference of the drums, instead of at the highest part, as at the Minories, where the railway passes over the engine-house. The engines, constructed by Mr. Barnes, are of the marine side-lever form, of the nominal forces of 70 horse-power each, the pistons are $45 \frac{1}{2}$ inches diameter, with 4 feet stroke, and their average speed is 25 strokes per minute. The large spur-wheels are 17 feet diameter to the pitch line, with 180 teeth, $5 \$$ inches pitch, and 14 inches broad, working into mortice spur-wheels on the axes of the drums 10 ft .10 in . diameter, with 80 wood cogs. The drums are $16 \frac{1}{\frac{1}{2}}$ feet diameter when empty, and 92 feet diameter outside. The small steamengine for working the air-pumps, is 8 horse-power; it was constructed by Messrs. Miller and Ravenhill.

Romarks made at the Moeting after the reading of the above Paper.

Mr. Farsit atated that the wire rope consiated of aix atrands, each of six wires, coiled round a hempen core, and the whole of the strands were also laid round one centre core of hemp. Wherever the wires were in actual contact with the core, corrotion appeared to take place, which of courte sugmented the rapidity of the deatruction of the rope. It was, however, now merely a question of expense, as, since the adoption of the wire rope, breakage seldom occurred. He thonght that the old hempen rope had frequently been broken by the ondue strain which was suddenly brought upon it, by its alipping on the drum. He imagined that a modification of the method used in cotton spinning for regulating the coiling of the flaments, might be adopted with advantage, instead of as at present coiling it by hand.
Mr. Bidosr said he had noticed the pecaliar tendency of the bemp rope to t wist, which caused its frequent fracture. The first rope was 51 inches in circumference, with slay of 4 inches ; this was soon diminished to 3 inches, and it broke continually. It was replaced by a rope from which the tar bad been expelled by pressure; that was soon worn out, and the fibie appeared completely destroyed. Wire ropes of various kinds were then tried; and at last, by the introduction of swivels, and recently by an improved construcLion of them, the bad effects of the twisting were obviated, although it still took place. In spite of the rapid destraction of the hemp rope, he was of opinion, that as a mere question of cost, it would be found cheaper than wire rope, as, when partinlly destroyed, the former had still a certain value, but the latter was comparatively valueless.
Mr. R. Steprenson atated that he was unable to account satisfactorily for the twisting of the rope. He imagined that it might be caused, in some degree, by its being coiled over the drum at the Minories end, and under the drum at the Blackwall end of the railway. The lateral action of the groove of the inclined guide pulleys might also infuence it, particnlarly on the sharpest curves. Ropes composed of lengths, with a right-hand and a lefthand lay alternately, had been tried, but ineffectually; the twisting atill continued, and the bad effects were only counteracted by the awivels. It might have been imagined that the rope would have untwisted, and thus have lengthened; but, on the coutrary, it became more tightly twisted, its diameter diminished, and still its length increased, apparently from the pull of the engines upon it. It was evident from the appearance of the fracture, when one occurred, that the material was wrenched asunder by a twisting action. The breakages occurred, however, very seldom at present; not oftener tban once or twice in a month, during which time nearly three thounand journeys were made, and then they arose generally from the carelessness of the breaksmen, who, it must be rensembered, received their instructions from a distance of tbree miles, by the electric telegraph. The were six swivels in the rope, one at every half-mile. The destructive effects of the twisting would probably be diminshed by a larger number of swivels, but they were very objectionable, in preventing the regular laying of the rope upon the drum. On the inclined planes in the north of Bngland, where ropes had been used for many yeara, this twisting was not obterved; but there the engines wereat one end only; whereas, on the Blackwall railway, the engines at both ende working simultaneoualy, might probably have a tendency to cause the twiting. Twenty years ago he had tried, in the North, machinery similar to that suggented by Mr. Farey, for laying the rope on the dram; but in consequence of the general diminution of diameter of the rope from the stretching, and the inequalities occasioned by the splices, the machinery was constantly put out of order, and was eventually dentroyed. On the Blackwall line, the men had acquired considerable dexterity in directing the rope with the levers or shears, and he thought it would acarcely be possible to improve that part of the ayatem. -Some difficulty had been apprehended from the use of condenaing engines, on account of the time required for forming the vacuum; it had, however, been met by baving a small engine constantly working to keep up the vacuum and to pump water. Highpressure engines were generally used with rope traction, in order to avoid this difficulty. He, however, preferred the use of condensing engines, with a small supplementary engine, and believed them, at the same time, to be more economical.

Mr. A. Wigatyan atated that the wire rope was manafactored by Mears. Newill, of Gateshend, The wire was anannealed, and the weight of the rope was 10 lb . per fathom, except two lengtha of half a mile each, which weighed 12 lh . per fathom; these length were so placed, that the main trains to or from Blackwall, were always attached upon them. The swivels were at frat rivetted into the rope, but it was found that at least two-thirds of the fractures of the rope occurred where the first rivet was inserted. In urder to prevent this, the swivels were spliced into the rope; this was done by unstranding about a yard and a half of the rope, pasing the atrands through an eye in the awivel, and then splicing them back into the rope. Swivels thus inserted would last three months without renewing, and the lay of the rope had been preserved by them. Breakages, however, still occurred, but (except from carelesuness), they rarely, if ever, took place in a rope leas than a year old; after that time the rope began to lose ita strength, from the oxidation that took place, wherever the gtrands came in contact with the hemp core, and although a rope might appear soond after it had been in use for a year and a half, yet on opening it, a considerable extent of oxidation woald be discovered. The rope-makers in the North attributed this, in 4 great measure, to the serving of tbe rope with spun yarn, which had been adopted on the Blackwall railway, chiefly to prevent the noise ocessioned by the rope pasting over the sheaves. Experimente were in progreas, with a view to doing away with the serving of the rope, by covering the sheaves with hard leatber, which, if successful, would be the means of saving the company a large expense in keeping ap the serving, and would take a weight of about 12 tons off the engines, and reduciag also the cost of fuel. With regard to hempen ropes, both tarred and white ropes had been tried, but they had totally failed, some of them not lasting more than two nootba. These ropes had a great tendency to twist, and from their bulk it was very difficult to counteract it by the insertion of swivels. The wire ropes were, consequently, the cheapest; for altbough there was a difference in the original cost, at also on the return for the old ropes, yet the duration of the wire rope was to much greater, that it more than compenated for tho in. crease in price.
The cbargea for the motive power, for the year 1845, amonnted to til,302 1e. 2d.; during tbat time there were run 105 trains per day. 34 miles esch, or 38,325 traini per annum, at an average cost of 5 s .10 id . per train, or 1 s . $6 \frac{1}{4} d$. per mile.
Altbough the present cost of working the line by the rope aystem was high, yet by no other system bad they been able satisfactorily to effect the accommodation of stopping at the various atation, without interfering with the "tbrough traffic."

FOSSIL FOOTMARKS IN THE COAL FORMATION.

Mr. Lyell delivered a lecture at the Royal Institution, on February 4th, "On the Fossil Footmarks of a Reptile in the Coal Formation of the $A l l y$ hany Mountains.

Mr. Lyele began by observing that, notwithstanding the numerone romaine of land plants in the carboniferous strata and the evidence they afford of the existence of large tracte of dry land (the exact position of which it often indicated by seams of coal and buried forests), no monuments of eny air-breathing creatures had been detected in rocks of such high antiquify until Dr. King, in 1844, published his acconnt of the foot-prints of a reptila ocenrring in sandstone in Pennsylvania (see Sillimas's Journal, vol. 48, pege 343). These fostil tracks were found in atone quarry five miles south-east of Greensburg, and about twenty miles east of Pithburgh, appearing on the under surfaces of slabs of argillaceons sandstone extracted for paving. They project in relief, being raste of impressiong formed in a subjecent layer of tine unctuous clay, and they are accompanied by namerous casts of cracke of various sizes, evidently produced by the drying and shrinking of the clayey mud. These cracks occasionally traverse the foot-prints, showing that the shrinkage took place after the animal had walked over the soft mud, and before it had begun to dry and crack. Mr. Lyell exbibited a slab which be bad brought from the quarries, having visited them with Dr. King; and then proceeded to point out the differences between these foot-prints and those of the European cheirotherium found in Sazony and in Warwickshire and Cheshire, always in tbe opper part of the new red sandstone or trias. In the European hand-shaped foot-marks, from the form of which the anlmal was called by Kaup, cheirotherium, both the hind and fore feet have each five toes, and the size of the hind foot is about five times as large at the fore foot. In the American fossil the posterior foot-print is not twiee as large as the anterior, and the nomber of toes is naequal, being five in the hinder and four in the anterior foot; as in the Buropean choirotheriam the fifth toe atands out nearly at right angle with the foot, and somewhat resembles the human thumb. On the external eide of all the Pennsylvanise tracks, both the larger and smaller, there is a protuberance like the rudiment of another toe. The average length of the hind foot is 3 inches, and of the fore foot 43. The fore and hind feet being in pairs follow each other very closely, there being an interval of about one inch only between them. Between each pair the distance is six to eight inches, and between the swo parallel lines of tracks there is ahout the smme distance. In the case of the Bnglish and German cheirotherium, the hind and fore feet occur also in puirn, bat they form only one row, in consequence of the animal huving pot
ita feet to the ground nearly under the middle of its body, and the thambLite toes are ceen to turn to the right and to the left in the alternate pairs; while in the American tracks, which form two parallel row, all the thambIite toes in one set torn to the right, and in the other set to the lef. Mr. Lyell iafers, therefore, that the American cheirotherium belongs to a new penas of reptilian quadropeds, wholly diatinct from that which characterisea the triatsic strata of Europe; and such a generic divernity, he observes, might have been expected in reptilian fossils of auch diferent ages. The geological position of the sandstone of Greensburg is perfectly clear, being citanted in the midst of the Appalachian coal-field, having the main bed of coal, ealled the Pittsburg seam, a hundred feet above it worked in the neighbourhood, and several other seams of coal at lower levela. The imprestions of lepidodendron, sigillaria, stigmaria, and other carboniferons planta, are found both above and below the leval of the reptilian footstepa. Mr. Lyell then adverted to some apurions fosail foot-prints of dogs, hoofed quadrupeda, birds, and other creatures seen on the aurface of ledges of a soft quarteose asindatone in the neighbourhood of Greensburg, which had been confounded with the fossil ones. He pointed out the proofs that these had been carved by the ancient inhabitants of America, whose graves are seen in the ricinity; and that the Indian hunters had sculptured similar birdtrechs, together with homan foot-prints, in solid limestone of the Siate of Misoori,-the true origin of which was first explained by Mr. D. D. Owen, of Indiana.
To illastrate the mode of interpreting fossil foot-prints in geology, Mr. Lyell gave a sketoh of the discovery of three distinct speciea of cheirotheriam in Europe,-nd explained how, after it had been conjectured by Link that ibey mighs belong to gigantic batrachians, Mr. Owen found, by examiaing the teeth and bones of reptiles of triassic age, that three different species of air-breathing reptiles of the batrachian order, referable to a new geons, labyrinthodon, had existed, both in Germany and England, at that period; their fosill bones indicating that they were air-breathera, and there being as great a disparity in size between the bones of their anterior and penterior extremities as between the fore and hind foot-prints of the several cheirotheria. To account for the sharpnean of the catis of cheirotherinm on the onder aurfaces of slabs of sandatone, Mr. Lyall adverted to the manner in which he had seen, on the sea.beach, near Savannah in Georgia, a clood of tine sand drifted by the wind filling ap the foot-prints of racoons and oposamm, which, a few honra before, had pasced along the shore after the retreat of the tide. Allasion was also made to the recent foot-prints of birds called mandpipers (Trisga mimata), which Mr. Lyell saw running, in 1842, over the red wad thrown down every tide along the bordera of estuaries connected with the Bay of Pundy, in Nova Scotia. These consist both of impressions on the apper sarfaces and of casts in relief on the under sides of ancceative layers of red mud (see Lyell's "Travels in North Americs," ool. ï. p. 166), -of which he has presented a specimen to the British Mu. serm. The ancient foot-prints of more than thirty species of birds found fossil in the new red sandstone or trias of the valley of the Connecticnt river, in Massachnsetts, were stated to be analogous to these modern birdtracks; and the size of the largest, althongh they indicate a biped more hage than the oatrich, is exceeded in magnitude by the gigantic deinornis of New Zealand-of which nearly the entire skeleton has just been found fosail by Mr. Walter Mantell. The absence hitherto of the bones of birds in the enciont American atrate of the triasic period appears to Mr. Lyell quite intelligible; for the circumatances which combine to cause foot-printe of andpipers in the recent mud of the Bay of Fandy, repeated throughout many superimposed layers, have no tendency to preserve any bones of the ame birds, -and none have yet been ever observed in catting trenches through the red mud, where it has been laid dry by artificial embankmenta and drained.
In all the cases of foot-prints, both fossil and recent, and whether made by quadrapeds or bipeds, the lecturer insisted on the necesaity of assaming that the creatures were aip-breathers, for their weight would not have been sufficient nader water to have made imprestions so deep and distinct. The same concluion is borne out by the oridence derived from the casto of cracks produced in the same strata, by shrinkage, and so generally accompenying the impressions of feet; and it was remarked that similar effects of deasication are observable in the recent red mad of Nova Scotia, where thoasands of acres are dried by the sun in anmmer, between the spring and neap sides. The ripple mark also so common in atrata of every age, and among others in the coal measures, and new red andstone of Germany, Ragland, and America, exemplifies the accurate preservation of auperficial markings of strata, often lese prominent than those caused by the tread of reptiles or large hirds. As the discovery of three species of cheirotheria when soon followed by the recognition of as many specien of labyriathodon, so the anmonncement by Dr. King, in 1844, of reptilian foot-print in the conl atrata of Pepnaylvanis, has been followed by the newa lately received trom Germany, that in the ancient coal menanres of Saarbrack, near Treeven, the antiquity of which is vouched for by Von Dechen, Prof. Goldfuse has cound the akeleton of a troe saurian. Dr. Falconer, after a carsory exnmination of the original specimen, has stated his opinion in farour of its reptilian charecter, and althongh the ovidence has not yet been rigouroualy tented by the mont ominent comparative onteologiate of Europe, Mr. Lyell telieves that the opinion of Prof. Goldfuas and Dr. Falconer will be confrmed. Soch facts should serve to pot us on our guard against premature generalizations founded on mere negative evidence, and caution ui not to
assume the present limits of our knowledge of the time of the firt appearance of any class of beinga in a foasil state to be identical with the date of the first creation of sucb beings.

INSTITUTION OF MECHANICAL ENGINEERS.

Jan. 26.-J. E. M'Connell, Eiq., V.P., in the Chair.

The first annual general moeting of the membera of this Iastitation tonk place at Birmingham, in the theatre of the Philosophical Iostitution, for the purpose of receiving the Report of the Conncil and for the general trans. action of basiness. There were present nearly 100 members.

Mr. M'Connell said that as this was the anniversary of the establish. ment of the Institution, he would content himalf with referring to the Report abont to be read for the condirmation, he might say, of the more than realised hopes of the most sangaine promoters of the lnstitution. He wat gratified to see so large a meeting, and regretted the noexpected absence of the President.
The Report of the Conncil was then read. It contained a brief outline of the proceedings of the Institution for the past year:-I he desirableness and importance of founding a society such as this was known to have been long and extenaively felt by the engineeriug and mechanical profession in all parts of the kingdom, and it is not too much to reature to say, that the beat expectations of the active and zealous promoters of the Inatitation have been fully realised, and a great amount of scientific and valuable information has been beneficially and matually interchanged and diffused amongat the members. In reviewing the matter and snbjects brought under the notica and discossion of the members, as recorded and detailed in the minutes and proceedings of the Institution, the Council felt it their duty to acknowledge and particularise the following valuable aid:-the two papers on the "PanBlast," by Mr. Buckle; on a "Self-Acting Brenk," by the President; on an "Inverted Arch Bridge," by Mr. Cowper; on "Locomotive Engines," by Mr. Beyer; on a "Turn-Table Lathe," by Mr. A Slate; on "Jones's Gas Exhauster," by Mr. Clift ; on \& "Direct Action Sceam Helve or Hammer," by Mr. H. Smith.

The following recommendation of the Conncil was then read:-
"The Council, having had under their consideration the question of the number of the member of the Council, have resolved to recommend to the members of the Institution to authorise the Council for the present year to add to their number, 10 as to place one member of Council, or more, as may be considered desirable, in each district where such may be advantageous to the interestr of the Institution."

A resolution to the above effect having been proposed, wat carried unenimonsly.

The officera for the ensuing year were then re-elected, viz.:-Mr. G. Stephenson, President ; Mr. C. Beyer, J. B. M‘Connell, and J. Miller, VicePresidentr ; Meara. W. Buckle, E. A. Cowper, B. Fothergill, B. Humphreys, and A. Slate, Council; Mr. C. Gooch, Trembrer; Mr. A. Kintrea, Secretary.

After the conclusion of the businese connected with the annual general meeting, the following papera were read :-

HYDRAULIC LIPTING JACK.

"Deacription of a New Hydraulic Lifling Jack." By Mr. Ald. Trorn. TON.

The principle of this jack is the same as that of the hydraulic press, but not having been bofore applied to a lifting jack, it is thought that the present application of it will be useful for a variety of purposes. Its adrantaget are, the ease and ateadiness with which a great weight can be raised by one perton; the facility with whicb the lowering of the weight can be regulated without labour, and from there being no circular motion of the handle, there can be no tendency in the jack to twist from the position in which it in placed ; also by the une of strong wrought-iron tubes for the cylinder and ram, the weight of the jack is less than others now known. This jack can be used in all cases where otbers are available, and in some where others are not so, for the motion of the lever being vertical instead of lateral, it can be used wherever there is sufficient width to place it. With a jack of the size shown one man can lift from 15 to 20 tons weight. Mr. Tharnton said althongh the jack was not new in principle, one of ite great advantages was to be found in the additional power which it gavo to one man to raise so great a weight.

The Cbairman said he presumed they all understood the deacription siven by Mr. Thornton. The jack displared itself by its own apparance and the drawing. So far as the trial he had had with it went, he had every reason to be aatiafied. It was very simple, acted very nicely, and ho thought it was a very ingonious improvement.

Mr. Crampton wished to know if it had ever tumbled down?
Mr. Middleton said all persons acquainted with anch thinge mast be fally aware that they could not get a jack boxed np. Until, however, an alteration could be made in the handle, it could not be considered a good thing practically.

Mr. State obeerved that though a jack might not be practically good Fhen pleced in a tambling ponition, it might be good in other casen. A jecte
like the one now before them might be useful in lifting a great weight, where the ordinary one would not be sufficient.

Mr. Bucine thought that the jack was an exceedingly useful instrumeut. An ordinary jack would be much more liable to be put out of order that the one before them; besides, it presented greater facilities for lowering weights.

Mr. Milner was of opinion that as it was it conid not be generally useful. If it was thrown from a tender to the ground it wonld be deatroyed, and their endeavours should be to prevent it, if possible, from capsizing.

The Crarrman said Mr. Thornton's object in introducing it was to have the benefit of their experience.

Mr. Pencocr said, that for locomotive parposes it was not equal to Heeley's jack; atill, if in other respects it posenesed advantages over it, they ought not of course to condemn it.

In answer to other questions by various members, Mr . Thornton said it would lift 20 tons; it weighed about 65 lb ; and its price was 12 grinees.

Another member said he should give the preference to Heeley's jack. Lifting jack: when laid aside, like fire-engines in a country town, not being generally required, get out of order, and he was afraid that the one before them would be mach more liable to injuries of that kind than the ordinary jack.

The Cbarrman asid, it appeared that it was objected againat the jack, that it was liable to get out of order, and that it had not the advantages of Heelry's jack in lifting from below, but from the top; at the asme time it would be admitted that it was ateady in action, and that in lowering weight it was necesaary to have power and command, so as to do it slowly and easily. There was one important point in which it had not the advantage, and that was in price. In articles of that kind, the price was a consideration.

Mr. Henderson thought that the jack possensed advantages where there was a great weight to lift, and only one man to work it. Anotheradvantage was the steadinets of its action. The great objection against it was its liability to get out of order. If they manted a jack to raise 20 tons, he was not aware that they could get any other to do it with the same degree of iteadiness.

CYLINDER-BORING MACHINE.

"On the Fitting-up of Cylindera for Locomottve Enginer, and a Descrip. tion of a Machine for Boring them." By Mr. C. Beyer.

The denirableness of having all the cylinders of every class of locomotive engines perfectly alike, so that they may, at any time, be changed in case of accident, or be replaced by spare ones, it is presumed will be admitted hy all; the diffculty of accomplishing this with the tools bitherto employed, will be known to most who are engaged in this branch of the business. These considerations, and the defect of cylinders, the author, from time to time, found necesary to have rectified before passing them to be ased, induced him, in 1843, to direct his attention to the boring-macbine.

The couditions which a good cylinder boring-machine should fulfil, may be stated as follows:-1. That it should make the cylinder perfectly round in its diameter, and parallel in the direction of its axis. 2. That the bored inslde should be perfectly concentive or parallel with the outside of the barrel. 3. That the projections beyond the flanches, if there be any, should be true with the internal bore. 4. That every strain or pressure upon the barrel of the cylinder whilst boring should be avoided. The boring-machine hereafter to be deacribed has been found, during several yearn' practice, to have answered these conditions.

Messrn. Sharp, Brotheri \& Co. cast their cylinders from wood patterns in green and, and commence the process of fitting-ap by describing or ganging ofl a circlo upon each end of the cylinder, concentive to the barrel, and having formed this circle the ends are bevelled inwards by chipping to an angle correaponding to that of the platen of the cone mandrill. The cylinder being fastened to the mandrill is put into a two-foot slide lathe, with facing motion, and has its ends faced to a gauge, and its projections turned to a gange, and cut to a length to gauge. There are farther two notches cat ont of two cone discs, 80 as to allow of applying an internal gange for the out-and-out length of the cylinder. Thus prepared hy torning, it is removed to the boring-machine, inserted between two plater, the faces of which are planed, and the holes for receiving them bored from the boring-bar in their pleces; it is at once perfectly concentive with setting, and needs nothing but clamping to the plates by headed bolts or clamps by its flanches to be ready for commencing boring. For placing the tops of the steam-cheats and valve facings the turued ends are again made use of for setting, by placing upon the planing-machine talle brackets placed on their faces and bored out to the same gauge ; the cylinder is turned to, in order to insure the parallelism of these parte with the axis, as for similar reasons the inside of the cylinder conld not be otherwise than concentive with the outside of the barrel. The anthor prefere making a separate set of gauges, tackling, sec. for each size of cylinder rather than economise by making one do for many, and risk the chance of mistakes; and be believes that the plan here described, to work always from the eame point, is most likely to insure accuracy, as the faults made by neglect of the workmen are not maltiplied by sabeequent operntions.

The boring-machine borea by two cylinders at the amme time, and is ar. ranged to bore cylinders of $\mathscr{Z}^{\prime} \mathbf{0}^{\prime \prime}$ atrokes and from 10 to 20 inches diame-
ter. The bed is that of a common slide lathe, suficiently long to carry a double set of driving gear, and admits of a aufficient sraverse of the boringcarriage. The boring-bar is supported by three bearings, the former of which is stationary and firmly fastened to the bed to reaiat the end and preasure of the cub when boring; the latter are fixed upon the carrigge and travel with it along the boring-har, and serve for securing the cylindar during boring, as will be shown hereafter. To cause the boring-carriage to move endwayn, a train of wheels descends at the back of the machine to give motion to the shaft, asd is transferred hy means of a feathered worm to the worm- wheel and pinion, both of which move loose above the fast atud of the carriage. This amme atud aerves as a folcrum for the lever, carrying apod opposite projections the intermediate pinions, which gear into the atad pinions. It will be clear, therefore, that by setting the lever in such a position as to briog one pinion into gear with another pinion fast on the rack. pinion ahaft, motion will be given to the boring carriage in one direction; and in an opposite or contrary direction by moving the lever an as to bring the pinions to gear with each other; and this carriage will be atationary or independent of the driving gear alrogether, by koeping the lever in its middle position. The rack pinion shaft is extended towards the front of the machine, to work the carriage by hand when putting in or taking out the cylinder. A provision is also made in the train of wheels for varying the traverne of the carriage by changing the pinion.

To hold the cylinder while boring, the top of the carrisge is formed into a kind of equare frame, by means of two plates, planed on the inside and fastened to the sides of the bearings or atandards and two crose atretcheraThese latter are aleo placed apon their inner faces and are secured to the sides and top of the boring-carriage, and have boles bored in them when secured in their placea, by means of the boring head apon the bar corresponding in diameter to the turned projecting ends of the cylinder to be bored. It will be seen, therefore, that if the figure of the cylinder to be bored be turned to the same ganges as the holem are bored to, it peeds only inserting and clamping fast by the T bolts to be ready for boring without requiring any setting in its pan whatever. One of the croas atretchera is a firture, whilst the other is removed every time a new cylinder is to be fixed. The boring head is a fixture upon the bar, and has only one plain square tire for boring. ground to cut either way. This tool fits into a planed recem made slightly dovetailed, and is held fast by a set acrew, and easily adjustable to any diameter by another of these machines. We employ three of these machines-two double ones and a single one, and one man attends to these and the lathe for facing and turning the ends of the rough castinga of the cylinders. The cylindera are cant as bard as we aro ahle to cut them with the best cutting tools we can make, and we find it more adrisable to complete the boring in three cuts; the first is often as much as inch in depth, the second we leave about it inch, and the third can hardly be called cutting, but is merely clearing up or faishing. The advance, or traverse, we rarely change, and is set to t of an inch for each revolution of the boringbar; or is, for quickeat speed of the bar, 3 revolations per minate; in the second, 1.8 revolution per minute; in the third, or lowest apeed, 1.2 revolu. tion per minate. For boring 15 inch cylindery-for roughing out, 1.8 revolation per minute, or cut at 7 feet per minute; for boring, 3 revolations per minute, or cat at 11.78 feet per minute; and for fanishing, $1-2$ revolution per minute, or cut at 3.65 feet per minute.

Mr. Cbampton said they should be doing very great injustice to the very valuable paper they had heard read were they to discuss it at that late hour, and be should propose that the further consideration of it should be adjourned till the next meeting. The suggeation was adopted and the meeting termlanted.

JACQUAHD PERFORATING MACHINE.

"Description of a Perforating Machine," made for Mr. Evang, the contractor for the iron tubular bridge which is to carry the Chester and Holybeed Railway over the river Conway. By Mr. Potsergill.

This machine is employed to perforate the plates for the above-named bridge, and is at present adapted to panch such pitches only as that work reqnires, vir, 3 inches and 4 inches from centre to centre of rivet boles, with latitude for departing considerably from those (general) pitches in the lateral rows of the holes. This machine is constructed to perforate, at each stroke, a row of holes across a plate 3 ft . 5 iu . broad; but, by employing a series of card plates (uimilar to the cards used in the Jacquard loom), any number of punchea may be pat out of action at pleasure; and by means of a blank card at the end of the series, the machine is put out of action at a point where no obstacle is presented to the taking out of the perforated plate and putting a blank plate in its atead. The operation of changing plates, weighing six or seven hundredweight each, is performed hy half a dozea men in less than one minate, and whilst one plate is being punched, these men get another ready to put into the machine. As tbese machine take eleven to twelve atrokes per minute, it follows that (with a 4 -inch piteb) a 12 feet plate may be punched in less than four minutes, and consequently that (allowing one minate for changing) it may perforate twelve anch plates per hour. Many of the plates in the bridge are 12 feet long, 2 ft .8 in . broad, and $\frac{1}{4}$ inch thlck, and are punched for riveta 1 inch in diameter. As tbere are but few engineering concerva where such a perforating machine at that at Conway could be employed more than an hour or two per day, it appears to be very dearable that ironmasteri shoald have them, and that
tho shorld also have machines for straightening and bending platoe; by Wifich meant they would be ensbled to supphy their cuatomern whin plates in s Et state for being rivetted together. Freve thin ryotem brought into prootime, engineers would turn their attention to adapt sheir work to the capepiriles of the perforating machine, and thas great perfeetion, diapsteh, and ceonomy of construction would be the result. A drawing repreaented a machine (similar in principle to thet already described) endspted to perforstint paper and thin sbeet metal, such as tievet and window-blinds are made of, in which plain perforations, arranged in equares, may be mode by a single row of punches; and perforations, arranged quincuncially, may abo be made by a single row of panches, by giving to the plate a teteral elternating motion ; bat a double row of purches, arranged intermediately to each other in preferable. Each of these arrangementa admita of a great veriety of fancy paiterns by the application of the Jacquard primeiple. A large chat of pat terns may be produced by punches of various forms and sizes, which shall be 00 grouped together an to give to the work a colamnar effect; and the range of this cimes may be extented by giving the plate a zig-zag or waved motion and still further extended by combining it with the Jscquard. Another class de patterns may be produced by employing two distinct sets of punches of different size or form, and with each set a Jacquard, to hring punches of the ove or ofber set into action as required, and thili be made to prodince repre mentations of figures, landscapes, bec., at pleasure. A further verioty of patterns might be prodnced by the introduction at interrals of punches containin set patterns, such as sprigs, fowers, \&ec., and perforating the ground Whis small panches.
The foregoing is but a brief description of the cepabilities of the Jaequeri Perforsting Tlachine, which in good hands would be found to be nearly coextensire with those of the Jacquard loom. Another drawing represented a dooble-ncting machine for shearing (at the one aide) and punching (on the other), at the same lime, plates of iron inch in thickness with holes it in in dirmeter, and to perform both processes to the extent of 18 inches from the edge of the plate.

The Canarman sald it was a machine represented as peculiarty adapted for perforating plates need in ship steam-boilers, girdern, \&c. But, from the deacription, it appeared to him to be a very usefol machine for steam boilers generally. Seeing the great accuracy with which the punch is made, it would be rather interesting to follow out the applicabllity of the machine.

Mr. Aid. Taonnton asked if the machine punched in any other than a straight direction ?-Mr. Potarmann mid it did, and it would panch twelve holes at once.

Mr. BEyER thought it was a very excellent punching machine, and it might be applied to a great extent, and to all ordinary-sized boilen.

In answer to questions by varions membera, Mr. Fothergill said, all the punchea acted upon the plate at the same time.

In order to give an idea of the nature of the work to be performed by this machine we subjoin the annered diagram and description, taken from the Manckeder Guardien :-
"The diagram represents a portion of a wrought-iron plate, which we will asome to be, when entire, 12 feet long by 2 fect wide, and $\frac{1}{3}$ inch in thickmame, end requiring to be perforated, along each sides and ends, by a row of holes eractly four inches asunder from centre to centre, and each an inch in diameter; at well at by certain intermediate holes of the same size, the citontion of which will be best understood from the diagrams.

" On looking to the left hand of the diagram representing the entire end of the plate, it will be saen that there is vertically a now of seven dots, represonting seven perforations or rivet-holes. These perforations the machine mikes at one moment, by bringing down with immense force seven punches of tempered ateel, upon that part of the plate which at the time rests npon the same number of dies, also of tempered steel. These perforations being made, the punches are lifted clear of the plate, which is then moved forward longitudinally, exactly four inches; and then the atriking pecaliarity of the machine comes into play.
"It will be seen on looking carefully at the diagram, that the seeond row vettically of perforations, coumting from teft to right, instend of seven conmias only two, one at the upper and the other at the lower margin, ench forming a part of the twn side rows of rivet-holes. Tbese two boles ther machise perforates also at ove blow; but as there are reven panches, and only two are required, the five intermediate onet are thrown out of use by a contrivance exactly similar in principle to tlint of the Jacquard loom, by which fgares are produced in silite and otber falvict. The third vertical row of holes, still continuing from the left, comast of four, the fourth gain of two, the fifth of three, and so on, the namber verying through the Fhole leagth of the plate ; and, in each ease, the machine itgelf, without the anginest interference of the workman, mowes the plate on to the required andance, setects the proper number and right situation of the puaches, mintet
the requisite nuriver of perforation, and throw itself out of action when the plate in completed. Those who are aware of the fotee nocemary to perforate an iron plate of moderate thickness, even with a tingle punch of small size, may form some jodgment of the enormous power required to impel seren panches, each en inch in diameter, through plates three-quartery of an iach thick; and it is a little siggular to see this esormons power regulated in its operation by the identical means employed in producing figares in the most dalicate fabrica. The machine is calculaded to make, when necessars, twobe parforations by one atroke, and to produce any requisite combinetion of twelve or any smaller number of punches, at distances of three or four inches from each other. The speed with which the work is performed may be undertood from the fact, that it regulariy completes the perforation of one plate of the size above deacribed, -namely, 12 feet long and 2 ft .4 in . wide,-in four minates; and if the plates were so quickly supplied is to prevent any lon of time, which might easily be done, it would complete them regalarly at that rate. An it is, fifty have been compieted in four hours. But the facility and diapatch resulting from the use of the machine are not, perhapa, its greatent merisa, so far at least as the construction of tubular bridgea and beams are concerned. In suoh cases, the strength of the fabric depends in a great degree upon the whole of the rivets completely filling the perforations, retaining a rogaler cylindrical form, continuing perfectly straight, and being, shroughout thair length, exactly at right angles Fith the faces of the plates. As each of the perforations represented in the diagram is intended to correapond with a similar perforation, either in another plate, or in an angle or T iron, it muat be obvious that deviations in opposite directions of a sisteenth of an inch in each, would prevent them fitting each other by an eighth of an inch altogether; and, whatever might be done by enlarging one or both of the holes, to bring them a little nearer each other, the firmnest and strength of the work must be impaired by he direction of the rivet being rendered in some degree oblique, instead of being exactig at right angles with the plate; whilst, in the work porfosmed by the machine, the perforations are set out with such accuracy that they always correspond precisely, and the rivets renin their proper form and direction."

The Dinaer.-In the evening the members and friends, amonnting to about 100, dined together at the Queen's Hutel-Mr. M'Connell pretiding.

ROYAL INSTITUTE OF BRITISH ARCHITECTS

Jam. 24.-Mr. Cratexs Fowler, V.P., in the Chair.

The donations included a number of works by the celebrated archaologist, M. de Cammont, of Caen, a corresponding member of the Iustitute. Mr. Wallen sent a portion of the mosaic pavement found nine feet below the prosent leval, while digging the foundations for the now warehouses of Messry. Morley, the corner of Gresham-atreet and Wood-street. Mr. Wallen thought a Roman temple formerly stood on the spot.

Professor Donaldson read a paper on "Caen, its Quarries and Buildingr, with a fow words on Arras." This paper we have given in full in another pert of the Jowrnal.
Some very high complimente were paid to Mr. Donaldson on this raluable paper.

Feb. 7.-Mr. Axgell, V.P., in the Chair.
Among the denations reported were Canina's work on Etraria, sent in the name of the Queen of Tuscany; Mr. Sharpe's "Architectaral Parallels;" and eleven volumes of the "BunZeitung." the architcctural journal of Vienna, edited by Mr. Forster; and parts of Billiags' "Antiquities of Scotland."
Mr. Wright sent a set of drawings illustrative of the ceiling at Carpenters' Hall, London-wall.
Mr. G. L. Taylon read a paper in reference to the New Wiestern Gls Compary, entitled "Some obsertations on Gas-works, and the detaits of the Manufacture of Gas; rith the view of showing that it is capable of being rendered so Pure as to be introduced beneficially throughout Houses, Monu. factories, and Public Buildinga,"

Mr. Bunn ohserved that formerly he resided at Edinburgh ; that he had twice as many burners as he now has in London, and paid at a much higiter rate, being 98 . per 1,000 cubic feet. The gross charge at Edinburgh was however only one-half of the London gross charge, arising from the superior illuminating qualities of the Edinburgh gas. It is trae, the latter is made from Capmel coal; but there is an unfortunate temptation to gas companies to deteriorate the quality of gas, in consequence of the charge beiog made on the quantity. He further observed, that though the Edinbursh gas is superior in illuminating puwer, it is not free from impurities; in pronf of wich he said all the book-binding and loather furniture of a new club-houpe at Edinburgh bad been destroyed by the gas, at the book-biading of the Atbenseum club-houee, in Londos, has likewise been injured.

Mr. Palmer dwelt upon the importance of the purification of gas, and adid that the new plan showed its practicatility.

The Weatern Gas Company bave their worka in a building at Kenaalgreez, 166 feet in dimmeter. Tbey propose to ue Cannel coal, and supply gas at 68 . per thousand feet, which they say is as cheap as commongas at 48. per theusand.

INSTITUTION OF CIVIL ENGINEERS.

Feb. 1.-Joshua Pisld, Esq., President, in the Chair.
The President, in taking the Chair for the first time since his election, addressed the members at considerable length, dwelling chiefly on the intimate connection between the civil and mechanical engineern, their dependence upon each other, and the importance of maintaining that onion between the two branches of the profession that had ever been one of the main objects of the Institution. He showed, that originally engiveering was confined to the constructive or mechanical branches; raising heavy weights, building mills, draining mines, and all the primitive wants of mankind; by degrees, as civilisation extended, the exigencies of the world became greater; laxnries were required, that could only be supplied by greater exercise of talent and skill; manufactories were maltiplied, manual labour could no longer saffice, the steam-engine was generally employed, and the consequence of this incresse of production nas, that the roads required to be amended, rivers and canals to be cut, for carrying this abundance of merchandise and passengers, whilst docks and harboars required extending, for the reception of the shipping for the increasing export trade. These wants called into being another class of men, who, with great mechanical skill, combined more than ordinary theoretical knowledge and busineas habits, to enable them to combine and use the powers of all other classes. These men were termed civil engineers, in contradistinction to military engineers, whose edacation and experience fitted them solely for the art of war; and by these men, Great Britain had been placed first in the list of the civilizers of mankind. Mr. Field, as the first president elected from among the mechanical engineers, dilated, at length, upon the immense strides made within the last century in the production of the mechanic arts and in public worka, under the combined efforts of the two classes alluded to. He then entered more minutely upon the subject of steam aavigation, to which he had principally devoted his personal attention, and gave most interesting details of the suhject, ending by spologising for occupying so mach of the time of the meeting by saying, that he must be permitted to feel more then ordinary pride in being elected tbe president, when he looked around bim, and saw that the association of six young engineers, who, in 1818, met uccasionally to cbat over mechanical subjects, had extended, in the course of twenty-nine years, into a society consisting of apwards of 600 members, and comprising within it almost all the engineers of eminence in Great Britain.-The address was vehemently applauded, and the president was requested to allow it to be printed in the minutes of proceedings.

The discussion wes then renewed upon Mr. Ransome's paper, "On the Manufacture of Artificial Stone."

The Dean of Westminster, Sir Henry De la Beche, Mr. John Phillips, Dr. Garrod, Mr. Barry, and otber visitors, took part in the discussion with the principal members of the Institution. The remarks turned nhiefly upon the chemical and physical properties of the material, and the cost of its production in the moulded form as compared to that of carred atone. In its chemical properties it was shown to be at least equal in purity to the production of Nature ; for, on the atatements of the eminent chemists who had subjected it to severe tests, it was proved to be totally insoluble in boiling water, bowever long immersed, and also to be capable of resisting the action of mineral acids. In this respect it differed from glass, which always yielded a portion of its alkali to the action of water. It was further stated, tbat it had perfectly resisted the action of frost, vases filled with water having been repeatedly frozen without their sustaining any injury. Satisfactory statements were addaced as to its strength and other physical properties, and some very interesting remarks were made on the subject, comparing the substance prodaced artificially with certain sandstones fonnd in this country, which, by the action of compression and heat, had attained a degree of hardness equal to quartz. The experiments of Hall and Watt on the production of artificial stones were also alluded to as bearing upon the question. Experiments made on the strength of the artificial stone proved it to be superior to those natural stones with which it had been tested-viz.: Caen, Bath, York, or Portland stone. Namerous specimens were exhibited to the meeting, showing its universal applicability to constructive and decorative purposes; fractured pieces were shown of every variety of texture, from the porous sandstone to the most compact granite. The price of the material was stated to be such as to render it available for all useful and ornamental purposes.

Feb. 8.-Joshua Firle, Esq., President, in the Chair.
The paper read was "An account of the recent Improvements in the Drainage and Sewage of Bristol:" By Mr. James Green.

From this account it appears, that for many years past, great reformation had been requisite in the sewage of several parts of the city of Bristol, and more especially in the localities adjacent to the course of the River Proome, whose channel had become a large cesspool, spreading miasma and disease sll around. This river formerly emptied itself into the River Avon, in the city; and then all that was brought down by the stream was carried away by the tide; bat, when to form the floating harbour, the old course of the Avon was dammed across by lock-gates, and a new cut was made for carrying off the contents of the sewers emptying themselves into the Froome, a nuisance of the most terion character was created, and the bed of the river became permanently affected. Mr. Mylne, some years since, constructed a lateral culvert from the embouchure of the Froome, debouching in the new cut; this did partial good; but still the general atate of the river remained.
unimproved; and, in deference to the univertal demand for sanitary reform, the authorities of Bristol employed Mr. Green to devise and execute plana for the improvement of the sewage of the part of the city most demanding it. He laid out comprehensive plane, but the estimate of their cost exceeded the fuude at the disposal of the council ; so he modified them, and the result had proved most successful. The proceedinga were to bring the chanael of the river into an aniform width, by building side walle, with gutters in the npper alopes, conveging the sewage into the stream, ohliterating the shoal, and cleaning op the bed, thus bringing it to an uniform inclination; removing the obstructions caused by the pier of the Castle Mill-street-bridge ; lowering the beight, and extending the length of the Wear at the castle moat, with new flood-gates, \&c.; deepening the bed of the upper part of the atream, and thus makiog convenient arrangements for cleanigg out and funhing the channel, and pasing off the products through Mylue's culvert into the new cut, whence it was conveyed away by the tide. The Dock company's cnlvert was also cleansed and repaired at the aame time, and brought again into operation. Many difficulties attended these proceedings, bat they were skilfully combated, and the result has been most complete sacceas; and it is to be hoped, that the further ameliorations of which the general sewage of the city is susceptible, may be equally successfal under the control of Mr. Green, who bas so ably conducted them upon a modified scale. For, as the actual expenditure was not more than $£ 4,537$, as atated in the paper, and such beneficial effects have been obtained, there can be no reason why ary proper measure of sanitary reform should not be carried into effect.

In the discussion which ensued, several very able men took part, bearing teatimony to the satisfactory nature of the improvements made by Mr. Green at Bristol. The conversation then turned upon the employment of the contents of sewers for agricultural purposes. The system proposed by the variuus companies were detailed and canvassed. The lands which had been rendered fertile by the application of liquid manure, near Ediaburgh, and aear Mansfield, were quoted as examples of the efficacy of the system: but, on the other hand, it was shown that these were not fair examples, as the localities were peculiar ; the cost of the establishing was mach larger than could nsually be borne; and that, in general, if the diatribution of the contents of the sewere was to be made by pipes and pumping, the returms would never repay the outlay.

Feb. 15.-The discussion upon Mr. Green's paper, was renewed, and continued tbroughout the evening, to the exclusion of all other husiness. The main object of the paper appeared, unfortunately, to be lost sight of by the speakers, in their anxiety to bring forward, or to defend, the positions assumed by various companies, which had been formed at different periods for using the products of the sewers for agricultural parposes, but which, in the former part of the discuscion, had heen somewhat impagned apon commeroial grounds. The statements made at tbis meeting were only repetitions of what has been repeatedly printed in reports, and in evidence before the sanitary commissions; and the wbole eveniag may have been said to have been wasted, in spite of the attempts of some of the members to bring the discussion to the real question of the beat modes of laying out a system of sewage for large towns, the forms of the sewers, based upon the laws governing the conveyance of fluids-which, it bad been stated in some of the "blue books," were not understood by civil engineers, a statement which Was shown by some of the speakers to be not consonant with facte; for that, if the selected, rather than collected, evidence given before the Health of Towns Commission Fere analysed, it would be seen that the exploded dogmas of the older writers on hydraulics had been received and adopted, rather than the formula of modern writers, or the actual practice of civil engineers of eminence, whose experience on such subjects was necessarily great. It was true, that hitherto, in consequence of the absorbing topic of railways, eminent engineers had not devoted themselves to the sabject of sewage to the extent they might have done; but, when the time arrived for their doing so advantageously, or the exercise of their skill was demanded by the government, or by private enterprise, they would he found quite prepared to devote themselves to the work.

SOCIETY OF ARTS, LONDON.

Jan. 19.-William Fothergill Cooxe, Esq., in the Chair
The Secretary read a paper by Dr. Harding, "On some oncient Greek Vases, excavated by him from Tombs near Heximili, in the Isthmme of Corinth."
"In the antumn of 1840 , having obtained by private influence, an order from the prime minister, permitting me to excavate for antiquitien, I proceeded (observes Dr. Harding) to Corinth, and hearing that the peasanta frequently found ancient tombs, containing vases, under the village of Hexamili, I proceeded thither with a party of labourers. Hexamili lies between Coriath and its ancient port of Chincre, within three miles of the spot wbere the Isthmian games were celebrated. The ground about Hexamili is, for the most part, rudely cultivated, and grows good crops of wheat ; ancient quarries also abound. The plan adopted in searching for tombs is that of boring the ground with augers, seven feet long, till the instrment meets with come obstacle to its further progress, when it is with. drawn, and the gronnd is again pierced in other directions, to ascertain the size and nature of the obstraction; this is also tested by the sound of the instrument striking against it. When a tomb is discovered, and this is generally at a depth of about four feet, the earth is excarated in the nanal
mamer in which graves are dug in England; and as soon as sufficient of the covering of the tomb is exponed, a man sits down with a heavy hammer (smeh as in used by masons), and with this a hole is made in the lid or corering to the tomb. A hand is then carefully inserted, and human bones, race, \&c., are generally extracted. The greatent number of vases I found in eny one tomb was fourteen, and children's tombs had proportionally smal verel. Having in three days collected enough to losd one of the small borses of the country, I got them to Corinth, whence they were sent to Athens, and afterwards by sea, via Malta, to London."
Mr. Brach, of the British Museam, was in attendance, and stated that he wha uable to give any account of the chemical constituents of the vases, of the particular manner of their fabrication; still he should be glad to offer a few remarks in reference to the specimens exhibited. It is only of linte years (he observed) that the conclusion had been come to that large manufactories of vases existed in Greece; they had always been suppoed to be of Etroscin produce. The fictile art had been supposed to be confined almost exclusively to Italy, although numerous excavations had been made at Athens, and a few at Corinth, which had produced spe cimens similar to those exhibited, and which he divided into classes. The mont ancient vases (and which are distinguished from all others by the material of which they are composed) are of a light gellow clay, and have figures and animala painted on them in a maroon colour. Their date is supposed to be about 616 years before Christ. About this period the fictile art is repported to have been introduced among the Etruscans by the Greeks. The second class of vases are of a pale red clay, and the figares, instead of being of a maroon colour, are traced in black, in order to show the detaila more diatinctly. This atyle appears to date from the 8 fth to the middle of the fourth centary before Christ. The third class is one in which the calour was laid on by means of a reed. But perhapa the highest atyle, and ore which is peculiar to the vases found at Athens, is that in which the ontline, sce, is traced in white paint, or a sort of carbonate of lime. The vases exhibited he thought peculiarly interesting, as deciding that the vases of Italy may be considered to be the manafacture of Greeks settled in Italy, and not imported from Greece into that country.

Dr. Harding stated that the tombs at Hexamili seem to have been menttered in irregular patches; but the cemetery appears to have been very extensive, measuring nearly half a mile in each direction. No inecriptions or marks whatever are visible on the atones of the tombs, nor is there any other apparent difference externally than that of size. The hones in them were tolerably perfect, and the skulls nearly entire. He found bat one piece of metal, apparently part of a large bronze needle or bodkin. Generally, the contents of the tombs were in a wonderful atste of preservation, considering that they were, in all probability, at least 2,000 years old.

Jan. 26.-George Moore, Esq., F.R.S., in the Chair.

The Secretary read a letter from Mr. Dwren, in which he states, as the Society is to meet for the purpose of investigating the forms of Ancient Poftery, he begged to prement for its acceptance a series of sketches, believing that they might prove of some atility in assisting its researches. He ways that having observed that ancient art generally originates through the imitation of natural objects, he was led to infer as highly probable that the beantifal outlines of the Grecian vases emanated from similar sources; and procseded to point out the exquisite forms of leaves and fruits, suggesting the probable manner in which they had been used to give character and beanty of outline to those manufactures.

The second commanication was from Mr. W. T. Grifyithe, and accompanied a copy of his work "On the Natural System of Architecture."

The communication alluded to the work as pointing out the geometrical proportions of the temples of Greece, and calling attention to the applicability of geometrical design to domestic architecture, and as also affording a ready means of obtaining beautiful patterns for oil cloths, carpets, \&c. The enthor then proceeded to point out the improbability of the ancient Greek vasea being constructed on any other than pare geometrical principlen, as is proved by analysis; and concluded by alluding to the mintaken but very prevalent notion that to produce a beautiful building, it is necessary to orerload it with meretricious ornament,-instead of feeling that the more simple is often the more beautiful design.

Mr. Varley made some remarks in reference to Mr. Dwyer's communieation, and stated that although we have many artista of highly-cultivated taste, still they have not the necessary knowledge to enable them to produce good art. In reference to a leaf having given rise to the forms of the Greek rases, he would observe that a leaf in itself is a pendant body, and as such is rery beantifal: but no single leaf would stand upright. We might take some pendant fruits, such as the apple,-which might be said to have a base, and some vases might be compared to it; but he did not think that they gave rise to the forms of the Greek vases, although he must admoit that Natare was the first teacber of everytbing that is beantiful. There are certain rules, Mr. Varley said, which Nature suggests, and which we find the Greeks used; and he proceeded to point out the following method which might be used for producing agreeable forms, such ts the bodies of the vases exhibited-viz, by taking one-quarter of an hyperbola, parabola, or ellipse, aceording to the outline desired; and by rotating it on its axis at any given agle, it would be made to produce the figure desired. Similar simple methods for obtaining the necks and stands for vases were also described.

The Secolpary made some remarks on the form of vasep, and stated that if beanty consiated in the imitation of Nature, at suggested by Mr.

Dwyer, a man would have nothing to do but to take the first leaf of a tree as soon as he came to it ; instead of which, discontented with the first fifty leaven, he goes on seeking and seeking, till at lant he finds one which plesses him, becanse it comes up to the idess in his own mind, and which he had preconceived as the standard of beanty

Mr. Wrndean Harding considered that the effect of rases and other domestic utentils, as well as the architecture of everyday life, should produce on the eye an effect equally pleasing with music on the ear; and that, as in order to obtain harmony in music it is necessary that the cords or wires should each vibrate a proportionate number of times, so should the proportions of one part of a vase bear a given relation to those of another. In relation to architecture, several persons have considered that certain numerical simple proportions can be traced as exiating in the various members of ancient Greek temples, and Mr. Donaldson had stated that he has revived the means of determining the precise proportion of various parts of all Gothic buildinge : and these geometric and harmonic relations must hare been known to the Greeks in the formation of their woike.

Mr. Surtri stated that he did not consider that geometry was used by the ancients to the extent which is generally attributed to them, but rather that their worke were the result of a practised eye and hand, guided by a highlycultivated taste.

Fel. 9.-Bamon Goldsmid, V.P., in the Chair.
The Secretary introduced the business of the evening by some remarks on "Polygonar Decorations," as follows.
The discussion on the construction of ancient Greek rases, which bad lately occupied the meeting of the Society, had occasioned several treatises to be written and a great amount of attention to be paid to the subject. It is continually alleged as a fault of the art in our day, that instead of boldly creating forms and trusting to our own minds, and carrying out those feelinge according to what we consider the enlightened principles which we have struck out for ourselven, we are contented to take for granted that the ancient were artists truly unapproachable, and such we can never hope to equal, much leas to excel; and, therefore, the best thing that we can do is to abandon altogether originality, and give ourselve! up to the study and copying of the antique forms. The Secretary then pointed out the effect of a design upon the mind and senses in the case of polygonar art, and called attention to the effect of such a combination of colours and forms as ahall produce upon the mind the effect of a design standing out from the wall or pavement, but which, if felt by the liand or foot, is perfectly flat. He next proceeded to point out the forms of the tesserve and geometric figures which had hitherto been used in combination to produce deaign, and pointed out the beanty and variety of design whioh might be obtained by the combination of a form of tessera, which, although not new, had not up to this time been nsed as the base of a pattern. The figure which was pointed out as most applicable to mosaic decorations was the triangle of Plato, any number of which might be arranged round a point and wade to cover an entire surface, forming bands either horizontally, diagonally, or any variety of diamond figures, an the sides of the triangle bear a pecaliar ratio, namely, 30 , 60, and 90 degrees; whereas, where fignres of inharmonious ratios are ued, the same variely cannot be obtained.

Having thus pointed out the applicability of geometric figures to the production of beautifol forms, the Secretary gave several extracts from a paper on the "Beau Ideal Head," by Mr. D. R. Hay; from Mr. Blashfeld's paper on the "Construction of Fictile Vases;" Dr. Wampen's communication on the "Geometrical Proportions of the Haman Figure;" and Mr. Digby Wyatt's paper on "Ancient Testerze;" also a letter from Mr. J. Jopling, as to the improbability of ancient vases having been conatruated on any other than purely geometrical principles.

Dr. Ilarding made some remarks as to the unes to which the various cups and vases excavated by him had been applied, and gave the following quotation from an ancient Greek play, as illustrating the purpose to which the Lecythé had been applied. The play is one in which a young man is represented as jeering an abandoned old woman, and is saying -
"But yon old wretch, I greatly dread your lover."
"Who ?"
"Why, that firat of artiete."
"Who la that?"
"He who for dead men painte the Lecythe."
Another quotation as pointing out tbe ure of these vessels, is as follows:"You left me like a corpse laid out; only uncrowned and with no Lecythés on me." After alluding to the probable purposes to which the several other specimens of vases were applied, Mr. Harding stated that what had been said by Mr. Birch at a former meeting (as to the manufacture of vases having been in troduced into Italy by Eucheir and Eugrammus, artist! who had fed from Greece), was a myth, and could not be receired. Corinth, he observed, has been celebrated at all times, according to Strabo, for its politicians and for the promotion of the useful arts, both graphic and platic, and for every species of useful application of them ; also for some beantifal, but not numerous, specimens of objects connected with sepalchral rites.

ROYAL SCOTTISH SOCIETY OF ARTS.

Jam. 24.-Gromea Buchanan, Esq., F.R.S.E., President, in the Chair. The following commanications were made :-

1. Detcription of a Marine Hydrometer, adapted for ascertaining the comparalive Saliness and Freshness of Sea and River Waters. By Gzomge Buchanan, Esq., Preaident.

Thin is an ingtrunent which Mr. Buchanan stated he had found uxtramaly useful in inquiriss comented with the prevalence of ses and river watar in different acuarien, and therefore he thought a short notice of it might not be unintercating to the Society. In the great queation connected with the salmon fisheries in regard to the respective limite of the river and the sea, the prevalence of fresh or salt wator had been considerod an important element; but finding the unal mathods of meaturing the apecilc gravity by weighing the watera in a delicate balance, not very applicable where nnmerous specimens were required to be tried on the spot, it accurred to him that something on the pringiple of the hydrometer might be ueed, and this was the instrument which wes exhibited, consisting of the bulb of a apirit hydrometer, loaded so as just to sink the bulb in alt water, and having a long stem attached, which, in fresh water, becomes almost wholly immersed. Some diffioulty wes found at firat in adapting the scale, as it must not only be thin but light, otherwiee it tends to overbalance the instrument. A slip of whalebone or ivory acespers sufficiently well, and bevaral instruments wora shown of this description, and one entirely of brass. The use of the instrament was clearly exhibited in several experiments with frosh water, and with tbe waters of the Porth, come from Granton Pier, come from Queensferry, and some from Alloa. From Granton Pier the weter, even at low tide, has a very little impregnation of fresh, as compared with the Garman Ocean, which he had found, slong the eastern shores of Scotland, seldom to exceed the specific gravity of 1026, fresh water being 1000. At Granton Pier the average of high and low water wan found $1024 \frac{1}{2}$, or about one part fresh in sixteen salt. At Queensferry it was found 1023, or about one part fresh in eight salt. At Allos the waters at low tide are almost quite fresh; and at high water the specific grwity was fonnd nearly 1012, or nearly half fresb, half salt. A considerable difference is found between the surface and bottom waters. The specific gravitien of different seas were then atated. The Arctic ocean 1027; the waters under the equator 1028; and the Mediterranean, wbich is nearly the saltest of any sea, 1029. But the heaviest of all waters are those of the Dead Sen, which are atrongly impregnated with salphurous and hituminous ingrediente, as well as with sadt, and have been fonnd about eight times beavier than sea water as compared with fresh, having the extraordinary gravity of 1211. By the use of this simple instrnuent, many interesting observations might be made by voyagers in different seas.
2. Desoription and Drawiny of a Glase-Blowing Apparatwe, being a new invention in the Blowing of Glast. By Mr. Whrinu Coores.

This invention consints in effecting the hlowing of glace by means of derable bellows plaoed ander the floor, acted on by the foot of the glansblower, and the air is carried to the blow-tube by means of a fexible tabe, easily attuched and detached from the nozzle of the ordinary iron tube. The mdvantages are stated to be, that larger articles ann be blown, that the glam is freer from "cockle," and that the lunge of the workmen are atared, asd his rouscolar energies not being so severely taxed, be will be able to produce areat deal more manufactured goods in a given time. The air blowa by the bellows being of a much purer quality than that from the lunga, produces a better article. That larger sizo and a thicher mabstance of blown plate may be obtained by this new procest, and the sheet-giaes manufacturer will be sble to compete with the cast plate-glass monopolist. Thet "earboys" to contain twelvo and sixteen gallons heve been succeasfully blown by this process. Mr. Cooper then recommended that this procesa ahould be adopted in Edinburgh and Laith, where coal is cheaper than in Staffordshire by 4s. per ton, and where living and bouse-rent are about onefourth leas ; the wortmen all preferriag Leith, fromits healthy situation, cheapness, and family conveniences. Locality, be stated, is now looked at; economy in carriage is itself a profit to the manufhoturer, now that the daties are removed, and all the English manafooturers circumaaribing their conneation.
3. Description of an Elevalor, for raising Building materials or other bodies,-and capable of being used as a Fire-Escape-containing a new apvlication of the Pulley. By Mr. Robert Dafidson, Engineer.

Mr. Davidson stated that this machine or elevator was applicable as a fireescape, and well suited to the raising of small weights to great heights, such as in mills aud factories; or in the raising of scaffolding for workmen, such as painteri, plabterera, masons, \&c. It consists of a number of sliders, moving within each other by means of a fixed pulley attached to the top of a. fixed upright, which is hollow, containing all the other slidere, which are hollow alno, except the last one, which may be solid, the top of which contains a platform enclosed by a railing. There is a chain or rope fastened to a hook in the bottom of the top slides, passing over a moveable pulley, made fast to the top of the next slide, and passing down the outside of it and made fast to the top of the next slide following, on the top of which is also a moveable pulley, over which passes a rope or chain made fast to a hook in the bottom of the slide immediately preceding, the otber end of Which is made fast to the top of the fixed hollow upright, on the top of which is placed a fixed pulley, which guides the chain whereto the power is applied; the one end being made fast to a crane barrel, and the other end attached to the bottom of the slide next adjoining, which compela a simaltaneous movement of the whole machine.

NEW PALACR OF WESTMIMETER:

Rervess (dated Docember 20,1847) of the Aggregate Aunownt alroudy paid, or agreed to bie paid, to Contractore and other Persons for the Purchete of Land and Houses for the Erection of the Palace of Westminater (or Howser of Parliament).

1. The coat of the purchase of the lands and hereditament ..
2. The cost of the wherfing, terrace, and foundations for the building.
3. The cost of the carcace or ahell already axecuted (exclusive of alterations an under) ..

5 8. 4
82,054193
139,185 710
4. The cost of the principal slterations made from time to time. These alterations (involving changes in the original plan) consist of officied renidences for the librarime and clerk of the House of Commans, accommodation for the law courta, alterations of the Victoria tower, officen for the clerk of the crown, and works contingent upon the warming and ventilating arrangements, \&eco, which were severally reported to ber Majesty's Commiasioners of Woods, \&ic., and sanctioned by parliament in March 1843. Also, of an increase in the size and height of the Victoria hall, sanctioned by her Majetty's Commissionere of Woods, \&c.
5. The cost of interior finishings
6. The cost of the internal decorations of the Honse of Lords and its adjunctos, as far at they have been completed (imeluding preparations for lighting) ..
$453,648 \quad 12 \quad$ d
7. The amount of commisaion and other charges paid, or to he paid, to the architect on account of works and sarvices already executed ${ }^{\prime}$
8. The mount paid to surveyors, valuers, clerks of the works, and all other persons who hare bean employed, and not included in the architect's or bailder's charge

The amoust of the wholo expenditure of overy deacription, ander these principal heads, for purchases made and work done at the Palace of Weatminster, and its appendages, up to 31st day of Decamber, 1846.

Bstimatz for the Sume whioh will bo required to pay for tuch other Lands and Hereditaments intended to be purchased for the corapletion of the Palace and the Approaches thereto; of the Sume required to finish the Houses of Lords and Commons and their Appendages; of the Stum necesuary for the Vietorio Tower, and all other Works proposed to be excecutod to finith the Palace.

1. The cost of lands and bereditement intended to be purchased ${ }^{2}$
2. The cost of the completion of the terrace and foundations of the buildings ..
3. The cost of the carcase or shell yet to be executed
4. The cost of the principal alterations. None proposed...
5. The cost of the interior Anishing $\quad \cdots \quad . \quad . \quad . \quad 172,648 \quad 0 \quad 0$
6. The cont of the internal decorations of the House of Lords and it adjuncts (including lighting and furniture) ..
7. Amount of the commistion to be paid to the architect: ${ }^{\mathbf{a}}$. .
8. Amount to be paid to surveyors, valuers, clerks of worts, and others, not included in the architect's or builder's charge ..

uncertain

The total cost of works executed, and estimated cost of the works to be executed to finish the New Palace of Westminster, is thus $£ 1,401,03638$: hut which is oxclusive of extra finiahings, works of decoration, fittings in libraries and refreshment rooms, \&c.; fixtures, furniture, and upholstery:

[^5]marning, Fantinting, and linhting fecy except so far an anch works are dready execoted in the finithed portions of the brilding; aloo, of the restarstion of St. Stephen's erypt as a ehspet, if it shouid be so determined; the ferntrition of lmatiar.places townardr the itver, the piving of the several evarts, fice, of the brilding, the athering of the levela, and the re-pariag as well a fighting of the streets in its locality, dec. see. The cont of which nitit depend on the natare modestent of the workiteniored.
In this angeat there is a mon of $8524,0806 a$ for chares apon tha par-
 nait the verahes mal ventintiot arrurgemente, and the contingeot fire Put enmbenction of the building theoogtoat; the edilionat recidence: and ollar acmanopation ordered from time to time to be iscorpanated in
 the min mwers for the draimge of the building and ite locality, the various madisications of phan augeated and recemmended by eommittees of parlia. ment asd other anthoritien, and for miscellaneous works; all of which formed mopt of the original design and astimate. ${ }^{4}$

Maserliavzots Expenditure commected woth the buthating of the New Patace of Weotminater, not being for Purchave made or Work dowe at the New Hormee of Pordicinent, or included in the Arcinitect's Eutimate for the mive, det definged out of Grants voted by Parimment for that aervice. Prelinainary Measures.
Premitan and expenses consected with eompetition deriges ; the expense of a tour of impection, and of arperiments uade with reference to the selection of the prieclar deveription of steat to be used in the build ing; alme payment to engineere for surveye of the bed of the river

2 8. d.

4,902310

St. Stephen's Chaped.
The expene of mating draving in detail of the ehpel provious to ite being tomen down, and eagraviag the eame for publizetions ${ }^{3}$

Goeersment Food Carotog Works, Thastes Bank.
These premiees were talen to facilitute the progress of the interier tuishinge of the new boildings, by the erec. tion therein of esring machinet, and the employment of carcer and other workmen in the immediate pay of the Drpartmest of Woods, and under the smpervision of anprimensdents eqpeinted for this serviee, end direction of the serhitect.

The expence ol erectiog additional buildiygt to afford the mesaenty aecommodetion for carrying on the work, mply of mater, precmationary beature againat fke, stinf (to the crown), rates, lightiog, sc. ${ }^{6}$

The expentes ariving from damage done or re-inatate. ment made to adjoining property during the progress of the morken

Phymente on account of frescon"..
Ergarimental Vertitation, \&re. (Dr. Reid's ayntem).
The espence of works, apparatas, anlaries, and allow. smos in experimentally asrying out Dr. Beid's syatem of marming ventilating, and lighting at the present temporary Houses of Pariament, with a view to its adoption in the new building
The expense of inquiry and reference as to the applicability of Dr. Reid's syatem of warming and ventilating to the new Houmes of Parliament .

Minor expenses
11,191 36
$1,522 \quad 5 \quad 4$
$53819 \quad 9$

8,328	7	3
946	13	6
97	12	6
$£ 30,239$	17	8

8entmient of the dmomut of each Omicimal Compract, and of eery Alleration or Deviation therefrom, and the donount peid, or to be pedd, for ench Contraot and Alteration, and under whet Authorify anoh Alteration or Deviations hape been severally made.

$$
\text { Cortmact, No. } 1 \text { (in Growe) } \quad \& \quad \text { \& } d
$$

Por the river wall, and a part of the foundations of the river fiont of the boilding

74,37300 Additional worts in the river "̈all, reported to her Msjenty's Commisionera of Woods, \&co, and asactioned by perliament ..
$2,104 \quad 13 \quad 9$
£ $76,47713 \quad 9$

4 A credtt in ald towards detriytig the above total entimated coat will arlee from the mbon ofd matertals, entimated to produce $14,000 \mathrm{l}$. and aleo from the male of the mute-

s A credit ofll arise under this bead from the sate of the publication.

- As these preanises will, afler they have ceased to be ured al at prenent, be avallable toe otber pubtic purpowes, and the edditlonal bulldinge will permanentiy enhance the the of the crows property upon which they have been orected, thls erpeane is not Wholly to be complered as a charge on socount of the Now Housen of Parlament.
(Contract No. 2 (at Prices).
For the reminder of the foundations of the river front, main sewern, sec., estrmated at

Sabsequent eatimates and acconnts reported to her Majesty's Commissioners, \&ec., and sanctioned by patisment ..

Contract No. 3 (in Gross).

For the carcase of the river front, and a portion of the north and south fronts ..

Change of stone, $8, \ddot{5001}$; ire-prooing, 7,200i.; Farming and ventilating works; 10,150l.; reported to her Majesty's Commissioners of Woods, and sanctioned by parliament: Total

Additional cout of frepred toem, root, $\ddot{8}$.en, and for warming and rentilating arrangements executed under the general authority of her Majenty's Commiasioners of Woods, te. to the architect to comply with Dr. Reid's requirements
Cost of stone "arviag upon the arrangement anthorised by her Majeaty's Commisioners of Woods, May 13, 1841 Miscellaneous works ordered by the architect, under the general authority given to him to curry out his plans

$$
\text { Contract No. } 4 \text { (at Prices). }
$$

The foundations of the central mases of the building from north to south, including the Houses of Lords and Commons, and their respective lobbies, corridors, and contiguous offices and apartments, and the foundations of the Victoria and other towers, estimated amount

Subsequent eatimates and emounts reportod to her Majesty's Commintioners of Weods, \&ec, and sanctioned by parliament ..

Coniract, Now 5 (at Priose).
Por the careace of the superstracture above the foundetionat cormpied in Contrict, Na 4, ortimated at

1. Chage of stome, $9,460 l_{\text {; }}$; ire-proofiog, 8,4001 ; warming and rwatiatiof arrangemeate, $14,616 l_{\text {; }}^{\text {; }}$ reperted to her Majeaty's Commiesioners of Woods, tocen, and enctioned by parliament: Total
2. For slating to fats and roofs asphalting waili, lengtioning sewers, da. ; reported to the Offlice of Woods
3. For foor plates and other atructural arrangements required for ventilation, executed under the general anthority given to the architect to comply with Dr. Reid's requirements ; Dot yet brought to account and reported
4. For iron roofs and additional cost of girders and arcbes vendered neceasary by the warming and ventiJating arrangements, and reported to her Majonty's Commimioners of Woods, sce...
5. For coat of stone carving, nider tho arrangemeint smentioned by her Majoety's Commineionert of Woods,
6. For miccellaneous and contimgant works ordered by the architeot under the general authority given to him to carry out his plans
7. For the official residenoes for the librarian and for the elerts of the Howe of Commons, accommodation for lew eourte, altatatione of Viotoria tower, enlergement of Victoria hall, increased height of Victoria hall, offices of the clerk of the crown, and worke contingent upon the warming and ventilating arrangements, reported to her Majesty's Commissiouers of Woods, and sanctioned by parliament

Contract, No. 6 (at Prices).
The foundation and carcise of the raperstructure of gt. Stephen's hall and lobby, and the public approseh from Weatminster hall and St. Margartt's-atreet; entimated and reported to her Majesto's Commisioners of Woods, do., at ..

Por change of stone, 4,0404 ; and warming and ventie lating arrangements, 3,2341 . ; reported to her Majenty's Comminsioners of Woode, and anotioned by parfiament

For iron roofe and other warming and ventilating arrangements, excouted ander the general authority given by her Majesty's Commistioners of Woods to the arahitect to comply with Dr. Reid's requirements ..
\mathcal{E} s. d_{0}
7,442 19
$4,780 \quad 16 \quad 4$
$512,16218 \quad 1$
\pm

157,61500
$25,850 \quad 0 \quad 0$

15,273 $0 \quad 0$
23,829 14 0
$6,000 \quad 0 \quad 0$
$+228,56914 \quad 0$
$\boldsymbol{\pm}$ r. d.

17,822 I 6
$25,312 \quad 16 \quad 8$
243,134 $17 \quad 8$
\leftrightarrow a do
$219,969 \quad 0$
$32,476 \quad 0 \quad 6$
4,299 148
$12,180 \quad 0$

26,500
21,187 179
$15,000 \quad 0 \quad 0$
$25,469 \quad 0 \quad 0$
$\mathbf{x 3 5 7 , 0 3 1} 12 \quad 5$
6 o.

57,031 00

7,274 00
$5,000 \quad 0 \quad 0$

Brougbt forward. .
Eatimated cost of the stone carring under the arrangement annctioned by her Majesty's Commissioners of Woods, \&e., May 13, 1841

Contract, No. 7 (at Prices).
For interior finisbingu: Amount .
Contract, No. 8 (at Prices).
For interior finisbinge : Estimated amount. .
$£ 165,37500$

ON CAEN STONE.

From a paper read at the Royal Institution of British Architects, on January 24th. By T. L. Donalidson, Esq.
Being about to employ a large quantity of Caen stone in a work which is on the point of commencing, I was anxious to make myself fully acquainted with its properties and varieties, and the quantity of well-seasoned blocks that might be available in the market. I therefore determined to go to Caen itself, and visit the quarries. A few hours carries one over to Havre from Southampton, and a steam-boat conveys passengers from Havre to Caen in four hours. The last hour is occupied in mounting the river Orne, which, in its course from the sea to some distance above Caen, has a flat country on the left bank of the river, but, on the right, generally a lofty bank, at times immediately overhanging the stream, at others receding from it, but again joining it. Not far from the mouth of the Orne, at a place called Ranville, quarries are worked in the face of this bank. It is a harder and coarser variety of the same stone as that near Caen, and of more open texture, with a more crystalline character, hence more adapted for hydraulic works than for buildings. I am informed by our friend, Mr. H. C. Smith, that these coarse varieties, which doubtless are very durable, resemble in several particulars the stone from Weldon, in Northamptonshire, of which the oldest buildings at Cambridge are constructed.

The material generally known to us under the appellation of Caen stone is of the oolitic formation, presenting a close analogy in its general, and even in some of its minor divisions, with the rocks of a similar kind in the south of England. The quarries whence it is derived are situated at Allemagne, a parish and village on the right bank of the river, at the distance of about a mile and a half, or two miles, above the city. The quarries heretofore worked occupy a superficial area of about four square miles. Some are worked by means of shafts, which afford access to the quarries under ground, branching off on all sides in long galleries, or multiplied by chambers, which are about 18 feet wide, and the ceiling-bed upheld by massive rude piers, which are left 9 feet square and 18 feet apart, the height being about 15 or 20 feet. These quarries, which are immediately on the bank of the riverhere abruptly rising from the water-have an access from the side of the bank, and are approached by inclined roads, leading from the summit of the bank above and from the water's edge below. The openings to these dark and gloomy caverns have a very picturesque effect, and a continued series of them present themselves one after the other. The galleries penetrate to a considerable distance. The extraction of the stone is done by contract or task work, at so much per cube, the quarrymen removing the blocks and dressing them, and another set of men contracting for their carriage from the quarry to the quay at Caen.
Immediately under the soil there are some thin courses of hard
coarse stone and rubble, but the immediate ceiling-bed is called the banc cloutier, and is about 2 ft .6 in . thick. It is of a hardish quality, but is not applicable for building purposes, as it contains a great quantity of pebbles, which offer great difficulties in the sawing and working. There are about six beds of good building stone, the five uppermost ones calculated for outside work, the lowermost adapted only for inside work, as it has soft portions, which do not well resist the atmosphere.* Much of this is used in the interior of the new Parliament buildings. The aggregate height of these six beds is from 92 to $\mathbf{2 5}$ feet. It is to be observed that all these beds are not to be found in every quarry, one or other of them disappearing and re-appearing in the same manner as in England. The names which I am about to give do not obtain in all parts of the district ; and some of them have various designations given to them by the quarrymen. The uppermost bed is called the banc pourri, about 3 teet thick, which is a very good quality of stone; but occasionally it has in some portions the hard pebbles, previously alluded to, as prevailing to so great a degree in the banc cloutier, and therefore it is not so much esteemed for finer building purposes as the lower beds. The gras banc is the next bed, and has an average depth of 5 feet, but as it is inconvenient to work to that large size, it is generally split into two, in heights of 3 feet and z feet; and the smaller one is called the banqueret of the gros banc. La pierre franche bed comes next, abrout 3 feet deep, which is of a harder quality, and well adapted for cornices, sills, copings, and the like exposed positions in a building. Next to this is the banc de quatre pieds, a very fine bed, which has the same appellation, and depth of 4 feet, in all the quarries, as also the next bed, called la pierre de trente pouces, being 30 inches deep, a good hard bed of stone, and forming the lowest of those fit for outside purposes and exposure to the weather. The sixth and lowermost bed of the building-stone is termed the franc banc and has a total depth of from 4 feet 6 inches to 5 feet, but this being, like that of the gras banc, an inconvenient depth, it is divided into a lower thickness of 3 feet, and an upper banqueret of 20 or 24 inches deep. The whole of the stone of these beds is soft and tender in the quarries, and the blocks are extracted with great ease. They are produced of regular size and squareness. When taken to the outside, and exposed to the atmosphere, they gradually part with much of their humidity, and harden; and, if exposed on the quays during the winter, they are covered over to protect them from the frost. They saw freely with a common peg-toothed saw, without either sand or water, and are easily worked for building purposes; and, being of a compact fine grain, they produce very sharp arrises, and receive a very smooth surface on the face.

During the winter little work is done in the quarries in regard to extracting blocks of stone; but the men occupy themselves in sawing and squaring slabs about 12 or 15 inches square, and from an inch to an inch and a half, or more, thick, which are used for paving halls, galleries, and even some rooms inside their buildings. But the most extraordinary use to which 1 have seen these square slabs applied, was in the church of the Trinity of the Abbaye aus Dames. Two of the openings between the piers have been closed up, for the purpose of some repairs going on. I passed through a door in the partition or inclosure, both of which appeared to me of the same thickness. My surprise was great, and I examined the edge of the opening, and found it of stone, and discovered, upon closer inspection, that the opening, about 10 feet wide by 20 feet high, was inclosed by these square thin slabs, about an inch and a half thick, placed on edge, put to gether with plaister, suffciently stable to allow a door to work in its aperture. I subsequently was told, upon inquiry, that the inside partition in rooms, 10 feet high, are formed of the same material, and secured by occasional upright studs, 10 feet apart. These partitions are admirable, for they are very light, occupy little space, and form an excellent ground to receive the plastering on the surface.

The general character given of the Caen stone is, that all the beds are of the same quality, and all equally adapted for building purposes; but evidently. from the information which I collected on the spot, and subsequently in London, from Messrs. Luard, there are modifications in each bed, as may be reasonably supposed, and as experience teaches us in the quarries of other oolitic stones in Bath and Portland. Various veins traverse the beds in all directions, and have a white appearance; this white substance is equally hard with the stone itgelf, and if a stone be laid with its bed parallel with the direction of these veins, it is of little consequence, but they, of course, indicate a certain unsounduess or division in

* This is also the case with all the oolltic quarries in England. The uppermost bede are bardest to wort, but most durable; the lower beds are soft, and will not atand the
weather so well an the upper ones.
that part; and if the stone be laid with this vein in a vertical direction, the block will run the chance of being fractured by a weight, or, if near the surface, it probably may admit the wet. These veins are not like those in the Bath stones, which are hard, consisting of crystallized carbonate of lime, and running always in a rertical or inclined direction, and not liable to separation. In general it is considered that the blocks of Caen stone may be placed in construction in any direction, except when the white reins are perceptible. It is said that the most experienced eye can hardly detect the different qualities of the stone in the block, when once they have been removed from the quarry, as the action of the quarryman's tool on the surface hardly offers any indication; and there is no appreciable difference in the appearance of the franular formation.

There are in the vicinity of Caen, even to a considerable distance, many beautiful varieties of this formation. At Falaise, about 20 miles off, higher up the Orne, is a fine compact stone, much harder than the Allemagne. Its texture is beautifully equal, and fine grained. Its price is one-third more than that of Caen stone, and, of course the labour upon it is considerably increased. It is well adapted for exposed situstions, and is used, I believe, in the quays and dock basin now constructing at Caen.

I was, of course, anxious to ascertain whether the magnificent and ancient buildings in the city could be relied upon as proofs of the quality of the stone in the Allemagne quarries, of which there is a traditional report handed down from one generation to another, that they are constructed. And, certainly, the lofty pinnacles and spires, and the solid high square towers, which rise up in clouds, defying the fury of the elements, for many years exposed to storms, hail, rain, snow, and frost, acted upon by all the alternations of heat and cold, wet and dry, present a sharpness of arris and smoothness of surface, as seen from below, that prove a considerable degree of hardness in the stone of which they are constructed. Less reliance can be placed upon the indications on the parts within reach, for exposed as they have been to the Vandal wantonness of the revolutionary phrenzy of destruction, and the Calranistic zeal of misguided religious feelings, there are many of the lower parts broken away and considerably worn. But the attenuated and refined details of some "renaissance" finials, pinnacles, and flying buttresses, in the lady-chapels and apsidal altarends of the churches of S. Pierre and S. Sauveur, and S. Sauveur-le-Marche of the beginning of the sixteenth century, more minutely enriched and elaborately carved and subdivided than even the most refined details of the flamboyant parts near them, are as fresh and sharp as if executed within the last fifty years. Time and weather have not had, on the monmments of Caen, the same corroding hidenus influence as on the edifices of Chester, (oventry, or Oxford. The graceful spire of S. Pierre, the summit of which is 250 feet above the narket-place, and itself more than 100 feet high, does not appear to be thicker than 9 inches in the lower part, and is reduced, it is said, to 4 inches thick at top. The immense weight and exposed situation do not seem to have affected it in the least degree; and it may be quoted, if not for size, at all events for its grace, daring construction, and state of preservation, after 540 years' trial, with its sister spire of our own Salisbury, erected at the same period.

At the same time, I am not prepared to assert whether the stone employed was all taken from the Allemagne, or from some other superior quarries; but the appearance of the stone justifies the tradition of its origin, and I know not how to question it.

CONWAY TUBULAR BRIDGE.

Experiments on the Completed Structure.

We are glad to be able to quote from a contemporary an account of the experiments on the tubular bridge just completed, as given by Mr. Fairbairn himself, in a letter to a friend :-

- We have solver an important problem in practical science; and, deapite the prognostication of some eminent mathematicians, the whole of wy experimenks at Millsall have been more than realised. On Wednesday last, the tube was suspended upon temporary piers, 400 feet span; and with its own weight (1,300 tons), the deflection did not exceed, but was under, 8 inches. With 300 tons of loaded trucks, the deflection was increased to 11 inches-being, as near as possible, in the ratio of 1 inch to 100 tons of load. The computed oreaking weight of the tube is 2,200 tons equally distributed, exclnsive of its own weight; and, having its perfect retention of form and great rigidity, I am of opinion that it would sustain 3,000 tons before fracture took place."
It appears from this account, that the deflection under a load of 300 tons, is less than one foot-an amount which Mr. Fairbairn
considers so small as to demonstrate the successful issue of the undertaking in which Mr. Stephenson, with the able co-operation of himself and Mr. Hodgkinson, is engrged. Certainly, when we consider the length of the structure, the multiplicity and complexity of the component parts, and the number of joints and rivetsthe accuracy of adjustment, and the extreme nicety of workmanship which effect the result stated, must appear wonderful ; and the superintendents of this great work, who have concerned themselves in its minutest details, and therefore have the fullest sense of its difficulties, must naturally estimate this amount of success more highly than comparatively uninterested persons can do. But iron, even of the best quality, is not perfectly elastic; bolts and rivets, though ever so carefully formed, are not mathematically true; and, therefore, it may reasonably be asked, if the structure sink one foot now, how much will it sink when the bolts have been worn, the bolt-holes endarged, and the plates strained by the wear and tear of six months' railway traffic?

It is to be remembered, also, that the dynamical effect on the structure of a load in motion, is much more than the statical effect of a load at rest. In the case of a jointed structure, of which the elasticity is imperfect, the dynamical strain and deflection would be certainly double the corresponding statical effect.

These remarks are not intended as forebodings as to the ultimate success of this magnificent undertaking. All that we wish to do is to point out how much of the problem is solved, and how much remains in doubt. Considering the question abstractedly, we caunot deny the possibility of making the structure strong enough to bear its load. Theoretically, a tubular bridge may of course be made strong enough to bear any assignable load what-ever-ton after ton of metal might be added till the requisite strength would be obtained. For as each ton of metal would be disposed so as to bear something more than its own weight, we should, by continuing the process of increasing the thickness of the plates, arrive ultimately at a point where the streugth was sufficiently in excess to sustain any load assigned.

But the question is, not whether the bridge may be made strong enough, but whether it be made so at the least expense of material. It is to this point our doubts refer. Mr. Fairbairn says, that his experimental results contradict the conclusions of some eminent mathematicians; and, except for the laudatory epithet, we should be disposed to think that he refers to investigations which have, from time to time, appeared in this Journal, in which alone, we believe, the mathematical principles of the tubular bridge have been discussed on an extensive plan. But leaving the personal question, it is enough to explain that we call in question not the effect, but the means; not the sufficiency of the structure, but its economy. It has been already shown (Vol. IX. for 1846, p. 300), that straight tension rods, proceeding in right lines from high suspension towers to several joints along the tube, would act with the greatest possible efficiency. It is not even now too late to apply the suspension rods to the bridge: only let it be by rectilineal rigid diagonal bars-not by flexible or catenary chains. Comparing equal quantities of metal disposed-first, in increasing the thickness of the tube-secondly, in diagonal bars, acting either as struts beneath the tube, or as tension rods above it,-it has been mathematically demonstrated that the efficiency of the metal may be trebled by the second method. Were it not dangerous to prophesy on a subject so novel and so difficult, we should be inclined to predict that this second method, in one or other of its forms, of diagonal tension rods or diagonal struts, will be found necessary after the structure has been some time in use.

NOTES OF THE MONTH.

The Tabernacle.-Among the interesting exhibitions now open is that of the Tabernacle of Israel, at 58, Pall-Mall. The Kev. R. W. Hartahorn, a clergyman of the University of Dublin, feeling an interest as to the form and structure of the Tabernacle, has bad a model made, with all the details claborately executed, as gold and silver candlesticks, brass sacrificial instrumente, and embroidered curtains. The modele are two in number, and are executed in strict conformity with the texts in the bible, which describe the arrangement of the original Tabernacle of the Jews. The first of these models represents the Jews encamped in the plain of Moab, with the tribe of Levites and the Tabernacle in the centre. The tents of Ephram are shown in the distance, and afar off the Dead Sea and the mountain range. Thim is a most interesting tableau. The uther model is devoted to the illustration of the court of the Tabernacle in greater detail. Here are shown the airty pillars, the altar of burnt offering, the embroidered curtains, and all the accesasies of the place of worsbip. The water-vessels are copied from authorities in the British Museum; the pillars are gilt, the candlesticks and vessels are of gold and silver, and the model of a high priest stands at the
aller, superintending a sacrifice. This exhibition is an extroordinary example of the practical illuatration of a text, and is Vikely to exeite very great interent, from the astare of the rabject and the mode in which it is carried out.

Sewage Pipes.-Glazed-ware pipes for sewers have become a large article of manufacture since the late sanitary agitation.

Water Works.-In the new sanitary bill, provision is made to emable the new comminsioners to set up water and gas works.
Doath--Mr. Charles Dyer, a member of the Institute of Britah Axchitects, has died of paralyis. His works are chiefly mit Britol; and inelute the Vietoria Hooms, with a large Corinthian portioo; the Biahop's Cellege, in the ©othic style; Christ Church, Clifton ; Bedminetor, New Church; and the Faranlo Orplan Asylame.
Now Theatre.-The Royal Polytechnic fustitution han been pearly doubled in tise by the erection of a rary large theatre, capable of bolding a great number of persons.
Decoration.-Regalar courses of lectarem are now beiog given at the school of Denign, Somerset Howe.
Now Gallory.-In comsequance of the giff of the Vernon collection, the government have obtained a committee of the House of Commons to inquire into the accommodation at the National Gallery, and what provicion ought to be made for the national collections. This will result in a new building.
Buildere' Foremen.- The Institation of Builders' Poremen hes reached its third year. Its first Investment of $£ 100,3 t$ per cents. has been made.

Windows.-An agitation is being carried on to get rid of the window tax, and at it in aupported on sanitary grounds it is likely to be successful, though the government have refased to do anything this year.

Death.-The newapapers announce the death of Lient. Col. Heary Brandreth, R.E., one of the paid Reilway Commissionera. He was a vory dittinguished member of the Corps to which he belonged. His death was rudden.

Bitvidende. The railwa dividends declared at the belf-yourly meotings have been more astisfuctory than was expected; while a complete denial hat been given to the charge that dividands have been paid out of capitel.

Brosd Gauge. The courree of ltigation bis been latterty in favour of the broad gauge, and it is expected the Oreat Wentern will be left montere of the Birmingham and Oxford line.

Tolognaph \rightarrow Mr. Wishat is, it is stated, angaged oo an bydmulic talograph, of which syatem, as is well known, he wat the inventor. He arganised the establinhment of the Electric Tolegraph Company.

Colomiea--Colonial raiwnays are quite at a stand-still : the Demerara works are stopped, the new Jamaica lines given over, and the Trinidad and Barbadoes Companies defunct.
Survey,-The ordnance surveyon have begun the survey of London, for fear they should be stopped. Mr. Wyld gave some opposition in the House of Commons, but the surveyors have been so supine, that the government have been able to carry out their own system.
Blackburn.-On the 18th ult., a new market-house was opened at Blaekbarn. It is by Mr. Terence Fhanagan, C.E., and is 181 ft .6 in . long, md $109 \mathrm{ft}$.6 in . wide. The roof is in three spans. The tower is 18 feet square, and rises 90 feet high. The material is Longridge stone, and the eoat $£ 800$.

Fhaxman.-A collection of 150 works of Flaxruan has been prosented to the University College by Miss Demman, his axecutrix.

Satrath Bridge for the Cormmall Raiheny.-The entuery of the Hamonze at Saltah Pasage, in, at high water, about three-quarters of a milo wide, 10 fathoms more or less deep, and, from ita narrownes compared to ofber parts, the stream rube thore with a nout powerful force. It is designed to carry over the river, at this panage, a bridge of thrme archen, 95 fect abote the anrface of bigh-weter spriag tides. To aid in the accompliabmeat of this great object, the Cornwall Railway Company have purchased two 14-gun packet brigo-the Pigeon and Magnet-of 300 tous each, and have moored them at the pasage about midway. By a series of mooringe, it has been ascertaned that the bed of the river is covered with mud to depths varying from 18 inches to 15 feet. On the Cornwall side, a stage being moored 20 feet from the beach at. low water, and a 30 -bar ladder with weights attached, let down to rest on the ledge of a steep rock, a diver had yet to descead 9 feat before the bottom was obtained. On the Devonshire side there is not so much declivity. The company have just received from Bristol, by Bristol and Exeter and South Deron Railway to Totmesa, and thence by sea, an immense cylinder, weighing 23 tona, 85 ft . 9 in . long, and 6 ft .3 in . diameter. It is designed to let this cylinder down perpendicularly between the two brigs, when it will be ahout 25 feet out of the water, and in that position to moor it with hemp cables, fastened to four ar five anchors, some of which weigh 1 ton each, purchesed expressly from her Majeaty's dockyard. An effort will then be made to pump the cylinder dry, by steam-engines to be fixed on board the brigs. Should the experiment with this cylinder prove successful, it will have to give plece to one of much greater magnitude, weighing 130 tons, of the same length, but having diameter of 30 feet-thos providing an area of sulficient extent to lay foumdations for the piers of this formidable work. At the precent sotson there are not more than about 30 men employed at Saltash; but a far greater number will shortly be employed. Tbey are under the control of the reaident engirear, Capt. Dozee, who is sided by Mr. Pope, the gentleman who eo ably maisted in floatiog the Great Brilain steam-packet.

 Sis Montha alowed for Inmohwent, wilezr otherwise expresoed.
 weavieg,"-8eal+d Jenoary 22.
Whilim Hudeon, of Burnley, Lancachize, pachine-maicer, and John Dodyeon, of Burnley, same county, overiooker, ior ce certain I oprovements in looms for werving, Jamuar 28.

Eency R
 motire power, and for ratatigg and forclng fuids."-January 25.
Thoma Topham, of Ripley, Derbyihire, mannfacturer, for "Improvementa in the manufacture of thme-lables."-Juauary 26.
George Ferguason Wileon, of Belmort, Vauxhall, gentleram, for 4 Improwementes io treating and manateturing certing fally or ony matters, and in the manufactore of candles and night-lights."-January 25.
Henry Highton, of Bugby, master of arta, and Edarard Elghton, of Regent'e Part, Midletex, for " Improvemente to electric telegraphs."-Janumiry 25.

 meate in the minning
ture."-January 25.
John Colling, of Leominster, in the county of Hereford, archisect, for of certain Im provement to frumaces, woven, gratee, and fire-places, and in fing and other epparatil for preparing vegetalle and other mbatinees, and the geacration and appllotion of hett." January 27.
Thomar Robinson, of Coventry, fibbon manufacturer, for "Improvements loloms for weaving riblone and other timetes "-January 27 .
William Watmon Pattinson, of Felling, near Guteshead, Durham, chemioel maverecsurer, for " Improvencitit in the manuftotire of code."-Jancairy 27.
Whlien Hemry Barlow, of Derby, civil engineer, for "Improvements to the en matecture of rallany key."-January 27 .
Whllime Ruacell, of Lydbrools, In the county of Gloucenter, iron master, for in an Lmprovement in the preperation of anch bar-iron as is used in the manofacture of certain ciode of rodifon."-Januery $\$ 9$.
Attred Vincent Newton, of Chanepry-inve, mechankal draughteman, foe "Improved machbery for manufnoluring shot and other balle." (A communacation.)-Januar y 3 L .
James Blackwel, of Winaford, in the county of Cheater, salt proprietor; for "certin Improvements in evaporating farnaces."-Fubruary 2.
Robert Fowiea, of North Shield, Northumberiand, geatleman, for "certain Improvemente In propelifig. ${ }^{\text {Pe }}$ - Pebruary 8 .
Jamen Bird, of the Cwn Avon Works, Talbach, Glamorgan, pemtlemen, for " extein Improversedis in propellisus."-Piebruary 8.
Godfery Anthony Ermen, of Manchester, cotton eplnoer, for "certaln Improvemente In machlnery or apparatus for twieting cotion and other fibrous substinces."-Febriary 8 .
Ricbard Clarke Burleigh, of Featherstone-bulldings, Middtesex, grntlenan, for it Improvecnents in burners for obtmining or produchg inght and heat, and to apparakas to be peed thearith."-February 8.
 printing and other teirgraphe."一February 8.
Willam Heywood, glover, of Stone Bridge, Chenter, chemint, for "Improvementit in the menafecture of ofl from Bubber."- February 8.
William Benster, of Regent-atreat, Middewex, for "Improvemens in umbrellas and parasols."-Februsty 8.
Jetn Napoteon Zermen, of Greenwich, Kent, captaln in the French nary, for "Improvementi in shlpa and other vesaela."-February s.
Luke Eebert, of Rgde, Lsie of Whght, cipil enginear, tor "Improved mechaniem for reduciag. grtadtug, and siring bark, sugar, coffee, seeds, and other substancets."February 8.
Whliam Peter Piggott, of Ozford-atreet, Middiesex, and Wardrobe-plees, Doctors' Commons, clty, for "certaln Improvements in naudcal instrumellts, and th the manufacture of casee for containing instruments, goods, or merchandlee."-February 8.
Jean Marle Magnin, of Ville Gramehe, (Rhone,) Fravee, avocat, for "Improvememte in mechisery for awing, embrolderict, aud for maling corde or plalis."-Bebreary 9.
Gustivi Adolph Bucibolz, of Foraton-ntreet, Middlesex, pentlemen, for " Improvements In obtalning motive power."-February 9.
Felix Douche, merchant, of Roven, F'rance, for "certain mans, procesaes, and apparatus used for saving and applytng the lost heet in general and sometmet difect beet, io many umefnl purposes." (A communication.)-February 10.
Willtam Jeary Candon, of Cambridge, solteltar, for ${ }^{\omega}$ Improvernenca in the eonstruction of carriages for the conve yance of sheep and other antonals on railivaya."-pebruary 11 .
The Right Hon. Thomms, Earl of Dundonald, Vice-Admiral of the White aquadron of The Right Hon. Thomas, Earl of Dundonald, Vice-Admiral of the White squadron of
Her Majesty's Rept, Knight Grand Cross of the Most Hon. Order of the Bath, for ©* Im. Her Majesty's Reat, Knight Grand Cross of the Most Hon. Order of the Bath, for ": Im.
provements in marlae stemm bollers and apparatus connected therewith."-February 11 .
Horatio Black, of the town and county of Nottlagham, lace-maker, for "ImproreHorstio black, of the town and co
nents in evaporatiop."- Peluruary 14 .
John Watson, merehant, and Edward Cart, gentleman, both of Hull, for * Improvements in the manufnetere of gas."- Pobrany 14.
James Timmion Chamee, and Fifvard Chacece, of Blruinghani, for "Improvementa in furnaces, and in the manufacture of glass."-February it.
William Tottle, of Crosby-square, Iondon, merchant, for "Improvements in dtsthling," (A communication.)-Febroery 14.
John Weaton, of Portisad-town, Middlesex, machinist, for "ceftatn Improrements iv obtaining and applying motive power."-February 16 .
Joseph Barber Karby, of Dewsbury, for " Improvements in making communications between the guards, engineers, and other eervants in charge of ratiway carriages, and also between the panaengers and auch servants, which improvements are applicabte geteralh between the pasaengers and such servant, which improvements are app
where speedy and certain communications are required."-February 16 .

Edward Maspey, of Mindleton-square, Middlewex, watchnaker, for st Improwements is loge and sounding apparatus."-Frbruary 18.
Edivard Duncombe Linet, of Cheleen, and Samue! Luiz Freemont, of Love-Iame, Clty sentleman, for "Improvements in the manufacture of colours, olls, and varnishes, end in the mannfacture of charcoal, and aleo in treating vegetable aubitances for, and in ob talolng extractive matters therefrom."-February 18.
Willam Irving, of Trigon-road, Kennington, engineer, for "Improved apparatus for cutting or carring ornamental forms in wood, stone, and other materials."-February ≥ 3.

 other aubitances."-February 29 .

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXX.

4 I muat have liberty
Whichal, as large a charter as the minds,
To blow on whom 1 pleave."

1. Caryatides completely contradict Vit ruvius's conceit, as to Ionic and Corinthian columns being proportioned respectively after Grecian mammas and misses, for the real feminine or lady-like pillars are far morre bulky and robust than even the most masculine examplea of the Doric order,- to such degree, in fact, that they would be positively clumsy were they mere pillars, whereas variety of form and play of outline entirely dissipate the heaviness which would attend simple masses of stone of the same bulk. Of the effect and value of Caryatides in architectural composition scarcely anything is said by architectural writers, although it is that which chiefly demands their consideration and remark; for as to the origin or first introduction of such figures to perform the office of columns, that in reality matters not a rush, notwithstanding it is what exclusively occupies the attention of those who speak of them. The current legend respecting the adoption of them into Greek architecture, may be true or may be false; but at all events it is not necessary in order to account for pillars being shaped to resemble human figures, such figures being frequent in the Eyyptian atyle, of course with very wide differences as to taste and design, the fundameutal idea being nevertheless one and the same. Far more to the purpose is it to consider the eesthetic effect of such statue-columns, and their value in architectural composition. That while they greatly extend the resources of the latter, there is direct classical authority for them, and that in an example fraught with the most exquisite taste, is undeniable; not withstanding which, the propriety of the taste so displayed has been called in question, or rather has been peremptorily condemned. It is contended that such figures both suggest painful ideas, and partake of the preposterous. With regard to the first of these objections, it is difficult to understand wherefore statues performing the office of pillars ahould excite any idea of pain if they themselves express no such feeling-which of course they ought not to do-but stand calm, immoveable, and indicate perfect ease and tranquillity. As to the preposterousness of employing human forms for offices which living homan beings could not possibly perform, if there be absurdity in that, it is of a species which extends itself-or I might say, incorporates itself-with a very great deal of both architectural decoration and ornamental design generally. It has been said that whatever is contrary to common-sense is contrary also to good taste. The validity of such dictum depends very much upon the latitude allowed to the term "common-sense." If we are to understand by it merely the knowledge based upon actual experience, a very great deal that has hitherto been regarded as manifesting refined taste, must be set aside altogether, and pronounced to be in very false taste. If Caryatides are to be condemned as inconsistent with good taste, because they represent the human form contrary to What we know by common-sense it is capable of, the same authority of common-sense must pronounce statues employed as pinnacles and acroteria on pediments or elsewhere to be equally repugnant to good taste, they being placed for a continuance where real persong-if they could stand there at all-could remain for only a few minutes, and that at the peril of their necks and limbs. Again, how can we reconcile with plain common-sense such classical monstrosities as arabesques or human and animal figures terminating in foliage? Nay, is there anything of common-sense-that is, of plain, honest, matter-of-fact common-sense-in the cramming a crowd of figures into a pediment, where half of them are, perforce, crouching down? Or what shall we say to such conceits as corbel-heads, or to statues fixed in between the mouldings of the head of an arch, in such manner that some of them are nearly in a horizontal position? If common-sense is not startled by them, it may surely excuse what are less at variance with it-namely, Caryatides, which last are at once so picturesque and elegant in effect, that their being so rarely employed may well excite our wonder. Their being frequently employed is not to be looked for, on account of their expensiveness as compared with other pillars of the same dimensions; still what prevents their becoming too common by being applied on ordinary occasions, should operate as a strong reason for introducing them where magnificence is affected, and cost becomes a secondary consideration.
II. From what Mr. Gwilt says on the subject, in his Encyclopmdia, it would seem that Caryatid figures are by no means uncommon features in architectural composition, for he tells us that "the
variety in quest of which the eye is always in search, and the picturesque effect which may be produced by the employment of Caryatides, leads often to their necessary employment." How he reconciles the epithet "necessary" with the opinion uttered by him just before, viz., that the purpose of support can be not only as well but even better accomplished by a small order, -must be left to himself to explain, which it would, perhaps, puzzle him to do; and puzzle him also it would to justify the expression "Ofen," by enumerating examples. On the contrary, they are exceedingly rare indeed, in this country more especially, for I can call to mind only one instance of the kind in the metropolis, namely, that afforded by the church of St. Pancras. Yet, though he evidently entertains no partiality for Caryatides, Mr. Gwilt appears to regard with favour Inigo Jones's idea for the circular court in the palace of Whitehall, which was intended to have two orders of colossal figures, answering to two entire stories of the edifice, which enlargement of scale for figures of the kind is certainly no improvement upon the tasteful Athenian example.
III. It would be well were we to ask ourselves what is likely to be the result of the present system of architectural copyism and mere reproduction. The works so formed and fashioned will, by and by, come to be looked upon, at the best, only as so many clever counterfeits and imitations of what were previously living styles of the art, fraught with vitality and with the actual impress of the perivd when they respectively flourished. Just now, while we are imitating, our imitations may interest ourselves, but they will be of no interest or value to those who come after us. Historic inte rest they will have none, except as testifying to our skill in mechanical mimicry, and our utter want of inventive and creative power. Do what we will, imitation of something done before there always must be in architecture; yet, as if that were not sufficient, we affect and pique ourselves upon direct and express imitation. We must always have "something after somebody," or after something else. And this of itself constitutes a prodigious difference between the art at the present day and in former periods, our own being little better than a blank with regard to original ideas. So that with all our reverence-real or pretended-for precedent, we refuse to recognise the artistic liberty to which we are indebted for those styles and examples of them which we now cry up as patterns of excellence.
IV. The free exercise of invention in design is not to be confounded with mere arbitrary innovation. The inventive power for which such freedom is claimed must, however, be of a legitimate kind, -that is, be directed by sound principles of art. With them and a cultivated taste for his guidance, he who has the spirit of an artist in him may safely be trusted to his own impulses and ideas; whereas he whe has no insight into artistic principles, who has never applied himself to msthetic study, cannot be trusted at all beyond the limits of the most ordinary common-place and jog-trot design, for if there be a possibility of blundering he is sure to do so. No matter in what style he attempts to disguise himself, his vulgarity is certain to betray him, and his irrepressible Pecksniffism breaks out, without being at all suspected by him, or it being in his power to guard against it, for the simple reason that it is his nature, and he has no idea of what he ought to guard against. Daily experience confirms the truth of this: how many atrociously vile and vulgar copies-or rather parodies and caricatures, although intended for copies-do we see of styles and modes of design and composition that happen to have been brought into vogue-as, for instance, the astylar "Palazzo" fashion introduced by Barry, which has in many cases been either positively vulgarized, or else treated in the most prosaic manner, - 88 if the intention were to prove what miserable taste may be displayed in things that affect to conform to precedent and to be perfectly free from caprice.
V. As to caprice, that term is frequently applied very unmeaningly. It is very common for people to set down at once for caprice whatever deviates from general rule and usual method; thereby perplexing that ordinary and petty criticism which has no other standard of judging than established routinier precepts, interpreting them, moreover, to the very letter. Such criticism is unable to discriminate between what is mere caprice and what is not,-wide as is the difference between them. The capricious is that for which no satisfactory reason can be assigned by the author of it ; but, however contrary it may be to usual practice, that is not caprice which is done with deliberate intention and wellstudied aim at effects previously untried. And if to do well merely according to precedent be meritorious, much more so must i be to do so and at the same time gobeyond actual precedent, creating what in its turn will be recognised as valid precedent and authority. It is proper enough to be perfectly well acquainted with precedent, but to be tied down to it-to be made a alave to it, is in. Those

Who are incapable of thinking for themselvs, take refuge in precedent, and make it their stronghold, since it enables them to assume a tone of authority, and to decide dogmatically without any trouble of thinking.
VI. Careful observance of rules will enable any one to avoid positive fuults; but between them and positive merits there is an immeasurable distance-one which defies calculation. In art, it is very possible to be at once faultless and valueleso-without any pecific fault, but also without any interest or any charm, -in a word, to be altogether humdrum. Perhaps it is rather unfortunate than not for architecture, that a great deal of humdrum is of necessity tolerated in it: however worthless or unworthy they may be as productions of architecture, buildings may as buildings completely answer the purpose for which they are erected. Besides which, they must, when once erected, remain indefinitely, to the discredit of the art and the corruption of public taste. Humdrum poetry becomes serviceable as waste-paper; humdrum pictures find their way into lumber-rooms and garrets; but buildings of the same or even worse quality cannot be so got rid of, or put out of sight ; otherwise a good many that might be mentioned would now disappear.

VIf. There is something startling, perhaps diverting also, in the decidedly opposite opinions entertained by two of our architectural professors with regard to Vitruvius. While Professor Hosking ppeaks of him, in his Treatise on Architecture, in the most unqualified terms of contempt, Professor Cockerell venerates him ;as to vindicating him, that is quite a different matter, and what he does not even so much as attempt, but leaves altogether unnoticed the highly depreciatory remarks thrown out against his idol, not by, Hosking only, but by the author of the "Newleafe Discourses," both in that publication and elsewhere. The ignoring them may be prudent enough, but assuredly does not show mach of either courage or ingenuousness, keeping quite out of sight as it does the fact that Vitruvius has of late years been violently impugned by professional writers in this country, and his work declared valueless to the architectural student;-nay, not only valueless, but in some degree mischievous also, by filling him with absurd and idle notions, and affording him no insight whatever into his art, -as art. If Vitruvius has been unjustly aspersed and vilified, it was for Professor Cockerell to defend him-if he could; instead of which, in his closing lecture this season at the Royal Academy, he gave his hearers reason to suppose that the chief accusation brought against him had been by his German editor, Schneider, on the score of his Latinity. Schneider, it seems, was a mere philologist, and honestly avowed his ignorance of the subjectmatter of Vitruvius's writings, which I take to have been rather in favour of his author than the contrary, because, had he been capable of judging of the value of the matter also, hardly would he have entertained a higher opinion of him. The name of Vitruvius is, undoubtedly, one of great traditional fame one sanctified by inveternte prejudice, partly or even principally because his books De Architecturd represent to modern times all that remains of similar writings by the ancients. That mere accident has conferred upon him a monopoly of reputation, there being no one to share it with him; and it has been too lightly taken for granted, that, writing in classical times, he must himself have been a competent judge and expounder of classical architecture. He shows himself, however, to have been at the best of a very plodding turn of mind-notwitstanding his pompous and priggish proems, and to have been what would now be called a mere "practical man," acquainted only with matters of routine and the technicalities of his craft. While there is a very great deal in nis work which is utterly irrelevant, it being only in the remotest degree connected with the professed subject, there is absolutely nothing whatever that gives evidence of the artist or the æsthetic critic. There is not so much as any attempt to lay down and explain principles of correct taste in architecture. There is neither argumentative criticism, nor reasoning, nor remark; but everything is treated in the dryest manner conceivable, and for the most part very obscurely also. What is to us his obscurity may partly be laid to the charge of our own ignorance-our not being better informed as to various matters that were sufficiently well understood by those to whom he addressed himself, but which, after all attempts to explain them, can now only be guessed at. The question then, is, of what value is Vitruvius to us, especially at the present day, when by means of various ancient buildings and oxamples that have been from time to time discovered, explored, and delineated, we have obtained a far cleaser insight into the principles and practice of the architects of antiquity than can possibly be derived from the writings of Vitruvius? In some instances, obscurities in his text have been explained by what has
been observed in extant monuments; yet that only proves that the latter are infinitely more intelligible ingtructors than Vitruvius, and that accordingly he may now be dismissed by us, for any real adrantage to be derived from the study of him. Such study will, indeedif that be any advantage-enable the architect to talk learnedly, but will not help in the least towards making him an artist; rather will it be apt to render him a pedant, and obstruct the advance he might else make in his capacity of artist, by withdrawing his attention from what is his proper study as such; as has too frequently been the case. Many would have been far greater profcients in their art, if, instead of poring-perhaps stupifying themselves also-over Vitruvius, they had thrown him entirely aside, and exercised their own powers freely in composition and deaign.
VIII. The subject of the invisible-perhaps altogether imaginary -curves in the lines of the Parthenon has been again brought forward before the Institute, though it was to be hoped we should hear no more of it. Matters of far greater immediate importance than such nuge difficiles and refined subtilties and speculations, claim our attention, ere we advance so far as to be able to appreciate such exquisite niceties in architectural optics as those attributed to the Greeks. Little less than ludicrous is it for us to pretend to interest ourselves with them, when we complacently tolerate the most crude and spiritless school-boy imitations of classical architecture, which chiefly show how very ill the pretended originals have been understood. So long ns we shut our eyes to the glaring barbarisms in taste, and the harsh contradictions with regard to style, that are allowed to manifest themselves in copies of that class, it is in vain to expect that we shall ever open them wide enough to discover such philosophically-studied minutize as are the curvatures in question, which certainlywere not evenso much as suspected till very recently, notwithstanding the diligence with which the Parthenon has been examined, not only by Etuart, but by many others since his time. It has been ascertained beyond contradiction, that Polychromy was-to a certain ertent, at least-employed as an effective and legitimate mode of architectural embellishment, both for the Parthenon and other Greek structures; and yet even that discovery has been altogether useless to us in practice, inasmuch as we have not attempted to avail ourselves of it on any occasion: and if we forego a trait of Grecism that would be plainly perceptible to every one, hardly is it to be supposed thas we shall ever think of making any use of refinements in optical effect that would not be perceptible to one person in ten thousand. Let us provide the shirt before we think of the ruffles for it: when we can show that we are capable of fully entering into the charas ter of classical architecture with genuine artistic sentiment for it, it will be time enough to think of those exquisitely subtile and delicate touches which are now imputed to the Parthenon. For is, who show ourselves so obtuse as we do to many even tolerably palpable qualities in Greek design, to concern ourselves with its finest imperceptible workings, is nothing less than absurd. Besides which, Grecian architecture has of late fallen into discredit with us, we having at last found out that, as our buildings are necessarily constituted, it is nearly altogether inapplicable by us in actual practice. Copy Greek orders we may, but we cannot keep npexcept in very particular cases indeed-anything like the genuine Greek physiognomy; so that the degree of resemblance aimed at and obtained, only serves to render the departure from the original style the more evident, particularly if the order be the Doric, since that refuses to accommodate itself to any other purpose than a simple colonnade.
IX. So very far are we from studiously calculating optical effects with mathematical precision, that we do not seem to under-stand-at least, not to be able to foresee-that difference of appesrance which takes place between a geometrical elevation, in which every part shows itself equally distinctly to the eye, and the building executed from it, in which last it is perhaps afterwards discovered that much of the detail does not tell at all. Seldom is any calculation made with reference to the actual locality, and the distance from which the structure itself will generally be viewed. Hence, when erected, it is sometimes discovered that a building can be seen only so far off that its lesser features are scarcely distinguishable at all, or else only from so close a point of view, that all the upper part of it becomes so greatly foreshortened as to become quite distorted, and altogether a different object from what the geometrical design promised. It is not uncommon, again, to find that while those parts which can be but imperfectly seen-or at the best seen only in their general forms-are elaborately decorated, those which being almost close to the eye show themselves distinctly, are comparatively neglected and treated as subordinato ones;-and so they may be with regard to the design as seen upon paper, but not as it is seen in the bulding itself. In many cases, the
serest indication of detail and finish would answer the purpose just as well as that degree of the latter which is now deemed indispensable, although the parts to which it is applied may be out of sight, or nearly so. Therefore, I cannot help taking the river front of the new Palace of Westminster to be a very great mistake, and a very contly one also. However exquisite may be its beauties of detail, they are valueless if, as really is the case, they are invisible, and conot be enjoyed by being sulmired.
X. What is or is not a palace eeems to be difficult to say, when Fefind among the examples referred to under that designation, in the index to Cresy's translation of Milizia's Lives, not only Barbers' Hall, tho Horse Guards, Heriot's Hospital, and other buildings which do sot seem to belong at all to that class, but also the Monument on Fish Street Hill! We may therefore congratulate ourselves on having besides that, two more palaces which we have not reckoned before-namely, the Nelson and the York Palaces. A most agreeable surprise must it be to Mr. Railton, to find that he has erected an entire palace when he attempted only to stick up a single calamn.

THE HOTEL DE VILLE, PARIS.

Hotel de Ville do Paris, Mesurt, Dessink, Gravk, et Publis, par Victor Calliat, Architecte; avec une histoire de ce monument, par Le Hoci de Lincy. Grand folio. Paris, 1844.

As the seat of the Provisional Government of the new French Republic, this edifice has recently acquired a degree of interest eren with those who would be wholly indifferent to it as a work of architecture. Of course, it is as the latter alone that we notice it, and had the same means of doing so been afforded us, should have done so before. Still, late as we are in our notice of the splendid architectural publication whose title heads this article, we are not af all behind others, for we are, we believe, the very first to make mention of it in this country. It may sound oddly to say that we bsten to give our readers some account of it; nevertheless such is the case, because, anxious to speak of it without further delay, just at the moment when circumstances give the building an incidental importance, distinct from that which it possesses as an architectural subject, we are at preeent prepared for reporting only of the graphic part of the work, having no time to examine the literary one. The latter is, in fact, so exceedingly copious, and contains such a vast mass of historical matter, as to require very patient atudy, more especially as the form in which it is given is a highly inconvenient one for either perusal or reference. In our opinion, it woold have been greatly better to publish the plates by themselves, or with only so much letter-press as was requisite for explaining them, and describing the present edifice architecturally; the history being made to form a separate octavo volume, either sa distinct work or not, as might be deemed expedient. Had that been done, both the folio volume or atlas of plates, and the octavo of text, would have answered their respective purposes much better than in now accomplished. The former would not have been so inconveniently bulky; the other would have been a readable volume, whereas now, however readable the matter itself may be, hardly can it be said to be in a readable shape; whence the probability is that very few will encounter the fatigue of reading it at all. The perusing the text continuously in its present shape would, to ourselves at least, be a formidable task; yet, fortunately, we are not particularly solicitous about matters of mere historical record,-events and transactions which have no other relation to the edifice itself than what is derived from the latter having been the locality where they occurred.

Leaving M. Le Roux de Lincy's portion of the work, we shall confine ourselves to M. Victor Calliat's department of it, who, we chould observe, holds, or lately did hold, the office of Inspecteur of the building, and who employed five years in carefully measuring and delineating the various parts of the structure, having, besides, free access to the designs of MM. Godde and Lesueur, the archirects employed for the new work. Until the recent amplification and alterations, which have rendered it one of the most important monuments of the French capital even in its present greatly improved and embellished state, the Hotel de Ville was of little architectural note, except as a souvenir of old Paris. The style of it had been voted "Gothique" and obsolete; and the actual design ghowed much nore of the grotesque than the beautiful. All that Woods says of it in his "Letters," when speaking of the buildings of Paris, is: "It has a certain richness of appearance, although it is not in a style of architecture capable of great merit (?) and even
not one of the best examples of the sort. It is, however, as good as our Guildhall." As good as our Guildhall!-as well might he bave called it at once intolerably bad.

The original edifice that forms the nucleus of the preeent greatly extended mass, was commenced in the reign of Francis 1. , viz., in 1533, after the designs of Domenico Boccadoro, or Boccardo, otherwise called Domenico di Cortona, assisted by Maitre Jehan Asselin, and the facade and the "Cour d"Honneur," now the middle one of the three courts, were completed in 1541; and much was subsequently done from time to time. At the period of the first Revolution, the edifice suffered greatly; many sculptures and embellishments that were obnoxious to the enlightened populace were destroyed; among others, a series of portraits from the 16th century, and a number of large paintings by Porbus, de Troyes, Largilliere, Mignard, Vanloo, and other masters,-or if not actually destroyed, removed, nor is it now possible to ascertain what has become of them.

During the Empire and the Restoration, the edifice underwent some partial alterations; but it was not until 1836 that it was deternined to undertake improvement upon a comprehensive scale; and great as it was, the scheme has been carried out so successfully that the Hotel de Ville may be placed foremust among the architectural monuments that mark the reign of Louis Philippe.

If not particularly remarkable in itself, remarked it may be, that this edifice, which is, in some degree at least, similar in purpose, is also contemporancous with our own new Palace of Westninster, except that it is already completed, while the completion of the other cannot at present be calculated upon. Further, being in the Renaissance style, it shows what might have been made of our our own building at Westminster, had the stipulated-for Elizabethan or Anglo-Renaissance style been adhered to, but at the same time treated with the same freedom and refinement as are shown by MM. Godde and Lesueur, in their rifacciamento and enlargement of the Parisian Hotel de Ville. Among the improvements which the structure has received from them, not one of the least is that whereas it before showed only a single front-that towards the Place de la Gréve-it now forms an entirely insulated mass (405 feet by 872), with four regular fapades, the original or west one (now greatly extended) towards the aforessid Place, the corresponding or east one towards the Rue Lobau, and of the two shorter ones, that facing the north towards the Rue Tixerandie, and that on the south facing the Quai de la Gréve. So far, if in no other respect, it has greatly the advantage over our Palace of Westminster, one side of which, and that which nccording to the design is the principal façade, is altogether inaccessible, so that its elaborate decoration, requiring as it does the closest inspection, is completely thrown away.
The former west front, or that towards the Place-which was all of the edifice that then showed itself externally-was not quite 200 feet, but is now extended to upwards of twice that length, by the addition of two more lofty pavilions, similar in character, but somewhat varied in design, from the original ones. Hence, the general composition is now increased from three to seven divisions or compartments, two of them being the intermediate corpe de battiment connecting the two pavilions (the old and the new one) on either side of the centre. We may refer our readers to two different views, which they will probably be able to turn to at once, one of them being in Pugin's "Paris," the other in Allom's "France;" for from them they will immediately perceive how great is the improvement as well as change that has taken place. That facade, however, is not the one which best satisfies us, there being in the original portion of it a good deal in a rather meoguin taste, to which the architects were obliged to conform for the rest; whereas in the three other fronts, and also the inner courts, they have, instead of allowing themselves to be tied down to precedent, given artistic scope to their ideas, seizing on the better spirit of the style by which they were to be guided, and refining upon it by preserving all its really valuable characteristics and motifs, and avoiding its uncouthnesses, its harshuesses, and its mere eccentricities. Compared with the other principal front-the eastern one, facing the Kue Lobau-the origial one has, in spite of all im-

[^6]provement, a confused, crowded-up look, and shows not a few digagreeable inequalities of taste. The new facades, on the contrary, exhibit not only greater simplicity, but greater richness also. There is infinitely more of homogeneousness of character, the character itself of the style adopted being purged from its littlenesses of manner and other defects. The architects-or perhaps we should say M. Godde," for the other appears to have been only his adjoint in the execution of the works-may be said to have given us the ideal of Renaissance-that is, French Renaissance, modified so as to be applicable at the present day.
Previously to its assuming its present shape and greatly extended dimensions, the Hotel de Ville had only a single inner court-a trapezium in plan, whose eastern side, or that facing the entrance, is considerably wider than the latter. Besides this, which is denominated the "Cour d'Honneur," there are now two other more spacious ones, that on the south side being the "Cour du Prefet," and on the north the "Cour des Bureaux." Yet, in the letter-press account-deacription it can hardly be called-of the building, in Alom's "France," no notice is taken of this very material enlargement of the plan, but we are left to understand that there is only a single court, -" a spacious (?) quadrangle, entered through the lofty arches in the principal front;" whereas those entrances lead into the two separate new courts. The letter-press writer, the Rev. G. N. Wright, M.A.-don't let us forget the M.A., though it does not mean Master of Architecture,-is one of those ready writers who pay more attention to quantity than quality; for he gives the credit of the present structure to Molinos, an architect who was only employed on some additional constructions to the building in the time of Napoleon, which have since been entirely swept away. He also assures us that all the additions have been made "in the most exact and complete harmony" with the original facade, which, as far as it means anything at all, means that they are little more than a mere copy of it.
Although not very spacious, the inner courts are not the least beautiful parts of the structure; it is, however, easier to judge of their design than their effect, for they are shown only sectionally, whereas subjects of that kind require to be represented perspectively also. For an external facade-more especially if it consiat of little more than a single general plane of frontage, without advancing or receding parto-a geometrical elevation may be suffcient; but where several facades or sides-be they those of a room or of a cortile-are seen in combination with each other, the aid of perspective becomes requisite in order to conver an idea of the actual appearance. There ought, in fact, to have been a perspective view also of at least one of the façades, and it should have been of that facing the Rue Lobau, it being the finest of them all, and moreover distinguished from the others by a circumstance that is likely to escape notice in a geometrical drawing, more eapecially one merely in outline, where there are no shadows to express the various degrees of relief:-the distinction we allude to is that in that front, instead of being engaged ones, the columns of both orders are completely detached from the wall behind, at least along the whole of the central portion of it (extending to fifteen arcaded intercolumns in its length, and having a large and highly-enriched lucarne over each alternate intercolumn).

From the exterior alone, a very imperfect idea is to be obtained of the magnificence of this noble pile of building, which may be one reason for its not having obtained the notice, or anything like the notice, which it may justly claim. Truly palatial in outward appearance, it is equally so within, eontaining as it does, besides a very great number of various offices and other mere business rooms, no inconsiderable number of state apartments for municipal riunions and entertainments, which are not only spacious and handsome, but even truly splendid and sumptuous, and withal afford an unusual variety of scenic effects in architecture. Yet, of all of them, only one, and that by no means the most remarkable of them as a room, is pointed out by the M.A. description-writer in Allom's "France"-namely, the "Salle du Trone," which is in the original portion of the building towards the Place. \dagger Of the new apartments, nothing whatever is said in that publication; not even the "Galerie des Fêtes" itself is so much as mentioned, although that, and the approaches to it, constitute a group of varied and well-com-

[^7]bined architectural beauties, that taken altogether has not its equal in any royal palace of Europe.*

To give-what is no easy matter-something like an adequate idea of this part of the interior:-from the lower vestibule is seen extending to the right and left (or north and south) a magnificent staircase, consisting of two wide successive flights of steps, carried in a straightforward direction, between arches supported on marble columns in the upper part of it, where there are galleries or open corridors along its sides. On ascending to the upper landing, a highly enriched dome, though one of moderate dimensions, presents itself; and through this, and three ornamental compartments over the stairs, t the staircase is lighted. On looking back from that upper landing, a most striking architectural coup d'cil presents itself,-an exceedingly rich perspective vista through an open saloon (the "Salle des Cariatides," over the vestibule below), into the other staircase. \ddagger It is, therefore, not without just reason that the staircase is spoken of in the text as a chef-d"cuure of its kind. Even admitting that either of the staircases, in some respects, and among others in spaciousness as so width, yields the palm to the one in the Bibliothek at Munich, the ensemble produced by the two greatly surpasses it ; for as here managed, it is far more striking than it would have been, had the entire space been thrown open from end to end. In one respect, these staircases have a decided advantage over that at Munich, they being lighted from above, in the manner described, -consequently more picturesquely. Besides which, the Munich one leads architecturally speaking, to nothing, there being merely a number of plain shelved book-rooms, after all the extraordinary parade of approach to them.
Such highly-disappointing falling-off, both with regard to purpose and effect, is most assuredly not experienced in the Hotel de Ville, when on passing from either staircase through a noble ante-room, the "Galerie," with its thirty-two fluted Corinthian coluinns, profusely enriched pendentives and plafond, and other elaborate decorations, expands itself inallits magnificence. Thisapartment, which comes in the centre of the Rue Lobau front, is 160 feet by 42 , and 40 feet high, with thirteen intercolumns on each side, and three at each end. The cove is divided into arcs-doubleaux and lunettes; of which last, the thirteen on the side facing the windows are open, so as to form a gallery or series of tribunes for spectators, who, through open arches, have a view down into the "Galerie" from the "flat" or roof above the staircases, which space glazed allover, and having pillars along its sides, is thus ingeniously turned to account, and made to produce much novel effect. A similar view is there obtained into the "Salle des Cariatides," through similar openings and the gallery carried around the upper part of that room, to which they afford access. The room just men-tioned-which derives its name from eighteen caryatides resting on its cove, so as to form the gallery in its upper part, and support the plafond-comes in between the "Galerie des Fêtes" and the "Salle du Conseil Municipal," as well as between the two staircases ; so that from this point-a most happy "episode" in the plan a striking architectural picture presents itself in every direction, whether we look towards the "Salle du Conseil" with the "Cour d'Honneur" beyond it, or towards the "Galerie," or towards either of the staircases. In fact, this part of the plan is eminently replete with piquant complexity-or what seems to be complexityand variety of effect; and it is all the more striking, because it unexpectedly opens a vista hranching out from one side of the "Galerie," and which, therefore, breaks up that excessive sameness of arrangement which, so dull and unartistic in itself, is so prevalent-we might say so uniformly a defect in continental buildings.

There is, besides, a more than usual degree of variety and play in other parts of the plan; for instance, in the several saloons in connection with the "Galeria" at either end of it. One of these bears the name of the "Salon Louis Philippe"-an appellation, that will now, doubtless, be reformed; another that of the "Salon Napoleon." Then there is the "Salle des Banquets," respecting which, however, no information is afforded, nor does it show itself

[^8]in any of the sections; and a grand saloon of reception on the wouth side of the building, which forms altogether a space of 80 feet by 50 , but is so disposed as to assume the appearance of three rooms thrown open to each other by means of three large arches on two opposite sides of the central one. This saloon and the "Galerie form the subjects of two most exquisitely-elaborate perspective views, replete with a multiplicity of the richest and most delicate details, all rendered with a precision truly marvellous. The other perspectives are, a view of one of the new staircases looking from the upper landing towards the "Salle des Cariatides," and one of the old Staircase as seen from below. There is also a detailed elevation of one end of the "Salle du Trone," showing one of itg chimney-pieces and the large caryatid figures, between which is placed the spacious mirror over it. Unfortunately, we are left to desiderate a perspective of the "Salle des Cariatides," which would have been highly welcome, because, although it comes into two several sections, it is on such a scale, that little more than its general architectural design can be made out, and the effectwhich is of a peculiar kind-is left to the imagination. Many of the plates are occupied by details and ornaments of both the old and new portion of the edifice, and show how elaborately it is finished up.

One important apartment and architectural feature in the building, which we have not yet mentioned, is the " Salle des Elections." This is on the ground-floor, immediately beneath the "Galerie des Fétes," and of the same dimensions, except that it is somewhat shorter, and, as may be supposed, considerably less lofty. The columns here are of the Doric order, and are brought forward to a greater distance from the walls than in the upper "Galerie." We fill now conclude this account-after all, but an imperfect one-by saying, that not only is the edifice itself a most noble and tasteful monamental work, but M. Victor Calliat's publication illustrates it-if not altogether so completely as could be wished-with admirable diligence and taste. We have no English work of the kind that can compete with it, or with the similar splendid one by Joly, on the "Chambre de Deputés" (1840). We have got a Royal Institute of Architects, but architectural publication does not thrive under its fostering auspices. And so wretchedly low is the remuneration of architects in this country, that even those who are most employed cannot afford to risk any of ther earnings in endeavouring to promote architectural' study and taste. We can -or rether we will only say: Vahe defiendum est !

ARTS MANUFACTURE EXHIBITION,

AT THE GOOIETY OF ARTR' BOOMS, ADELPHI.

The Exhibition at the Rooms of the Society of Arts deserves particular notice, because it shows that the workmen of this country have taste and artistic skill, as well as mechanical proficiency. This is the second exhibition of the kind, and it shows very great progress, while it is most remarkable in this very good feature-that whereas before, manufacturers had to be begged and sought to send their works, they have this year sent them freely and with good will. This is going forward in the right path, for it shows that the manufacturers now feel an earnest in the cause, and that gives us another body of yoke-fellows. The artists and workmen have likewise shown their feeling, by the greater care and skill they have bestowed; which is the more pleasing, as it is an encouragement to all those who have come forward in behalf of manufacturing art.
We cannot however help saying, that so much has not been done as oaght to have been done in this way, and that still more remains behind. It is pleasing to witness the skill which has been mown; but we are yet far from the goal, and leave foreign nations shead of us, while we have not means enough to enable us to beat them. We are not yet even with the old Schools of Design in France and the Gewerbe-Instituten of Germany, which we set out to follow, while of late years they have made further way. We call the Central School of Design a mockery; and as for the others, they are only good drawing-schools. The whole is a failure ais to quality and extent; and we might just as well think to beat the hosts of Prussians with the Lumber Troop, or set Tom Thumb againt the Spanish giant, as to meet the French, Prussians, Belgians, Swiss, and ltalians with the paltry staff we have. Drawing muat be taught in all schools to the sons and daughters of workingmen; there must be a high school for drawing in every town, and there must be good schools of design in the great seats of mana-
facture. The buyers at home must be taught as well as the sellers; we must have our people brought up to a knowledge of art, and then we shall be able to go into the markets abroad on a fair footing.
This question of teaching design is one of trade more than of anything else: we were pinched in our pockets before we thought of bestirring ourselves. It was only when we found out how much we were giving to the French for silks, flowers, fancy paper, bronzes, and paper-hangings, - to the Prussians for iron castings and embroidery patterns, - and to the Italians for objects of art, that we began to set up schools for giving our workmen knowledge of design. The tax we pay to foreigners for our lack of knowledge is so great that it would hardly be believed; we spend millions yearly for goods that we ought to be able to make as well: nor does the evil end here, for as we cannot make for ourselves, so neither can we meet the foreigner in the market abroad. This loss falls, too, upon those who have no need of a knowledge of design. Because the French can bring out silks, satins, muslins, cottons, and shawls with better patterna, the English spinner and weaver of plain goods, the machinist, the drysalter, and the merchant, lose a very large share of employment.
It is good that it should be so, that there should be a tie by which all are bound to work, for otherwise there would be no getting any change, for many would give no belp to bring it about. Nothing is easier than to show that the machinist, who deals with hard and stiff forms, and who thinks taste is as much beyond as beneath his care,-nothing is easier than to show that even he, working largely for the manufacturers of this country, has a share in the welfare of art. If more silks and cottons, fancy and stained papers, carpets, shawls, furniture, and glass can be sent abroad, more machinery must be wrought for their production. Mr. Fairbairn and his brethren at Manchester, the machinists at Glasgow, at Belfast, and in every manufacturing town, must and ought to know that they have a fellow-feeling in the right growth of the arts of design. If a School of Design be good for anything, it ought to be good for making the trade of the town in which it is greater: it ought not only to better the goods now made, but it ought to enable the town to send out goods such as we now take from the foreigner, or such as we cannot now send abroad. Therefore, we say this has as much to do with the machinist as with any one; but we say that art has to do with all.

Pleased as we were with the Exhibition now open, we cannot but see that what has been done as yet has not carried art down among the people. The works in the Adelphi are either for the higher or middling classes, those who are already cared for-and not for the people. We have always held, from the first time that we undertook to write about it, that art must not only bring forth good works, but cheap works; that it must show itself in the dwelling of the working-man, as well as in the drawing-room of the rich. The earthenware, the glass, the paper-hanginga, the furniture in the smallest cot may be as well made as those in the abode of a king-while taste shown in them will do much more good. If knowledge be power, it is so in the arts as much as in anything else; and we cannot have a people powerful in the art, unless they be well taught. The Society of Arts have the chance of leading in this path-indeed they have given a few prizes; but we call out again, that more ought to be done. Many working men and women and their children will, no doubt, see this Exhibition, but they will go aray with the thought that such things are not for them, and that the rich only are happy in being able to glad their eyes with such sights. Thus, the great teaching of the Exhibition will be thrown away; for we hold that working-men will have a greater feeling for the arts of design, as giving a charm to their own dwelling, than as a mere means of livelihood at the will of the rich.

Felix Summerly has taken upon himself a task which is truly worthy in these days; but we want a Felix Summerly for the kitchen as well ss the drawing-room : and we hope if he does not take this further task upon him, that some one else will. Mr. Cole, as Felix Summerly, by choosing this path in art, has made himself a good name, as Mr. Hay has by choosing house-painting; and we wish that other men who have taste and skill would follow, and take each some branch in which he can make his artistic knowledge useful. Sir Walter Scott spoke most wisely when he led Mr. Hay to follow house-painting instead of high art; for although Mr. Hay's powers of mind cannot be doubted, we could much better have spared a Landseer or a Wilkie, than one who by his works and his writings has done good to a whole trade, and has taught hundreds of workmen that they may use their heads and eyes as well as their hands.

In the late free-trade speeches in the House of Commons, we
were much struck by what Mr. Wilson said, that the only goods went out in 1847, on which there was no falling off, but which were more in worth, were silks sent to France, a trade which has grown very much, and which some few years ago would hardly have been believed. If we try we can push the French home, but then we must set about it in the right way, not narrow-mindedly as we have hitherto done, but boldly and skilfully. The workman must be as well taught here as he is in France, or he will do no good. We must not have him kept back for fear he should turn out a painter, and come in the way of some Royal Academician hereafter ; but we must have him as well taught as the Royal Academician. The groundwork of art is one and the same, whether for a paperhanger or a weaver, a Landseer or a Gibson ; and we believe that often, more taste is shown in a glass jug or in a common shawl, than in the many landscapes and Art-Union paintings which deck the walls of the Royal Academy. So sorrily has the School of Design been managed by the Board of Trade, that we are still no better off than we were eight years ago; nay, we believe that there was a better and a stronger feeling for the arts of design then than now. Since Somerset House lost the spur of the Society for Promoting Practical Design, in Leicester-square, it has gone on but sowly, and it has done nothing for spreading a knowledge of the arts of design among the people.

The Board of Educstion is as much behind-hand. Though drawing is as useful to the child of a working-man as reading and writing, and though Mr. Wyse has for years brought this before them, masters and mistresses in National and British and Foreign schools know next to nothing of drawing, and do not teach it. The few who do, teach drawing only to a small number of the elder boys, however willing the younger ones or their fathers are that they should learn.

Little or nothing too has been done to teach drawing to girls, 50 as to fit them to earn a livelihood in many trades where a knowledge of it is of use. When we bethink ourselves how few trades are open to women, we feel how very needful it is that every means should be taken to enable them to earn their own bread; and nothing seems so likely to forward this, as by giving them a kind of knowledge which is so much wanted in England. The trade of flower-making, which is a new one, and in which in 1841 there were a thousand women at work, has now grown very much; but still, many thousand pounds' worth of these flowers, which are better made, are brought over from France.

It is hardly fair to say anything about the Exhibition without spesking of the Catalogue, which will do as much good as the Exhibition itself. It not only tells us what the Society of Arts did last year, and what is shown this year, but it lays down a plan for spreading wider the good the Society is now doing. This plan is two-fold: first, to send round to the country Schools of Design the objects shown in London each year, and thereby to bring it to bear upon the scholars and workmen throughout the country; and second, to have a great show every three or four years, to be held in a building raised at Charing-cross. Altogether, there is such earnest shown to uphold the arts of design, that we feel truly thankful to the Society for the work they have done, and we hope they will have the help of the Board of Trade, and of the Board of Works, in carrying out the two plans. Indeed, the former Board have already made known their goodwill towards it.

There are so many things worthy of being named, that we are almost kept back from saying anything, because we cannot speak of all.

The bronze and iron castings show that we have made way ; but We must not hold till we have got beyond the Prussians and the French. The iron castings from Coalbrook Dale, from Messrs. Stewart and Smith, and Mr. Messenger, are very good; and the last has sent some good bronzes, as Mr. Hatfield has likewise done.

Messrs Leighton, the book-binders, have sent a few designs by Luke Limber (John Leighton), and some book-covers in papiermache, which are very ably done, and show that their trade is not behind-hand. Indeed it is perhaps doing more than others to spread taste among the people.

The carvings in wood by Mr. Jordan's machinery are truly wonderful. They are as good as those of Grinling Gibbons, or of any of his school. There is a freedom about them which shows the hand of a master, rather than of a machine.

Mr. Drayton, it will be seen, has brought forward his new way of silvering glass, by which he can now silver the inside of cups and bowls, plain or carved.

The cartoon decorations by Mr. W. B. Simpson are sure to strike the looker-on, for there is a power in them beyond what has been before seen in decorations. The cartoon of "Loyalty," from Mr. Redgrave's fresco in Westminster Hall, is so good, that
it seems the handiwork of a skilful painter; and we can hardly believe that it is not so, for it is so unlike what we see in the generality of decorations.

We think this new process very likely to spread a knowledge of art among the people. There are many places where it can be used, and many joint-stock undertakings which will give it their help. For first-class waiting-rooms in railway stations, for boardrooms, for the counting-houses of banks, assurance companiev, and ducks, it might be well applied. These great undertakings would, we are sure, willingly lay out a little money in wbat would please the public, and do credit to themselves. A set of likenesses of engineers would fit a waiting-room well. We would name Wats, Trevithick, the two Stephensons, Brunel, and Locke. Many paintings bearing on trade might be shown, as Mr. Lee finding ons the stocking loom; Queen Elizabeth giving a charter to the East India Company; Drake teaching ship-building to Prince Henry in the Tower; the Marquis of Worcester likewise in the Tower making a steam-engine; King William giving a charter to the Bank; the Duke of Bridgewater and Brindley overlooking the works of the Bridgewater canal ; Arkwright and the spinaing jenny; Watt and Dr. Robison making experiments on the steam-engine; Don Ricardo Trevithick directing the putting together of a steam-engine in Peru; Peel, Huskisson, and George Stephenson witnessing the starting of a locomotive on the Liverpool and Manchester railway. Some of these have been already painted, and there are many other subjects shown in Westminster Hall which might be chosen by Mr. Simpson, as an early English trial by jury, Alfred manning his ships, King John signing Magna Charta.
The inlaid work from Messrs. Holland and Sons shows that in this branch the French and Belgians are not before us, and give hopes that we shall in time drive them out of the furniture trade to America. The taking the duty off foreign woods now allows our cabinet-makers to send goods abroad. The only fault we find is with the centres of some of the tables, which in Nos. 7 and 8 are very ugly.

The copy of an antique shield (No. 10) is a favoursble speciman of iron casting.

Nos. 11 and 12 are a very good application of papier-mache to picture frames, by Mr. Bielefield.

The papier-maché cheval screen by Jennens and Bettridge has been got up with great labour. It is called in the Alhambra style and decorated with Arabic inscriptions, but we neither like the style nor the composition. We think the labour misapplied. The colouring of the frame, gold upon a warmish white, looks tame without being rich.

Most of the encaustic tiles by Minton and Co. are dull in colour, which arises from the attempt to apply all colours, instead of sticking to those which do best. Mr. Minton has been happier in glazed tiles. We cannot but wish that the old Flemish glazed chimney-tiles, or something like them, were brought out again. An old chimney-corner, with its set of bible tiles or Flemish landscapes is a story book in itself, and pleasing to old and young. Tiles for walls, with drawings of interesting objects, or with maps, would be welcome in schools and many other buildings.

Mr. Copeland seems a worthy follower of Wedyewood. His works in earthenware are among some of the best in the Exhibition. The taste and care shown in them cannot be gainsaid, and they keep up our fame in this trade, which is worth so much to us. The English earthenware is now the best in the world, and much of it is sent abroad. Indeed, it is a great staple, and worth the more to us as the work and the ware are all our own, only some of the colours being brought from abroad. By the care given to the higher kinds of porcelain, we shall in time be able to put down foreigners in that branch of the trade likewise.

There are so many good works of Mr. Copeland's that we can name very few. An earthenware wash-stand (No. 37) is a very good design. It has a blue ground and white borders tastefully drawn. There are many other jugs and bowls well worthy of praise. The wash-stand No. 88 we do not like so well; its effect would depend wholly on the hangings which might be used in the room The enamelled porcelain cups and saucers, Nos. 139 and 140 , show the resources of the establishment in decoration.

The chimney slabs show the progress which has been made in the application of porcelain and painting for this purpose. The lock-furniture and bell-lever, likewise in porcelain (No. 170), are richly ornamented with gold. Porcelain is now being much used by builders, as is likewise glass for ornamental purposes.

The large collection of works and groups in statuary porcelain shows Mr. Copeland's power in what may be considered a more purely artistic department. This material has been employed by the Art-Union for prizes, and promises to be very useful in spread-
ing a knowledge of the works of our best sculptors, for in effect it comes near marble, and in cheapness near plaster. It takes a middle place between marble and plaster, and being more lasting than the latter, is likely to be very much used by the middle classes. We fear, however, that it will give us in sculpture a school of stateettes, as we have in painting a school of cabinet pictures, and $\boldsymbol{\omega}$ far draw away the public mind from high art. Still, we welcome the statuary porcelain and the Parian as a good beginning, and we en take the evils when they come with the leas remorse, as now sculpture is far from being in the most palmy state. This kind of copy promises likewise a better reward to the artist, for marble is a material costly in itself and hard to work, and therefore the coulptor gets few orders for a good study, and few are fond of ants. Now, a small gallery of groups can be had for a very saall sam, and no one need be ashamed of having such works in his drawing-room. Among Mr. Copeland's productions we would notice the Narcissus, after Gibson (No. 209); Innocence, after J. N. Foley (No. 210); Paul and Virginia, after Cumberworth (No. 211); the Return from the Vintage (No. 212); A pollo, after W yatt (No. 214) : Cnpid chained (No. 218) ; and Ondine, after Pradier (No. s49. The busts do not tell so well.

The Cupids holding a Tazza (No. 188) ls a very good design for - flower-stand, in atatuary porcelain.

Mr. Copeland is very successful in the Portland jug (No. 902), of the same material.

Another work of his we shall name is the Armada bottle (No. 947). We are likewise pleased with this vase after Cellini (No. 8P3).

Messrs. Chamberlain, of Worcester, have sent some very gorgeous porcelains, gilt, painted, and enamelled.

Mr. Magnus, of the Pimlico Slate Works, has sent slate chimneyclabs, likewise table tops, which are worthy of notice by builders.

Mr. Pratt's Anglo-Etruscan vase, in the Great Room, is very praiseworthy.
The prise candelabrum must be the work of an architectural cudent, and have been chosen for the prize by an architect. It is that some architects call classical, and what other people call tame, stiff, and bald. We think the prize is thrown away, and we should have been much more pleaged with a copy of one of the candelabra in the British Museum.
The prize lamps are not much better. They may catch some orex, being in silver, but are poor and common-place. We wish there had been more designs for silver-plate. One very good is No. 348 , an adaptation of the trumpet lily for a dessert-stand.

The papier-maché productions to our mind show much more polendour than taste. They are too much in the gewgaw and Vauxhall way.

The "Repose" arm-chair (No. 242), is very unluckily named, for there is no repose in its composition, and there can be none within its arms. Mr. J. C. Horsley is the designer, but his skill is quite thrown away, for the reliefs have no effect. The terminal figures, in whatever material they may be finished, will be indistinct.

Mr. Nicholson has shown a very elaborate shell cameo (No. 258), bot the subject is too complicated, and therefore indistinct. Miss M. A. Nichols has sent five imitation cameos. Cameo cutting is worthy of care, for in Paris it gives work to many hundred men.

The glass works (Class XII.) are so very good that we hope they are an earnest of our making a great trade in glass, and becoming free from the Bohemians and Germans.

The Decorative Art Society is doing so much good, that we look forward to see some other society raised which shall take in a lower diass of workmen. There is room for a great deal to be done, and we feel very strong hope from what we call the small exhibition of the Society of Arts-small because we are sure we shall moon see much larger exhibitions beld under its care.

INDIAN RAILWAYS.

Indian Railways and their Probable Rerults, with Maps and an Appendix, containing Statistics of Internal and External Commerce of India. By an Oid Indian Postmastere. Third Edition. London: Newby, 1848.

We are now in 1848, and Indian railwaye remain where they - Were, though the East India Railway Company has got a guarantee sud leave to begin. This is a hard lesson, but one which is of no good so far as the present is concerned, and will, we fear, be found little better in the future. Governments are not ready scholars, oven in the matter of revolutions. We have always upheld the
freedom of joint-stock undertakings, ns the best safeguard against speculation and the want of it. The East India government were fearful in 1845 of the gambling madness of the times. Schems after scheme was brought before them, money was held out freely, but they drew back frightened, and set themselves down in what they held to be a quiet and orderly way, to lay down rules on which railways should be carried on and shareholders should pay thetr money. Following in the path of the Board of Trade here, they sent out to India a railway board, with Mr. Simms at its head. He did his work as well and carefully as he could, and sent home some long blue-books, from which, however, we are sorry to say, we have learned no more than we knew before, so that they have in no way put railways forward one inch. Everything has to be tried still ; Mr. Simms has given us no answer as to embankments in the valley of the Ganges, long bridges over the streams, how wood will serve for aleepers, how works are to be carried on, nor one single point in engineering has he settled,-and from no fault of his, because experience is the only guide and judge. Therefore, three years have been lost on this head, and instead of beginning with three or four years' experience, we are as far behind-hand as we were before. It is during the first three or four years that the greatest changes are made, because it is the time of experiments; every day shows something, and instead of trying to settle the engineering of lndia before-hand, a wise man would wait for practice to guide him in fixing any lasting system.

India has needlessly lost so many years of railway transit; by this time the traffic of the Ganges would have had some small help from railway works. Perhaps a couple of hundred miles of railway would have been open; and if only so much, or even less, still the results would have been great, because each hundred miles of railway is the saving of a day in the communication with the upland. The opening of a railway would have been felt by the steamboats, and mure of them would have been put on the river, while branch roads would have been laid down to reach the railway. The making of a railway is, as is well known, only a small part of the good which is to arise. The railway will be the trunk towards which steamboats will run, and ruads be made. The traffic will be always growing, so that at each step food for new railways will be found. The steamboats have shown this, though not so much. At first six small steamboats were run, sometime after six more, and latterly six large steamboats have been put on, and there is a call for more. All are paying well, though there is more than four times the power that was in the first instance held needful. We have heard of railway carriages carrying their own railways with them, but it may be said of Indian railways that they will carry their own traffic with them.

When we come to the money part of the question, and say that three years have been lost, we do not give a right idea of the evil which has been done. Time in the share-market cannot be trifled with, and cannot be got back again. The fatal event of Louis Philippe's death or fall has been long hanging over us; it was known that it must happen, and that when it did the share-market would be utterly upset. Never was it so needful to make hay while the sun shone; the storm was hanging about, it was looming in sight, and there was no time to be lost. In the years 1845 and 1846, any money could have been raised; in the years 1847 and 1848, no money can be raised, -and who dares look forward with hope?
If the share-market were as law-makers wish it, and as they have tried to make it, it would be very well ; but unhappily it is not so. It dues not work so smoothly as they think it may; it has its ebbs and its floods; sometimes setting in with a full tide, whirling and eddying round, the waters rising to the top of the flood, then the stream pouring out with a quick rush and leaving all bare. People were wonder-stricken that there should be gambling in 1846, as if there never were before; and though they were quite ready to say that a heavy fall would follow, they did none the more wisely. Time has shown that while share-gambling is going on, railway-making is going on; and when share-gambling is at an end, money cannot be raised even for the most useful undertakings. There is a cloud hangs over all, the good and the bad; and though those who have helped to make the storm worse may wish it otherwise, the good feel it as much as the bad.

While the share-market flourished, and the East India government were besought to give their leave for the railways to be begun, they atopped short, as if they had time in their own hands, and could wait as long as they pleased. They have so often set up kings in the east and put them down-they so often send out their word, and a mighty kingdom springs up or is cast down, that they thought they had only to speak, and railways would be made whenever they liked. Had they then, as they were told, given the
lines without guarantees, the money would have been raised; whereas now, even with a guarantee, the undertakings linger, and, as we have said, how long they may linger no one knows. The share-market when once shaken does not recover at a fixed date; it is not within the power of any one to know when it will recover, while the shock is now very great. The banks throughout Europe are breaking, the hoarding of gold and of silver has begun, money will go out of sight, war may spring up, the government may give as formerly six or seven per cent. for loans, and then the common returns of joint-stock undertakings do not hold out hope enough to the shareholder or lender.

By the blundering of the government has the welfare of India been threatened, and it is only by acting otherwise than they have done, that they can stop the evil from spreading further. India has felt a great loss in the want of railways, but if she is to be kept without them for years, the mischief which will be done will be great. India has to struggle in trade with America and the West Indies, where railways and steamboats are widely spread ; and unless India have the same help, she cannot keep up in trade against them. India can raise cheaply-none can beat her; but so much time and so much money is spent in carrying goods to market, that they come dear and bad, instead of cheap and good.

It will do little for India that English gold is now not likely to be sent abroad to France, Flanders, Italy, and Spain for railways; shareholders are sick of them, and will be afraid to have any thing more to do with them. This is however no help, we fear, for India, for the call for money at home cannot be met, as so much has been lost.

Among the undertakings which were brought into the market in 1845, none hardly were more useful than that of the East India Railway Company, for making a railway from Calcutta for 800 miles up the valley of the Ganges. Mr. Macdonald Stephenson, its managing director, gathered together all that could be learned in India, and in his works gave the heads of what Mr. Simms has written since. There was quite enough to show the likelihood of the undertaking, and when it was brought forward it was hailed by the leaders of the money market as a railway well worthy of their help. The heads of the East India Railway Company were some of the richest merchants here, and there was such trust given to it that its shares rose very quickly in price.

Thanks to the Board of Trade, the Company was withheld from taking more than five shillings a share when they could have had two pounds; so that now, instead of having some hundreds of thousands of pounds in hand, enough to make a good beginning, they have hard work to raise a hundred thousand pounds, which is to be lodged with the East India Company.

The East India Company has in the end given to the Railway Company leave to go on, and offered a guarantee of interest, which in $18 \$ 5$ or 1846 would have sent up the shares to such a price as to have made them among the best in the market. There were then no shares in the market guaranteed by any of the English governments, and such was the call for guaranteed shares that those guaranteed by the great railway companies were eagerly sought. Therefore the market was clear for the Indian railway shares, and nothing but the utter blindness of the government kept Indiaback at such a time. On what good grounds it could have been done no one can readily see, for India is always in want of money, and when there was a hope of getting it from England it should not have been let slip.

We have still the utmost trust in the East India Railway Company, for we believe that the line must be made, and we hope therefore that everything will be done at once to help it on. We see no good in leaving a hundred thousand pounds in the hands of the government, that should be dropped at once. The Company should likewise have full power to borrow money here and in India, in whatever way they can. If there be any need of it, the government of India must lend them money to begin, so that they make a start, for there is no time to be lost. If there should be a war in Europe, and the overland way to India be stopped or hindered, then it will be still more needful that there should be a quick transit between Calcutta and the north-west.

On these grounds we say to the East India Railway Company "Hold on; for if the goverament do their share, the undertaking will become one of the first in the world. Much of the railway can be readily made, and as cheaply as those of America, while it has only to be opened to have a good income at once. We have always believed, and we do still, that when a start is made, a great deal of money will be got from India: India finds money for banks, assurance companies, steamboats, coal mines, indigo works, sugar mills, and tea plantations, and we do not 890 why she should not for railways. The Indian mind is awakened. What has been seen
of late years has laid the way for railways. The steamboat has shown the Hindoos that speed can be got, that goods can be brought up quickly, and they are ready to believe that railways will do for them what it has been held out they can do. India waits only for a beginning, and then railways will spread as many arms over the land as they have in England or America.

In Southern India the companies are still less ready to begin work, so much have they been weakened by the loitering of the stand-still government, but as railways are fully ss needful there as in Bengal, we hope very little time will run before steps are taken to bring them forward. The growth of cotton in Bombay and Madras is kept back by the want of railways, and a little help only will enable the merchants and people of those two presidencies to make their own railways. They have come forward most warmly, and although their late losses have lessened their means, they will be found ready to follow up the lead of the government.

Railways in India must be made, and they must be carried out as joint-stock undertakings; for whatever may be the want of power of these latter now, the government in India are no stronger, and always find it hard to raise money. Let us hope, as so much blame belongs to them for the hindrances they have hitherto thrown in the way of railways, that they will see good to make a change, and do all they can to make up for lost time. If they do not do it of themselves, the parliament of England must do it for them; for if the cotton-growers of India cannot be heard there, they will be heard here, and the cotton-weavers of Manchester have already spoken out. We cannot be left in the power of America for the cotton, on which our great staple manufacture depends, and whereby so many Englishmen earn their scanty livelihood.

The third edition of the book before us is on the same plan as those that went before it. It is enlarged by some new extracts, which are put together without any great regard to order, and the staple is still from the works of Mr. Macdonald Stephenson. The right title would be "Indian Railways from the works of Mr. Macdonald Stephenson, with other matter by an Old Indian Postmaster." Except Mr. Stephenson's materials, the best thing in the book is a map of the lines of railway in Northern India.

THE WICKSTEED ENGINE.

Mr. Wicksteed was the first to introduce the Cornish engine into the metropolis, and he deserves great credit for his exertions. The first engine was put up about four years ago, when a description of it was published in this Journul. The second, which is larger, is named the Wicksteed engine, and is erected at the East London Water Works. It was started to supply water to that company's district in June 1847, and is the largest engine hitherto erected in London; it was designed by Mr. Wicksteed, who is engineer to the company, and was erected under his superintendence. It was manufactured by Messrs. Sandys, Carne, and Vivian, of the Copperhouse Foundry, Hayle, Cornwall. The diameter of the cylinder is 90 inches, the diameter of the pump 44 inches, length of stroke 11 feet, and it pumps 20 imperial barrels at each stroke. When working at the rate of eight strokes per minute, it raises 5,792 gallons per minute, or $8,340,480$ gallons per diem, or 84, 563,200 imperial barrels per annum. The power when working at this speed is 200 horse-power. The main beam is 39 feet long, and weighs 33 tons-it vibrates on a cast-iron main gudgeon 16 inches diameter, and the whole is supported by four columns and an entablature of cast-iron, designed in the Grecian-Doric style. The plunger with its appendages weighs 43 tons, which mass of matter is raised 11 feet high at each stroke of the engine. The pump-work is supported by two iron girders weighing each 10 tons, and is strongly bolted down to a mass of masonry in the foundations. The boilers, four in number, are cylindrical, 34 feet long, 6 ft . 6 in. diameter, with an internal fire-tube four feet in diameter. The diameter of the steam-pipe is 16 inches,

The total weight of the engines, pump-work, and boilers is 414 tons, and the whole cost was $£ 10,000$, or $£ 50$ per horse-power, or about £24 per ton.

The quantity of coal consumed by this engine, if working at full power night and day, would be 2,000 tons per annum, and the quantity of coals that would be consumed by the best of the ordinary non-expansive engines in doing the same work would be 4,500 tons; showing a saving in favour of the Cornish engine of 2,500 tons, which at 138 . per ton is $\mathfrak{e l}, 625$ per annum, or $16 \frac{1}{4}$ per cent. upon the cost of the engine for coals only.

COAL DROPS, AND MIDDLESBOROUGH DOCK.

(With Engravings, Plate VI.)

Account of the Drops used for the shipment of Coals at Middlestro'-on-Tees, scith a description of the Middlesbro' Dock. By Geobie Tunsbill M. Inst. C. E.-(From a paper read at the Institution of Civil Engineers.)

The dock was commenced in the spring of 1840 , and was opened for trade on the 12th May, 1842. The general form of the dock and its position with respect to the river Tees will best be understood by reference to the annexed engraving. It possesses an area of 9 acres at the water surface; the approach is by an entrance channel, rather more than a quarter of a mile in length, cut through the sand banks of the river, and kept open by means of ceciasional sluicing from the lock-gates, and also through culverts built in the lock walls for that purpose. Some apprehensions were entertained of the practicability of keeping open the entrance channel by these means, as there is much shifting sand in the bed of the river Tees, and every interference with the current of the river produces marked alterations in the form and position of the shoals or sand banks. After due deliberation, the scheme was at length carried into execution, under the sanction of the Tees Navigation Company, and the result has been marked with the complete success which was anticipated by the projectors; the channel was dredged out to its full depth, the slopes and bank: were covered with a paving of rough chalk and stone, and after a trial of nearly three years the channel is now in a better state than when it was first made, and is kept up at a very trifling cost.
The entrance lock is built principally on a foundation of hard mand, and on account of the quantity of water found in it, an unusually large proportion of piling and wooden platforms were required in the foundations. The lock is built of stone, chiefly from the Byker quarries, on the river Tyne; it is 132 feet long and 30 foet wide ; the depth of water is 15 feet at neap tides and 10 feet at spring tides: the bottom of the dock was excavated to the depth of 3 feet under the level of the lock cills.
In connection with the dock, a branch line was laid down, diverging from the Stockton and Darlington Railway and terminating in ten double lines, leading to the ten drops (1 to 10) situated on the west side of the dock. The raised platform of a triangular ahape, covered by these diverging lines of railway, comprises an area of 15 acres, and affords spare room for 1,800 loaded wagons, or more than 3,000 tons of coal, besides means of egress for the locomotives with their trains of empty wagons. This great amount of standing room forms a principal feature in the arrangement of these works, as in the district, of which this is the shipping port, there are numerous descriptions of coal, several of which come down the railway in the same train; a separation is made on the platform, and each colliery having its own drop assigned to it, the wagons, with the proper description of coal, accumulate in one branch, and descending along the railway, which is so inclined as to permit the wagons to move by their own gravity, the shipment is carried on with much facility. An inclination in the contrary direction is given to the empty line, sufficient to allow the unloaded wagons to move of themselves, by which means some saving of horse labour is effected.

The cost of all the works connected with the dock, including the branch railway, raised platform, permanent rails, dock work, entrance lock and channel, and breastworks along the shore of the river Tees, with the ten coal drops, amounted to the sum of E122,000.

These works were designed by Mr. W. Cubitt, V. P., and the author was the acting or resident engineer.

The coal drops are peculiar in their construction and are prohably not much known beyond the district in which they are used; they are distinguished from the drops in common use on the Tyne, by the coal wagons being lowered perpendicularly to the ships decks, whereas in the latter the wagons are lowered by means of a cradle and vibrating frame, which describes the arc of a circle in its descent. In places where the wagons have to be lowered from a height of 30 feet and upwards to the ships' decks, which is a common circumstance in the Tyne and the Wear, the vibrating frame (originally invented by the late William Chapman of Newcastle) are found well adapted for the purpose; but where the height is limited, or where the railway is so low that the wagons are just clear of the taffrail of the light ships, the perpendicular drop becomes more convenient. This ingenious contrivance was first suggested to the Clarence Railway Company by Mr. George Leather, of Leeds (M. Inst. C. E.), and was carried into effect at

Port Clarence on the river Tees, where several of them have been in use for some years, and are very effective.

The ten drops erected on the west side of the Middlesbro' Dock are almost similar, in every respect, to those at Port Clarence. The principle of their construction and mode of operation will be readily understood by a reference to the engravings, Plate VII. Fig. 1 shows a front elevation, and fig. 2 a side elevation of the drop and its machinery; fig. 3 shows the machinery, with the cradle and wagon, drawn to a larger scale; the same letters refer to the same parts in the different drawings.

The wagon A , weighing about 30 cwt ., and containing one chaldron or 53 cwt . of coal, is shown standing on the moveable stage or aradle B, which is suspended by means of chains passing over the aheaves C, C; the ends of the chains are attached to the large sheaves F, F, the latter being cast with grooves of unequal depth, to accommodate the two chains, which it will be seen are of unequal length, and require a corresponding inequality in the sheaves, to preserve the cradle in a horizontal position. These sheaves are fixed on a strong iron axle H, on the extremities of which are two other sheaves or pulleys K, K, to take the chains which sustain the counterbalance weights M, M. The break machinery for lowering the wagons consists of the toothed wheel $P, 7$ feet diameter, fixed on the same axle H; the pinion-wheel $Q, 2$ feet diameter; and the break-wheel $\mathrm{H}, 6$ feet diameter, having a break over its whole circumference, worked by a strong lever-handle, which controls the descent of the loaded wagon, and its ascent when empty.

When the machinery is at work, the loaded wagon is run on to the cradle, or stage, B, and is stopped by wooden chocks in its proper position, directly over the hatchway of the vessel to be loaded (T, T, fig. 1.) The breaksman then releases the break-wheel, when the cradle and wayon descend perpendicularly, the suspending chains winding off the sheaves F, F, the counterbalance weights rise, and their suspending chains wind on to the shenves or pulleys K, K. The cradle, with the wagon upon it, still maintaining its horizontal position, having nearly reached the ship's deck, the contents are discharged by a man who descends with it for that purpose; the counterbalance weights then have the preponderance and the operation is reversed, by the weights descending and the empty wagon and cradle rising to their oxiginal position. The whole is so guided and controlled by the breaksman, and the counterpoise weight so adjusted, that the wagon can be made to descend and asceud quickly or slowly, or be stopped with ease in any position, either ascending or descending.
The drops at Middlesbro' Duck are constructed of strong wooden framework fixed on Memel fir piles, and the cost of the ten drops was $£ 7,300$, or $£ 730$ each, including all the timber, iron-work, machinery, and the labour in fixing.
Each of these drops can ship a wagon load of 53 cwt . in a minute, or about 150 tons in an hour; but ds the coals cannot be trimmed off so quickly in the ship's hold, about thirty wagons an hour may be taken as the ordinary rate of working. Forty wagons, containing a chaldron each, which are $=5$ keels or 106 tons an hour, may be considered the limit of working.

In the year ending 1st July, 1845, 505,486 tons were shipped by means of the ten drops here described. The shipment in the six months ending 31 st December, 1845, amounted to $\mathbf{2 6 4 , 1 8 0}$ tons.

ON THE RESISTANCE TO BODIES IN FLUIDS.
On the relation between the Velocity and the Resistance encountered by bodies moving in Fluids. By John Mortimer Hepper, Grad. Inst. C.E.-(Read at the Institution of Civil Engineera.)

The determination of the relation between the velocity and the resistance encountered by bodies moving in fluids, has always been an interesting topic of inquiry, as well to the speculative philosopher as to the practical mechanist, and perhaps on no portion of physical science have more pains been spent; whether looking to the sagacity with which experiments have been devised, the liberality with which they have been carried out, or the mathematical acumen with which their results have been classified and brought under general laws. To enumerate the names only of the men, illustrious by their science, who have brought their energies to bear on this subject, would fill a larger space than these few remarks are intended to occupy. It is sufficient to mention Newton, who in this, as in so many other departments of philosophy, first whed the light of his brilliant genius on the former obscurity; after him the scarcely less celebrated Daniel Bernouilli, and in
latter times Boasut and De Buat, whose patience and accurate research opened such a multitude of observed facts to the contemplation of the theorist. Again, the valuahle experiments of the French Academicians; the indefatigable labours of the late Colonel Beaufoy, so liberally made available for the objects of science by his son ; and lastly, though not among the least, must be mentioned the excellent experiments on canal boats by Palmer and Macneill, given in the Transactions of the Institution (vol. I. pp. 165-237). After such a retrospect it may appear presumptuous in a young and unknown individual, attempting to add anything to a subject already enriched by such contributors; as his remarks, however, are brought in an humble and modest spirit, and so far as he is aware, have not been anticipated by any precisely similar, he begs to lay them, without further introduction, before the Institution.
It will no doubt be recollected, that in the casea already glanced at, the almost invariable method of experimenting has been to attach a weight, or other known motive force, to the body in question, and to determine, by direct observation, the quantity of this, corresponding to an uniform velocity of progression. From this method it has necessarily followed, in most instances, that the bodies subjected to experiment were of moderate dimensions, and the theoretical views derived from the observations, have been extended to those which from their magnitude have been placed beyond the range of direct experiment. In the experiments of Palmer and Macneill, the same mode of proceeding was adopted, by applying the dynamometer to boats moving on canals, and from the magnitude of the scale of these experiments, as well as from the care and accuracy with which they appear to have been conducted, they must be very valuable. Gigantic, however, as these bodies were, as compared with those which had previously been brought under investigation, they become dwarfs in respect of the vessels, the knowledge of whose properties is every day becoming a matter of deeper practical importance. It has often surprised the author, that these vessels themselves had not been made the object of experiments, with reference to this question, and more especially, if it can be shown, as is here attempted, that those propelled by steam, more especially, unite all the conditions requisite for obtaining easily and simply, accurate and important results. The form, however, of these experiments, mast differ from that of former ones, as the tractive power requisite to maintain a high velocity, in such large bodies, would be far greater than could be conveniently disposed for such a purpose.

There is, however, another no less certain mode of inferring the amount of resistance encountered by a body, which is, to remark the diminution of velocity produced in a given small portion of time, when the body is exposed to the action of this resistance alone, from which diminution of velocity, the force which produced it may be inferred with mathematical precision. Let it be presumed, in the first instance, that the velocity with which the vessel is at any instant moving through the water, is capable of being measured and observed; then having set the vessel in motion, with a given velocity, let the action of the motive power be stopped. The only forces to whose action it will then be exposed, are the resistance of the water and the air, of which the former will be by far the more considerable; but of both of which it will always, under ordinary circumstances, at the same velocity, have the same amount to encounter, and whose amount therefore constitutes the obstacle to be overcome by the motive power, and determines the quantity of that power always required to maintain that velocity. From the instant when the engines are stopped, the speed of the vesssel will obviously diminish, and let the amount of its diminution during some small interval of time, say a second, be noted ; that is to say, the difference between the velocity at the commencement and at the end of that interval. Now if the vessel had been subjected to the action of a force equal to its whole weight, the amount of velocity destroyed in a second would have been 32 feet per second, therefore, as 32 feet is to the observed loss of yelocity in feet per second, so is the whole weight of the vessel, as shown by its displacement, to the force by which this loss of velocity has been produced; that is, to the united resistance of the water and the air, corresponding to the velocity in question. It is here assumed, that the force of resistance, for the small period of the observation, may be regarded as uniform; a supposition which is not precisely true, as the resistance diminishe with the velocity; the smaller, however, the interval of time which is taken, the nearer will this supposition be to the truth, and if the inferred resistance be taken to correspond neither to the initial nor the final velocities, but to their mean, the error will become infinitesimal. A more important source of error would be found in the circumstance of the reaistance of the paddles, or the screw,
where ther are arranged so as to be disconnected, being included in the determined resistance; and in these cases, this would have to be allowed for and be deducted. As however the resistance to flat surfaces has been so fully investigated, this would occasion litule difficulty. An example perhaps will serve better to render the foregoing proposition clear. Suppose a vessel to be going through the water with a velocity of 15 feet per second, and on the stopping of the engines, the speed be observed in one second to sink to $14 \frac{1}{2}$ feet per second, the velocity destroyed in one second of time would be equal to 6 inches; this is $\frac{1}{6}$ th part of the velocity which would have been destroyed, in the same time, by a force equal to the weight of the vessel, and the force which destroyed it is therefore equal to $\frac{1}{6}$ th part of that weight. Now suppose this, as ascertained from the displacement, to be 1,000 tons, then the mean force of resistance between the velocities of 15 feet and $14 \frac{1}{2}$ feet per second is ifo tons, and the power expended in overcoming this resistance, at the mean between the two velocities, or $14 \frac{9}{7}$ feet per second, is-

$$
\frac{1000 \times 2940}{64 \times 550}=63,36 \mathrm{B.P.}
$$

Having thus described the mode in which the obeervationshould be conducted, it may not be uninteresting briefly to notice the advantages which might result from a well-arranged set of experiments on this plan.

In the first place, it would offer an infallible means of testing the qualities of any particular vessel, apart from those of her machinery; since the action of the engines being stopped during the obsarvation, has clearly no influence whatever on the rate of diminution of the velocity. The observer would thus, in case of any deficiency of speed, be enabled to fix the fault with certainty upon the vessel, or the engines, as the case might be. Indeed, if all vessels were submitted to the observation here described, there seems to be no reason why their resistance should not be as precise and definite a quantity, and as capable of accurate expression for any particular drsught, as their displacement; and it might be confidently asserted, that the vessel which in this way showed the least resistance, ought to beat all others cateris paribus, and if she were not found to do so, that the fault was either in the engines, or in the propelling apparatus, and certainly not in the ship.

This however, though one advantage, would not be the only one, as a series of observations made upon the same vessel, at various velocities, could hardly fail to demonstrate some expression or law of relation, between the observed velocities and the resistances, which if found to be uniform within the limits of the experiment, might fairly be presumed to extend to some distance beyond them, so that there would be a strong ground for predicting, with confidence, the increase of speed which might be expected to result from any proposed increase of power.

Again, if these observations were repeated for varions draughts of water, in the same vessel, the means would be furnished of knowing, a priori, the precise amount of power which should be necessary for maintaining a given speed, with any required load. Or if the power remained constant, what would be the speeds which should correspond to various loads, and as before, if the performance of the vessel should fall short of what had been so determined, the fault would be in the machinery.

It may be mentioned, that although hitherto no opportunity has been afforded for testing the correctness of the views here proponnded, by a practical application of them to the point in queation, yet the author has on several occasions adopted a method, similar in principle, in determining the resistance of shafting and machinery, by observing the rate of diminution of the velocity, on shutting of the steam from the engine, and having had good reason for believing the results, in these cases, to have been tolerably accurate, in spite of the difficulty of correctly estimsting the aggregate momentum of so many bodies revolving at various velocities, he is encouraged to suppose, that in the case of a floating body, whose momentum is so easily and precisely ascertainable, the result would be more exact and unquestionable.

The method adopted by M. de Pambour, for ascertaining the amount of resistance to the motion of railway trains, by the circamstances attending their descent and stoppage upon two consecutive inclined planes, is based upon precisely the same principle as that here advanced.
It remains only to consider, by what means the variable velocity of the veasel can be measured, so as to ascertain it, at any instant, with the necessary preciaion. In the absence of a better, the following arrangement might perhaps be adopted with advantage :-
To the bowsprit of the vessel (Fig. 1), sufficiently a-head to be beyond the disturbed water, should be screwed a small iron
bracket, carrying a pin, which should pass through a hole in a slender rod, hanging down below the surface of the water, and prolonged a few inches upwards abovo the bracket. Upon this rod,

Fig. 1.
a metal sphere should be fitted, so as to be fixed at any required distance from the point of suspension; from the upper extremity of the rod, a small cord or wire should be brought, passing to some convenient spot on the fore-part of the deck, where it should be attached to one arm of a rectangular lever, whose other arm or inder should move along an arc of metal.
It will be clear, that when the vessel is at rest in the water, the rod, with the sphere attached, will hang vertically, and the cord being properly adjusted, the index of the bent lever will be horizontal, at which position the zero of the graduated arc should be marked. If the vessel moves through the water, the resistance on the sphere will throw the rod out of the perpendicular, as indicated by the dotted line, and the angle which it makes with its former position, will be shown by the new position of the index on the metal arc. It is obvious, therefore, that the same degree of deflection will always be produced by the same resistance, and the same resistance by the same velocity. So that if the arc has once been carefully gradnated, by moving with known velucities, which would have to be done once for all, it would always afterwards furnish a correct indication of the velocity with which the sphere, and consequently the vessel, was moving through the water, at the instant of observation. A slight consideration of the nature of this apparatus in action, will make it apparent that the position of the ball, or sphere, on the rod is indifferent, and that the same angular deflection will always correspond to the same resistance. This would contribute to render the arrangement convenient es being applicable to vessels of various heights.

The mode of using this apparatus is obvious; an observer, with a seconds watch, would note the positions of the inder on the arc, at such intervals of time as should be determined upon, when the diminution of velocity and consequently the retarding forces would become known, as before described.
Mathematical expressions have in the course of this paper been expressly abstained from, as being unnecessary to a general view of the method proposed. It may however not be out of place to remark, that perhaps the best way of treating the observations when obtained, would be to endeavour to discover an expression, representing accurately the velocity in terms of the time, in which case, its differential co-efficient would be accurately proportional to the resistance.

Remarks made at the Meeting afler the reading of the above Paper.

Mr. Scott Rubsell asid he could not venture, withont more careful consideration of the subject than was permitted by merely hearing the paper read, to draw any comparison between the resulte atated by the author and those which he bad arrived at from the oxteacive series of experiments he had made; but his first impreasion wes, that the method proposed was not the most direct, and that it was liable to sareral objections. He doobted whether there was a suficient knowledge of the resistance of flat bodiea moving through fluide, to enable the portion of reaistence dee to the floats of the paddle-wheels, in \mathbf{a} state of reat, to be separated, in the general reault, from the reaistance due to the body of the vessel. Ausuming such to be the case, he mast contend, that unlens mome memas existed of
raioing the paddle-wheels ont of tbe water, aimultaneously with atopping the engines, an accurate result could not be arrived at. The screw propeller offered greater facilities, as he believed methods had been devised for raining it out of the water. He was of opinion also, that onlets the experiments were tried in perfectly mooth mater, they could not give accurate results, on account of the dipping of the bow of the vessel, and the consequent oscillation of the suspended sphere and rod, which would become a pendulum. These were practical objections, which were raised in his mind, by the difficulties he had experienced, in determining the method of conducting his own experiments, which were all tried upon vessels of considerable bulk and tonnage. The mode be eventally adopted was, to try the vessel both light and londed. First taking all the float-boards off the paddle- Wheels, and by means of a steam-tag, of about $250 \mathrm{~h} . \mathrm{p}$., drawing the vessel through the water, ascertaining the resistance at different velocities by means of a dyna. mometer; then, by replacing tbe float-boards, varying the load, and consequently, the immersed section of the vessel, and noting carefully all the resulta, be found an extraordinary aniformity in the amount of resiatance by similar forms at equal speeds. At flrst he conceived, tbat it would have heen necessery to reduce all the oscillations of the dynamometer, but he found the rootion was so uniform, that any ordinary instrument would suffice for the purpose. He used an instroment, called Pitot's tube, for meanuring the velocity, and he had found it very valuable; he might say almost unerring. It consisted of a vertical glass tube placed in the centre of the vessel, through the bottom of which a bole of about half an inch diameter was bored, to pass a metal tabe, continuing for a distance horizontally beside the keel, and terminating in a fonnel-shaped month. When the vestel was at rest, the water outside, and the column within the tube, atood at the same level; bat in proportion as the velocity of the veasel increased, so the column of water in the tube rose; and by graduating the tube in accordance with observed heights for given speed, the results might he read off with great facility and accuracy. Any undue amonnt of oscillation was prevented, by contracting the area of the metal tube at one spot, by a stop cock, which was only opened when taking observations. He thought the method he had described, combined with the use of Pitot's tube, was prefersble to that proposed by Mr. Heppel.

Mr. Rennie concurred with Mr. Russell in his opinion of the proposed method of experimenting. No aubject was more difficult than the resistance of tluids. It had occupied the attention of the most learned philosophers, yet nevertheless the present state of knowledge of the subject was still very imperfect. The true theory had never been discovered. Newton to whom, after Galileo, the credit of tbe first precise experimente was due, had also given the first of the two theories, of which the least imperfect supposed the body to he directly struck hy each of the molecules in motion. The subsequent experiments of Bernouilli, Buier, Robins, Borda, Bosant, De Buat, and others, had shown the imperfection of tbat theory.

The experiments of the Prench Academy, and the labourt of Bongat, Clairbois, Duhamel, Don Juan, Clapman, Forfait, Attrood, Dupuis, Poisson, and others, had shed considerable ligbt on the subject, and on that of the stalility of fluating bodies; but no extended series of experimente mas tried in this country, until the question was taken up by Colonel Beanfoy, who in 1791 establiahed " Society for the Improvement of Naval Architecture," under whose anspicea be mada, in the Greenland Dock, the elaborate experiments, the first portion of which had been so munificently presented to the scientific world by Mr. Henry Beaufoy: ${ }^{2}$ The society however annk for want of funda, and the experiments were eventually conducted and brought to a conclusion, entirely at the expense of Colonel Beaufoy. A ahort notice of them in Thomson's "Annals of Philosophy"s induced tbe communication of the results of a similar series of experiments, made by Menars. Lagerhjelm, Forselles, and Kallstenius for the Society of Ironmasters of Stocrholm, at the Fehlun mine, between 1811 and 1815 . Owing to the combined circumstances of the Swedinh language being but little cultivated in England, and a want of mathematical attainments in those who did understand the language, the Swedinh experimente remained untranslated, until after Colonel Beaufoy's decease. Mr. Henry Beaufoy then committed the hook to the Rev. Elijah Smith, of Sidney College, Cambridge, who learned Swedish and completed the tranalation, an also that of Lagerbjelm's "Testamen Theorise Resistentiæ Flaidorum constituendse." The resulta of these examinations occupied ten years in tbeir reduction, and yet but few practical results had been obtained. The general deductions which appeared to be drawn were-

1st. The confirmation of the tbeory, that the resistance of fluids to paseing bodies was as the squares of the velocities.

2 ndly. That, contrary to the received opinion, a cone would move through the water with much leas resistance with ita aper foremost, than with ite base forward.

3rdly. That the increasing the length of a solid, of almost any form, by the addition of a cylinder in the mlddle, dimisished the resiatance with which it moved, provided the weight in the water remained the same.

2 Gee Boogat, Tratue des Neviren ; Euler, Sclentie Navalls; Cladrbole, Archlecture Navale; Duharnel, ditto, ditto; Bon Juan, Examen Martime; Chepman (Sweden), Naval Irchitecture; Forfalt, Tralue enr Le Mature des Valseeare; Athrood, PbilonopbL cal Tranactiona; Dupuls, Géombtrie Déseriptive; Polsoon, Thtorte des Ondes; D'Alembert and Bosant, Recherches pour is Bociete des Experiencea en Arehitectnre Navale; Lagerhjeim and Kalistenfus, Experiments for the Swedinh Society; Meresder, Memoirt tenr les Bateany i Vapenr; Beanfoy, Nuticad Expertmente.

- 2 Boeufoy's "Nerticil Bxperimette." Vol. I. Lendon, 1834.
- Thomson'e'"Aanalin of Philosophy." 18 K

4thly. That the greatest breadth of the moving hody shonid be piaced at the distance of two-fifthe of the whole leagth, from the bow, whea applied to the ordinary forms in naval arehitecture.

Sthly. That the bottom of a floating solid shonld be made trianguler; as in that case it would meet with the least resistance when moving in the direction of its longest axis, and with the greatent resintance when moving with its broadside foremost.

Such was a short eummary of the labonrt of Colonel Beanfoy, to whom the scientific world wan deeply indehted. Mr. Rennie thought, however, that errorz had been fallen into, by not sufficiently considering the question of the friction apon the sides of the various forms nied iu the experiments. They were moreover tried upon masses of too small dimentions.

The papers on the aame subject in the archives of the Institution of Civil Engineers, presented by Bidder, Carlsund, Telford, Palmer, and Macneill, and those of Fairbsirn and Colonel Page,4 treated of experiments apos larger vessels, and produced more practical results.
The great dimeulty of separating the resistance from the friction, arose out of the imperfect apparatus hitherto adopted. Tbe balance of Conlombe, and the pendulara, had been tried with doubtfal succesa. Profiting by the problem of the cylinder revolving in the vortex, in the Principia of Newton, Mr. Rennie undertook a series of experiments in the year 1830, which were published in the Transactions of the Roval Society, "On the Resiatances of solid Bodies in Air and Water."s The apparatus consisted of an upright apindle of wrought iron, made to alide op and down in a frame, so as to be plunged to any convenient depth in the water, or to revolve in air only, mat required.

The iron dises of aquare, circular, and triangalar forms, an well as the cylinders and globular bodies, all of the tame areas, were moved through the same spaces, and with the same velocities, in air and in water; the reaula were tabulated, and the conclasions arrived at were:-

1st. That the friction and adhesion were not as the surfaces, with slow velocities; being in the ratio of 1 to 3, and diminisbing rapidly with the velocities, without observing any ratio.

2ndly. That the resistance of fans and globes of equal areas in air, was as the squares of the velocities up to 8 miles per hour.

3rdly. That the resistance of fans or dises with equal arean, wan to globes a) 2 to 1.

4thly. That the resistance of fans or discs to globes of equal area in water, was to the globes as the squares of the velocities.

5thly. That the mean resistance-
Of Circular discs in water
" Square discs in water
were to each other as the numbers 22 to 3 , 16 to 2 , and 4 to 2.
Öf Circular discs in sir
Of Circular discs in eir
were to each other as the numbers 25 to 18 , "Wooden balts in air.. $\} 22$ to 1 , and 10 to 2.
Mr. Bidpse doubted whether the queation of resistance, or friction, could be fairly tested by a cylinder revolving in a tuid, inasmuch as a rotary motion was imparted to a portion of the water, in the same direction as the revolution of the cylinder.

The subject was one of great intereat, and to which he had devoted much attention. Some years since he assisted Mr. Walker in a series of experiments in the East India Dock, and he came to the conclusion, that it was not possible to arrive at one law suitable for all cases. There were in reality three cases to be considered :-

First. The resistance due to displacement.
Secondly. The resistance due to non-pressare
Thirdly. The resistance due to friction.
As regarded the firat case; the resintance due to displacement included that of the area of resistance of the water heaped up against the bows, which angmented as the velocity increaned. In such case he fonnd, that the increase of resistance was in a more rapid ratio than the aquare of the velocity.

In the second case; that of non-pressure, occasioned by the filling ap of the channel in the wake, vacated in the palaage of the vessel through the water. In this case he found the resistance incressed in a leas ratio than the square of the velocity. In Mr. Walker's experiments, boats were used with bluff prows and with acute prows; it was found that at a slight immeraion, and when drawn at a low velocity with the bluff prow foremost, there was the least resistance; but that when deeply immersed, all other conditiona remaining the same, there was the greatest amount of resistance.

As to the third position. The formola of Du Buat with regard to friction was found applicable; as there was no distinction whether the vessel was moving through the fluid, or whetber the fluid was running over the bottom of a river. In thia case the resistance due to triction was as the equare of the velocity.

Bossut tried a variety of experiments upon the angles of resistance, by attaching to a rectapgular parallelogram various bbaped prows, at anglea varying from 168° to 12°, with the view of ancertaining the law of reaistance due to the angle of the plane meeting the water; but he overlooked the constant deduction neceasary for the non-preasure due to the rectangular form of the stern, which formed the largest portion of the resistance, and conse. quently invalidated the deductions from the experiments.

[^9]The rien Mr. Bidder took of the mode in which the subject should be cosaidered, was not with reference to the refection of the particles due to the engle of incidence, but with reference to the absolute velocity imparted te the particlea of water the vesael would have to diaplace. Por innance, if the aggle of the reasel was such, that the sine was one-half the radius, then the velocity of the particles in contact would be reduced one-half, and the resistance would be reduced to one-fourth; suhject to the previous explana. tinn of the heaping of the water against the bows.
With reference to a plane dise dragged through a fuid; it formed for inelf a sort of natoral prow of dead water, which was drawn forward with it; but the form of this prow raried with the velocity of the passing current, and bence the anomalies which had been observed in all experiments on the oubject.
He coald not agree with the infallibility of the Pitot tube; for be thought, that in proportion as the vertical tuhe was moved from the stem, an error mata ariae from the lifting of the atem and the dropping of the stern as the relocity increased.
Palmer's experiments gave enomalons results. The resistances came out an the tubes rather than the aquares of the velocities. This Mr. Bidder thoaght mast be attributed, in a great degree, to the friction arising from the small area of the cbannel, as compared to the aurface of the body of the boas, and that of the sheet of pent-np water between the flat bottom of the boas and the bottom of the shallow canal.
In trying experiments upon large vessels, be conceived, that a tug boat coald scarcely get up anficient speed to obtain satiafactory results, and that it was necessary for the veasel to be floating in perfectly still water, in calm weather; or else the circomatances being changed the reanlta mast be moditied acenrdingly.
As regarded the reaisance offered by the paddle foats, when they were dragged through the wrter, as alluded to by Mr. Heppel, when it was remembered that the absolnte velocity of the paddles impinging upon the vater did not osually exceed 4 miles per bour, to propel a vessel at the rate of 12 to 15 miles per hour, it would follow, thit as soon as the engines were stopped, unleas the paddles were disengaged simultaneously, they would be dryged through the water at the ame velocity at which the vessel was proceeding. In that case, the resistance offered by the pridles, would be so enormonaly disproportionate to that offered by the body of the vensel, as to render the results entirely nugatory.

Mr. Waleze confirmed Mr. Bidder's statement of the results of the expriments tried in the East India dock, which were communicated to the Rnyal Society in 1827.7 The machinery etoployed for those experiments wis very simple. It consisted of a crab-winch with a barrel 3 feet in diameRer, and bandlea of a sufficient length for the necessary number of men to wors at it. The line, of inch diameter, was attached at one end to the barrel, and at the other to a dynamometer in the how of a boat, 18 ft .6 in . long, by 6 fect broad, with a depth of immersion of 2 feet; the greateat immersed cross section was 9 feet. The experiments were tried in the Import Dock, where there was a space of 1,410 feet in lengtb, 560 feet in width, and 24 feet in depth; so that there was no resistance from the sides or bottom of the dock. The velocitiea were calculated frum the time of passing tbrough $1: 6$ yards, or one-tenth of a mile; that length being marked off in the mid. de of the distence traversed by the boat. The speed was attained by a given number of men working at the winch, and was regulated by the vibration of a pendalam.

The reaulta obtained were, that in almost every instance the reaistance ahowed an increase, amounting to the square of the velocity for the distance Luversed; but where the relocity was considerable the reaiptance followed a atil bigher ratio. In a narrow channel the increase would bare been cunsiderably greater. The excess beyond the square, must, he conceived, he altriboted, in a great degree, to the raining, or beaping, of the water against the bows at bigh velocities, and to the simultaneous deprescion of the stern.
In these experiments the weight, or power, required, was of course, at least, in the ratio of the cube. For instance, if one man at the wiach pro. duced a velocity $=1$, eigbt nien were required to produce a velocity $=2$; but ta in the atame time double the space was passed over, the exertion of power over the same space was the half of 8 , or 4 ; but the velocity being trice the former velocity, it required twice the power, or eight men while they were at work; the distance was, bowever, traversed in half the time, so that the expense of power by doubling the velocity was ouly as 4 to 1.

The resulte shown by dragging the bluff prow or the sharp prow foremont, at various velocities, showed clearly, that very different figures should be uken for vesecis intended for carrying cargo, from those intended for great ipeed.

Mr. Brodez said, that Mr. Barlow, in bis dedactions from Mr. Palmer's experiments, ${ }^{2}$ stated, " that in the case of loaded canal boata the reaistance varied in a higher ratio, viz. : as the cube of the velocity very nearly, if not exactly," and from the experiment he bad computed the power of triction on a canal, thos :-

$$
\begin{aligned}
& \text { At } 4 \text { miles per hour } 1 \mathrm{lb} \text {. would draw } 200 \mathrm{lb} \text {. } \\
& \text { At } 2 \text { miles } 1600 \mathrm{lb} \text {. }
\end{aligned}
$$

The rule adopted by wome" of the principal marine engine makers (as

[^10]Mesirt. Boolton, Watt, and Co.), for ascertaining the saifing qualities of the vessel, viz. : multiplying the sectional ares by the cube of the power, and dividing the prodact by the velocity, bed, he believed, been found a true test; and if when the power in the aame veasel had heen increased, the quotient had been found uniform, which he had also reason to believe was the case, another proof was afforded of the correctness of the theory, of the resiatance being as the square of the velocity.
Mr. Spulen thought the results of Mr. Patwer's experiments were to have been anticipated, from their being tried in a narrow and shallow channel; the progreas of the boat was necessarily retarded by the friotion of the water against the sides and the botinm, z mass of water was carried along with the boat, and not having space to expand, reacted against the hort, onduly increasing the resiatance, particularly at high velocities, Under ordinary circumatances the reaintance would be at the aquare of the velocity, and a vessel going at a given velocity required eight times the power.

Mr. Scott Russmel, thought the incongruities in the results of the experiments arose from want of due attention in noting all the circumatances attending them. The forms of the vessels were not particularly registered, nor were the various form experimented upon, under similar circumatancen. Now, as the law of resistance must vary with every difference of form, althongh a general rale might be given, it could not be relied upon in practice, and it became ensential to analyac every experiment carefully before any deduction was made. One point to be particularly noticed, was the resistance of different forms of the bows of vessels, and of the quarters, as the law would vary as they were changed. Any experiment made in a channel of contracted dimensions, perhaps only three or four times that of the area of the midsbip section, could not be trusted; the law of reaistance would vary with the form and dimensions of the channel, and great allowance mast be made for lateral friction. In short, as a practical man, and speaking upon the anthority of nearly ten thousted experiments, made upon large ressels in open spaces, under every variety of circumstances, he must still think the mode of experimentiog by the steam-ing that which was beat caloulated to furnish accurate results.

Nor was he less wedded to the obeervations by Pitot's tobe, using it as an instrument for measuring velocity. He would of course have the zero point adjustable; and its delicacy wight be further tested by having anotber tube beside it; one of them indicating the immeraion, and the other the velocity.
Mr. R. Steprenson asid, the object appeared to be, to ascertain the law of resistance with reapect to large vessela, as deductions from the experiments on small bodies did not seem to apply. He could acarcely agree in the propriety of relying upon the results obtained by dragging a vessel througb the water by a steam-tug, which was only capable of obtaining low speeds. He thought that a steam vessel coptained within itself the best mode of trying experiments, by means of the indicator attached to the engines. He was of opinion, that method would he found preferable to any other, if the vessel was tried at rarions rates of immersion, different apeeda, and under circumatances that enabled deductions to be drawn.

Mr. Biddez replied, that in practising such a mode of experimenting, it would be first aecessary to ascertain with accuracy the slip of the paddles, and the allowance to be made for the angles of impact and the depth of immersion, all which difficult problems were as yet little treated of and but imperfectly undertood.
He was not atimfied with the acouracy of the Pitot tube, even as a measure of velocity, as the statical pressure must be affected by the varying telocity, and false reaulta would beindicated.

Mr. Scotr Rossell mid, it was true tbat if the tube and the funnel mouth

\footnotetext{

- Extract from aletter from J. Brown, Esq., dated January 281h, 1898 :-

In the geare 1818 and 1819, Mr. Watt made a series of experiments with bla resael, the 'Caledonis' to ascertaln ber velocity onder different circumptances, and amongst the
 both instances were prectsely under the same circumatances as to thde and mind.
A mearured mile in Long Reach wal man with and agalnst the tide six or etght umen, and the arernge taken.
In 1818 , with peddle-wheels of 10 feet 6 faches diameter, the retult of these-experments were as follow:-

were large and the orifice was near the surface of the water，the effect appre－ hended by Mr．Bidder would be produced；but with small tube and a proportionate orifice，with a proper arrangement of the apparatus，baving the orifice immersed from 10 feet to 15 feet beneath the surface，the statical pressure was so uniform at all velocities，that oo sensible variation could be observed，and he must record his conviction，tbat if properly graduated，and conveniently arranged，no instrument he had hitherto seen possessed the same amonnt of adrantages for trying experinents．

ON REACTION WATER－WHEELS．

Communicated to the Franklin Institute，United States，by ${ }_{a}^{=} \mathrm{Z}$ ． Pasemer，of Philadelphia．

On the subject of Barker＇s wheel，which，with a few exceptions， appears to be the only reaction wheel noticed in the elementary books till recently，I have seen no notice of any variation in the discharge，caused by variations in the velocity of the wheel；from which I infer that the writers regarded them as uniform in their discharge under all velocities．In practice，however，it has been observed that，when the wheel runs without resistance to its free motion，the orifice moves with a velocity considerably greater than that due to a pressure of the head of water，and that the discharge is greater than the theoretic discharge．So far as I am informed， no experiments have been recorded，or rules given for determining the ratio of discharge under different velocities of such wheels．

The following rule，I think，will be found to hold good for all wheels of the reaction kind which discharge the water at their verge，and into which it enters without circular motion，or in which a circular motion of the water is caused by the wheel itself －the supply being full：
＂To the head of water actually pressing at the orifice，add such a head as will，by its pressure，produce a velocity equal to the cir－ cular motion of the orifice；the velocity through the moving orifice will be the same that it would be if stationary，and under the pressure of the sum of the heads．＂For example ：－
Suppose such a wheel to have an issue of $\mathbf{3 6}$ square inches，under a head of 9 feet，and that the orifice move at the rate of 16 feet per second；the discharge will be the same that it would be if the wheel were standing under a head of 13 feet．Consequently such

a wheel would，by this theory，discharge，standing， 6 cubic feet per second，and running at that rate， $7 \% 2$ cubic feet．And if the orifices were suffered to move at the rate of $\mathbf{q 4}$ feet per second，the
discharge would be the same as if standing under 18 feet head； in which case，the discharge should be $8 \cdot 48$ cubic feet per second．
It is obvious that，in applying this rule in practice，such deduc－ tions must be made（as in other cases）as may be due to the form of the orifice，the angles in the passages，and the friction on sur－ faces．

The following experiments were made with a centre discharge reaction wheel of the form and proportions represented in the ac－ companying sketch．The wheel was 34 inches in diameter at its outer verge；the inner diameter of the annular rim 26 inches．It had 16 issues（ 8 by 1.8 in ．）$=230$ square inches．It received the water at the verge，from an involute sluice embracing the whole circumference．The water was conducted to the involute through a large spout ；the discharge of which into the involute 24 in wide by 14 inches deep，$=336$ square inches．The terminus of the involute was within an inch of the verge of the wheel．The circular motion of the water caused by the involute coincided with the motion of the wheel．

Power Fxpenteri．					F．ffret Produced．			
㗘				硆号豆				
${ }_{2}$								
${ }^{\sim}$								
$\begin{aligned} & 5 \\ & 0 \\ & 0 \end{aligned}$				$\frac{4}{c} \equiv$				
2				阿				
1	$8 \cdot 66$	1125.5	70，312－5	608，996	30	143	$\mathbf{2 5 5 , 6 0 0}$	－411
2	$8 \cdot 62$	11190	69，937－5	602，861	39	138	312，920	－518
3	$8 \cdot 61$	11190	69，937－5	602，861	45	130	351，000	－582
4	$8 \cdot 59$	$1104 \cdot 0$	69，000．0	592，711	66	87	344，520	． 579

The condition of the works at the time the experiments were made was favourable to the wheel．It had run about two months after being repaired and adjusted，and the proprietor（Mr．A． Atwood，of Troy，N．Y．，）stated that it was performing as well as it ever had．There was a fault，however，in the construction．The ＂spout＂（so called）conducting the water from the flume had an elbow of nearly a right angle，first descending from the bottom of the flume and then passing horizontally to the involute；the sec－ tion at the commencement of the horizontal portion being about 16 by $36=576$ square inches．The opening into the＂spout＂ from the bottom of the flume was about 30 inches square，with sharp angles．All things considered，I am of the opinion that this method of employing the＂pressure＂of water，with a good struc－ ture，in good condition，is capable of giving sbout 68 per cent．of available power．

A remarkable feature of inward－discharging reaction wheels is found in the smallness of their discharge，and its tendency to uniformity under all velocities of the wheel，obviously arising in this application，from the outward pressure of the ciscular motion of the water in the involute sluice and wheel．

The theoretic discharge of 230 square inchen，under a preasure of 8.61 feet，is 2,249 cubic feet per minute．The actual discharge is only 498 of this．Had the discharge been outward，through the same aggregate aperture，and with the same circular motion of water，in the portion of the wheel occupied by the vanes，the dis－ charge（judging from the results of my experiments made in 1844）， would have been 884 of theoretic discharge；and had it been out－ ward，and without circular motion，it would have been about $1 \% 89$ ， at the speed of maximum power．

ON THE VELOCITY OF ATMOSPHERIC JETS．

The following table（communicated by Z．Pasiege to the Frank－ lin Journal）of the velocity of atmospheric jets，under the given pressures，may be useful．

The table is constructed under the assumption that all fluids ac－ quire equal velocities under the pressure of equal heights，without regard to their specific gravities；allowing the superincumbent column to be homogeneous with that portion at the jet．The formula is $V=\sqrt{64} h$ ；and for a pressure of 15 lb ．per equare
inch, $\boldsymbol{h}=97,600$ feet of homogeneous atmosphere. The height for other pressures in proportion.

Prosaure per - mane fach.	Vrlocthy, feet per second.	Preanure per equare finch.	Valncit 5, feet per arcond.	Preseure per square foch.	Velocity, feet per secoud.
$t \mathrm{oz}$	42	21 ib.	314	13 lb .	1237
1 ..	60	21 ..	533	14	1284
1 ..	88	2 ..	569	15	1323
2 .	121	3 ..	594	20	1534
3	148	31	615	30	2004
4	171	31	642	40	2170
5 ..	190	3	645	50	2406
6 -.	210	4 ..	$6 \leqslant 6$	60	2658
7 .	227	41	728	70	2871
8	242	5	760	80	3069
10 ..	271	51.	804	90.	3240
12	297	6	840	100	3431
14 .	321	7 ..	908	110	3600
1 lb .	343	8 .	970	120	3759
14	383	9 ..	1027	$130 \ldots$	3912
11..	420	10 ..	1085	$140 \ldots$	4060
1%..	453	11 ..	1136	150 ..	4202
2.	485	12 ..	1208	160 ..	4340

SACK HOLDER.

Henry Gilbert, of St. Leonard's-on-Sea, surgeon, for "Improcements in apparatus for holding sacks to facilitate the flling of them with corn or other materials."-Granted May 27 ; Enrolled November 27, 1847.

Heretofore when filling sacks it has been usurl for one person to bold up the sack whilst the other fills the same. In other cases the sack has been hung from hooks or instruments from a wall or post or some other permanent structure. The object of this invention is so to arrange apparatus that it may be carried about with facility, and stand in a field or other place, and uphold a ack in an open state so that the sack may be filled with facility; the invention simply requiring such an arrangement of parts that it may be independent of a fixed or permanent structure, and be capable of being moved from place to place, and yet uphold an empty sack in an open state and allow of a person readily filling the same. The annexed engraving shows a side and back riew of the apparatus. a is the main frame, having two legs a^{\prime}.

The sides a are combined together by the bars b, which are bent to receive the sack as it rests against it ; \boldsymbol{c} is a diagonal frame which torns on axes, and d are two studs or projections fixed to the side rails of the frame, by which the legs or feet can be caused to stand a greater or less distance apart, there being notches in the projector to receive the studs or projections. At the upper part of the apparatus is fixed an elliptical frame f, through which the mouth of the sack is to be drawn. The upper part of the sack is to be folded over the bars f, and the clamping-bars brought down, which will clamp the upper parts of the sack securely between the parta $f f$, and $g g$, by which means the sack will be held open at the mouth and supported or suepended from the frame f, and the apparatus may be placed in the position shown in the side view.

STEAM-ENGINES.

Williar Bacon and Thomas Dixon, of Bury, Lancaster, engineers, for "certain Improrentents in steam-engines."-Granted August 19, 1847; Enrolled February 19, 1848. [Reported in the Patent Journal.]
The invention of improvements specified and enrolled under this title applies generally to that class of steam-engines usually termed Woolf's engine, or the compound-cylinder engine; that is, an engine having two cylinders, where the steam is admitted into one cylinder, at a high pressure, where having actuated the piston of that cylinder, it is admitted thence to the larger cylinder, where it again produces a motive power, and usually subject to condensation. In one case also, herein specified, it is applicable to single-cylinder engines. The patentee states that in the ordinary arrangement of compound-cylinder engines, the area or content of the passages from the expansive valve for the highpressure cylinder to the inside of the low-pressure cylinder are such as to form a large proportion to the cubical content of the high-pressure cylinder; and that this content or space is filled, at the conclusion of each stroke of the engine, whether it be the upward or downward stroke of the low-pressure piston, with steam of a similar density as that produced by its admission into the lowpressure cylinder, which in many cases is five or six pounds, or even more, below the pressure of the surrounding atmosphere, When the retuan-stroke of the piston takes place, the steam admitted to effect the preceding stroke of the high-pressure piston is passed into the passage or space before-mentioned, thence to the low-pressure cylinder, where it joins with the before-mentioned rarified steam, and therefore the steam in, or escaping from, the high-pressure cylinder, is considerably reduced in pressure, without producing a corresponding amount of force on the piston. The principal object of these improvements is to obviate in a greut measure the before-mentioned deterioration of the steam in its passage from one cylinder, to the other, and also to simplify the construction and at the same time to obtain an increased amount of duty from the steam in compound-cylinder engines. To attain the advantageous results just enumerated, the patentees construct their improved engine so that by a peculiar arrangement of the passages, valves, and openings, the exhausting-valves for the highpressure cylinder, or admission-valves for the low-pressure cylinder, are placed as nearly as possible to the ports or entrances to the low-pressure cylinder. On account of this arrangement of the passages between the steam-valves for either of the ports of the low-pressure cylinder, and the opposite end of the high-pressure cylinder, these passages are constantly filled with steam of the same density as that in the high-pressure cylinder; therefore, the content of the passage from the valve to the entrance of the lowpressure cylinder is the additional extent of the space the steam admitted to the high-pressure cylinder will have to occupy, and the steam always be in reserve for the commencement of the stroke of the low-pressure piston; consequently the pressure of the steam will be reduced but to a very trifling degree; and, therefore, they argue that a more perfect expansion of the steam in the lowpressure cylinder is obtained, which is attended with a corresponding additional result in the motive-power. These improvements consist :-First, in so arranging the valves, passages, and openings, that one valve-box, one double hollow valve (or two aliding-valves of the common construction) are adapted to serve for both the high and the low-pressure cylinders. The same passage in the valve which admits steam to the top of the low-pressure cylinder from the bottom of the high-pressure cylinder, in a downward stroke of the pistons, also forms the passage from the top of the low-pressure cylinder to the condenser, in the uprard stroke of the pistons; and the same passages in the valve which admit the steam to the bottom of the low-preasnre cylinder from the top of the high-pressure cylinder, in the upward stroke of the pistonk also forms the passage from the bottom of the low-pressure cylinder to the condenser, in the downward stroke of the pistons The same part of the valve which admits the steam to the lowpressure cylinder forms the exhausting-valve for the opposite end of the high-pressure cylinder. Secondly, these improvements consist in using separate plate or other valves for the admission of the steam to the high-pressure cylinder, and using these valves as expansion-valves with which to cut off the steam from the highpressure cylinder, and so arranging them that the amount of expansion may be varied to any required extent in the high-pressure cylinder without interfering with the ingress or egress of steam to or from the low-pressure cylinder. Thirdly, these improvements consist in arranging conical-valves, Cornish, or other description
of disc-valves for compound-cylinder engines, so as to effect the same result as by the slide-valves above-mentioned, and in arranging each valve to be raised by a separate tappet (or by other me-由hanical means), so that any one valve can be chosed without interfering with any of the others; by reason of which arrangement any amount of expansion or compression of steam in either the

Fh. 1.

Fig. 2
high or low-pressure cylinder can be effected. Fig. 1 represents a vertical section of a low-pressure cylinder, together with the steam-passages, so arranged that hy one valve-box, six openings, and two common, single, hollow sliding-valves, they are adapted to serve both the high and low-pressure steam-cylinders; and fig. 2 is a transverse vertical section of the passages through the line 1,2 , showing also the position of the cylinders. a indicates the admission and exit openings for the top of the high-pressure cylinder; and a^{\prime} the opening for similar purposes to the bottom of the high-pressure cylinder; and b, and b^{2}, the ports for the admission and escape of steam to or from the top and bottom of the low-pressure cylinder; c, and c^{\prime}, the passages to the condenser; d, and d^{1}, steam-passages to the high-pressure cylinder; e, and c^{\prime}, the hollow sliding-valves; and f, and f^{2}, the lap or covering for the condenser-ports c, and c^{\prime}. The action of this arrangement is as follows:-Steam being admitted from the boiler to the valve-box a, enters at d (when the valves are in the position shown), and passes thence by the passage g, to the top of the high-pressure cylinder b, where, having performed the downward stroke of the engine, the position of the valves h, h^{\prime}, will be reversed, and the steam will return by the passage g; and the opening d (as well as the port e^{2}), being now covered by the valve $h \cdot$, the steam will be conducted thereby below the piston of the low-pressure cylinder c, and, on a subsequent stroke taking place, it will escape through the valve h^{\prime}, to the port f^{\prime}, and thence by a suitable passage to the condenser. For the upward stroke of the engine, the port d ' will be uncovered by the valve h, and steam will enter, passing by the passage g^{1}, to the bottom of the bighpressure cylinder, and by the change in the valves it will escape from thence by the passage g^{\prime}, through the valve h, into the top of the low-pressure cylinder c, where, having performed its office, it is exhausted by the condenser through the passage f, which, in its turn, will be covered by the valve h. The porta f, and f^{2}, are always covered either' by the valves h, and h, or by their pro-jecting-pieces i, and 1. Fig. 3 represents a vertical section of a valve-case, together with the requisite passages, by which arrangement one valve-casing, five openings, and one double hollow slide are made to serve for two high-pressure cylinders and one lowpressure cylinder, these being arranged, in the drawings, one on either side of the low-pressure cylinder, to which the slide-case and slides are attached; the different valves, openings, and pas-
sages are lettered severally, as in the last fipurea, and to which the description thereof will be equally applicable, as the steam is conducted precisely in the same man-

$\mathrm{Pl}_{\mathrm{lg} .} \mathrm{s}$.
cylinder $C . a^{2}$ is the opening in the valve-face fur the admission of steam to the bottom of the cylinder B, the passage b communicating thereto; this passnge

serves as a communication between the bottom of the highpressure cylinder B, and the top of the low-pressure cylinder C. These openings a, and a^{1}, are covered alternately by two expansive plate-valves c, and c^{1}; which valves are furnished with suitable apparatus for varying the amount of expansion, and are placed on the same rod as the valves d, and d, which are for the purpose of controlling the direction of the steam in its entrance and exit to and from the low-pressure cylinder C. e, and e^{\prime}, are the steam-passages to the cylinder C , and f, and f^{2}, the openings in the valve-face to the condenser; g, and g^{2}, are the openings in the valve-face to the steam-passages b, and b^{2}; and h, and h^{2}, the laps of the slides d, and d^{1}, for the purpose of covering the openings f, g, g^{2}, and f^{2}. Steam being admitted to the valvejacket from the boiler, at a high-pressure, it enters at a, to the passage b, which is filled as far as g^{\prime}; that opening being covered by the lap of the valve d^{1}, it is conducted thereby to the top of the high-pressure cylinder B, where, having performed the downstroke of the piston, the position of the valves will become changed. the steam in the top of the cylinder B, will escape by the passage
b, through the opening g in the valve-face, which will now be covered by the valve d^{\prime}, and by it directed through the passage e^{2} into the bottom of the low-pressure cylinder; the opening a, to the passage b, during this part of the stroke, being covered by the expansion-valve c. During the upward stroke of the pistons the high-pressure steam in the valve-case will pass in at the opening a^{2}, thence by the passage b^{\prime} to the bottom of the high-pressure cylinder, the opening g to this passage being now covered by the lap of the valve d; but the valves being again changed, the steam will rush from the bottom of the cylinder B, through the passage b, where it passes through the opening g in the valve-face, and is directed by the valve d into the top of the cylinder C, by the passage; when the down-stroke takes place, during this part of its course through the passage b^{\prime}, the opening a^{\prime} is covered by the expansive-valve c^{\prime}, preventing any admission of steam from the valve-case. The steam from the top and bottom of the lowpressure cylinder is exhausted by the condenser through the passages f, and f, which communicate alternately therewith by the change in the valvea, d, and d^{\prime}; when the opening is covered by the valve d and the steam directed thereby to the condenser, the open: ing f^{\prime} is covered by the lap h^{\prime} of the valve d, and when the opening f is covered by the valve d^{\prime}, f is in its turn covered by the lap h of the valve d.

The object aimed at in these improvements, besides the simplicity of construction, are, that a more effective pressure is obtained from the admission of the steam immediate on the opening of the steam-valves to the low-pressure cylinder, and, consequently, a more effective result is obtained Drawings are represented in the specification, showing the application of Cornish or disc-valves sdapted to effect the admission of steam to the low-pressure cylinder in a similar manner, and so as to obtain a similar beneficial result, as with the slide-valves already described; but, from the simplicity of the principle of the invention, it will be unnecessary to give any description. In combination with these foregoing improvements, they also specify an improved apparatus for what is techically termed "blowing through" when an engine is to be started, the improvements being for the purpose of preventing the engine starting in the wrong direction. The improvement consists in arranging two passages from the blow-through valve to the low-pressure cylinder, one of these passages being connected from the blow-through valve to the top of the low-pressure cylinder, and the other passage from the hlow-through valve to the bottom of the low-pressure cylinder-the openings into these passuges being so regulated by a three-way cock or valve, that when the operation of blowing through is performed, the steam enters simultaneously on each side of the piston in the low-pressure cylinder ; and that when the said valve is closed, any communication between the passages will be entirely prevented. Having described the nature of their invention, and in what manner the same may be carried into practical effect, they remark that they do not claim the application of one valve-box to high and lowpreseure cylinders, but what they claim as their invention is:First, the peculiar arrangement of the valves and openings as they are represented in the cuts and hereinbefore described in detail; that is to say, the adaptation and application of a reduced number of valves, of the ordinary construction, to effect the necessary communications between the steam-chest, cylinders, and condenser; and the arrangement of ports or openings, whereby the steam is reduced as little as possible in passing from the high-pressure cylinder to the low-pressure cylinder. Secondly, they claim the application of two high-pressure steam-cylinders to one low-pressure steam-cylinder, and in so arranging the ports or passages that the same number of valve-boxes and openings which serve for one high-pressure and one low-pressure steam-cylinder, will also be sufficient for two or more high-pressure cylinders and one lowpressure cylinder. They desire it to be understood that they do not confine themselves, in the application of the improvements, exclusively to compound-cylinder engines with condensation, but alon claim the application of their improvements to compoundcylinder engines without condensation, passing the steam from the second or low-pressure cylinder into the atmosphere instead of into the condenser. Thirdly, they claim the application of their improvements in the methods of blowing through for the purpose of starting engines, as applicable to every description of doublesctirf condensing engines, whether with compound cylinders or a ringle-cylinder engine. They also claim any combination of the improvements herein specified, whereby similar objects may be accomplished.

CONSUMING SMOKE.

Williax Edwabd Kyan, of Westbourne-park-villas, Paddington, clerk, for "Improvements in consuming the smoke and coonomis-: ing the fuel of steam-engines, breweries, and manufactories generally." -Granted July 25, 1847; Enrolled January 25, 1848.

This invention consists of a combination of mechanical means, to be applied to the furnaces, ash-pits, flues, fire-doors, door-frames, and chimneys of steam-engines, boilers, coppers, stills, and pans generally, for consuming the smoke and gas and lessening the expense of fuel.

First, to regulate the draught of the chimneys, whatever may be their altitude, so that their area of cubical capacity shall not exceed the conjoint areas of the furnace,-the space above the bridge and the fire-flue under the boiler, \&c. Secondly, by adjusting the admission of atmospheric air, at given points, to afford the precise proportion of air needful to effect the perfect combustion of fuel, and its products of gas and smoke.

Fig. 1.
regulating slides to admit the air over the fuel (without lessening the temperature of the furnace which partly opening the door occa-

$\mathrm{Fig}_{\mathrm{g}} \mathbf{2}$, sions), and is opened to supply fuel; and when that is done, it is closed, and the lower (plain) door is then opened to arrange the position of the fuel on the bars. e is the air-flue with ventilator to regulate the air admitted. h, h, are ths ash-pit doors with their ventilators, by which the needful quantity of air is allowed to entep. There is a second air-flue marked k, which enters the side flue into which the blaze first passes from the boiler, and this has likewise a ventilator marked l.

In addition to the horizontal damper in the machinery to contract and regulate the draught, there is also a vertical damper fixed on one side of the chimney with a counterpoise weight, which damper is raised as occasion may require, to supply a volume of air to the chimney, and thereby lessen or stop the draught through the furnace at the time when fuel is supplied and arranged on the bars.

The air is to be admitted gradually as required. Thus-by the admission of a moderate quantity through the ventilators of the ash-pit doors, the fuel is ignited-by the supply of air through the ventilating holes regulated by slides in the door-frame, above the doors, or in the upper door (ns the case may be), combustion is afforded to the gas and smoke while arising in the body of the furnace, by the sir supplied from the ventilator in the air-tube or flue which communicates to the back of the bridge, any gas and smoke which escapes from the furnace to the flue under the boiler, is ignited. And again, by the ventilator in the second air-flue, marked k, entering the side flue at the end of the boiler, near the chimney, still further ignition is attained, and the full completion of the combustion is thus secured by the conjoint action of the Whole of these arrangements, which could not be effected by the
admission of a large volume of air with undue force at any of these given points above enumerated.

These arrangements are also applicable to boilers of marine steam-engines. Thus, where the boilers are set in brickwork, with flues or fire-bed passing under the boiler, and side flues surrounding the boiler, like those of stationary land-engines, the same method of applying the arrangements as before described will answer the purpose, and where the furnace and ash-pit are within the boiler, the ventilators are to be applied to the ash-pit doors, to the furnace door-frame and upper door, and to a metallic pipe to convey air to the back of the bridge, and should there be a slide-flue, one also to that; the regulating damper to the chimney and a vertical damper enclosed for safety in a case open at the bottom to admit air.
As some of the arrangements herein described are old, or have been in use, such as the horizontal damper, the divided furnacedoor, with apertures therein, and the admission of sir at the back of the bridge, the patentee does not claim any one of these separately, but claims their application combined with the following improvements (that is to say) the vertical damper marked m, the openings in the door-frame, and slides to cover them occasionally, the side air-flue, and ventilator k, and that marked e, the ventilators in the ash-pit doors, and the tube for conveying the air to the back of the bridge, marked e, in the manner set forth, to produce, by their regulated and united action, the effect of more complete combustion, by igniting the gas and smoke, and thereby saving fuel to a considerable extent.

CONDENSER FOR STEAM-ENGINES.

Chbigtian Schiele, of Manchester, mechanician, for "Improvements in machinery or apparatus for condensing steam."-Granted May 27 ; Enrolled November 27, 1847.

The new condenser consists of a
 cylinder A, one end of which is divided off, forming a separate chamber B; the two chambers are connected by a valve h, in the partition n, and a tube e, leads from near the bottom of the small chamber into the large one, proceeding along the upper part of the cylinder, and having its lower surface pierced with holes. The cylinder contains water, and on steam being admitted from the engine, through the pipe e, into the large chamber A, it forces the water through the valve h in the partition into the small chamber; but as soon as the steam begins to condense, and the pressure on the surface of the water is released, the compressed air in the small chamber forces the water up the connecting-tube e, and which, flowing along, passes through the orifices f in a shower, and completes the condensation. k is an elbow-pipe, in connection with the force-pump of the boiler, to carry off the condensed fluid; it is provided with a vertical tubular slide l, to be raised to any suitable elevation by a rod n, to regulate the level of the condensed fluid, and steam space $c . g$ is a valve on the upper part of the chamber,

opening outwards to allow of the escape, at certain periods of the operation, of any steam or air contained in the chamber. p is a glass gauge-ball, in communication with the chamber B, by means of a small pipe, which depends from the top of that chamber to about one-fifth of its depth. This ball p is intended to show the diminution of the air in the chamber B, by the rise of the fluid into it. r is a small pipe with a stop-cock, for supplying air to the chamber when required. A third pipe q is connected with the
chamber B, and is intended to Surnish a fre ih snpply of water from an elevated cistern, in order to compensate for the fluid lost by leakage.

GAS BURNERS.

John Hunt, of Birmingham, brass-founder, for "Improvements in the combustion of gas, oil, camphine, and other substances which are or may be burned for the production of light."-Granted July 3, 1847; Enrolled January 3, 1848.

This invention relates to the application of caps or dises, made of perforated metal or wire gauze, to the tops of the chimneys or glasses of gas, oil, or other lamps, as shown at fig. 1.
The second part of the invention relates to the manufactuer of

FIg. 1.

RAILWAY BREAK.

Frederick Cuaplin, of Bishops Sturtford, Hertfordshire, tanner, for "Improvements in wheels of railway carriages."-Granted June 29 ; Enrolled December 29, 1847.

The improvements consist in applying to the tyres of railway wheels belts of hide, skin, or leather, in such a manner that they will come in contact with the rails on which the wheels travel, whereby the driving-wheels of a locomotive engine will be enabled to take a firmer hold of the rail, and the wheels of the railway carriages will travel more slowly and with less noise.

Railway Wheels.-Patented June 28, 1847, by W. E. Newton, of Chancery-lane, consisting of a peculiar method of casting the iron wheels for locomotive engines and railway carriages, the object being to cool uniformly all parts of the casting at the same time, and thereby preventing fractures from irregular shrinking. From the time when wheels with a chilled hub and flan pe were first brought into use, the difficulty of casting them has been known, for the chill sets and cools the metal of the rim before the spokes or parts connecting it with the hub, and these, in cooling, shrink, and either break, or become so weak as to break on the least strain. To obviate this, the hub was for a long time made in sections, to enable it to open and yield to the contraction of the spokes, but this was attended with a diminution of strength, and the necessity of putting on wrought-iron hoops or bands. The patentee avoids these objections, which is effected by casting the whole wheel in a chill, and cooling all the parts at the same time. and without undue strain on any part. For casting a wheel of this kind a circular metal mould is to be constructed in several pieces, as shown in the annexed engraving, which, when put toge-

ther, will leave an internal recess, or chamber, to receive the molten metal, corresponding to the figure of the intended wheel when complete. A quantity of molten metal beiur poured into the mould, the cast wheel will be produced, the inner face, flange, and outer periphery of the felloe being chilled and hardened by the cold metal surfaces, against which the molten iron has come in contact, and by which means all parts of the castiny, as it cools, will shrink uniformly, and have no tendency to strain and crack,
or separate one portion from another, a is the circular metal plate, and b a metal ring, accurately fitted together; c, a conical metal plug forming a core, with a feather d affixed, to form the recesa for the key to fasten the wheel to the axle.

Silferino Speculung.-Patented August 3, 3847 , by T.Fletcher, of Birmingham. It consists in coating glass, after it is silvered with metal, by the electrotype process, whereby the quicksilver is protected from injury, and a stronger power of reflecting light given to the speculum. The silvered glass plate is lightly and carefully coated on the back, or silvered side, with a varnish composed of two ounces of shellac, half a pint of highly-rectified spirits of wine, and half an ounce of the best lamp-black; this varnish protects thequicksilver from damp, and from the acid used in the subsequent process. Before the varnish is quite hard, shake over it from a muslin bag, finely-pulverised plumbago, black oxide of manganese, or any other metallic powder, or cover it with thin metal, sothat the whole surface will be covered with a perfect but thin coat of metal ; after which it is submitted to the electrotyping process and by this means a thin coating of copper, or other metal, will be precipitsted over the entire back of the plate.

Dizeot Application of Stear-Power to Milis.-Patented July 29,1847 , by J. Hastie, of Greenock. It consists in the applicstion of direct action of steam-power to turn mills, by making the axis of the crank of the engine serve also for the axis of the mill-whether the same be vertical or horizontal. The ahaft is provided with a fy-wheel, which receives an endless belt for driving flour-dressing machines, and on the shaft there is an eccentric for communicating motion to the slide valves. When two pairs of mill-stones are required to be worked by the same engine, it may be effected by causing the piston-rod to pass through both ends of the cylinder, and connecting it at each end with the shafts of the upper mill-ztones; and, in case it should be at any time desirable to work only one of the upper stones, the other may be disconnected.

WALLER'S PATENT COFFEE-POT.

This invention consists of a vessel divided into two equal parts by a dished partition A, with the centre depressed and pierced by a hole; around the edge is attached a bent tube connected with a cock B, forming a passage through the strainer C, from the upper to the lower half of the vessel; the strainer is finely perforated

metal. Ascending from within a short space of the bottom of the lower chamber to within nearly the top of the upper one, is a tube E, passing through the centre of the partition and perforated plate, and which tube is surmounted by a valve D. F is an ordinayy epout communicating only with the lower division, and fitted with a ground stopper.

The mode of using the apparatus is this: the stopper being removed from the spout, the water is poured into the upper half of
the vessel, the tap is then turned downwards to fllow the water to run into the lower half; when it has done running, the ground coffee is put into the top division, the tap again turned horizontally, the stopper re-inserted, and the vessel placed on the fire. When the rattling of the valve, and escape of steam from under the lid have continued a few seconds, the coffee-pot is to be taken quite away from the fire and allowed to stand about two or three minutes; the tap is then turned downwards, when the infusion will rapidly filter into the lower division, and be ready for use in a beautifully bright and boiling condition.

The principle of this apparatus will be readily perceived. When it is placed on the fire, the water in the lower division is forced by the pressure of steam up the central tube, lifting the valve, and made to fall in a uniform stream, at a gradually increasing temperature, upon the coffee; as soon as all the water above the inferior orifice of tbe central tube has been forced up, then only steam arises; when the vessel is removed from the fire the valve falls into its seat, and prevents the re-entrance of air into the lower chamber, after its total expulsion thence by the steam; during the period of infusion, the steam in the lower chamber is allowed to condense, and thus a partial vacuum is produced, and preserved for any period, and rendered available for effecting rapid filtration whenever desired, by the employment of the tap.

From experience we can state that this little apparatus is one of the most useful domestic articles that can be had. It produces the most brilliant and fragrant coffee in three or four minutes. We should observe that during the process the vessel is quite closed; consequently, not the slightest quantity of the aroma of the coffee is dissipated.

ON THE FLOW OF WATER

Of the Union and Dieision of Running Waters, with the Laurs of their Increase and Diminution. By Bernabdino Zendrinı, della Città de Ravenna.-(Translated by E. Ceesy, Esq., in his Evidence before the Metropolitan Sanitary Commissioners).

1. A river which unites with another does not cause this latter to rise in proportion to the quantity of water which it brings, as would be the case supposing water to be considered as a solid, hut only increases the height by as much as the greater or less velocity of the influent or recipient may permit. On the contrary, if a river in the middle of a canal be diminished by a certain quantity of water, it ought to be lowered proportionally to the velocity of the canal of derivation and the river from which the water is abstracted, and such an alteration ought to be perceived not only at the lower part at the point where the water is added or subtracted, but also in the upper. In which law, however, there is much obscurity; what appears certain is, that both in the case of the union and of the separation that the surface continually adapts itself to the alteration in a regular progression, and although the impression a rising from such an anomaly does not disturb the whole level of the river if it runs over a long course, it reduces the problem to find the point where the disturbed mixes and unites with the undisturbed surface after following the oscillation of the water, which point in geometric rigour ought to traverse the whole length to the source of the river, since it would describe a regular curve; but the course of the water encounters 80 many impediments and obstructions, that these laws do not really obtain. And in every river there is, in fact, a point beyond which the regurgitation does not take place. That, however, as much as possible, we shall treat of in another chapter, when speaking of the falla of rivers, of their highest rise and lowest levels.

For the present it will be sufficient to seek the elevation or depression which will be produced in a river by the addition or subtraction of a quantity of water.
II. Suppose A B to be the height of a recipient previons to the influx of another stream, let $L M$ be its width in a given section, FG the height of the influent before the union, $H I$ its width. Supposing this latter introduced into the recipient, it ought to experience a certain rise. What will that rise be ? Since the additional water ought to conform to the width of the section of the recipient, conceive the height $F G$ of the influent altered to that of the recipient $A E$, then the water of the one will have passed into the other, and since this fresh water presses upon the other, that of the recipient will be obliged to lower its surface, and from the point A will be brought down to C; likewise the point E will pass to D and $E D=A C$ and consequently $B D$ will be the entire beight of the recipient after the addition of the influent water.

Calling $\mathrm{AB}=$ d. $\mathrm{AE}=\boldsymbol{x}=\mathrm{CD} . \quad \mathrm{BD}=\boldsymbol{z} . \quad \mathrm{FG}=b . \quad \mathrm{HI}=$ a. $L M=c$. The velocity of the recipient before receiving the influent u. Its velocity after having received it, but before it could exercise any pressure and reduce it to equilibrium; that is the same which it would have if the water of the influent ran in the width of the recipient $=t$, the velocity which the recipient

has after the union and after the waters have equilibrated in their course $=\eta$, and the velocity which the influent had in its own level before the union $=r$. Then since the two masses of water of the influent and recipient in agiven and equal time can pass separately in the level of the recipient, they ought to be able to pass together through the aforessid recipient. Hence the equation $d u+t x=q x$ and $z=\frac{d u+t x}{q}$ first general formula; now since equal masses of water pass in equal times both through the influent separately and through the aforesaid influent when reduced to the width of the recipient, we shall havect $x=a b r$, whence $x=\frac{a b r}{c t}$ and $z=\frac{c d u+a b r}{c q}$ the second general formula expressing the whole height $B D$; wherefore $A D$, which is the whole increment produced by the influent above the first state of the recipient will be $\frac{c d u+a b r-c d q}{c q}$.
III. Corollary 1.-If the velocity be a mean proportional to the height, we shall have $\mathrm{A} D=\frac{d \sqrt{ } d+x \sqrt{ } x-d \sqrt{ } z}{\sqrt{x}}=z-d$, which reduces itself to $z={ }^{3} \sqrt{ }\left(d^{3}+2 d x \sqrt{ } d x+x^{3}\right)$ and $\mathrm{AD}=$ ${ }^{\sqrt[3]{2}} \sqrt{ }\left(d^{3}+2 d x \sqrt{ } d x-x^{3}\right)-d$, in which $x=\frac{b^{3} \sqrt{ } a a}{\sqrt[3]{ } \sqrt{ } c}$, as is obm tained by substituting in the formula ct $x=a b r$, the values of t and r, which are $v x, \sqrt{b}$, which value of a if substituted for that of t, will give the value of AD.
IV. Corollary q.-On the supposition of Castelli and of Barattieri, that the velocity will be as the height, we shall have $x=$ $\mathcal{N}\left(d d+\frac{a b b}{c}\right)$ and $\mathrm{A}=\sqrt{ }\left(d d+\frac{a b b}{c}\right)-d$.
V. Corollary 3.-And consequently if $u=d^{m}-r=b^{n} q=x^{\varphi}$ where m, n, φ are numbers which may be integers or fractions expressing any power of the height by the velocity, we shall have the general formula $z=\left(d^{m+1}+a \times c^{-1} b^{n+1} \frac{1}{\phi+1}\right.$, in which x being already eliminated, it only remains to substitute the values of d, a, c, b, taking the aforesaid exponents as fixed, supposing $\& d$ unknown, the aforesaid formula will give the general equation of the whole curve of the increment of the river by the addition of the other stream, the abscissa of which will be z, the ordinate d, or
more generally making $u=\stackrel{m}{d p}, r=\stackrel{n}{b p}, q=\frac{\Phi}{p}$, we shall have $c \varepsilon^{\frac{\phi+p}{p}}=c d^{\frac{p+m}{p}}+a b^{\frac{p+n}{p}}$, and that $\overbrace{}^{\phi+p}=$ $\left(\frac{c d^{\frac{p+m}{p}}+a b^{\frac{p+n}{p}}}{a^{p}}\right)^{p}$, and we shall be able to determine the relation of $\&$ to d in the following manner:-
Let $d^{\frac{p+m}{p}}=b^{\frac{m}{p}} y$; now $d^{p+m}=b^{m} y^{p}$; we shall have $x^{\varphi+p}=$ $\left(y+\frac{a b^{n+p-m}}{p}\right)^{p} \times b^{m p}$ Construct the curve $\mathcal{A} E$ expressed

by the equation $d^{p+m}=b^{m} y^{p .}$ Take BA $=a b^{p+n-m}$, and from the point B des $c_{\text {ribe }}$ another curve, which has for its equation $z^{\Phi+\boldsymbol{P}}=$ $\left(y+\frac{a b^{n}}{c} \frac{n+p-m}{p}\right)^{p} \times b^{m}$, we
shall have $\mathrm{DE}=d, \mathrm{CD}=\boldsymbol{\sigma}$, and the intercepted portion C E will be the increment required.
VI. Scholium 1.-In the simplest case of the velocity in proportion to the height, using the first formula of the preceding corollary, change this into $d d=z z-\frac{a b b}{c}$, the equation of the equilateral
 hyperbola $b \mathrm{~A}$, of which as
well the parameter $b n$ as the well the parameter $b n$ as the diameter $b m=\frac{q b \vee a}{V^{c}}$, wherefore D B will be the height after the union of the water, and $B A$ the height which the recipient will have on first receiving it. And by the properties of the equilateral hyperbola, the square of $B A$ being equal to the rectangular $\mathrm{B} m \times b \mathrm{~B}$, that is, to the difference of the squares $\mathrm{DB}, \mathrm{D} b$, we shall have analytically $d d=z z-\frac{a b b}{c}$, which is the equation proposed ; whence appears the method of describing such a hyperbola, so as to cuntain every possible case of increment arising from an addition of water. And calculating with the second formula the two parabolas of the preceding corollary, we shall have $d d=b y, \mathrm{~B} \mathrm{~A}=\frac{b a}{c}$, and $x x=b y+\frac{b b a}{c}$; and if for $b y$ we substitute its equivalent $d d$, we shall have $z z=d d+\frac{b b a}{c}$, the equation which is found and constructed sbove.
VII. Scholium 2.-If the velocity is as the root of the height, the equation resulting from the first formula of $\S V$ will ascend to the sixth dimension of the unknown quantity, and the progression will be $c^{4} z^{8}-2 a^{*} b^{4} c c z^{3}+a^{4} b^{0}-2 c^{4} d^{4} z^{4}-2 a^{4} c^{*} b^{3} d^{3}$ $+c^{4} d^{8}=0$, which does not transcend the limits of a cubic equation; but with the second formula $\frac{m}{p}=\frac{n}{p}=\frac{\varphi}{p}=\frac{1}{2}$ we shall have $s^{s}=\left(y+\frac{b a}{c}\right)^{2} \times b$; and supposing $d^{3}=b y^{9}$, A E will be the parabola expressing the aforesaid equation, and BC that of $\boldsymbol{z}^{\mathbf{s}}=$ $\left(y+\frac{b a}{c}\right)^{\circ} \times b$, without otherwise embarrassing itself in the resolution of the aforesaid equation, already sufficient complicated.
VIII. The converse proposition to §II. deduced from the formula there enunciated, which gives the height of a river from which a quantity of water is deducted, to find the section of a canal, such as shall discharge the same quantity of water, and whose height BD shall descend to BA. The equation cqs$\overline{=}$ $c d u+a b r$ is then changed into $a b r=c q z \rightarrow c d u$, which solves the problem. Let it be required to diminish it by such a quantity of water as may have to the first, before the subtraction, the ratio of l to p, whence we shall have the analogy cqz:cdu::l:p, by making $r=b n$, and $u=d m$, and we have $b=\left(\frac{c}{a} \times \frac{l-p}{p} \times d^{m+1}\right) \frac{1}{n+1}$ whence we deduce the beight of the canal of deduction $d=$ $\left(\frac{a}{c} \times \frac{p}{l-p} \times b^{n+1}\right) \frac{1}{m+1}$ formula, which denotes the height which that river from which the water has been subtracted will have acquired after such deduction.
If the water of a river be diminished by a given height after the canal or derivation be opened, and the height of the effluent b is noted, required its breadth a. Let the first height before the deduction be to the second, after the latter has taken place, as eto f; hence $\varepsilon: d:: e: f$ whence $\varepsilon=\frac{d \theta}{f}$. Therefore by substituting this value in the general formula, since we have already $r=b^{n}, q=\boldsymbol{m}^{\oplus}$,
and $u=d^{m}$, the equation will be reduced to the following; $a=c$ $e^{\varphi+1} d{ }_{d}{ }^{\phi+1}-f \phi+1 d^{m+1}$ $f \varphi+1 b n+1$, in which a and d are the unknown quantities, and c, f, b, z, the given quantities; or else, if a certain breadth be given, and the height remains unknown, we shall have $b=$ $\left(c \frac{c \oplus+1 d^{\Phi+1}-f^{\phi+1} d^{m+1}}{a f \varphi+1}\right) \frac{1}{n+1}$. Now in the case of horizontal, or nearly horizontal streams, the canal of derivation being open, whose bottom regulates also the height of the water of the river; that is to say, the portion which acts to produce the greater or lesser quantity which it deducts, the other remaining inactive in regard to such a canal of derivation, the formula will be $d=$ $\left(\frac{c}{f} \times \frac{c \mathscr{L D}}{a+c}\right)^{1}=b$.
IX.-Corollary 1. In the second formula of the preceding paragraph let $m=n=1$ we change it to $d=b \times \sqrt{c l-c p}$ in which if $l=4000, p=3500$, numbers expressing the quantity of water which passes through a given section of the river both before and after the subtraction of the water, $b=10$ feet, $a=200$ feet, $c=300$ feet, performing the proper operation, the logarithm of $d=$ $1-3345034$ answering to 212,23831 . The value of the first height before the diminution will be $s=\frac{d \sqrt{ } l}{\sqrt{p}}$, where d being known, all the other quantities will be known also, and will be 23 gest feet.
X.-Corollary 2. Making $m=n=\frac{1}{2}$, which is the case of Torricelli, Mariotti, and others, transmuting the aforesaid second for-
 proper quantities and placing the values of the quantities l, p, b, a, c, as above, the logarithm of $z=1 \cdot 4846658$, the uumber to which is 30, water, diminished by the effluent so that the first height shall be
 which passes through a given section below the point of diminution, before the water is subtracted, will be to the quantity which passes through the same section after the water is subtracted as 40 to 35 in the first case, and the height in the second case as

XI. Corollary 3. Taking the third formula of the preceding paragraph, in which we have supposed e, f, d, b, c given, making \& $\phi, m=1$, by the hypothesis of Castelli, let us seek the width of the canal of derivation. We shall have $a=\frac{c d d}{f f} \times \frac{(e e-f f)}{b b}$. Suppose $e: f:: 9: 8, d=20, b=18, c=300$, the logarithm of $a=$ 1-9929051, corresponding approximatively to the number 98, of 80 many feet will be the width of the canal of derivation, that the first height may be to the second, after the water is diminished, as 9 to 8; but on the supposition that $m, n, \phi=\frac{1}{4}$, will be the formula changed to $a=\frac{c d \sqrt{ } d}{f \sqrt{f}} \times \frac{(e \sqrt{ }-f \sqrt{ })}{b \sqrt{ } b}$, and the logarithm nearest to a will be $1-8900925$, whose nearest number, 78, will be the width required.
XII. Corollary 4. Using the general formula, $z=\frac{c d u+a b r}{c q}$, to obtain the residual height of a river, after a certain quantity of water has been subtracted, we shall have $d=\frac{c q x-a b r}{c u}$. Now by substituting for q, r, u, their respective values $x^{\phi}, b^{\delta}, d^{m}$, we shall have $d=\left(\frac{c x^{\phi+1}-a b^{\delta+1}}{c}\right) \frac{1}{m+1}$; if then φ, δ, m will be equal each to $\frac{1}{2}$, we shall have the equation,

$$
d^{0}-\frac{2 a^{2} b^{3} d^{3}}{c^{2}}+x^{4}-2 d^{2} x^{3}-\frac{2 a^{2} b^{4} x^{3}}{c^{3}}+\frac{a^{4} b^{6}}{c^{4}}=0 .
$$

Or if, for greater simplicity, we reduce it to the following expreasion, $d={ }^{3} \sqrt{ }\left(x^{3}-\frac{q z c x^{2} \sqrt{b s}}{a b b} \times x^{3}\right)$; and since $x=\frac{b^{3} \sqrt{ } a a}{\sqrt[3]{ } \sqrt{c c}}$ we shall have $d=\left(\frac{\sqrt[3]{ } c c x^{3}-2 c a b \& \sqrt{ } b x+a a b^{3}}{\sqrt[3]{c c}}\right)$.
XIII. Corollary 5.-Using the preceding formula, in which we
have constructed two parabolas, according to what has there been laid down,
$c \frac{p+m}{p}=c \frac{\varphi+p}{p}-a \frac{\mu+n}{p}$, and thence $\frac{p+m}{p}=\frac{\phi+\nu}{p}-\frac{a b \frac{p+n}{p}}{p}$ now $d^{p+m}=\left(x^{\phi+p}{ }^{p}-\frac{a b}{c} \frac{p+n}{p}\right)^{p}$, and making $\varepsilon \frac{\phi+p}{p}=b_{p}^{m}-y$
we have, making the necessary substitution $d^{p+m}=$
$\left(y+\frac{a}{c} \frac{p+n-m}{\mu}\right)^{p} \times^{b m}$. Now let BC be the curve whose equam tion is $\varepsilon^{\phi+p}=b^{m} y p$. Take BA $=\frac{a b \frac{p+n-m}{c}}{p}$, and from the point A describe another curve A E, expressed by the equation $d^{p+i n}=$ $\left(y-\frac{a}{c} \frac{p+n-m}{p}\right)^{p} \times b^{m}$, we shall have $\mathrm{DE}=d, \mathrm{CB}=x$, and $\mathbf{C E}$ the required difference of height.
XIV. Scholium 1.-We shall give some examples of the fall of the surface of rivers, produced by derivative canals, as they have been called, and these examples will be taken from the Adige, which, as is known, affords many such, and on which I had cause, at various times to make several observations for its general regulation. It was found
1st. That the Bova della Badia, in flood time, measures 10.7.4 Venetian feet, or 1528 lines, above the sill; a its breadth is $12 \frac{1}{2}$ feet, or 1800 lines. The reduced height of the Adige, opposite it, at flood time, was 11.3.1, or 1621 lines, being 402 feet wide, or 57888 lines; now by a preceding rule, §VI., in which we supposed the velocity as the height, having $x=\frac{b \sqrt{\prime} a}{\sqrt{ } c}=269$, and consequently $d=\sqrt{ }(z x-x c)=1598$, which heing subtracted from the height of the Adige before the diminution, there remains is lines, that is 1 inch 11 lines for the required diminution.
and. At the mouth or sluice of the Sabbadina we found that $z=19.1 .11$, or 2759 lines; $b=9.2 .11$, or 1231 lines; $a=27 \frac{1}{2}$ feet, or 3960 lines; $c=2989$ feet, or 30240 lines, whence $x=554$ and $d=\sqrt{ }(z z-x x)=2703$, which, deducted from 2759 , the first height, gives 56 lines or 4 inches.

3rd. At the sluiee of the New River, when it was of wood, it was found that $x=10.8 .4=1480$ lines, $b=4.10 .8=704$
lines, $a=60$ feet $=8640$ lines, $c=318$ feet $=45792$ lines, and x $=306$, and $d=1441$, giving 9 at inches for the diminution of the Adige.

4th. At the Fossa Bellina which is the lowest of the derivatives with respect to the sea, it was found that $z=10.11 .8=1580$ lines, $b=4.4 .2=626$ lines, $a=60$ feet $=8640$ lines, $c=258=37512$ lines. Whence $x=301$ and $d=\mathbb{N}(x \neq-x x)=1531$, which subtracted from 1580 , leaves 99 lines for the diminution of the Adige, that is 2 inches and 5 lines.

5th. But at Castagnaro, which is the first and farthest from the sea of all, it was found that $z=14.2 .10=9050$ lines, $b=1491$ lines, $a=35064$ lines, $c=95040$ lines; dimensions taken above the two falls on each side of the Cunette, which remains in the middle, the result of which calculated separately will be $x=250$ lines and $d=1816$ lines, a sum which diminished by 2050 lines, leaves 834 lines, or 1.7.6, for the diminution of the Adige at the flood time, by reason of the diversion, which the two falls are able to produce on each side of the Cunetta. Calculating then the diminution of this, we have $s=2050$ lines, $b=2197$ lines, $a=3816$ lines, $c=$ 95040 lines, as above, whence $d=$ nearly 8000 lines, which, subtracted from 2050 , leaves 50 lines, or 4 inches 2 lines, wherefore we have for the whole diminution of the Castagnaro 1.11.8, or within 4 lines of 2 feet.
XV. Scholium 2. The celebrated Abbate Guido Grandi, mathematician of the Grand Duke of Tuscany, in his treatise on the motion of water, professes "that if two horizontal rivers, LG, F G, moved with a velocity, IG, GK, be united in one trunk, whose velocity and direction will be $G \mathbf{H}$; and, on the other hand, supposing the ssid trunk H G, has the velocity $H G$, it ought, with the retrograde motion to divide itself into two branches, $G L, G F$, they will not regain the velocity, I $G, K G$, equal to the first, unless the angle, L GF, be a right angle," the which being different from what we have before established, we are obliged to examine, according to our power, the foundation on which the aforesaid prom position rests. Grandi resolves the total velocity, $G H$, which arises from the two, G K, GI, by means of the complement of the parellelogram with the two lines expressing the force, $\mathbf{H E} \mathbf{E}, \mathbf{G} \mathbf{E}$, of which HE is the perpendicular let fall on $G K$ produced; but if conversely, ssys he, the trunk, $H G$, he resolved into branches, whose velocity shall not be the same as on entering the trunk, it may be greater or less, and will only be equal in the case when the angle, $L G F$, is a right one. The direction of the velocity, $G H$, resulting from the conjunction of the two laterals, $G I, G K$, is exactly what all staticians havelaid down. To have a clear proof: on the line $G H$ raise the perpendiculars, $K \delta, I \phi$, and the velocity, GK will be obtained, resulting actually from the two $\mathbf{G} \mathbf{\delta}, \mathbf{\delta K}$, and the velocity GI, in the two others, $G \phi, \phi I$, of which $K \delta, \phi I$, nowise contribute to the progressive motion, but only $G \delta, G \phi$, then $G \delta+G \phi$ are equal to $G H$, as is more easy to demonstrate; then each quantity denotes really the velocity with which the water in the trunk moves after receiving the influents, and it is to be noted that the prevalence of one perpendicular $K \delta$, above the other I ϕ Will only oblige the branch to bend a little from its course. Wherefore the illustrious author then considers the converse of the proposition, that is, when the trunk passes into the branches, to resolve the velocity, H G, into two, $H E, E G$, and says, that in $G F$ the water will run with the velocity $G E$, greater by the acute angle than $G K$, the which will be true, whatever bend and through whatever arm, $G E$, all the water of the trunk may flow, whilst H G does not express all the velocity, the same quantity not going through $G E$, which did when $G F$ was considered as an influent, it results that H G ought to resolve itself in another shape than that which is the case, that is, considering $G \phi$ by the velocity $G I_{z}$ and $G \delta$ by the velocity $G K$, whence the original velocity, $G \mathbb{K}, G I$, in the two canals respectively, will be precisely restored, now reputed as different branches, $G F, G L$; whence the conversion of the influents into diffluents will not change the velocity; in either case it will be retained, provided it be not changed by any external circumstance.
XVI. Scholium 3.-I think it would not be superfuous to give an example of the increase of height which a river really acquires from the reception of another. We will suppose the velocity a mean proportional of the height, using the preceding formula $z=3^{3}\left(d^{3}+2 d x \sqrt{d x+} x^{3}\right)$. The average depth of the section of the recipient $=9962$ lines $=d$, its breadth 115800 lines $=c$. The true section of the recipient is figured, in which A and B denote the profile of the banks, C the bottom, D E the surface of the water, PF the average depth; the next figure is the section of the influent in which the shoal $\mathrm{E} H$ appears much more elevated than the bottom I and BMS the surface. The better to adapt it te practice and calculstion I shall divide the section into several
parts, reducing them one by one to the section of the recipient, which then added together, gives the amount of increase. In the

section of the influent, DEIILNRT, DE denotes the right bank, RTV the left, EH the bottom of the shoal at the toe of the right bank, L N R the bottom on the left bank, and H I L the bottom of the influent. The portion $\mathbf{B} \mathbf{F}$ must be considered of the mean height 3.0.4, that is taking half E F by reason of the triangle BFE or BAE, the base $B F$ is 11 feet, or 1584 lines, wherefore performing the necessary operation, we shall have z $=3963$ lines, from which subtracting 3962 lines, the average height of the section, there remains one line for the increase of that portion BFE. Likewise through the portion FGHE, 17 feet wide, and 6.0 .9 feet high $=873$ lines, we shall have $z=3968$ linea, from which subtracting 3962 lines, there remains 6 lines tor the increase of the recipient in height by reason of the aforesaid ad-

dition. GHIL M will have a mean height of 19.5.9 =1935 lines, and a width of 126 feet $=18144$ lines, whence $\delta=\$ 102$ lines, and this third increment will be 11 inches 8 lines. $M \mathrm{~L} \mathrm{~N}$ formed by the left lower shoal will have a mean height of 1933 lines and 100 feet 14400 lines, whence z will be 4026 lines, and the height required for the increase caused by its addition $5 \hat{3}$ inches. The shoal ONSR is 26 feet $=8744$ lines wide, and the mean depth 3 feet 6 inches 3 lines $=507$ lines, and $z=3966$, giving 4 lines tor the increase. Finally, the portion comprising the escapement of the bank may be considered 8 feet wide, and 1.9.1. Its reduced height not giving any sensible increase, collecting together all the aforesaid measures, we shall have the total increase of 1 foot 5 inches 11 lines.
XVII. Scholium 4.-According to what is registered in the visitation of the Po and Reno made in 1693 , by Cardinal d'Adda and Barberini, to calculate the increase produced in the Po by the addition of the Reno, it will be necessary only to use the preceding furmula, as likewise to find the same effect at the general visitation of 1720 . Taking the data of 1693 aforesaid, supposing the average height of the Po without the Reno at Lagoscuro 31 feet $=372$ inches, the height of the Reno at the pass of Annegrati, that is $b=9$ feet $=108$ inches; the width of the Reno there $189=$ $a=2261$ inches; the width of the Po at Laguscuro 760 feet $=c$ $=9120$ inches, where $x=3$ feet 6 inches, $d^{4}=51478848 ; 9 d x V$ $d x=3906000$ and $x^{3}=74088$ numbers, which added together make $\mathbf{5} 5458936$, whose logarithm is 7.7439015 , which divided by 3 , to obtain the cube root, gives log. $2 \cdot 5813005$, the number to which is $381 \frac{3}{125}$; and since the fraction answers to 4 lines, if 972 is subtrcated from 381.4, there remains 9 inches 4 lines for the increase required according to the aforesaid supposition.
XVIII. Scholium 5.-In a report presented by Guglielmini at the time of the visitation, and which was registered in the Acts of it, and printed in the Florence collection, in which he calculates the rise at 8 inches 9 p . only, but the difference between us arises from his having taken the nearest numbers neglecting fractions. Eustace Manfredi, in answer to Giovanni Ceva, says in reply to the other proposition, "To say truly we shall find that the 9 g inches found by Ceva, is one inch more than what results from the former calculation of Guglielmini, and that by a small error of a fraction, \&c. [See Manfredi's notes to Guglielmini's book on the nature of rivers.]
XIX. Scholium 6.-In all the above examples we have supposed for the calculation of the velocity that it is either a direct or mean proportional to the height of the water, and that so as not to differ from what has been laid down frequently by many renowned authors; and also to give a proof of the manner of employing the formula we have discovered, when greater precision is required, the velocity must be found by an instrument (the hydraulic pen-
dulum), and the formula used which we have given in a preceding chapter. It is possible that in some cases we may not be able to employ the rules above referred to for the velocity without making great errors; thus to seek out the truth as unequivocably as possible, in cases of much importance it is well to calculate by many different methods, observing the difference resulting from each to determine afterwards the most probable.

FRENCH RAILWAYS AND FRENCH REVOLUTIONS.
At length the time has come when the French are awakened to the truth about their railway undertakings. There were very few who withstood the plan of government interference; it was thought quite right that the government should take charge of the railways, and private enterprise was crushed. We say crushed, because it had not free play, and because the concession system was a clog on those lines which were left in the hands of shareholders.
France is behind-hand with her railways: private enterprise when most wanted is dead, and the finances liave been upset by the wasteful manner of making the government lines. M. Garnier Pages, the new Minister of Finance, says this plainly, and names among the causes of financial embarrassment those great jobs, the government railsays, made for placemen and not for the country. Thus a burden is put upon France, which she will very much feel, for taxation is at all times burdensome to the people, but always most in their times of greatest need. It was wrong that railways should be made by loans and taxes; but it was still more wrong, when the private enterprise of France was in its childhood, to take away from it the food, as it were, of growth. France has always been backward in such public works, and when there was a fair chance of getting the French to take shares in railways, they ought to have been put forward instead of being kept back. It has not been so, and France is burdened with the government railways, and the springs of private undertakings are broken up and can do nothing, when France wants them most.

If, however, the late government struck a great blow at jointstock undertakings, the future government holds out no hope, for with the growth of socialist ideas, shareholders are frightened as to what may be their share in anything they may undertake. The working-man comes in now, and asks for his share in the newlyopened lines, and though it may be small at first, it may be very much afterwards, or it may be all. Railway undertakings are not those where this plan can be best tried, for the clerks and workmen have no very great means of making the traffic greater; for when a railway is made, the bulk of the traffic flows upon it, and though it may be nursed, yet, as we have said, the underlings can do but little for it. The shareholder does the most in making the line, and the working does not much want the care of others.

What may be the end to English shareholders in French railways we cannot undertake to say, but whatever may befall-if indeed all they hold now should be lost, there will be no loss on the whole, because the sale of shares to the French in 1845 and 1846, will more than make good whatever may be lost hereafter. On the first stake in French railways, the English made enough to make good their old stock, so that what they have left is only their gain. It may be, that so far as some are bo.nd up in French shares, they may be losers; but most of the holders, as we have said, have made themselves safe. If, too, we take the income which has been had on the old stock and put by, there must be more than enough to meet any loss. We wish the shareholders were as well off in Flanders, but there the railways are only half made, no income has been had from them, very few shares have been sold, and there is little hope of a sale to the Flemings or the French. Therefore, so far an French railways go, there is no room for the outcry that English gold has been wast ed abroad.

If there he no loss to the English in the end on French shares, the French themselves will lose, for there will be a withdrawal of that help which the English have given, and which has made and worked the few French railways now open. At a time when the French government must give up railway making, when French whareholders are borne down by heavy losses and cannot make the milways themselves, the French cannot look abroad, for the trust of the foreign holders is broken. However right it might have been to give the workmen a share in the income of the Great Northern Raidway, and however needful it may have been, yet this step is the deed of the chairman alone, without one word from the shareholders whose income is handed over. M. de Rothschild, in taking this step, has taken it in haste; and it looks more like giving in to
fear, than making a fair and careful bargain between the shareholders and the workmen. No one can help seeing that fear of the Communists wrought upon M. de Rothschild, for it was not enough to hold out the hope-they would not trust to that, he had to give at once all that they wanted. Every one will feel that when they ask again, and ask more, it must be given : the Communists are to ask, and the shareholders to yield. If the stake the shareholdern have lately had be too much for them, so that they now have may be held to be too much; it is not left to the shareholders to say what is right-they have not even to make a hargain : the Communists have the might, and they have the right, and if they say five in the hundred is too much, the shareholders must give way. It is very true that lately the income of the holders in stocks and savings banks has been raised, but this only lays a heavier weight on France, and the day must soon come when these burdens will have to be lightened. Then it will be said, holders in savings banks take so much, stockholders take so much-railway shareholders must do the like. On these grounds, the holders here will be frightened, and will take no share in any new railways, whatever the wants of France may be.

If the late government of France had upheld joint-stock undertakings, there would have been a better knowledge of them, and the new government would have been more careful of meddling. They would have looked to them as a help and a stay when so many in France are out of work, and they would have found in them the best way of making the wealthy give food and work to the poor. A tax, however mild on the whole, can never fit itself to the means of every one; the golden mean will be broken-on one the tax will fall lightly, another will sink under it. A joint-stock share undertaking is a free-will loan, or a tax made by a man himself, knowing his means, and taxing himself to the utmost in the hope of gain hereafter. There is no fear of a man putting down too little, there is no fear of smuggling or shifting from under the yoke. A loan raised for railway works partakes of this in so far, that each gives as his means allow; but the hope of gain is not so btrong to draw him on, while he is not the master of his own money, it is not laid out under his own care, it wants the eye of the master. It is on these grounds, as much as anything, that we uphold joint-stock undertakings in England; they bring to bear not only the money of the people, but their skill and powers of mind ; and we shall grieve whenever in this country joint-stock undertakings shall be given over to the government, as Mr. Morrison and his followers have been so earnest that they should be. What the Frencl did led them on, but we hope they are cooled by what has lately happened there; though we are not so strong in our belief that the government will leave off meddling while berths can be found for their many greedy hangers-on.

The turning out of France of the English workinen need not give us any sorrow, though it will do France no good. It is neither more nor less than self-slaughter by the French. Why did English workmen go there? Not as wanderers seeking a livelihood, not like the Swiss and others who crowd to Paris, and earn bread which Frenchmen might earn; but they have been asked to g° there-they have been sought. English skill and English knowledge were wanted for French railways, French power-looms, and French engine works. There were no Frenchmen to do the work, and Englishmen were brought over to teach them. So far from the English doing as the Swiss-working under the French, taking away their livelihood, or shortening their earnings-the English have been always paid higher than the French, and have followed new callings in which no Frenchmen came in their way, while they have given help to the others by teaching them trades, which they did not know before. The power-looms and other weaving and spinning works of the north of France have been set up by the English, and carried on by English foremen; and thus the French have been brought into the market against us. The English foreman is to be found all over Europe, not because he is liked, but as they cannot do without him. This not in France only, but in Flanders, Holland, Germany, Italy, and Spain.

The withdrawal of English masters and English workmen from France is a blow struck at France, and not at us. lustead of Frenchmen fighting us with English weapons, they must take to their own, and be beaten as they were before. We do not believe that this swarm of Englishmen abroad did us the least good. They mostly laid out in France what they made there-they seldom brought anything back; and if we had not to keep the few thousands who lived there, still we must have lost by the Englishmen put out of work at home, who if they had to deal with the French only would have beaten them, for ifter all the English are far better in all the higher work. We shall have so many men brought home, and we shall have to keep them: it will be most likely by our
taking trade from the French, perhaps by sending goods into France itself.

The French have a great fear of our trade, they believe that we sway the world by our trade, and they wish to wrest it from usthey begin the struggle by throwing aside their best weapons. To be great in trade, France should draw money and skill from the whole world ; it should have chosen and picked men, whether from France or abroad. It should be the star to which men of mind and skill should look, as shining with the best hope of reward. The blow dealt at the English strikes elsewhere. It is not only the Englishman who is forbidden to take his stock, his knowledge, and his skill to France, but it is every man who is willing and ready to do so. The Italian, the Spaniard, the German is forbidden, and shut out as much as the Englishman. France is shut against the world as much as China was, -there is no field for any but Frenchmen.

We wish we could speak more hopefully, that we could cast a brighter look on France, but we feel we cannot with truth speak otherwise than we have. We believe we have spoken fairly, while we are sure that England, however it may wish that it had been otherwise, is the least harmed by the breach which has thus been made in the ties of fellowship which so lately knit the two together.

HEALTH OF TOWNS BILL'

The promised bill for securing the health of towns is again before the legislature; and we hope with some prospects of success. To the general principles of the measure we are most favourable, because we have long laboured to obtain an amendment of the very serious evils which so much affect the public health. At the same time, there are many clauses which require great and grave consideration before they become law; and in making some remarks upon them, we do so without any hostility to the bill generally.

In clause 8, fifty householders have the power of putting the act in motion. In large towns, such a number gives the power to an insignificant minority ; and in small towns, fifty may be found too many. There ought either to be a proportional number, according to the population of the town.

Although the eighth clause speaks of existing local boards, we.do not find any provision for their abolition; and we therefore expect that great confusion will arise between the new local boards of health and the old local boards, for paving, cleansing, highways, sewers, and for other purposes. Great confusion must likewise arise from the election of new officers, who will be brought in conflict with the present clerks and surveyors.

The qualification of elected members of local boards seems too high for small towns. The number of inhabitants rated at thirty pounds a year is so small as to restrict the choice of the electors.

We think the provision for contour lines in clause 27 , is useful; but if the lines are taken at every ten feet elevation, it will be quite enough.

By clause 29, the board of health will have the power of carrying a sewer or drain "through or under any lands whatsoever." Surely this will never be allowed to pass; this power will enable any sewer to be carried across a garden, pleasure-ground, or park, without any notice or compensation.

Clause 35 requires that notice of building a house shall be given to the local board of health fourteen days, and that works shall not be begun without leave of the board. Seven days seems to us quite time enough, and the works should proceed unless the board can show some objection to them.

It appears very unlikely that clause 42 will be found practicable. It provides for engine and factory chimnies oonsuming their own smoke.

Clause 49, although aimed at great evils, is very objectionable; and however effective it may be in checking tramp-houses, it will not touch the evils of overcrowded Irish lodging-houses. It makes all houses, other than public-houses, liable to registry and inspection, where persons are lodged for a single night or less than a week. Unless some exception be made for Brighton, Margate, Gravesend, and other watering places, the inconvenience and annoyance will be great; as house-holders are glad to accommodate visitors who run down by steamboat or rail on the Sunday, and return on the Monday.

The clause 54, giving control to the commissioners for regalating the levels and plans of new streets, is arbitrary in its interference with private property, while six weeks is yery much too long for any inquiry to be made by a local board or its officers.

In the next clause, 30 feet is too wide for a mews; 24 feet is ample.

The clause 58, for enabling local boards to set up waterworka, however necessary in itself, is likely to do evil by throwing impediments in the way of private enterprise, for the existence of any company to be set up is precarious and dependent on the local board.

After all that has been said about graveyards in towns, it is a pity to see the countenance given to this abuse by clause 67 , which allows of graves being made with only thirty inches of soil over the coffins, \rightarrow a shameful and fearful nuisance.

The clause 78 is inconsistent with the general tenour of the act, for after making it compulsory on each house to have the water laid on, the measure of cutting it off for non-payment of rates, is one not favourable to the public health.

REVIEWS.

The Theory and Practice of Ship Buidding. By Thomas White, jun. London: Johnstone, 1848. 8vo. pp. 101, with volume of folio plates.

The science of ship building appears to us one of those in which the precise application of mathematics is not to be attempted; but of which, nevertheless, the leading principles should be based on the theoretical laws of mechanics. For thip building, mathematical formulæ can do nothing-mathematical principles everything. The former cannot take account of the thousand and one practical requisites of a good ship-the latter leave sufficient margin for the attainment of the needful qualifications; the former impose laws which are not always just, and even where they are just, are too minute and restrictive; but the latter establish a more liberal and lenient code-one more easy to be obeyed and more deserving of obedience. In choosing between a scientific principle und an analytical formula, the ship builder chooses between a friend and a master.

There is, however, a great difference between general principles and vague principles. It is the latter which are now almost exclusively observed in the public dockyards. Grave official personages have a great horror of matters whch they themselves do not understand, and consequently the range of their antipathies is very comprehensive. It includes science. It is no great scandal to assert that in the government dockyards, the most profound science is not so useful a personal commodity as kinship to one of the Lords of the Admiralty. Let a man prove by rigorous scientific demonstration, that some established rule of ship building is essentially erroneous-and will he be rewarded for his pains ? Will he be thanked for making an advance in science? Will the obligation under which he has laid society to him, be discharged? Quite the contrary. The chances are, that he will be frowned down as a visionary, or rebuked for pretending to know more than his betters. In the eyes of men in office, to be set right is to suffer Lese-majesté.
There is one chance, however, that a scientific discovery may be useful, if not to the discoverer, at least to the public;-some one who dines occasionally at the Admiralty, may think it worth while to appropriate it.

Our respect for government science, for the researches of royal commissions, the mathematics of blue-books, and the investigations of official inspectors, is extremely limited. In matters of experimental philosophy, we should lay it down as a general rule, that the persons least likely to find out the truth are- the "properly constituted authorities." What a satisfactory affair the Gauge Commission turned out! How well Sir William Symonds' ships sail! With what universal and unhesitating deference did the railway engineers receive the reports of Sir Charles Pasley! And to go still further back, how admirably the Irish Railway Commissioners executed their task ! of which the must favourable thing that can be said is-that their report suited the characte r of the country affected by it. The blunders of admeasurement in the plans and sections were not much more egregious than some which have been detected by the Standing Orders committees: and Mr. Barlow's investigations of the effect of gradients are not very much worse than a mathematical student would write in his first year.
It seems to us quite clear, that for the future advancement of the practical sciences we must trust entirely, or almost entirely, to private efforts. At rare intervals, indeed a pummission will be
competent for the scientific investigation assigned to it: it is reasomable, for instance, to expect much benefit from commissioners selected as those appointed to consider the use of cast-iron girders on railways have been. But on the whole, these cases must be looked upon as exceptions and happy accidents. In naval matters the inefficiency of official philosophy is especially deplorable, because of the enormous expense which it entails upon the nation. After all the visits of the Lords of the Admiralty to Portsmouth -after all the parliamentary returns and parliamentary debatesafter all the enormous cost of ships built on new models, to be subsequently remodelled and patched as the prevailing caprice dic-tated-after all the exploits of experimental squadrons-we have come to the very gratifying conclusion that our most weatherly vessels were taken from the French in the late war. O, for an Ecole Polytechnique in England!

The author of the work before us professes no more than "to give some plain directions for actual building," and to put the reader in possession of just so much information as is requisite for carrying him to "larger and more scientific works on the subject." But the present treatise, though it does not aim at extreme profundity, has the greater merit of expressing in simple terms some very important views respecting the application of hydrostatics to the theory of ship building. The stability of a vessel is properly insisted upon, as a perfectly indispensable requisite-one without which all other merits are valueless. The form of a vessel may enable her to sail fast, but if, at the same time her pitching and rolling motion be excessive, the practical utility of the vessel is proportionably lessened, her security endangered, and her durability diminished by the constant strains to which she is subject. Sir William Symonds' vessels are, our author remarks, liable to these grave objections. In his vessels, the rake of the stem is sometimes so great, that the stem is inclined to the keel at an angle of thirty degrees. By thus cutting away, 80 to speak, a large portion of the fore body, it is clear that when the vessel pitches ahead, there is less immersion or sustaining power to bring her up again, than there would be if the stem were more upright. He committed a similar error with respect to the lateral rolling. The lateral stability, of course, depends in a great measure on breadth of beam ; but the general form of section amidships must be duly proportioned in reference to it. "Here," says our author, "we consider, is to be found the great defect in the surveyor's midship section; it is comparatively straight from the keel to the waterline; and, as such, is manifestly deficient in bearing, until its extreme inmervion takes place, which is sudden almost to a jerk; whereas a rounder line would prevent the great degree of lateral inclination, and what must take place would be much more easy. The advantage of this, in comfort upon the deck, efficiency at the guns, wear and tear of the rigging, and indeed, the safety and comfort of the whole, must be apparent."

The conditions of stability, either laterally or longitudinally, are not after all 80 very difficult to ascertain. The problem is practically a hydrostatical, not a hydro-dynamical one, and therefore much eavier than that of determining the forms best adspted for speed. If navy surveyors had only a moderate acquaintance with the properties of the Metacentre-if their appointments depended rather on their knowledge of hydrostatics, than on their goverument influence, or aristocratical connections, we should have to pay for much fewer of those great wooden coffins which now diagrace our navy. As far as we may judge from Sir William Symonds' actual performances, he either does not know the meaning of the word " metacentre," or he cannot have studied its propertiex. He may possibly have an idea that they have some influence un the stability of a vessel-but he certainly cannot know that they are, not merely important, but all-important-that in the question of stability, the properties of the metacentre constitute the question, the whole question, and nothing but the question.

Mr. White's practical directions we will not venture to criticise at length. The accuracy of his general views, however, and his long experience in his profession, seem just grounds of dependence on his authority in matters of detail. The folio plates are carefally drawn and admirably executed : and the descriptions which scompany them are very minute, and appear well suited to the purpoeses of the ship builder. The work concludes with an acconnt of the methods now in use for measuring tonnage, and with remarics on the complexity and inefficiency of the new method established by law. We conclude with the following brief extracts, the first selected for its scientific importance, the second for its curiosity:-

- The form of body best adapted for steam veacel, in a primary considarations. It will be found that moat of the principles which constitute a goed asiling ship, will also apply to a steamer. We have repeated instances.
in which firt-cless steam ships that have afterwards proved of superior chsracter, have gone as fant, onder jury rig, and with not more than half the momentum of canves allotted to sailing ships of equal tonage, as they have subsequently gone under the fall power of the enginet. Many viluable infereacea may be drawn from this fact; and we onhesitatingly bring to our aid, in building steam ships, the whole experience of the profession, to a mach greater extent than wat at first adopted. Experience showis that the long bow and clean run are indispensable; for, whatever may be the laws of fluids, the great speed of river boats thus built, the in. crease obtained by lengthening so many of the earlier formation, and the increased acuteness of each succeeding class, amount to a demonatration on this point."
"The ark in Scripture was of these proportions, namely, six times the breadth for the length, and one-tenth the length for the depth. Otber proportions may in particular circumatancel promote speed; but for stability and security as sea, the proportions of the ark, deatined as sbe was to endure the greatest commotion of waters the world has ever known, are, we fearlessly assert, infallible, since the experience of four thoussod years has only confirmed them; a collateral eridence, at least, of the truth of the Scripture narrative. The ark was twice as long, and twice as wide and deep, as the West-Indis mail ateamers, and consequently would make eight of them, considered as regular figures."

An Historical, Practical, and Theoretical Acoount of the Breakwater in Plymouth Sound. By Sir John Rennin, F.R.S., F.S.A., F.G.S., President of the Institution of Civil Engineers. London : Bohn and Weale, 1848.

Sir John Rennie could not have more worthily devoted himself than to the commemoration of the great work of his father, the Plymouth Breakwater, and he could not have erected a monument more munificent than the volume now before us,-one which while it records the merits of his father, and gives proof of his own enlightened spirit, will be of value to the engineering profession for many generations. Well may we describe it as a monument more lasting than brass, while it bears a more noble inscription than was ever sculptured on marble. Of Sir John Rennie's works we will not speak, for others can put forward a claim to the production of works of equal magnitude and merit, but we cannot refrain from saying that this book is another public service rendered to the engineering profession. As President of the Institution of Civil Engineers, Sir John has upheld the social rank of the profession, and has maintained its public hospitality; by the contribution before us, he has shown his earnestness in the cause of professional literature. These are to our mind merits in addition to the material monuments of his skill, and speak powerfully of his enlarged and liberal mind, and of his public and disinterested spirit. They show that his heart and soul are engaged in the career he pursues, and are a guarantee of his professional independence and integrity.

We speak warmly, because it is rarely we have the opportunity of speaking of a book from the hands of one of the higher members of the profession, and therefore it comes more welcome to us. It is true there are excuses for the silence of those members, and Sir John has himself very well explained them, but that does not exempt us from our duties towards him, who stands a brilliant example of successful exertion. Sir John Rennie's words merit attention, for they must be the exculpation of our engineers in the eyes of Europe. He says-
"Continental engineers have generally more time than English engineers for writing and reflection. The former, confined for the most part to a single work at one time, have leisure to study and reflect upon every operation connected with it, and to deduce general laws from them which may be applicable in similar circumstances. Their sphere of action nevertheless is limited, compared with that of English engineers, and they have not the same facilities of acquiring that readiness of application, that versatility of inventing remedies to meet every case which occurs in practice, and which alone can be derived from extensive and greatly-varied experience in all kinds of works, such as falls to the lot of English engineers. This defect is necessarily inherent in the continental system, notwithstanding the numerous able engineers we find there. The whole of the works, as well as the engineers, being in the employ and under the control of the government, their energies are impeded, their talents are fettered, and they are deprived of that strongest of all inducements to exertion, viz., competition, which has been productive of so much benefit in this country. Here, as regards engineering, everything has been free and untrammelled; thus every member of the profession has been at liberty to study and follow out that course which appeared to him best calculated to acquire public favour, and secure his own interest; and the public, on the other hand, has never found any deficiency of talent to carry out any work as often as the emergency required.

The government also have equally profited by this system, for they can always enter the market upon the same terms, and obtain any degree of talent they may require without the necessity of training a corps of civil engineers of their own, which, for the reasons above stated, would be found very difficult, and perhaps not without entailing the expense of numerous failures, which is the more unnecessary, as they can obtain the experience ready-made without any such sacrifice. Nearly all the great works and improvements in the public establishments have hitherto been obtained in this manner; of which the Breakwater and many others may be termed excellent examples, and by pursuing the same system, the same beneficial results will continue to be produced. On the continent the superiority of our free system of competition is in many cases much admired, and will probably be introduced where circumstances render it practicable; and English engineers are highly esteemed and much employed on the continent.

This is spoken fairly, and Sir John takes care that he shall not be understood as speaking invidiously, or as depreciating the continental engineers. He says-
"In saying thus much, I wish to be distinctly understood, that I should be extremely sorry to be considered as undervaluing in the smallest degree the numerous able engineers in every department on the continent, or the magnificent works which have been constructed by them, or the excellent books they have written, which have been productive of so much benefit to the profession of civil engineering."
In these sentiments we fully concur; we honour our continental brethren, but we demand for them as for ourselves the benefits of what we believe to be a better systom-that of the competition of civil eugineers. We advocate for their interests a wider field of exertion, and emancipation from the thraldom of the government hureaucracy, protection for men of ability, and no false enoouragement for men of no ability.

In expressing himself thus boldly, Sir John Rennie has done very great service to the profession by vindicating it from the injurious and insidious designs of the government here, who are adways seeking to establish military engineers in capacities for which they are utterly unsuited. We wish other members of the profession of equal reputation would display the same dignity of faeling and disinterestedness, by publicly expressing their unfavourable opinion of the government assistance. We hope the fear of losing some small amount of government patronage does not keep them back from doing what Sir John Ronnie has unhesitatingly expressed.

We wish too they would imitate him in the production of books, such as his. At any rate, their pecuniary means enable them to imitate him in the lavish outlay he has made on drawings and engravings. They have the drawings in their own offices, and if they merely put them in the hands of the engravers, without any text, the plates will prove of value to professional students. We have seen so many examples of liberality among the profession, that we hope it will be equally displayed in contributions to engineering literature. Money only is required, their time is not required; and though they can plead they have so little of the latter, they have been well enough rewarded to deprive then of such a plea in the expenditure of money.

We have been apt to adduce as a merit in professional works that they were profusely illustrated, and we believe our readers will agree with us, for such books are thereby of a more practical wature. In this respect, Sir John Rennie's volume has few to surpass it; and it is undoubtedly one of those great works, which must at once take its place in the standard library of engineering. No expense has been spared, we may say no care has been spared, to make that portion of the work complete which speaks to the eye, illustrating the words of Horace-

> "Segnius irritant demisae peraures Quman ques sunt oculla subjecta fidelibus"

The eye of the practical man seizes at once the construction and proportions in a drawing, while the most copious description fails proporions in a drawing, whes an implete. Again, it is more easy for those who wish to copy a good example to do so from a drawing those who wish tron a description, and when we consider that a work of this kind is to be a text-book for hundreds of engineers, it appears mind desirable that it should be, as it is, really and truly useful.
On leaving the presidential chair, Sir John Rennie has not retired from the public service. He uever could retire into obscurity, tired from the pull wave claimed exemption from further contribution. That he has completed this magnificent work gives him an additional title to future fame, as it does to the gratitude of his contemporaries for his maintenance of the dignity of their profession.

The Young Survegor's Preaspior. By Joun Rism, Iarvayors Rarts 1. and II.
The object of this work is to explain the present system of measuring and estimating builders' work;-for this purpose tha author has given the plans of a first-rate building, and explains how the measurements are taken, commencing with the digger, and going on with the bricklayer and carpenter. The dimensions are all given in detail as taken off in estimating, and are accompanied with a specification of each trade. Mr. Reid appears to have adopted the practice of the most experienced surveyors, and has produced a work which is likely to be of great benefit to the pupif, in assisting him in his professional pursuits. In saying this, we must caution him not to imagine that he can obtain a sound practical knowledge of the duties of a surveyor or architect, from merely reading or studying this work, or any other book or lecture : it can only be attained by accompanying an experienced surveyor in measuring or making an estimate of the building itself.

INSTITUTION OF CFVIL BNGENEERS.

Feb. 22.-Joshun Fisld, Esq., President, in the Chair.
The paper read wes by Mr. A. Mitcrient, of Belfint, Aseoc. Imat. C.R., "On Submarine Fousudatione ; particubarly the Sarewo-pile and Moorings."
Considering that the entire anbjeot of the various sorts of piling, of soild stone foundations, of coffordams, of mases of concrete, and the numerors modes mopted by ingenions men for overcoming local difficultion, woald oconpy too muoh time, and scarcely pamess novelty, the muttor ratrioted himself almost entiroly to the deseription of the works ereeuted. by him with the screw-pile, as that had been chiefly employed for supporting atructrues on loose sand or mud banks, wholly or partially covered by the sen, where it had been praviously considered very harardout, if not impractionble, to esect any permanent edifice; and in his narrative, he sornpalomsly apaided all comparison with other modes of proceeding, even when they had the samo object. The origin of the screw-pile wat the screw-mooring, which was designed for the purpose of obtaining, for an espedal parpase, a greater halding power than was possessed by either the ordinary pile or any of the unal mooring-anchors or blocks, of however large dimensions. It was proved by experiment, that if a screw, with a broad apiral flange, were fixed upon a spindle, and forcibly propelled by rotary motion to a certain depth into the ground, an enormous force would be required to extract it by direct tension; and that the power employed mast be sufficient to drag up a mass of earth of the form of the frustrum of a cone reversed-the base being at the sarface of the ground, and the section of the apex being equal to the diameter of the acrew. The extent of the resisting mass must, of courte, depend upon the nalural tenacity of the soil. Even in this reasoning, it muat bo ovident that a vertical foree was calculated upon; hat ats, practicalif, that soldom if ever occurred, the angle of tenaion and the carve of the bnoy-cable agin gave the moorings greater power. Thie what found to be correct in pratice, and the application of the moorings became very extensive. An arrangement was made with the port of Newcatle-on-Tyne, by which, for the cam of 2,500h, the right of flying these mooringe in the Tyne was given; and Mr. Brookes, the engiueer, showed that last year, whilst in the noighbouriog port, damage was done to the shipping to the extent of nearly 30,0002 no injury was sustained in the Tyne, entirely owing to the sound holding of Mitchell's screw-pile mooringr. It naturally occurred to Mr. Mitchedl, that the same means of resistance to downward pressure might be used; and he proposed to apply it for the foundations of lighthouses, beacons, and other structures, which, for maritime purposes, it might be desirable to place upon sand and mad banks, where hitherto it had been considered impracticable to place any permanent edifice. In the year 1838, a plan for a structure of this nature for a lighthouse, on the Maplia Sand, at the mouth of the Thames, was laid before the corporation of the Trinity Hoase, supported by the opinion of James Walker, Esq., their engineer. The nine iron piles, 5 inches diameter, with acrews 4 feet diameter, were accordingly driven 22 feet deop into the mud, and, with proper precaution, they were allowed to atand for two years before any edifice was placed upon them. The lighthouse was subsequently constructed, and, as was testified by Mr. Walker, had stood perfectly until the preaent time. Pending this probation, it was determined to erect a lighthouse to point out the entrance to the barbour of Fleetwood-onWyre, and under the advice of Captain Denham, R.N., the screw-piles were adopted. The spot fixed on was the point of a bank of loose sand, sbout two miles from the shore; seven iron piles, with screws of 3 feet diameter, were forced about 16 feet into the bank, and upon them timber supports 48 feet in vertical height were axed to carry the house and lanthorn. This structure was completed in six monthe, and was perfeotly successfal, never having required any repairs to the present time. A similar lighthouse was orected near Belfast; and since then several others, with a great number of beacons, have bean fixed in situations heretofore deemed impracticsble.

A project was started by the Barl of Coartown, in the yetr 1847, for adding to the length of the pier at the Harbour of Courtown, on the coant of Fexford, which had proved an entive failare, from the channel between the solid piar baing continually choked op with sand. Iron piles, with tcrews of 2 feet diamoter, to be driven from 11 feet to 15 feet into the and, and blue clay, were decided to he used in order to form an open jetty throagh which the gand could be wathed by the curreat, and the platform would be used for landing and discharging the shipping. The surf was so heavy on the const that the usual barges or floating rafts could not be used for putting the piles down $\rightarrow 0$ an ingenjous plan was deagned by Mr. Mitchell, for projeoting a stape forward from the solid part, rigging a large grooved-wheel upan the top of the pile, passing an eadleas rope-band around it, and roand a polley fixed 150 feet back, and then, by a number of men hauling upon the basd, a rotary motion was communicated to the pile, which screwed it down very fast. By these means one bay of the pier, 17 feet long, was finished daily, even in very rongh weather. The entire length of the jetty wes 260 feet, its hreadth 18 feet, with a cross-head 34 feet long, with landing stages at each end, and two lines of railway throughont. The entire cost of thit ertention was 4,150l., or about 47. 10e. per lineal yard-an extremely small sum compered with the cost of stone piers; hat even that was more than the expense would be now, as the system of work is better naderatood, and materisla are now cheaper. The acconnt of the dificalties incurred in the execation of these works wat most interenting and ample testimony was borne by engiueers of eminence, and men whose maritime experience gave weight to their opinion, of the superiority of Mr. Mitchell's screw-pilet and mooring over every other syatem for holding buoys, or for supporting bescons and lighthonsea, and their uso was saggeated for the foundation of bridges, vindincta, and numerons railway and other works, as well as a mnitiplicity of applications which had not hitherto been thought of.

Mr. W. A. Brooss gave an account of the method of laying down the moorings at Newcestle-on-Tyne, under his directions. A heavy chaia, formed of 4 -inch mound iron, in links of 3 feet long each, was stretched along the bed of the river, in the direction of the current. To this chain, benesth each tier, was attached a 2 -inch mooring-chain, fired to the head of a sorem mooring; another screw being also placed beneath each tier, and driven down between 10 and 20 feet into the clay, and sometimes foll a foot into the shale rock. The screws were 4 feet in diameter, and were placed in degthe varying from 15 feet to 24 feet at low-water spring tides. They were screwed down to the depth of 15 feet in an bour apd a half, and sometiaes 21 feet in two hours. Bech mooring serew was intended to have borne the strain of foar heary ships ; bat, daring the last winter, the port What 0 crowded, that more then double the proper number of venels were moored npon each; and yet there were no signs of weakness; and whilst nearly 30,0001 . of daragge was done at Sunderland, during a heavy storm, no ctanalies occorred at Newcastle, which Mr. Brooks stated was entirely owing to the sound holding of the screw moorings. He argued, therefore, that the smanl anm of $2,500 h$, paid by the harbour commission of Newcastle for the right to put down these mooringr, was a very wise expenditure.

Mr. T. Smitia, Pilot Master of the Port of Shielda, corroborated Mr. Brooka's etatement.
Captain Wastington, R.N., had, in the course of his surveying datles, seen the screw moorings in almost every position, and had heard them univarsally eologised, as being the beat and anfest mooring hitherto known. He stroagls recommended their employment. He had also oxamined carofully the acrew-pile lighthonnes, and had every reason to be antisfied with them, as affording a means of placing lighthoutes and bescona where tbey Tere before impracticable, and enabling floating lighta to be generally superseded by fized lights, which latter be proved, from documentary evidence, to be ope-third leas annual cont than the former, and certainly more nseful to silars; for, in spite of all the care, attention, and even lavish expenditure of the Trinity Board to moor the lightahips securely, they did go adrift junt at the time when they were moat required. He, therefore, advocated fixed lights in every situation where a fonndation coald be obtained; and he bobeved that, with the serew-pile, there were acarcely any situations where this could not be accomplinhed.
Measm. Walker, Cubitt, Rennie, Marray, Moorsom, Mitchell, Scott Rassell, and others, took part in the discussion, adducing instances of the eff. eiency of the moorings and the piles, and of their applicability to numerous engineering works, for which they expressed their intention of employing them. The high price hitherto charged for the right of using them had somewhat retarded their general introdaction; but it was explained, that Mr. Mitchell had feared to entruat to others the fixing of them, leat a failure mighs ensme before bis system was perfected, which, however, he now thought it was. Now, however, as the right of granting licenses for their use was transferred to men of basinese who had parchased it, there was no doubt of thair being brought within the reach of every application.

Pub. 29.-The paper read was entitled "Remarke on the Formation of the gatranees to Docks, sifuated upon a Tideway." By Mr. J. B. Redman, M. Imst. C.E.

After illustrating the subject by the example of the position and direction of all the principal dock entrances on the borders of the Thames in the port of London-showing that the variation in the opinions and practice of eagineers had been very great-the paper detailed the ordinary methods of docking and undocking ships, and the precantions to be taken in constructing entrances, which should be best adapted for facilitating these
oparations; and, although it was difficult to lay down any pouitive rules upon the sabjent, as the enginear must, in almont every case, be grided by Iocal circumstances, yet in ordinary cases the following general roles were recommended :- For graving docka, an angle of abont 45°, pointing up the stream; for wet docks, an angle of about 60°, in the asme direction; and a right angle, with the stream, for building ships. Theea, it was bolieved, would be generally foond the most available.

March 7.-In the discussion upon Mr. Redman'u paper, the merits and defects of the several dock entrances in the Thames and in other situations were examined, and the general rasult appeared to be, that although the ongleer must be guided by local circumstancee, yat, that in situations where the river was sufficiently wide, and the position of the land permitted, an acute angle pointing op the stream, was the best for docking reasela with the flood-that tbe reverse would be beat for undacking ahipe. In ordinary widths of rivers, therefore, the end would be attined by forming a bay anficiently deep to render the water still in front of the dock, the wing walls heing so much splayed as rirtually to give the directions up and down the at ream as circumstances required. The peculiar positions of the dockes at Ipawich, by Mr. Palmer, the alterations of the Duke's Dock at Liverpool, by Mr. Cubitt, and other cases, wero sustained in support of the argaments of the apeakers, who all anited in praising the industry and talent of Mr. Redman, in bringing forward the subject in the complete manner ho had done.
March 14.-The paper read was "An aocownt of the effeot of the Storm of the 6th of December 1847, on the coast near Edinbergh, as illutrating the Principles of the Construction of Sea Defences." By W.J. M. Ranmine.
The priacipal example given wes the sea wall of the Leith branch of the Edinburgh and Dalkeith Railway, built by the author in the year 1887, from Mr. Walker's designs. Just after it was completed, a violeat storm occurred, which injured almost every similar work within its range, bat prodoced no ill effect upan that structure. On the 6th of Deoember 1847, a still more violent storm occurred, which did great damage all around, but the railway wall still eacaped without injnry. The total length of the wali wat about 750 yards; its height was $18 \frac{1}{2}$ foet above the beaob at the ligheat point, diminishing to about 6 feet at the ends. The height of the top was 4 feet above equinoctial spring tide level. Its loast thickness was δ feet and ita greatest 10 foot; the baok wan vertical, but the face had an inclination at the lower part of 5 jaches in the foot, gradnally becoming curved as it rose upwards, until at the top it overhung elightly. The foundation course was composed of large flat stones, laid horizontally 4 feet below the corface of the beach, upon a stratum of fine sand aud gravel, firm when dry, but moveable when wet. The face was of hammer-dressed ashlar, abont 2 feet thiok; the back of rubble, 18 inches thick. The interior was filled with concrete. The coping was composed of etones each weighing about half a ton, connected by means of cast-iron dowels. The stone nsed was Craiylieth sasdstone. The faoe joints wrere laid in cement for a depth of 4 inches. Tho fonndation was protected by a pitching of trap bualders, laid on the natural lerel of the beach. They were partially diaturbed by the storm referred to, and the author ascribed this to their weight being insufficient to resist the vertical oscillation of the waves.
The second example was a vertical sea wall near Trinity, the foundation of which was protected by a dry stone bulwark sloping at angles of from 30 deg to 40 deg. The wall wan mjured by the the atorm, bat the pitching was breacbed at several points.

The third example was another wall near Trinity, of a hyperbolic sẹction. The lower part had a slope built dry op to a little below high-water mark. At this point there was a sharp carve, and the apper part was nearly vertical, and laid in mortar. The waves extracted the storen of the cnrved portion, and the upper part, being andermined, was destroyed to a great extent.
The last example was the bulwark of the Granton line, the lower part of which sloped at about 20 deg. ; the apper portion was curved, and was covered by a heavy projecting stringconrse and parapet. It was huilt dry, and the stones of the lower part weighed not less than half a ton each. This bolwark suffered damage to a slight extent on its upper portion.
These examples were stated to conflm the following principles:That the principal action of the waves in front of a sea wall was a vertical oscillation, produced by the combination of the direct and the reflected waves; that a sloping balwark gave rise to a sloping oscillation, tending to overturn any portion which projected above the line of slope; that where the strength of a sea wall depended on the pressure of the superincumbent masonry, and the adheaion of mortar and cement, the position of greatest stability was vertical ; and that whea the strength depended on the weigbt of the individual stones, the position of greatest stability was a very flat slope.

In the discussion which ensued, instances were adduced of the duration of vertical walls under the attacks of heavy seas, and, on the other hand, of their destruction when fiat slopes had effectually resisted the waves; and it was agreed that in this, as in all other cases of engiveering, no empirical rules should be laid down, but that the skill of the engineer should be exerted to adopt such forms of construction as were best adapted to the locality and the circumstances.

March 21.-The discussion on Mr. Rankine's paper was continued. Letters were read from Mr. Maclean, describing the Barras and Piel sea embankments; and from Mr. Macdougall Smith, on the importance of using stone of great specific gravity in sea-works.

Mr. Bateman stated the necessity of uning hard and tough stopes, which would resist disialegration by the friction of the shingle moved by the waves.
Mr. Muray corroborated the atatements of Mr. Baleman, and recommended groynes an the hest mpana of collecting sand and gravel, to prolect exposed coasts, and the foundations of sea-works.
Mr. Ranine replied to some of the remarks which had been made. He referred to Mr. Scott Russell's paper on sea walls, as being partly confirmed by his observations. He disavowed the intention of laying down naiversal rules for the construction of breakwaters in deep water, from observations on walls built on a flat beach; but, to show how the prineiple of such walls could be applied, he raferred to the Cherbourg break. water, where the top of a stone embankment formed an artificial beach, on which a vertical wall was founded.
The paper read was descriptive of "A Method of Selting out a Railway Junction." By A. Beadlands.
The object of the paper was to supply a methodical rule for setting out that portion of a branch line of railway included between the rails of the main line. The author observed, that in all ordinary cases the curve of a branch line could not be set out from the main tine, which was aupposed to be straight, by the ordinary methods of setting out railway curven, siuce the junction was required to make an offset of 4 to 5 inches on the length of the switch-rail, which was much greater than the offset made from the tangent in the same length by a curve of moderate radius, so that it was necessary to make the junction line start abruptly at a finite angle with the main lise. He, therefore, considered the junction-curve, to be determined by its passing through three given points-namely, the two extremities of the switch-rail, and the furthest point of crossing ; and from these data, he showed how the radius and centre of the circular arc might be found, as well as the positions and angles of the various crossings. To render the method more easy of application, the author gave a table, calculated from the principles and formula laid down in the paper, assuning an ordiuary form of the switch, and a series of valves of the lead, a distance of the furthest crossing extending to the greatest limit likely 10 occur in practice.

In the course of the discussion which ensued upon this method, as compared with the ordinary syatem of setting out junctions by a comparatively empirical rule, well understood and practised by the platelayers on railways, Mr. Wyld's switch wab alluded to, and exhibited. In this switch all notching and inequality in the bearing surfaces of the fixed rails were shown to be avoided, by the ends of the tongues being housed under such surfaces, instead of being notched into them: the tongues being consequently at their pointa, and for sone distance between them, lower than the fixed rails, exercised when they were weakegt merely a lateral action against the wheels, without bearing any of the weight of the passing Arains. Several engineers who had employed these switches extensively, expresaed themeelves relative to them in very commendatory terms, and stated that they were not only manufactured in a very superior manner, bat that their action wias very perfect, and that they tended greatly to tho prevention of accidents in railway travelling.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Feb. 21-The Barl de Gaer, President, in the Chair.
Mr. G. Bailey, the honorary secretary, read the report of the council relative to the medals for the session 1847.8.
With reference to the Royal Medal, it was stated that, in pursuance of notification in the various publication, English and foreign, "On the 31 st of January, 1848, the council met to receive nominations and applications of candidates, when sixteen names (eight Englishmen and eight foreigners) were given in and considered. The meeting being adjourned to the 14th of Febranty, the claims of the several candidates were further considered; and a hallot heing taken, the majority of votes were found to be in favour of Mr. Cockerell; and it Tras accordingly-' Resolved, That the Royal Medal of the Inatitute be awarded to Cearibe Robert Cocerable, Raq., R.A., Professor of Architecture in the Royal Academy of Arts, London, Member of the Royal Institute of Prapee, \&ec., in testimony of his diatinguished merits as an architect.'

For the Silver Midal of the Institute, offered for the best eamay 'On the application of sculpture and sculptured ornament to architecture, and the principles which sbould regulate their introduction into buildings generally, both with regard to beauty of embellishment and propriety of style,'Three essays bave been received, distinguished by the following mottos: No. 1. 'Junius ;'-No. 2. 'Rule ;'-No. 3. 'Nisi utile eat quod faceinur frustre pat gloria.'

The three essays diaplay much ingenuity and a praiseworthy babit of observation ; they contain many jadicious observationa on the bigber branches of sculpture, but in general the remarks are too indefinite, and are deficient in the illastration derivable from immediate reference to examples.
The antbors appear to have mistaken the immediate aim of the question proposed:-the subject is of a practical and positive nature, in relation to a specific architectoral parpose, and was not intended to elicit a disquisition upon the abstract attributes of sculpture.
Sculptured ornament, a most important section of the programme, appears
in two of the papers to have totally eceaped the attention of the writers, and in the third is only cacualig alloded to.
The council, however, are of opinion that the author of the eecay beeded - Junius' has evinced oonviderable talent, and that he is juitly entitied to the medal offered.
For the Soand Mrdallion, the subject being 'A design for a building to contain pablic baths on a comprehensive scale, with all suitable acceasories, and combining the magnificence of the ancienta with the unages and puposes of modern times,'-Five designs have been received :-A. Four drawings and MS. description, motto ' Quod potwi perfeci. No. 1.'-B. Pour drawingr, motto 'Quod potui perfeci'-C. Six drawings, wotto 'Ne nimivme es, pectes annis prudentiae crescit.'-D. Three drawings marked 'Aquarins.' -E. Two drawings and MS. description, marked 'Christophorna.'

The council cannot refrain from noticing the little attention which appears to have been given by some of the candidates to the printed conditions, and particularly as respects the adaptation of the buildings, 'to the asages and purposes of modern times.'
Although the several designs are formed on a scale sufficiently comprehenaive to embrace all imaginable as well as saitable accessories, in some no indication is given of provision being made for the varieties of medicated or other baths so much in use at the present day; nor reservoirs, nor the requisite apparatus for heatiog the large quantities of water that would he required to supply such extenoive warm and tepid baths as are shown in the drawings; neither are chimneys or shafts provided to carry off the smoke, steam, \&c., which it would be impracticable, under any circamstances, to consume.
The council are of opinion that the design marked 'Christophorus' possesses, on the whole, the greatest degree of merit, notwithstanding the unfavourable manner in which it is sepresented in the drawings of the elevations and sections, and sufficient to justify the bestowing on it the award offered."
The author of the ebsay marked "Juniun"" ie Mr. Hznay Bayly Gaxling, associate; and of the design marked "Chrishophoras," Mr. James M•LAREN, of Edinburgb.
Mr. Penzoss read a paper "On some off the Geometrical Lines and Optical Corrections of the Greek Architects," which will be given next montb.

March 6.—C. Fowlex, V.P., in the Chair.

A paper was read, "On the Ancient Buddhist Architecture of India." By J. Firgusson, Esq.

Mr. Fergusson commenced by showing that the generally asoamed primeval antiquity of Indian buildings was not borne out by facts; as the oldeat monuments in the country, whether cut in the rock or atructural, belonged to the Buddhista, and the founder of that religion died only 543 b.c. : and tbat even tbat date was too early, as it did not become the religion of the state till after 250 g.c., in the reign of Asoka,-by whom the earliest monuments hitherto found in India had been erected. After showing that there was no real similarity between the architectural styles of Egypt and India, he proceeded to point out that the latter country was occupied by two distinct races of people,-the one aboriginal, and occupying the soathern portion of the Peninsule; while the other, or Indo-Germanic race, came into the country, at a tolerably recent period, as conquerors or colonists, and settled in the velleys of the Indus and Ganges. It was among the latter race that the Buddhist religion arose and flourished for more than a thousand years, or from before 250 B.c. till after 750 A.D.,-though at the time of the Mohammedan invasion it seems to have been entirely extinct ; and now there was not a Buddhist, or an institution of that religion, in the country of its birth. After alluding to the curious fact of the names of Ptolemy Antiochus, and other Greek kings, being mentioned in the inscription of this Asoka, Mr. Fergusson dwelt for some time on the existence of a purely Greek honeysuckle oruament being found on the pillars set up by this king at Allababad, and on which one of his inscriptions is engraved. He then proceeded to classify the religious edifices of the Buddhists,-dividang them into three classes, the first being the Topes, or Dagobas, large domical buildings erected to contain relics, many of which still exiat in Afghanistan and Ceylon as well as India. After describing tbe various parts of a dagoba, Mr. Fergusson showed how the tee, or ornament on the top of them, gradually became taller and taller, till it became a tbree or nine storied tower, not only in India, but in China, -as in the instance of the celebrated Porcelain Tower at Nankin. The circular inclosare of the topes was next illustrated, from a curious example at Sancbee, in Bhopal, which still retains its singular gateways. These likewise were shown to be the original of the Pailoos, or what are improperly called the triumpbal arches of the Chinese. The next class of monuments were the Chaityas, or churches, which in India are known to us only from the caves; as are also the third class or Viharas, or monasteries,-which served as residences for the priests, and of which two or more are eltached to every chaitya in every series of caves in India. After pointing out their general plans and arrangements, Mr. Fergusion proceeded to illuatrate the beautiful mode in which the chaitya caves were lighted by one large opening or window over the entrance; and then explained the construction of the roofa,-which, though always circular in form, were never copies of arctres (wbich were not to be found in India 4 ill long after the Mohammedan invacion), bat of wooden construction; and in some of the earlier caves the origioal wood.work still existed, though in the
mare modian ones its fare were repeated in the rock. Aftar conclading the Indian part of hin subjeet, Mr. Fergusson poipted out the striking simibaity that exiated between the arrangement of the buildings he had been decribiag and those of Stomehenge, 一which he had no doubt whatever was a Boddaint building; and he thought every part of that hitherto mysterions erection admitted of eany explanation on that supposition. He concladed by showing bow domes were conatructed in India; and pointed out the similarity that existed between the Indian examples and the well-known tomb at Mylase, in Asis Minor-and the curious cirenmetance that the hog-backed Lycian tombs, discovered by Sir Cbarles Fellow, itrongly resembled, not onty in form, bat in construction, thoee Indian buildiaga which bad formed the sabject of the lecture; while the language of the inscriptions on them was a dialect of the Sanscrit, about as far removed from the mother tongue as that fomen on inscriptions in the Indian examples.

Marek 20.-Mr. Eaton Hodgkinson was elected honorary member, and Mr. Thoman Penson and Mr. Edmund Sbarpe, M.A., fellown.
The honorary secretary announced the following as the sabject proposed for the medals:-

N Her Majerty baring been pleased to grant her gracions permission for the Royal Medal to be conferred on such distinguished arcbitect or man of seience, of any conntry, at may have deaigned or executed any building of bigh merit, or prodnced a work tending to promote or facilitate the knowledge of architectare, or the various branches of sciences connected therewith, the council will in January, 1849, proceed to award the Royal Gold Medal to the author of some literary publication connected with architecture.
"The Silver Medale of the Inatitute will be awarded-
${ }^{4} 1$. To the best esany on the peculiar characteriatica of the Palladian school of archikecture, and a comparison and contrat of its elementary priaciples and detaits with those of ancient art.
"2. On the best manner of covering the roofs and forming the flats and getters of buildinge ; the natare of the several materials used in various parts of the country for these purposes; their most effectual and economical application; the inclination to he given to the different parts, and the other prectical precautions to be adopted to prevent snow and rain penetrating into the building.
"The Soanc Medallion to the best design for a building to serve an a national repository and musenm for the illuatration and exhibition of the production of the industrial arts.
"The succeasful competitor for this meda, if he go abroad, will be entitled to the sum of 501 . at the end of one year's absence, on sending aatisfactory evidence of his progress and his studies."
Amongst the books presented were an essay, on "Cyclopean Walls" (Kykiopirehen Mauern) by Dr. Forchammer; parts of M. Daly's "Revue Gémerale de FArchifecture," and of Mr. Fergusson's beautifol work on Indian architecture. The foreign secretary, in commenting on the donations, pointed attention to an article in the Revue Gentrale, complimentary to the Iatitute for not restricting the competition for the Gold Medal to this lingdom.

Allasion was made to the circumatance that all the impresuions of Mr. Leisch's translation of Müller's "Ancient Art and its Remains" (of which a copy was presented to the Institute at the last meeting), bad been destroyed by fire.

Amongat the lettert read, wat one from Herr Lange, of Pülda, acknowledgiog the honour of his election, and setting forth several subjects on which he could afford information, eapecially the Carlovingian monuments (eighth and ninth century), of his neighbourhood, and a collection of terms in mie amongit the workmen of the middle ages.
Mr. T. H. Wyatt read a paper on the "Higlory, Present Condition, and Proposed Restoration of Llandaff Cathedral."

ROYAL SCOTTISH SOCIETY OF ARTS.

Feb. 28.-Geomer Bochanan, Esq., F.R.S.E., Prenident, in the Chair. ON CAST-IRON.
At the request of the council, an exposition "On the Streagth of Materiats, particularly Cast-Iron and Malleable Iron, and their application in the comstrmetion of Reilvaly Bridges (Part I.)," was given. By Grosge Bocganak, Eeq., President.
Oo this subject, so important at the present time from the extenaive une of these materials in the construction of bridgen for railways, and from the new and extraordiasy forms and dimensiona which they are now beginning to asoome, the conncil of the Society had requested their President to make a communication on the present state of our knowledge and practice, and this eveniag he read the firt part of this communication, illustrating bis subject by rarious intereating experiments and models, more particularly a large and beactiful model, with drawings and elevations, of the high level bridge acroas the Tyae at Newcastle, which, through the liberality of Mr. Robert StephenHon, the engineer of the bridge, he was enahled to exhibit, and to explain she situation, extent, and construction of this great work in all its details.

Mr. Bucianam began by stating that he did not profess to communicate argthing new or original, but would be happy if he could only draw from
the storea of information which had of lete years been aceamulatiog on this subject, onder the hande of very eminent, scientific, and practical men, such leading factn and maxims at might prove a safe guide for our prectice; and such truthe, when they became known and eatablished on the unerring stounde of experiment and calculation, could not, he thought, be too Fidely ditseminated. The varions atrains might be all reduced to two kinds, according as the material is either distended or compressod by any force or pressure. From these two all otherm arise, and either consiat or are compounded of them. The tensile strain is the simplest of all, depending neither on the peculiar form of the matarialn, nor even on the longth, hut only on a singie element, namely, the Section of Fracture. This peculiarity of the tensive force was explained and illustrated. In regard to cast-iron, the result of:the extenaive and interesting experiments by Messrs. Hodgkinson and Pairbairn was given, and it was found from the mean of 16 different trials of Rngliab, Welsb, and Scotch Iron, hotb hot and cold blast, that this material will uustain about 71 toos per square inch before breaking, the weakeat specimen being 6 , and the strongest $9 \frac{5}{4}$ tons. The limit of fracture, however, can never he approached with afety, not even within a long distance, seeing that this material is liable to unseen imperfections, and, above all, to snap in a moment without distending itself or giving any warning of dagger. Malleable iron, again, is much superior in tensile strength, and, by ite remarkable ductility, inspires confidence in a atill higher degree; bear no leas, at an average, by various experiments of Telford and Brown, than 27 tome-the wenkest 24 , and the strongest 29 tons; but, before the half of this load is applied, it begins to stretch, and continues stretching, up to the limit of fracture. It is, therefore, not only three times stronger than cast-iron, but may be safely loaded with five times the breaking weight, or about eight or nine tons.

In regard to the atrength of compreasion, this depende alno, as long as the length is limited, on the same element-ibe Section of Practure; but when a long rod or slender pillar is loaded or compressed, it is liable to bend, not for want of strength, but for want of stability, the least flexure turning it off its centre, and breaking it by lateral force, deranging entirely the simple law applicable to short lengths. In regard to cast-iron, by far the most satisfactory experiments are those by Hodgkinson and Pairbairn. The mean result gives very nearly 50 tons on the square inch-the weakent $36!$ tons, and the atrongest 60 tons. It is thus six times stronger in comprestion than in dis. tenaion, and bence it is peculiarly recommended for austaining any wperincambent weight, as in the cese of pillars and of bridges, provided the construction is such as to resolve the strain arising from the lond into a longitudinal compression. This is often in our power by proper arrangements, chiefly giving a sufficient height and curvature to the arch; but in cases where, for the want of head-room, the arch is unduly flattened, or resolvod into a straight beam or girder, the danger is that we bring the tensile force into play, and then the use of cast-iron is objectionable, or at least requires extrente'caution. No direct experiments havo been made on malleable iron of ghort lengths; but from aome facts brought out by Mr. Hodgkinson, its strength appearn much inferior to cast-iron, chiefly from dactility, whereby it gives way much sooner under a load. It will bear 27 tona, probably much more, wlthout fracture; but with 12 tons it gields to the lond, oontracts longitudinally, and aweils out laterally; and this is another very important fact for our guidance in the use of those different uaterials. In regard to stone, experiments have been generilly made on specimens rather too minute. Like cast-iron, the crushing strength is superior to the tensile, and hence its adaptation for haildings, particularly bridget. Craigleith stone will bear 21 tons on the inch, or upwards of 400 tons on the square foot; Aberdeen granite 600 tons. In regard to bricks, he had occasion to make experiments in relation to the great chimney of the Edinburgh Gas Works. It became matter of consideration whether the ordinary brick could withatand the pressure of so lofty a columa. Trials were therefore made with a powerful bydrostatic press, not on small specimens, but on the actanl brick. The ordinary stock brick was found to bear 140 tons on the aquare foot, and the common fire-brick 157 tons; hut the brick of which the chimney is constructed, consisting of a mixture of fire-clay and ironstone, bore, a single brick on its bed, no less than 140 tons, equal to 400 tons on the square foot.

The effect of the transverse strain wat then considered and illuatrated by various experiments and models. This strain is a compound of the tensile and compressive atrain, the one part of a beam loaded in the middle being compressed and the other distended, and the beem itself becoming a lever, and acting often with enormous power against its own strength. Hence it became easy to calculate the strength, this being in every case proportional in the firat instance to the area of the Section of Practure, and thia original clement modifed by the length and depth of the beam, diminishing in exact proportion to the length, and increasing in proportion to the depth.

The transerse strain acting with such severe advantage againat our materials, various methods have been contrived for cluding its effects, and of these none is more remarkable than the principle of the arch, the effect of which was illuatrated by experiments, and particularly the necessity in fiat archea of having secure abutments to resiat the horizontal thrust, and this was frequently accomplished, where there is sufficient head-room, by uniting the extremities of the arch by strong malleable iron rods, in the same manner at in the case of the roof, the feet of the raftern are united aud prevented from spreading by the tic-beams; and thil is the principle, the secureat of all, on which the great iron bridge at Newcastle, now in progress, is constracted the object of चhich in to cross the river and valley of the Tyne, on the highest

Wel of the rellways on ecoh side, so as to uoite them in owe uninterrupted line from London to Berwiok, and onite the termini of the differeat rail ways, now separated three quarters of a mile or more, into oase grand cantral stantion, a little to the wrat of the aucient Casthe. The distasee betwean this station and the present termisas of the Yort and Newcestle Railway is 3,457 teet, conaisting chiely of the space oocupied by the bed of the river Tywe, and the steep banke on eeeh side, woll known to traveliers in deseending freen Gateshead Fell on the south, and Dean Btreet on the north, both to be mow superaeded by the amooth and level surface of the rall way, and by a tornpike road runniof on the same bridge directly under the lime of rails. The steep benks on emeh side are spanned by stone arctes of a very eabstantial charaster, the river and low banks by cix metallic arches, all of the same dimensoas and atructure, reoting on solid piers and lofty columas of maconry. In the bad of the river the piers are laid on very solid foundations of piles and planking, with concrete, many of the piles 40 feet in leagth, and driven to this depth through hard gravel and sand till they reach the bed of freestome rook. Nasmyth's celebrated pile-driver is in fall operation here, and with monderful effeet, and has come most opportunely in aid of the work; driving night and day, at the rate of 60 or 70 atroke a minute, the pile beads beipg ofien set on fire by the rapidity and violence of the blows of the ram. Piers lid i foot below low-water mark, and raised about 100 feet to the apringing of the arches. The archee consist each of 4 main ribs of cast-irom, each in 5 engwents bolted together, and forming one entire arch 125 feet span, and riting 17 ft .6 in . in the centre, and the level of the raile on the upper platform 1081 feet above the lever of high-water mark of the Tywe. Depth of the rib 3 ft .9 in . at the apringiag, and $3 \mathrm{ft}, 6 \mathrm{in}$. at the crown, with Ganchee 18 inches brosd, external ribs 2 incbes thiekness of metal, intornal ribs 3 inches. Total sectional area at the crown 644 square incbes, which would bear with safety a load of 5,000 or 6,000 tons, and would form, with proper stortments, a atrong arch in itself; but for the fulleat eecurity, and to provent the posalbility of ineonvenience or risk from deflection or vibration, or otberwise, each rib is united at the springing by strong malleable iron bers or thea, 7 inches broad and 1 inch deep, of the best scrap iron, and in all 24 in nomber. The railway is supported above the arch, and the roadway auspended from beneath, by hollow cant-iron pillars 10 feet apart, and each 14 imehea square, througb whicb are passed strong malleable iron circular bars, binding the whole into one stiff and solid mas. The sectional area of the herizontal bars is 168 aquare isches, which would sustain upwards of 4,000 toma without breaking, and 1,500 tons with perfect asfety, but the whole waight of the bridge will not exceed 700 tons, leaving 800 tons of surplus mtrength. The railwiy, which is at the summit level, russ on a level 4 feet above the crown of the arehed rib, and is supported in the middle by hollow cat-iron trough girders resting on the top of the pillars 10 feet apart, and united by longitudinal timbers hid with strong planking. The rondway rans mearly on a level with the malleable iron ties, leaving a space of about 20 foet clear heed-room.

In the whole of the work the ntmost pains has been bestowed on materials and workmanship, and in making everything complete, the surfaces, which abutt together, being regalarly planed or turned, as in machinery; and, from all the arrangements, the most successfal results may be anticipated from thin bridge. The cost of the iron work and roadway, by the eatimates, come to $\$ 112,000$, and the contracts for the bridge and viaducts to somehing above $\mathbf{5 3 0 0}, \mathbf{0 0 0}$.

CONW'AY BRIDGE, CHESTER AND HOLYHEAD RAILWAY.

We give the following details of floating the tubular bridge at Conway, on account of their highly interesting character. Nest month we hope to be able to give full particulars of the raising of the tube and the ma. chinery.
In sight of a large concourse of people, covering the whole apace of the suspension-bridge, the towns and walls of the noble old castie, and the felds in the background of the spot on which it was built, tbe wonderful effort of science, the tube-bridge, was foated at 11 a.m., on the 6 th ult., and moved from the piles and tays on which it was constructed, and fairly brought into the tide-way of the Conway, while its flood-tide was running at the rate of at least two miles per hour. It appeared to foat with the greatest ease, and not inmersing the six ponfoous on which it reated (three at either end) to within at least 3 feet of their decks. The precautions taken by Capt. Claxton, R.N., to whose sole direction the transporting of this enormous mass was commilted, were admirably contrived to keep the machine suspended over the fixed piers, to await, as it were, the decision of the engineer as to whether the perilous step of lanaching into the deep (for deep indeed is the river, 12 fathoms at low water) should be proceeded with, or whether the valves sbould be lifted, and the tube dropped, as it were, again in place, upon its piers-many eircamstances appearing to bear upon that determination; the strengith of the current; the height to which the tide protaised by its comparative rising; and the atrength of the svind. At abont $11 \mathrm{a} . \mathrm{m}$. tide appeared to slacken, and the resolution was formed the cbains and ropes were hove upon, and in ten miouter the tirst Rubicon-gradually but ateadily it approache
for it. Mr. Staphensen, with Mr. Edmin Oiarke and Mr. Branel, aceosspanied Capt. Clayton, who directed the proceedings. He used two figures, of large dimensions, Non. I asd 2: when the red side was shown of the former number, a capstan fixed on the road from Conway to the tube worts was hove upon; when the white side wes ebown the heaving stopped, and a similar operation with No. a governed the operations of a powerfal capstan (lent by the Admiralty), fixed on the railway on the Chester side, writh its rope made fast to the inside of the tube, on that end. In the pantoons three enormons masses of timber, 05 feet long by 25 feet wide, and 8 feet deep, bound together by poaverful crabs worked by 44 men, hove upon the chaing, which had previouely been tightened up by a large crab, at which a dozan or more men atrained with their utmost efforts at either end on shore, one end of each chain being fixed at the piers of the suspension-bridge, while the other ends were fast to the aforesaid crabe, on the opposite side of the river : on these chains the pontoons appeared to traverse. The western, or Conway end, was pointed frat, but did not come quite home aftermards. The eastern, or Chester end, was dropped in after, or while the obb was making; but bofore it raschsd by about a dozen feet the exact berth, it took the mason-work, and no effort conhd disengage it. Nevertholess, it wes over its bed anfficiently to be lended and ledded up with timber previously prepared from a lower bed, which had been provided in case the tide should fall before the upper bed could be reached. The most axtraordinary efforts were made with ncrews and tacklea, no less than four of which Latter were at one time applied, besides the Chester side crab, manned by 60 .people, while the tide was falling, to overcome the obstacle; bat they appeared to be ineffectual, and Capt. Claxton was heard to give orders for bedding up, which was speedily accomplished. The barges were then sunk a little, and the noble fabric rested rery mear the bydreolic presses which are to be used in masing it. Eighty men were in each set of pontoons-one set oommanded by Capt. Dunce, R.N., an assistant of Mr. Brunel, and the other set by Lient. Blatchloy, R.N., the crews ander them performing the principal werk, boing sailors from the "Home," of Liverpool. In the tube attanding the havern, were the officers and some of the crew of the Great Britais. On the top, on the Conway side, Mr. Fairbainn, of Manchester, had the direction; and on the Cheeter side, Lient. Glenny, R.N. The great difficalty to be overcome was apparent-the small space to play in-for on the Conway side it wants 9 inches, by actual admeasurement, of baing home, or in place; while on the Cheator side, it is fairly jambed against the masonry- 80 that in fact there were barely 9 inches free in $\mathbf{4 0 0}$ feet. No sooner had the tide fallen sufficiently than the obstacle to the exact fixing in position became apparent to all. The inner pontoon was butting at its end against and partly on a rock. It took the groand which bed been blasted away from the solid rock in consequence of having got a little twisted previously to starting, we were mssured fall 4 foet. On the Ilth olt., the tube was again forated by the pontoons, and wan finally placed with its two ends resting upon the sbelves of masoury constructed to receive it, prior to its being raised to the elevation at which it is placed, abont 15 feet or 16 feet above. The lifting of this enormons mass of iroc, which weighs about 1,200 tone, is to be effected by two hydranlio preases, with 18 -inch rams, and pomps $\frac{8}{8}$ of an inch diameter. These pumps are to be worked by steam-engines, whidh will give a preasure equal to 8 tons on the circular inch, or a cotal lifting power for each press of 972 tons, which, of course, will be amply sufficient for the purpose. Each prens has a lift of 6 feet; and, as the ends of the tube rise, the masonry which is intended to sapport them will be carried up from the shelves on which they now rest.

AUXILIARY STEAM-POWER FOR VESSELS.

Sir-In consequence of the great extension of railways, and the facility they give for quick transit of goods, they aro openting serionaly against the shipping interests and coasting trade; and unless some mode can be adopted by which coasting vessels can be made to competo with the railways, this trade will be completely destroyed, which will be a serious loss to many harbours, and also the mercantile interests of the country ; as railways will obtain not only the light and best-paying goods, but also many of the more balky articles, in consequence of the want of regular sailing tradern.

I think it would be interesting to many of yonr readern who feel a deep interest on this aubject, to ascertain what has been done in many places by omploying amall steam-power muxiliary to sailing vessels; and as you have the means of doing so, I have taken the liberty of directing your attention to this important subject, which many of gour correspondents could easily supply, and answer auch queries as the following :-

The best systom of applying ansiliary ateam-power to veasels in the consting trade, of 150 to 900 tons hunden per rogister?

A dascription of any such ?

Whether wood or irao preferable, and the cost?
The size of eugine or horse-power, and whether applied to screw or paddles !
The draught of water, \&c. \&xc., and any particulars as to the trade -uny be engagad in, and how they are answering?
N.B.-Some time ago, a vessel was tried on the Thamen (no notice of
 a now system of propellers, patented by a Mr. Simpson, which was very favorably spoteri of as being adapted for the purposes referred to by me. -Could jou state any particulars comecoted with it?
Trusting you may not consider my suggestions as out of place, and that any nofice you give in your Jourad of such improvements, will be very interesting and give mooh information to many of you readors,

I remain, \&ec.,
A.B.
[* We were not prewnt at the experimeot and oot havioe much falth in nowropaper neports, is the remon we have not notioed them.-Ed.]

NOTES OF THE MONTH.

An hydraulic telegraph is now being exhibited is the areade at Bueter Change. It is on a very small scale, bat works well.
On the Monmouth and Hereford line, a wooden bridge over the Wye is to be erected, at a beight of 50 feet above high-water merk. The embenkmenta are now in a forward state, and the frame-work is beiag prepared at Bristol.

Mr. John Fuirfoll Smith, secretary of the leading Glatgow railways, hat addreased a letter to the Lond Provoct, in reforence to the late riote, and arges the nocemity of aid, by a government loen being given to the ruitway. He says that $10,000 \mathrm{mes}$, who are now sepperted by the pablie, might be employed on the railways in the neighbourhood of Glaggow, which are stomped by the atate of the money market. The same riews are apresing anorg the railway interest, and the minchief is felt of the repreanive measures which were connived at by the established companies, thinking they shoold not feel the prearure. We always deprecated the goveroment tampering, and the propriety of the cause we have advocated in fally justifed by events. We do say the great queetion is, whether so many hundsed thonatid powerful and aneducated men should be left in a state of idlenees, or whether they shall be employed on pablic worts? They are already maintaised by their own eavings, by the contributions of their friends, by ardit giver by the amell shop-keepert, or by theft, or in jail, or in the workbooses. The question is not one of finding mere food, but of giving work which shall do good to the common stock, and put the men in a happier condition. We hope the legtslation will immodiately be amended, the power of aneing for calls be withdrawn, and the power be given of allowing interent an calls, likewise a farther power of nising money ou debenture, or on loan notes. As the government have by their measures brought railway work to a stand, or dead lock, temporary and exceptional meanures might be allowed, in order to set the machinery of inreatment again in action. We wonld even conntenance the issue of railway notes, which should be a legal teader for all railway paymenta asd calls, or the advance by government of exchequer bill loans ; though on all ordinary occanions, we have always been oppoeed to their interference in any shape. The abolition of the Railway Board, founded on wrong principlea of legislation, and calculated to preserve their memory, we considor an essential preliminary to a bealthy conrse of action on the part of the government to the railways.
The electrie telegraph is now taken up by the poblicans. A dial is uned in a molking•room, marked with the various articles wanted, and correspond. ing with a similar dial in the bar.

A Boyal Inatatution of Engineers has been foonded at the Hague, which has two hundred members.

On Aamealing Glast Tuber.-M. Bontemps read a paper at the Induatrial Society of Mulhassen, on the causes of the breaking of glass tubes and cylinder. In order that a glass tube be in good condition, it is necessary that the interior particles should givo way at the same time as the exterior. For this purpose, the taben euch, for instance, as thermometer, baromater, and preanne-gauge tabes-are placed in a baking or annealing fornace, called the baking furnace, a brick casing of 6 inches diameter, and the length the tabes many require. This furnace is heated at one end to a dull red heat, at which the glasi is neurly malleable, but not put out of shape; they are then (being in sheet-iron carriages, on wheels) drawn gradually to the cool end of the furnace, but so slowly, as only to traverse the destance in from 15 to 24 hours, according to the nature of the glass tbus dram gradually through a diminishing temperature to that of the atmosphere. There is a vat difforence between glean baked and that nn-baked-the latter is not so homogeneous, and polarises the light in passing through it. By applying, tharefore, a fragment of a tube to a polarising apparatns, it can be ascertained if the tube has been baked.

A Bare Shot.-Commander Mackinnon in his "Steam Warfare on the Parans," mentions the following almost incredible instance of a shot pataing throcgh looth of the paddlo-wheels of his veasel, without tonching any part of either:-" It atruck the paddle-box on the enemy's aide, 3 feet or 4 feet above the shaft, went clean through the wheel without toucbing any part of it, and then pased across the deck and through the other paddle box, not above 18 inches from the sbaft, still not touching a single blade, or any portion of the paddles. At the rate the wheols were revolving (about 17 Limes a minute), it appeared quite impossible to fire a pistol-ball through

Whhout ariking some part of them; and yet this 18 lb , met. had gone throwg beth wheete, leaviag ne naerk but the hole at oataring on one thit and departing on the other.

Curtone Phenomons of Firer-At the Royal Inetitution, on the 17th of Pobruary list, a furneed wat ereeted for the purpoee of making some experimonte on glass manofeture by Mr. Pellatt. In consequence of come achident, the loctwre-room wha nearly set on Are, but by timely aid the flamen were ers tingoished: After a leeture at the Inditutlon on the following Friday, Prof. Beradey called the attention of the members to two circumatances of philoeephiea interest whioh hed happoned dering the memeatary spprehonsion of fre,-1. At three difierent times the weter poered on the oindert of the temporary furnace, when, on the fire being drawn, they fell on the hearth; beenme decompoeed by the igrited carbou; and the bydrogen, driven by the sadden expansion of ateam, \&e., bavioy penetrated the bot and perout boarth-stone, found its way to the hoated beans and space which weie immadintely bereath-2. This gell, though not in the state of flame as it peceed through the beerth-stomes and pagging; was afier befeg mixed with the air below anficiently hot to eater into combantion,-prodaciag three gaches of theme downwards from beneath the hearth :-and it weo experimeatally shown that a temperature so low as berely to seorch paper, and in Which the baud may be held for sone seconds without inconventence, in yet able to ignita ajet of coal or hydrogen gat in air.

Liverpool Fraterworks.-The two Compentes which supplied the town with wher, and the Corporation of Liverpool who were empowered by Act of Parlinenent to purchase the exinting interents for the purpose of taling the whole sapply into their own hands, appointed Mr. Robert Stepheanon m sole arbitrator to determine the amonnt of compensation to be paid to each Company. After a patient hearing of all partiet, and a minute inquiry inte the worta, he has made his award, by which the Harriegton Water Company ere to receive $\mathbf{8 3 0 , 7 1 9}$ and the Bootje Water Company $\mathbf{8 3 5 4 , 0 0 0}$. The former claimed 5570,000 and the latter $\mathbf{£ 3 5 4 , 0 0 0}$.

Cevton Chub Devigns.-A correspondent informs us that in a former number of the Jowrnal, we were in error in attributing to Mr. Sidney Smirke the "sole designing" of the Carlton Clab, now erecting in Pall Mall, an well as "the adaptation of Sameovino" in the exterior. He alno states that the designs were enttrely completed and sent in under the arrangement of the late Mr. Basevi and Mr. Sidney Smirke, during the lifetime of the former,and that though Mr. S. Smirke may powibly make some deviations from their joint arrangement, yet the designa are, in the main, to be exteured as agreed on between them.

Preoention of Aceidente in Coal Mmen.-The Staffordihire Merawry deacribes an invention by Mr. Edward N. Fourdrinier, of Cbeddleton Mill, a very simple and ingenious, but important contrivance, for preventing the accidents which are constantly resulting from the breakege of the chain or ropes, and drawing the skip over the palley, or the whirl, or run. The apparatua is now in daily use at one of Mr. Sneyd's pits, at the Sneyd.green Colliery, between Hanley and Buralem. In one instance the merit of the invention was fully teated by the chain being unintentionally drawn aver the pulley; no disastrous consequences, however, resalted, the skip or rather cage being detached from the chain, and remaining safe on tbe guides. A heavy load was subsequently lowered about 40 yards down the pit, and the chsin cut at about 20 yards above the surface, by which means no less than 60 yards of chain fell down the shaft. A man having been let down by a rope to ascertain the result, found the machine perfectly secured, and the chain afely coiled on tbe top of the cage in which the man ancenda and deacends. The man immediately attached the rope to the chain, which having been drawn up and repaired, was again let down and fastened to the apparatus. The whole was then safely drawn up, with the man in the skip, the experiment having occupied no more than 20 minntes, and no injury Whatever having been sustained either by the machine or the gaides. There can be but one opinion as to tho great advanteges to be derived from the general adoption of this invalaable invention, and it is to be sincerely hoped that no time will be lost in making this arrangement for the more effectonl preaervation of buman life.

On the Electro-Bronzing of Metals.-MM. Branel, Bessin, and Gaugin presented to the Acodemsie det Sciences, at Paris, specimens of metalt bronzed by electro-chemical means. M. de Rnolz, in 1841, communicated to the academy a process for bronzing metals, by depoaiting upan them, by the aid of the galvanic battery, layers, more or leas thick, of brass or of bronze. This process, which required the employment of the double alkaline cyanides of copper and zinc, or of copper and tin, was not adopted in practice, on account of tbe great expense of the cyanides, and for other reasons. MM. Broncl, Bessin, and Gaugin, have substituted for the cyanides, a solution in water, of 500 parts of carbonate of potain: 23 chloride of copper; 40 sulphate of zinc; and 250 nitrate of ammonia. To produce bronze, a salt of tin is substituted for the sulphate of zinc. By means of there solutions of brais or of bronze, a coating can be given to cast or wrougbt-iron, steel, lead, zinc, tin, and alloys of these metals, with one amother, or with bismuth and antimony, after a previous cleaning according to the nature of the metal. The operation is conducted with acold solution. The cretal to be conted is placed in connection with the negative pole of a Buncen battery, a plate of brass or of bronse being employed at the positive pole. When the objects bave been corered with a conting of the metal dosired, and have received their proper colour, they will be found to sival the flaest bronzes.

The Vontilometer．－An instrument the invention of a Prench naval oficer，in command at La Rochelle，where it has been tried dariat four years，with aln－ galarly troe realtes，and fornd to be a moat valuable maring inamramenk，whereby the crewr and shipistationed of the comits may often be saved－the oncers having ceveral hours＇notice，and knowing when to run ont to tel or into harbonr．The inatrament Itself，exterlory，exuctly resemblet marinere coripasis and，havig been fixed due porth，the needle will tare up its poaltion，and whatever point it deajgates，that wiad will artive in the 24 hours，but genernlly within the 12 to 18 hours；tecording to th time that the reedle remains at such polnt，colons will the wiad biow from that quarter and accordias to the inclination of the needla from its horisontal and natural poaition so will be the volence of the wind．The principle upon which the ventilometer ha been constmeted serms featble．This magro－elect ife fuids surround our globe，and thef direct action in vielble in the workings of the meriper＇s compana．Winds belug the re tult of electrical chances，are produced by a distarbance in theoe tulds，and continue untll the exact eq口llibrium is obtalned；neither do these whads burit forth fmmedtatrly over our heads，but tike tbeir origin whithin a chrcle of immense cricumference－dadin onr onn poiltion as the centre．Any undue action in any part of the fuids within that ctrcumference，will have more or lens tofuence upon the whole；but our ordinmry sense eannot mark these chagges，although we sometlmes find nervous invalids reanarbbly smpathetic，and able to fortell what tbe healthy man cannot－yet，when the change doe arrive，a few hours sftermerds he is obliged to admit his own gromber senses．The dell cate mechanism of the ventilometer forms teself tuto the ceotre oi a certala nudeinad circumference，but the extent of whose infuence does not exceed a stace of 24 bourt any change tatiog place within this circle is potifed－so that，suppoce the rene to be polating north，but that the veptilometer at the same momed points 20 south，then within the 24 houra，the south whad will blow；but the ordinary change is from 12 to 18 hourm，and should the ventllometer remain for hours，or days，st the sarne point，the same wind will contiane blowing；but when is changes within the 24 hours，tbe wind will change also．This Instrament is not influenced by the lighter breenen；when a strong wind blow，the needle，or indicntor，is horisontal－but the winds，or atmorpheric changen，gradually Increase in violence，the point is wlevated by the weight of the atmos phere，and thus not merely preindicstes the wiod that is to blow，but tis exact atrength and duration．If the principie be proved to be correct，then，poselbly improvement may be made，by which even the highent breeses may be prelndicated．It in about to be tried by the Adrolralty．

Sulphate of Iron for Purifying Gas．－M．Martens，of the University of Lovvilo，has made a discovery in the use of sulphate of fron for the purfication of coal gas．By this arrangement，the gas pasees through two purifiers：in the first is placed cwi：of side py gillong of water，and in the eecond milx of second purifier，the gan ts allonot of lime to 875 gallons of water．On panaing from the second parifier，the gar is amont completely deprifer of lis alphuretred bydrogeu，tha this process，there is a greater depont of tar in the solution than when witer alone is this process，there is a greater and there is a much more abundant condenation of aqueous and ammonlacal vipoura－so that during loof－continued fronts，the plpet have been kept entirely free from fice，which canses conslderable trouble and expence．The cause of tar depositing in a ferruginous molntion more readily than in whiter，arises from the sulphate of iron having a greater aninity for the tar，whlch it condenses，and carries down with it ；and the haring a greater amilty for the tar，which it condenses，and carries down with it；and the greater condensation of vapaurs contained in the gas is cansed bya more complete above quantity of sulphiste of iron fs snficient for purffying the ges from 25 to 27 toms of coal；the solution is then so impregnated to aaturation，as to require changlag．It is of coal；the solution is then so impregnated to anturation，at to require chan

White Paint Manufactured from Antimony．－At the Liverponi Polytech． aic Soctety，Mr．J．A．Porrest deceribed a bew mode of manufacturinf white paint of an excellent body，superior to that manufactured from lead．It is made from onfie of atimony，and has many advantages．He had atcertained，that though It was now high in price，were there a demand for antimony，that metal cunld be obtained in abrad－ ance at about ti2 a ton，wherras the lead used costs 2410 s ．The new paint was， consequenty，much cheaper；it whin not 00 apt to lote lit colour，and wonid apre

Sound made Visible．A＇metbod has heen discovered and matured，by which sound will be made viable to the human eye，ite verious forms and waves demon－ trated to sight，and the power to discriminate between the tones of one musteal inatru－ ment and another be as complete as to observe the action of water when disturbed by ay material caucs．The experimente are likely to be ere long repented in the Royal Society．The exhiblion of effecte on fae and has probably led to this astoblohing sue．

Friction Hammer．－A novel machine，just completed，is now at work al the Great Western Workn，at Briatol，the invention of Mr．John Jonps，manager of the works，who alao invented the＂Cambrian Engine．＂The machine is colled a＂Friction Hammer，＂and coovists of frames of cati－iron，in which are verticalsilidee acting as guiden to the hammer，and also supporting the machinery necessary for putting the hammer in motion．The hammer conalats of a plaue bar of fat wrought－fron，so arranged as to work in the slides，and is raleed by nieans of two vertical rollera turning in opposite directions，which are roade to bear upon the bar by an exceedingly slmple arrangement of levers．A alight pressure upon the handle of one lever raimes the hammer to any hejght not exceedtag 7 feet；the premure being removed it falla by Its own gravity；thla lever in also arranged wo as to stop the hanmer in any part of fis descent，should urcum． stences repder lt decensery．The finction rollers are put in motion by means of atraps and polleys，fy－wheels being also fitted on each atrap．

Neto Method of Treafing the Ore of Platinum．－Instead of the tedious operation of obtaining pure platinum from the ore，emploping 8 or 10 parts of acid to one
of plationm，M．Heas auggeste the following on an 1 mprovenent：－Melt one part of of plationm，hi．Heas suggesis the following as an impravenient：－Melt one part of plazinim ore with two or three of inc，which will iorm an aling very iriable，and enaily
reduced to a tine powder．This powder is then to be alfted，and on it poured dilute gul． phuric actd at the common temperature of the stmosphere．The temperature to then graduslly raised，and the metalm allowed to macerate as long as there is aoytblug to dis． gradusity raised，and the metald allowed to macerate as long at there is adytbing to dia－ polve；the scidinastort time separnten all the zinc from the alloy，and the principal part of the iron contained in the ore．A solution is obtained in which hydrosalphuric acid prodiaces no prectpinth，having poured of the liquid，the residue ia a fine powder， and other foreign metain；the platinum if then digolved in nitrochloric acld，and then proceeded with ln the uriual way．

Gas Moitive Power．－At the Academie des Sciences a report was read on a ＂Eas－propeller，＂invented by the late M．Selligue，In 1844．It consints of an lron cylinder in the form of a T－one end is cloted；water is poured in to a certain helght，and In the open end is placed a piaton and rod，In the umal manner．On latroducing any exploive gase over the water，in the closed end of the tube，and effecting their combuation，the rasulting gaces preat，by their suiden expanifon，the liquald on which they reat，and foice up the piston to a certain haight，which is again depressed by the coollag and con ing motion la thus obtained，which，of course，can be the piston．A regular reciprocat－ ing motion ls thus obtalned，which，of course，can be applled to every deactiplon of mer charry．In closely experimenting on this principle of motive power，it hay been found that elght rolumet of alr，and one of gat，obtalued from the decomponaltion of water，by pasing team through cylinders filled with red．hof charcoal，conalat of hydrogen， 68 ； ecrbonic oxide， 28 ；charboaic acld，8．The gas can be manufactured for one－Afth of a halfpenny per 140 quarta，whlch ts conaldered equal to 8 cuble lnches of stean at one atmosphere pressure，and costing one halfpenny and three－fiths．The inventor found that 80 quarts of gat，and 280 quarta of alr，gave an explosive force equal to 120 tons，and
2,400 exploglops can be made per hour．

Giamted in england from Fibroazt 28，to Marci 22， 1848. Sis Moathe allowed for Bhrohnent，wales otherwice enpreswed．

Elisebeth Wailace，of Ladrel－lodge，Chellenham，Gloucenter，spinster，for＂cernain Improvemonte in facing，fgaring，designating，decoratiog，planning，and otherwise fittng up housea and buidingst，parth of which are applicable to articles of fernitare．＂－ Sealed Febrnary 28.
Jobn Craft Foberts，of Eolywell，Fintinhire，murgeon，for＂a simplified and lmproved mode of communicaling intelligence，by means of electrictit and mannetion，combined． or not，with steam on rallways，between the carriages on the liae and the engine or ten－ der，to that the guards and prasengers way give notice to the engineer or engine．driver． for the prevention of mectients or casuaties，or the milugation of the evil thereof，and the protection of human life and property from lowe or injury；and，also，of communicatiog aignals by the same agency，dencribing the canse or causen of alarm，and a new mode o： eccuring the parsige of electricity，for the above parporee，to be sabatituted or not for Pebruary 28.
Whlism Palmer，of Sation－atreet，Clerkenwell，for＂Improvements in meiting fit and in the manafacture of candles．＂－February 28
Charles Ritchie，of Aberdeen，Scolland，engineer，for＂certaln Improvementa in loco－ motive and other englaen．＂－Mifarch 2.
Francta Whishaw，of Emmpatead，Middlesex，cirll englneer，for＂a certaln mapuhac－ ture of pipes of earthenware，pottery，and glan，and of certaln applicationa and arrage ture of plpen of＂enthenwar．
Willam Exall，of Reading，Berkohire，engineer，for＂certaln Improvements in thrach． Ing machinet，and in stoam－boilers，engines，and other apparatus for driving the mane． whith apparatua is applicable to driving other machlaery；part of which improvements is a commanication，and the remalader is his own invention．＂－March 8.
James Lockhead，of Milton，Gravesend，Kent，for＂oertain Improverwata in ventha． ton．＂－March 8.
Theodorus Cornelius Seeger，Knight of the Order of Relderlandaehe Llon，of Sain： Gravenhape，Holland，but now of Leleester－square，Middlesex，physician，for＂I mprove． ments in the construction of rallway carriages．＂－March 8 ．
William Beckett Johnion，of Liverpooh，englneer，for＂certaln Improvements which are applicable to locomotive，stitionary，and mariue steam－caglnes．＂一March 8.
Warren de la Rue，of Bunhlll－row，Middlesex，mannfacturer，for＂Improtements in machinery nsed in the manufactare of cardboard and pabtebourd．＂（A communication）， －March 8 ．
John Houston，of Stepney，Middieaer，aurgeon，for＂Improvements in obtalalage mo tive power by the ald of atmonpherte air，and in obtainiag combaition．＂一March 8 ．
George Royce，of Fletand，Liocolnghlre，for＂Improvementa fa machlnery or appara－ tus for depositing，cleanaling，and grinding corn and meed．＂－March 8 ．
George Loloyd，of Stepney，Middlesex，Jron－founder，for＂certaln Improvementa in furnacen and blowing machines，and improvements in engines and machluery for driviag the same，which iraprovements are also applicable to other putposen where motive powe is required．＂－Miarch 8 ．
Joeeph Maudalay，of the firm of Maudslay，Sons，and Field，of Iambeth，enginetra for＂certain Improvernenta in obtaining and applying motive power，and in the ma chinery and engines employed therein．＂－March 8 ．
John M＇Conochle，of Liverpool，engineer，and Lonin James Claude，of Bootle，Lanca－ shire，engineer，for＂certain Improvemente in locomotive engines．＂－Mareh 8

Alexander Alliott，of Lenton works，in the connty of Nottiogham，Dlearher，for＂Im provements in apparatus ueed in the working of atemb－boliers，aleo in epparatue uacd in cleanalng fues．＂一March 8.
John Henderson Porter，of Blackheath，Kent，enginoer，for＂Irpprovementi In iroo girders，beams，truses，and supports，and in readering the foors of bulldings fire－proo by the use of lron．＂一March 8 ．

Heary Bushard Hobdell，of the city of Oxford，goldemlth，for＂Improvements is tude and buttons．＂－March 9 ．

Grorge Coode，of Haydock－park：Lancauhire，fcr＂an Improved method or mechod of diatributing over land llquids and aubstancea in a Hquid or fuent state，and certin improved apparatus and machinery employed therein．＂－March 11 ．
John Ashbary，of Openshaw，near Manchester，for＂certain Improvementa in the contruction and manfacture of wheel for nee upon rallmays and common roed，and in the mathods of preparing and constructing the tyres used thereon．＂－March II．
Alezander Alliot，of Leaton Workn，Nottingham，blescher，for＂Improvementh it spritug spperatue and in balances，alno in hreatry，and io the meani of working break．＂－ Hfarch 14.
Jemes Porritt，of Edenfield，Lancushire，for＂certaln Improvements in carding－engine for cardlag wool and other Gbrous substances．＂一March l4．
Frederick William Michael Collins，and Alfred Reynolds，both of Charterhouse－mquare Middlesex，engravers and printera，for＂Improvemente in the art of ornamentiog chins earthenware，and glas．＂March 14.

John Hoamer，of New Cross，Surrey，anrvevor，for＂Improrements in apraritus for upplying water and for cleanoing dralns and meirers．＂－March 16.
George Ellins，of Drultwich，Worcestahlre，nalt manufecturer，for certain＂Improve ments in manufacturing malt，ind ln apparatus for mannfacturing salt．＂—March 22．
Whluam Edwaid Newton，of Chancery－lane，Middlesex，for＂au Improvement or im－ provenents in making conpling jointi for pipes，nozsiet，top－cocks，atill and cylinder provements in making conping joints for pipes，nozilet，top
Henry Beasemer，of Salnt Pancras－roal，Middlesex，for＂Improvements in the menu Gcture of glan．＂一Merch 22.
William Fenderson，of Psarkhead，Lanarkablre，Scolland，chemist，for＂Inprors mente in treating lead and other orea．＂－March 22.
Joseph Orsl，of Guildhall－chambers，gentieman，for＂certain Improvemente In the manufacture of artificlal stone，cements，ormamental tlles，briche，and quarries．＂（A comannication．）－March 28.
WIHIam Jamet Dailey，of Lambath，Surrey，Lthographer，for＂certioin Improwemeola In machinery for propelling．＂一March 22.
John Lawes Cole，of Lucas－street，Middesex，for＂certaln Improvements to tram enginet．${ }^{\text {＂}}$－March 2？

BLOOMSBURY BAPTIST CHAPEL.
 Jobn Gibson, Esq., Architect.
 (With an Engraving, Plate VII.)

Bloomsbury-street now presents a very unusual, if not altogether unprecedented, assemblage of church architecture, there being there no fewer than three churcheo-at least, places of public worship-together in a line by the side of each other. With general similarity of purpose, they display great variety, or we might say contrast. That to the north-namely, Bedford Chapel, or what used to be so called, and which was originally of a most dismal "tabernacle" appearance-was merely re-dressed externally a year or two ago; a circumstance that perhaps excuses many defects and inequalities in the design, the architect being compelled to retain all the former openings, both doors and windows, -and it would seem, the former turret and a bit of the gable also, which are seen sticking up most awkwardly over the now horizontal line of the front. Were it not for that, and for the meanness of the doors, the front would have been passable.
The second of the three buildings in point of date is the south one, - French Protestant church, with a small residence for the clergyman attached to it. For this, the style adopted is Gothic; but the design is exceedingly sober and unpretending, there being scarcely anything in it except the large window to give it expression. Even that feature is not made so much of as it might have been; for although sufficiently correct as to mere form and composition, it has a tame and spiritless look.
The Baptist Chapel, which comes in immediately between the two other buildings, is by far the most ambitious and conspicuous of the three. It is that which announces itself most distinctly as a church-in fact, much more as a "church" than as a dissenting place of worship, the latter having hitherto generally eachewed instead of at all affecting, the ecclegiastical orthodoxy of towera, and spires; while here we have not only tower and spire, but a pair of them. And here they produce a most agreeable diversity of outline, not only as regards the structure to which they belong, but the general group of all the three; more especially as the as pect of their fronts is an east one,-wherefore they are invariably in ahadow, except early in the morning. Standing out in bold relief against the aky, and catching the light on one of their other sides, the towers serve to produce some play of light and shade, as well as form and outline. They tell very strikingly in the view from New Oxford-street,-perhaps more so just now than they rill do some time hence, for at present they occasion something like surprise also, they seeming to have started into existence all at once, as the building was begun only last autumn. Owing to a singularly happy accident-to mere accident, and nothing moreone of the towers displays itself very picturesquely from Hart-atreet-near by St. George's, Bloomsbury, -at the end of a vista, formed by a cross-street that runs obliquely from New Oxfurdotreet, into Bloomsbury-street.
The style of this Baptist Chapel is of exetic character to Rnglish eyes it being medimval Italian or Lombardic; but whether selected on account of its being unlike our own Anglo-eccledintical style of the same period, we cannot say; but, we must observe, the addition of campanili partakes very much more of Eaglish Gothic than of Lombardic physiognomy and mode of composition. As our engraving explains the design itself much more intelligibly than the most accurate description could possibly do, we need nut even attempt any; accordingly, we shall confine ourselves to a few remarks. While we readily comfess that the architect (Mr. John Gibson, whose name was quite unknown to us before) has shown competent knowledge of the style generally, ve also desiderste more regard to the spirit of it in some of the details. The uppermost story of the towers, and the large circular window, are satisfactory enough ; not so, however, the doorwara, which miriht very properly have been made far more important features,-important, we mean, not as regards size, but with regard to design and execution. Such parts of a building being those which are most clearly of all seen,-in fact, those which subject themselves to the closest inspection, they naturally demand more elaborate ornamentation and finish than othera which can be seen from, comparatively, only a distance. Such at least seems to have been the principle generally observed by medimval architects, whose doorways and portals were frequently most profusely adorned, even when all the rest of a facade was either featureless

[^11]or left quite plain. The bestowing particular attention upon them is indispensably requisite for any adequate characterization of the Lombardic style ; more especially as, unlike the Gothic, it affords very few resources of design for windows (circular ones alone excepted), which were seldom more than mere small single openings, without any of that variety and richness which arise from mallions and intersecting tracery. If not richer in their general design, the doorways of this chapel might very well have been considerably bolder in their details and execution. Were they more deeply recessed, and their mouldings in greater relief, they would make a far better appearance.
The building is of white brick, with ornamental dressings of Caen stone. The spires are constructed of timber, and are covered with ornamental tiles. The width of frontage is 70 feet, and the height to the top of the spires 115 feet.
The interior affords accommodation on the ground floor for about 460 persons in pews, with a vestibule and two vestry rooms. In the towers are staircases leading to the basement and gallery floors, the whole extent of the former being set apart for two schools, for boys and for girls. The galleries occupy three sides of the chapel, with an organ gallery on the fourth-these will accommodate 470 persons in pews, with a separate gallery for 250 children; total accommodation, 1,180 .
The span of the roof, clear of supports, is 65 feet. The height from the floor to the ceiling is 39 feet. The whole building is nearly a square, and covers a superficial area of 5,150 feet.

GOTHIC WINDOW.

Sir-During the autumn of 1846, in which I stayed some weeks at Boppart, on the Rhine, I met with, in an old church at that place, a Gothic window, of which I made memoranda. From these, a friend has been enabled to send me the inclosed. I now forward it to you, in case you may think it worthy of insertion in your very useful publication.

I am, yours, \&c.,
Athenrum Club, Pall Mall,
March 16, 1848.

1. J. Chapman.

1

CANDIDUS'S NOTE-BOOK,

 FASCICULUS LXXXI."I must bave liberty
Withal, as large a charter as the wiads,
To blow on whom I please."

I. We are never, it would seem, to have more than one view of the new Palace of Westminster; for though many representations of it - or what call themselves such-have been published in various shapes, they are merely copies either of the first one, or of each other; all of them showing only the river front, as taken from the south-east. What sort of fidelity and taste stamps such barefacedly piratical manufacture, may be more readily imagined than decently-at least temperately expressed. Nothing less than nerves of iron-or else a thorough callosity of mind that is hardly conceivable in such an artist, can enable Mr. Barry to endure some of the abominable libels so inflicted upon him. Schinkel, Kleuze, Gärtner, and other foreign architects, have been similarly libelled, and perhaps more grievously still; but then there are their own suthentic representations of them, as well as their buildings themselves, to sbow to those who have no other means of judging of them, what the latter really are; whereas, without such incontrovertible evidence to the contrary, some of them might be supposed to be the most barbarous and miserable tbings ever erected,-at least, such would be the case were it not that the very vileness of the representation comforts us with the assurance that the structures themselves cannot, hy any possibility, be so hideous.
II. That plodding adherence to precedent, which is now made a sine-qua-nom in design by those whose influence and authoritymore especially in matters of church-building-amount to dictation to architecta, has a tendency to operate injuriously to art, in various ways. For art-in the worthy meaning of the term-is substituted what is or quickly will become mere routine, sufficiently dexterous, perhaps, and clever, but still routine. As far as design is concerned, all, it may be said, that is now required of architects is, that they shall be skilful mimics. Such talent will stand them in stead of imagination, invention, artistic feeling, contrivance, and much else besides. The architect is in fact degraded from his position as artist, the exercise of the faculties which such character implies being interdicted him, and all that is expected of him being that he shall scrupulously adhere to express patterns for the particular style he is called upon to imitate. Daily experience convinces-at least might convince us that, somehow or other, the spirit of the originals is not transfused into the copies, or else the peculiar sentiment and associations connected with the former evaporate altogether in the latter. Moreover, the example of mediævalism itself is, so far from affording any precedent for, rather opposed to that system of torpid imitation which is now regarded by many as the most salutary and efficacious for art. During the middle ages, there was continual change and innovation in architecture, hy means of which transition was made from one marked general mode or style to another. So far was precedent from being regarded, that not even uniformity of design and style was attended to in edifices which were carried on by successive generations of builders; and some of which exhibit in themselves, not only different, but the two extreme phases of the Pointed style, including, perhaps, portions in an anterior style, The architects of those days did not suffer themselves to be trammelled by precedent-to be tied down to repetition and copying, even where they would have contributed to unity of ensemble. Then, instead of that stand-still in art, which we seem to consider essential to the maintaining it in its integrity, all was innovation, progress, productiveness. The art was productive, because artists wrought out of their own minds; consequently, infused mind, intelligence, spirit, and spontaneity into their productions. They did not then reject new ideas merely hecause they were new, nor the suggestions of imagination out of the timid apprehension of being censured as incorrect, if not absolutely heretical in taste. They did not, as we now do, abide by ready-made, and ready cut-and-dried patterns, but designed all their details freely, for they employed what was to them their vernacular language-their own mother tongue in art, whose character and idioms they helped to frame, and in which they expressed themselves instinctively. To us at the present day, the style they used has become a dead language; one in which, by dint of study, we may attain to considerable proficiency; but which we do not think in, and which does not supply words and expressions for modern things and modern ideas. We may indeed so call it, but mediæval English architecture is no longer our National style, if by
"National" we are to understand the prevalent style of building generally employed by us for all purposes and occasions alike. We may be nediaval in our churches, just as we may be Ciceronian in Latin orations at colleges and schools. But we ourselves are all the while getting further and further off from medisvalism every day. Free Constitutions, Republics, and Chartism, do not indicate any great attachment to the spirit of medievalism.
111. We are now, it seems, likely to have, for the very first time, a work that shall fairly answer to the character of a Dictionary of Architecture, which those which have hitherto appeared under such title have been very far indeed from doing. They have, almost without an exception, been little better than mere trading speculations, -things manufactured for the market; and some of them have been such arrant scíssors-and-paste work, that hardly any market could be found for them. 'The epithet, "Architectural," applied to Nicholson's, is little less than an arrant misnomer; therefore, I am not at all surprised at the present proprietor of the copyright having been told, as I happen to know, by one whom he was solicitous to engage to bring out a new edition of it, that in order to be rendered at. all what it would now require to be, it must be entirely re-written from beginning to end, and amplitied to almost double the quantity of letter-press. As the Dictionary now promised us is to be the undertaking of a society, there is reason for expecting that it will be uniformly well-erecuted throughout. Very great room for improvement upon everything there is at present of the kind either in our own or any other language there certainly is, if only because materials have so greatly accumulated, and so many matters and subjects have come up that ought to be not merely noticed, but treated of pretty fully. At the present day it would, for instance, be unpardonable to omit such terins, and the information connected with them, as Cinque-cento, Renaissance, Rococo, and numerous others either of a similar or different class.
IV. If the Dictionary in petto, here alluded to, is to contain articles of architectural criticism and esthetics, it will have to supply a very great deal indeed merely in that single department of it. In fact, the artistic philosopy of architecture has scarcely been merely touched upon at the best, and that very vaguely, loosely, and drily,-whereas it requires to be fully elucidated by actual instances and examples. Character, Composition, Contrast, Effect, Grandiose, Grotesque, Heaviness, Picturesque, Purity, Richness, Simplicity, and many other terms, might be made to furnish exceedingly interesting and instructive articles-such as would assist very much in popularising the study of architecture. That it greatly needs to be popularised can hardly be disputed. Of very little use is it for its professional followers to call architecture the queen of the fine arts-or rather their so calling it partakes of the ridiculous, while the public are for the most part utterly indifferent to it as a fine art; and that such is the case the exhibitions at the Royal Academy strongly testify, where the picture of a "posyfaced" girl, or of a damsel painted "in buff," will attract crowds of spectators, while the architectural room is a desert, or used only as a thoroughfare. The pictures, in fact, possess so moch stronger attraction for the many, that the architectural drawings are comparatively quite disregarded, or if looked at, are looked at rather as pictures than as designs, and judged of not so much according to the architectural merits and ideas which they display, than according to ability of execution, and the pictorial qualities put into them; which last species of artistic recommendation is quite distinct from architectural value, and is what may be imparted by a skilful pencil to very poor, or even wretchedly bad designs.
V. If the notices bestowed upon the Fine Arts by the newspaper press may be taken as a fair criterion by which to judge of the favour in which they are respectively held by the public, Architecture san be scarcely above zero according to such thermometer of popularity. Although the class of publications just mentioned professes to be au fait on every subject, architecture is ignored by it ; and why ? -because it can be done with impunity. Is it to be supposed that such a journal as the Times could not, if it thought it worth while to do so, command as able assistance in the department of the Fine Arts generally, and architecture among them, as in any other? Most undoubtedly it could; and would do so, were there, on the part of the public, any demand for such information and instruction. We may therefore fairly conclude that there is none. This seems discouraging enough, but is said not for the purpose of discouraging, but, on the contrary, of stimulating architects, and inducing them to make an effort to create greater general interest in behalf of their art. Their vaunting it to each other is useless, and little better than so much idle vapouring. It is the public, not they themselves, who require to be convinced of its importance and excellence. Yet, what has the
"Institute" done towards promoting and disseminating architectural taste among the public? The answer must be-just nothing at all. The mere iden of anything of the kind does not appear to have even so much as occurred to them. Nay, the "Institute" might be extinguished to-morrow, and neither the art, nor the profession, nor the public would miss it. Although I do not pretend to be a particular admirer of the "Institute," I am, in one sense, its warmest well-wisher, since most earnestly do I wish that it would signalize itself, by doing, or attempting to do, some real service to architecture, as a branch of Fine Art. At present, that body is not only exceedingly drowsy itself, but its torpidity has a benumbing effect which extends beyond its own immediate sphere. Still. I am not for having the "Institute" abolished; but I do wish that it were entirely re-constructed. If I cut it up, it is only for the purpose of its being thrown into Medea's cauldron, to be resuscitated in a better form, and come forth again vigorous and energetic. Or if a fresh and more genial spirit-if greater activity, and greater sympathy with Fine Art, can be infused into it, without resorting to the process of re-construction, the sooner it be done the better, Were I less devoted than I am to architecture, the "lnstitute" would not be thus reproached by me; and if to be so enthusiastically devoted to that art, as to be quite regardless whom I plense or offend while advocating its interests, should subject me to reproach in return, I can endure it with far more of pride than of shame.

Vl. The natural death of Ludwig the First of Bavaria would have been many degrees less distressing than is his moral and political one, by which he has terminated his career that forms an epocb in the history of art, as an infatuated old dotard. Scarcely ever before has so much been done by an individual prince for the embellishment of his capital, as has been accomplished by Ludwig for Munich; whose name has in consequence become a familiar household word in the mouths of artists throughout all Europe. What other princes have done for art has been in a great measure out of either ostentation or policy; but the ex-king of Bavaria seems to have been all along warmly attached to art for its own sake. It was himself personally that originated the idea of, and sedulously watched throngh their progress, monumental structures, some of which would of themselves highly sufficed for recording architecturally an entire reign. No very excessive hyperbole is it to fay, that the reign of Ludwig has been equivalent to the lengthened rule of a dynasty, when we compare Munich with what it was some thirty years ago and now is. And now!-why now, the tears shed over his coffin would have been far less painful than the sigh which we give to his folly and his fate.
VII. There is a vast deal of prate and palaver about Proportions, as if all beauty in architecture were refersble to them alone, independently of all other qualities that go to make up beauty, and independently of all circumstances. It is so convenient to have what looks like irrefragible and authoritative doctrine, and a theory so compact that it may be put into anutshell, or carried on the tip of one's tongue, ready to dart out the magic w'ord -Proportions. Yet, so far from being on that account a simple one, such theory is an exceedingly complicated and abstruse one. If we ask what are beautiful Proportions, we shall be told "just" ones; when, if not satisfied with such elucidation, we return to the charge and inquire what are just Proportions, we shall, perhaps, be further enlightened by being assured that they are those which are harmonious and conduce to beauty. For the human figure and other animal forms, there are standards of normal Proportions, fixed by nature herself. But in architecture, there is no immutable standard of Proportion for any one style, much less one applicable to all styles alike. In the Greek orders, we find the very extremes of proportion-such as could not be exceeded either way without falling into deformity and disproportion-in the Prostum Duric, and the slender, comparatively too slender, Corinthian. Yet, utterly dissimilar as they are, all the orders may be said to be admirably proportioned in themselves; which, however, instead of at all simplifying the matter, only renders the subject of Proportion the more abstruse and perplexing. The very best Proportions are only relatively good, for differently applied they might be far from pleasing, or even be absurd ;-at the utmost, only average proportions, suitable for general guidance and for ordinary cases; and so far from being abided by, such average may frequently be greatly exceeded with the happiest effect. What, for instance, is loftiness but an unusual degree of beight in comparison with breadth, or height exceeding the usual relative proportion which it bears to width? To attempt to fix invariable Proportions by rule is worse than nugatory, sinceit is positively mischievous, and detracts from the privileges of art ; rendering that a merely mechanical proces which ought to be determined very differently. After all, it
is the eye which judges of Proportions; therefore, surely the eye of the architect-supposing him to be at all worthy of such name -ought to be able to decide what are pleasing Proportions quite as well as that of other people. And so that they be pleasing, it matters not at all how much they deviate from ordinary routine and its rules. Undue stress is laid upon Proportion, because it is generally spoken of as if it were all-sufficient in itself alone, and capable of ensuring excellence; whereas, it is only one element of beauty in design. Besides which, the term itself is usually understood in only a very limited meaning-namely, with reference to that mechanical species of it which concerns itself with merely parts and individual members or features, without that higher artistic one being included in the idea of it, which regulating the whole of a composition, stamps it to the eye at once as a captivating ensemble, all whose parts are in perfect keeping. That kind of Proportion is quite beyond the reach of rules. Those who cannot find out for themselves how to produce it, must dispense with it, trusting that it will never be missed by those who are content with Proportion in pieces and bits,-by hairbreadth measurers of columns and mouldings.
VIII. Odious as the Window-tax may be as a tax, I cannot at all agree with those who consider it, or talk as if they did consider it, to operate injuriously upon architectural design. So far is appearance from being at all benefitted by a multiplicity or frequency of windows, that the fewer the windows the more satisfactory is external appearance; for unless sparingly introduced, such openings sadly interfere with breadth and repose. We certainly do not find that in designs produced as specimens of their author's taste, consequently composed without the slightest regard to the Windowtax, they are at all prodigal of windows. If the Window-tax be felt a peculiarly onerous and oppressive one, let it by all means be got rid of; but in the name of common-sense, don't let its effect upon architectural design be urged as a reason for its renioval, because if taste is to have any voice in the matter, it night find a very strong plea for the obnoxious tax being doubled, or even trebled. With regard to the purpose for which windows are necessary at all, rooms may have too much light, or too much window-surface, as well as too little. The cheerfulness of a room does not depend so much upon the quantity of light admitted into it, as upon many other circumstances; and foremost among them is the air of comfort, or of both combined, which it exhibits itself. Much also depends upon situation; for the latter may be such as to render the minimum of exposure to our view of it desirable. Again, the sort of cheerfulness derived from window-light is entirely dependent upon the weather: if that be gloomy and cheerless,-triste and dull. In dismal weather-no very great rarity, by the by, in this climate, - a blazing fire is far more exhilarating than the mere daylight. Of quantum of window or aperture for light in a room, there may be excess just as well as deficiency. Yet, because light is indispenssble, it is thought that there cannot possibly be too much of it.
IX. While some of the studies and qualifications enumerated as requisite for the architect are very remotely connected with either the practice or theory of his art, even if they can be said to be connected with it all, others there are which are overlookedat least passed over in silence. It is difficult to repress a smile when we find History and Biography included among the studies which an architect ought to be conversant with-for why not Geography also-more especially Poliography, or descriptions of cities and theirpublic monuments. The quantum of History, however, is so far from being formidable, that it dwindles down into a mere homropathic dose,-no more of it being insisted upon than what relates to architecture. Just the same is it with Biography ; for architectural biography is exceedingly scanty indeed, and does not at all tend to encumber biographical dictionaries. Mr. Donaldson points only to one source forit-to Milizia alone, without so much as mentioning Temanza, Quatremère de Quincy, and Cean-Bermudez. Of biography in general, it may safely be predicated that it is "a most attractive branch of history;" but the same cannot possibly be averred of architectural biography as a particular species of it, because, as it has hitherto been treated, it is particularly dry; a fault that might be forgiven, were it not also particularly jejune. Biography, says Mr. Donaldson, when speaking of its importance to the architect, "teaches us the course by which great nien have attained to eminence;" yet that cannot be said of the species of it which he must be supposed to have had exclusively in view. On the contrary, it leaves us wholly ignorant of the studies and mental impulses to which the "eminent" in the profession have been indebted for their ability, and their distinction in the art. Nay, we very raiely learn what were the external matter-of-fact circumstances that shaped out and attended their professional
career. Biographical notices of architects we most undeniably have, yet scarcely anything really deserving the name of architectural biography,-nothing written in extenso and fully developed. Passing over other studies which are strangely claimed for the architect, I will point out what, although overlooked, I myself conceive to be very essential qualifications-I say essential, not indispensable, -because daily experience convinces us that dispensed with they are. Now 1 should say that talent for Invention and Contrivance gtands almost foremost among the qualifications for an architect. Without it, he can be little more than a barren copier,-the creature of comme-il-faut routine; a very respectable automaton, but not an artist. If we care only for mechanical skill and excellence, let us boldly say so at once, and desist from that maudlin, nambypamby prating about architecture as art,-except it be just that brevet grade of the latter, by virtue of which tailoring and cookery claim to be enrolled among the so-called arts. For the display of other talent and merita, the opportunities are comparatively few; but those for the exercise of Contrivance are continually presenting themselves. It is what so far from requiring favourable circumstances, is most of all called into operation by disadvantageous ones, and by difficulties and untoward circumstances which, by a little exercise of it, might be overcome, not only sufficiently well, but even happily, and so as to be productive of both conveniences and beauties that would not have been thought of but for the obstacles which prevent compliance with usual matter-of-course proceeding. A taste for and acquaintance with art generally, as well as his own particular branch of it, is also highly desirable, if not indispensable, for the architect-a taste not $s 0$ much, perhaps, expresaly for painting and sculpture themselves, as for pictorial and sculpturesque decoration; and as regards an eye for colour, effect, and various combinations of form.

ON THE STABILITY OF ARCHES

On the Stability of Arches, with practical methods for determining, according to the Pressures to which they will be subjected, the best form of Soction or variable depth of Voussoir, for any given Intrados or Extrados. By Grozge Sneli Assoc. Inst. C.E.-(From a paper read at the Institution of Civil Engineers.)
The first section of this paper treats of the general conditions of etability in structures composed of many blocks of materials, as walls, arches, \&c. The second and third sections discuss the conditions of stability of an arch, the form of which and the pressures sustained by it, as regards position, direction, and amount, are similar on either side of the crown of the arch; such as an arch rustaining its own weight only, or that of a symmetrical superstructure. In the second section the arch is supposed to be formed of blocks of an incompressible material ; but in the third section the limited strength of materials is tsken into consideration. The fourth section discusses the conditions of stability of an arch, acted upon by forces of any amount, applied in any position and direction in the plane of the section, or of an arch whose form is not similar on both sides of the crown.
The effect of the adhesion of the cement is not taken in any case into consideration.

Seotion I.
Ast: 1.-A stracture built of blocks of stone or other material, a A BC D, diagram 1, may yield under the pressure to which it is subjected; first, by the slipping of certain of its surfaces of contact

Diagra m 1. Diagrem 2. Diegran 8. Diegran 4. Diagram 5. one upon another, as diagram 2 ;-secondly, by the block: turning over one upon the edge of another, diagram 3 ;-or thirdly. by
the yielding of the materials of which the structure is composed, as diagram 4. For the first effect to take place, it is necessary that the resultant P_{s}, of the pressure P_{1}, on one of the blocks A_{1}, and weight of A , should act in a direction inclined to a perpendicular drawn from the surfaces of contact, at an angle greater than $\mathbf{L A R}$, the "limiting angle of resistance" of those surfaces. For example, if the materials are calcareous oolite, this angle, LAR, is $36^{\circ} 30^{\prime}$; and if, as in diagram 9 , the direction of the resultant is more inclined from the perpendicular than this angle, failure will take place, from the one block alipping on the other.
For the second effect to take place, the resultant pressure mast act in a direction which passes without the joint, as in diagram 3 .
The third effect depends, first, on the strength of the material; secondly, on the amount of the resultant pressure; and thirdly, on the position and direction of that pressure. Thus the material may be capable of sustaining the pressure, if it acts through the sxis of the stone; the pressure in that case being equally distributed over the whole surface of contact; but if the direction of the pressure approaches very closely to one of the edges, so that one portion of the block sustains a much greater pressure per square inch than another, then the material may yield and failure ensue, as in diagram 4.

1f, however, none of the resultant pressures $P_{\&}, P_{\&} P_{4} P_{s}$, diagram 5 , fulfil any of the above conditions, that is, if none are irclined from a perpendicular to the surface of contact at an angle greater than the limiting angle of resistance of those surfaces, nor fall without the joint, nor approach so near to the edge as to cause the material to field, then the structure will withstand the pressure \mathbf{P}_{1}. Also, if instead of the pressure P_{1}, the structure be acted on by a pressure p_{1}, and the resultants $p_{2} p_{2} p_{4} p_{3}$, do none of them fulfil any of the conditions of failure, it will withstand this prew sure. In like manner, an endless variety of preasures, or systems of presaures, may be sustained by the structure, each giving a different series of remultants on the successive joints.

Aat. 9.-If any other joints are made in the atructure, the position and direction of the resultant pressures on them, also, must be drawn and examined, before the stability of the arch is determined; if, however, a curve such as that in diagram δ could be traced, the property of which curve should be, that at any point in it the tangent should represent the position and direction of the resultant pressure, as the arrows $\mathbf{P}_{9} \mathbf{P}_{8} \mathbf{P}_{4} \mathbf{P}_{3}$, which are tangents to the curve, and which also show the position and direction of the resultants; then if no part of this curve passed without the structnre, or so near to the edges of it, as to cause the material to yield, the structure would be stable, however numerous, or in whatever direction the joints might be, provided that the perpendicular from the joint were inclined to the tangent to the curve, at an angle less than the limiting angle of resistance. This curve is known as the "line of resistance," and its properties were discussed for the first time by Professor Moseley, in essays published in the "Cambridge Philosophical Transactions;"* it can be traced by applicstion of difficult mathematical analysis, as shown in the fourth part of the "Mechanical Principles of Civil Engineering and Architecture," p. 403. If, however, the resultant preseures are determined for a series of joints, the line of resistance can be traced with suficient accuracy from joint to joint, by means of a bent whalebone, or a metal spring, or by hand as in diagram 5 .

Art. 3. Problem 1.-To find the position, direction, and amount of the resultant pressure on every joint of a structure, the resultant pressure on one of the blocks being given in position, direotion, and amount, and the specific gravity of the material forming the structure being also known.

Diagram 6 represents a structure of seven blocks of stone, or other material, the pressure on the first block being 80 cwt ., and its position and direction represented by the arrow ; it is required to determine the position, direction, and amount of the resultant pressures on all the other blocks.
Construct a scale of equal parts, each part to represent one ewt., or one pound, \&c., as may be convenient. In this figure each equal part represents one cwt. Calculate the weight of each stone (in this example, if the first block weighs 15 cwot., the reeight of the others are as figured on them in the diagram).

Find the centres of gravity of the blocks: (they ave indicated in this and the following diagrams by this mark \uparrow).
Then the pressures on the second block are, first, the weight of the first block $=16 \mathrm{cwt}$., which may be represented by a pressure of 15 cwt . acting vertically downwards through the centre of grovity of the block; draw the line W, representing the position and direction of this pressure: secondily, the pressure on the first block, which acts in the direction and position indicated by the

[^12]arrow ; continue this direction till the line intersects the vertical, through the centre of gravity; from the point of intersection of these two lines measure off, on the vertical line, a distance equal to 15 parts of the scale, making the side W_{1} of the parallelogram; and on the line in the direction of the pressure on the block, m eas-

sure off a distance equal to 80 parts of the scale, making the second side P_{1} of the parallelogram; draw the other two gides; and the diagonal $R_{1} W_{2} P_{1}$, will represent the direction of the resultant of these preseures; its length, equal to $81 \frac{1}{d}$ parts of the scale, will give the amonnt of its pressure, 81 $\frac{1}{d} \mathrm{cwt}$, and the line, continued till it intersects the joint No. 1, will represent the point of application of this resultant pressure on the second block; that is to say, that point will be the centre of pressure of all the pressures, commnoicated throughout the surfaces of contact, from the first block to the second, and the amount of the resultant, $81 \frac{1}{2} \mathrm{cwt}$., will be the apgregate of these pressures.
If the line W, representing the weight of the block, is drawn from the point of intersection, in the direction in which it, acts, that is, vertically downwards, then the line $P_{\text {, }}$, representing the prosure on the block, must be drawn in the direction in which it acta, that is, from right to left. If, however, as in the present case, it is more convenient, the lines may be drawn each in the direction opposite to that in which the pressures act, that is, the meight represented by a line vertically upwards, and the pressure by s line from left to right, in which case the resultant pressure will act in the direction of the diagonal, but toroarde the point of intersection of the two lines, that is, from right to left in the prevant example.
The resultant pressure on the third block is determined in a manoer precisely similar to that described above, with regard to the second; a vertical line is drawn through the centre of gravity of the second block, and the direction of the resultant pressure on the same, \mathbf{P}_{s} is continued till the lines intersect ; 81d parts mesared from this intersection on the latter line, form one side of the parallalogram, and 15 parta measured on the vertical line from the other, for the amount of the reaultant presaure on the second block is 81 cwt., and the weight of the second block is 15 cwt : the parallelogram being completed, the diagonal produced determines the position and direction of the resultant pressure on the third Hock, and its length, measured by the scale, determines the amount of the pressure to be 86 cwt. In like manner, the pressure on the fourth block is 100 cwt . and its position and direction are shown by the arrow P_{4}; also $\mathcal{P}_{3} P_{4} P_{\text {s }}$, show the position and direction of the resultant pressures on the fifth, sirth, and seventh blocks, and their renpective amounts are determined by the length of the diagonals of the fourth, fifth, and sixth parallelograms, and if any of the blocks were removed, and replaced by a prop, in the position and direction shown by the arrow: as for example, if the seventh block were removed, and replaced by the prop there shown, then all the remaining pertion of the structure would be balanced on the point of the prop. Eech of these arrows are tangents to the line of reaistance, which can be drawn from point to point by the eje, or by means of a piece of whalebone, or a metal spring.

If, instead of the pressure on the first block, the pressure on a ny other block be given, the resultant pressure on all the others may be found in a similar manner. Thas, if the pressure on the fourth block is known, the pressure on the fifth, sixth, and seventh will be found in precisely the same manner as above described. Then with regard to the third block, it will he acted on by its own weight, and the pressure from the second block, and tbe given pressure on the fourth block, is the resultant of these two pressures; if, therefore, a vertical line is drawn through the centre of gravity of the third block, and another line is drawn in the direction of the given pressure on the fourth block, and from the point of intersection of these two lines there is measured off on the vertical, as many parts of the scale as there are cwts. in the weight of the block, and on the other line, as many parts as there are c ts. in the given pressure on the fourth block; then there have been measured the side W, of the parallelogram and the diagonal $\mathbf{R}_{\mathbf{a}} \mathbf{W}_{:} \mathbf{P}_{\text {, }}$, and these two lines determine the parallelogram, the second side of which, from the point of intersection, represents the pressure on the third block. This pressure on the third block being determined, that on the second and that on the first block may be found in the same manner, the lines drawn being the same as those in the example.

Ant. 4.-In nearly all cases of arched structures, the pressure on any one of the voussoirs is unknown, and this constitutes the dificulty of the subject : the point of application, the direction, and the amount of the resultant pressure on any of the voussoirs being determined, the conditions of stability of the whole structure are found by the application of the foregoing problem. To determine the stability of the arch with regard to the first condition of failure, diagram 9 , that is, supposing failure to take place, by the slipping of one vouissoir on another, the direction only of the resultant pressures is required; but to determine whether the arch will fail (as in diagrams 3 or 4), by the voussoirs turning on their edges, or by the material failing, not only the direction, but the points of application and the amount of the pressures must be determined. The theories of the arch, which preceded that of Professor Moseley, take into consideration only the first condition of failure (Art. 1, diagram 2), it being supposed that if the arch failed, it would be by one of the voussoirs slipping on another. The experiments of Rennie, Morin, and others, had not then been made, and the resistance of the friction of one stone on another was much underrated, so that it was considered necessary for stability, that the direction of the pressures should always be perpendicular to the joints; of course this could only be the case for one particular system of pressures, and if the weights on the voussoirs and other pressures wers so arranged, that the resultant prescure on each joint acted in a direction perpendicular to it, then if any weight were added to the system, or any taken away, the poaitions and directions of the resultant pressures would, of course, vary aloo, and their directions be no longer perpendicular to the joint. It seems to have been the practice of bridge-builders, to take the weight of the arch-stones and backing for the fixed system of pressures; and this weight being very great in proportion to that of the wagons, carriages, and people pasaing over, the effect of the latter was not an important consideration, and the old problems sufficiently answered the purpose. In the case, however, of a light railway bridge, traversed by a heavy train, which, coming upon it suddenly, has twice the effect of a stationary pressure of the same weight, the effect of such trafic must not be omitted from the calculation; but if the arch is designed and the weights on the voussoirs arranged, so that the resultant pressures shall be perpendicular to the joints when the train is on the bridge, then, when the train has moved off, all the resultant pressures will have taken new positions and directions, no longer perpendicular to the joints; 80 that, according to the theories themselves, the arch would fail. These theories are also quite useless in determining the stability of vaults on high walls; there is not, perhaps, a single vaulted roof now standing, that does not prove their fallacy.

Art. 5.-Without taking into consideration the adhesion of the cement in the joints, the limiting angle of resistance for the surfaces of all materials used in arches, is so large, that it would be difficult to design an arch and loading, in which the first condition of failure would be fulfilled; in the pier or abutment, however, such failure is likely to occur, and must be carefully guarded againgt.

The second condition of failure, diagram 3 , is, strictly speaking, impossible, for no block will turn on its edge upon another, without some abrasion, or elastic yielding, of the surfaces, in which case it becomes that shown in diagram 4 , or the third condition of failure; however, as the failure takes place from the tendency of the pressures to turn the blocks on their edges, it seems that the
subject is best discussed by first supposing that the materials are incompressible, and tracing the conditions of stability on this hypothesis, and then by examining in what respect those conditions are modified by the limited strength of the materials.
Art.6.-In applying the following methods to analyse the strength of any given structure, the first question to be solved is: Is the structure, when acted on by the given pressure, on the balance between standing and falling? The problems determine if this is the case, and if not, if the tendency is towards stahility or instability. If the structure be on the balance between standing and falling, then the slightest alteration in the pressures may cause it to fail, and it would therefore be condemned as unsafe. If the tendency be towards instability, unquestionably the arch will not stand. If, on the other hand, the tendency be towards stability, then another question arises: How great a degree of strength does the structure possess? When it is decided in what terms this strength is to be measured, the problems in the following pages can be applied to answer the question. Thus, the strength may be measured by the weight in different positions and directions, that will be required to produce the state of unstable equilibrum, or the balance between standing and falling. Or, again, the strength of the material may be hypothetically diminished, until this unstable equilibrum is produced, and thus a measure of strength is obtained ; as for instance, if the hypothetically diminished strength of the material is one-tenth the actual strength of the material used, then the structure is ten times stronger than is theoretically necessary.

Section II.

Ast. 7.-On the conditions of stability of an arch whose voussoirs are incompressible; the form of which, and the pressures sustained by it, as regards position, direction, and amount, being similar on either side of the crown of the arch.
In such an arch, the conditions of failure are, as before stated, the first and second; that is, the voussoirs may slip on one another, or turn over on their edges: the latter condition will first be discussed.

It need not be proved, that if in one part of an arch the voussoirs turn over on their edges at the extrados, causing the joint to open at the intrados, then at some other positions, other voussoirs must turn over on their edges at the intrados and the joints open at the extrados. Also it need hardly be proved, that if the arch is similar in form and similarly loaded on either side of the crown, that if failure takes place, in the manner above described, one of the points of rupture will be at the crown of the arch : this is nearly self-evident, and may be proved by experiments on any model of an arch; it is, however, proved geometrically by application of the problem in Section 4. If the arch fails at the crown, by the voussoirs turning on their edges A_{1}, at the extrados, as in diagram 7, then at some point in the haunches, the voussoirs will at the same time be turning on their edges A_{2}, at the intrados, in which case the crown will sink and the haunches will spread.

If the arch fails at the crown, by the voussoirs turning on their siges at the intrados, as in diagram 8 , then at some point in the naunches, the voussoirs will, at the same time, be turning on their edges A_{g}, at the extrados, in which case the haunches will sink and the crown of the arch will rise.
Art. 8.-When the arch is failing, as shown in diagrams 7 and 8, then the points of application of the resultant pressures at the places of failure are beyond the edge of the voussoir, as shown in

Diagram 8.
diagram 3. But when the arch is in the condition of unstable equilibrium, that is, when it is on the balance between standing and falling, and when the voussoirs are on the point of turning on their edges at A_{i}, A_{2}, \&c., then the point of application of the re-
sultant pressure must be at the extreme edge of the voussoir, and its direction must also be that of the tangent to the intrados, or extrados, at $A_{,}, A_{q}, \& c$., because if not, the line of resistance passes without the boundary of the voussoirs, either on one or other side of the point A, and the structure has already failed, by the turning over of some other voussuir. Therefore, when the arch is in the condition of unstable equilibrium, then, at all the points of rupture, the directions of the resultant pressures are tangents to the intrados, or extrados.

Art. 9. Problem 2.-To find the second point of rupture, in an arch whose voussoirs are incompressible, the furm of which and the pressure sustained by it, as regards position, direction, and amount, being similar on either side of the crown of the arch.

Also to find the amount of pressure at the crown and at the second point of rupture.
Take for example an arch with a hacking, or superstructure diagram 9. It is required to find the second point of rupture, that

Diagrama.
is, that point in the haunches, at which the voussoirs will be about to turn on their edges, when the arch is in the condition of unstable equilibrium.

As the form of the structure leads to the supposition, that, if failure take place, it will be by the sinking of the crown and the spreading of the haunches, let it be first assumed that the arch is about to fail in that manner. Then the point C, in the extrados, at the crown, will be the first point at which the voussoirs are about to turn; and the horizontal line C E, will represent the direction and position of the pressure upon the side of the arch drawn in the figure, caused by the weight of the opposite and similar side : see Art. 8.

Choose some point \dot{R}_{1}, in the intrados, and, for trisl, suppose that to be the second point of rupture. Then the voussoirs will be on the point of turning on their edres at R_{1}, and the resultant pressure will act through R_{1}, in the direction $R_{1} T_{3}$, of the tangent to the intrados: see Art. 8. Draw the joint or normal to the intrados $R_{1} N_{1}$, and the vertical line $N_{1} B_{1}$. Find the centre of gravity of the mass ADR,,B_{1}; and draw the vertical line $G_{1} W_{1}$, and produce it till it intersects $C E$, at the point I_{1}. Then the only pressures acting on the point $R_{\text {, }}$, are the pressure of the opposite arch, acting in the direction C ' E, and the weight of the mass ADR $N_{1} \mathbf{B}_{1}$, acting in the direction $1, W_{1}$; and since the direction of these two pressures intersect in the point I_{1}, therefore, by the well-known law of Statics, the direction of their resultant also passes through the point I_{1}; but when the arch is about to fail at the point R_{1}, R_{1}, T_{1} is the direction of the resultant, and this does not, if continued, pass through the point I_{1}. Therefore, R_{1} is not the second point of rupture, and some other point must be tried. If the line $R_{1} I_{1}$ be drawn, it will be seen that its direction is less inclined to the vertical than $R_{1} T_{1}$; and this leads to the supposition that the point of rupture is lower down, at some point where the tangent to the curve is less inclined to the vertical. Therefore, choose some other point R_{2}, and pur-
sue a precisely similar method to that described for R_{i}, as shown in the figure.

Then, since the tangent $\boldsymbol{R}_{2} \mathrm{~T}_{2}$, produced, does not pass through the point of intersection I^{2}, but is less inclined to the vertical than the line $R_{g} I_{s}$, the point of rupture is above R_{g}. Also since the line $R_{2} T_{2}$, more nearly coincides with the line $R_{g} I_{g}$, than the line $R_{1} T_{1}^{2}$, with the line $R_{1} I_{i}$, the point of rupture is nearer to R_{p}, than to R_{1}.

Ons more subsequent trial generally suffices to determine the correct point, which, in this example, is the point R_{s}. For the tangent R_{s}, T_{s}, produced, passes through the point J_{r}, which is the point of intersection of the direction of the weight of the mass $A D_{s} N_{s}, B_{x}$, and the pressure of the opposite of the arch. Therefore, if the arch fails by the sinking of the crown, the second point of rupture is R_{n}.

The second case is now to be considered: Where will be the second point of the rupture, if the arch fails by the rising of the rrown? Draw the horizontal line $D \mathrm{~L}$, which will, in this case, represent the position and direction of the pressure of the opposite side of the arch. Let the point N_{1} be tried; then if N_{1} be the point of rupture, the tangent to the extrados at $N_{1} N_{1} P_{1}$, will, if produced, pass through the point Q_{1}, which is the point of intersection of the directions of the pressures of the opposite side of the arch, represented by the line $D L$, and of the weight of the mass $A D R_{1} N_{1} B_{1}$, represented by the vertical line \mathcal{W}, I_{1}. But $N_{1} P_{2}$ intersects the line $D L$, far from the point Q_{1}. Also if the point N_{4} be tried, it will be found that the tangent $N_{s} P_{s}$ is far distant from the point of intersection Q_{n}; and in like manner it will be found, that at no other point above N_{s}, will these conditions be fulfilled, except at the point C. Therefore the arch will not fail by the rising of the crown. Therefore the arch will, if it fails, fail by the sinking of the crown and the spreading of the haunches; and the point $R_{\text {s }}$ is the second point of rupture.

Art. 10. The second part of the Problem.-It is required to determine the amount of pressure at the crown, and at the second point of rupture.

Construct a scale of equal parts, as in Problem I, each division representing some unit of pressure, as pounds, hundred-weights, or tons. Through the point of their intersection I_{s}, produce the lines $R_{s} I_{s}$, and $W_{s} I_{s}$; then on the line $W_{s} I_{s}$, produced, messure off the distance, I, F, containing as many equal parts of the scale as these units of weight, in the mass $A D R_{s} \mathcal{N}_{8} B_{s}$, and from the point F, draw a line parallel to $C E$, intersecting the line $R_{3} I_{3}$, produced at the point H. Then, by the well-known principle of the parallelogram of pressures, the line FH contains as many equal parts of the scale as there are units in the pressure of the opposite side of the arch on the crown at C, and the diagonal of the parallelogram $H I_{r}$, contains as many equal parts as there are units in the pressure on the point R_{4}. Thus, in Exampe 1, if the weight of the mass $A D R_{n} N_{3} B_{3}$, is 3 tons 3 cwt., then the pressure at the crown will be 1 ton 2 cwt ., and the pressure at the point R., 3 tons 5 cwt .

Art. 11.-Thus the resultant pressure on one of the blocks of the atructure is determined in direction, position, and amount, which is the datum required in Problem 1 ; and therefore, that problem may be applied and the line of resistance be traced, as in the example in Art. 3, through the whole structure, commencing either from the crown, or from the second point of rupture; and this line will represent the resultant pressures at every part of the atructure, when it is on the balance between standing and falling, that is, when it is in the condition of unstable equilibrium.

If the line of resistance, at any point, passes without the boundary of the voussoirs, the structure will unquestionably fail. If it touches the extrados, or intrados, at other points, and at the base, then the structure is in the condition of unstable equilibrium. If the line of resistance passes through the base of the structure, come distance within the mass, then the arch has a certain degree of stability, which may be tested, as described in Art. 6, by the methods given in the following Sections.
The stability of the structure, with regard to the first condition of failure (Art. 1, diagram 2), has to be considered, and is at ance determined by inspecting the line of resistance, drawn as described in the foregoing examples. If at any part of the structure a joint is made, in such a direction, that a perpendicular drawn from it shall be inclined from the tangent to the line of resistance, at that point, at an angle greater than the limiting angle of resintance of the surfaces of contact, the structure will fail at thet place; if, however, this is not the case at any position in the arch or pier, then the structure will not fail by the slipping of the blocks one upon the surface of the other, and the first condition of failure will not be fulfilled.

Section III.

On the conditions of stability of an arch, the form of which, and the pressures sustained by it, as regards position, direction, and amount, are similar, on either side of the crown of the arch; the limited strength of the materials being taken into consideration.

Art. 12.-By reference to Art. 6 it will be seen, that it is there proposed, that the conditions of stability in an arch should first be discussed on the supposition that the materials were incompressible, and that then it should be examined in what reapect those conditions were modified by the limited strength of the materials used in building. The first part of this proposition has been considered in Section II. It is the purpose of this section to consider the second part.

The arches in the exsmples in the last section could not stand if they were built of any material at present known, hecause at the points of rupture, the resultant pressures act at the extreme edge of the voussoirs, and therefore all the pressure has to be resisted by these extreme edges, or by a single line, which cannot be the case, unless the material is incumpressible. So that in all practical cases of arches, even the condition of unstable equilibrium cannot be attained, unless the position of the line of resistance is some distance within the section of the arch. The question which then arises is, how near to the intrados or extrados can the line of resistance pass, without causing the failure of the materials?

Ast. 13.-Experiments to determine the strength of stones to resist compression, have for the most part been made by the application of pressures on cubes of the stone, in a direction perpendicular to the face of the cube, as in diagram 10. The resultant of this pressure, and the weight of the stone, acts in the direction

of the axis of the cube, its point of application being in the centre of the base at p; so that if any line be drawn through this point p, to the edges of the block, as the line AB, the portion $p A$ is equal to the portion p B: and as, by the principle of the equality of moments, the pressure on the point A, multiplied by the length $A p$, is equal to the pressure on the point B, multiplied by the length $B p$; since the length $A p$, is equal to the length $B p$, the pressure on the point A, is equal the pressure on the point B; and similarly the pressure on the whole edge of the stone $e h$, is equal to the pressure on the opposite edge $f g$.

Now let the bluck of stone, as shown in diagram 11, be acted upon by a pressure whose direction is inclined to the axis of the block, but which is applied in such a position, that the resultant of it, and the weight of the block, acts through the point p, in the centre of the base. Draw any line A B, through the point p, to the edges $e h$, and $f g$, and draw another line through p, in the direction of the resultant, and from the points A and B, draw lines $A m, B l$, perpendicular to this line. Then, by the principle of the equality of moments, the pressure on A, multiplied by the length $A m$, is equal to the pressure on B, multiplied by the length B l. But since $p B$, is equal to $p A$, the angle Apm, is equal to
he angle $\mathrm{B} p l$, and the angles $\mathrm{A} m p, \mathrm{~B} / p$, are right angles; therefore, the length $\mathrm{B} l$, is equal to the length $\mathrm{A} m$, and therefore, the pressure at A, is equal to the pressure at B, and similarly the pressure on the whole edge $e h$, is equal to the pressare on the whole edge fg. Therefore, in both cases, diagrams 10 and 11, the the pressure will be sustained in a similar manner, by the base ef $g h$. So that if the resultant pressure at p, diagram 10 , is equal to one ton per square inch of the surface ef $g h$, and does not crush the particles in that surface, then, if the resultant at p, diagram 11, is equal to one ton per square inch of the surface of $g h$, the particles in that surface will not be crushed.

If in either of the cases, Diagrams 10 and 11 , the portion $f i k g$, be added, it is evident that the pressure on the base efg h, will not be increased. And therefore, if a stone, as in diagram 12, be acted on by a pressure, the resultant of which, and the weight

Diagram 12.
of the stone, passes through a point p, in the base eikh: Draw a line AC, through the point p, to the edges $e h$, and $i k$; then measure off, on the line $p \mathrm{C}$, a portion $p \mathrm{~B}$, equal to the length $p \mathrm{~A}$, and draw the line $f B g$, perpendicular to the line AC. Then, if the resultant pressure at the point ρ, divided by the number of square inches in the surface of $g h$, is not greater than the pressure per square inch, that (by the experiment in diagram 10) the material was found capable of bearing, then the stone will not fail when acted upon by the given pressure.

It is of course implied, that no natural fault, or laminated structure, of the stone, should cause it to yield, it being evident that the judgment of the engineer must be called into requsition, to guard against such a catastrophe.
ART. 14. -The-method here proposed, for the determination of the proper section, \&rc., of arches, or for discussing the stability of arches already designed, the limited strength of the material being taken into consideration, is founded on the above-mentioned principle.

Section IV.

On the conditions of stability of an arch, acted upon by forces of any amount, applied in any position and direction in the plane of the section; or of an arch, whose form is not similar on both sides of the crown.
Art. 15.-In an arch under the conditions atated at the head of this section, the first point of rupture is not necessarily at the crown, and it is this which constitutes the difficulty of the question. It may here be remarked, that when the terms first, second, and third points of rupture are used, it is not meant that the failure of an arch commences at the first point, and then spreads to the second point of rupture, and so on; for theoretically speaking, the structure will fail at all those points at the same time; but by the first point of rupture is merely meant the point of rupture first determined, and by the second point of rupture, the point of rupture secondly determined, as by the process detailed in the preceding sections, one point of rupture being already known.
Abt. 16. Problem 3.-To find the first point of rupture in an arch acted upon by any given pressures, in any given position, and the arch itself being of anygiven shape. The method proposed to solve this problem will, it is thought, be more easily shown, by reference to the example of the arched vault in the previous sections, than by a general diagram and demonstration.

Example.-Let the arched vault shown in diagram 13, of 80 feet span, and whose depth of voussoir at the crown is equal to oneninth of the radius, be acted on by a pressure, equal to the weight of a portion of the arch of 90° length of intrados, and one foot in length of transverse section, and applied vertically to the extrados, at a distance of 30° from the crown. Required the first point of rupture, under these conditions; the materials being incompressible. First, suppose for trial, some point $R_{\text {, }}$, in the extrados, to be the first point of rupture, say 98° from the crown, as in diagram 13.

Draw a tangent $T_{9}, R_{1} T_{1}$, to the extrados at R_{1}. Then if \mathbf{R}_{1}, be the first point of rupture, R_{1}, T_{1}, and $R_{1} T_{2}$, represent the direction of the pressure of one portion of the arch on the other,

when the arch is about to fail at that point ; for then the line of resistance touches the extrados at R_{1}. Also R_{1} being the first point of rupture, and the arch being about to fail, the preasure of the lower portion of the arch, in the direction $T_{2} R_{1}$, must be equal to the pressure of the upper portion, in the direction $T_{1} R_{4}$; for the pressures must be in equilibrium about the point R_{1}, and if one is preponderating, then the arch has already falled somewhere else, and the voussoirs, if about to turn on their edges at the point $\mathbf{R}_{\mathbf{O}}$, are moving in the direction of the preponderating pressure. On the supposition that $R_{\text {is }}$ is the first point of rupture, find the second points of rupture, R_{r}, on the right and left hand sides of the arch, in the same manner as described in Section II. Problem 9.

In this case, the second point of rupture on the right hand side is at the intrados, at 51° degrees from the crown; for the vertical line, drawn through the centre of gravity of the mass $R_{1} N_{1} R_{2} N_{n}$ intersects the tangent to the extrados, at the crown R_{1}, T_{1}, at the point O, and the tangent to the intrados at $R_{\text {, }}$, also passes through the same point. Also the second point of rupture, on the left hand side, is at the intrados 64° distant from the crown; for the direction of the resultant of the weight of the mass $R_{1} N_{1} R_{9} N_{n}$ and the force impressed on the arch, intersects the tangent to the extrados at R_{j}, and the tangent to the intrados at $R_{;}$, at the same point 0 .

Next, construct the parallelograms of pressure, as shown in diagram 13; in that for the left side, the vertical line marked RW I, represents the resultant of the weight of the mass, 36°, and the impressed forces equal to the weight of 20° of the arch; and these being pressures in the same direction, this resultant equals the weight of 56° of the arch, and the side of the parallelogram R W I, is equal to 56 parts of the scale. The directions of the other two pressures are sufficient to determine the parallelogram, by which it appears, that the pressure of the lower portion of the arch on the point $R_{\text {, }}$, in the direction $T_{2} K_{1}$, is equal to the weight of 40° of the arch.
In the same manner it will be found that the pressure of the upper portion of the arch on the point h_{i}, in the direction $T_{1} R_{s}$, is equal to the weight of 50° of the arch. "But the pressure in the direction $T_{2} R_{3}$ is equal to the weight of 40° of the arch, therefore the pressure at the point R_{i}, cf the upper portion of the arch, upon the lower, is greater than that of the lower portion and its impressed force, on the upper. Therefore R_{1} is not the first point of rupture.
Take therefore, for trial, some other point nearer the crown of the arch, for the point of rupture; for it is evident, that as the point of rupture approaches towards the crown, the pressure on it from the left side, will begreater; and that from the right side be less. Let this second trial point be 15° from the cruwn; repeat with regard to this point, a process similar to that above described, and a shown in the diagram; and it will be found, that the pressure from
left to right is equal to the weight of $48 \frac{1}{\circ}^{\circ}$ of the arch, and that from right to left, equal to the weight of 44°; so that the pressures are very nearly in equilibrium; therefore, the first point of rupture is very near this trial point ; and the pressure of the right side of the arch preponderates: therefore, take for the next trial, a point a few degrees nearer the crown.

Thus the first point of rupture will soon be arrived at, which, in this case, is at the extrados, 10° from the crown, for when the voussoirs are about to turn on their edges, at this point, the prescore from the left equals the pressure from the right ; each being equal to the weight of 41° of the arch.

The second point of rupture on the right side, is at the intrados, 53° from the crown, and the pressure there is equal to the weight of 71° of the arch; then Problem 1 can be applied, to trace the line of resistance through the rest of this side of the structure, and it will be found, that for the arch to be in the condition of unstable equilibrium, about the springing, it is necessary that the voussoirs should be deepened about 12 inches, at $86^{\circ} 40^{\circ}$ from the crown.

The second point of rupture on the left side, is at the intrados 68 from the crown, and the pressure there is equal to the weight of 90° of the arch, and Problem 1 being applied to trace the line of resistance through the rest of the structure, it will be found, that for it to be in the condition of unstable equilibrium, at the springing, the voussoir must be notched at the extrados, to the depth of about 6 inches.

AET. 17.-Theprinciples and themethod described in Section III. may be applied to the arch sustaining pressures, as described in the heading of this section, and of unsymmetricical form ; as well as to that arch whose pressures and form are similar on both sides of the crown, as described in Section II.

It is also evident, that the above method will apply to any irregular form of arch, and that the principles and method described in Section III. might also be applied.

ON A GENERAL THEOREM TO CALCULATE THE AREA OF A CROSS-SECTION OF A RAILWAY ON SIDELONG GROUND.

By R. G. Clahi.

The intention of this paper is to investigate a formula, free from surds or any approximation, to compute the area of a cross-aection, without having regard to the side stakes. We have given (fig. I)

Fig. 1
the breadth of formation level AB; the depth OF from centre take; the difference of heights $q d$, taken by the spirit-level ; the corresponding hypothenusal length $q r$; and the ratio of the slopes. On referring to page 68, present volume, article "Railway Sections in Sidelong Ground," to formula (3), which is

$$
(2 b+m a)=+\frac{1}{2}(b+m a)\left(x-x^{\prime}\right) \sin \theta=\text { area } ;
$$

where $b=\frac{1}{8}$ formation level ; $a=$ depth or height from centre stake to centre of formation level; x and x^{\prime} equal the distances $\mathrm{OD}, \mathrm{OH} ; \theta=$ angle of inclination of ground; and m base of slope to one perpendicular. Also let $h=$ difference of heights by level $r d$; and $l=0 d$, the hypothenusal length on surface.

From (1) and (2), page 67, in the article above referred to, put

$$
\mathbf{T}=-\frac{1}{\cos \theta}-m \sin \theta, \text { and } T^{\prime}=\frac{1}{\cos \theta+m \sin \theta}
$$

thea the above formula becomes, by substituting T and T^{\prime},

$$
\begin{equation*}
(2 b+m a) a+(b+m a)^{\prime}\left(T-T^{\prime}\right) \times \frac{\sin \theta}{g^{-}}=\text {area } \tag{4}
\end{equation*}
$$

$$
\begin{gathered}
\text { But }\left(T-T^{\prime}\right) \times \frac{\sin \theta}{g}=\frac{9 m \sin \theta}{\cos ^{2} \theta-m^{2} \sin ^{2} \theta} \times \frac{\sin \theta}{q}= \\
\frac{m^{2} \sin ^{2} \theta}{\cos ^{2}-m^{2} \sin ^{2} \theta}=\frac{m \tan ^{4} \theta}{1-m^{2} \tan \theta} .
\end{gathered}
$$

Now consider, in the right-angle triangle $q d r$, the beight $q d=$ h to be a tangent, the horizontal distance $d r$ the radius; therefore, $\tan ^{2} \theta=\frac{h^{2}}{l^{2}-h^{2}}$. Substitute this value in last expression, and then in (4); we have for the required general formals:
$(9 b+m a) a+(b+m a)^{2} \frac{m h^{2}}{l^{4}-h^{2}-m^{2} h^{2}}=$ area HABD(s) Let the slope be 1 to 1 ; then $m=1$;..

$$
\begin{equation*}
(2 b+a) a+\frac{(b+a)^{2} h^{2}}{b^{2}-2 h^{2}}=\text { area } \tag{a}
\end{equation*}
$$

The general formula is more simple than it appears: when these numbers are large, we shall only require a table of square numbers to work out any question. Two examples are subjoined :-

1. Given length on slope of ground $=20$ feet; the difference of heights, 6 feet; slope to be 2 to 1 ; depth of cutting, 20 feet; and breadth of formation level, 30 feet. Find area by the formula (5). Substitute the above values in (5):
$(38+40) 20+(16.5+40)^{2} \frac{2 \times 36}{400-180}=2504 \cdot 7$, area required.
2. Given the length 90 feet on descent of ground; difference of heights by level, 6 feet; intended slopes, 1 to 1 ; depth of cutting, 45 feet ; and breadth of formation level, 33 feet. Find the area. (Sre fig. 1 ; and for embankment, see fig. 9.)

By substituting the above values in (a):

$$
(33+45) 45+\frac{(16.5+45 \cdot)^{2} 36}{400-72}=3925, \text { area required. }
$$

Fig. 2.
From the above it may be observed. that when a centre line of railway is ranged and staked out, and the depths known on inclined ground, we can always find most expeditiously the area of any vertical cross-section, by means of the spirit-level, without requiring the distances of the side stakes from the centre. By way of comparison, I have to refer to an article for a similar purpose, page 968 , vol. VII. of this Journal.

SOCIETY FOR THE PUBLICATION OF ARCHITECTURAL KNOWLEDGE.

From what has been said of it, the main purpose of this Society -which, perhaps, may not mean to call itself exactly by the title for the present assigned to it-seems to be to bring out what shall be a complete Dictionary or Encyclopadia of Architecture-a very meritorious undertaking, and one which, as the want of such a work is felt, might have reasonably enough been expected on the part of the Institute. That the present Dictionaries which we have of the kind are all more or less defective and unsatisfactory, even considered with reference to the time when they were produced, is universalty admitted. Even had they no other deficiencies, they have onf and all lagged very much behind the actual time when they made their appearance, whereas every work of the kind ought to bring down its information to the latest possible moment. Let us hope this important point will be attended to in the one now promised, and that it will duly notice all those improvements, both in matters of construction and those of embellishment, which
have oome up of late years, and to which every year adds something. As the Society in question of course looks to usefulness and reputation, rather than to anything in the shape of pecuniary profit, we may fairly anticipate from it something greatly superior to, everything else of the kind. Much will depend upon their most carefully maturing the whole of their plan beforehand,- work of no small labour in itself, but which would save them innumerable difficulties and perplexities. Let nothing be overlooked: let them not have to say, when midway in their task, we did not think of this, or of that, and it is too late to think of it now. Beyond this we cannot attempt to give any sort of special advice, because if anticipated by themselves it might be construed into downight impertinence. We can only say that we shall gladly open our columns to any more correct and fuller information as to its objects which the Society may deem proper to communicate.

2FOTEWB

GEOMETRY FOR THE MILLION.

Principles of Geometry, Mensuration, Trigonometry, Land Sureeying, and Levelling. By Thomas Tate. London: Longman and Co., 1848.
We have read this work with sincere regret : for in every point of view it is calculated to be injurious. It will be injurious to those who take it as a guide for the study of geometry; and it will materially injure the character which Mr. Tate had fairly established by his previous writings, both as a mathematician and an instructor. We could, indeed, scarcely believe, whilst turning over the pages that we had not taken up the wrong work; and we once actually (under the impression that it could not have been written by Mr. Tate) turned back to the title-page to verify our nubelief!
Of Mr. Tate's other works, without exception, we think very highly. His treatise on "Factorials" bespeaks considerable analytical power; and though rejected by the Royal Society (which we deem to be no criterion of the merit of the work), it contains much that is new, and the whole system is developed with perspicuity and elegance. His "Arithmetic," again, is just what a treatise on arithmetic should be:-the rules are given clearly, and such reasons or approximations to reasons as could be comprehended by the minds of young students, are attached to the rules. The efficient demonsfration of the rules of arithmetic constitutes the basis of algebra; for we hold that algebra is fundamentally only a statement of the rules for arithmetical operation, obtained by induction from the particular instances supplied in actual computation. We have no faith (because we have no proof) in the doctrine of "the permanence of equivalent forms," as a fundamental principle, apart from the evidence of induction, and of the verification sforded by deductions from it. Again, in the "Exercises on Mechanics and Natural Philosophy," Mr. Tate has manifested consummate skill, by exhibiting very simply and very clearly, the primary laws of mechanical action; and the exercises are admirably chosen from amongst the most familiar combinations of machinery, and the phenomena of daily observation, which tend to elucidate the principles very happily.
Our readers (and even Mr. Tate himself) must, then, be convinced that we are actuated by no hostile or unkind feelings towards that gentleman, when we express our objections, and very grave objections too, to his "Principles of Geometry." For no other reason, indeed, should we have said so much by way of proem.
Our objection then is-that Mr . Tate has either misconceived or misrepresentedthe fundamental character of geometrical evidence and of geometrical reasoning. Either of these charges seems almost alike improbable:-the former in consideration of his intellect, his reputation, and his cleverness; the latter, in consideration of his scholastic position and his high character for probity. We have no alternative to the one hypothesis but the other; and we have no hesitation in saying that misconception is the real cause of the objectionable principles of this work. We will state our reasons for thinking so.
Mr. Tate, like nearly all our "analysts" appears to have never acquired a clear view of the essential principles of geometrical evidence. Analysis (employing the word as synonymous with algebra, after the dictum of D^{\prime} Alembert) is a system of inductions only-at least, as far as operations and what are called
"principles" are concerned. Its most general theorems are wholly dependent upon induction for their evidence-as much so as the parallelogram of forces, or the law of gravitation. In geometry, on the contrary, the only principle employed is the syllogism; and the only appeals to experience are the few axioms respecting the visual and tangible properties of figures which are put down at the opening of Euclid's first book, together with those fundamental conceptions respecting multiples which are prefixed to the fifth book. The fact is, that Mr. Tate has not discriminated between the essential characters of geometry and of algebra; and he has thereby been led to import into the discussion of the former subject, the methods which are not only legitimately available in the latter, but in a great degree essential to ita development.
There may be an additional reason, dependent on Mr. Tate's professional position, for his ragueness of conception on this head. The Batterses Training Institution was formed, we believe, for the purpose, not so much of education itself, as for training the humbler order of schoolmasters in the art of teaching. Most certainly the object was a noble one: for probably no one of our social classes stood relatively so low in respect to skill in their particular duties as the general mass of achoolmasters. A good teacher, or even a moderate scholar, was the exception to the rule rather than the rule itself. This has been sufficiently established by the reports of the "Government Inspectors of Education"-even after all allowance has been made for the over-colourings in those Reports, which in some cases cannot be denied to have been made. The formation of suitable schoolmasters, especially for the rural districts, required them to be trained to a ready and popular exposition of the ordinary phenomena of nature and of mechanism, as well as of mere methods of computation. Popular rather than technical language is often found to be convenient ; and, below a certain grade of mental development, it is essential in such a case. In the devising of such popular modes of exposition, Mr. Tate has been for many years employed; and, as is always the case, his daily routine of duties may be supposed, without any diminution of our respect for his talents, to have destroyed that vividness of perception and rigorous spirit of reasoning, which mathematical science naturally produces in respect to the force of evidence.
We look, of course, to the preface of a work to ascertain the objects for which that work is written, and the principles on which the author composed it. A reference to Mr. Tate's preface, with one or two specimens of his method of proceeding, will, we are sure, convince every reader that we have not formed our unfavourable opinion of his work without adequate reason.
Mr Tate considers that "it will be instructive to trace the origin of our ideas in geometry, with the view of suggesting to us the means whereby first notions on the subject should be conveyed to the mind of the learner." Now, the ambiguity involved in the word"our" -which leaves it uncertain whether he referred tothe conceptions of the first geometrical speculists of our race, or to those who in our time have been trained in the terminology and popular traditions of geometry-is very objectionable. The former would appear, from his subsequent remarks to be his view : but it is not at all clear. Under either aspect, however, his maxim is very questionable; and certainly by writers of the highest scientific and philosophical authority, it is always rejected. In truth, the actual order of discovery is almost invariably found to be the most inconvenient for the systematic exhibition and development of scientific truth. The universal history of science is at variance with this conundrum of Mr. Tate's.

The author's delineation of that creature of his brain, the primeval geometer, is a sufficiently ludicrous piece of seriousness : but his talk about "the vast amount of facts accumulated independently of the formality of definitions, or the tedious verbiage of a rigorous demonstration," really startles us. It is more like the raving of an illiterate person than the language of an accomplished geometer. Neither can this be called a stray passage accidentally expressed in an offensive form; for the animus is the same throughout the work. For instance, he says a little further on ($\mathrm{p} . \mathrm{vi}$.): "In the demonstrations contained in the following treatise, conciseness and simplicity have been preferred to the artificial verbiage of a technical logic;" and he has created his primeval and philosophical geometer, "without any precise views relative to the origin of ideas, or the formuke of a technical logic, [with whom] demonstration would consist in a simple appeal to common-sense, or in such an exposition as might be sufficient to carry conviction to the mind." This primeval geometer is created, too, as the Batterseapattern for the formation of Englishmen of science; and Mr. rate has falsified Euclid's assertion as respects "a royal road to geometry!"

We wish, however, to ask Mr. Tate a question or two on these subjects. What does he mean by "common-sense" in connection vith the acquisition of science? We often hear the phrase used, it is true, by men who call themselves "practical:" but as far as our memory goes, we have never heard it used by a scientific person in the way it is here used by Mr. Tate, though very often so by persons destitute of all science. In geometry we can attach no other notion to it than that it is intended to express the inference which we may draw from visual evidence, or from instrumental evidence at the least-in short, the evidence of experiment performed with the ruler and compasses, or perhaps with a somewhat sensible balance, such as those made by Bate, of the Poultry. Be it so-but do not degrade science by calling this "geometry."
Again, what does Mr. Tate consider to be "such an exposition as might be sufficient to carry conviction to the mind" of a learner? Judicious teachers, we have often heard, lament the imbecile facility with which conviction is carried to the minds of the most slothful pupils: they are most readily "convinced" by the bare words of the enunciation, provided they are excused the trouble of understanding it, and still more readily if they can be excused the trouble of proving it. Common-sense people, and people without any sense at all except the five physical ones, are alike adroit learners under these conditions; and it would seem that the founders of the Battersea Normal School knew pretty well what they were about, when they conceived that extraordinary scheme. Our own wonder is, not hat Messrs. Shuttleworth and Tuffnell should have founded at college for such purposes :-it is, that Mr. Tate should not only have ministered to this extraordinary system of training schoolmasters, but that he should have pushed himself for ward into such unenviable notoriety (for a scientific man) as the Coryphæus of a conspiracy for the abolition of pure geometry in England.
Let not the import of our remarks be misunderstood. We take no objection, but directly the reverse, to the composition of works on practical geometry, apart from the demonstrations of the proces. The Elements of Euclid were never intended as a work to serve the wants of the artisan or draughtsman in his operations; and it is very certain, that infinitely better constructions for practical purpores of the few problems given in the "Elements" might be easily framed. Their proofs, however, must depend on properties not laid down by Euclid. Yet it shows the paucity of resource which our "common-sense" geometers possess, when we remark that nearly all these writers follow in the wake of Euclid in the most servile manner, and adopt not only his constructions, but even their very order, and almost his language. Let us have a good work on practical geometry by all means: let the constructions be accompanied by demonstrations or not, as may be deemed adviaable by the author; but still, let us not be beguiled into a belief that our constructions are true, by a few rambling, inconclusive, or otterly irrelevant sham-demonstrations,-alike discreditable to him who offers them as evidence as to him who so receives them. Give perfect demonstrations, or none. Take water, if you please, gentle reader, from the fountains of science; but do not pollute, or allow others to pollute, the pure streams with such adulterations as those which we shall presently quote from the work before us.

Mr. Tate does, indeed, pay some rather inflated compliments to the geometry of Euclid,--some "very fine writing," no doubt : but the very form in which they are expressed is obviously intended for disadvantageous contrast with his own system of primeval geometry. The only book, in the author's view, better than Euclid's is Tate's! In our view, the only, book worse than Mr. Tate's is Mr. Andrew Bell's, in "Chambers's Educational Course" -not even Euclid's Elements excepted. After his eulogy of Euclid, he proceeds :-
" However, it must be conceded, that whatever may be its excellences ar a book of reference to the mathematician, its defects, as an initiatory system of geometry, are too apparent to admit of even an apology. A grest hook is, in many respects, agreat evil; the very elements constitutiag its greatness,-its refinement and comprehenaiveneas,-tend to tbrow over it an air of myatery and dignity, which distracts and overawes the uninitjated studest, in the place of giving him that encouragement and sympathy, which he certainly requires, in his first feeble efforts in the pursuit of abstract knowiedge. The geometry of Euctid is a highly artificial system, which can only be read, thoroughly, by a person who is already a mathematician, and who can enter into ifs metaphyrical rubtillies, and beautiful yet operose demonatrations. The principle of motion gives a simplicity and clearness to many geometrical conceptions, but from an imagined incoosistency in the ose of such a method, Euclid employs it, neither for the parpose of demontration nor illostration. The method of superpasition, which, in reality, lies at the very basis of geumetrical demonstration, and, in many cases, gives a graphic intereat to an investigation, is employed in the fourtb proposition of his firat book, and then, as if ashamed of the lowoly origin of geometry, he cearcely uss it afterwards. Many of his problems are solved by methods

Which are never used in practice, for exatople, when a given portion is to be cut off from a atraight line, instead of supposing the given portion to be simply tranaferred to, or placed upon the atraight line, \&e., which we really do in practice, Euclid muat describe circle after circle, in order to accomplish the problem. The doctrine of aimilar triangles is, unquestionably, one of the most important propositions in the whole range of geometry, yet the stadent is not permitted to understand this proposition, until be has gone through the fifth book, which, to a large clase of students, must for ever remain a sesled book. It is desirable that practical men should comprehend the leadiog propositions in solid peometry; but Euclid's method of treating this swbject, is so operose and refined, as to place it beyond the reach of per. sons whose time for study is linited, or whose mathematical talents are not of a superior order."
Now the gist of all this appears to be, that Euclid's Elements may do well enough as a "book of reference for professional mathematicians," but that it is preposterous to talk of it as a book suited to educational purposes, either for the masses, or for intelligent persons in general. It is represented as a great book, remarkable only for its metaphysical subtilty and operose demonstrations-for its refinement and comprehensiveness-and for the affectation of my:tery and dignity which overawes and distracts the student. It is hard to conceive that such a description of the "Elements" could have proceeded from any man who has read and understood that remarkable production.
We deny in toto, the statement that the geometry of Euclid is "a highly artificial system." in the ordinary sense of the words, "that can only, be read thoroughly by a person who is already a mathematician." If the order in which truths are capable of being successively deduced be a criterion of natural order, then the designation of artificial system as applied to the "Elements" becomes; most signally inappropriate; and as to the structure of the syllogism (or rather enthymeme) in which Euclid delivers his reasoning, it will surely bear comparison, even for real simplicity, with the vague, unmeaning, slip-shod sentences which Mr. Tate has substituted in its place.

Euclid, it seems, was "ashamed of the lowly origin of his geo-metry"--viz. the method of superposition. Mr. Tate considers that it "gives a graphic interest to an investigation." Now, it surpasses our power to conceive what sort of interest a "graphic interest" is: but we suppose the author to mean that the mind is interested in having its own reasoning functions performed for it by the eye and hand conjointly. Even then we cannot understand on what ground mere superposition can be supposed to give graphic results. Did space allow, we could easily explain the cause of Euclid's sparing use of the principle, without suffusing the cheek or blanching the lip of the geometrical patriach with "shame."

As to the employment of the principle of motion, we have simply to ask, what advantages Mr. Tate thinks he can confer upon accurate geometrical reasoning by the intraduction of it into geometry? Nay, more, will he tell us how it would aid demonstration 9 What organic definition would he give of a straight line? What could he get from the organic definition of the circle, which is more or less than Euclid's definition? Can he have forgotten that the cone, sphere, and cylinder are actually defined by their geneses? Can he have forgotten that the favourite method of superposition is not discarded from the subsequent parts of Euclid's Elements, where the principle could be made to facilitate the objects aimed at? We are sorry to come to the conclusion, but we can scarcely avoid the inference, that Mr. Tate has never "read and inwardly digested" the work which is the object of his animadversions-and we can have no scruple in concluding that he has never understood its objects, seized its import, or fully comprehended the system of philosophy of which it is one of the most enduring specimens. .

Mr. Tate says that "many of his [Euclid's] problems are solved by methods which are never used in practice;; and he instances a single one. Can he instance another \% We can with tolerable confidence answer for him :-that with this single exception, there is not a construction given in the whole range of the "Elements" of a problem which occurs in practical geometry, which we could not point out as being copied into recent, or comparatively recent works intended for the use of practical men. It is a perversion of the fact, and an abuse of the confidence placed in him by his readers, to make such unfounded assertions. That better practical constructions than many of them may be given, we have already said; but that does not affect the present case.

The objection that the doctrine of similar triangles is deferred so long, simply amounts to this : that proportion is made the fifth book instead of the first-which it might have been, and may, according to Euclid's treatment of the subject, be made to follow the third proposition of the first book. Would Mr. Tate obtain the doctriue of similar triangles without all consideration of propor.
tion ? On referring to his own way of treating the subject (p. 48), we find an illogical attempt to explain the idea of proportion, and to demonstrate the properties of proportionals. It is at best illustrative. If we must have similar triangles at an earlier stage of our geometrical career, it may be easily accomplished in a much better manner than this; for instance, as Legendre has done,-by assuming the doctrine of proportion as one already known and demonstrated by means of algebra. We do not ourselves recommend the method; but it has this merit, that it is all fair and open, and does not conceal the difficulty by a series of demonstrative evasions, which merely delude the pupil into a belief that the doctrine is proved, when no real proof has been given.
In the last place, Mr. Tate affirms that "Eaclid's method of treating the solid geometry is so operose and refined as to place it beyond the reach of persons whose time is limited, and whose mathematical talents are not of a superior order." It is known to every one who is acquainted with the 11th and 18th books of Euclid, and the manner in which they are used in this country, that the first twenty-four or five propositions are as simple in their reasoning as the first book of the "Elements ;" and that all the properties of solids which relate to volume or surface, form no part of our systems of academical reading. Mr. Tate must know this as well as we do; and we cannot consider it ingenuous to represent the difficulties which are inherent in the parts which are discarded from our usual systems of education, as attaching to those which are retained. Let us look to Mr. Tate's own work as regards these things. We find that with respect to the line and plane, he has nearly followed Euclid's views, leaving out however some essential steps of the demonstrations, and modifying some others after Legendre. Then, with respect to the others, which have in modern times been turned over to the calculus in some of its forms, Mr. Tate settles the question very gummarily, by the aid of, we suppose, his "common-sense," or his "graphic interest." He settles it, in short, as "common-sense" usually does settle these things, by a gross mutilation of "the arithmetic of infinites." There is, indeed, no novelty in this: the only novelty is in seeing it done by any man who had previonsly acquired the title of a mathematician -and in our own day too!
We promised a specimen of Mr, Tate's tutorial scheme. Here it is:-
"Nearly all the geometrical knowledge contained in this work may be conveyed to the pupil in this manner.
Teacher. What is the line a s called! a-m
Pupil. It is called a straight line.
T. Of the two atraight lines a B
and $D C$, which is the greater?
P. The line $\boldsymbol{A} \mathrm{B}$ is the greater.
T. How should you sccertain this with certainty?
r. By laying the line $\mathbf{D} \mathbf{c}$ upon $\boldsymbol{A} \mathbf{B}$.
7. What sort of line is $A F B$?
f. It is a crooked line.

T. True; bat it is alsn called a curved line. Whether is the curved line A F \quad or the straight line A b the shorter?
P. The straight line a B .
T. If you wanted to $g 0$ from Battersea school to the church, in what line thould you walk?
P. In a straght line. (Why?) Because a straigbt line is the shortest dist:nce between the school and the church.
T. What have you to say relative to the two straight lines $A B$ and $c \boldsymbol{D}$?

P. They appear to he of the same length; and moreover they appear to lie pren with each other.
T. In other words you might say, $\mathbf{C} \boldsymbol{d}=\mathbf{A B}$; and also $\mathbf{C D}$ d parallel to \triangle B. Is C d now parallel to $A B$?
P. No; for $\mathrm{C} \boldsymbol{d}$ would meet A B on the left side.

T. On which side would they now wret?
P. On the right hand side.

T. What is therefore the peculiar property or definition of parallel lines?
P. That if they be carried wit ever to far, on either aide, they will never meet.
A surfare is called a plane, or flat even surface, when the line between any two points upon it is atraight. Thus the surface of the tahle in a plane if a straight-edge exactly fits it when applied in every direction. To ascertain when a surface is a plane, bring your ege on a level with it, and if you find that every point in the surface can be seen at the same time, it will show that the surface is a plane. Our Ggurea are suppused to ve diawn on planes."

Such is the substitute propounded by Mr. Tate for the artificial verbiage of a "technical logic," and "the tedious verbiage of a rigorous demonstration," such as geometers give us! It is very possible that some readers may consider the substitute to be little else than the vulgar and illiterate verbiage, worthy only of the scientific charlatan, rather than of Mr. Tate and the Battersea Training College.
Were this book merely thrown on the market for those who may wish to purchase it, our concern would be less than it is about such a work: but we have heard that all the schools in England which are under the control of the Government Board of Education, are likely to have it forced upon them, as the condition of their receiving any part of the sums voted by the House of Commons in aid of those schools. The dedication of the work to Dr. Kay Shuttleworth is ominous; and the rumours which have reached us since we sat down to write, appear in perfect consistency with such a suspicion. Yet we can scarcely credit the rumour; and we believe that such an adoption of it would create a degree of dissatisfaction with that decision of that Board amongst soientific men and the friends of real education, which would be very disagreeable to the Government, and which might endanger its possession of the patronage which it is the policy of the Gavernment to extend in all directions.
Oh, no! despite the misrepresentations and perversions with which the "Elements" is assailed let us keep to the good old Euclid of our earlier days-unmutilated, and in his own venerable costume. The true spirit of geometry will be lost in England as it is elsewhere, if Euclid shall cease to be our text-book for the Elements of Geometry.

A Treatise on Practical Surveying, as particalarly applicable to New Zealand and other Colonies, containing an account of the Instruments most useful to the Colonial Surveyor and Engineer, \&c. By Abtaur Whiteread, late Civil Engineer to the New Zealand Company. London: Longman, 1848. Bvo. pp. 196, with plates.
The title of this work sufficiently explains its object. The author, acquainted by experience with the particular difficulties and exigencies of colonial surveying, has here recorded a large amount of useful knowledge, which has probably been acquired amid many toils and hardships. To the English surveyor, accustomed to well-cleared country, the task of mapping-out the untrodden wilds of New Zealand must be a new and formidable undertaking. The greatest difficulties of surveying at home, sink into insignificance in the colonies. Here we have open country, and the use of the instruments is little impeded by obstructions to vision-there the thick forest closes in on every side, impenetrable to the eye and almost to foot of man. Here there are wellknown way-marks and boundaries, of which every particular is already accurately ascertained and delineated-there everything is new and uncertain; the endless, unvaried scene presents nothing but intertangled thicket, without mark or vestige beyond the rare and fading traces of the hatchet of the savage. Here we have high-ways and bye-ways for chariots and horsemen-there the pioneer forces his way through a fence which is as thick as it is long. Or else his journey lies over the treacherous morass. Or he must swim the unbridged, unfordable torrent. Or his path mounts up the steep hill-side, with some 110° of Fahrenheit, and 45° of angular acclivity against him. No cheerful hostel for him where he may turn in to tarry for the night. He must not ask, with Falstaff, "May I not take mine ease in mine inn?" His inn is his blanket. His kitchen and larder are the basket which accompanies him at every step. To hap on a place where food might be obtained by barter, would be as surprising to him as to meet a policeman or postman. He pioneers without a road, and thinks himself fortunate if his course be along the mazes and rapids, the rocks and shoals, of a mountain stream.

It requires no ordinary energy to face such difficulties. And we may congratulate ourselves that the spirit of our nation renders Englishmen especially fit for occupations so arduous. The mania for enterprise which renders the English tourist the wouder or annoyance of the untravelled German or Italian, is turned to useful account when the wilds of the antipodes are to be marked out and plotted into farms and townships. Without this spirit there could be no sufficient inducement to begin this first attack upon nature. For these colonial surveyors are not civilizers, but the pioneers of civilization. They lead the forlorn hope. When they have made the breach practicable, others enter in and gather the spoil.
The first chapter of the work before us gives descriptions and accounts of the methods of adjusting the instruments chiefly em-
plojed in colonisd surveging. For instruments used in the bush, portability is of course rather more important thas it would be on the Sussex Downs. There are various risks from rough uagge to be guarded against or remedied in the former situation which are comparatively immaterial in the latter; and on all these points our author gives minute instruction. Chapters 1I. and 11I. detail the methods of laying out town and country lands, and the particular objects which demand the attention of the explorer are carefully explained. The foarth chapter (on practicsl astronomy) does not from its nature admit much that is new, but appears to be a useful compendium. There are two other chapters, on marine surveying and colonial roads, and some tables of mean refraction, corrections for the sun's declination, \&c. On the whole, we are inclined to think that when the English surveyor packs up for the colonies, he ought to put Mr. Whitehead's treatise in a accessible corner of his portmanteau.

IMPROVED MODE OF WORKING EXPANSIVE STEAM VALVES.
 Communicated to the Mining Journal, by Mr. Thomar Cbaddock, of Birmingham.

Fig. 1 is an end elevation; and fig. 2 a side elevation. In this desizn, one eccentric, which is shown at $4,4,4$, is made to give motion to both the steam and expansive valves. The time at which it is

Fig. I.
Fig. 2.
desired to open and close the expansivevalve, in relation to the stroke of the piston, will be understood from the following description of the parts :-a a is the clip and eccentric rod, which communicates motion from the eccentric $4,4,4$, to the expansive valve n, through the right angular lever b and d, which moves upon the pin c, which is attached to the small projecting parts 88 , which project from the lever $f f$-the lever $d d$, terminating in a forked end, which takes into the groove of the circular ring $e e$, which ring is moved longitudinally by the action of the eccentric through the aforesaid lever b and $d ; j$ is another right-angular lever, which communicates motion to the expansive valve n, through the valve-rod n^{\prime}. The part represented at i, receives its support from the foundrtion, or other fixed part, to which the main shaft of the engine is attached, and has a projecting socket, on which the lever f, and ring e work-so that these parts have no direct communication with the main shaft. The ring does not revolve, but only partakes of the longitudinal motion imparted from the eccentric, and from thence through the levers s and n^{\prime}, to the expansive valve. The arc of the part marked i i, supports the lever f-it being also graduated, indicates the point at which the steam is cut off; as it will be reen that, by moving the lever f, the whole of the parts $\mathrm{a} a, b, d, h$, and s, are carried round with it to any desired angle in relation to the main crank of the engine, whereby the same thing is effected as if the eccentric $4,4,4$, itself were moved round, which governs the time of opening and closing the expansive valve. The part marked $h h$, is attached to the tever f, and serves the
purpose of steadying the eccentric clip, and also embraces the are i, so as to keep the lever f firmly attached thereto. At q is seen a small lever, acted upon by a spring, having at the opposite end a pin, which, on passing through the lever f, and arc i, holds the lever ffirmly in the desired position; whereas, on pressing the smaller lever with the hand, the lever f is liberated and moveable: 3,3 , is the eccentric clip, which is supposed to work the steun valve.

LLANDAFF CATHEDRAL.

The Hiavory, Present Condition, and Proposed Restoration of Leandoy Cathedral. By Mr. T. H. Wratt.-(Head et the Boyal lastitute of Brithob Architects, March 20.)

Upon the bistory of the cathedral, I shall not detain you at any great length. The first bishop is stated to have been Dubritius, who died in 522, on an ialand off the Caernarvonstrire coant, and whose bones were in 1120 tranalated to Llandafl by Bishop Urban, the foonder of the present cathedral.

Urban wat consecrated the thirtieth bishop of Uendeff in 1108; and ta bim all concede the bonour of having founded the present cathedrab. As bis first coming, be found his bishopric in a very poor and miserable condi-tion,-tbe church razed almost to the ground; and complaining thereof to the King and the Pope in 1119, he procured letters and gathered large sums together; be pulled down the old church, which wat but 28 feet long, 15 feet broad, and 20 feet bigb; and in 1120, according to Leland and Godwin, -or in 1129, at stated by Dugdale, -he commenced the fabric dedicated to St. Peter and St. Paul. Bishop Godwin (who wrote in 1601) describem this building as "a very elegant one, 300 feet long, 80 feet broad, and adorned at the weat end with two stately towers of great height, and a neat chapel of our Ladye: a work traly magnificent, and to be remembered with honour by posterity." Urban died in 1133, whilat travelling towards Rome. Prom this period to the beginaing of the last century there is no further record of any kind that I can find relating to the cathedral, and bere conjecture must commence.

If Bishop Godwin be correct in rupposing the church commenced by Urban to beve been completed by him with two towera and a Ladye chapel; and to bave heen 300 feet long, it mast have disappeared between the perind of his death (1133), and 1180 or 1190 , which will, I think, be conceded as the earlieot date at which the present Early English structure could have been commenced. The extreme length of the present building is only 2 Cd feet, and its breadtb 76 feet. Of pure Norman work, such as we may bew lieve Urban to have execoted in the beginning of the twelfth centary, we only have the large arch between the preshytery and Ladye chapel; the renomining portion of a window on the south side of the presbytery, so curiously stopped up at a later period; portions of a Norman string-course, with a fret orament, ranaing round the walle of the presbytery (being tbe stringcourse of the Norman clerentory); a variety of Norman fragments walled into the preabytery; and the two doors at the weat end of the north and south aislet, which, though later in their detail and finish than the large arch, may fairly be considered as of Urban's time, particularly if be commenced at the east end and worted westward toward these doors.

Tbe sire of the chancel arch, and the importance and decoration of the aisle doorn, dearly prove that tbey coald bave formed no portion of the early and insignificant church knocked about by the Normana, and eventually demolished by Urban; for although the preservation of doorwaya and chanced arches of Norman cburches, rebuilt in the thirteenth and fourteenth centaries, is of frequent occurrence, yet in this inatance I think they wust have originated with Urban and not have been removed or perpetaated by him.

The character and 6 nish of the large arch at the east end of the prewbytery, cleasly proves that it must heve opened into a chancel or Ladye chapel: and thus we may helieve Urban so far to have realised Godwin's description as to have completed, "a neat chapel of our Ladye." And the existence of pure Norman work, so far weatward as the two aisle donn, may be takell as preanmptive evidence that Urban completed "a work truly magnificent, and to be remenbered with honour by posterity," even if tis western towers were faliulous. Certainly these doormays are of rich and beautiful design, and the general character of all the Norman work remaining in of a pure and good period, correqponding with Urban's prelacy. What befel thit Norman church, or how it could have been so completely destruyed in the short period between Urban's death and 1180 or 1190 , as to bave rendered necessary the almont entire rebuilding of the church in a uew and distinct style, semains a myatery. Here are no traces of that gradual and clearlymarked transition from Norman to Early English, which ne fiud so evidentily and so instiuctively displayed at Canterbury, Nerwich, Gloucester, St. David's, and Huildwas Abbey. With the single exception of the weotera doorway (in wbich the circular arch is retained, though the detail of the shatte mad mouldings are Early English), the new work was commenced free from any taint or prejudice of a past bryle, and stauds forth as pute and beantifal an example of Early English cunposition and detail as any with - bich I am acquainted. An able writer in the Ecclesiologiat thus spealy
of it:-" The exquinite Eariy English work of this part of the church is traly beautiful; not the least ides is obtained by the wretched drawing given in 'Winkle's Cathedrals.' To stand opposite the weatern front-iteelf once a marvel of art-and view through the now vacant and tainous windowi the paganized nave beyond it, with its fiat pedimental roof, its ridiculons vases and urns, its atuccoed walls, is inevitably to feel the most forcible contrast hetween the speaking graces of the Cbristian and the burleaque ab. surdities of the revived pagan style."
Although from the affinity of England to Wales, where our ancestors sojnurned, if not as absolute conquerors, yet as authorised visitors, we may fairly believe architecture to have heen almost on level in point of date, we can have no reason for imagining that the Welch were some 70 or 80 years in advance of the Eoglish in the periods of their architecture, or that the change from the circular to the pointed arch, by us called "Early English," should more properly have been called "Early Welch." If this is allowed, I am unable to believe that any antiquary can asaign an earlier dato than 1180 or 1190 to the weat front and nave of this cathedral; for though it is perfectly impossible to fix with peremptory certainty the exact date when one particular stage or style of art ended and another commenced, yet we find that from the period when the pointed arch firat made its appearance and became blended with the Norman semicircle, years elapsed before the newer atyle or form had sbaken off the infuence of its predecessor.

We find in numerous instances, at at Gloncester, Canterhury, the Temple Church, and St. David's Cathedral, that this transitional feeling existed in full force-nay, that the Norman preponderated-although the portions I allude to are well known to date abont the end of the twelfth century. You will, I think, share my disbelief in the theory that the pure and pointed work at Llandaff could bave been commenced sisty or seventy yeari before the Norman arch had elsewhere ceased to prevail. In Buildwas Abbey which is one of the earliest transition works I know (the date of which is stated to be about 1135), the indication of Early English form or feeling is very slight. In the section of one of the bays of the nave of St. David't Cathedral, built in 1180, you find the only Early English work consista of a small arcade, between two seriea of clearly-defined Norman arches!-certainly not a very convincing pronf that Early Eoglish work was in exietence in the sister cathedral of South Wales sixty years before this work was com. menced.

Heary (prior of Abergavenny) was consecrated bishop of Landaff in 1191, and died in 1218. He may, with at lesst as much probability as belonga to some antiquarian aseertions, be supposed, if not actually to bave recommenced the erection of his cathedral in the new style of his day, at least to have promoted works, the character and period of which are so evidently coeval with bis twenty-seven years of power.

The lower portions of the porth tower, and all the remaining part of the south tower, the aave, and clerestory remaining, are all of the same pure Early English character. In the colomns and arches of the nave and choir slight variety of arrangement occurs without deviating from the style : somewhat more ornament is introduced, and by the time they reached the Ladye chapel, the gradation of atyle becomes apparent; and with a view to give increased richness to this more sacred portion of the building, or from the more "decorated" fashion of the day, when they arrived thus far east, vaultiug is introduced, mullions and circles are executed in the side windows, and in the easternmoat window tracery becomen apparent, until it almost assumes the character of a "decorated" window.

In the two bays of the presbytery a fault (as geologists might term it) occurs, which it is dificult to account for. These arches are evidently of a later and more depressed form than those in the gave and choir, and from their form and detail are of a later date than the Ladye chapel. Whether this portion of Urban's work may bave remained uninjured and undiatorbed until after the completion of the Ladye chapel, when they way bave thought it necessary to assimilate the Norman piers and arches more closely to their pointed neighbours, or whether some injury took place to this part of the cathedral, which rendered rebuilding necesiary at a later period, 1 have no means of determining, but it is curions that in this portion of the building we find more Norman remaing than elsewhere. There still exists the Norman string-course in its original bed, with a sort of "embattled fret" carved upon it, running round the three siden of the presbytery: we find plinthe and portions of cylindrical thafts, which may have formed (as at Norwich) the arch between the choir and presbytery : there is the large Norman arch over the screen; the corious remains of a Norman window, so nnceremo. niously blocked up by the Early English architect who huilt against it ; and in the rough masonry of the walls of this part we find walled-up numerous fragments of Norman mouldings and ornaments. One might almost suppose this portion of Urban's original catbedral to have escaped the early deatruction I attribute to the reat of bis building, and to have been preserved intact by the Early English arcbitects who rebuilt it. At some later period, for fashion's sake, or from decay, we can imagine these arcbea to bave been reconstructed or remodelled, leaving, as I believe they did, the Norman clerestory undiaturbed. The string-course even now remains; and in the view given of the north front by Godwio, in 1713 (when it was almost perfect), it will be oheerved that a semicircular and apparently Norman line of windows is shown in the clerestory of this part, as distinguisbed from the Early
*There is good reacon to believe that the Ladye chapel wat the addition of William de Breon, the forty-third blithop, from 1:6 the 1267. He xas buried close to the allar, and ble tomb still remalos.

English in the nave. Of the history of this alteration or portion of the work, I can find no trace.

The "decorated" altar-sereen is stated, in Browne Willis's, and all the other histories of the cathedral, to have been erected by a Bishop Marshall, Who wat consecrated in 1478 ; but as the detail is pure "decorated," it must have been completed, in all probability, 100 years before this time. I have littie dombt but that the piers and arches of the presbytery and this acreen were erected at the asme time, or by the as:ae architect-an opinion which is confirmed by the fact of the base moulding on the south side being raised considerably above the opposite pier on the north side, and corresponding exactly with the level of the base of acreen and the hase of the sedile which it immediately adjoins. The decoration and enrichment of this screen, attributed to Bishop Marthall, have, no doubt, reference to the painting and gilding upon it. "Tbere are eleven niches in the principal level, painted with roses and hyacinths interchangeably." The centres of the roses and flowers of the hyacinths are gilt. The rosen are white (which quite identifies the decoration vith Bishop Marahall),-the wbite rose being the device of the house of York, used for decoration only in the reign of Edward IV. and Richard III. Bishop Marshall having been preferred to this diocese by Edward IV., the adoption of his badge was a uatural and proper compliment. " Under these eleven nichet is a row of eight niches, painted in fresco, exactly like the former. At each end of these are three real niches painted in the asme manner; within thete are two little ones, with a pilaster between; the ground-work throughout is interchangeably blue and red, and the ornaments over all the niches are gilt. At each end is a door leading into a vestry." Thus far I can confirm, from the remains of this screen, the deacription given by Browne Willis. He then proceeds to say-" Above the altar-piece are two rowi of large niches, in which formerly there have been figures. In both rows the middlemont niche is largor than the reat ; and on each side are two lesser ones. The two largest nichea probably contained the images of our Lord and the bleased Virgin, and the other twelvo were for the twelve Apostles. Under the two large niches are the ten commandments, writien with gold letters, within a frame, and over all is a handsome freestone window." Unfortunately, the destruction of this apper portion of the screen has been complete (doubtless the work of puritan or political fanaticism). Nothing remains above this line, but we bave found walled into the various portions of the structure fragments of corbels, canopien, and buttresses, which evidently, from their size and form of moulding, belonged to this screen.

From the period ahen Godvin described Urhan's charch to have been complete, of certain dimensinns, and a work truly magnificent," there is no notice of the cathedral until 1719, when Browne Willis, an antiquary of that day, as he sayn, "collected together various records and matter, and gave with bis work certain draughts of the said church, in order to illustrate the deacriptiona thereof." Tbese draughts, as you may imagine, aro not very clear in their distinctions of style, or in the best possible perspective, but they are most valuable as helping the description, as being the only records we have of what the old cathedral was (before lightning, atorma, and Wood of Bath played such havoc with it); and, consequently, as being out principal guide and anthority in the restoration. It wat then falling into a stite of deplorable decay, though perfect in its internal arrangements. There wat a large building in front of the sonth Norman doorway, which he calls the "Consistory Court;" and a porch opposite the "decorated" south door. Both these excrescences have disappeared, and I should wuch doult if they formed any portion of the original design.

Soon after Browne Willis's survey, destruction had full sway. On the 20th of November, 1720 , the remaining battiements and pinnaclen of the north tower (which had etcaped the storm of 1703) were blown down, and destroyed a considerable portion of the north aisle. On the 6th of Pehraars, 1722, the "roof and floor of the south tower fell in, and deatroyed a gord deal of the church." The complete ruin of this old atructure must have followed very rapidly on Willis's visit ; and in $\mathbf{1 7 2 4}$ we find the Archbishop of Canterbury interesting himself in its proposed rebuilding (l cannot asy restoration). He obtained 1,000l. from George I., and, like our bishop of the present day, tried in vain to get anything from the Prince of Wales. Sufficient funds were, bowever, eventually raised to erect the frightful sheif which now encases the original piers and archea.

About 1735, Wood of Bath, commenced the desecration of this find old work, and of his own prior fame: for mont assuredly a more barbarous or tasteless grafting of uncongenial modernism upon an ancient stem was uever perpetrated; and never was the sarcasm of the hiatorian Whitaker more juatly deserved than in this instance. He aays-" The cloven foot will appear! for modern architects have an incurahle propensity to mix their own absurd and unauthorized fancies whath the gennine models of antiquity! They want alike taste to invent, or modesty to copy." All that can be said in extenuation is that the corrupt taste of that day gave a fashion to this work the power of which Wood may have been unahle to resiat ; I wish it was in evidence that he had tried to do so. That this fashion approved sucb barbariom may be inferred from the accompanying letter, which I find copied in the "Cole's MSS." in the British, Museum. It is written by a Rev. Thos. Davies to Browne Willis, who appears still to have taken much intereat in the old wreck :-
"23rd Nov. 1736.-The church on the inside, as far as 'tin ceiled and plastered, which ia something beyond the west end of choir, lookn exceeding fine, and is a very siately and beautiful room. The area of the whole church is to be considerably raised, so that when finished it will (in the judgment of
most people who have seen it) be a very neat and elegant church, anlesg, iodeed, the altar-piece, which looks like a hage portico, spoil the whole efect."

Mr. Cole illastrates his amusing MS. by elerations of the west and sonth froats, and a view of the altar portico, which it was feared (and not without some reason) might mar the whole effoct.

We find no traces of the portico at the weat end, nor can I learn that the pigeon-house cupola was ever carried into effect. The altar wat removed some few year ago.

The bishop's throne, the pulpit, and atallt consist of an Ionic colonnade, with niches at the back; they atill exist in their pristine propriety and besuty, and I can conscientiously recommend them to any architect about to build asaize conrts; the pulpit and throne would form admirable judge's seaty, and the stalle a most dignified row of seate for the magistracy.

I do not imagine that much was done to Mr. Wood's structure antil 1840, when the plaster ceiling and lead over the nave being in a very bad and nowesthertight condition, considerable sum was expeaded in reparing and making good as it then existed.

So mach for the historf of the cathedral. A very few words will describe its condition when the preseat restorations were commenced.

PRESERVING AND COLOURING WOOD.

Francols Augustin Renard, of 40 , Rue du Rocher, Paris, merchant, for "Improvements in preserving and colouring wood."Granted August 19, 1847 ; Enrolled February 19, 1848.
This invention consists in a mode of constructing apparatus in which a vacuum can be produced, after the same has been applied to one end of a log of wood; so that a preserving or colouring liquid, contained in a suitable vessel or receptacle at the other end, will be caused, by atmospheric pressure, to pass thro ugh the \log in the longitudinal direction of the fibres.
The annexed engraving is a side elevation of the apparatus employed. A is a metal cylinder, provided with a top-piece b, from which is suspended a rod, with a piece of perforated metal or wire

gauze attached to its lower end. c is a metal disc, fixed to the cylinder A, having an opening at its centre, communicating with the interior of the cylinder; and between this disc and the end of the \log of wood n, a narrow leather washer E , is interposed, so that there will be a small space left between the log and the disc. The position of the log upon the frame L , is to be adjusted by the chain and the screw $a ;$ f is a collar, placed around the \log of wood, having a chain attached to it, and by which the wood may be moved to and fro, as required, upon the frame u, by means of the screw a : in turning the screw, by means of the lever, the chain will act upon the collar f, either to bring the block nearer or remove it farther away, as may be required. The other end of the \log is enclosed in a bag a, of impermeable material, which is connected to the cock of a vessel $I_{\text {, containing the preserving or colouring liquid. }}$ Now if a vacuum be produced in the cylinder A, the pressure of the atmosphere upon the surface of the liquid in the vessel 1 , will force it through the log. The vacuum may be obtained by any convenient method; but the patentee prefers to produce it by dipping the wire gauze, carried by the rod of the top-piece s, into some infammable matter (such as alcohol), and introducing it in an ignited state into the cylinder A; the air will then escape through the cock m , which is to be left open for that purpose, and is to be closed as soon as the required vacuum is obtained, as indicated by a small barometer m, conneeted by a tube with the interior of the cylinder A. When the moisture of the wood, or the preserving or colouring liquid, has been forced by the pressure of the atmosphere into the cylinder A, the vacuum will be destroyed, as will be indicated by the barometer m; the cock x being then opened, the liquid will
run into a veasel N, beneath; after which, a vacuum is to be produced in the cylinder 4 , as before.
The passage of the liquid through the log may be accelerated by a force-pump or other suitable means. Although the \log is shown in a horizontal position, yet it may be operated upon in a similar manner when in a vertical position, by substituting for the bag H , and vessel r , a vessel with a suitable opening in the bottom of it to receive the end of the log. When the log or piece of wood is square, then, instead of the bag n, and vessel i, a trough is used to contain the preserving or colouring liquid, and the whole of the \log is immersed therein, excepting the end to which the metal dinic is applied.

REFINING SILVER AND LEAD.

Arthur Haray Johngon, of Gresham street, City, assayer, for "Improvements in refining silvor and lead, by effecting a saving in one of the materials used."-Granted September 83, 1847; Enrolled March 23, 1848.

The improvements consist in restoring after use, and renderius again available, the phosphate of lime or bone-ash, whereof the cupel or test used by refiners of silver lead is composed, and in the process saturated with lead, and a portion of silver. For extracting this lead and silver, the course usually adopted is to return the used cupel to the furnace, by which means the whole of the saturated bone-ash is destroyed; while portions of the lead and silver, combining with the phosphoric acid of the bone, pass off, and are lost. Hy the improved method, little or no waste occurs of either the bone-ash, silver, or lead.

To carry out the invention, a solvent of the oxide of lead is used in the following manner:-First reduce the used cupel to a fine powder; then add a sufficient quantity of pyroligneous or acetic acid, varying from 1.009 to 1.048 specific gravity, according to the per-centage of lead contained, to render it of a thin consistence, that it may be thoroughly stirred in a dolly-tub, or some such convenient machine, or by allowing the acid to percolate through the powdered test. After allowing the powdered cupel and acid to remain together for two days (during which time occasionally stir them well together), the bulk of the lead becomes dissolved. The mixture is next put into cloth or flannel filters, or other percolators, to allow the lead solution to drain off; this done, remove the remaining soluble salt of lead, by washing it with water and by the application of pressure, previons to drying the resulting bone-ash.

After the above process, the silver, and some lead, still remain in the bone-ash, though not sufficient lead to materially interfere with its absorbent powers, on again using, provided it has been properly freed from the lead solution. If, however, it be wished to extract the lead more perfectly, add a second portion of the acid to the filtered or drained bone-ash, and again thoroughly stir it in this second acid-the washing and pressing, as before described, following this second operation. To bring the lead, contained in the solution, into a marketable form, after dae saturation, either simply evaporate it in proper pans to make sugar of lead, or by means of the several re-agents commonly employed, form respectively the carbonate, the sulphate, the sulphuret, or other cumpounds of lead that may be desired.

Instead of pyroligneous acid, a solution of caustic potash may be used, or soda, containing about 20 per cent. of the pure alkali; but this has not been found so useful in practice.

GAS STOVE.

William Brockedon, of Devonshire-street, Queen-square, Middlesex, for "Improvements in heating rooms or apartments. -Granted September 9, 1847 ; Enrolled March 9, 1848.

This invention relates to heating rooms with gas. It consists in so constructing stoves or fire-places which are open in frout that gas may be burned therein, and the decomposed air and products of combustion pass into chimneys, as from open fire-places or stoves when burning coal. The stove or fire-place may be constructed as nearly as may be like those now used with open firebars, and may have a bottom grate similar to what are used for burning coal, and they may be made to fit the fire-places as at present constructed, or the stoves and fire-places may be greatly varied in design, so long as the stoves or fire-places are capable of consuming gas in an open fire-place communicating with a chimney or flue.

In order to give a gas stove constructed according to this inven-
tion, as much as pessible the character of the present open fireplaces used for consuming coal, they are to be made with a front grating or bars, against which is to be placed lumps of pumicestone or other substances which will allow of being heated by the flame of gas and yet not consume. The front bars should be made nearer to the back of the stove than when for burning coal, and so that there shall be but small space bet weeu the back of the stove and the front bars; or such substances may be placed in a wire or other frame suspended near to or amidst the flames of gas where the form of the stove or fire-place is not otherwise adapted to receive such substances; and in some cases the front bars of the stove or grate are made hollow, so as to allow gas to pass from a supply-pipe into them, and thence to pass out through perforations so as to produce numerous small flames which may be partly inward towards the pumice-stone, so as to heat the same, and other flames may be outwards through between the front bars of the stove or grate, and the front bars in place of being simply across the fire-place may be made into any fanciful form, such as basket work or otherwise, to hold the pumice-stone, or other substances. Or in place of having the front bars or open grating hollow and perforated to produce numerous jets of gas, the jets of gas may be wholly or partially from the bottom or the back or sides of the open fire-place or stove. And it should be understood that it is essential to this invention that the apparatus should be open to view, and also be open to a chimney or flue, so that the gas in burning may give heat to the room or apartment without the decomposed air and products of combustion caused thereby coming into the roum or apartment, and at the backs and sides of such stoves or fire-places, bright steel, glass, china, or other reflectors, may, with advantage, be placed. It is not essential to this invention that the open gas fire-place should have a receptable for the pumice-stone or incombustible substances, as the same may be dispensed with, but it is preferred to have an arrangement for receiving such substances, as thereby the cheerful character of the old English fireside is retained. And the inventor believes that the most elegant result may be obtained by using jets of gas from front bars or grates combined with jets of gas from bars or apparatus at bottom, so arranged that air may (as is now the case when burning coal) pass up between the bottom, the lower bars in such case supporting the pumice-stone or other substance, for by such means, by a comparative small consumption of gas, the appearance of a large flaming fire may be produced.

JENNINGS'S PATENT INDIA-RUBBER TUBE COCKS.

This improved cock is made by placing a flexible india-rubber tube of any required size within one of metal, as shown in fig. 1 ;

Pig. 1.
and then by mechanical means to flatten the flexible tube, as shown in fig. 9.

The advantages which the patentee states this cock possesses over any at present in use are-1st. The ease with which it can be at all times opened or shut, and the means used for that purpose being so simple, it cannot be set fast by corrosion or become injured by frequent use. 2nd. When open it is part of the main or pipe, as shown in fig. 1 , and presents the same uninterrupted pas-
sage as the pipe itself, and as the means used for closing or stopping the circulation have no communication with the gas or water passage, leakage is impossible. Srd. It will be seen by fig. 2 , if the vulcanised india-rubber tube be properly flattened the cock must be sound. 4th. These cooks are capable of standing any pressure, as

Fig. 2.
the elastic material of which the cack is composed never can become injured by pressure, as long as the metallic casing which surrounds the flexible tube remains perfect.

SEPARATING IRON FROM ORE.

Arthur Wall, of India-row, East India-road, Middlemex, for "a new or improved apparatus for a method of separating axides from their compounds and each other."-Granted October 14, 1847; Enrolled April 14, 1848.

The apparatus is for separating iron from the ores of copper, \&c., and consists of two hexagonal drums with an endless chain passing over them, made by connecting with links a number of horseshoe magnets; on the extremities of each of the magnets a number of ateel blades are so fixed as to stand out at right angles to the magnets. These drums are made to revolve over a trough in such a position that while the chain of magnets passes immediately above the trough the steel blades reach nearly to the bottom; the bottom of the trough being inclined at each end, so as to correspond with the direction of the blades. The ore (previously roasted and ground) being introduced at one end of this trough the blades, as they pass through it, will take up all the iron contained in it and carry it to the other end; and, indeed, would bring it all back again in the next revolution but for the following arrangement. Opposite the point where the blades emerge from the trough, a set of magnets are fixed to a frame with their poles in the reverse order to those forming the chain, so that when the steel blades come opposite these fixed magnets, their magnetism is neutralised, and the iron which they had collected in the trough falls off, and is collected in another trough placed beneath to receive it. The patentee does not confine himself to the permanent magnets, but he claims also the use of electro-magnets, though he prefers to use the former as being more convenient.

Plate-Glabs.-Patented October 7, 1847, by James Hartley, of Sunderland. The improvements relate to the manufacture of rough plate-glass immediately prior to the pouring of the melted glass or metal upon the table, and rolling.-Instead of lading the melted metal into a separate cistern as usual, the patentee lades it direct from the melting-pot to the pouring-table, where it is immediately poured and rolled. The patentee employs, for the purpose of lading the melted metal, should the quantity required be large, two or more ladles; and he states, it is not absolutely necessary that the whole should be poured at the same moment upon the table; but the second ladle may commence to be poured at nearly the termination of the pouring of the first ladle. After the manufacture of the rough plates, they are to be piled and annealed in the same kind of furnace and in the same manner as crown or sheet glass, thus dispensing with the more expensive annealing furnaces employed for plate-glass.

PORCELAIN KILN.

Alpred Vincent Newton, of the Office for Patente, 66, Chan-cery-lane, Middlesex, mechanical draughtsman, for "an invention of an improved kiln or oven, for firing porcelain and other similar ware." (A communication.)-Granted July 29, 1847; Enrolled January 29, 1848. [Reported in Newton's London Journal.]

The inventor, in order to explain more fully the nature of his improvements, has prefaced his specification with the following observations, explanatory of the ordinary mode of firing or baking hard porcelain, and the difficulties and objections incident thereto.

The employment of pit-coal as a fuel for firing or baking hard porcelain has hitherto been thought impossible, or at least subject to almost insuperable difficulties. It was thought that the hardness and infusibility of the clay (kaolin), and the high degree of heat necessary to fuse or melt the glaze which is employed to cover hard porcelain, were insurmountable obstacles. A long and sufficiently large or extensive flame to occupy the whole space of the oven or kiln is indispensable for this kind of manufacture; and the liability of the matters composing the hard porcelain to become discoloured, rendered this superabundance of flame the more necessary, in order that no smoke might be allowed to remain in the kiln or oven. It is requisite, therefore, to cause pit-coal to develope sach an amount of flame as would have the same effect, and would act within a given time in the same manner as wood.
The matters of which hard porcelain is composed, are divided into two classes, -first, the paste or clay, which is a principal element ; and second, the glazing or enamelled covering. The paste or clay consists essentially of two elements; the one is an infusible argillaceous matter,-this is kaolin, either alone or mixed with plastic clay, or with magnesite,-the other, arid and infusible, is given by felspar or other stony minerala, such as siliceous sand, chalk, or gypsum, either separately or mixed together in different combinations. The enamel or glaze consists of quartzoze felspar, sometimes alone and sometimes in combination with gypsum, but always without either lead or tin. Hard porcelain must, in fact, be considered as hard compact impermeable pottery-ware, which is essentially translucid, and ought not to be confounded either with stone-ware, delph-ware, pipe-clay, or even with the ordinary tender English porcelain. The kilns or ovens for firing or baking hard porcelain are generally cylindrical, and divided into two chambers or laboratoriea, one placed above the other. The upper laboratory is supplied with heat from the flame of the lower laboratory, and serves to warm or heat the articles, which, when taken from thence, are dipped into the glazing composition, and afterwards exposed to the great heat in the lower laboratory, which may be properly said to constitute the kiln. The fusion of the glaze or enamel, as is above said, requires a very high temperature; and it is in the laboratory where this operation is carried on that the temperature is raised to the highest degree. In both these laboratories the articles must be inclosed in fire-clay vessels or seggars, which should be carefully closed, in order to prevent the admission of deleterious matters. The necessary amount of flame and heat may be obtained by increasing the number of fire-grates and openings for the flame: thus a kiln or oven, six yards in diameter, which, when heated with wood, requires six openings, must have ten when pit-coal is employed. A kiln or oven, five yards in diameter, would require only five fire-grates for wood, but must be furnished with eight for coal. A kiln or oven, four yards in diameter, heated by wood, would require four fire-grates and apertures for wood, but must have six for coal. In order to make the flame sufficiently long and abundant for the requirements of the manufacture, the combustion ought to be supplied with a double draft, or additional curtents of air. Thus, besides the supply furnished between the fire-bars from the surrounding atmosphere in the workshop, air obtained from outside is conducted by horizontal channels to the fire: that is to say, besides the ordinary supply of air, an additional quantity, obtained from the external atmosphere, is made to act with energy on the fires in the grates. By this means, the kiln is sopplied with a very large and superabundant supply of air, which fornishes the fuel with a much greater quantity of gas to decompose.
The engravings represent a kiln or oven, constructed according to the present improvements; and it should be observed, that it is always easy to obtain the necessary quantity of air, by taking it from the atmosphere of the workshop, either by having an aperture or grating at the end of the ash-pit, or by making openings below the fire-bars in the two side walls of the furnace.
The improved system of firing or baking may be applied to all kilng, whatever may be their form or dimensions; and, by means of a double roof in the upper laboratory, hard and tender porcelain
may be fired in the same kiln simultaneously: that is to say, hard porcelain may be baked or fired in the lower laboratory, at the same time that tender porcelain or common earthenware is being fired in the upper laboratory. In manufactories where at present the baking of biscuit-ware and glazed ware is carried on in separate kilns, it will be evident that these kilns may, by the application of a double roof, be more advantageously employed in the following manner:-In the biscuit kiln, heretofore employed, delph, or earthenware, or unglazed tender porcelain, may be operated upon in the lower laboratory, while hard porcelain may be dried and heated in the upper laboratory; and in the other kiln, formerly used for glazing, the hard porcelain should, on the contrary, be placed in the lower laboratory, to be baked or fired; and glazed delph, or earthenware, or tender porcelain, may be operated upon in the upper laboratory,-the heat in which will be found sufficient for this kind of ware.

The kilns being furnished with the required quantity of fireplaces, the combustion must be kept up, by supplying an excess or superabundance of air, obtained either from the external atmosphere or from the workshop, and supplied in some convenient and suitable manner, depending of course upon the situation of the kilns, their peculiar construction, and other circumstances. The fire should be gradually supplied with fuel, at first at long intervals, then at short intervals. The state of the fire-place should be looked to carefully, for it is the rapidity of the combustion of the coal which indicates the quantity of fuel that is required, and the moment when the charges are to be thrown on quickly. The fireplaces must be well watched, for the purpose of levelling the fuel, so that the fire-bars may be suitably and evenly covered, and that air to support combustion may always find a proper passage. It is also necessary to rake the fire frequently, in order to clear out the cinders, and to prevent the fire-bars from getting foul, and to remove clinkers therefrom, which would otherwise stop or diminish the combustion. Holes through the mass of fuel should never be allowed to exist, and the flame should always be well watched; and the baking or firing operation always be carried on with a long flame. All these precautions are necessary, in order to obtain very pure and white porcelain, as the defects of the firing operation arise most frequently from the want of a proper flame.

Fig. 1 represents a transverse vertical section, taken through the centre of a kiln of the improved construction; and fig. 2 is a

FIg. 1.-Section.
Ple. 2.-Plan
horizontal section or plan of the same. a is the outer chimney or flue of the upper second laboratory; b is an upper chamber, which may be used for drying or heating; c is a roof (shown by dotted lines), which will be required if it is intended to bake or fire both tender and hard porcelain in the same kiln; d is the flue of the lower chamber or laboratory; ee are passages or openings, of which there are the same number as there are fire-places in each kiln; these passages should be placed between the fire-places, and open a communication from the lower to the upper laboratory. ff is the lower laboratory, where the principal firing or baking operation is carried on; $g g g$, are the fire-places; and $h h h$, openings, to allow the flame to pass therefrom into the interior of the kiln. $i i$, are the fire-bars ; $j j$, the fire-doors; k, the ash-pit; and $l h$, passages communicating with the ash-pit from the external atmo-
sphere, to supply air to the fire: this object may, however, be effected by making an aperture in the front wall of the fire-place, immediately below the fire-box and grate-bars. $n n$, is the floor or hearth of the kiln. oo, are holes, covered up in any suitable manner, but communicating with the ash-pit, and intended to allow of the scoria, cinders, and clinkers being removed. $p p$, in fig. q, show another manner of supplying air to the fire-places, by making openings in the side walls of the same. q represents another mode, by which sir is supplied from the atmosphere of the workshop through a grating communicating with the ash-pit. The inventor remarks that, whatever may be the mode adopted for supplying the air to the fire, the same plan should be invariably adopted in all the fire-places of the same kiln.

The patentee, in conclusion, states that he is aware of coal having been used for heating the kilns in which common earthen or delph-ware, and even tender English porcelain is commonly baked or fired, -he does not, therefore, intend to claim the employment of pit-coal for such purposes as constituting part of the present improvements; but he claims, First,-the application of coal for heating the kilns or ovens in which hard porcelain is submitted to the baking or firing operation; and, Secondly,-the arrangement or construction of kilns or ovens, as herein shown and described, or any mere modification thereof, whereby pit-coal may be employed as the fuel for heating such kilns or ovens for firing or baking hard porcelain, in the place of wood, which has heretofore been employed for that purpose.

ON GEOLOGICAL CHEMISTRY.

A lecture on "The Application of Chemical Principles to the Science of Geology:" By Professor Daubeny.-(Delivered at the Royal Institution, Albemarle-street, March 24th.)

The Professor commenced his lecture with some preliminary observations, in which he said, he had for the last twelve months devoted his leisure to the accumulation and study of facts in relation to volcanic forces; and having, in this pursuit, travelled a good deal along the great boundary line dividing the two kingdoms of geology and chemistry, he had obtained glimpses of truths, which neither the pure chemist, nor the pure geologist might have had the same opportunities of observing-the result being, his entire acquiesence in the opinions of some of the greatest authorities of the present day, that geological inquiries ought, in future, to take more exclusively a chemical direction. The learned professor then proceeded to allude to a subject of geological inquiry, which seemed to him above all others to demand the assistance of the chemist-namely, the metamorphic action which had taken place between certain contiguous but dissimilar rocks-the one of eruptive, the other of sedimentary origin. A large amount of information had been collected by geologists, in respect to different kinds of metamorphic action, and their effects; but as to the manner in which these effects were produced, they would look in vain, unless the chemist also were appealed to. One thing appeared to be established-namely, that the production of mineral veins was connected with the intrusion of plutonic rocks, and with the changes brought about by them in the contiguous strata.

Few metallic deposits occurred in the secondary formations, and even these only when there was dislocation or metamorphic action in their neighbourhood; while, on the other hand, metallic veins were never found in modern lavas, or in volcanic products that had been erupted in the open air, though several geologists had brought forward facts to prove a connection between metallic matter and basaltic or trappean dykes. There were various theories to account for the formation of mineral veins-the first supposed them to be the result of infiltration, the water which percolated the substance of the contiguous rocks carrying with it the several mineral matters they contained, and afterwards depositing them upon the walls of fissures caused by the contraction of the surrounding parts; the second supposed the materials of the vein to have been held in solution by water, but deposited in an insoluble form, owing to slow electro-chemical action; the third hypothesis assumed, that the contents of the vein, being separated from the other materials by sublimation, found their way into fissures, existing either in other parts of it, or in the contiguous formstions. No doubt many facts might be alleged in favour of each hypothesis. In the first place, granting that a given rock contained, disseminated through it, any quantity of an oxidisable metal, such as iron, copper, lead, or tin, and that these were already in combination with sulphur, the action of water aud air, by
generating sulphuric acid, would gradually give rise to soluble sulphates, which might find their way into the contiguous fissures, where, owing to certain electrical or chemical reactions, the metals would be deposited in an insoluble form. Decomposition could be brought about by weak electrical currents; and thus the second hypothesis might be brought in to explain what was left unao counted for by the first. But both presupposed the existence of metallic matter in the rock from which the veinstone was derived, for it was evident that these several metals could not be present, in the requisite quantity, in strata deposited from water, or all our mineral springs would contain traces of them, just as they did of the silica and other substances supplied by the rock through which they had been percolated. He could not, therefore, help supposing, that the mineral matters, which had been confined to the neighbourhood of plutonic rocks, were, in the first instance, derived by igneous agency, which constituted the machinery by means of which the more uncommon metals were brought orlginally from the depths to the surface of the earth. It was remarkable, however, that they were not confined to the intrusive rock itself, but, in many instances, were in the metamorphic strata contiguous. There was, also, evidently a connection between the metallic matter in the vein and the character of the enveloping rock, seemingly showing, that the ingredients of the former were not sublimed directly from the interior of the globe, but had been introduced from the formation in contact with the vein. Thus Fournet had stated, that at Andreasburg, in the Hartz, the veins became poorer in metal when they passed from the clay-slate formation into the flinty-slate; and Voltz mentioned a vein in the Vosges which, in traversing successively different varieties of gneiss, had its contents modified in each. Thus, in the first variety, which was charged with mics, the vein was small in its dimensions, and wholly destitute of metal; in the second, which had more of the character of clay-slate, it swelled out to a width of 18 inches, and contained silver, combined with antimony, copper, \&c., together with sulphate of barytes; in the third, which contained hornblende, the former were wanting, bat the last-mentioned ingredient continued; while, in the fourth, which was wholly destitute of mica, the silver returned for a certain distance down, but was afterwards replaced by selenite, galena, and sulphur, in small quantities. Sir H. de la Beche mentioned similar cases in Cornwall; and the frequency of their appearance compelled the admission, that the materials of the vein were, in many instances at least, dependent upon the character of the rock which it traversed; so that, supposing them derived originally from the same igneous source, a process of segregation had subsequently taken place, by which particular bodies were determined to certain kinds of rock, to the abandonment of others.

In order to pave the way to a solution of these and other diffculties, he submitted two questions-the first, whether igneous rocks did not contain, disseminated through their substance, minute and, probably, infinitesimal quantities of many of those rarer bodies, which were found collected together in mineral veins? and the second, whether all these substances might not possess a certain amount of volatility, at temperatures below their freezing point, and thus become transported from place to place, at periods long subsequent to that at which they were originally evolved from the interior of the earth, in a state of admixture with other more abundant ingredient? In adopting the affirmative, with reference to the former of these questions, it was not necessary to go so far as to assume, that every basaltic dyke, or even every great volcanic formation, contained, as an integral part, minute quantities of all the metals that existed in nature-for, considering how infinitely small was the proportion which they bore to the entire bulk of the crystalline igneous rocks, their absence could not be safely inferred from the fact of their not having been discovered. The facts which inclined him to suspect that they might exist, were the circumstances-first, that the discovery of phosphoric acid, in so large a number of volcanic products, led to the conclusion, that this body, at least, was derived from volcanic emanation, and, by analogy, that metals were also so derived; secondly, the observation made by Henry Rose, that in every crystalline rock traces of copper might be detected by the test of sulphuretted hydrogen-thus suggesting, that if we had any equally delicate test for the other metals, they also might be ascertained to be present ; and, thirdly, the fact, that not only iron, arsenic, and aelenium, existed amongst the products of Vesuvius, but likewise lead, copper, zinc, and titanium, while tinstone also was ejected by Mount Etns. Now, assuming the existence of metals, and other bodies of rare occurrence, amongst the mattere evolved from the interior of the earth by igneous processes, the second hypothesis stated would enable us to account for the diffu-
sion of such matters through the substance of the contiguous strata, as well as for their local accumulation in fissures, or veins; for it whs evident, that if these bodies were severally capable of undergoing volstilisation, at temperatures below that of their fusion, the heat, which, originating in the intrusive rock, pervaded the formations contiguous for a great distance around, would drive out portions of all these substances, causing them to become disseminated throughout the latter, and, where fissures existed, to enter in, and contribute to fill them. For this purpose, however, the heat must be long continued, as well as of a certain intensity; and hence, whilst metallic veins were frequent in connection with granite, they were entirely absent from sub-aerial lavas, owing to the more rapidly cooling that would take place in the latter, than where the matter was thrown out under the sea, or at great depths beneath the surface. Thus, according to this theory, the accumulation of metallic matter in veins would have arisen, not from the latter having been the original receptacles of whatever was disengaged from the interior of the globe-for he agreed with Prof. Bischoff, in considering that the idea of metallic, or indeed of any description of veins, being injected in a state of fusion from below, *s trap and granite dykes were supposed to be, was encumbered rith insuperable difficulties-but owing to the subsequent action of the heat upon the erupted matter, by which the metal might have been slowly volatilised, and thus have found its way into the fissures and cavities contiguous, when the principle of adhesive affinity, described by Prof. Faraday in his "Memoir of the Limits of Evaporation," would come into play; and no sooner was a thin laye of metalic, or other body, collected along the walls of a cavity, than the portions subsequently sublimated would be determined to the same point, until the whole cavity was filled up.
The learned professor also alluded to Tilgman's discovery with regard to the decomposing influence of steam at high temperatures, which accounted for the decomposition of many rocks, and the formation of combinations between the alkalies and fixed acids. Various facts also proved that a certain exaltation of temperature wond favour the segregation and new combination of minerals, though that was not essential. To influences of this kind such formations as that of nodules of flint in chalk had been referred, but he thought it more probable that the deposition of silica was the result of the extraction of carbonic acid by the decomposition of animal matter.
He, therefore, suggested the importance of ascertaining by more precise experiments what were the laws which regulated the vapurisation of solids at temperatures below that at which they were fusible. Assuming the truth of this principle, it threw considerable light upon the alterations which contiguous strata underwent from the intrusive rocks-for, the supposing a certain degree of mobility to be produced by heat, without actual fusion, would enable us to understand these changes. The learned lecturer then proceeded to discuss the difficult question of dolomisation, which he contended might be solved by a reference to the same principles, aided by analogous facts known to chemists, with respect to carbon and other substances. The whole question, however, appeared to be open to further inquiry, both as to the degree of volatility possessed by magnesia and its several combinations, its power of penetrating the substance of a calcareous rock, and combining with its ingredients in atomic proportions-neither body being in a state of absolute fluidity-its transmissibility to great distances through an intervening mass of rock, and the circumstances which caused it to accumulate in certain sets of beds, and to pass over others. Experiments should, likewise, be made as to the changes which augitic rocks sustain under the influence of a high temperature, and as to the possible disengagement from them of magnesia under the circumstances supposed; nor was chemical research less called into request, for the purpose of enabling us to explain such phenomena as were produced by igneous causes at the present day, than for the elucidation of processes of higher antiquity. When he reflected upon the assemblage of chemical phenomens which presented themselves during the several phases of volcanic action-the enormous and long-continued evolution of carbonic acid-the inexhaustible supplies of sulphur, arising from deposits, originally caused by the decomposition of sulphuretted hydrogen-the volumes of steam and muriatic acid disengaged by those volcanoes which were in a state of activity-the sublimations of common salt, sal-ammoniac, \&c., which generally accompanied an eruption-the nitrogen gas evolved incessantly for centuries from many thermal springs-when he saw these, and other results of internal chemical action, come so prominently into view in every part of the world where opportunities for studying the operations of internal heat were presented, it did excite his surprise that philosophers of high name should have rested coutent with a theory
which professed to ascribe everything to the mere protrusion of some of the fluid contents of the globe through parts of its crust, without regarding features so important, and apparently so essential, as those to which he had alluded.

He thought that much was to be learned with respect to volcanoes, by minute chemical examinations of the solid products ejected, with a view of comparing their constitution one with another, and of the gases and vapours evolved before, at the time, and subsequently to, a volcanic crisis. The learned lecturer then referred to Prof. Abich's experiments with regard to felspar and to the recent discoveries at Vesuvius, representing the evolution of hydrogen from an active crater, and to the results which might be expected from further discoveries. In the meantime, even with our imperfect knowledge of these mysterious workings, we might obtain glimpses of a beautiful system of compensation-of an adaptation of means to an end-which struck the observer all the more, when it was displayed, as in this case, in the midst of those terrible manifestations of irresistible force, which the workiugs of a volcanoe, or an earthquake, revealed. This was shown by the useful purposes performed on the surface of the globe by the carbonic acid evolved from its interior, and was also illustrated by the occurrence of metals in veins, and the diffusion of phosphates in minute quantities so generally through the strata. Had not this been the case, the former would not have become known to us, and the latter would not have been available for the nutrition of plants.

Such were a few of the facts to which he had been desirous of directing attention, by way of inducement to his auditory to pursue the science of geology with a frequent reference to chenical principles; and he wished to impress upon those just entering upon the study more particularly, the great truth, that in all kinds of research, chemistry was to be regarded as the grammar to the language of Nature-the key to unlock her most secret mysteries ; and that those who were ambitious of following in the footsteps of the great men who had adorned, and still adorn, that noble Institution, by fathoming the depths of some one of those sciences which were there cultivated-nay, even those who, with humbler aspirations, were content, like himself, to snatch a mere superficial glance of several-would ever find it impossible to proceed without its assistance. His own experience justified him in assuring his auditory, that whether their chief interest might chance to lie in physiology-vegetable or animal ; in scientific husbandry; or in those cosmical phenomena which presented themselves to the explorer of mountainous regions-chemistry would suggest at once the right principles for interpreting the facts observed, as well as the soundest practical application that admitted of being deduced from them.

THE TIDES OF THE IRISH AND ENGLISH CHANNELS.
Report of Experiments made on the Tides in the Irish Sea; on the similarity of the Tidal Phenomena of the Irish and English Channels; and on the Importance of extending the Experiments round the Land's End and up the English Channel. By Captain F. W. Beechey, R.N.-(Read at the Royal Society, March 9 and 16, 1848).

The author commences by stating, that the set of the tides in the Irish Sea had always been misunderstood, owing to the disposition to associate the turn of the stream with the rise and fall of the water on the shore. This misapprehension, in a channel varying so much in its times of high water, could not fail to produce much mischief; and to this cause may be ascribed, in all probability, a large proportion of the wrecks in Carnarvon Bay. The present inquiry has dispelled these errors, and furnished science with new facts. It has shown that, notwithstanding the variety of times of high water, the turn of the stream throughout the north and south channels occurs at the same hour, and that this time happens to coincide with the times of high and low water at Morecombe Bay,-a place remarkable as being the spot where the streams coming round the opposite extremities of Ireland finally unite. These experiments, taken in connection with those of the Ordnance made at the suggestion of Professor Airy, show that there are two spots in the Irish Sea, in one of which the stream runs with considerable rapidity without there being any rise or fall of the water, and in the other the water rises and falls without having any perceptible stream; and the same stream makes high and low water in different parts of the channel at the same time; and that during certain portions of the tide, the stream, opposing the wave,
runs up an ascent of one foot in three miles with a velocity of three miles an hour.

The author enters minutely into the course of the stream, shows that the point of union of the streams from the opposite channels takes place on a line drawn from Carlingford through Peel in the Isle of Man on to Morecombe Bay; and concludes his remarks on this part of the subject by adverting to the great benefit navigation will derive from the present inquiry. He then notices a chart of lines of equal range of tide, which has been compiled partly from the ranges published by the Royal Society, and partly from observations made on the present occasion; and has annexed a table by the aid of which the seaman will be able to compare his soundings taken at any time of the tide with the depths marked upon the Admiralty charts. Next follows the mention of a feature in the motion of the tide-wave, which Capt. Beechey thinks has hitherto eacaped observation; viz. that the upper portions of the water fall quicker than the lower, or in other words, that the half-tide level does not coincide with the place of the water at the half-tide interval; that this difference in the Bristol Channel amounts to as much as four feet, and that the law seems to be applicable to all the tides of the Irish Sea.

We are next presented with a table exhibiting the various curves assumed by the tide-wave, and with the durations of the ebb and flood at each place. Having explained these observations in the Irish Sea, the author proceeds to apply to the tides of the English Channel the law which he found to regulate the stream of the Irish Channel, -availing himself of the observations of Captain M. White and others for this purpose. There was no difficulty in adapting the rule in the upper part of the channel; but below the contraction of the strait, the apparent discordance was so great that nothing but a reliance on the general accuracy of the observations prevented the inquiry being abandoned. It seemed that the streams are operated upon by two great forces, acting in opposition to each other; viz. that there is a great offing stream setting along the western side of the British Isles, and flowing in opposition to the tides of the channel above the contraction, turning the stream with greater or less effect as the site is near to, or removed from, the points of influence. By pursuing this idea, it was seen that the observations in the English Channel respond to it; and then applying it to the offing of the Irish Sea, and considering that channel to comprise within its limits the Bristol Channel, as the English Channel does the Gulf of St. Malo, it was found that the observations there also fully bear out the idea. So that there was afterwards but little difficulty in tracing the course of the water, and bringing into order what before appeared to be all confusion. The author then traces the great similarity of tidal phenomena of the two channels, and proceeds to describe them. For this purpose he considers the Irish Channel as extending from a line connecting the Land's End with Cape Clear to the end of its tidal stream, or virtual head of the tide at Peel ; and the English Channel from a line joining the Laud's End and Ushant, to the end of its tidal stream off Dungeness.

With these preliminary lines, he shows that both channels receive their tides from the Atlantic, and that they each flow up until met by counter streams; that from the outer limit of the English Channel to the virtual head of its tide the distance is 262 geographical miles-and in the Irish Channel, from its entrance to the virtual head of its tide, it is 265 miles. In both channels there is a contraction about midway; by Cape La Hogue in the one, and by St. David's Head in the other, and at nearly the same distance from the entrance. In both cases this contraction is the commencement of the regular stream, the time of the movement of which is regulated by the vertical movement of the water at the virtual head of the chanuel; situated in both cases 145 miles above the contraction, and that the actual time of this change, or Vulgar Establishment, is the same in both cases. Below the contraction of the strait, in both cases the stream varies its direction according to the preponderance of force exerted over it by the offing stream. In both cases, between the contraction and the southern horn of the channel there is a deep estuary (the Bristol Channel and the Gulf of St. Malo) in which the times of high water are nearly the same, and where, in both, the streams, meeting in the channel, pour their waters into these gulfs, and in both raise the tide to the extraordinary elevation of forty-seven feet. From the Land's End to the meeting of these streams in one case is seventy-five miles, and in the other the same.

In one channel, at Courtown, a little way above the contraction, and at 150 miles from the entrance, there is little or no rise of the water; and in the other, about Swanage, at the ame distauce from the entrance, there is but a small rise of tide also (five feet at springs). In both cases these spots are the node or hinge of the
tide.wave, on either side of which the times of high water are reversed. And again, near the virtual head of the tide, in both cases, there is an increased elevation of the water on the south-east side of the channel of about one-third of the column-the rise at Liverpool being thirty-one feet, and at Cayeux thirty-four feet.

The author traces a further identity in the progress of the tidewave along the sides of both channels opposite to that of the node. In the first part of the channel the wave in each travels at about fifty miles per hour ; in the next, just above the node, this rate is brought down to about thirty miles in one, and to sirteen miles in the other; it then in both becomes accelerated, and attains to about seventy-six miles per hour. Lastly, the author observes that the node or hinge of the tide, placed by Prof. Whewell (in his papers on the tides) in the North Sea, is situated at the same dis tance nearly from the head of the tide off Dungeness, as the node near Swanage is on the opposite side of it; and that in the Irish Channel, at the same distance nearly as the node at Courtown is from the head of the tide off Peel, there is a similar spot of no rise recently observed by Capt. Robinson. Capt. Beechey's letter was illustrated by charts and diagrams, showing the identity and singalar phenomena of these two great channels.

MR. HAY'S THEORY ON SYMNETRICAL BEAUTY.

On the Production of the Beautiful-an attempt to prove that the Theary advocated in the Papers read by Mr. D. R. Har before the Society, founded on the development of the Harmonic Ratios, in fallacions. By Mr. Thomas Pordig.- (Read at the Royal Scottish Society of Arta, Merch 13 and 27).

Pazt I.

Mr. Purdis commenced his paper by referring to the opinions of those philosophera of the Socratic school whose oames bad been used in support of the theory under conaideration. He endeavoured to show, by quotations from Lord Jeffrey's "Essay on Beauty," and from Dr. Reid's works, that these opinions were hostile to all theories of such a nature. He next adverted to Vitruvius, and stated that he propounded a theory of a similar character to that whose fallacy be had undertaken to prove. One of the diagratos osed by Vitruvius in applying his principles to practice wat exhibited; the ame diagram being uned by the aurbor of this theory in explaining the harmonies of the Parthenon. He stated, bowever, that Vitruvius could not be can. sidered as an authority in regard to the principles on which atylea are fonoded, having been led away by his fondness for metaphysical diatinction and refinement, to refer them to sources with which they had no connection. This statement was supported by quotations from the works of Vitruvius himself, from Lord Aberdeen's "Principles of the Beauty of Grecian Architecture," and from the article Archifecture in the "Encyclopædia Britannica."

As the second division of his subject, Mr. Pardie referred to the lahoure of Kepler in proving the harmonies and analogiss he anpposed to exiat throughout nature-to prove which, great part of his "Mysterium Cosmographicum" and "Harmonices Mundi" were written. He investigated the reason of the Zodiac being divided into 360 degrees. It led him into some subtle considerations in relation to the divisions of the musical scale. Mr. Hay inves tigates the properties of the number 360 , and his inveatigation seems to lead to a conclusion of a similar nature- (See p. 24 of bis hook on Symmetrical Beauty). A quotation was read from one of Galilea's Dialognes, denouncing the belief prevalent in his time as to the beauty supposed to reside in the harmonic ratios, that being the principle on which the present theory is founded. He quoted a passage from Bacon, tending to thow that he considered the ideal beauty of the Greeks, and that formed by geometrical proportion, to be antagonistic. In it Bacon contrasti Alhert Durer, "who would make a fignre by geometrical proportions," with A pelles, "who wovld choose the best parts out of diverse faces to nake one excellent." -Nnmerome quotations were given from various authors, as to the universal prevalence,in the I5th century, of the "dangerous idens of the aptitude and congruence of aumbers," and of the absurdities to which the style of reasoning from analogy lead. By this, Prancesco Sizzi attempted to disprove the exiatence of Jupiter's satellites. A celebrated musician held that God created the world in six days, and rested the seventh, because there are but seven noven in music; and Kepler, by asimilar process, explained the music of the apherea, in whicb Saturn and Jupiter were proved to take the besd, Mers the tenor, the Baith and Venus the counter-tenor, and Mercury the treble.

As the third division of the subject, Mr. Purdie gave a short acconnt of the theory advanced by Alison, advocated by Lord Jeffirey and others, and generally recognited by modern metaphysicians. He did not feel himaelf gualified to enter on the differences existing between Alison, Lord Jeffrey. Payne Knight, and Dugald Stewart. They appeared to be as much of a philological as a metaphysical nature, and did not affect bis branch of the unbject. He had not bad time to make himself acquainted with Sir George M'Kenaie's refutation of Alison, aud could not ang what effect it migls hare
had in modifying his opinions on the anhject. In the meantime, although be could not sny this theory accounted satiofactorily for every phenomenon connected with beauty of form, it seemed to him to account for far more of them than any other he had get mot with.

Ae the fourth branch of the anbject, he stated the nature of the theory voder consideration, and attempted to show the fallacies contained in it, and in all others of a similar nature which attributed beanty to proportion. The grand princlple of this theory-that by which it mast stand or fallappeared to be (p. 68. Symmetrical Beanty), that there exista in the haman mind "an universal inherent mathematical principle of barmony which gives a response to every devolopment of its lawn, whether in cound, form, or colours." He devoted some time to the consideration of this faculey. His arguments went to prove, that if auch a faculty existed, if could be oothing olse than what is commonly called inatinct. To combat this idea, he quoted a motto from Mr. Hay's publication on Form, itself a quotation from Borke :-" Wherever the best taste differs from the worst, I am convinced that the underatanding operates, and nothing else." He argued, if the faculty by which we distinguiah the musical intervals be that by which we become sansible of the beauty of form, the result is inevit-able,-that all animals, such as the mocking bird, which can distinguish these intervels and follow them, must be conscions of the beauty of form also. He stated that the only proof advanced in favour of this theory was drewn from analogy, because wo fad the barmonic ratios are necessary to the primary beauty of a musical chord. These ratios have been applied to form, as being necensary to constitate its beauty also. He argued, If we are to conclude that these ratios are necessary to constitste the beanty of form, simply because we find they are so to the primary beanty of a masical chord, we must, on the same grounds, conclude they are necessary to the objects of the other senses; hut that this would involve the abcurdity of attempting to account, on mathematical principles, for the same man partaking with equal relish of things sour and sweet, salt and fresh, eating pickles to his animal food one day, and carrant jelly the next; for an Earopean lady preferring the scent of aromatic vinegar to asafoelida, while some tribes of savages infinitely profer the latter. He spoke at some leagth on what he conceived to be the unphilosophical nature of ench a mode of establishing a theory. What is true in regard to a theory fouoded on the science of aconstica, may be, and is indeed likely to be, atterly false when applied to and founded on the laws of perspective. A sonnd alwaye reaches the ear precisely of the same pitch as it left the conoding body, while a form makes a different impression on the eye with every change of position. Thus, supposing the beauty of the Parthenon to depend, as asserted by the theory under consideration, on the barmony of the diagonals drawn within the various rectangles which can be described within the building, it could not in reality be beautiful at all, as there is no point from which all these diagonals could possibly be presented to the eye in their true position. Even standing immediately in front of the bailding, the diagonals drawn in the rectangles between the nearest columns would necessarily present to the retina a much more acute angle with their base line than those farther removed. Take one step to the right havd or the left, and the angle of 75 becomes one of 76 or 77, and so changing with every step until the columns are seen close together, and overy one of these angles becomes a straight line.
Mr. Purdie followed this with some remarke tending to prove the fallacy of all theories whicb assume proportion as their basis. How could any such a theory acconnt for the beauty we discover in a human figure and in a horse? Yet the principle must be the same, by our recognising beauty in styles of architecture so various that some of them seem to be beautiful from the vant of qualities which aome of the others possess-as the Moorish, the Grecian, the various kinds of Gothic, and Elizabethan; none of them having a single feature in common, either iu their proportions or their details. That these differences are not confined to the different orders, but exist in various examples of the same order, -a drawing was exhibited of four specimens of Corinthian: from the Choragic monument in Athens-the etemples of Jupiter Stator and Tonans, in Rome-and of Vesta at Tivoli; all exceedingly beautiful specimens of the ordor, bot without a single featare in common, either in their proportions or details. He adverted to the universal agreement as to the fundamental principles of harmony in music, and the proverbial difforences on the most fundamental points as to beanty of form-lo our recognising beauty in the figure and drese of a modern belle, and our considering it an outrage on taste to transfer the same costume to marble, although the same form and face be preserved. The origin of our feeliugs, he said, is here too obvious to escape notice. A ctatue lives a thousand years, a man threescore. Our taste for sculpture has been modelled on that of antiquity, and cannot now change. Our dresses last not a lifetime, but roust be changed as necessity requires. Makers of them will exercise their skill and ingenuity in devising new forms-bence change of fashion; and bence our ideas also change, and utach themselves to those forms with which we are in the habit of associating all that is graceful and elegant. A modern statue, even in a modern costume, would, in ten years, address as in antiquated language, without having the respect due to antiquity. The Grecian statues speak to us in a dead language which changes not, and they speak to us of hoar antiquity-of the knowledge, the skill, the taste, and the cultivation to which that wonderful people had attained, and from whom they are descended to us.
Mr. Purdie concluded his paper by characterising all attempts to establish atheary on such grounds as ihis, in the words of Lord Jeffrey, as " dog.
matising from a few examples, instead of defning any general compreheysive principle, in which all beauty may be supposed essentially to consist." An attempt, be continued. as reasonable, and of precisely the same nature, as that of a man who, setting out with the premises that every ouk tree is a vegetable, attempts therefrom to prove that every vegetuble must be an oak tree.

Mr. Purdie then intimated that bo would be prepared, in the second part of his paper, to go somewhut more into detail, and tu prove the fallacy of the theory from its own inherent defecte and self-contradictions; for of these he conceived it contained sufficient for the purpose, although be might have failed in convincing any one on the general question.

Part II.

Mr. Pordiz commenced the second part of his paper by recapitulating shortly the contents of the first. He then pruceeded to explain the scope of the theory he bad ondertaken to refote. It was intended to be applied to universal nature. This was sufficiently shown by the "universal mathemstical principle of harmony" assumed to be "inherent in the mind," for the porpose of giving a response to the laws of the theory. It followed that no object could be beartiful in which those principles were not developed. He quoted two passages from Mr. Hay's book on Symmetrical Beauty as still farther explaining this, and showing how these laws are extended to universal nature.-"In these" (the organic forms of nature) "the first principles of symmetrical beauty are so blended with the picturesque, and operate in a manner so exquisitely refined and aubtile, that mankind have as yet been unable to systematize them."-p. 2. "In compositions of high art, the principles of symmetrical beauty are so subtilely imparted as not to exhibit themselves."-p. 4. To these he requested particular attention, this being the point at which all such theories fail, $i_{,} e$, in the attempt to account for beauty of dissimilar or of opposite descriptions,-uch, for example, as thet which we discover in a child and in a full-grown man-in a horse, a New. foundland dog, or a greyhound ; or a building-Doric, Ionic, Corinthian, Elizahethan, or Gothic. He said this was a mere begging of the question, a counterpart of Alezander the Great's mode of unloosing the Gordian knot. It would make the principles of this theory to be somewhat like the music of the apheret-Gilling beaven and earth with their strains-strains so "exquisitely refined and subtile," as to be altogether imperceptihle to moral ears. Would not the natural conclasion rather be-" De nom apparentibso et non existentibus eadem est ratio $7^{\prime \prime}$ It was anmitted these principles of symmetrical besuty did not sbow themselves in works of high art. The admiasion was correct. They did not show themselves-only because they did not exist. Mr. Purdie next referred to the Parthenon, whose proportions it was attempted to sbow were in accordance with the principles of the theory. In making the attempt, however, it was admitted that teveral "discords" existed-the outer intercolumniations being closer than the others. It is attempted to get rid of this difficulty by saying that the outer intercolumniations are reliered againat the aky, while the others are seen against the hody of the building-that an open space between two columns, seen against the sky, appears wider than when seen against a background in shade; and this ansists in harmoniaing them.

Mr. Purdie then showed, from the ground plan of the building, that there is viaible a space of only two feet through the outer intercolumniation, while nearly four feet can be seen through that next it. This, therefore, instead of assisting the theory out of its dilemma, only increased the difficulty. Besides, aglance at the ground plan would have shown that the same intercolumniation was applied to the inner row of columas, which were so clowe to the building, they could never be seen against the sky at all. He then explained the reason usually assigned for the nature of the intercolumniation used in Grecian Doric, which it connected with the arrangement of the triglyphs and metoper. He said, Mr. Hay tated that the line of the tympanum formed with its base an angle of 15 deg.; that " as the angles of the pediment in Plates 6, 7, and 15 (uf Staart's Athens) ail differ," he "adopted that of the latter, as being the mont likely to be correct, because the pediment is there given by itself."-(Symmetrical Beauty, p. 72). Mr. Purdie showed, by reference to the text of Stuart's Athens, that Plate 15 did not refer to the dimensions of the pediment at all, but was only intended to convey an idea of the scalpture, and was given without measarements. The messurements were correctiy given on the elevation,-although the elevation itself was not in aceordance with them. By a calculation made from these measurements it would be found to form an angle of 13 deg. 24 min . There was a statement in the text, noticing the inaccuracy of the elevation. The real angle was there stated to be 14 deg. If the rest of the angles given bed been taken from the elevation by means of the protractor, as they appeared to have been, they must be all wrong together, as the tympanam, as there represented, is 18 inches too low.

This was the second attempt made to set the Parthenon to masic. The first was proved and acknowledged to be a failure. Of that attempt the Athenoum remarked, June 10, 1843-"It is easy to wee that a general notion of this kind is a mont insufficient basis even for a plasible theory. * * Mr. Hay is wrong when he asserts that certain proportions are beautifnl because they are tbose of the notes whicb, in all the combinations of harmony and melody of sounds, are most pleating. His proportions as assigned so form are most correct and most beautiful. They are not, however, those of the beautiful sonnds to which he assigns them."

The Grecian Doric, therefore, was not ln aecordance with the principles of this theory. Perhapa the attempt might be more soccessful when tried with
the other orders; bat if it failed with the Doric, the proportions of which were comparatively invariable, the lonic and Corinthian muat be still more perplexing, the latter of which varied so much that the writer of the article Archtecture, in the "Encyclopmedia Britannica." anid it was scarcely possible to give any general description of it. If it failed with any of these, there would remain for it hut a small chance of success with the Gothic or the Bliza bethan.

Mr. Purdie said, it might save the intronuction of much irrelevant matter, if it were kept distinctly in recollection that he was not attempting to refote some imaginary theory which might be brought forward in the course of the discussion, but that advocated before the Society by Mr. Hay, and contained in his published works. That theory was founded on the harmonic ratios. No doubt, order, proportion, and harmony were all gecessary to the heauty of architecture; but it was not by the harmonic ratios theae were to be obtained. The "Greek architects illowed themselves to be fettered in their general proportions only." This theory did not establigh general proportions at all. In music, the application of harmonic ratios, while they allowed all latitude as to general proportion, limited beauty to certain fixed points or coincidences, from which wben the sligbteat departure wat made, discord enaued. Thus a difference of a semitone would raske as disagreeable a discord as a full tone, and one quite as easily recognised. It mattered not whether too high or ton low. The application of the harmonic ratios to forms was intended to produce a similar effect. Thus in the case of a well proportioned column, six inches added to its height would be as easily observed as 18, and quite as deatractive of its beauty; and were the height diminished by 18 inches instead of being increased, it ought to be no more ao, the departure from the barmonic ratio in either direction being equally discordant. The instant the correct proportions were departed from, deformity would be the result; but let the alteration be continued a little farther in the same direction, the deformity would be got rid of-a new chord struck, and beauty and symmetrical proportion again obtained.

Mr. Purdie stated shortly what he conceived to he the source of the beanty of architecture and aculpture, and referred, as the beat sources of information with which he was acquainted, to Lord Aberdeen's inquiry into the principles of beanty in Grecisd architecture-Gwilt's Preface to Cbambers's Works -the Essays of Alison and Lord Jeffrcy, and the lives of Christopher Wren and Michael Angelo Buodarotti, poblished by the Society for the Diffusion of Useful Knowledge. It was not neceasary to seek for any mysterious geometrical law. The taste of a nation, and their power of producing and appreciating beauty, depended on their progreas in civilisation, on education, and the refinement these naturally produce. "The beanty and perfection of the schoul of Pbidias accompanied the great moral and intellectual improvement of the times, and art was most perfect when Escbylus, Sophocles, and Euripides, produced their tragic poems; and Socrates and Plato, and the great Grecian atatesmen, by their writinas and example, improved the moral and political state of mankind."-(Life of Michael Angelo.) That this tended to prove the general correctaes of Lord Jeffrey's definition of tante"That the power or faculty of taste is nothing more than the habit of trac. Ing those associations by which almost all objecte may be connected with interesting emotions."

Mr. Purdie then took notice of some of the methods given for applying the theory to practice, and contended it was equally potent to produce the ugly or the beautifol. According to the method given by Mr. Hay for drawing the human rountenance, an oval was firnt described, and within it a triangle, its apex undermost. At the apex the mouth was placed, and the eyes at the two upper angles. But no rule wat given for placing the apex of the triangle undermost. One might, if he felt so disposed, reverse both the triangle and oval; it might he some bungling Grecian scalptor who thus reversing his triangle, invented the Cyclopean type, with one large eye in the centre of the forehead, and a mouth extending from ear to ear at its base.

A similar effect would take place with the profile, in drawing which an oval is given for the face and a circle for the back of the head. He asid the profile is not an oval, nor is the back of the head a circle. To render the back of the head a circle, a large slice must bo taken from "self-esteem;" and "philoprogenitiveness" would suffer an amount of reduction which might seriously interfere with the increase of the population. The back of the hoad was, strictly speaking, no more a circle than a square; and if it were a square, or a rectangle, provided always it were a harmonic one, its consistency with the principles of the theory might have been quite as easily manifested.
Mr Purdie then proceeded to conaider what are styled (p. 81, 8ymmetrical Beanty) a series of peculiarly symmetrical rectanglen, which are evolved by using the diagonal of the square as the base of the first, the diagonal of the first as the base of the second, and so on. Mr. Hay, however, did not adopt these as they natnrally arise. They did not accord with the harmonic ratios, and were altered to suit.
Mr. Purdie pointed out on a diagram the amount of the alteration. He sajd Mr. Hay referred to the temperament used in music in ite justification. Mr. Yardic explained the nature of masiaal temperament, and showed there was no anslogy between it and the procese adopted with these rectangles. He stated the temperament in music was a modern invention, and seemed somewhat out of place in a treatise which claimed support as elucidating the principles of the ancient Greeks. Were such a principle as this tempering adinitted into science, it would he easy to obtain any results. Such an arbitrary alteration of a series of figurea in a
science claiming mathematical accuracy, would have been conclunive against it, had it been in other respects unassailable.

Mr Purdie next referred to the egg oval, and Mr. Hay's method of producing it, which might be new to many of the members, and was (leaving out the harmonic ration) the simplest and hest method. He said, whatever merit its application to the drawing of vases might possess, it had not that of novelty to recommend it, bot bad long been fumiliar to every one who had given any attention to the subject. He exhibited in Nicholson's "Architectural Dictionary" several good examples of vases $\mathbf{s o}$ constructed, along with a variety of methods of producing the figures on which they were based.

Mr. Purdie explained the effect of engrafting the harmonic ratios on them, and exhibited a variety of diagrams to test whetber any one could point out the discordant from the harmonic. But the method adopted in forming these ovals was, he contended, altogether subversive of the theory

Four pins are put in at certain fixed pointa, and a string tied round them, for the purpose of obtaining the form of two harmonic triangles; but, before proceeding to prodace the oval, one of the pins is pulled ont. For this no reason could be assigned but the will of the operator. It did away at once with all idea of burmonic relation. A fgure so constracted could bear no mathematical relation to the triangles on which it was based. Extend the radii to infinity, and a circle would be obtained independent of the shape of the triangles: reduce the string to a sufficient tension, and it would become a triangle. A gigure so constructed vibrates between the circle and triangle. At no possible point between the two could it bear any harmonic relation to the triangle on which it is based.

In conclusion, Mr. Purdie said, that the origin of the fallacies contained in this theory appeared to be an extravagant fondness for analogy, through which the idea had been conceived of engrafing the principles of masic on form: that, instead of analyaing the phenomena of mind, and deducing the principles of a science from the facts sa ascertained, the mental phenomena had been lef out of virw altogether, and the theory formed on a mathematical babis depending on the harmonic ratios: and that the resalt was a theory utterly at variance with those very phenomena on which it ought to have been founded. The only method of investigating the trath in metaphysical science was by inductive philosophy, the slightest attention to the principles of which would have saved the author of this theory from the manifold blunders into which he liad fallen.

After the reading of the above paper, Mr. Har made some remarks "On the effects of Perspective upon Proportion, being the first of a series of short papers upon the Harmony of Form.'

Mr. Hay commenced by apologising to the members of the Society generally, for calling their attention to a fact, with which he believed they were familiar. But that fact had been denied at the previous meetiog, in an attempt to prove a lallacy in his system of applying the nomerical harmonic ratios to the proportioning of rectangular forms; and its denial seemed to be well received by the younger members. Mr. H. therefore, felt called upon to state the fact, and to demonstrate it. The fact, be stated was "that whatever system of proportion may be applied in arranging the parts in the geometric elevation of a building, will also operate apon the effect of that building, in whatever degree of obliquity it may be viewed." He exhihited five drawings, two of which fully ex. plained his system of applying the numerical harmonic ratios, and the other three demonstrated the fact which bad been denied nt the previons meeting; nod therefore concluded that the attempt to prove the fallacy of the system, by the denial of this fact, had failed.

Mr. Hay observed, that an attempt had also been made, at the provious meeting, to assimilate bis system of the application of numbers to aymmetrical heauty, with the mystical application of particular numbers by the alchymists, and some of the philosophers of the middle agos; and of fered to prove that this attempt was also a failure, inasmuch as he employed numbers in an intelligible, not a mystical manner.

PECULIARITIES IN THE CONSTRUCTION OF GREEK ARCHITECTURE.

Abstract of a paper "On the Geometrical Lines and Optical Corrections of the Greek Archilecte." By P. C. Penausr, Esq.-(Read at the Royal Inatitute of British Architects, February 21st.)

I will observe, that although the acrupulous accuracy with which the measurements which I shall produce have been recorded may acem almost absurd to some, it will not appear so to those who have been so fortungte as to see the originals, and observe the perfection of the workmanship with which they are put together, and the exceedingly happy preservation of many parts from the weather, which enables measurements to be taken with precision in these, where in many buildinge they could unly be a matter of approximation.

I use as my atandard of measurement the Eaglish foot, and divide it into 100 parts which I shall call cents.

In the beginning of the gear 1846 I was at Athens. I had an introdnction to M. Riedel, a Bavarian architect, who accompanied me on my first visit to the Acropolis, and pointed out to me the peculiarities of constraction of which I am abont to speak; it was the first time I had any intima. tion that there was any departure from ordinary line and rule work in these
baildiagn, excepting a rumour which I heard from our consul at Triente, that there whe something very curious recently discovered in the ancient beildinga at Athens.
These peculiarities, which were then pointed out to me, were the convexity of the atylobate on the four sides of the building, and the inclination of the columns towarda the centre of the building; that is to say, on the east front the ares of the colnmens incline in westerly direction, and those of the weat front easterly. Those on the north and south flanks, aouth and north respectively. It followa that the angle columna thare the two inclinations; for instance, the north-east angle colamn inclines in a direction south-west.
This fact bas been ascertained some time; it is given with considerable acesracy in that part of the supplement to Stuart which was supplied by Mr. Jenkina. The exact amount, owing to the slight displacements which the boilding has suffered, ia only to be obtained by a diligent survey of the -hole building.
The obeervation of the convexity of the lines of the steps is more recent. I believe that one of our countrymen, Mr. John Pennythorne, was the firat who paid any discriminating attention to these lines. I use this phrace an they cannot bat bave in some measure infnenced our earliest inveatigation, as no one conld ever have caat his eye along any portion of the upper members without being sensible of them. The lower lines of the building were, an anderatand, quite encumbered with rabbish until the excavations of the lant few years. Any measures obtained by boring must have been vitiated, and they have doubtleas given many a diligent measurer a vast deal of trouble, and many have been the dimeusions which have atood at dismal variance with themaclves, and been cast anide without being really to blame.

Mr. Pennytiorne was the firat to see in these an original intention and meaning; he bowever kept his knowledge to himself, and the world firat heard of it throngh the communication of MM. Hofer and Schawbert, German architects, to the Bauzeituag, in the year 1838.
I was very much struck, as all who have seen the Greek baildinge must be, by the perfection of the workmanship, and I took sncb levels and dimensiona as I could with the instruments I bad with me, for the purpose of ascertaining the amount and nature of these adjnstments. And I arrived at a sufficient degree of exactness to asure myself that it was well worth while to go deeper into the matter. I, bowever, (in 1846), was not able to pursue the subject any further, and I returned to England in the antuma of that year, and bad the pleasure of reading a paper to this Institute on the observationa.
Thej attracted more sensation than I had any right to expect, and I received a proposal from the Society of Diletlanti, that if I were willing to go ont to Aihens, for the porpose of taking more accarate ohservations, they woald assiat my operations with a sum of money. This proposal I willingly accepted, and provided myself with the necessary implements, and induced a young architect (an of Mr. E. Wilson, of Lincoln, the well-know archeologist) to accompany me, and we arrived at Athens towards the end of October last year. I wat also so fortunate at to fall in company with Mr. Meyer, associate.
The first thing which we attempted was the measurement of the base line, namely, the length and breadth of the building. This wat done with oteel tubular measures, compared at the time of measarement with the thermometer, from which also long deal rods were graduated for the measarement of the beights, and for general purposen. The ateel rods were carefully compared by Mr. Simms, both before and after my return, with his standard, and 1 gave the results as delivered at Athens. They are atill anhject to a very minute correction, bat not worth troubling you with at present.

As aoon an the weather allowed, and the requisite permission obtained from the local authorities, I proceeded to hoiat a scaffolding at the eat-end, of which I made an entire circuit, beginning with the three columas which are atanding on the north aide, and ending with the sooth-eat angle column.

In this exemination we plumbed every column, measured every stone of the urchitrave, the capital, and apper and lower stonea of each column, in every direction; took careful measurements of all the cracks which have in any way modified the original form, and obtained levels of all the lines of the entahlature at fixed pointa; and finally examined the entatis of five different columns, taking several sections of each.

We then migrated to the weat-end, where I contented myself with making an exact examination only of the two angular columas, which position ensbled me to ohtain the levels of the apper members of the western part. I also took all such measurements io the weatern parts at my examination of the eastern part had pointed out to me at necesaary to arrive at the exact original atate. I then proceeded to examine the upper members of the posticam, and the arraggement of the tympanum, which has some peculiaritien worth notice connected with the support of the atatues. Then the roofing, the ceiling, and lastly, the original paiating, engeged our attention.

This work in the upper part of the building was asturally very much erposed to wind, Sec. It often bappened that while it wat imponible to do any eccorate work on the scaffolding, we might he employed profitably below. Bat frequently it wat altogether ont of the question to go up to the Aeropolis at all. The pavement was of conrte levelled in every part and areral times over, antil the whole ayetem worked perfectly together, and I could satisfy myeelf that I had got the exect curve in every instence, or at least within one or two thousandths. We also took auch mearusea se gufficed for the sccurate povition and proportiona of the celle, with the arnogement of columns within it This anm up our proceedingt at the

Parthenon, which occupied nearly five months. The Propylat o:cupied a considerable share of attention, and I searched the temple of Theseus to find how far it wat analogous to the Parthenon.

Lat, hat not least, we ascended the temple of Jupiter Olympus, from which we ohtained various measurements and drawings.

The measurements of the breadth of the temple on the opper atep, at the east and west end, I found to be respectively 101.341 and $101 \cdot 361$, north and south, $228 \cdot 141$ and $228 \cdot 154$ respectively. This exceedingly small difference in messures which were certainly intended to be equal, pointe oot the limit of error, which can be attributed solely to inaccuracy of measarement in other dimensions, namely, about 1 in 5,000 . I may just observe that I found my wooden meabures, notwithstanding they had been previously saturated in oil, sabject to a fluctuation in various atates of the atmosphere rather greater than this amount. So that, had the eastern front of the Parthenon heen set out with deal rods on a dry day, and the western on a moist day, we should have had as great a difference between them at actually exiats.

It follows that all quantities which tend to proportionality mast be looked at with great suspicion, in which varieties exiat sengibly greater than this small admissible error.

The breadth of the temple of Theseus is $45 \cdot 011$, and its length is 104-23. The former is almoat exactly in proportion of gths of the breadth of the Parthenon : this, I tbink, wat intended.

But a difficulty occars if we attempt to proporion the front with the faak on the opper step. It has been suggested to try the equilateral triangle. That, however, notwithstanding its being near enough the mark to suggest the trial, leaves the quantity $=\mathbf{~} 282$ unaccounted for at the end; and, besidea, I do not find that in the Partbenon there are any affinities whatever to that fgure.

I rery much prefer to descend from the upper step, and try the proportions on the second. By this addition, the flank hecomes 106.63 , and the frod 47-41.

We now obtain a proportion 9 to 4 , differing from exactitude by so small a quantity as to he fairly admissible.

It is somewhat remarksble that the quantity 1.066 ia found frequently in the measures of the Erecthenm.

The proportion of solids to voids in 4522 to 1000 , nearly as 9 to 2.
I have now stated the principal larger proportions: I will state a few others, which are the more important secondary ones. A very happy artifice is the walls of the pronass and posticum being thicker than the cella walls.

The height of the colnmas of the Parthenon is exactly 18 length of temple on upper step, the hreadth of the ahacns of six of the eantern colnmns is exactly to breadth of temple; they are not all equal, hut I have giren the dimenaions of those at the eastern end, which always gives the key to the main proportions.

In the temple of Thesens, the colnmn is exactly $\frac{18}{10}$ th of length of temple on the lower step, and the abacus $\frac{1}{1}$ th of the breadth on the upper atep. In both, this memler appears to be the unit of measure for all the details.

The whole building is mont accurately proportioned in every part, and I think it not unlikely that it will be possible to find atandard which shall express every dimension without any incommensarable fractions.

I now proceed to that part of the subject which is more particularly the object of the present paper, namely, the optical corrections. I ahall first atute the case as I found it, and lastly, say a few words on the probable origin and intention of these subtleties, which prevail, more or less, in almost all the Greek templen-in all, indeed, that I have examined, with the exception of the temple of Basase, on the borders of Arcadia, where I could not find satisfactory indication of either convexity of pavement, or inclination of the columns, or even eatanin.

The parement of the Parthenon is bounded by four curved lines, viz., the edgen of the upper step on the four sides of the building. The four angles of this curved surface arn not precisely level, the south-west angle is about $\cdot 16$ ahove the north-east and mouth-eant anglea. I think that this is aimply owing to the lines of the earlier temple, which were also carved, heing made ase of at far as they would go, and by being producedin one direction only, and remaining fixed at the south-west angle. The line so produced woold naturally fall below the fixed point. This in the case on the weat front, sonth add north siden. The extreme pointa of the upper step of the east front are exceedingly near level. The result of a number of observations gives only a difference of -002, or fofeet, quantity which we need not atop to discuse.

If these two points be joined by alraight line, the curre which forma the edge of the atap will be found under the middle columna to rise to a beight of - 144 above it. If the aniform curve had been preserved, it would have been 218 in the middle, which ia abont ads breadels of front; and the curvature is $s 0$ regular on the northern half of this front, where the stepe rise immediately from the solid unbroken rock, and consequently no settlement can have taken place, that of fonr points measured at the centrea of each colnmn, three agree exactly with e circular are: the fourth differe only by 003. The earrature is so very alight that it might be any regular continuous curve; for instance, in so small an are no appreciable difference conld be ahown between the arc of a circle or that of an ellipse or parahola, and I think that the work was set out hy means of the latter figure, which might be done very eanily; whereas, I need scarcely point out the difficulty,
or rather impossibility, of using the circle, which would require a diameter of about 21 miles.
Let it be required to construct a circular or other are of noiform curveture, whose length is 100 feet, and the rise at the centre is to be -25 , or any other small measure which must not moch exceed one foot. Constract with any axic a parabola, and set off from the vertex $A B=$ the proposed rise, and draw $L M$ at rigbt anglen with $A B$. Now, $L M$ will represent the 100 feet borizontally, and ordinates drawn to the curve perpendicular to LM will determine the exact rise at at many pointa as may be required, full size.

The curve on the upper step north side of the Parthenon, also approximates to a regalar curve very closely; its entire rise in the centre above the line joining its extreme parts, is -356, which is very nearly in the proportion of \boldsymbol{f} of the rise in the east front: it is exactly oto length of the huilding. The corve on the south side seems to have been identical with the north side, but it has suffered more from the concussions which the building has undergone, especially as there is a great depth required on this side of artiathal foundation. On the north side the steps rise almost immediately from the solid rock. The curve on the west front is not quite so symmetrical as on the other sides. It has, I believe, been affected by the lines of the old building. The rise is exactly the same as the east end.

The upper members on all four sices follow the ateps, and are nearly parallel, but there is a little more currature given to the stepa; the entire rise of architrave is $\cdot 173$ on east front, $\cdot 175$ on went. The lovels of those portions of the cotablatares which remain on the north and south sides point out the directions which thone lines had originally, and they were as nearly at posaible parallel to the line of the step, excepting that just at the angle columas the atep has a litule the more declension. The frieze and cornice are exactly parallel with the architrave. In the temple of Theseus, also, these curves prevail; on the fronts the rise is ato part of its length, on the flank, gso. The lines in the architrave are exactiy parallel to the atep.
There is one refinement which the temple of Thesens posseoses, which the Parthenon is without. In addition to the cornice being raised, the inclined lines of the pediment have a vers alight convexity, between 02 and -03. I was unable to fix more precisely the mount. I imagine that it was owing to some degree of haste in which the Parthenon was finished, of which there are several indications in the upper members, which prevented this final adjastment being made to its pediments; the state of the political horizon at that time making the completion of the loug walls of more im. mediate irpportance than the optical corrections of the Parthenon. On a former occasion, I stated my impression that the cause which led to the adoption of this convexity of the horizontal line, existed in the contrast of the inclined lines of the pediment.
Mr. Perguson has kindly favoured me with an illastration, which I will read to you, from a description of the construction of an iron foundry at Kaipar, near Calcutta, huilt in the gear 1834. The foundry is covered by a single roof, with principal rafters, tie-rods, and suspension bar from the centre. The rise is 6 feet and the apan 50 feet, which is exactly the same pitch an the Parthenon and Propylies. The pasage is extracted from vol. iv. of the joural of the Asiatic Society of Beagal, p. 116: "Before closing our short account of the Kasipur roof, we mast notice a curions optical deception, for which we are somewhat at a lose for a correct explanation. On entering the room and looting op at the roof, it atrikes every beholder that the roof has somewhat anak, and the horizontal cie-rod is about 5 or 6 inches lower in the centre than near the walls. We were not convinced that it was a deception until Major Hutchinson, at our request, cansed an actual mousurement to be made by a perpendicular wooden batten from an accurately adjusted level on the stone floor. It was then proved that there did not exist a difference of level even to the tenth of an inch." The conelusion is obvious that a otraight tie-rod appeared to be deflected; and I have no henitation whatever in ascribing the cause to the contrasting lines of the priacipal rafters. I do not tbink that it is aecessary to have our eyes refined by a southern climate for the appreciation of these effecte. I suppose that there are very few gentlemen here who have not felt the same disagreeable effect of a fiat open roof with horizontal tiebeams, nulets, indeed, the latter be very much cambered. That this was the view the ancients took of the matter I am convinced by these two fects-

That the great temple at Prestum has the converity only in its fronts, and not on its fanks; and in the Propylaes at Athens, although the base on which the columas of the two pediments stand is perfectly atraight and level, the line of the architrave was curved. For enough remains to determine this in the eastern portico-the central columns are actually mbont $\cdot 12$ higher than those at the angles. The base in this bnilding is cat in two by the sacending roadway, so that there oould have been little or no advantage in a convex base line.

It will be well to remember that the temples at Athens were the result of the experience of several centuries in which these refinements were gradually brought to perfection. The first process wes probably to raine the cornice under the pediments and entablature, by making the middle columns a little higher than those towards the angles, at I have mentioned in the case of the Propylas. Still it ia likely that to fantidions eye the straight line of the atylobate would appear weak. The second method would be that found in the great temple at Peatum, in which the fronts have the convexity in their stops, as well an their entablaturen, the fianks being componed mith horizontal lines. Perhapa a ressonable man should be content with
this. I mast willingly admit that I wat perfectly content with the temple at Prestum; atill nothing short of perfection conld eatisfy the refinement of vition with which the Greekt alone, among the people of all time, neem to have been endaed; and perhaps by looking at a temple construeted at above-mentioned, anglewise, and contrasting the convexity of the corone of the fronts with the straight line of that on the fanks, or more likely the comparison of the two different forms of line on the atylohate, anggeated the possibility of improvement; at any rate at early as the time of Piristratua, the Athenians had begun to demand from their architects the perfected construction, as the foundations of the temple of Japiter Olympes teatify, which we know were leid daring his reign.

I also refer to his time, the earlier temple of Minerva, which oecupied the site of the Parthenon at the time of the Persian invation, in which also we find that the lines on the four sides of the building were conver. I can bear witness also to convexity on all the four sides of the temple at Nement in the Peloponnenns, and Segente, in Sicily. I conld ind no trace of convexity at Corinth, Rgine, Rhamnns, or Baute.

The aext anbject is the incliastion of the colunan and the upright facen of the huilding. lat. The face of the atepa inclines about 008. 2nd. The columas incline, beckward, a quantity, of which I obtained the following results. Prom the average of the measurements of all the lower drams, (scamille impares, at Vitruvius calls them) 229 . From plambing the angalar colomns of the east front, taking into consideration all the aracks and movements which have modified ite original position, I obtain two reanlt of -230 and - 232.

In the plambing, I observed every precantion to ensure correctaem, using a very heary weight and also watching for calm intervala of oweather, which are rare at Athens. I am disposed to think that -228, or one thonsandth part of the length of the building wat the amonnt originally intended Those gentlemen who remember the perfection of the joints with which tbe Parthenon is constructed, will allow that the openinga between them, which at present exist, are the exact records of all the settlements which the building has undergone, and that by a carefol examination of these, the original mounts may be exactly recovered, which would be hopeles in a building which had been of less highly-finished construction.

Vitruvias directs that the columns of the promasand porticumshonld be set perpendicular, and those of the peristyle should incline towards the cella. In Cicero ad Verrem, wo have an amnaing pasage, in which Cicero relates one of his rescalities; that having onder bis charge, as Romen gorernor, a young Syracusan noblecuan, whose property was subject to the condition of repairing the temple of Castor in that city, Verrea was exceedingly anzions to make a job of this; so he goes to examine the temple, hat wat much disappointed on finding it in perfect repair, when one of bie companions casually observed, there is nothing here to bo done, unlest you order the columas to be set perpendicular. Verres whe evidently sarprived at this observation, for he knew notbing of architectare, and to his eye the colamns appeared angular; but it was mentioned to him by those who were aronnd him, and no donbt familiar with the practice of the anciente, fere nullam esse columnam quae ad perpendiculum esre postil-namely, that in a temple there was scarcely any columa, which by the practice of the Greeks, could be perpendicular. Verres was delighted at finding momething to set his young friend about, and said, " Ob , hy all means let him set the columns perpendicular ;" and no doubt he took care himself to superintend tbe payment.

The object of this adjustment is to correct an appearance of fanbize spreading from the base outward, which takes place in columan which are all perpendicular. It may be owing to thit cause that, in consequence of the diminution of the columna, the spaces between them on the architrave are greater tban those on the ground (for the eye quite makes allowance for the counterspread of the capitals). Again, owing to the greater depth of anadow behind them, the upper part of the culnmas will have apparently more atrength of light, and consequently appear greates. The effect altogether produced will cause the architrave, if equal, to appear longer than the base, and consequently the angle columns will appear to lean ouswarde: this is rectifed by making tbe aaid angle columns lean a little towarde the centre of the huilding. It in a proof of the wonderful jndgment with which thin quantity was chosen, that so many diligent and sccurato obeervers havo studied and drawn these temples without being sware of the fact. Whes my attention was first called to it, I could not at all percoive it; and I greatly amused a French architect, who had been for some time at Athens, by asking bim which way they leaned : after tome days the eye began to take cognizance of it, and I could perceive which way it went.

The imprension of strength and beauty renulting therefrom is by no meana coufined to thone who are cognizant of the fact; and I doubt not that many of our earlier investigators have been astonished that the level-and-plamb imitations of Greek architecture which we have in this country so litile reealled to their minds the consnmmate beauties of the Parthenon and other Greek buildings. No doubt our climate is unsuited to the pure Greek, bat this is not enough to account for the falling off; it is not so in our Romat and Palladian buildings.

One peculiarity which I noticed is that the antae lean forwards to meot the columns of the proneos. This seems to have resulted from the inclinstion inwards of the columns of the periatyle; those of the pronsos and posticam being perpendienlar, the effect would have been to produce a atrong contrast between their different positions, and the artifice must have bean detected: by the inflnence of the cuntignous face of the anten, the
conma (here drawn from the poationm), which is really perpendicular, is made to appear to lean slightty in the aume direction as the onter columns. I have obeerved that a perpendicular pilater, when brought very near to a colemn in a portico or doorway, has the effect of making the colemn appear to lean formard. The inclination of the anter in not itself visible, except to a ppetator in the narrow space between the inner row of columne and the wall; end when the eje is brought very near to a line, so that it cannot take it in all at osce, it is scarcely possible to judge of perpendicularity.
The int peculiarities 1 shall mention are the differencea of the absens. thow on the east front are of the largest class, the north-eat and south-east beriag the largest in the whole temple; they are $6 \cdot 858$; the others in the ens front are 6.753 ; on the south side they are 6.580 , and so are they on the west front. The north-west angle is the asme at the ordinary size of the east front, 6.755 ; the south-west angle is somewhat lesa; on the north ide they are 6.750 in the middle, and regularly decrease towards the angles
The entasia of the columas is the most wonderfal and beantiful of all the curves. It is so delicate, that its existence was for some time doubted; and拢 I found by careful measurements, in a manner which was suggested to we ty Professor Willis, which I will here describe. A fine harp wire was atrined from the top to the bottom, as tight as it world bear, close to the edfe of such flates as preserved a sufficient number of points, with the original surface, and by means of a rule similar to the one I here produce, which is applied with a vernier, I was enabled to meanre from the fate to the wire with the greatest accuracy to sbout half fike foot. I took such mearares in several columne of the Parthenon, which I found to he wonderfolly true and identical. I measured also the entasis of columns from the Breetheam, Propylien (both orders), temple of Theseus, and Jupiter Otyopus. In those of the Parthenon, Erectheam, and Propylsea, I find the correapondence with hyperbolic arcs, which I have calculated so exact, that the mean of from 14 to 20 measurements in each column differs from the calculated carve leas than rdos foot, and none of them, where the sorface mas to be depended npon, differs by 10 much at sko. The entasis of Jupiter Olympas sives also a very true hyperbolic arc. The columns of Theseus are so much worn in their outer edges that I was obliged to content myaelf with meagures within the futes, which never give such regular curves as the mets, althongh the fiutes are worked with a nicety far exceeding that found in any other atyle of architecture. Still, a mean from four different sections within the flotes gives a very accurate byperbolic arc, although uo one is a perfectly regular curve. These hyperbolas are all chosen with their axes, pultiples, or aliquot parts of the attic foot. The Greek architects acted with great judgment and knowledge of the nature of the curve they were employing, an it is the only one of the conic section which can produce nriety in such delicate currature as they have chosen for their entasis.
I mint now advert to some of their mouldings, which are worked with the ame perfection, and, as far as I have examined, are all different forms of the coaic sections.
The echinus of the capitals of all the Doric colnmas agrees with rarious forme of the hyperbols. The sofitit of pediment, Parthenon, and Propyisea, and I think of Theseus also, show a hyperbolic arc. This is a magnificent moulding, and worked with the utmost perfection. That of the Erecthenm is an equally true parabola. The cymatiam of the Parthenon is the only certain circular form which I know, except the rorus of base, Brecthenm, and Ionic order Propylas. The futes, aleo, are all parti of circles, whose eeotrea are proportioned to the width of the futes. In this they thowed their jedgment, as it would have been almost impossible to have worked pure ellipeses and in these retiring sarfaces the value of the perfect variety of earvature of the ellipee would scarcely have been appreciated. Talking of Autes, there is a peculiarity in the futes of the Partienon, which does sot ocear in any other of the temples of Athens. The fute at the neck is deeper in proportion to its width than in the rest of the shaft: during the whole rise, antil about 3 feet below the neck, the sagitte or depth of the
 about foh part greater. Thia hat a good deal of effect on the columa, and give a richneas of effect to the upper part, at the same time that it dimiaishes the light in that part where it can best afford it, viz., where it is contrated to the deep back-ground of shade of the upper part of the celle wall.
I bave not yet much to aay with regard to the colouring of the temple, mor have I much time to any that lithle, for 1 fear 1 mast have exhauated your peaieace. The drawings which are at present made represent the architrave, bad, \&ce., the triglyph, and the atring which carries the marble beams which mpported the celing. There is not a great deal of positive colour remaining in the Parthenon. The ondernide of the mutules show some reatiges of Hex and red colour, and the upper part of the nook of the triglypba, bere and there on the east front, preserves some blue. One of the antie of the porticum has a tolerable sapply among ita eggs of blue and green, and tome red. The fowera which decorate the cymatium and other mouldinge have no trace of pesitive colour, but the drawiog of the ornaments upon them is in many pleces clearly to be made out.

CABT AND WROUGHT IRON BRIDGES.-(PAEt II.) (Continued from page 126.)

At the requent of the conacil of the Royal Scottinh Society of Arts, the second part of a paper "On the Stromgth of Materials, as applicable to the conotraction of Cast or Frought Iron Bridgen, inchading an accowat of the Tubular Bridges ooer the Comony and Menai Strails \&c.," wat read, April 10th. By Geomer Bocranan, Beq., President.

In the firnt part of this paper, Mr. Buchanan described, on a former evening, the principle and conatruction of the High Level Bridge at Newcestle, which is intended to complete the communication by railway between London'and Berwick-apon-Tweed. Some inquiry baving been then made from the chair regarding the bridge over the Tweed, the only remaining link uacompleted between London and Edinhurgh, he had received the following particnlart from Mr. Harrison, the resident engiveer under Mr. Stephenson: -This bridge is to be of stune, and is to consist of 28 semicircular arches, each $61 \frac{1}{2}$ feet span, resting on lofty piers, carrying the level of the railway 103 feet above bigh-water mark, 126 feet above low-water mark, and 135 feet above the deepeat part of the bed of the river. The whole length of the hridge, with abutments and wing-walls, is 2140 feet. The 28 arches are divided into two series by a broad pier, 28 feet in thickness in the middle. The piert of the arches are 81 feet in thicknews at the springing, increaning by stept towards the hottom. The bridge will not be completed for 16 of 18 months, bat it is intended to have a temporary bridge ready for traffic in the month of Joly next. This viaduct is a work of great magnitnde, and will form, when finished, a striking and imposing stractare, and one of the many to which the extension of railways hat given rise. While on this subject, he would mention two other remarkable works, recently denigned and executed hy Mr. Miller on the North British and Ayrihire Rnilways. The one is the viaduct over the Valley of Donglags, between Duobar and Berwick, not far from the ance-calebrated Pease Bridge. This viaduct crosses the valley and banks by six semicircular arches, each 60 feet span, and then the deep ravine by a single arch, 135 feet apan, and rising 105 feet shove the bed of the atream. A large and beantiful model of this structure wat exhihited, which Mr. Miller, at the President's requeat, had allowed to be sbown to the Society. The other viaduct in that of Ballochmylé, acrone the Fater of Ayr, on the Cumnock Bxtension of the Ayrshire Railway, and is similar to that of Danglass in crossing the ralley on thiree semicircular arches. each 50 feet span on each side, but is atill more remarkable in crossing the deep ravine in the middie by a single semicircular stone arch no less than 180 feet apan, and rising 150 feet above the bed of the stream-a bold and nohle design, and which hat been execuied with complete succest, the adjacent rocks furnishing such vast blocks of stone as greatly to facilitate the constroction, and to render, indeed, the plan itself practicable. The arch stonet are 5 ft .3 in . deep at the apringing, and 4 ft .9 in . th the crown, and the appearance from below of the stupendous arch rising to such a height is singularly grand and striking. The whole arrengements connected with the quarrying and raising and depositing the stones on the building, by the improved machinery of modern times, have been most efficiently conducted by the contractors, Measra. Rons and Mitchell, and the ajmple mode of centering adopted and shown in the Dunglas model is recommended by the adrantage of preserving the timbers entire.

The subject of stone bridges opens a wide and interesting field, but extending beyond the limits of this paper. He wonld, therefore, resume the one more immediately prescribed, namely, the strength of materials, particulerly iron for bridges. Some intereating experiments, which the time on the previons evening did not permit to be shown, were then made on the tensile atrength of atone from Hailes and Craigleith quarries. The Hailes atone bore on the square inch 360 lb ., the Craigloith considerably more; and a remarkable effect was observed here after the load had hung for a little: it was saggested by a member to give it a slight tap with a hammer, and, on this being done, it immediately snapped saunder, ohowing the effect of vibration or concuscion when the materials ane greatly atrained in aiding and completing the fracture, a circumstance which appeare to throw light on what mey sometimes occur by the rapid and violent actions of the trains on railway. The compressive strength of the Hailes and Craigleith stones was then shown, by experiment, to be much greater than the tensiic strength; and as it required, indeed, more weight and a more powerfal apparatus than could be commanded, these experiments on different stones were deferred to another evening.

The compressive strength on posts or pillers was then considered, and the remarkahle effects of the length of the pillar in diminishing its strength. On this subject mach light has been thrown by the experiments of Mears. Hodgkinson and Fairbairn. Pillart or rods were tried of diferent lengthy, from 3 inchee to 5 feet, and of different diametert; rods half an inch diamee ter, with 3 inches length, bore 11 tons $;$ but when the length was 71 inches it only carried 5 tons, when 15 inches long, 3 tons; and at 30 inchea ouly 13 cwt . From these experiments, a general role may be drawn for differeat lengths. Taking the sfrength of cat-iron as formerly given at 50 tone per square inch, this will hold good in pillars till the length reaches five times the diameter, and then it begias to dimiaish. When the length is ten times the diameter, the strength is reduced in the proportion of $1 \frac{1}{4}$ to 1 ; with the length at 15 timea the diameter, it is reduced as 2 to $1 ; 20$ times as 3 to 1 ; and 40 times an 6 to 1 .

Hence the great adrantage in cat-iron, of using hollow pillars or tabes in place cf solid metal, whereby, with the hame area or section of fracture the diameter of the pillar is increased, and with it the resistance to fexure, and an increase of strength in proportion to the length. A solid pillar, for instance, 6 isches in diameter, if extended to 71 feet in length, would be weakened one-half, but if cast hollow, 10 inches in diameter and inch thick, giving the same weight of metal per foot in length, it migbt then be extended to $12 \frac{1}{1}$ feet, and atill possess the mame strength as the other. In all these cases a remarkable circumstance wat obeorved in regard to the mode of applying tbe atrain. With the ende of the pillar turned fiat, and a fat plate interposed at top and bottom, which in the case in supporting huildinga, this was found to anatain nearly three times as moch as when the pillar was ronnded on the ends, so as make the force pass directly through the axis, as occurs so frequently in machinery witb the connecting rods of stenm-engines, and in other cases. The effect of the length of pillars in weakening the strength wat illostrated by a striking experiment with a spiral wire, quite flexible, yet, when set up as a pillar, and tied in the middle laterally, with slender threads, carried a weight of 56 lb , and would have carried moch more, bat the moment the threeds were cut, the wire gave way by flexnre, and oversetting the halance, the weight immediately sunk.
In regard to the Tranaverse Strain, be had already explained the natare of thin compound action, and particalarly tbe manaer in which, nader it, the beam becomes expostd at once to the effects of tenaion and compression, the one side being distended and the other compressed. On this most intereating and importent subject he had still much to say, but would defer it to another evening, as the time was thort, and he was anxious to proceed with another part of the paper which hed been particularly referred to, namely, the subject of the tabular bridgea.

The application of malleable iron had been already used in the shape of tension-rods in cast-iron girders, and was applied, as we have seen, in the high level bridge at Newcastle; but the application of girders constructed of malleable iron alone is a new idea. It has been applied on railways in the case of skew bridges of wide opeaing and limited depth between the railway and the road; in these cases the girder consists of a rectangular hollow tube or square box, extending over the whole span, and of such depth as can be attained. Thess have hence received the name of Tubnlar Bridges, and have excited much attention since the grand experiment has been determined on, of trying these structures on such a magnificent scale as is now in progreses of execution in the crossing of the Straits of Menai by the Britannia Bridge, and the estuary of the Conway by the Conway Bridge, and which form, without doubt, the most remark able engineering enterprises of the present day. These spots, as is well known, had already been the scenes of vast engincering operations connected with the suspension bridges of Telford to form the great turnpike road communication from the metropolis to Holyhead, and thence across the channel to Dublin; and when it was determined that this commanication should be superseded by railway, it became a matter of most serious consideration how these two openings were to be spanned, keeping in view the new conditions of stability required for railway traffic; and the aubject having been remitted to Mr. Stephenson, the engineer of the line of railway, namely, tbe Chester and Holyhead, he at once rejected the principle of the suspension bridge as inapplicable, owing to the undalations to which if was liable, and which had been proved by practice in a similar bridge for a railway across the Tees, to be both inconvenient and dangerous. How far the principle might have been modified by the introduction of proper ties and braces may be a question; but in a case of guch vast magpitude and importance there might still have been risk, and, on the maturest consideration, Mr. Stephenson determiued to recommend the simple and bold desiga of a hollow rectangular tube of malleable iron consisting of thin plates rivetted togetber, such as he had already tried with success on a smaller scalo opon railway bridges, and which be conceived whe the best form for securing not only strength, but sufficient stability and stiffaess to prevent any undue oscillations or vihrations. To carry ont this plan, the assistance of the first authorities, scientific and practical, on the strength of umterials was called in, and to Messrs. Hodgkinson and Fairbairn the duty was remitted of trying the effect with experimeatal tubes on a small acale, and finally on a model one-sixth of the dimensions of the bridge, being 75 feet long. Much valuable information was obtained daring the progress of these experiments. The first thing observed was the uniform tedsion of the under side of the tube when loaded, and the violent compression of the upper side, forming a beautiful illustration of the nalure of the tensile and compressive forces already laid down. The former, by its uniform tendency to produce the stable equi. libriom, bringing the thin masaes into a straight line, the line and position of repose; but the latter, on the contrary, tending to produce flexure in the plates, to push them out of the straight line, and puah everything out of joint; so that when the bottom plates remained firm, and retained their form, the top plates became bagged up and puckered like a loose web of cloth. The top plates were, therefore, atrengthened, and the addition of asother plate to the top increaned the breaking weight from $3,700 \mathrm{lb}$. to $4,500 \mathrm{lb}$.

As it was not so mach strength that was wanted on the top plate as stiffness, in place of adding layer upon layer of plates, the idea naturally occurred of forming the top plate into a series of litule hollow square tubes running longitudinally the whole length of the bridge, haviag the appearance, looking endways, of lletle cells, the effect of which was such, that while the top plates remained firm, the bottom ones now appeared to give
way. These being next strengthened, an extraordinary effect was then exhibited when the tabe broke, the sides collapsing together, and twisting and distorting the whole fabric in a singular manner, showing that the sides formed now the weak point. These, then, were strengthened and stiffened by numerous ribs of angle-iron running vertically from top to bettom, and at last, by these repeated trials, the strength and proportions of the different parts of the structure appeared to have attuined a fair and proper distribution. The strength of the tube, which at first only carried seven times its own weight, was then increased to eleven times, and from these experiments the strength and proportions of the real desiga have been calculated, and one of these tubes, as is known, has now been actually constructed on the shore of the Conway, floated by water to its place, and raised to its proper height by the power of two enormons hydraulic rame, one at each end, lifling the gigantic mass, whicb is 412 feet in length, 15 feot wide, 251 feet high, and weighing no less than 1,300 tons. This is inteaded for one set of rails, and there is another tube of the same dimentions in preparation to be eet parullel to it for the other.

The situation of the atructure close to the suspension bridgo, and close to the base of the magnificent Castle of Conway, and the effect of sparning the wide estaary of the Conway, were all illustrated by a beantiful drawing, and the nature and construction of the tabe or bridge itself, was illastrated by a model which he had himself constracted. The model was composed of only three thicknesses of paper and one of clotb, and the sides were strengthened by thin slips of wood to represent the angle-iron; it was 8 ft .6 in . long. $6+$ inches deep, and 3 l hroad, and although weighing only 4 lb . it carried a weight of 32 lb . in the centre, without visible defection.
The dimensions and structure of the bridge be would now deacribe, frum information for which he was indebted to Mr. Fairbairn of Maschester, and, through Mr. Stephenson, to Mr. Edwin Clarke, the resident engineer under him.

The sides of the tube, which are 25 feet deep at the centre, consist of malleable iron plates, only $\frac{1}{\text { inch }}$ in thickness, rivetted together in plates 2 feet broad and from 4 to 8 feel long (as was shown in an onlarged viet or clevation with cross sections), adjusted so as that the joints may break band. At the joints, however, the strength and stiffaess of these plates is greatly increased by slips of angle or T iron, one of which is laid on the outside of the plate and the other opposite to it on the inside, face to face, and all the four surfaces strongly rivetted together. The top of the tube, again, consists of two separate horizoutal plates, running parallel to oee another, 1 ft .9 in . apart, forming together as it were a ceiling to the tube or tunnel and an external flooring on the top. These plates are \quad inch thick, riretted together in breadths of 9 f. 9 in. thick, and in leagths of 6 feet, and between them there runs seven vertical plates longitudinally, from end to end of the bridge, 1 ft .9 in . high and $\frac{7}{3}$ inch thick, separating the ceiling from the foor or apper platform, and at the same time uniting them atrongly together by rivets and joints, each vertical plate having a rib of angle-iron on each angle, ranning longitadinally the whole length, by Which it is united into one vast cellular mass, consisting of eight separate cells or tubes, 1 f. 9 in. square. The object of all this strength and distribution of materials is to give the necessary stifness and strength where the compressive force acts. And on this account the top and bottom plates are merely united by butt joints with covering plates. The whole weo tional area of this cellular frame consists of 608 squara inchen. Lastly, the bottom of the tabe consists of a similar frame of cells, bat only six in number. The upper plate coosists of two layers of plates, each in inch thick, and the ander one the same; but as these plates are intended to resist tension, and ought to be formed, if it were possible, like a chein, besides being laid in two layers, the plates are arranged so as to break joint, and a covering plate s feet long and as thick as the plate is placed over every joint with sufficient rivets, such that the tearing strain is eqnal to the tenaile strength of the plates they connect. The platen are 18 feet long and 2 fl .4 in . broad, being the whole breadth of the cell. The agle iron in the bottom cells and plates is rendered continuous by covers.

The top and bottom are united to the celle by strips of angle-iron rase ning the whole length, inside and out; the interior vertical angle-irons at top and bottom are curved round to increase the strength of attachanent, and there are also guaset or angle pieces rivetted on for additionel strength. The rivets used vary from 1 inch to $1 f$ inch diameter, and there are aboat a quarter of a million in each tube. The holes were made 20 a to make the rivets fit well, and they were all put in red hot. The seotional ares of the bottom frame of cells is 508 square inches.

These are the dimensions in the centre of the tahe, bat the top plates become thinoer towards the ends, where they are ouly t-inch thick, and aleo the bottom plates, where they are reduced to $\frac{1}{4}$-inch each. The side plates again get thicker towards the ends, where they are +aths thick. The ends of the tubs are stiffened with cast-iron frames, and there are also castings in the cells for 8 feet at the ends, and the sides are aloo greatly strengthened at the ends. The tabe was originally curved on the top 7 inches, and was brought to the straight line by the elasticity of the material as calculated on; showing that with its own weight, 1300 tons, it only sunk 7 inches. The one end of the tube is to be fast in the stone pier or abatment, the other is to be loose to alluw of expansion, which has been found quite visible in difforent states of the atmosphere. Mr. Clarke says that the tube is a sensible thermometer,-half-an-hour's ganshine of one end, or on the top, will move it laterally an inch and a half, and vertically two inches, and this when the tube is losded with 200 tons in the centre.

Suct are the dimensions and structure of this extraordinary work, and in regand to which, be was beppy to say, the trials which have been already made appear to promise every success. A load of 100 tons ooly suot the tabe 1 inch in the centre. In regard to the calculation of strength he was not able to enter on these at present for want of eome of the data, but expeoted to do so on a futore ocension.

The thanki of the Society were poted to Mr. Buchanan for his exoellent and imetructive exposition ; and also to Mr. Stephenson, Mr. Fairbairn, Mr. Clarke, and Mr. Herrison, civil engineers, for commanicating the feformation relative to the tobular bridget at Convay and Menai, and viadect at Berwick; and to Mr. Miller, C.E., for allowing his elegant model of the viadoct at Donglass lo be exhibited. Mr. Buchanan was at the same time requested to continue his observations, and lay them before the Society at a fotore timo, which request he kindly promised to comply with.

At the conclasion of the above paper, the following communications were read :-

1. "On a mev Lubriemat for Mackinery" By Mr. Alsmander Barson. -This paper described a new compound, possessing properties which seem to render it a better labricant thas those in use for large machinery. It is compoend of ail, salphur, and vulcanised ceontchouc.
2. "On Economiang Fwel in Gas-Work." By Mr. Wrlliam Ksirp. -The avthor states that he has made a raluable discovery in economising foel, at Galaniels Gas Works, by which almont all expense of fael is saved. Whore coal tar is burned, it has an injurions effect on the furnace hars and retorts, the greatest annoyance arising from the rapid clinkering ep of the fornace bars, to remove which the firemen had frequently to throw water into the furnace, which caused the rapid destruction of the bera. To prevent this, the idea occurred to the anthor, of using the exhansted tan bark of the tan workn, which had the desired effect. The force-pamp for jajecting the tar into the fornace was next thrown aside, as St was fonod that the dry bark absorbed tar equal to its production at the works. His method is as follows:-The barik la dried and mixed with the cole of the gas coal, bulk for bulk; a pailful of tar is thrown npon it, set quite so mach as it will absorb, and it is then torned over. The mix sare buras with a fine clear fame, attended with less amoke than formerly; the fursaee bare, by remaining unclinkered, admit the oxygen freely for the conberation of the fuel. Where tan bark cannot be had, peat moss, loose and dry, makes a good substitate. The author states that in one year $\mathbf{1 1 2 8}$ was sared on furnuce coal; and he has pledged himself that, min futare, bot a penny shall be required for that article.
3. "Deseription and Drewing of a new Plate-Holder for the Daguerreotype Camera." By Mr. Andmew K. Sparkg.

Mr. Sparke's plas is as follows:-A small mahogany box is made rether larger than three times the breadth of the plate, and half an inch on esch end deeper; the width is three-eighths of an inch. A bole is cut in wood the size of the plate, and in the centre of the large pieces. In this box a veneer frame is mado with a place for the plato and glass, on a liee with each other; this is pulled backward and forward by a piece of wire or atring, through a hole made at the corner. By this arrangement the plate is inatanty exposed to the lenses, and will be found admirably adapted for taking moving objects. It saves the trouble of shifling the gronnd glass frame for the plate-holder, and the consequent risk of moving the camera, so annoying in the old plan. The plate is also exaculy the same distance from the lenses as the glase. For a camera not achromatic, the ground part of the glass may be placed outwards, so that the plate will be the thickness of the glass nearer the lenges than the image seen on the ground glass, and consequently nearer or in the chemical ray.

INSTITUTION OF CIVIL ENGINEERS.

Merch 28, and April 4.-Joshoa Field, Esq., President, in the Chair. The peper read was "The Engineering of the Rhine and the Moselle." By Mr. G. B. W, Jackson, Assoc. Inst. C.E.

This communication was written doring a short visit made to Holland, for the purpose of inspecting pernonally the work with which the anthor had become familiar in the writings of Beaudemoudin, Vanden Bergh, Delafontaines, Hibbert, Krayenboff, Ockhart, and Wiebeking. It commenced with tracing the geographical course of the Rhine from its source on the Bedus, in the canton of the Grisons, to its numerons outfalls into the sea. It then treated at considerable length the geological character of the country through which the river and its branches thus traversed. The ancient works, as far back as the time of the Romans, were then briefy described; and the general state of the bed of the river, with the comparalive levels, the inclination and the velocity of the stream, at the commencement of the modern works, were then laid down in a tabular form, as points of data; and then the capability of the Rhine for forming banks by warping, or depositing the matter beld in suspension, was discossed. The remainder of the first part of the paper was then occupied by descrip. tioas of the modes of straighteniag the bed of the river, and of constructing the dams, weirs, division arms, spure, and shore works, and the method
of blasting the rocks, which latter considerably impeded the coorse of the stream. One limits will not permit as to follow the details of these workn which differ so essentially from any in our own conntry, but the whole proceedings appeared to be given with auch precision, that the paper, whon it is published $a t$ length, with the copiens details with which it was illnstrated, will form a most interesting portion of the minates of proceedings.
The second part of the paper consisted to considerable extent of a tranglation of an acconnt of the spars, groynes, and other works on the Moselle, for restricting the dimensions of the bed of that river, and increasing the depth of water, so as to enable the navigation to be carried on, which would otherwise be averted in the low-water seasons. It was shown, that to effect this, pumerous arms of the river had been dammed acrose, and allowed to silt op; the course had been straightened, elbows had been cut off, and the convex shores, after being silted up by deposit between the groynea, were defended by arming of fascines, \&cc. Division banka had been eatablished for the inflowing rivolets, so as to carry the gravel to a greater distance down the stream. Rocks also were removed by powder, and general improvements to such an extent were execnted, that the rirer was comparatively under good control.
The account of the Rhine was then resumed, and, after detailing the various plans that had been proposed for ameliorating its conrse, giving numeroue interesting and valaable tables of Blanken's and Bolstra's experiments as to the tides, the inclination of the bed of the various rivers, the duration of the ebb and fiow, and average height of the river at the time of new and full moon, the height of verious dyies above the extraordinary flood-line, \&c., the paper finished with these general views:-"On lookiog at the map of Holland, and tracing its various streams, it certainly does not appear singular that frequent stoppages should take place in that coantry, whilst such occarrences are comparatively rare in Germany; for, as long as the Rhine retains its single course, as at Emmerick, no ohstacles, excepting elbows, stay the progress of the current seawards; but, as soon as it divides at the Waal and Pannerden Canal, the ovil commences and increnses, according to the number of arms and channals lower down. It is generally agreed that a river should have as few oot. lets as possible, in order to allow it the more offectually to cloar itsalf; and that the tide should be admitted as far as passible, whilat at the same time, the action of the winds should be diminished; again, that the more the surface water of any river is obatructed, the more quickly the and will accumulale; and also that, if a cat be made, it is asual for ice stoppagee to tuke place below it, so as to raise the water-level above; and it is also agreed, that if a cut be made, as capacions as the river itself, or be permitted to increase to that extent, it will soon get bejond control, whilst the sand will accumulate rapidly-and that when openings exist in dykes, the ice gets into eddies, loses its velocity, and by degreen closes op the passage below the opeaing, so as to raise the water above. The question, therefore, to be solved with regard to Holland and the syatem followed there, in order to prevent breaches in dykes, and to save the better part of the country (taking into account its weak, marsby soil, and its incapacity to withstand any great force), is whether it be the better plan to relieve the pressure on the dykes, by cuts and new cbanaels, aod local loodinga, at the expense of increasing the namber of ice stoppages; and, at the same time, diminishing the rolocity in the main rivers, thereby greatly angmenting its liability to accumulating sand. It is true, as already stated, that the rivers are at present in such a condition, that it must be very expenslve to effect anything of importance; but the question is of such vital importance to the port of Rotterdam, and the certainty of the mouth of the Meuse at the Brielle in the course of time closing up like that at Katwyk, if no improvement be attempted, is so clear, that it is very mach to be regretted some steps bave not been taked ere this to prevent so great a flow of water from passing out by the Hollands diep to Helloet.'

The author directs the attention of the Institution to this subject, and gives the following points for the consideration of the members:- I' That the object to be aimed at, in any steps which might be adopted for improving the Meuse at Rotterdam, shonid be to protecl and strengthen the shares and dykes likely to be operated upon by the alterations; to straighten all the curves on the Leck, so as to lessen chances of ice stoppages; to soparate the Waal and Meuse waters as much as possible, and to lead off the former, together with the Leck, into the sea by the Brielle; to narrow the Bresbosch chanael (now divided) into one, regulating the quantity of water; to close the Krabbe, the Noord, and tho Spry, with sluice gates; and, fur the purpose of widening the outlet, to join the Islaad of Rosenbarg to the main land at Vlaardingen-thereby causing the ebb water to act upon this island, and with increased velocity and an additional quantity of water, attempting to remove the bar and shoals."
April 18.-"Observations on the Resistances to Railway Trains at differeat Velocities." By Mr. D. Goocr, of the Great Weatern Ratlway.

For the parpose of performing the experiments, a dynamometer carriage was constructed at S windon, in whicb all the resulta required were registered upon a large seale, on the ame roll of paper, thus exbibiting at one view, and in the ame period of time, the tractive power exerted upon the train, and the force and direction of the wind; the registration of the results was made opon the paper at every sixteenth part of a mile, and the time was resistered in correspondence with the distance traversed during evory fifth part of a second. The dyammometer apring used was 7 ft .6 in . long, and very carefolly arranged. It was only necessary to count the number of secoade, or factions of a second, in one or more of the distance divisions, and the
apeed was aecarately ascertained. The force and direction of the wind wh ascertained by a wind gange, placed 5 feet above the top of the carriage, with the connections brought down to pencils which indicated on the seme sheet all the reanits. Indicator cards were also taken aimultaneously from the steam cylinderi as frequently as was practicable, but not continuoualy, as it was a pervice of some denger, the experimenter being obliged to sit on the buffer-beam of the engine at a velocity of 60 milea per bour, and in that winds position to take off foor sets of cards in three quarters of a minute. The spot selected for performing the experiments was one mile of railway perfectly atraight and level, and nearly on the surface of the ground; and in the plan the beight of the trees, hedges, and every intervening object which conld affect the infuence of the wind ia clearly marked. The experimental erain consinted of first snd second-class carriages, each on six wheels, 4 feet diameter, taken indiscriminately from the working atock, and loaded with iron to represent a fair load of passengers, giving a gross welght for each of 10 tons. The experiments were tried with various weights and apeeds up to 100 tons and to 62 miles per bour, and the resulta were classified and arranged in a tabular form, with copious explanatory headings, so as to render reference to them exceedingly easy.

The author firat reviewed the deductions of Mr. Wyndhem Harding's formula, which was givan at the discosslon at the Institution in 1846, and geve his reasons for dissenting from that formula. He then examined critically soveral experiments recorded in the tables, stating candidiy all the exceptions tbat coold be taken to them; showing that although there was a difference of as much as 52 per cent. shown between the resistance as calculated by Mr. Herding's formula and the experiments made by Mr. Gooch, that dif. ference might be accounted for by the methods employed by Mr. Harding, which were objected to, as calculated to produce erroneous resulta; viz, allowing carriages to run down inclines by their own gravity, using wheelo of 3 feet diameter instead of 4 feet, having a much greater length of train for the wind to act upon, \&ce. He reviewed the great effect of a side wind against a train-drividg the fanches of the wheels against the rails; and argued that the length of a train of carriages wis much more important than its own weight. The author did not offer any formale that should be applicable for calculating the resistance of all railway trains; bot his tables gave examplea of almost every case that could occar, and thence data could be supplied for those who wiahed to carry the inrestigation farther, and make a formals for themelves. He arrived at the conclusion that in practice the friction of the axle-jornals was not a constant quantity at all apeeds, and thought that the number and diameter of the wheels in a train, in proportion to the weight, should form elements in any general formula. He showed by experiments that the total atmospheric resiatance to a train weighing 50 tons differed but slightly from that to a train of 100 tons weight, if the carriages were amall and the train long in the one case, and the reverse in the other cale.
The general result of the diagrem of resistance with trains of 100 tons and with 50 tons showed that the resiatance calculated by the narrow-gange formula with a 50 ton train, at 621 miles per bour, was 37 lb .; with a train of 100 tons, by the same formala, at 61 miles, it was $31 \frac{1}{4} \mathrm{lb}$. The broad gauge resisfance, with a train weighing 50 tons, at 621 miles per bour, was under 23 lb . ; and with a train weighing 100 tons, at $61 \frac{1}{d}$ miles per hour, was 221 1b. We cannot, of conrse, give folly the reanlta, except in a comprehenaive form, but such were the general results.

The anthor concluded his paper by asying that it appeared to him necesany, before any general formula for calculating the resintances to railway trains could be made, that the value of the following elements, necessary in such formula, should be determined by experiments:-

1. The axle-journal friction, at different velocities and with different weighta, per square incb of journal aarface.
2. The resiatance to the rotation of the wheels and arles per pair at dif ferent velocities and with different diameters.
3. The resistance due to the rolling of the wheels upon the rails, with different weights upon them, and with different diameters.
4. The resistance due to the pasage of the train through the atmosphere, at diferent velocities, with different proportions of weight, and lengtb and breadth of train.
5. The resistance due to the oscillation or unsteady motion of the train, t various apeeds.
The anthor considers that all these values might be determined, with a conslderable degree of acquracy, by careful experiment.

SOCIETY OF ARTS, LONDON.

April 19.-Sir J. V. Bonleav in the Chair.

Mr. Digby Wyatt, architect, read a paper "On the Art of Baamel, An. cirnt and Modern."

The paper commesced with some remarks on the necessity of increasing the resources of the designera of metal work, by effecting changes in the process of manufactore; sad by 山at ect, producing a novelty whioh might possens all the charm of freshness, withoit any of that extrava_
gance so constantly resorted to in the attempt to produce variety. The art of enamel presented this $s 0$ much wished for deaideratam, wheseby by imitating the practice of the medieval artists in this material, we might coosiderably enrich our iadastrial resources, and facilitate the oxecution of beautifal works of utilitarian ert.

After a hasty description of the compoaition of pare enamel, and the nature of the pigments usually employed to colour it, Mr. Wyatt proceeded to enumerate the six leadlag varieties which had been adopted, at various periods in the history of the art, to onite the vitreons paste with its metallio base; endeavouring, as far as possible, to dencribe each geaus in the language of some contemporary authority. The first, or Byanative process, which oblained throughout the Eastern empire, from probably the time of Justinian, down to about the year 1300, was illastrated frod the particulars furnished by Theophilus, the celebrated artist monk of the 11th or 12th century; and its chief peculiarity appeared to have been the formation of casements, or cavities, for the reception of the enamel, by means of gold filigree.

The second, or early Limoges style, which was 50 much prectised in that city, from probably the 11th ceniury, until the frightfol siege and massacre by the Black Prince, was described from a comparison of the admirable notices of Mr. Albert Way with those of MM. Potit, Dusaiear, Pottier, and the Abbd Texier; and would soem to have substitated for the filigree compartments of the Byzantine mode, inciaions in the thiok eopper plate by the graver.

The third, or early Italian mode, practised for probably some 50 yeara before the days of Ugolino Veri, the artist who executed the celebrated shrine in Oevieto Cathedral in the year 1388, and carried on by subsequent goldsmiths and enamellers down to the end of the 16th century, was detailed from descriptions given by Vasari and Benvenuto Cellini; about the middle of that century it appears to bave held a midway position betwoen the ancient champ lecé, or incised, and the painted enamels afterwards produced, consiating in engraving silver after the manner of medallic relief, and then floating it over with variously coloured transparent pastes.

Benvenuto was said to have, if not invented, at least been the first to describe the improvement that took place about the beginning of the 16th century, in the art which constituted what Mr. Wyatt called Jeweller' enamel. It consiated in using as a vehicle, with the glase yowder omployed to cover small gold or silver objeots in the round, or in the higheat relief, water in which pips of pears had been steeped. This beld the pasta ia its place antil vitrifaction took place, and was yet oo delicate a cement, a in no degree to interfere with the perfect purity of the enamel.

The fifth, or "late Limoges" variety, was described as having spreng at once, fully armed, from the brain of that Jupiter of eammel workers, Leonard Limousin, under the anspices of Francis the Firat, and differed from its predecessors chiefly in covering the entire surface of the metal with an opaque paste, and then painting on it with transparent colours; regaining the effect of a tranalucent ground by applying silver leaf in particnise situations, fastening it with a glace of colonrless enamel, and then tinting over it. These peculiarities, as well as the peinisre grisatre, and tonching with gold, were illustrated from the intereating manuscripts published by M. Maurice Ardent, of Limoges. This style appears to have dwindled into nonentity ander the hands of the Nounilbers, a family who lived (they can scarcely be said to have flourished) during the latter part of the 17 th century.

In connection with the detail of the sixth and last process-the Miniature style-honourable allusion was made to the labours of Sir Theodore de Mayerne (whose interesting manuscript we may shortly hope to see published under the auspices of Mr . Heindrie) and his connection with Petitot, the principal and best known of this school of art. The improvements effected in this style would seem to bave been a great enrichment of the palette, by the addition of new pigments, the power of multiplying the number of firings, and graduatiog the succession of tints, their hardness and fusibility, by the addition of fuxes, \&c. Unhappily, the mystery many selfish artists bave thrown over their modes of procodure, readors them exceedingly difficult to analyse or describe.

Mr. Wyatt then commencing with Egypt, gave a rapid sketch of the bistory of the art, noting the barbaric enamels existent in the North, probably previous to the Norman conquests; touching on the connection between the Limogen and Byzantine schools; and trucing, though necee sarily very briefy, all the salient points in its existence, both as a manafacture and as an art, in our own and other countries. He glanced at what bad been recently done in the ateliers of Wagner and Rudolph, at Paris, and the exquisite paintings of Messrb. Bone and Essex; and concluded by expressing an earnest hope that the knowledge of art possessed by those gentlemen might soon be grafted on the skill of our workmen, and that we may ere long adopt, and fully carry out, the old practice of the middle ages, so ablycharacterised by the Abbé Texier, in his eloquent declaration that, "jn those days, Art and Manofactures were blended and iden. tified ; Art gaining by the aftinity great practical facility, and Manufacture much original beauty."

Sanh Line.-Mesars. Newall and Co, have greatly improved their patent copper wire cord, which la now made extremely fiexible, and is well mdapted for window. mah. Hine, hothouses, lifhtning condaelors, pletare-cord, clock-cord, bell-harging, aod many other purpowes for which hempen rope has hitherto been uped; the edrantagta betog that it is cheaper, moch more durable, and one-alxth part the balk of herapen rope.

COMPOSITION OF COAL GAS.

Estracts from a lecture, by Dr. A. W. Hormann, delivered at the Rogal College of Chemistry, Hamover-square.
The composition of gas evolved in the distillation of coal is by no mense constant ; on the contrary, it varies to a considerable extent, doperdiag priscipally on the natare of the conla, the presence or abseoce of voistore, and the temperatore at which the distillation takes place. The chief elements which conatituto conl are carton ad hydrogen, with wasll quantities of nitrogen and oxygen; and, according to the quality of the coll, a larger or amaller amount of earthy matter. Anotber frequont ingredient is salphar. This sulphar occurs almost invariably in combianbion with iron, in the form of iron pyrites. The quantity in which it exists nies very considerably; masy kinds of coal contain so large an amount that they become altogether useless for the purpose of distiling gas. If coal be ignited, and atmospheric sir excluded, a portion of its elements are erolved as gas, and the remainder become coke. The gases thus evolved cootain carbon, hydrogen, nitrogen, oxygen, and aulphar. None, however, of these elements, except nitrogen, are foand is an uncombined state among be products of the distillation of coal.
The following tablea show the different combinations into which these esewents enter during distillation. These combinations are very nomeroas, and are divided into two groupe-vig. : substances which are solids or lignids at the ordinary temperatures, and componnds which present themselves at the conmon temperature in the form of gas.

COAL GAS NAFTHA.
Acid Portion.
.
12
H 6 .. 02
Neutral Portion.

NOTE,The lettere reprement-C, earbon; B, hydrogen; O, orygen; N, altrogen, and co co; the figuet deelgrate the number of atome of which each rolnme it com: poed-innt, one stom of anfiline contilas 12 atome of carbon, 7 of hydrogen, and 1 of stronem.
The above series of subutances are each of them highly interesting to the scientifc chemist, whilet eeveral are likely to become of high practical vitity. These substancen, along with othern which are litule known, conatitnte the complex viscid mixtore called "tar;" and it is rather singular that many of them, in their ceparate form, are oils, possessing the noot delightfal odonrs.
The second table exhibits tbe different constitnents of the gaseous products of the distillation of conl, as follows :-

CONETITUENTA OP COAL GAS.
Name of Conatituent.
Hydroten
Lablembaratted inydrogen
Ohbogt sas
Pro
\mathbf{H}
\mathbf{C}
Folatile bydrocarbons.
Cribotic oxide..
Cynopen
Solphide of earion ...
Solpharetted hydroge
Ammopia
folphareons seld
Hydrochloric ecld
Nopeoge vepour
Nitrogen
Cerboaic
In this $\ddot{\bullet} \quad \stackrel{\bullet}{C}$
In this table, the first is hydrogen, one of the coustituents of water. From it is obtaized a colouriess traosparent gas, remarisable for its low ppecife gravity, being ose of the lighlest subatances known. It buras with a pale fame, requiring $\$$ a volume of oxygen, or 9f volames of almonpherio air, for its combustion. It is not, however, the luminous principle of coal gas. The next, light carburetted hydrogen, or marsh gas, is a compound, conubining a proportion of carbon with two equivalents of bydrogen (C H 2). This gas, along with carbonic acid, is produced by the putrefaction of vegetable substancos-ander water-hence its name of mareh gas. It burns with a pale blaish fame, rather more substantial then that of hydrogen-though it is also evident that it could not be, any more than the other, the illuminating principle of coal gas. The chiof constiteent of coal gas is atefiant gas- name derived from its property of producing, when in contact with chlorine at the common temperature, a peculiar aromatic oil (of which a specimea was exhibited). It very mach resemblea chloroform, and no doubt bat that it bus also the same remarkabse properties. It is far richer in carbon thad marsh gas, the per centage of the latter being only 75, while that of the former is more than 85. Olefact gas buras with a boantifally brilliant fame, and coontitotes the true illumidatiog principle of conal gas. It requires for combuation to one roluge of olefiant gat, three of oxygen, or 15 of atmospheric air. Marah ops is composed of one atom of carbon, and two of hydrogen; while olefinat gas combines the two in equal quantitioe. There is, therefore, a
lerge amount of carbon in this gat, which may be proved in a atriking manner, by lightipg an admixtore of one volume of olefant gas with two of ehlorine, which will produce bydrochloric acid, and daposit all the carbon contaioed in the gas in a cylinder, in the form of a dense amoke, which reoders the gas perfectly opaque.
Volatike hydro-earbone was the next constituent, but with reapect to Which, at present, there whe not mnch known. The irat table contained the names of reveral subatences which had been extracted from the liquid products of the distillation of conl, called tar. These substances differed mach with regard to their phytimal properties-wome of them boiling only at very high cemperaturen, while otheri volatilised at a heat far belom that of boiling water. It was orident, then, that the grow, generated along with these liquids in the retort, would carry off a certain quantity of these hydro-carbons -varging with the diatance from the workn at which the gas wet examined. The great importance of these hydro-carbons in the lnminous effects of conl gas would become obvious if their composition were considered. Benzol, for instance, contained not leas than 92 per cent of carbon, a far greater amonot than that of even olefiant ges iteelf. This was proved by infiaming a small quantity of the liquid, so so to allow it an insufficient quantity of oxygon for complete combation; and, in this way, a large portion of the carbon was separated. When mixed with a due amount of oxygen, the combastion of this liquid afforded a splendid light.-- [The talented lecturer showed this, by pauing a corrent of atmospheria air throngh the lighted benzol; and also illuatrated the peculiarly rich ifluminating power of this vapour, by pasing it through the pale and almost invisible diame of hydrogen, which, when thas combined, gave oat a volume of light, which gradually and ateadily increased in vividness, until the eje could no longer bear its dazzling brightness.]

Carbonic oxide wat the next constituent. Carbon combined with orygen in two proportions, forming two compound gaves; the one containing the smalleat proportion of oxygen wat called carbonic oxide; and the other, containing the largest proportion, carbonic acid, which appeared as the lant item in the teble. Both thene gaces were colourlem, bat their properties exhibited a striking difference. Carbonic acid was not infitmmable, whilat carbonic oxide hurnt with a pale blue flame, of little or no luminous power. Again, the latter whe quite insoluble is water, while the former distolved, particularly when the water contained a little alkali, so rapidly at to form a vacuam.-[This was illastrated by experiment.] This solability rendered easy the removal of carbonic acid from coal gan; but no method bad been discovered of separating carbonic oxide, which buras with gas, though it adds nothing to its illuminating power.
The other gaces were prodaced in the diatillation of conl gan in very amall quastities; he should, tberefore, only briefly notice them. There were two more compounds of carbons-the one with nitrogen, and the other with sulphar; the former of these were called cyanogen and the latter muphide of carbom. Cyanogen wa diatinguished by ita beautiful violet fiame-carbonic acid being produced in its combuntion, apod nitrogen set free. It was aleo remarkable for its solablity in alkalies-cyanide of potasiom being prodaced, which, with ironallis, yielded Prustian blae. Tbis gas occurred in coal gas in such small quantilies, that its presence might, for a long time, have remained anknown, bat for the very delicate teat chemista possessed for cyanogen, by which the amalleat traces could be detected. Sulphide of carbon was highly inflammable, borning with a blue game, and producing carbonic and sulphureous acids. These subatances had been actually found in coal gas, though they were by no means prodaced from every kind of coml.

Sulphurefted Aydrogen was the next substance on the list; it was, however, invariably generated, and that too frequently in considerable quantities. Suiphorets of iron, or iron pyrites, which were diseeminated throngh the mats of the conl, was the source of this gai; and its quantity, therefore, depended apon the amoant of that mineral in the coml. Sulpharetted hydrogen was also the offensive principle in the exhalations from putrefying subatances containing sulphor. Sulphuretted bydrogen was a colourlest gas, burning with a pale blue flame ; it had not only a mott offensive odour, but produced a most deleterions effect upon bealth, even when mired with a large proportion of stmospheric eir. He had frequently witnessed, in the haboratory, feinting produced by the inapiration of this gas incantioung. Professor Furaday ind proved, that a dog would die in an atmosphere of which 1-800th only was tbis gat; and tbat a bird foould not exiat if the gan formed only $1-1500 t h$ of its breathing niedinm. Portunately, thin ges whe converted, by combustion, into sulphureons acid, which .was very much lean dangerons and offenaive. It wat necesury, however, in makiog conal get, to obliterate every trace of sulphuretted bydrogen, for the sulphureoun aciá it produced, althoagh far lese injurious, independently of it effect opon health, attacked very readily every metalic surfece. Beaides, the amall quantity of saiphoretted bydrogen which would escape unburnt between the turning of the cock and the ignition of the gas at the burner, and by leakage, was sufficient to deatroy lead, paiated, gilt, or ailvered articles, in a very short time. Tbe presence of snlphuretted hydrogen might eavily be dotected in gat, by nubmitting a piece of paper, mointened with the solution of actate of lead, to the gas nuinflamed.
Ammonia wha apother product, largely found in the diutillation of coal gas, into which nearly all the nitroges contained In coal was converted. Ammonia wha a colourlen gae, which, of ithelf, was very diffeult to indame, tbough, when mixed with other combuntible gases, it whe entirely consumable. Reapecting the prodocte of the combastion of ammonia, accurate
experimenta were atill wanting. According to all known analogies, they wert certainly water and nitrogen. Many works had stated that nitric acid was also produced; but he could find no actual grounds for thia; and he believed, like many other such statements, it had been copied from work to work, and repeated ontil it had become received as a well-entablished fact, Fithout the slightest claim to sach a consideration. In all his experiments, he Had never been able to find the smallest trace of nitric acid. Ammoniacal ges wata rery soluble in water, more so still in acids. The great avidity With which it was thus absorbed, rendered its separation from coal gea very eaty.

Suphtwreous acid was the product of the combustion of sulphar in the coal; and Aydrochloric acid from the decomposition of some chlorides, when they were present in the coal. Aqueous vapour wat the result of moisture in the coal. The nitrogen in coal gas was the residae of the atmonpheric air contained in the retort-the oxygen of which wat expended in converting a portion of the carbon and sulphnr of the coal into carbonic oride, carhonic acid, and sulphureous acid. Nitrogen was a colourless, tranparent, and incombustible gas, which, being soluble neither in acids nor water, could not be separated from the coal gas. Carbonic acid had heen considered with carbonic oxide, and that completed the whole of the conatituents of cosl ges.

The illuminating principles of conl gas were olefiant gat and the rapours of volatile hydro-carbons : there were also three other gases hurning in the coal.gas fame-namely, hydrogen gas, carburetted hydrogen or marsh gas, and carbonic oride. Beaides these, the gas which we actually bnrn might contain traces of anlphuret of carbon and nitrogen-all the rest having been, or ought to have been, perfectly separated in the different processes of parification which the gas had to undergo. During the progress of the toregoing short description, the audience had already become acquainted with the manner in which thete conatituents aingly burnt, but they would best obtain a correct idea of the contribution aftorded by each, and the illuminating power of coal gas, if they were all lighted at once.- [Dr. Hofmann then lighted the burners attached to the vessels containing the separate constituents, so as to afford a view, at the same moment, of all the various Anmes.]

By the process of purification which coal gas underwent before it was fit for use, the cyanogen compounds, the sulphuretted hydrogen, the ammonis, the sulphureous acld, and the hydro-cbloric and carbonic acids, were separated; and be proceeded to illustrate this process by passing coal gas, conthining several of the above geses, through lime water mixed with a little potash; after which the liquid, which before was tolerably clear, became guite turgid, and the gas no lorger contained the deleterious constituents.

The lecturer then proceeded to derote a few moments to describing the manner in which the diatillation was effected on a large scale. In the infancy of the manufacture, the coals were distilled in iron pots, but now iron vessels of a cylindrical form were used. These were placed horizontally in a furnace-one fire heating five of these retorts. The shape of the cyHaders was not unimportant; and, after various changes, ear-shaped cylinders were now generally preferred-ita heating surface being greater than that of any other. The front of the retort, or mouth-piece, as it was techsically called, was fired by acrewa-iron cement being placed between the finges to render it air-tight.- [These arrangements, as well as that by which the lid was fixed, were illustrated by drawings and a model.] The Id being fixed, the gas passed through a system of pipes into what was called the hydraulic main-a long, wide, horizoutal pipe, balf filled with waten Bach retort was thus perfectly isolated, and the end of the pipe being kept immersed in the water in the hydraulic main, any one of them might be opened, in order to charge it afresh, without fear of the gas al. ready generated ruahing back through the opening. The temperature of the bydraulie main being comparatively low, a large quantity of tar and mmoniaclal water wat collected in this tuhe, which flowed into cisterns erected for the purpose. From the hydranlic main the gas passed into a syatem of refrigeratins pipes-the temperature of which was kept low by a constant carrent of water, whereby another quantity of tar and ammoniac was separated. The gas entered next into the purifers, respecting wbich he conld mot now enter into the varions ingenious contrivances proposed by various clever gas engineers and chemists. It would, perhaps, suffice, if he stated merely, that now the gas wisa forced through hydrate of lime, merely moistened with water.

In conclasion, he begged to offer some general remarks apon the combusthon of coal gas. In enumerating the constituents of coal gas, he had pointed out those componnds which must be considered as impurities, and which mast be separated before combastion took place; but, at the same time, there were others, contributing little or nothing to the illuminating power of the gas, whieh, when once formed, could not be separated from the gas. Theme were bydrogen, marsh gas, and carbonic oxide. Were these, then, to be considered also as impurities? If the gas were used for illuminating purposes, to a certain extent at least, they mnst be conaidered as imparities, becanse they were burnt, and in their combustion, a large mount of heat was evolved; the products of their combustion impaired the alabrity of the atmosphere in which such a light was burning, and no actual benefit or increase to the illnminating power was derived from them. If, then, there were no means of separating these substances when once formed, an effort shonld be made to prevent their formation. With regard to carbonie oside, it would be dificult to find a nethod which secured us againot ite formation-the entrance of the retort, when being charged, being
in commnuication with the atmosphere. It was, however, in the power of the gas manufacturer to diminish the amount of eabburetted hydrogen, and especially of hydrogen. If the temperature of the retort were too higb, a large quantity of the olefiant ges contained in the coal would be converted into marsh gas, or even into hydrogen. That this was often actually the case, appeared in a mont striking manner, from the following analyais, made long ago, by Dr. Henry, of coal gas made from Wigan coal :-

It would be seen by this table, that it was of the greateat importance that the heat in the manufacture of gas should not be carried to too great an extent. In the first hour, 12 parts of olefiant gas, and 72 of marsh gas, were evolved-while only eight of hydrogen were generated. At the and of 10 hours, not a veatige of olefiant gas was traceable; while the hydrogen amounted to 60 -evidently the consequence of the olefiant gas being decomposed by the excess of heat. It had been found that, if pure olefiant gas were passed through a particular temperature it became changed into light carhuretted hydrogen and carbon. The ratio of this decomposition was as follows:-

$$
\mathrm{C} 2 \mathrm{H} 2-\mathrm{CH} \mathrm{H}+\mathrm{C}, \mathrm{CH} \mathrm{H}=\mathrm{H} 2+\mathrm{C}
$$

So that it would be seen, that by a judicious arrangemert of the heat of the retorts, the prodnction of hydrogen and light carburetted hydrogen, which increased the bulk without increasing the illuminating power, might be tept within certain limits. A very small quantity of these substances might be present in coal gas without injurions effects, as they then served for the saspension of the vapours of the oily hydro-carbons. A mirture, Indeed, of these vapours with carburetted hydrogen, in due proportions, might be considered as an equivalent to olefiant gas. Benzol, for instance, contained 92 per cent. of carbon; while olefiant gas itcelf contained only 85 per cent., and carburetted bydrogen only 75 per cent.; and, therefore, by an admixture of the latter with benzol, the illuminating power of olefiant gas might be obtained. Here, again, he would mention the beautiful process proposed by Mr. Low, for increasing the illuminating power of coal ges, as based npon the most scientific principles. If he wanted to express its natore in a sentence, he should my it was a process for converting a mixtore of bydrogen and light carbaretted bydrogen, by passing it through naptha, into olefint gat.

This naturally led to the question-Why did hydrogen possess no illumi. nating power at all? and why was the illuminating power of marsh gas so far short of the beantiful light produced by a jet of olefiant gas ? - and, briefy, in what consisted the illuminating power of olefiant gas? The itluminating power of gas depended upon a portion of it being separated in the solid form, which, heing deposited at a certain distance between the orifice of the burner and the rim of the fame, entered into a atate of ignition, from which the light emanated. Now, the composition of coal gat was such, that if it were allowed to issue from a convenient burner, a complete combustion of the hydrogen was obtained, but only a partial one of the carbon. Another portion was separated-that which entered into a state of ignition being heated to a white leat before it reachod at sufficient temperature for its combustion.

In the fiame of coal gas, three different parts, or cones, might be distinguished. Immediately over the burner, it was principally hydrogen which was burnt, aloug with a little carbon, whilst the main portion of the carbon being thas set free, was ignited in the second cone, and consumed with the rest of the hydrogen in the outer fiame. By a simple arrangement, the illaminating power of tbe coal gas might be destroyed altogether-namely, by mixing it, previous to combustion, with a sufficient amount of air to produce a complete combustion. The illuminating power of coal gas-and, in fact, of any fame-depended entirely upon the deposition of a fixed body in the flame. It was by no means necessary that tbis body ohould be carboa. It might be anything else-such as lime, iron, \&ce.- [The talented lecturer then rendered the flame of hydrogen laminous, by passing through it a chloro-chromic acid; and this intereating lecture was concluded by eoveral clever experiments, illustrative of the various subjects it embraced.] Mining Jowrnal.

STEAM WORKING EXPANSIVELY.

On the Infuence of Rapid Motion of the Piston upon the Effect of Steam in Engines tworking Expansively: with Experiments upon the subject. By M. Paltaineri.-(Translated for the Journal of the Franklin Institute.)

The researches and numerous experiments which I have made upon the application of motive power to machines, and particularly my experiments upon the effect of springe, have convinced me that in the expansion of steam there is a loss of power: a lose which should have a certain relation to the number of superimposed strats of steam which occupy the cylinder, from its bottom to the pioton.

These strats, moving with the pisten, should naturally develope themselves, in order to follow and push it ; and it is in this development of strata, one after the other, that the steam must employ a portion of its force, a portion which is certainly lost to the engine. The greater the number of strata, the more rapid is their development; and the more power that is thus absorbed, the loss will there remain for useful effect.
Suppose the steam introduced into a cylinder to be intercepted as the moment when the piston has reached a fourth or a third part of its stroke, to give place to the expansion: from this moment we may imagine the fluid mass divided into a determinate number of successive parallel strata, and beginning to develope and expand themselves to drive the piston and follow it. It will then be apparent that the stratum nearest the piston will, without doubt, be able to exert upon it all its effort, and all the rapidity of which it is capable; but it will be also apparent that the one which follows cannot do as much, because the preceding stratum constrains it, by pushing it backwards at the same time that it forces the piston forwards. By its condition as an elastic fluid, steam should naturally expand every way, and maintain at the same time, as is admitted, a uniform density throughout its volume-consequently, the stratum which drives the piston on one side, repels, on the other, at the same time, the stratum which follows it, although allowing itself to be penetrated by it; the latter repels the one which follows it, and so on to the last, which is at the botlom of the cylinder.
There must, therefore, be a collision between one stratum and another, on account of the difference in their velocities, and of the socosary compenetration of one stratum into another, in order that the uniformity of density may be maintained. This collision must evidently produce a loss of power-a loss which should be proportional to the differences of the velocities, and which will be the more considerable according as the number of successive strata is increased, and as the expansion takes place more quickly.
It is from these considerations, confirmed by the results of experiments upon the effect of helical springs, that I am persuaded that a given quantity of steam, working by expansion, will produce more disposable and useful effect acting upon a piston of a large surface and short stroke, than upon a piston of smaller surface and vith a stroke proportionably longer, all other circumstances being equal. Desirous of determining the truth of this opinion by rigorous experiment, I caused two steam-engines to be constructed under conditions strictly equal, and calculated to produce the same dynamic effect, according to admitted principles. But in one of them, the relation of the surface of the piston to the length of the stroke was in an inverse ratio to that of the other: that is, if one of the pistons had 8 surface of 20 and a stroke of 24 , the other had a surface of 80 and a stroke of 6 ; so that the volume produced by the movement of one piston is precisely equal to that of the other. There is, therefore, exactly the same quantity of steam entering and leaving the two cylinders at each stroke of the piston, and, consequently, when the number of strokes is the same, in a given time, in each of the two engines, it ought to be certain that there is the same volume of steam, in the same physical and mechanical conditions, used by each cylinder. These experiments, of which a table is given, were made with all poesible precaution, in order that all the conditions of the apparatus should be identically the same; they were repeated several times, on different days, and in the presence of several competent persons.
The following table shows the mean of the results obtained in everal series of experiments, the apparatus being always kept nnder the same conditions:-

No. of Expertmeat.	Ktod of Cylinder	Welght on the Breat.	$\begin{gathered} \text { Revolu- } \\ \text { tons } \\ \text { per } \\ \text { mioute. } \end{gathered}$	VIrtual velocity of and of break lever.		Cat off, or spact for expancion of stram.	Kifeer, In krlo- gramos raised I moetre per seeond.	Retio of Efect between the two cogloen.
1	Wide	Kllomb	150	Metres.	Atmonp. $\frac{4}{10}$	Full.	$14 \cdot 247$	100
	Narrow	1-614	150	7-854	18	Full	$12 \cdot 676$	-88
2	Wide	1.754	168	8.796	8	$\frac{1}{2}$	15.428	$1 \cdot 00$
	Narrow	1.418	168	$8 \cdot 796$	1	1	$12 \cdot 472$	-80
3	Wide	2.127	174	$9 \cdot 110$	$\frac{8}{10}$	1	19.376	$1 \cdot 00$
	Narrow	1-277	174	$9 \cdot 110$	$\frac{18}{18}$	$\frac{1}{2}$	$11-633$	0
	Wide	$2 \cdot 116$	156	8.168	18	乓	17.283	$1 \cdot 00$
	Narrow	0.916	156	8-168	$\frac{1}{18}$	\%	7-481	$\cdot 43$

The numbers in this table will show, at a glance, the differance of effect between the two engines. Although every precaution was taken to avoid error in the measurements and observations, and though the numbers in the table only show the mean result of several series of experiments, I do not assert that the ratios there given are strictly those which should result from the physical law of this phenomenon. New experiments, with engines of greater power, and an exact calculation with regard to the results obtained, can alone establisb, with the accuracy desirable, all these relations. I believe, however, that the reasoning upon which my opinion is founded, and the results of the experiments which go to confirm it, authorise me to make the following conclusions:-

1. That the velocity of the piston has a much more remarkable infiuence upon the useful effect of steam than has been heretofore supposed.
2. That this influence is very greatly increased, and according to a certain ratio, on account of the amount of expansion which is allowed to the steam; the greater being the expansion, the greater is the difference of effect.
3. That in order to obtain from steam the greatest amount of useful effect, it is necessary to use cylinders as wide and short ag may be practically convenient, and that the piston should move at a very low velocity.

It is certainly not unknown that the effect of steam has a ralation to the velocity of the piston; but it has not yet, 80 far as I know, been recognised that the velocity of the piston has a particular and considerable influence upon the effect of the expansion; and I believe myself to be the first who has directed attontion to this subject, and who has sought to demonstrate the truth by experiment. The numbers in the table show, in effect, very considerable differences, although the velocities of the two pistons appear only in the ratio of 1 to 4 . The experiments mentioned have manifested two other phenomena which have attracted my attention, and which I recommend to the notice of scientific persons: the first is, that in the engines which I used, and when they were worked by expansion, the pistons were compelled, in some of the experiments, to complete their stroke while having against them (on account of atmospheric pressure) a resistance stronger than the force by which they were impelled. The other phenomenon is relative to the work done by the two engines. In most of the experiments made, the useful effect, as measured by the break, was always, and even considerably, more than the theoretical effect of the motive power. Does this difference of effect depend upon the partial vacuum created in the escape-pipe on account of the rapid passage of the steam, so that the pressure upon the pitwon has a relatively greater force? May this rarefaction in the eacspepipe also account for the continuance in the stroke of the pistong, although they may have been placed in equilibrium by atmospheric pressure before making a half, or two-thirds, of their stroke?

All these questions, the importance of which will be reedily perceived by men of science, have need of study and elucidation, by experiments, perhaps of a different kind. On my own part, I ehaf do all that I can; but I call for the aid of learned persons who are conversant with such matters.

ROYAL POLYTECHNIC INSTITUTION.

This Institution was re-opened at Easter, although the additional b-ildings are not quite completed. When this is done, there will be greatlyincreased accommodation, for the whole bailding will be doubled is simes The grand theatre will be one of the largest of the class in London, and capable of holding fifteen hundred persons. The ecreen is likewise of colossal size, so that a vast pioture can now be shown on it, with all the resources of powerful instruments. Thus the Institation is in pousencion of a dioramic exhibition of much greater power, and possessing mach more variety than any in Loodon. In the illustration of microwcopic objects, the great screen is likewise a valuable accessary, and its recolts present a striking contrast to what used to be a state of microscopic illestration, but a fow years beck. The old groat theatre has been very mach improved, and is now reserved for cbemical lectares, the suall chomionl theatre at the other end of the Inatitotion being deroted to parposes of exhibition. The grand theatre is accessible from three foors of the centrill hall, so that it can woon be filled and cleared, which is a great convenjence to visitors. Over the screen room is a kind of bavaar of objocts of ornameatal art, concisting of porcelain and glass works, of great merit, from the establiahmeats of Alderman Copeland and othera. They show, oves more effectively than the exhibition at the 8ociety of Arte, the groat progreas of these important arts in England. When the froat of the Royal Polytechaic Iastilution in Regeat-gtreet is finished, it will make one of the Asest buildings in the atroet, and a rery great ornanget to it. The alvarar
thons have，it is mederatood，been made chiely throagh the exertions of Mr．Nure，the chairman of the Ingtitution，who has evidently apared no pains or expeneo，and has succeeded in giving to the metropolis an estab－ fishment of a very high class，equally usefal and ornanental．The works are such as to do great credit to the skill and tasto of Mr．Thomson，the architect．

NOTES OF THE MONTII．

The Art－Union，－The report shows that there has been a falling－of this year of $£ 5,000$ in the inconc．This may be partly attributed to the bad－ neas and partly to the threatened government interfereace，but mainly to the reaction consequent on mismayagement and want of taste．The en－ gravings bave cassed disappointaent to the subscribers，and brought shame upon the committee．Their commercial value has long since been tettled， the print with frame and glass being sold at the picture－denlers for neven shillinge and sixpence．The engraving have not illustrated any anbject of legitimate iatereat，and have wanted the character of high works of art； their utmont marit being shat of middling wall－hangings．Uponauch taste， thousands of pounds have been apent most watefoliy，for any jobbing engraver could bave turned out the whole lot of eagravinge at a much leas prioe．In arample and in practice，the adminiatration of the Art－Union is equally bad，and is very onfavonrable to the true interests of art．The plan of prize caste is most illiberal，for it is little better than desecration to bresk up a mould for the parpone of preventing more impressions from being taken．We must admit that there is no bope of tbe Society being more mefal，even if the control of the prize－money should be taken from the pize－boldera，and given to the council，－for the latter have abown their incompetency in everything they have undertaken，like mont aelf－elected bodies．
Paper－hanginge propared by mean of Nitrate of Silver and other Salts．－ M．Larocque presented a paper to the Academia des Sciences，Paris，explain－ ing a new procesa for colouring and designing paper－banginga．He observes， that nearly all the salts are volatilised under the influence of vapour from water or aline solutions，and that the nitrate of ailver，among other salta， on mecount of its easy reduction，would furnish a great variety of ahades of colorr；and by meana of reserves made in the paper，any designs in white might be obtained．The following is the process employed：－＿＂Take of pure nitric acid，sp．gr．I．50，two parts；and distilled water，one part．Place the mintare in a porcelain enpance and beat it，throw in abont two ounces of ailver，and continue to apply heat until the action of the acid on the metal hes oneed；with this quantity of silver 700 or 800 aheets of paper may be colonsed．In this operation but a very small loms of ailver will he found，for the reitidus can be formed into nitrate of ailver and sold；or，if calcined at a red beat in a cracible with carbonate of soda，the metallic silver may be ebtritied and comployed for a new operation．In order to obtain good deaiga，it in necentary to operate in a place well lighted and out of currents of tir．

Quarrying Machine．－＂We took occasion（says the Newcastle Chromicle）， five week ago，to notice a new stone－drillag machine，and that it would ohortly be teated upon come of the quarriss la the nefrbboarhood of Newcasule．We can now ataite the result of a trial rugde upon the quarry of Mr．R．Call，near Gatenhead．The amachlog war put in motion by four men，and yorked for an hour and a half，when they abtilined a depth of 8 feet，of 4 inebes geuge．The hole was then charged with 19 lh ．of powider，and the dichasige prodoced the removal of 5,400 cuble feet uf rock．We un－ darptand that it is likely to be rery

Chemiotry of the Sea．－A lecture pas delivered on this subject at the Royal Inatitutjon，by Dr．Thomas Williams，of Swnotea．In commencing，ithe lecturer demonstrated，by meani of an apparatus contrlved for the purpose，the efrecta of pres－ sare on athes at defolte deptha beneath the surface of the sea．Having shown that a gold fish，when the water in which it was placed was subjected to a pressure of four at mopheres，became paralyed，Dr．Williams stated the following concluaions as deduced from his own exparimenta：－1．That round hishes，heving an air bladder，cannot，witbout Indury，be exponed to a premeure of more than tbree atmospheres．－2．That the use of the atr bladder is not monch to regulate the apeclic gravity of the animala as to realet the Faring force of the fuld column，and thus to protect the viecera and abdominal blood－vesuela against excens of preseure．－ 8 ．（Though in this case the results are lesa bood－reaneis frgingt excen of presaure，－8．（Though in this case the remults are lebs ampationg，Dr Williams Inferred that the condition of presture regulated the diatibution of fishea in depth．Referring to the experimental reacarchen of Prof．E．Forbes，be ex－ prested bis conviction that preseure would be found tbe most important element in the problem of submarine organic life．Be obnerved that the lomer anlmals crituced a tolarance of presure peculiar to esch apecies，and delermining its eone of depth．The lame of cecanle temperature were next explained．It wat experimentally demonatrited，that the expansion of sea－water ts conaiderably greater than thal of pro water，under equal incre－ menta of beet，It was，bowever，entablished by the acrometer，that deusity did not diminth in exiect proportion with the Increate of volume．It was argued，that this ex－ periment weat to account for the expanaion of crymials by heat，an notlced hy Mitscher． perment weat io account for the expansion of cryatals by heat，al noticed hy alitscher－ peratore ovpriylos eath other in the oeean，the tendency to Inlerminture by rertical molecolar attriction wal goater than would be the case if the sese conafited of distilied water．It was contended that it was in sccordance with the principles dereloped in this experiment，that the warm water occupying the greateat depthin in the ses（as discovered by glr fames Riom）rote to the surface and eacaped ander ithe form of rapour，which by difusto wemeth through the atmopphere mitighted the rigour of polar cold．Referring to the stratem of water of unlform wermth，observed bT Str J．Roew，the lecturer steted shat he hed ascertained，by experiment，that water acquires considerable increase of temperature nader greas presaure，and that he thought that the temperature of the deep tets conid only be eathetectorily accoanted for by the coodanaztion of balk which the＂afr of watan metwent．The increase of lemperature measured downwards from the atrateg of alform warach to the sea bottom was noticed as proving that the intent hett of the dimolved atr was rondered menolble a the presaure－tbit is，the depth in－ creased．Dr．Vrititan concloded by referfing to the maxdenan denolty of water，the lawe
 ditions on the exfotpece and dintribution of plants and animals in the gea．

The Timber Dusties，－The following Dew and redaced prices on ti and rood goode cume lnto operation on the Sth of Aprll ：－Thmber or mood，Dot belng battens，boards，staves，bandspliets，oara，lathwood，or other tivober or wood，tawn or otherwise droseed，ercept hewn，and not betar timbor otherwise charged with otherwise charged bin duty，boards，or other umbur or mood，mawn or epait，a by the load，securdine to the cabte contents，the Importer inathere the op upon time of paiding the first eutry of entering battens，batten－ends，deils deat－and planks，by tale，If of and frem forel cn countries，accordine to their diff deal－and piandre，by tale，if of and rom foreign countries，accordins to their difrivent dime a molety of the rities of duty hitherto levid thereon；staven，the load of 50 cib 18e．；frewood，the flthom of 216 eubte feet，6n．；handsplken，not exoeeding 7 leagth，the $120,12$. ；execeding 7 feet in length，the $120,11.41 . ;$ knees，ander 5 square，the $120,6 a . ; 5$ Inches and under 8 Inches aqure，the 120,16 ， 4 ．，nadt square，the 120 ， 6 ．； 5 inches and under 8 incnes 4 quare，lie 120,16 ．4s．；lathwo lepgth，and under 4 inches in diameter，the 120 ，12．$; 22$ feet In lep thand apma unger，ind under inches in diameter，the $120,11.43 . ;$ spars of all lengthe， 4 ，and under in dimmeter，the 120,21 ．gis．；apoken for wheis，not erceeding 2 foet in lenget in $11.4 \mathrm{~s}, \mathrm{j}$ exceeding 2 feet in langth，the $1,000,2 l$ ．8t． 3 timber，planed，or dressed or prepared for use，and not particnlariy enumerated nor othervise char duty，the cuble foot，4d． 3 and further for every 1001 ．value， 101.

GIET OF NTW PATENTF．

geantid in Emgland ydom Mazch 27，to April 20， 18 Sir Monthe allowed for Envolimont，wnlest otherwise expreape

Beajumin Grey Babligton，of George－street，Henorer．equare，Middlesex， John Spurgin，of Gulldford－atreet，Middleeex，M．D．，tor＂Improvementa in ncture of metaluic pens．＂－Sealed March 27 ．
John Conten，of Beedley，Lancmalre，calloo printer，for＂certain Impror machinery or apparatus for pristing calicoes and other surfaces．＂－April S． Michael Joseph John Donlan，of Abbot＇s Bromley Houme，\＆tafordshirts
Improved comporinds or mixtare to be ubed for lubricatiog machinery．＂－A Improved comporinds or mixinren to be used for lubricatiog machinery．＂一A propellify upen rall ways and canals，and in the apparatus or machinery by anme is to be accomplished．＂－April 4.
Thomas John Knowly，of Hetham Tower，near Lencabbire，and WiLian Shinley，Hants，for＂Improvementa in geveratiog，Iadicatiog，and applyin April ${ }^{6}$ ．
Joaeph Foot，of Spltal－square，MIddlesex，for＂Improvementa in the manu （eves．＂－April 6.
Engene Ablon，of Panton－street．Haymertef，for＂Improvemente in facre draft in chimnies of locomotive and other enginen：＂一A pril 8 ．
Thomas GII and John Edgcumbe GIIl，of Plymoulh，manufactarers，for＂t menta in the manufacture of manures．＂－April 8
Thoma Pottr，of Blrmingham，brans tabe manufacturer．for＂Improversen manufacture of tubultr flues of locomotre and other stean bodters．＂－April 10. Thomas Spencer，of Prescet，Lancanhire，for certan Improveraents in mac， epparitas for manufncturing pipea applicable to the manu facture of hollow eart parts of wh

Jamet Derham，of Bradford，Yorkohire，manger，for＂certaln Improvement chinery for cardiog，combing，preparing，and spluning cotion，wool，alpaca，mot chintry for cardiog，combing，preparing，and
silk，and other fibrous miterial．＂－April 10 ．
John Ecroyd，of Rochdite，Lancamhire，machlna maker，and John Ecelet，of place，mechanic，for＊etriain Inprovements in ralves or plugs for the parsege ed 4 pril 10.

Jamea Petrie，of Rochdale，Lancanhlre，engineer，for＂certaln Improvemente engines．＂一Aprll 10 ．
John Loingworth，of Newton Henth，Lancashire，for＂certitn Improvemente in for power looms．＂－April 10.
James Meacock，of Wverpool．gentleman，for＂Improwementa in preventing Unguishing fire In vesceln，warehouses，and other bulldinge，parts of which impro ore applicable to rentlintion．＂－April 12
John Mastern，of Lelcester，gentleman，for＂Improvementa in dreas fatening attaching the eame；and in articles made，wholly or in part，of certatn flexible a or fabrict．＂－April 12.
Fienry Henson Hencon，of Hampatead，Middleaex，gentieman，for＂certaln it menta in raliway cartiages and watons，and in veasels of capacity，employed in the and conveyance of explosive uubetancen．＂－April 15．
Thomas Forsyth，of Now North－road，Mifldeaex，engineer，for＂Improvemente manufacture of rallway wheels．＂－A pril 15．

Cbarlet Green and James Newman，manufacturent，of Bimingbam，fer＂Ia menta in the manufacture of a part or parte of rallway wheels．＂－April is．
Richard Madigan，of Haverstock．hill，Hampstead－road，Middlesex，civil engivel John Coope Badden，of 14，Lincoln＇s inn－gelds，Middlesex，cirll englaet，for provementi in the manufacture of wheels for rellway．＂－April 15．
Selah Hiler，of New York，in the Ualted States of Americt，for＂Improvemental manufecture of atalr rods．＂－Apill IS．
David Davies，of Wigmorestreet，Cavendish－mquere，coachmairer，for＂certay provementa in the constructlon of the heads of open and close carriagea．＂－April I Cberles Attwrood，of Wolalogham，Durham，Esq．，for a＂certain Improrement provementa in the manufacture of iron．＂一A pril is．
John Britten，of Birwingham，machiniat，for＂certatn Imprnvementa in be lighting，ventaliating，and closing and serewing the doon of apatmente；aloo in if： and ventlating cariages，parte of whicb improvemente are appllcable to other like ponen．＂－April 20.
Matthew Cochran，of High．street，Palaley，Reatrewobire，for＂certaln Improwera in the froduction of coloured patternit or designa on warps of carpete，velvets，or textile materials，parts of which improvements are also applicable to the productio coloured patterns or designs on woven fabich，or other planes．＂－April 20.
Samuel Cletg，of Regent＇s－square，Middiowex，engineer，for＂Improvementa is｜ moters．＂－April 20
John Stranf Hirredine，of Eolywall－cum－Needingworth，Huntingdonabire，farmet an Improved mode of fittlag certaln girths and atraps．＂一April 20.
Henry Glibert，ol Slat Leovard＇mon．Set，Eumex，for＂an Improved mode or Improred modes of operaling in dental surgery，and tmproved apparatus or fnetruments to be used modes of operating

6 gimilar girders f, above; and upright cast-iron stanchions g, on each side of the tube, to which are bolted the ends of the girders, top and bottom, and also the cross lifting girders h.
motion to lift the tube another six' foet, when the seco were removed as before described, and the operation rep above, until the tube had been lifted the height required, feet to 94 feet.

THE CONWAY TUBULAR BRIDGE.

(With Engravings, Plate VIII.)
The great engineering event for 1848 is the rasing of the Conway Tubular Bridge, and which after so much fear and anxiety has been effected with great success. This work derives its importance mot so much from its greatness, as from its opening the way for the adoption of a new system of bridge building, whereby the resourcea of engineering are very much extended. To build a bridge greater than those which have been made before, to make a rilway longer than those which have yet been opened, or to construct a more powerful locomotive, is a great work; but it is of very much greater importance to execute something entirely new. The engineer who has constructed the greatest lighthouse or the greatest dock in his day, may be overcome by some one else, and then his claim is at an end; whereas the engineer who extends the resources of his art, has a clear and unique claim to distinction. Mr. Robert Stephenson has the merit of carrying out this system of tubular bridge building, and it will be a special event in his career, beyond the many works of constructive skill he has already produced. The success of the Conway bridge is none the less important, because it settles the practicability of that greater andertaking, the Menai Tubular Bridge. Thns progress in any one direction leads moot certainly to greater exertion; and it is peculiarly necessary to give every encouragement to all attempts, which open a new career for the engineer, and give him greater means of exertion.
We are glad to learn that the trials hitherto made within the tube with locomotives have been successful, though we have not had the opportunity of personally investigating the real progress of the undertaking. We shall, however, watch it with interest and attention, to see how far its continued working justifies the opinion which has been entertained of its success: at the same time, we may say we do not participate in the fears which are entertained by some of our mathematical correspondents.

We have this month given engravings of the tube, and the lifting apparatus, and next month we propose to lay before our readers dravings of the ingenious Jacquard machinery invented by Messrs. Roberts, for punching the plates.

The construction when finished is to consist of two tubular bridges, formed of wrought-iron plates, each tuhe being for one line of rails. We shall now confine ourselves to the description of one of the tubes, which was fixed in its place in March last, and is shown in the accompanying engravings, Plate VIII.

Fig. 1 exhibits a transverse section of one of the tubes and the masonry of the pier, together with the lifting apparatus. Fig. 2 is a side elevation of 19 feet in length of the tube, reating on the masonry, and the lifting apparatus: Fig. 3 is a section through 12 feet in length of the tube, and section of the lifting apparatus. Fig. 4 is a plan of the top of the tube to the extent of 80 feet in length, and plan of the hydraulic press. Fig. 5 is a front view of one end of the suspension girder, and fig. 6 a side view.

The tube consists of a shell or external casing, a, a, of wroughtiron plates, from 4 to 8 feet long and 2 feet wide, by $\frac{1}{8}$-inch thick in the centre, and sths of an inch thick towards the end of the tube, rivetted together to T-angle-iron ribs, placed on both sides of the joints, and angle-gussets at the feet of the ribs to stiffen them; a ceiling, composed of 8 cellular tubes b, each $20 \frac{1}{4}$ inches wide, and 21 inches high; and a floor containing 6 cellular tubes $c, 27 \frac{1}{2}$ inches wide, and 21 inches high. The whole length of the tube is 418 feet, and 22 ft . $3 \frac{1}{\mathrm{~d}} \mathrm{in}$. high at the ends, and 25 ft . 6 in. high in the centre, including the cellular tubes at top and bottom, running the whole length, aud 14 feet wide to the outside of the side plates. The upper cells are formed of wrought-iron plates, $\frac{3}{4}$-inch thick in the middle, and $\$$-inch thick towards the ends of the tube, put together with angle-iron in each angle of the cells; and over the upper joints is rivetted a alip of $\frac{t}{\frac{6}{2}}$-inch iron, $4 \frac{1}{2}$ inches wide. The lower cells consist of 4 -inch iron plates for the divisions, and the top and bottom of two thicknesses of plates, each 12 feet long, 9 ft .4 in . broad, and tinch thick in the centre, and $\frac{1}{4}$-inch thick at the ends, and 80 arranged as to break joint ; and a covering plate of 4 -inch iron, 3 feet long, is placed over every joint on the underside of the tube. The external casing is united to the top and bottom cells by angle-iron, on both the inside and outside of the tube, as shown in fig. 6.

The ends of the tube, where it rests on the masonry, are strengthened by cast-iron frames d to the extent of 8 feet of the lower cells ; 6 cast-iron transverse \mathbf{i}-shaped girders e, on the floor; 6 similar girders f, above; and upright cast-iron stanchions g, on esch side of the tube, to which are bolted the ends of the girders, sop and bottom, and also the cross lifting girders A.

No. 129-VOL XI.-JUNI, 1848.

In order to allow of the free expansion and contraction of the tube, the ends rest on 94 pairs of iron rollers i, connected together by a wrought-iron frame, and placed between two cast-iron plates $j, k, 12$ feet long by 6 feet wide, and 4 inches thick. The lover plate is laid on a flooring of 3 -inch planks l, bedded on the atonework; and the tube is also suspended to 6 cast-iron beams m, the ends resting on longitudinal bearers $n, 12$ feet long, with a circular groove on the underside, supported by 12 gun-metal balls o, 6 inches diameter, standing upon an iron bed p, and supported on the ends of the cast-iron bearers q. The tubes are suspended to the beam m, by wrought-iron bolts r, and spade-pieces rivetted on to the sides of the tube, as shown in figs. 5 and 6 .

The lifting apparatus for raising this enormous weight was entrusted by Mr. Stephenson, to Messrs. Easton and Amos, engineens of the Grove, Southwark, to whom great credit is due for the very successful manner the tube was lifted. The machinery conaisted of q steam-engines, erected in the recesses B, of the corresponding tube, one on each side of the river; and each engine has a horizontal cylinder, 17 inches diameter, and 16 inches stroke, with pistonrods working through stuffing-boxes at each end of the cylinder; each piston-rod has a cross-head, and gives motion by side-rode and cranks to two fly-wheels; and the ends of the two piston-rods work 2 forcing-pumps with plungers, ${ }_{1}$, inch diameter, and 16 inches stroke. These pumps inject the water into the hydraulic press C, shown in the engraving, through the small tube ($\mathbf{3}$).
The press was erected on a stage constructed above the level of the top of the tube, and consisted of two crose-girders of castiron, each in two heights D, D^{\prime}, the lower one 4 feet high, and the upper one 8 ft .6 in . high ; the ends resting upon cast-iron bearers E , imbedded in the masonry of the piers. Upon the crosegirder was fixed the casing F, of the ram, which is 5 ft .2 in . long, by 3 ft .9 in . wide, cast with ribs; and on the top of the cylinder are fixed 2 vertical guide-rods G, G, 6 inches diameter, passing upwards through the crose-head of the ram, and a cast-iron girder H, nearly at the top of the tower, and 18 feet above the girders D^{\prime}.
The press consists of a cylinder (1), firmly fixed in the casing, 37. inches diameter externally, and 20 inches internally; and the $\operatorname{ram}(2) 18 \frac{8}{8}$ inches diameter, with a vacuity nearly $\frac{1}{8}$ of an inch all round, to receive the water injected from the pumps already described, through the tube (3), the orifice of which is $\frac{9}{8}$ of an inch diameter; this tube is furnished with a lever-valve close to the cylinder, for safety, in case the pipes should burst. In the event of such a casualty, by an ingenious contrivance the lever-valve would be instantly closed, and the weight supported by the water in the cylinder. On the top of the ram is a cross-head (4), of solid castiron, 9 ft .10 in . long, 1 ft .10 in. deep, and 2 ft .4 in . thick, with two apertures, 8 ft . 1 in . long, by 1 ft .1 in . wide, through which the lifting chains pass; and on the top of this cross-head are fixed two clipping vices or clams (5,5 , each consisting of a pair of wrought-iron jaws, 3 feet long, 11 inches deep, and 6 inches thick, and a winch which turns a small pinion (6), that takes into two cog-wheels ($7,7^{\prime}$) fixed upon the heads of two horizontal screws ($8,8^{\prime}$ left and right handed) passing through nuts in the two jaws of the clams. Thus it will be perceived, that as the winch is turned the jaws are made to open or close, for the purpose of clipping the heads of the lifting chains; below these clams are two others (99^{\prime}), for clipping the heads of the lower links.

The two lifting chains consist of wrought-iron flat bars, in lengths of 6 feet from centre of bolt-eye to centre, and each bar is 7 inches wide and $1 \frac{1}{6}, 1 \frac{4}{4}$, and $1 \frac{1}{1}$ inch thick, with heads having shoulders fitted to the jaws of the clams. Each chain contained nine links of 8 and 9 bars alternately, besides the two lower links, each consisting of 5 and 4 bars. The heads of the first or upper links passed through the upper lifting clams, fixed on the top of the cross-head of the ram, and there secured by the jaws of the clams being screwed up taut; the second links passed through the lower clam, the jaws of which were left open, and the heads of the two lower links were made to abut against the underside of the lifting girders, g, h. When the pumps were set to work, the ram was lifted 6 feet, its full range ; when it had attained this elevation the jaws of the lower clams ($9,9^{\prime}$), were screwed up close and clipped the heads of the third links (11), and there held the chain firm; the jaws of the upper clams were then opened, and the ram lowered down to its original position, when the bars of the top links (10)were removed. When this had been done, the jaws of the upper clams ($5,5^{\prime}$) were again brought under the heads of the second links, and screwed up taut, so as firmly to clip the shoulders of the linke, the jaws of the lower vice ($9,9^{\prime}$) opened, and the ram was then set in motion to lift the tube another six feet, when the second links were removed as before described, and the operation repeated as above, until the tube had been lifted the height required, about $\%$ feet to 94 feet.

The power of the presses may be thus calculated: the area of the ram being equal to 337.64 circular inches, and the force acting upon the plunger equal to $2 \cdot 14$ tons per circular inch, the two being multiplied together give $722 \frac{1}{2}$ tons, which is the force of one of the presses, and of the two presses 1445 tons. The actual weight lifted was estimated at 1,300 tons. The quantity of water used for each press is about 66 gallons.

The tube was constructed on a platform erected on the shore of the river, close to where it was to cross; and when finished, six pontoons, something similar to the large coal lighters on the river Thames, were placed under the tube at low water, and which at high water lifted the tube off the piles upon which the stage was erected. It was then floated to its destination, and placed between the two towers, part of the masonry being left undone until the tube was put into its proper position, and as it was raised the masonry was built up under the tube. The time occupied in raising the tube and building up the masonry occupied four days; the actual space lifted per hour was 13 feet.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXII.

" 1 muat have llberty
Withal, as large a charter as the winda,
To blow on whom I pleate."

I. Surely there must be something wrong somewhere, when, notwithstanding all the numerous appliances and aids which Architectural study can now boast of, Architecture itself seems to have come to a dead stand. In the inability to get a step forwards, a merit is made of what an Irishman would call advancing backwards. To say nothing of the Institute, we have besides that a Royal Academy, which professes to extend its fostering protection to Architecture ; also Architectural Societies, Decorative Art Societies, Schools of Design, and lastly, though not least, Professors of Architecture ;yet what is the art the better for them all? Can it do more than hash up again and again the cold remains of the banquets which it used to serve up in by-gone ages? If that " more" be not possible, there is little cause for us to vapour at the rate we do about Architecture as one of the Fine Arts. Either it has now lost, or is no longer permitted to exercise, the powers--to maintain the privileges of one. After studying all extant styles of the art, we are reduced to the mortifying conclusion, that we can do nothing whatever with any of them beyond copying, being ourselves wholly unable to catch and preserve the artistic spirit that pervades the best and most characteristic examples of the styles which we propose to ourselves as models. By dint of pains-taking industry, we can follow them tolerably well as far as they go; but where they stop short of what our actual purposes demand, we stop short too, and break down; and not only do they not go far enough for our present requirements, but they sometimes lead us astray, forcing more or less upon us that which is adopted merely because it is significant of the style, although at the very same time much that is incompatible with the style is tolerated on the score of necessity; so that, after all, it is generally suffered to be seen that there has been conflict between style and purpose. Without such thorough mastery over a style as can bend it, and render it quite plastic and tractable, it is hardly possible to produce more than either direct copies of former examples, or a sort of decent patchwork composed out of them. As one of the Fine Arts, Architecture might now very properly take for its motto, Fui :-" 1 was one once, but am so no longer."
II. It would not be amiss were some term introduced to distinguish those whom we now call Architects, from Builders, or else to distinguish the Artist or Fine-Art Architect from him whose practice and abilities do not extend beyond estimates, specifications, the preparing working-drawings, and the superintending the execution of buildings. Why not have the term house-architect, as well as house-painter, understanding by it those who make no pretensions, or whose works do not qualify them to make any to the more ambitious name of Architect in the sense of artist. At present, all who come under the somewhat vague denomination of Architects, assume to themselves the rank of artists-followers of what is by common assent and the laxity of language admitted to be a Fine Art. No doubt, such appellation (that of artist) is flattering enough; but then it carries with it a corresponding degree of responsibility. If it can be adequately supported, it is one of
honour ; if not, it becomes one of reprosch and diegrace. In not being an artist there is no demerit; but the pretending to pass for, or at least rank as such, without possessing the least artistic talent, is surely not very many removes from quackery. If there can be no higher title than that of Architect for those-and they do not seem to be many-who follow their profession in the spirit of artists, a more modest designation would better become the majority, and would relieve them from the sneers and reproaches to which they now expose themselves.
III. The.idea of erecting single coloseal columns as monuments and architectural objects, was, no doubt, borrowed by the Romans from Egyptian obelisks. Inasmuch as they are both lofty, upright objects, exceedingly well calculated to show at a considerable diatance, the column and obelisk agree; but they also differ quite as much, and the difference is decidedly in favour of Egytian taste. Whereas the obelisk is evidently a monument-a pillar erected to record some fact or facts, or dignify some locality, and is everyway fitted by its shape to stand as an insulated, independent monolith, the column plainly expreases itself to be a component member of a fabric ; therefore taken by itself alone, meaningless,-in the condition of a verb without a noun, or a noun without a verb. Not only does the column suggest the idea of a superincumbent architrave, for supporting which it is intended,-but detached from it, acquires a topheary and unstable look, the very reverse of that attending the pyramidion in which the obelisk is made to terminate, and which produces an obtuse apex, instead of the whole being prolonged to a sharp point, like a spire. Except its general proportions as to height, there is nothing that recommends a column for officiating in lieu of an obelisk. The so employing it manifeats very great poverty of invention and barrenness of ideas,-the inability to devise new and more appropriate forms for new purposes. What is characteristic in the column, considered as an architectural member, destined to support either a horizontal entablature or an arch springing from its capital, ceases to have propriety or meaning in a pillar erected merely as either an ornamental object or a votive monument. Such monument may still be a pillar, but it should be one expressly adapted to its peculiar purpose; therefore, the less it resembles any of the so-called "orders," the better. In this respect, the Rostral column possesses a decided advantage: it shows itself most plainly to be neither more nor less than a trophy pillar. A column of that kind does not look like a fragment of a building. In a building, such form for the columns would be preposterous. To employ Architectural columns as detached monumental pillars, savours of pedantic and puerile conceit, akin to that which during the Elizabethan period fashioned chimney shafts into columns, designed, more orthodoxly than tastefully, according to some one of the "regular" orders.
IV. It is very possible for a man to have too much scholarship, 一 or to have it, if not too abundantly, too exclusively; so much of it, that he has no room in his head for any ideas of his own, nor any time for exercising his thinking faculties. In Architecture, scholarship is far more likely to prove injurious than at all profitable. While with the ignorant it may pass for deep study, it seldom amounts to more than idle display of learned frivolity; and is so far from really being study-that is, study to any pur-pose-that it is rather apt to check the latter, to become the substitute for it, and sometimes to lead astray into fancies as chimerical as they are extravagant. Infinitely better would it have been for Wilkins, if, instead of labouring to convince us that the Temple of Solomon was a building of the Grecian-Doric order, he had applied himself to more diligent and real artistic study at his own drawing-board. Pity that Solomon's temple, the tower of Babel, and the Parthenon too, including a good many other things besides, cannot be left at rest-or left to those who are more ambitious of displaying their pedantical erudition, than of contributing to, or in any way promoting artistic study-the very study of all others in which we are most grossly deficient. Did we find that archsological knowledge tends to enlarge the judgment, and to fertilise both talent and taste, it would deserve to be encouraged; it seems, however, to have quite a contrary effect,-to contract instead of at all expanding. Hence is it that copyism, which should be our shame, is made our pride; and much as we vapour about art-mere empty vapouring after all-we show that we have no longer any faith in it, but take it to be now actually paralyzed, and incapable of doing aught further than it already has done. To revert to a former style, for the purpose of gradually moulding it into one that shall be far more suitable to our present occasions and wants than the original one is, would be allowable enough. But no: that must not be done,-such mode of proceeding would be accounted downright heresy. It would be tantamount to admitting that, excellent as former styles were for the times which produced
them, they require considerable modification in order to render them, or any one of them, generally applicable at the present day. After all, it may be questioned whether what looks so much like praiseworthy reserve, and scrupulous adherence to authentic models, does not proceed from motives that are not the most laudable. Merely to copy, saves such an infinity of study, thought, and trouble, as to render the copying system, in what calls itself a Fine Art, less of a mystery than it else would be. Architects-and I say it in sorrow-are not artists, except, perlaps, just here and there one exceptionally. The majority of the profession have nothing whatever of the feeling or spirit of artists in them. It is said that it takes nine tailors to make n man; I am sure it takes ninety-nine Architects to make an artist; for, as matters go, if we get one out of a hundred who answers to the latter character, we ought to be grateful. It will be said, perhaps, that the opportunities for showing artistic and original talent are so exceedingly few, that we ought not to judge of the ability in passe by the little ability which manifests itself in esse. Opportunities do occur, nevertheless, and what is the use we make of them? Why, to pirate, in the most unblushing manner, designs from Sansovino! It is true, Count D'Orsay makes a merit of such doings: what then? -he merely shows himself a priggish coxcomb. His countship's opinion may be very good authority for the cut of a coat, or other question in tailoring, but in Architecture not worth a straw; elthough it had, it seems, overbearing weight with the "Armoury and Knavery Club."
V. Beloved, but most unhappy Architecture, how art thou beset! -by the merest apes on one side, and the merest parrots on the other-creatures who merely repeat by rote what they have either heard from others, or got out of books, without bringing so much 98 a single idea of their own to incorporate itself with, or work upon it. So long as we merely listeu to them in silence, they go oul fuently and volubly enough. But once begin to cross-question them, and it is all up with them. Nothing then is left for them but to express astonishment at the ignorance which cannot perceive, or the impudence which presumes to throw doubt upon excellence that has all along been universally admitted. Anything like satisfactory reasons or intelligent reasoning, is not to be expected from people whose admiration is founded upon mere prejudice-upon authority, tradition, and conventionalism. Their criticism consists of nothing better than mere cant and parrot-like rote; and their dogmatism is in proportion to their shallowness. The most inno-cently-put wry disturbs them,-upsets their criticism and their temper too. Albeit, anything but poetical themselves, they firmly maintain with the poet, that "Whatever is, is right; -in other words, everything is excellent for which due authority can be produced. And would they but be content to stop there, a good deal might be said in their excuse. Instead of that, however, they insist upon our believing that whatever is not-i.e. has not been done before, consequently derives no support from direct precedent for it, but must stand upon its own merits, -must of necessity be orong, even though it should evidently be warranted both by analogy and common-sense. After all, there is a particle or two of shrewdness in the narrow-minded dulness of such persons: they have just discernment enough to be aware that they themselves depend entirely upon precedent, rote, and routine; and that by insisting upon others abiding by them likewise, they bring them down and keep them down to the level of their own intellect.

ARCHITECTURE AT THE ROYAL ACADEMY;

AND THR ARCHITECTURAL DRAWINGS AT THE EXRIBITION,
Most cheering and encouraging symptoms manifest themselves this year in the Architectural Room,--that is, supposing there be truth in the saying, that when things come to the worst they are sure to mend, for to that comfortable stage of pessimity are matters now come. Never was there before, kithin our recollection, so miserably poor an architectural "spread" at the Academy-such a beggarly and ill-arranged set-out. Even before we begin to look round, we perceive that one interesting class of architectural subjects are altogether missing. Either no architectural models were sent, or they were turned away; and inconiprehensible as tbe last may be thought, it is quite as probable as the other case-at least to ourselves, hecause we happen to have geen some of the rejected deaigns, - designs, too, by those who have been exhibitors for several years past, and whose productions have usually obtained deserved commendation, both from oursolves and others. Their productions are now missing from the walls, and their names from the cata-
logue, which contains very few names indeed of any note in the architectural world; and what few there are, are not by any means pluralist exhibitors, they having contented themselves with sending no more than what just entitles them to an exhibitor's ticket. Possibly, however, we are here in error, and do them injustice, for though only one subject of theirs is to be found here, several may have been turned away : in fact, we know this to have been the case in one instance, and in that instance the drawing admitted is precisely the one which its author cared least of all about.

Knowing as much as we do, we cannot help suspecting that a great many more ugly revelations might be made, and a good deal brought to light that would accuse the Academy of most preposterous mismanagement in this department of its exhibitions, if of nothing worse. That architecture is there most unwelcome, there can be no doubt. That has been growing more and more evident for several years past. And to the chilling coldness with which it is regarded and treated by the general body of Academicians, may perhaps be attributed the forbearance of their architectural brethren, and the discountenancing, as far us in them lies, the practice of exhibiting architectural drawings at all. In the days of Sir John Soane, it used to be the custom for the Academy's Professor of Architecture-at least he made it such-not only to contribute, but to contribute each season, and to contribute abundantly. The present Professor, on the contrary, chooses to put himself upon the shelf, where he lies wedged in between Colonns, Vitruvius, and a good many other very mouldy and musty matters, -and wedged there so fast, that it seems he cannot get down for a moment to look at and protest against the outrageous doings in the architectural room.* Most enviable state of repose! it saves him from being horrified. Mr. Barry has of course other and far better "fish to fry." Sir Robert Smirke has been all along a nonentity in the Academy-save that he is its treasurer, and keeps a keen eye upon its "shillings." We should just as soon expect to find a design by one of the porters as by him. Mr. Hardwick and the new associate, Mr. Sydney Smirke, are the only architects connected with the Academy who condescend to let us see anything of theirs in the Exhibition.

Such being the case, we can forgive the editor of the Art-Union for so strongly objecting, as he lately did, to architects being elected into the Academy. Unless they enter it with the intention and full determination of really representing their own art there, -of upholding and promoting its interests, the "R.A." so acquired becomes more of a reproach to them than an honour. They only take upon themselves the ungenerous and odious part of the dog-in-the-manger; doing nothing themselves for either the Academy or for architecture, and excluding from the former those who deserve to be in it, because they would prove active and efficient members. There being so few architect-Academicians, is the very strongest reason possible why those few should exert themselves manfully, instead of sitting by most tamely, while architecture is all but actually kicked out. For it to be kicked out altogether would perhaps be less ignominious than to be treated as it is at present. Probably, next year the architectural drawings will be thrust aside into the Octagon-room-a hole, never intended, we presume, by Wilkins to form one of the exhibition rooms, -for this season most terrible inroad has been made by the painters upon the space hitherto allotted to such subjects, and to which they might be supposed to have acquired prescriptive right. The whole of the east-end of the room is now given up to oil-paintings, -not that we should at all complain of that, provided they were strictly architectural in subject, instead of being the refuse of the works of their kind in the Exhibition, with such charmingly nambypamby titles as "The Pet," "Affection's First Offering," and others of the same " m issy" and lack-a-daisical stamp. Had no architectAcademician courage to protest against such an invasion of the architectural territory on the walls? Was there not in the whole Academical conclave one single Abdiel
"Falthful found
Among the fatthless, faithful only be
Among the innumarable false, utionoved,
Unshaken, naneduced, unterified,
His loyalty kept, bis love, bis sealp?
That there was not even one such seems, for had such one there been, either his remonstrances would have had due effect, or he himself would have withdrawn, and renouncing the brummagem honour of R.A., would have escaped the ignominy of being confounded with the faithless, -for as matters stand, the being an

[^13]architect and Royal Academician is very much like being a traitor. Nor is it to such alone that it is reproach that they should have allowed architecture to be reduced to the degrading position in which it is now at the only Exhibition open to it at all, for it very strongly reproaches the Institute of British Architects also, who, instead of contributing to the architectural department of the Exhibition, and of coming to its reacue in the hour of its imminent peril, content themselves with standing aloof in sulky dignity. That those who act the part of cyphers in the Institute, should not show themselves elsewhere to be other than cyphers, is not much matter for wonder,-perhaps even less for regret. But its starsthe laminaries who shine so brightly in Grosvenor-street,-can it be that their talent quite exhausts itself in talking, snd evaporates ere it can give any manifestation of itself in Trafalgar-square? Half the business of the Institute seems to consist in voting thanks to, and complimenting each other; which, for any good that the reat of it does, may pass for the better half of it. In the meanwhile, both the Institute and the Academy seem alike to shut their eyes to some of the consequences of their innocent indolence. Athough they are not, it would eeem, directly responsible to any one for their doings or non-doings,-for their sins of commission or of omission,-it behoves them to pay some little respect to public opinion,-and to preserve if possible, decency of appearances. After long hovering upon the verge of it, the Academy has at last overstepped that line of discretion and safety. It has this season put the "last feather" upon the camel's back. The time for remonstrance has paseed away, since remonstrance has been tried, and has proved fruitless, or worse than fruitless. What has hitherto been ramonstrance, and perhaps unpalatably severe admonition, will now become unsparing objurgation. Unless the architects of this country be the meanest-spirited creatures conceivable, they will now break out into open rebellion against the Academy, and then, when praximus ardet Ucelagon, will the Institute be able to escape unsinged? There is, indeed, what it might make use of as a "fire-escape;" yet whether it has sagacity enough ever to avail itself of such means is to us very doubtful. The probability is, that it will prefer the fate of a martyr-pprefer being roosted alive, to making the least effort that would break the spell of its present vis inertia. Let us hope then that, come what may, its chiarter is written upon asbestos. At least, let that Palladium be arved; if only to be deposited in the British Museum, where it may in time come to be looked upon with-veneration.

Those who imagine that we are now writing in mere reckless gaieté de cours are exceedingly mistaken. It is with feelings of sorrow, mingled with shame and indignation, that we pen what is likely enough to be set down for mere flippancy;-with sorrow for the contumely cast upon the art we love, -with shame for those who are themselves shameless-with indignation against those Judaslike friends of architecture, who betray it with their kisses. Good, ency creatures !-do they suppose that they are unnoted and unmatied by other eyes, merely because they choose to shut their onn? To the public, all may seem calm, -and a desperately dead calm it is; but a speck has been seen in the sky, that announces a gathering tempest. What will come of it, should anything come of it at all, will be felt in due time; and then, perhaps, "Sauve qui pout" will be the cry. Of that, however, no more at present.

There are, as we have slready said, no productions at the Academy this season, of that class which ought to make not the leapt figure of all in the Architectural Room-namely, models of buildinge; although there is still admitted there the usual number of works that would be far more appropriately treated, either in the Ministure or the Sculpture Room. For aught we know, architectural.models may have been offered and turned away. All we know is, that things there are of the kind-and very interesting things of the lind-which neither are nor ever have been exhibited. Regret;'hoever, is greatly mitigated, and surprise almost entirely dissipated, when we call to mind the ungrecioug churlishnese with which-judging from- the awkward, huddled-up manner in which they are generally arranged,-models seem to have been admitted. Such exceedingly glaring mismanagement is visible at the first glance, that we cannot help imputing it to intention, and to the policy which worketh by cunning and stratagem. Hardly can we give the -hangers credit for so much blundering stupidity as now shows itself more stronger than ever. Policy there must be in it, and its intention seems to be nothing less than gradually to work the expulsion of architecture from the Academy, at least from the exhibitions, by diagugting architects, and so deterring them from eonding at all-which is'all but completely effected already, and by rendering the show of architectural drawings as unsatisfactory and unioteresting as possible, till they come to be looked upon by the pablic as mere filling-up rabblab, that has no right to be there.

Nor is it the "hanging" alone which is to be complained of similar perverseness in selecting and admitting subjects. Ther are a great many things which, although architectural in subject, do not belong to the Architectural Room, inasmuch as they are not fresh designs, nor are the ideas they show those of their respective exhibitors. They are merely views and portraits of buildings, and for the most part of such as are already quite familiar to every architectural student. We do not go into that room to look as frames containing such stale matters as the Parthenon and other ragged ruins, whether Greek, Roman, or English; or at such rarities as our own City churches. If views or other copies are admissible at all, they ought at least to be confined to such as represent unedited subjects,-which, were they sought, might be found in abundance: were there no other, one thare is which has never been touched by the pencil-viz., the colonnades in the court-yard of Burlington House. Or if enow of subjects are not to be found here at home, they are to be got at without going quite so far as Athens and Egypt, for they present themselves at Paria, Munich, Berlin,-almost at every step on the continent. Without going so far as to prohibit them altogether, there ought to be aome gort of restriction with regard to what are merely topographical and architectural views. Some judgment might surely be exercised in determining their admissibility. Superior talent shown in execution might fairly enough be allowed to be passport for what possessed no great novelty of subject ; but to find 80 many things as we do, that possess no redeeming qualities that might excuse the staleness or insipidity of their subjects-and some of them occu pying far better places than original deaigns, is not a little provoking.

That such evident mismanagement as declares itself in the Architectural Room, should be persisted in season after season, with a growing tendency to worse instead of at all to better, is to ne nothing short of marvellous. The Academy-its architect-members included-seem not only to be utterly indifferent themselves ta the architectural part of their exhibitions, but also to imagine that every one else is equally indifferent. Yet, surely complaints must from time to time have reached their ears. Their being disregarded is, perhaps, to be attributed to their having been uttered in too mild a tone; and if 80 , they ought now to be thundered forth so loudly, that the Academy cannot possibly pretend not to hear them,-and hearing them, cannot but pay some sort of decent attention to them.

After this nnusually long proem-querulous also, we admit, though not without ample reason, and perhaps more energetie than polite in tone,-We proceed to say something of the few drawings of any mark in the present Exhibition. The hangers have taken care that we ahall not gratify our curiosity by the very furst subject whose title excites it-viz. (No. 1095), "Design for embellishing the new Coffee-room at the Carlton Club-honse, carried out in Encaustic Colours," F. Sang. For aught that can be discerned of the encaustic embellishments, this drawing might nearly as well have been hung with its face to the wall, or at least turned topsy-turvy, as be placed where it is-immediately next to the ceiling. We remember being much gratified by three drawings of the hall, \&zc., of the Conservative Club-house, exhibited a season or two ago by the same artist; and which, for a wonder, were placed where they could be inspected. The drawing now exhibited,-exhibited at least in the catalogue, though put out of sight in the room,-is no doubt equally interesting. Not at all unreasonable is it to suppose that it shows improvement, rather than any falling-off, on the part of Mr. Sang. Subjects of that class are not so very numerous, that we can afford to be cheated out of the opportunity of examining them. Possibly, Mr. Sang himself may feel consoled by the honour of being an exhibitor; and by getting his ticket of admission-all that many of the exhibitors seem to care for; but we have nothing to console us for the provoking disappointment to which we have been subjected.

The next-(No. 1096), "Prize design for the proposed Army and Navy Club-honse in Pall-Mall," G. Tuttersall,-vccupies a similarly lofty, though certainly not conspicuous station. Having seen it before, at the exbibition of the competition designs for that Clubhouse, we do not at all regret that it is placed where we cannot see it again; but we think that Mr. Tattersall himself must be anything but well pleased with the hangers for putting his "Prize Design ${ }^{50}$ far out of sight, and his other somewhat queerish design for the same building (No. 1929), in a much better situation, -We do not say the most advantageous one for it. As we expected, there are many other designs for the same Club-house, including the adopted one (No. 1187), by Messrs. Paruell and Smith. This was known to us before, a copy from the same drawing having been given in a contemporary publication, wherefore wo would
rether have found here something that would have ensbled us to judge of the interior. By not doing 80 , we perhaps miss very little, for, from what has been said of it, the plan appears to be excessively common-place. There are about half-s-dozen other designs for the same Club-house; therefore, instead of being gcattered about on the walls, and some of them put where they are scarcely visible, it would have been better to have collected them into a group. We should have preferred seeing here the respective sections, for thowe drawings were not exhibited at Lich feld House, although come of the plans convinced us that the section belonging to them must have been more than usually interesting. Sections, however, are not at all in favour with the Academy;-are things by far too prosaic to be admitted into their Architectural Room. Isometrieal perspectives of prisons are in their opinion more artistic drawings and dignified aubjects than sections of even palatial clubhouses. Such doggrel mode of drawing as isometrical perspective tolerated on the walls of a Royal Academy !

Designs for Railway Stations are quite as numerous, perhaps even more numerous, than those for the Club-house; and they may be allowed to show a good deal of variety, with a good deal of eamenesa, variety, inasmuch as they conform to no generic charecter, but assume all sorts of masquerade, from the costume of almshouses to that of aristocratic mansions; -and sameness, inasmuch as they nearly all affect to look prodigiously "obden-time-ish" \rightarrow very great propriety, no doubt, when we consider how many centuries ago it is since railways were first eatablished. A herald would trace them back to the Conquest, at least, and make out that they came over with the Normans. Sameness, too, there is with reppect to paucity of ideas, and poverty of invention. If we consider them merely as drawings, showing imitations of the respective sflen and classes of buildings, some there are well enough entitled to approbstion, but hardly so as designs for a specific and wholly un-precedented purpose, and accordingly demanding to be invested with some sort of specific character.
(To be consinued.)

ON ARCHITECTURE AND PAINTING,

EBPBCIALLY IN RBLATION TO THE EPROTION OF PROTEATANT CBCBOEBA Lettere written from Italy, by W. M. L. De Werre, D.D., Profeatop at Banle.- [A bridged from the German.]
If one, who like myself, is merely an amatear of art, and quite a stranger to technicism,-ventures to lay down principles and give advice, he may be sure of encountering the prejudices of artists and critics by profession. If he, moreover, steps forth, with a certain independence of judgment, on an area where tradition and custom sway all minds-fearless of touching at some of the existing prejudices, his giving offence is unsroidable. Still, I shall make the venture, and my ignorance of technicism deters me the lest, as I have found that technicists very often mistake the true acope of art, on account of their predilection for that sort of mastershipa prejudice, from which I, at least, am free. I may poasibly be tannted with other prejudices and with one-sidedness; stif, I hope to give some useful hints.

I begin with a few remarks on painting; and, without wiahing to enter into a definition of what it is, or ought to be, it is certain that its destination is to convey representations and feelings te the mind. But all representations, be they what they may-either intuitions of the senses, or images of the fancy, or conceptions of the reason, or ideas of the mind, -consist of two elements; one aggested by eaperience, and another appertaining to the activity of the mind: one real-sensual, and one real-apiritual and primordial. In the intuition of senses, the first element preponderates wo much, that we may be tempted to consider it the only one; but the more sceurate observer will soon perceive that the mind has also its chare in it. It is it, which impresses form to the matter of the enses-receiving that which it has viewed, within the pale of his other observations, and converting it into an intuition. The products of imagination may appear to a superficial observer as something produced by the mind, but the substance of it appertaing entirely to the experience of senses; imagination having merely decomposed it, and combined it in another shape and way. Even the ideas of the mind (be it in art or otherwise) are no aboolute produce of our thinting faculties; being merely deduced from experience.
Undoubtedly, the arts have risen from the imitation of nature, from the repreaentation of the really existing-and even their
present procens and progress are the same. Thus, while conceding, that in any art-object so much of the raal be axisting, $7 e$ may be induced to doubt how far ideadity may enter therein at all. But if we take the difference between a picture and a daguerreotype, the case will become perfectly clear. In the former, that which oecurs to the external eye piecemeal, must be meizod by the mind and intellect as a whole-and put forward as a self-existing, independent ohject. For the first, besidea nature, models, antiques, matomy, \&c, are used, all which will yield materials on which the artist can and may dwell; but imagination will supplant many of these helps, as we see in Raffaelle, who, after having devoted nearly his whole talent to painting, became the completer of the finest modern edifice in the world; we mean the dome of St. Peter. -which will lead us to a more detailed inquiry on the art of the builder.

Architecture may be called the most difficult of arts, as it is a fact that its products have experienced the most opposite and most severe criticism. The reason for this might be found in architecture being not sufficiently free-being, as no other branch of art, tied up to a certain scope; and only after this is accomplished, the demands of the beautiful may and can be attended to. On the other hand, the freedom accorded to the architect is something very vague, as he cannot follow any prototypes, but (as in music) has only to be guided by the internal measure of mathematical intuition, or the judgment of proportion and easthetics. This, however, can never afford such certain and stable rules as the other arts have deduced from the observation of nature, \&c. Amongst the many styles of architecture are the Egyptian, the Greek, the Byrantine, the Moresque, and Gothic; and in every one of them architectural besuty can be achieved. In this incertitude of legislation, if we may 80 call it, the chance of falling into the arbitrary, burlesque, or absurd, is greater than in most other arts.

The surest way is-to start in architecture from the seope given, as the other fine arts start from observation of nature, which with all of them constitutes their store of reality (Boden der Realitat), and by which, after all, the character of the architectural etyle is determined. Becanse it is easy to conceive, that, for instance, the Grecian temple and the mediaval church are montly shaped after the circumstances of chimale and their respective seope and mage. To choose a style, not adapted to our wants, is an imitation bare of character-which, however, is frequently to be met with new-s-days. A similar tendency of imitation and dangligg with the antique and the foreign, and a want of originality, pervades mach of modern art, but nowhere more than in architecture, where it seerns that all trace of inventiveness has exploded; still, this cannet be the case, as our most modern times must have and have wants of their own. This, most assuredly, is the case with Protestant (evangelic) church architecture, to which the particular character of our worship prescribes especial rules, which, however, have not yet been attended to. If we refer the word "Church" to the original Eccletia-s congregation, the importance of the eermon becomes with us paramount; far more of than it ever had been with the old (Papal) church. Taking the sermon as the chief feature of our.worahip-the scope and aim of a Protestant chnrch oan easily be explained. For the sake that the aim of a sermon (lize any other speech) be accomplished, the orator must not only be heard, but seen by all. This applies with equal force to the orator himself, as he requires to have all his hearers within the reach of his eye, to enter with them into a living contact, which sone may call mesmeric. For this aim, the churches, as they have come down to us from Catholicism, are not appropriate. In a Basilice or Gothic church, with one or two lateral maves. and a choir, the pulpit connot be conveniently placed, nor the orator heard; .which Is the reason, that in Italy a large cover or carpet is spread over the pulpit and main nave on festival occasions. The new epirit of Christianity conld not re-model everything at once, and especialy in the department of architecture: it adapted itself to the already existing. Roman Basilicas were converted into Christian churches, and retained by custom their mis-appropriate form.

That which serves the purpose of the sermon is atso in ascordance with the spirit of a truly evangelic worship-which is, that the congregation be conscious of their communion and comannity during the time of divine service; and for this aim, not only the preacher, but every one attending ought to see all, for the salie of arriving at the conviction thet they are a community ! Bat the life of community, which existed in such eminence amongst the firet Chrintians, exploded gradually, as priesthood became paramonint, until all idea of a congregation (community) degenerated intu thas of a complete priest-hierarchy. In Catholic churches, much thinga as congregations, property apeaking, never exist; but vie pertion attends to the mase, othere pray at the ceveral athars,
others come to and fro; and even the preacher has only a portion of the people around him. The priesthood, alone, form a compact, uniform body, which, however secludes itself in the choir, taken up with particular functions. In this part of Catholic churches, as well as in their whole structure, the want of community is apparent; and if it had been as easy to erect new churches as to change a creed, Protestants ought never have used Catholic churches for their worship. Necessity, however, prevailed, and some of these older structures deserved preservation on account of their beauty. Still, it is a -dereliction of duty, if new Protestant churches are built in the form of Basilicas or the old cross shape.

It is not our province to make any specific proposals for the erection of Protestant churches; still, it is the duty of our architects to search after, and to discover that form-provided all power of invention has not left our age! So much we may say, that, according to our foregoing reasoning, this form ought to approach the circular or elliptic. The round form may possess some disadvantages in an acoustic point of view, but we do not doubt that they can be overcome by study and research.

While thearchitect attends to the scope of a building, he has, especially in public buildings, also to take care of its character of beauty. All nations have imparted to their sacred edifices, beauty, character, and sublimity; and Protestantism, if it comprehend the vocation of religion, cannot neglect the above requisites of sacred buildings. The aim of worship requires an adequate and worthy expansion of space. The sentiments of holy earnest, of pious peace and adoration, will receive much additional strength from a worthy and adorned locality.

It has often been asked, what constitutes the beauty of an edifice? Surely not the costly, glittering materials which Catholicism has squandered on them in Italy, partly from heathenish spoils transferred there. Another-and we say a superior mind reflects from the Gothic churches of the north of Europe. The temples of Pæstum, superior to all the ruins of Rome, are of travertine; which coarse material, however, is deified, as it were, by the exquisite form and proportion. It is form which constitutes beauty-which, after all, is but form perfect. Both appertain to the mind; mind creates form, and then reflects, with ecstacy, on his own work-the laws of its own being brought to manifestation -beauty.
Certainly, before an intuitive observation, the distinctions of material and form vanish. Certainly, marble is more pleasing to the eye than gritstone, on account of its finer component parts and colour, which both are forms. The architect cannot disdain the nobler material on this account, as well as for its greater plasticity and adaptation to elaborate workmanship. The custom to construct public, especially sacred, buildings of noble materials, and to adorn them costly and splendidly, is most ancient, and based on a true sentiment of our mind. Everything rests here on certain proportions and measures; as also the connection bet ween material and form obeys the same laws. Even a building, or parts thereof, the interior of a church or hall, may become heavy and cumbersome by being overloaded with ornaments, on account of form being here obscured and borne down by material. The latter is the case with the Milan Domo, the outside of which is too rich in ornament, while the inside is grand and sublime.

The beautiful in architecture can be divided into several radii which we shall attempt to enumerate, in accordancewith the relation of their usefulness and adaptation. The latter may be raised to beauty, or even sublimity-if the size by far outstrips the bounds of absolute necessity. The scope of religious assemblages requires but a limited height of space; but the tendency of art soars beyond that, and attempts to expand, conjointly with material space, our feelings and sentiments. Another way of achieving beauty is to employ greater means and aids than are absolutely necessary. The building may, for instance, require pillars for its support; but art takes hold of this want, and increases their number to the greatest amount compatible with true proportion. Finally, the scantiness amount compatible simplicity of the straight line may be increased by lines srcuated and wavy. But to all this must be added something inexpresible by mere words-which, however, may be best termed harmony, concordance, and unity of conception. Size and heightfulness and diversity, the free scope of form, must all combine towards unity ; and naught to appear as superfluous, isolated, or preponderant. By the observation and comparison of a number of buildings, and by abstracting laws therefrom, certain rules of proportion (numerical, geometric, and others) have been arrived at ; to whioh fanciless architects are accustomed to adhere slavishly. But.the true laws of construction lie in the impression a building But, the true laws of construction he
willuptoduce, and which the real artist will know how to anticipate
by some sort of internal art-intuition; this inward conception precedes all sketches on paper or parchment.
Let us now endeavour to sketch that impreman, which a Protestant (evangelic) house of God has to produce. The asual classification of the Greek, Roman, and Gothic may serve as a starting point. The Grecian temple is conspicuous for its moderate compass, and the rectilinear form of construction. It is altogether the type of the polytheistic mind of their buildery unable to seize the greatness of One-God. Still, it produces the effeot of a clear, serene majesty; and further, the Doric may be said to be more stern than the others. It seems to us the fundamental fault of Michael Angelo, and other architects, who have taken the antique for their prototype, to transfer the Grecian-Roman style into Christian churches. The Doric colonnade would have been, ao doubt, the most adapted to Christian worship; but, so far as we know, that style has been used but rarely; substituting for it the more slender, serene-nay, lascivious Conian and Corinthian orders, where, at times, colossal dimensions were introduced to palliate the inconvenience thus arising. But already the Byzantine or Romanic style of architecture had changed the Greek into one more appropriate to the Christian mind, by adopting greater height-thereby, expanding the column to gigantic proportions, and substituting the round arch for straight lines. For the external ornament of churches, or even the upper parts of their interior, this style used thin, short columns with arches, over which a profusion of sculptural and mossic ornament is spread. The too stern character of the ensemble is thereby modified, and amenity added to sublimity: just the same as the worship of the true Christian is tempered by mildness and love.
Gothic church architecture has, however, achieved the greatest sublimity of religious sentiment, by its pointed vaults; but here, also, a richness of ornamentation unites the serene and lovely Peculiar to this style of architecture, is the mysterious and aweinspiring, which arises partly in the structural proportions and forms, and partly in the painted windows, spreading a mystic chiaro-scuro over the whole expanse of space. If we assume, in fine, that Protestantism has developed faith and adoration to its greatest height and freedom, there can be no doubt that the character of sublimity,-viz., the pointed arch style, has to be chiefly adopted. It can hardly be doubted, that the adaptation of this style will permit the carrying out the above-stated requisites of Protestant worship, consequent on its very essence and mindyet, we acknowledge that a sacred edifice thus constructed will be much different from a Gothic cathedral. It may be thought, that the character of the structure might be somewhat modified by a greater clearness and serenity of its plan and conception. Protestantism educates towards self-thought and clear ideas; henceforth, even its external manifestations must seek for clearness and light. As the congregation has to see itself, as bibles and books are to be oftener referred to than with Catholics-stained windows will not be adapted,-the more so, as the frescoes proposed by us as a chief ornament for the walls of the interior, would be quite confused and obliterated thereby.
Of these we shall speak in conclusion. In this respect, also, a certain chaste economy, if we may say so, is to be recommended. In Catholic churches, not rarely a sensual profusion of marble and gold is to be regretted, and at the same time, walls and ceilinga are overloaded with paintings. This medley, however, of a motley coloration, makes an especially confusing impression on the beholder. Against the painting of ceilings we must pronounce most strenuously, as even with the best light it is impossible to view them with the requisite quiet and ease; the outward quiet, however, of the beholder being the necessary condition of the inner satisfaction, which is the aim of all art. At times, moreover, the light for such ceiling-paintings is quite a wrong one, as is the case in the dome of Parma. How much of art and means have been wasted in ceilings, and how slight has been the the result! On ceilings, art should not effect but an adequate and harmonious display of colour; at the utmost, arabesques or facettes are to be used, as is the case in some of the churches of upper Italy. Figures and groups however, ought to be placed at a convenient distance, and in no distorted positions or fore-shortening. If our idea of a communion in Protestant congregations be assented to, pictures ought to be used but rarely, and of a simple, but grand character; else they would distract the attention of the people. Large historical compusitions attract too much attention; but figures or heads of great and pious personages will be more apprupriate, besides requiring only a limited space.

If we endeavour to combine the purport of our foregoing ob-servations-we have to repeat, that painting has to receive a real element and oubetratum; architecture, to manifest the soope of
edaptation; all pervaded by an ideality, which appertains to the eabject-2n intimate connection (permeation) of the real and ideal. We have to insist on compositions, clear, free, and well-combined : in fine, the preponderance of the art-scope; -viz., to bring the beautiful and suhlime into external existence, and thereby to awaken art-feelings-viz., feelings of serenity, elevation, and contentment. We cannot forego to express our opinion, that great religious buildings can and will never be conceived but by men posseasing those feelings in an eminent degree. The complication of estimates and business can hardly be avoided now-a-days; but composition and inspiration can alone produce huge structures, worthy and able to inspire the people-a sentiment they cannot any longer be kept without.
J.L-X.

BEGIETPR OF DEW PAMFNTB.

LOCOMOTIVE ENGINES AND CARRIAGES.

James Prarson, of New North-terrace, Saint David's, Exeter, for "certain Improvements in locomotive engines and carriages." -Granted October 7, 1847 ; Enrolled April 7, 1848.

road, and to bring it back to the straight position when the road is even. The swivel centre-pin P, is fitted into a socket Q, which is allowed to slide a little endways in guides a, to allow for expansion and irregularities, and the holes in the links z , are made oblong for the same reason, and that the links may pull instead of pushing. The boiler and engines are supported on a long upper frame F , which is attached to the lower swivel-frames by the two centre-pins F, P, and hy the links I , at the end of the engine. The whole forming one compound swivel-frame.

The coke-box a, a, is placed on the top of the boiler. The water-tank may be on a separate tender, or may he placed between the coke-box and the boiler, or attached in any other convenient way. The two steam-heads may be connected at such a height as is convenient to leave head-room for the engine-man.

Another part of the invention consists in the application of an exhausting-fan in the smoke-box to draw the heated air through the tubes of the boiler, and to discharge it either up the chimney, as shown in fig. 1 , or, if preferred, it may be again returned as hot blast into the furnace. This fan will allow the use of waste steampipes of a large size direct from the cylinder into the open air, and so avoid the great pressure on the back of the piston when the ordinary blast-pipes are used. The fan or fans may be driven by bands from pulleys on any of the wheels or axles, or by a small engine fixed on the side of the boiler, which may also if required work the feed pumps. The fans if driven by pulleys must each have two pairs of pulleys and suitable clutches, one pair driven by an open strap, and the other pair by a crossed strap, so as to drive the fans always in the same direction, whichever way the engine may be going. The clutch-gear may be attached to the engine reversinggear if required.

Another part of the improvements relates to coupled locomotive engines, in which arrangement the compound swivel-frame is adopted. There are other improvements mentioned, but they are merely variations of those already explained. The patentee does not claim the invention of swivel or "bogie" frames generally, but his claims are, the compound swivel-frame, with couplingrod, provided with elastic springs or cushions, and the various attachments to the upper frame; the form of boiler ; the use of exhansting-fans for obtaining strong draught; and the compound swivel-frame, connected by rods with elastic cushions, and provided with guides and end links, as above described.

Fig. 2.
This invention applies to several parts of locomotive-engines and carriages. One part consists in the form of the boiler, which is made with the fire-box in the middle part of the boiler, instead of being at one end. The general outline of the boiler is such as would be formed if two locomotive boilers of the ordinary conmeruction were placed end to end with their two fire-boxes about four or five feet apart, and then the parts of the fire-boxes below the fire-door were joined together by an additional piece of firebox, so as to connect the two ends together into one large fire-box in the middle of the boiler with a chimney at each end (fig. 1); or the boilers may be entirely separate and distinct, that is to say, having two entirely separate and distinct fire-boxes butting against one another, and having water and steam communications common to both, but which may be shut off from either boiler at pleasure. The axle of the driving-wheels is placed in the middle of the boiler, above part of the fire-box and below the foot-plate, so that any desired amount of weight of the engine may be brought apon the driving-wheels, and at the same time the centre of gravity may be kept very low. The axles of the trailing-wheels are placed below the cylindrical part of the boiler, and two pairs of these are placed in one swivel-frame at one end, and two pairs in a similar frame at the other end. The two frames are coupled together by two tension-rods f , (fig. q). Near the ends of trese rods f , are placed springs as, made of vulcanised india-rubber, and beyond these springs are nuts to confine them. The use of these springs is to allow each swivel-frame to adjust itself to any inequality of the

CHRIMES' PATENT FIRE-COCK.

The accompanying engraving (one-third the full size) of a firecock or valve, is a substitute for the ineffective wood plug, now in use in service mains. When under constant high-pressure, it forms a substitute for fire-engines, as in cases of fire it can be brought into almost instant operation, without that loss of time and waste of water which the use of the wood plug involves. It can be also expeditiously, cheaply, and most effectually applied to the watering and thorough cleansing of streets, courts, alleys, public buildings, windows, \&c.; and in railway stations, to almost every use for which a free supply of water is required, including supplying engine-tenders, cleansing carriages; and it is also adapted for watering gardens and pleasure-grounds, and by the application of suitable outlets, for syringing fruit-trees. It is especially adapted for high-pressure supplies, as from the circumstance of the valve part of it being closed by the pressure of the water, the higher such pressure becomes, the more is the tightness of the valve secured, and effectual safety from leakage insured. One great advantage it has over the ordinary fire-plug is, that the stand-pipe with the hose can be placed on to the valve without the escape of any water, although the mains may be charged with watar at a high pressure.

By the present system, unless a cock is attached to the branch of a fire-plug, a great loss of time unavoidably occurs in removing the wood plug, as the water has to be turned off the main pipe
before the plug can be removed, and to be turned on again after it has been removed, to say nothing of the delay and difficulty which often occurs before it can be removed at all.

Description.-The Patent Fire-cock consists of a cast-iron boss, A, with aperture of such size as may be required, and flange for connecting it with a corresponding flange on branch from main pipe, as represented by dotted lines under fig. 1 -the upper inner edge, a, of the boss being raised and faced, forms a seat for the loose.valve, B, covered with leather, the spindle of which works in a brass bridge, C, and when not in use, is always closed. To the boss are attached wrought-iron inverted $\mathrm{h}_{\text {-shaped lugs, }} \mathrm{D}$, to which the stand-pipe, when brought into use, is secured.

This stand-pipe consiats of a copper or iron tube H, with two branches on the upper part I, furnished with screwed ends for attaching the hose; one or both of the orifices are also furnished with a brass screw-cap K. At the connection of the diverging pipes is a atuffing-box L, and at the bottom part of the stand-pipe there is a brass mule-screw G, with leather washer F, working
through a brass female-screwed collar E. This collar has projecting lugs, which passing under lugs \bar{D} of the fire-cock, firmly secure the lug together, and form a connection of the stand-pipe with the fire-cock, perfectly water-tight.

Passing down the stand-pipe, through the stuffing-box $I_{\text {, }}$, is a wrought-iron rod, with brass crutch-handle at top, and a malescrew at bottom, working through a brass female-screw in the bridge G. By turning the crutch-handle M, the rod gradually presses down the valve B, of the fire-cock, and allows the water to escape all round the valve and up the stand-pipe; and at the same time by the gradual opening of the valve by the aid of the rod and screw, the flow of water is controlled, and concussion in the pipes prevented; while at the same time the sudden strain on the leather, or other hose which may be attached, is, to a very great extent, diminished.

PADDLE-WHEELS.

Tromas Hunt Barber, of King-street, Cheapside, London, gentleman, for "Improvemsents in machinery for propelling vesels."Granted October 7, 1847 ; Enrolled April 7, 1848.
This invention consists of an arrangement or combination of parts into paddle-wheels for propelling vessels. The external case of the wheel is a cylinder, which is fixed to and revolves with the driving-axle; and the floats are so arranged within the cylinder, as to be projected outwards when required to act, and are again withdrawn into the cylinder as they go out of action; such construction of paddle-wheel allowing it to be wholly immersed in the water. To govern the action of the floats, the patentee prefers to use a cranked axis, one end of which enters into the main or driving axle. On to the main-axle is placed a boss, to which arma are attached, for holding firmly the floats. The annexed diagram, which is a side-mection of the paddle, will explain the manner in

which the floats are intended to act. The cylinder b, b, has an many slits or openings through it as there are flosts to the wheel; and within the cylinder are angular hollow vessels f, f, which give buoyancy to the wheel, and also serve for the purpose of offering inclined guiding surfaces to the floats as they are moved outwards. The arms h, h, are attached by pin-joints to the boss or collar on the crank axis; and to the ends of the arms the floats are to be fixed. The floats i, i, i, are represented to be in action, whilst the others are drawn within the cylinder. The patentee says, that although he prefers to use a cranked axis for governing the action of the floats or paddles, it will be evident to an engineer that an eccentric might be substituted and produce a like result ; and it will also be evident that in place of having the floats or paddles whereon are arms or spokes governed or controlled by a crank or eccentric axis, the case b, might revolve on and be governed by fixed eccentrics one on either side. In such case there would be a fixed axis between the eccentric bearings of the case b. The nave having the arms of the floats or paddles would revolve freely on the fixed axis between the fixed eccentrics, and the case b would receive motion by a cog-wheel affixed thereto driven by another cog-wheel actuated by the engine, or in any convenient manner.
What the patentee claims in this invention are, the modes of constructing paddle-wheels whereby floats, or paddles, or armu are combined with a case b, such floats on the case being goverued by a crank or eccentrics.

RAILWAY CARRIAGES.

Thoman Dunf, of Windsor-bridge Iron Works, Manchester, for "Improvements in railway wheels, jacks, fe."-Granted November 2, 1867; Enrolled May 2, 1848.
This patent comprises several objects connected with railway locomotion. Mr. Dunn first describes several improvements in the construction of wheels. One of the principal is the easy removal and replacement of the tyre upon the wheel when it has become worn. This he effects in several ways. His first method consists in having the nave, arms, and an inner tyre cast in one piece, upon which the outer tyre is bolted by means of a flange, which projects inwards a few inches beyond the inner surface of the tyre. The joint between these two pieces, out of which the wheel is formed, is packed with gutta percha or some other elastic substance. A second method consists in having the nave of the wheel cast with mortices in it for the reception of wooden arms or spokes, and in afterwards fixing the tyre to the nave, by bolts passing down through the middle of the spokes. According to a third method, that part of the wheel which is occupied by the arms is entirely filled in with segments of wood, between which segments there are driven wedges of either wood or iron, so that the wheel is almost entirely solid. The tyre is attached to the nave by bolts, as in the former instance.

The patentee makes his axles of wood and iron, the wood forming an internal solid core, with an outer covering of iron. He also makes axles of several pieces, by having the naves truly bored out, and driving into them a short axle, or rather part of an axle, Which is formed on the outside of the wheel, into the journal or bearing, and on the inside projects only a few inches, leaving sufficient strength of material to pass a cotter through to retain the axle in the nave. The two wheels are then connected by rods of iron, which have collars formed upon them near to their ends. The portions beyond the collars are passed through holes formed in the naves of the wheels, and have screws upon their outer ends. so that the wheels are, in a measure, devoid of axles-the connection between them being formed by the rods.

The second portion of Mr. Dunn's improvements relates to the construction of jacks for moving carriages and locomotives on to the line of rails when they have got off. The chief feature of this improvement consists in providing the jacks with four small fric-tion-rollers at the bottom of the pillar, by which the jack, with its Loed, is easily made to run upon a smooth surface in any direction.
A third improvement consists of a means of removing carriages from one line of rails to another, which the patentee effects by means of a low truck, running upon a set of cross rails. A portion of the main lines of rails is made to form an inolined plane at pleasure, by means of cams fixed under the rails, whereby he is enabled to run the carriages on to the low truck.

LUBRICATING COMPOSITION.

Thomas Denne, of Bermondsey, Surrey, strap manufacturer, for "Improvements in the manufacture of grease or compasitions for atmospheric pipes, and for lubricating the axles and moving parts of machinery."-Granted April 27 ; Enrolled October 27, 1847. [Reported in Newton's London Journal.]

The improvements consist, first, in preparing a lubricating composition by combining oil, or tallow or other grease, with certain light, soft, white, and unctuous precipitates or bodies, insoluble in water (so as to be incapable of being used as detergents), and obtainable in the manner hereafter described ; secondly, in preparing a labricating composition by combining oil, or tallow, or other grease; with vegetable black or with lamp-black; and thirdly, in mixing the compositions, prepared according to the first and second improvements, in such proportions as may be desirable, in order to render the same more suitable than when used alone for the lubrieating purposes above mentioned.
The mode of carrying out the first improvement is as follows:The patentee introduces into a vessel or tank such a quantity of kiquor calcis, or of a saturated or other solution of sulphate of magnesia, or of sulphate of magnesia and ammonia, as he considers will be sufficient for the quantity of composition required to be prepared; he then gradually pours into and mixes with the same . strong solution of such of the vegetable or animal oils as are mont suitable for the purpose, and which have been rendered miacible in water by boiling the same with alkuli or caustic ley; or, instead of the solution just mentioned, he employs a strong
solution of either the soft or hard soap of commerce; or he introduces the liguor calcis, or the solution of sulphate of magneeia, or of sulphate of magnesia and ammonia, into the pasty and saponaceous fluid, obtained by boiling either oil, or tallow or other grease, with alkali or caustic ley,-having first drawn the fire and allowed the pasty mass to cool down to 100° Fahrenheit. The patentee continues to add the saponaceous fluid so lang as any light, soft, white, and unctuous precipitate continues to be produced; and then he separates such precipitate from the mother liquor, by filtration through a fine linen sieve,-preserving the mother liquor when it contains, in solution, any valuable salte, so as to make it useful for manufacturing caustic leys.

112 lb . of the precipitate, obtained as above, are to be combined with from 40 lb . to 112 lb . of palm or other oil or grease : the quantity of oil required will vary according to the peculiar character of the oil employed; but about 56 lb . will, in most cases, be suffcient. The apparatus used for effecting this combination is a cylindrical iron vessel or mill, open at the top, containing a revolving agitator, and having two pipes at the buttom, furnished with stop-cocks, for the purpose of discharging any water or other fluid that might accumulate inconveniently during the process. After the precipitate has been introduced into the mill, and the agitator set in motion, the palm or other oil is gradually added; then, as soon as the proper quantity of oil has been used, the mixture will thicken and assumes consistence considerably greater than the oil or other ingredient or ingredients possessed in the first instance; and a chemical combination will so far take place, that the greater portion of the mother liquor contained in the precipitate will be driven out, and must be drawn off by the pipes above mentioned. A supply of cold water is next allowed to run upon the grease or composition in the mill, so that it may be washed therein, in order to cleanse it from all adhesive impurities of the mother liquor; after which, the water is to be drawn off, and then a few pounds of oil are to be mixed with the composition, to separate any adhering particles of water, and to give it a finer and better appearance. The grease or composition is now ready for use ; but if it should not possess sufficient consistence for the purpose to which it is to be spplied, from 5 lb . to 28 lb . of melted tallow should be mixed with it in the mill; or, when the tallow is to be used, it may be mixed with the composition before the latter is washed with water, as before mentioned.
The second improvement consists in the production of a black grease or composition, which may be exposed to great extremes of heat and cold, and does not readily freeze, by combining 160 lb . of palm, olive, or other oil, or grease, with from 10 to 40 lb . of vegetable black or lamp-black. The oil is first placed in the mill before described, and then the agitator being put in motion, the vegetable black or lamp-black is added in small quantities at a time ; and the mixture is agitated until the black grease or composition has acquired a sufficient amount of consistence.

The third improvement consists in combining a portion of the black grease or composition with grease or composition made in the manner described under the first improvement, to prevent the same from freezing when exposed to frost or snow, or to protect it from the action of extremes, either of heat or cold : the combination of the compositions is effected by the use of the mill before described.

BRONZING METAL SURFACES.

Charles de la Saliede, of Paris, for "Improvemento in brassing and bronzing the surfaces of steel, iron, zinc, lead, and tin."Granted September 30, 1847; Enrolled March 30, 1848.

The improvements relate to coating steel, iron, zinc, lead, and tin, with brass and bronze. For the purpose of coating metal with brass, a bath is prepared, composed of the following ingredients: $-5,000$ parts by weight of distilled water, 610 parts of sub-car. bonate of potash, 25 parts of chloride of copper, 48 parts of sulphate of zinc, 305 parts of azotate of ammonia, and 18 parts of cyanide of potassium. The cyanide of potassium is dissolved in a small portion (about 120 parta) of the cold distilled water; at the same time, the sub-carbonate of potash, chloride of copper, and sulphate of zinc, are introduced into the remaining portion of distilled water (contained in a separate vessel, and having its temperature increased from 144° to 179° Fahrenheit, to facilitate the dissolution of these matters); and when they are perfectly dissolved, and the solution has hecome cool, the azotate of ammonis is added. After the solution has been shaken for a long time, it is
allowed to stand for 24 hours; it is then decanted with a syphon, and the solution of cyanide of potassium (which should be limpid) is added thereto. If the solution thus prepared be submitted for about five hours to the action of a volatic battery with a rapid current (such as Bunsen's, Grove's, or Daniel's battery), and at a mean temperature of 77° Fahrenheit, it will deposit a coat of yellow copper, or brass, on the metal article immersed therein. The process may be performed in vessels of porcelain, china, glass, or wood (which may be lined with bitumen, or any isolating resinous matter); and the vessels are preferred to be of a rectangular shape.
If the articles are to be coated with bronze, 85 parts of chloride of tin are to be substituted for the above-mentioned 48 parts of sulphate of zinc; the proportion of chloride of copper is to be increased from 25 parts to 48 ; and a plate of bronze is to be used as the electrode: in other respects the bath is prepared with the same ingredients, in the proportions above stated, and the process is conducted in the manner before described.

A bath, for coating articles with brass, is prepared, by dissolving $\delta 00$ parts of sub-carbonate of potash, 15 parts of chloride of copper, 35 parts of sulphate of einc, and 50 parts of cyanide of potassium together, in 5,000 parts of cold distilled water. After the bath has been stirred, it is allowed to stand for from 94 to 48 hours; it is then subjected, in a cold state (from 25° to 30° Fahrenheit), to the action of a voltaic battery, during the same time, and in like manner to the preceding baths. When this bath becomes impoverished by use, the salt of zinc, or copper, which has been absorbed, must be replaced. The bath last described may also be used for bronzing, by substituting about 10 parts of chloride of tin for the 35 parts of sulphate of zinc, and employing an electrode of bronze.

In either of the processes above described, instead of the sulphate of zinc, or chloride of tin, any neutral salts of zinc, or tin acids, may be employed, according to whether the article is to be covered with brass, or bronze, so long as the bath is sufficiently rich in potash, that there may be no action upon blue paper of turnsol. The proportions of the salts of tin, zinc, and copper, may be varied according to the colour desired to be given to the metal coating. This invention may also be applied to the coating of alloys.

RAILWAY BARS AND CHAIRS.

Richard Shaw, of Gold's-green, West Bromwich, Stafford, railway-bar finisher, for "1mprovements in the manufacture of wrought-iron railway bars and raihoay chairs."-Granted October 21, 1847; Enrolled April 21, 1848.

The improvements described in this specification relate to the constructon of railway bars and raiway chairs, as also the arangement of the machinery for their construction; and consist, First, in the mode of forming and piling the pieces of iron to form the rail-way-bar, for preventing the lamination of the metal. This is effected by placing and piling the bars in the manner shown in the annexed diagram, fig. 1 , the lower portion of the bar being piled
rig. 1 .
 in the usual manner with flat bars, and the upper portion piled with a broad bar bent into the form shown, the edges abutting upon the surface of the bars beneath, and the interior being filled and piled in the usual manner. When the railway-bar is finished, the grain of the metal is arranged in the form represented in fig. \&, and thus no laminating edges occur on the head of the working surface. The other improvements claimed by the patentee are, Secondly, the mode of manufacturing wroughtiron railway bars-with protecting rails or flanges affixed thereto, in such a manner that the heads or working surface of the railway-bar stands above the support of the protecting rail or flange. Thirdly, the mode of manufacturing railway-bars with hollow heads or working surfaces in such a manner that the cheeks of the chairs may pass into the hollow of the head or working surfaces for the purposes of support. Fourthly, the mode of rolling railway-bars with rollers placed three high; as also the mode of rolling by the same means the curved bars used in placing and piling for making his improved railway-bars. Fifthly, the construction of chairs for supporting his improved form of railway-bar.

BORING AND SINKING.

William Gosswycr Gard, of Calstock, Cornwell, engineer, for "certain Improvements in machinery and implements for boring and sinking."-Granted October 21, 1847 ; Enrolled April 21, 1848.

The object of this invention is to improve the form of the cutting-tool used in boring so as to remove the debris more eanily; and also to work the boring instrument more effectively. It is in the form of the tool, however, that the chief novelty of the invention consists. The cutting ends are made of a concave or inverted cap-like form, divided by a crossinto four segments, with apertures leading from these segments into a hollow cylinder or shaft, screwed into a neck of the bit, whereby the bored-out materials are removed out of the way of the cutting edges. Fig. 1 repre-

Fig. 2. sents a vertical section of the borer or bit, constructed according to this invention; and fig. 2 an under plan view of the same, showing the cutting edges. The shaft or hollow part b, forms the receptacle for the bored-out materials. This hollow shaft has the part a, which forms the cutter, screwed or otherwise affixed thereto, it being made of steel or some other hard metal. The cutting face is of a hollow form, or rather of four distinct hollows, the area being divided by a cross into four sections d, d, d, d, (fig. q), each separate hollow terminating in a hole e, leading to a main opening m, in the trunk of the borer. The outside diameter of the cutter from the cutting-edge to the point h, is of a cylindrical form, and from the point h, (fig. 1), to where it joins the hollow shaft, it is tapered about half an inch in order to clear the shaft-part b, and allow it to pass freely after the cutter. The cutting edge, forming the circumference, is bevelled only on the inside; consequently, the material, which becomes detached by the blow, is projected inwards and upwards, leaving the external part free from obstruction in its working. The piece* detached by the cutting edges, forming the crose, are also projected upwards, and by the concave form of each section are all conveyed into the openings e, e, e, e, to the main channel m. A valve-seat of brass c, (fig. $\&$,) is secured in its place by having the stem b, screwed down on its surface. This valve-seat has its opening in the centre, corresponding with the main channel m, and is fitted with a ball-valve k. The detached materials pass up the main channel m, into the body of the stem b, at each successive stroke of the borer; the quantity of materials detached each time nearly filling the concavities d, d, d, d; but by being conveyed directly into the receptacle, they are prevented from impeding the operation of the cutters. The valve k, which is prevented from rising too high by a cross-pin in the stem, cuts off any return downwards of the borings. In this manner may the operations of boring be continued until the entire capacity of the stem δ, is filled, when it is to be withdrawn from the boring, and the contents removed, which may be effected by turning the bit upside down, when they will pass out of the aperture, g; but the patentee prefers, when the detached materials are of a dry description, to keep the tool vertically in its boring position, and by raising up the valve from below, to allow the contents to run out.
The second part of the invention, which relates to the mode of working the boring-tool, needs little description, as it contains nothing that is novel in principle. The patentee adopts the Chinese mode of boring, by fixing the tool to a chain or rope, and producing the effect by continually lifting it up and letting it fall, the height of the fall being regulated by the resistance to be overcome. There is a lever attached to the chain at the top, to one end of which weights art suspended, for the purpose of counter-balancing the increased weight of the chain as the depth of the boring increases, so that the working may be rendered as uniform as possible.

MANUFACTURE OF IRON.

Alfred Vincent Newton, of Chancery-lane, Middlesex, for "Improved machinery for blooming iron." (A communication.)Granted October14, 1847 ; Enrolled April 14, 1848.
This invention is for the purpose of more effectually compressing or shingling puddles, balls, or loups of iron into blooms. The im-
provements are-Firstly, the mode of compressing or shingling by means of a compresser acting in combination with two rollers, and producing therefrom a bloom. Secondly, in the use of cheeks, betwreen which the bloom is formed, having aprings at their backs for the purpose of setting and keeping the ends of the blooms square and of proper shape; these cheeks sct in combination with the camformed compresser and rollers. A third improvement consists of an arrangement of apparatus for feeding the shingling-apparatus with balls to be shingled, and for discharging the bloom when sufficiently compressed and shingled. These combined improvementa are represented in the annexed sectional elevation. A, the cast-iron frame of the machine, securely fastened to the bed-plate B;

within the upper part of the frame are sliding blocks, C, C, forming bearings for the shaft D, upon which is mounted and properly secured the cam-shaped compresser E, of the peculiar form shown. The periphery of the compresser is eccentric to its centre of motion, for the purpose of squeezing and compressing the ball of iron between the periphery thereof and the rollers F, F; this eccentricity of the periphery of the cam-shaped compresser commences at the point 1 , where it begins to impinge upon the ball of iron submitted to its action, and continues round three-fourths of the whole circumference of the compresser to the point 5 , in the following manner-namely, from the point 1, of the periphery, to the point $\&$, thereon, the eccentricity is very abrupt: the periphery recedes from the centre quickly out wards from the centre of motion for the purpose of more quickly and effectually compressing the ball of iron and squeezing out the impurities therefrom; from the point 2 , to the point 3 , the eccentricity is more gradual; from the point 3, to the point 4, the eccentricity is still Iess, the point 4 , being at the greatest distance from the centre of the motion; from the point 4 , to the point 5 , the eccentricity of the periphery is reversed, that is, it inclines very slightly inwards towards the centre of motion; the whole space from the point 5 , to the point 1 , being one-fourth of the whole circumference, is left open and free for the parpose of allowing sufficient time for diecharging the bloom produced by the last revolution of the compresser, and for receiving into the machine another ball or loup of fron to be shingled. The periphery of the compresser is also formed with teeth or indentations thereon, for the purpose of more effectually entering into the ball or loup of iron and squeezing out the impurities from it; these teeth or indentations from the point 1 , on the periphery of the compresser, to the point 2 , are very deep, for the purpose of entering more deeply into the ball at the commencement than at any subsequent period of the process; from the point 2 , to the point 4, the teeth gradually become less coarse, being fine at the point at 4 ; from the point 4, to the point 5 , the periphery is nearly or quite plain. Another advantage attending the construction of the periphery of the cam-shaped compresser, is the turning the ball or loup of iron round upon the lower rollers by means of the grip or hold of the teeth or indentations, the lower rollers F, F, are placed in the position shown below the compresser E, at such a distance therefrom as to suit the size of the ball or loup of iron to be shingled and the size of the
bloom to be produced; these rollers F, F, revolve in bearings fired to the main frame A, of the machine; they are placed cloge together but not in contact ; the peripheries of these rollers are provided with projections thereon, for the purpose of effectually tarning the ball or loup of iron round while under operation, and thus subjecting every surface of it to the squeezing action of the compresser. The rollers F, F, are connected by toothed gearing with the cam-shaped compresser E, so that they revolve in different directions, also the peripheries of the rollers and the periphery of the compresser must revolve at nearly equal velocities; there is a mode of adjusting the distance of the compresser E, from the rollers F, F, to snit the quantity of metal in the ball or loup by means of the set screw G, passing through the head of the frame A. For the purpose of setting up the ends of the bloom square and compressing it endways, at the same time that it is compressed by the compresser and the rollers, the patentee employs his second improvement-namely, the spring or yielding cheeks; these cheeks H, H, are placed one on either side of the compresser E , over the rollers F, F, the compresser in revolving passing between them; to the back of each of the cheeks are secured two rods or studs passing through holes in the main frame, which thereby serve as guides to them. Around the rods, and bearing stiffy against the backs of the cheek, and the inside of the main frame A, are helical springs, for the purpose of pressing the cheeks H, H, towards each other, and thereby pressing and setting up the ends of the bloom of iron when pressed out wards by the action of the compresser; the outer ends of the rods are provided with washers and pins for the purpose of preventing the springs from pressing the cheeks too near together, and thereby coming in contact with the sides of the compreser E. The front faces of the cheeks (those which act against the ends of the bloom of iron) are of a convex form, somewhat flattened in the middle, The feedingapparatus, which constitutes the patentee's next improvement, consists of a trough or frame L, attached to the main frame A, in front of the machine in an inclined position: within this trough or frame is placed the plate or frame M , to which are attached the two bars N, N, one on either side; they move in the guides 0,0 ; upon the base or frame M, is placed the ball or loup of metal to be fed into the machine; the frame M is kept back by a balanceweight below the foundation of the machine; the end of the bars N, N, terminate in the hooked shape shown at N^{\prime}. The mode of feeding is this:-the ball or loup of metal to be operated upon is thrown upon the bar or frame M, where it remains until the compresser comes into the position shown in the engraving, that is, when the compressing surface of the compresser is out of action with the rollers, and the open or free space of the compresser from 5 to 1 , is over the rollers, thereby allowing an opportunity for discharging the last-formed bloom, and receiving another ball or loup to be operated upon; at this moment two pins or studs, projecting from the sides of the compresser, come in contact with the ends $\mathbf{N}^{\prime}, \mathbf{N}^{\prime}$, of the bars N, N, which is thereby drawn upwards, and the ball or loup deposited upon the rollers F, F. At the same time also, an arm or crank, fixed upon the compresser-shaft D, outside the main frame, acts upon the bar Q, which is connected by a lever to the discharging-plate R, in such manner that the bloom of iron is discharged from the machine at the back at the same time a fresh ball or loup is fed into it at the front. The dischargingspparatus is retained in its proper position during the shingling process, by means of a spring.
The patentee claims-First, the arrangement of machinery as described, for compressing or shingling puddles, balls, or loups of iron into blooms. Secondly, the spring or yielding cheeks for setting up the ends of the blooms, as also the cam-shaped compresser and rollers as described. Thirdly, the feeding and discharging apparatus.

A CENTRE-VENT REACTION WATER-WHEEL,

Communicated to the Frandin Institute, U. S., by Z. Paskes, of Philadelphia.

In my notes of the experiments on the centre-vent reaction wheel at Troy, I mentioned the fact of the small amount of water discharged, in proportion to the aperture, and of its disposition to uniformity under all velocities of the wheel. [See Journal, ante p. 110.]

I might have stated that in all cases in which the vanes of the wheel direct the water nearly tangentially to the inner circle of the annular rim of such wheels, the quantity discharged (under circumstances of full supply) appears to be about 50 per cent. of the theoretic discharge; and that this proportion appears to be but
little affected by changes in the velocity of the wheel, from being beld stationary; to any velocity it may acquire by the pressure of the water on the vanes;-or by any change in the circular motion of the water entering the wheel (at its verge), either with or contrary to the circular motion of the wheel.

Ir corroboration of this position, we have the experiments at Troy, in which the discharge (at the maximum) was a trifle less than 50 per cent. owing probably to the unfavourable form of the vanes,-and the fourth set of my model improvements (the notes of which you have), where the water passed, inwardly, through a structure, which, when the wheel was removed, was exactly similar to such a wheel,-the quantity discharged in this instance, being just 50 per cent. of the theoretic discharge.

Among the many "interesting objects" at the American Institute Fair, of the present season, there was a centre-discharge reaction Wheel, in a very neatly constructed model, the wheel, about four inches in diameter, being made of brass and neatly finished. To the under side of a disk, attached to a vertical shaft, were attached plane vanes extending from the verge to a circle about one-half of an inch from the verge. To these vanes was attached the annular rim, in the usual way. The angle of the vanes directed the water somewhat without the direction tangent to the inner diameter of the annular rim, and after passing into the wheel, it fell through the opening of the rim, and bottom of flume some inches, into a basin beneath. The flume was a glass cylinder about seven inches diameter; and the supply, a constant stream of "Croton" through a lead pipe,-falling in from the top of the cylinder.

Suspecting from my former experiments that the discharge of such a wheel must be uniform under all velocities, I took the opportunity of experimenting on this, by applying friction to the shaft (about half an inch in diameter) with my fingers. I could make no sensible cariation in the height of surface by any change of velooity, from being held, to minning it beyond its natural free velocity (by rolling the shaft between the thumb and fingers), nor by turning the wheed backward.

The scoompanying cut represents a section of the vanes.

TREATISES ON THE STEAM-ENGINE.

The want of a satisfactory treatise on the steam-engine has long bean felt. The existing treatises, notwithstanding their general merits, do not supply the whole of the information which the engineer requires; and the looseness of scientific views, and the neglect of systematic arrangement, observable in most of them render much of the knowledge imparted either dubious or inaccesmible.
We have been frequently called upon to give advice in the choice of a work on this important subject. In answer to correspondents who had made an application of this kind, we replied some time ago (vol. IX. page 398), that a complete treatise appeared to us to be one of the desiderata of engineering literature. Several subsequent letters atrongly confirmed the opinion then expressed, that the existing treatises on the theory, construction, and routine management of the masterpiece of mechanical invention are not what they ought to be-accurute, complete, and sxbtematic.
It is no disparagement of the efforts of those who have already written on the subject, to assert that we now know more of it than they did. This branch of knowledge is necessarily progressive. The operations of the steam-engine have been extended in diversity
and magnitude, and have attained a universality which to its great inventor himself would have appeared incredible. The new demands of the manufacturer, engineer, navigator, and mechanician, stimulate and suggest new applications of the most powerfal and most obedient of the agents of human industry : upon machinery so complicated, the fertility of modern invention and the boldness of modern enterprise are incessantly and successfully exerted : while the minute details of the apparatus are constantly receiving fresh improvements, as practical skill becomes more and more developed and refined.
Yet the apparatus itself is in the main unchanged. The steamengine of ATt is the steam-engine of 1848 : the great inventor $^{\text {at }}$ bequeathed it to us almost perfect in all its principal parta, and the small amount we have been able to add to his legacy is a striking and accumulative testimony to its original value.

This consideration greatly simplifies the labour of compiling a perfect exposition of the combination of the mechanism. But though the innovations of practice be here confined to details, in other respects the changes have been fundamental. Experience has effected great alterations in the purposes, the management and the dimensions of the engine itself; and the accessory parts, of which the boiler and furnace are the principal, have received modifications which have completely changed their character.

The theory of the steam-engine is also fundamentally different to that originally proposed: that Tredgold's views of the rationale of its action have been totally falsified by subsequent experience may be unhesitatingly asserted. It is much to be regretted that his authority, deservedly great as it in some respects is, has given weight to opinions which of themselves cannot stand the test either of theory or practice. It is still more to be regretted that mistaken partiality to his works should have induced subsequent writers to gloss over his errors, and defend that which is indefensible. When the theory of the Count de Pambour sppeared, its obvious truths ought not to have been resisted by absurd prejudice in favour of our countryman. De Pambour is right-Tredgold and his followers wrong. This sounds like a very dogmatic assertion : and we intend it to be so, for if the lucid demonstrations of De Pambour fail to convince his opponents, they are either too perverse or too dull to be converted: we are driven as a last resource to assertion, ex cathedra, and to resist frivolous contradictions by the weight of great names. The theory of De Pambour had mo sooner appeared, than all scientific writers renounced their previous views, and without reluctance signified their adhesion to his.

Not indeed that all his conclusions are absolutely indisputable. The chief problem to which he addressed himself was this:-Given the dimensions of an engine, to ascertain the resistance it will overcome at a given velocity, or the velocity at which it will overcome a given resistance. Now, the main difficulty of the question, and that which De Pambour has only partially met, is to ascertain the amount of resistance. It is an essential element, and any uncertainty respecting it affects the whole subject. Without particularising further, we may observe that he has erroneously estimated the resistance to which locomotive engines are subject, and has assumed a law of friction (Coulomb's) which is in this case inapplicable. Another difficulty is in ascertaining the actual efficiency of the boiler. Its apparent evaporation and its effective evaporation are not the same-part of the water being drawn into the cylinders in a liquid state. The amount of "priming" depends on minute and varied circumstances, -the violence of ebullition,the foulness or purity of the water,-its level in the boiler,- and the capacity of the steam-pipes. Certainly, no mathematical formula, such as De Pambour has laid down independently of these considerations, can be univerally and exactly correct.
The materials for an improved treatise are abundant; and thoee who enter on the task of compiling such a work, should ranseck every source of information. Nutwithstanding our strictures on Tredgold, we are disposed to think that his work ought to be the basis of a new treatise. There are many reasons which conduce to this conclusion. In the first place, on comparison, his plan and arrangement seem the most perspicuous hitherto published. In the second place, most engineers are familiar with it. This is a great point : readers do not like to be constantly learning out of new books, and engineers especially have seldom time to spare in familiarising themselves with new systems.
The plan which Mr. Eaton Hodocinson has pursued in his edition of the "Treatise on Cast-Iron," appears to be the best for the case before us: he has left his author's text as he found it, appending his own corrections and additions. With respect to a treatise on the steam-engine, the authorities to be searched and cited are numerous and valuable. In pure theory, the views of De Panbour should be clearly stated, with the modification above suggested. Bome of Professor Moseley's most useful practical
results should be sloo referred to: his researches respecting the effects of friction of the parts of the engine are too complicated, and depend on data too uncertain, to be available ; but some of his invertigations respecting the fly-wheel, \&rc., are invaluable, and have the advantage of leading to simple arithmetical rules.

The great continental authors require to be diligently and thoroughly examined. It is principally from the French writers, with Navize at their head, that foreign assistance must be expected; and the system pursued in France in the education of engineers, renders almost every treatise written in that country on practical science worthy of consideration at least. The articles contributed to our own cyclopredias, and the recent treatise of Mr. Hass, also furnish several useful suggestions for rules, which an intelligent artisan may understand and apply without a knowledge of mathematics.

The transections of learned societies contain invaluable records of the results of experiment and routine experience. Numerous papers have appeared under the auspices of the British Association and Institution of Civil Engineers, on what we just now designated the most difficult part of the problem of the steam-engine-the resistance to which it is subject ; and in reference to the locomotive engine the labours of Mr. Wyndham Harding may be particularised. The transactions of the Royal Society also contain mome papers referring to the resistances to marine engines-a subject to which Mr. Scott Russell has long devoted attention.

The scientific periodicals-the Mechanics' Magasine, the Journal of the Franklin Institute, \&c., ought also to be examined: they are storehouses of facts of the greatest importance. Of course, discretion and accurate scientific views are indispensable in selecting from the vast mass of contradictory and controversial statements, contained in the correspondence of our contemporaries, but even extragavant ideas coming from practical men have some use, if suggested by experience-they serve at least to put debated questions in a new light.

The blue books of Parliamentary and Royal Commiserions contain also much that is valuable, amidst heaps of rubbish. It requires keen instinct and patient industry to separate the grain from the chaff; but such a labour mast be accomplished, if a perfect work on the steam-engine is to be written. Commissions such as those upon the Gauge question and Atmospheric Railways, are convocations of all the most eminent engineers in the kingdom, and their collected evidence is a synopsis which could not be obtained in any other manner.
There are many other sources of information and separate treatises possessed of great merit, but too numerous to be here recited. These ought all to be referred to. The labour of reference is great, but is not the subject worthy of it?-the great marvel of the earth-the wonderful, wonder-working agent upon which the social constitution of the whole world depends-which, when the human family has become so numerous that all its labour can scarcely obtain from nature sufficiency of sustenance, co-operates in this struggle for existence. In some sense, our very lives depend on the steam-engine. Without its aid to convey the emigrant from over-crowded shores-to interchange the products of various soils and climates-to convert those products into clothing and other necesearies of nociety,-without, in a word, its help in carrying on the business of the world, the business of the world would become too great to be accomplished.

He who has increased by the least particle the knowledge of the steam-engine, has therefore conferred on society a benefit of which it is impossible to foresee the extent. Without hyperbole, a perfect account of the steam-engine would stand among the higheat of national undertakings. It can scarcely be expected, however, that any treatise now written can be absolutely perfect. for there are many parts of the subject which it requires the experiance of future years to entirely develope. Still, the present epoch is particularly favourable for systematising the knowledge already acquired. A uniformity of practice and experience has been at length arrived at, which may indeed be hereafter extended; but which, in all probability, will never suffer any great fundamental change. The chief difficulty to be encountered, is to render the knowledge systematic. If it be not digested-if it be not perfectly consistent with itself-if the whole observe not simple and demonotrable dependence on definite principles, the failure of the undertaking is inevitable. Simplicity and system are the two keys to the success of all works on practical science. We insist the more earnestly on the necessity of scientific connection and unity of plan, because experience has shown how far the neglect of those requisites impairs the utility of a treatise on the steam-engine. That bearing the appellation of the "Artizan," will always be in high repute, for the vast quantity of practical information which it
contains; but this advantage is greatly diminished by the want of plan. Works which contain the labours of several independent writers should always be subject to the supervision of some controlling editor, who should be responsible for the scientific aceuracy of the whole. Many readers of engineering works are necessarily obliged to receive scientific principles on trust-their own previous education being devoted to practical, and not to theoretical pursuits. It is all-important that such readers should not be mialed. The slightest error of principle, the neglect of particulars in themselves apparently trivial, will frequently lead to the greatest errors. Of what importance is it then that all mechanical doctrines should be accurately conceived and strictly expressed?

Lastly, it should be carefully and constantly explained to the student, that the abstract laws of mechanics are demonstratedthat respecting them, debate would be as frivolous as respecting the truth of the conclusions of Euclid. The only persons who argue about mechanics are those who are imperfectly acquainted with the science. In the applications of mechanics to the steam-engine, the only questionable topic is the accuracy of data-the methods of calculating from those data have been long since settled beyond all possibility of dispute.*
*We observe with satiafaction, that a new and twoproved edition of Trefgold on the tean-engia is proposed. The bame of the pablther is a pruarantee for the exeellunee of the typography and value of the illastrations. If scleatic sceurscy, which whe bave bere lasisted upon at allimportiat, be also attalned, a most valuable addition to the englaeer's library will be preduced.

REvTEWR

Account of the Skerrytore Lighthouse, with notes on the Ilumination of Lighthouses. By Alan Stevenson, LL.B., F.R.S.E., M.I.C.E., Engineer to the Northern Lighthouse Board. Edinburgh : Adam and Charles Black, 1848.

When we lately noticed the praiseworthy labours of Sir John Rennie, in bringing out his costly work on Plymouth Break water, we hardly hoped to be so lucky as to have brought before us so soon another professional contribution of like merit. It may be thought that we are better satisfied by this, and less ready to grumble ; but we must freely own that it makes us grumble the more. It is not because Sir John Rennie and Mr. Stevensou have so well done their duty, that the ground of our complaint is gone. Our outcry is not against them, but against the other engineers of high reputation, who, having the same means, have done nothing for professional literature. We know the answer: the hackneyed one of want of time. Sir John and Mr. Stevenson have answered that, and the public are quite willing to make every allowance for any short-coming on the ground of the want of time; but it should not be forgotten that the greater share in a professional book is not in the writing, but in the plates: we may add that the greater part of the cost is for the plates. Nothing, therefore, can be more easy for those who have the money, than to put into the engraver's hands the drawings which they have by them, and then, if they cannot themselves do all the writing which is required, they must get some one to help them; and that, too, is only a matter of money. In any way in which the question can be looked at, it resolves itself into one of outlay, and of good will; and we cannot help saying, that it is far from creditable to our engineers to be so neglectful of publishing proper records of their works. We cannot free them from the charge of want of will, for it is too well known to spirited engineering publishers, to authors, and to editors of professional works, that it is next to impossible to get information, either from the leading engineers or their assistants. Thus, what is published is mostly veryimperfect; and then the parties who ought to have given the information are the first to decry what has been done, and to lay blame for what is wrong, or is wanting.
We would rather believe that the wrong lies in this want of will, than in want of liberality, because many of those open to blame have always given very freely to professional institutions. Want of means we cannot allow; for those who can spend money in buying boroughs, and in getting a seat in parliament, can well give a few hundred pounds for bringing out a book. If, too, the evil lay in the want of liberality, we should be hopeless of overcoming it; but if it be from want of rightly thinking about it, or from want of the will to set to work, then we have some trust from what we know of our leading men, that they will not in the end be found wanting; but will, after careful thought, do that which they
find to be right. The matter is, indeed, one of great weight, and mostly as it touches the good name of those concerned; for how can the standing of the profession be kept up, if its members lie open to the charge of mere money-grubbing, and an utter carelessness of doing anything to keep up professional knowledge? The engineer has been taught by others, and as he cannot repay those who have taught him, he must for his share teach others. By building the Eddystone Lighthouse, Smeaton laid the groundwork of the greater lighthouse on the Bell-rock; and Mr. Alan Stevenson, following in the footsteps of his father, has outdone him in his great work at Skerryvore. Had we not the first work, the last would still be wanting; but it is by storing up knowledge, by gathering little and little, that it grows until we can work out those wonders which are the pride of all time. The slight tramway has, by the work of many hands, been brought to such a height that it has become the strong arm of civilization. Time has been overcome, and the furthest ends of the land brought, as it were, within grasp. Why, however, do we talk of such things? Why do our great men take their seats at the meetings of the Institu-tions-why have they anything to do with them, if they do not acknowledge them to the full?

The Institution of Civil Engineers sets out with the purpose of communicating knowledge to its members, and of keeping a record of every new work. Each member is pledged to write something, and to give his mite to the common stock. This is an acknowledgment of the principle, and it would be well if the members of the Institution were, in their choice of officers, to bear this in mind, and only name those of their brethren as president and vicepresidents, who had given their fair share to professional learning. This would be a right acknowledgment to those who, like Sir John Rennie, Genrge Rennie, Sir John Macneill, and Alan Stevenson, have done something, and would give a spur to others.

So long as engineers look after money only, and do not care for their good name, so long will they be without their right weight with the public; and so long will the government be able to trample on them, and give their emoluments to the military engineers. It is not enough that they have raised great works-the evil-willed will always say, those were done for money, and will be ever ready to take away from the honour which would otherwise be awarded. The thankfulness of the public is not so sure, that any means of earning it can safely be left undone. How many great men are there whose names are almost forgotten, and whose deeds are unknown! Very few, when they see a canal, think of the labours of Brindley, or when they see a locomotive, think of how much we owe to Trevithiok. Those who were carelese of their good names in their lifetime, would have little right to complain of the forgetfulness of those who came after them; and our great men of this day can look forward to nothing better. If they have tasted the ill-will of those amongst whom they live, and who see them and their works, they cannot reckon that they will fare better hereafter, when they have done nothing to show that they care for others as well as for themselves.

Smeaton lives in his writings, as much as in his other works; and he has earned for himself s share in the works of those who have followed in his path. Thus, Mr. Stevenson bears witness to Smeston's good works. Before beginning the Skerryvore lighthouse, he carefully read what had been written by the great man who went before him. Even to the shape or bearing of a stone, or the fitting of a joint, Smeaton had carefully put down what he had done, and Mr. Stevenson was able to come to a sound judgment as to what he himself thought of doing. The knowledge of a hundred years was at once brought to bear, and the engineer has outdone the works of his great master.

Skerryvore will withstand for hundreds of years the storms and blasts which burst upon it, and those who look at it will see, with wonder, its strength and its bulk, and acknowledge its builder has done his work. A rock of stone is raised npon the crags of Skerryvore, but the even seams hide all the work within : each layer buries from sight the cunning handiwork beneath it. The very finish stands as it were in witness against the hardihood of the builder; and there is nothing scarcely to show his skill,-nothing to show the care, the sweat, the peril spent in putting stone on stone, among threatening waves and sweeping winds, which shook the narrow dwelling of the workmen, ready to dash them into the troubled sea which yawned beneath them. There is greater heroism in fighting against such risks, than in shedding blood in every field of Scinde, or in warring against the bold highlanders of Cabul. Nor can the sailor even claim the perils of the ocean for himself; but the engineer shares them with him. Great as are the risks which our seamen have to meet, they are not greater than Mr. Stovenson and his workmen underwent on the rock of Skerryvore.

The first shelter they raised was wrecked in a winter's storm, and they dwelt for months in a barrack upon the rock, which they could not but believe was threatened with the same end. Cranes, windlasses, forges, and anvils, were tossed about the rock by the storm, as freely as pebbles, dashing timbers to pieces, and helping to tear away the works which were laid down. No tool could be left for a day without being lashed to ring-bolts, and even these were sometimes snapped off. The surf dashed in shoets against Mr. Stevenson's window, fifty feet above the sea; and one night, he tells us the barrack reeled so with the shock of the waters, that all the men leaped from their hammocks with a fearful wail, believing that their doom was come, and that they should be swept into the seething waters. Here were they sometimes laid op for days, unable to stand upon the slippery rock, or to face the sweeping storm; and lying in their hammocks day and night, for shelter against the bitter cold. Sometimes they were left almost without food, for the steamer could not always keep the sea; and once their stock was brought down to the wants of one day only. At all times it was hard to land, or to get the stones out of the lighters; and often they were hanled back by the steamer after snapping every warp. The rock was as smooth as glass, and so narrow that the workmen had hardly room to work. In blasting for the foundstions, there was no shelter under which the men could lie down; so that Mr. Stevenson had to cover the rock with matting when blasting was going on. On this spot, they worked under the broiling sun while daylight lasted, snatching only hasty meals; and their nights they spent, the first year, in an uneasy ship, which often made them sea-sick; and afterwards in the barrack, whence the storm might have in one moment hurled them from sleep to death.

The few words which Mr. Stevenson gives to these risks he and his fellow-workmen underwent, have all the charm of romance, and may well be put side by side with any tale of the sea. They are most pleasing, however, as a record of true courage, successfully exerted in a useful undertaking. Had we not this record, we should know but little of what Mr. Stevenson has done, or how to rate him at his true worth; indeed, half of his merit would be lost, for the mere workmanship is the least which he can boast of ; and others could match him even in that. The skill, the foresight, the battle with the hardships of every kind, which beset this undertaking, tasked his powers to the utmost; but he answered to the call.

Professional gallantry in meeting danger is, we are happy to say, far from rare. The engineer is ever ready to share with the workmen in every work of risk, and there are few great works which have not some tale of gallantry to tell. The lighthouses of the Eddystone, the Bell-rock, and Skerryvore, were beset with peril; in the tunnels under the Thames, Trevithick, Sir Mark Brunel, and Mr. Gravatt, risked themselves; and daily, wherever a new locomotive is tried, a new boiler is set up, a new mine opened, or a new engine built, some engineer puts his life at stake. Courage is not the virtue of a blue coat, or of a red one: the medical man who meets typhus in the abodes of the poor, is a greater hero than he who boards another's bulwarks, or who storms a breach; because he has no hope of glory or advancement, and a greater chance of danger.

The reader of Mr. Stevenson's book is sure to be struck by the thought of its value to engineers now and hereafter, but most to those in our far settlements, who have no chance of going to Skerryvore, or to the Eddystone; and who, indeed, if they had, would see the work-but not how it has been done. Mr. Stevenson has been careful fully to explain every step which he took, to account for his failures, to give the reasons by which he was led, and to describe every process, however common, or however trifling. He thought that nothing belonging to his work was beneath him; and as he looked into everything, he was enabled even to make improvements in many of the common operations. By recording what he did, he enables others to do likewise, and to follow in his path; and no one thinks that his book is too long,-but rather, each wishes that it were longer, though nothing is left out. Care in such works is highly needful, and is most wanted where there are no bounds to the outlay whicb may be made. By leaving out such dovetails and ribbands as Smeaton and Thomas Stevenson had in their lower layers, Mr. Stevenson saved above four thousand pounds in the cost of dressing the granite, and without any loss of strength or safety. By getting everything ready before-hand, he had no loss of time in running up his building on the rock, but had every stone dressed, so that it was right to the eighth of an inch; and the whole building is as well finished ss if it were raised upon the main land, with every help at hand,-whereas, there was hardly room on the rock for blasting, no mooring ground, no pier, no quay, hardly room
for a windlass, and everything was brought from Hynish, twelve miles off.

Whoever reads this book must think more highly of the labours of engineers; but when we look at the wonderful works which are spread over this land, we cannot but wish that we had as good records of them. The public will name many who are well able to do justice to their own labours, and the fulfilment of the public wish would greatly enrich our libraries. The history of the Liverpool and Manchester Railway, by Mr. George Stephenson, would be a hand-book for all time. Mr. Robert Stephenson, M.P., has in the London and Birmingham Railway a good subject for illustration. Mr. Locke, M.P., can do no better service to the profession than by the publication of an account of the Grand Junction Railwry. Mr. Brunel has spent many years upon the perfection of the broad-gauge system, and has in the Great Western Railway achieved a success which should not be forgotten. Mr. Cubitt has allowed his assistants to give accounts of the tunnels and blasting operations on the South Eastern Railway, but a full account of the whole line is wanted from his own hands. We hope the time is not far off when we shall see these among other contribetions to our professional literature.

We shall now call attention to the rocks on which the Skerryvore lighthouse was raised. They form part of a long reef, il miles to the south of Tyree, in the outer range of the Hebrides or Western Isles, so that they are in the sea-way between Scotland and Ireland; and ships from seaward, if they miss the north of Ireland, are often driven on Skerryvore, where many wrecks have happened. In 1814, an act of parliament was obtained for building a lighthouse, but it was not till 1834 that Mr. Alan Stevenson was sent to make the first survey.

At low tides, Skerryvore measures about 880 feet square; but it is cut up by gullies of unlooked-for depth, so that the solid part is only 160 feet by 70 feet. On this a loaf of rock, about five feet broad, rose to the height of eighteen feet ahove high-water level, the greater part of the rest being about six feet above that level. The rock Mr. Stevenson calls a syenitic gneiss, consisting of quartz, felspar, hornblende, and mica.

It was not till the summer of 1835 that the survey was finished, and Hynish, in the wretched island of Tyree, was chosen for the workyard. This is 12 miles from Skerryvore. In 1896 and 1837, quarries were opened in Tyree, and in the latter year the pier at Hynish was begun. Mr. Stevenson was now busy in drawing up his plans, and here he came to a weighty question.
"A primary inquiry, in regard to towers in an exposed situatlon, is the question, whether their atahility mhould depend upon their streugth or their wright; or, in other words, on their cohesion, or their inertial In preferring weight to strength, we more closely follow the conrse pointed out by the aoalogy of nature; and this muat not be regarded at a mere notional adrantage, for the more close the analogy between nature and our woiks, the less dificulty we shall experience in pessing from nature to art, and the more directly mill our ohmervations on natural phenomen bear upon the artificial project. If, for example, we make a series of observations on the force of the sea, as exerted on masses of rock, and endeavour to draw from these oherrations some conclusions an to the amount and direction of that force, as exhihited by the masses of rock which resist it succeasfolly and the forms which these masses assume, we shall pass naturally to the determination of the mase and form of a boilding which may be capable of opposing similar forcen, at we conclude, with some reason, that the mate and form of the nataral rock aro exponents of the amount and direction of the forcea they have 0 long continued to reaist. It will readily he perceived, that we are in a very different and lens advantageons ponition when we attempt, from soch obeervations of natural phenoment, in which weight is solely concerned, to dednce the strength of an artificial fabric capable of resiating the anme forees; for we must at once pass from one category to enother, and endeavour to determine the atrength of a comparatively light object which shall be able to sustain the same shock, which we know, hy direct expertence, may be resiasted by a given weight. Apother very obvious reacon why we shoold prefer mast and weight to strength, at a source of stability, is, that the effect of mere inertia is constant and anchangeable in its natare; while the afrength which resulte, even from the mast judicionily disposed and well ezecoted firtures of a comparatively light fabric, is conatantly subject to be impaired by the loosening of such fixtures, occasioned by the almost incessant tremor to which structurea of this kind must be sobject, from the beating of the waves. It was chiefly on these grounds that the Commissioners of Northern Lights, after consulting a Committee of the Royal Society of Edinbargh, and Mearn. Cabitt and Rennie, civil engineert, rejected the design of Captain Sir Samuel Brown, RN., who volunteered a proposal to build an iroc pillar at the time that the erection of the Skerryvore Lighthouse was determined on in 1835. Mass, therefore, seems to be a source of stability, the effect of which is at once apprehended by the mind, at more in harmony witb the conservative principles of nature, and anqueationably lens lisble to be deteriorated than the atrength, which depende apon the carafll proportion and adjuntment of parta."

In fixing the quantity of matter needful to produce atability, and in determining the shape of the tower, Mr. Stevenson had to proceed empirically, for there is a want of sufficient experiments. Mr. Stevenson gives, however, a full discussion of the data, which are available. At this point he brings in an interesting comparison of the three great lighthouses.

	Helght above gint eatire course.	Contents of tower.	Diameter. Al Bate. At Top.	
Eddystone	Feet. 68	Cuhic feet. $13,343$	Feet. 28	Peet.
Bell-rock	100	28,530	42	16
Skerryvore	138.5	58,580	42	15

The first barrack raised was swept away by the sea, 80 that in 1839 the summer was spent in raising another, and in excavating the foundation of the lighthouse tower. The difficulty of doing this may be appreciated from the following account:-
" It wat commenced on the 6th of May, and was continued up to the lant hour of our remaining on the rock, on the 3rd of September. A more unpromising prospect of anccess in any work than that which presented iteelf at the commencement of nur laboura, I can mearcely conceive. The great irregularity of the surface, and the extraordiaary hardnem and onwortable nature of the material, together with the want of room on the rock, grealy added to the other difficulties and delays, which conld not fail, even ander the most favourable circumstances, to attend the excavation of a fonndationpit on a rock at the diatence of 12 miles from the land. The rock, as already noticed, is a hard and tough gneiss, and required the expenditere of about four times as much labour and steel for boring at are genernlly consumed in boring the Aberdeenshire granite.

After a carefol aurvey of the rock, and having fally weighed all the risks of injoring the foandation, I determined at once to enter apon a horizontal cut, 50 as to lay bare a level floor of extent sufficient to contain the foandstion pit for the tower. The very ragged and uneven form of the Rock made this an almost necessary precaution, in order to prevent any misconception as to ite real state, for it was traverned by nomerous veins and bands inclined at variona anglea, on the position and oxtent of which the stahility of the foundation in no amall degree depended. That operation ocoupied 30 men for 102 days, and required the fling of no fewer than 246 shota, chiefly horizontal, while the quantity of material removed did not greally exceed 2,000 tons. It wat a work of some hazard; for the small surface of the Rock confined ws within 30 , and nometimes within a doren yerds of the mines, while ite form afforded as no cover from the sying splintern. The only precautions we could adopt were to cover the mines with mats and with conrse neta, which I had caused to be made duriug the previous winter, of the old ropes of one of the lighthouse tenders, and in anch hlast to appor: tion very carefolly the charge of powder to the work that was to be done. That was managed with great skili by Charles Berclay, the foreman of the quariers, who charged all the bores, and, along with myself, Ared all the shots. So completely did the olmple expedient of covering the bores with nete and mats check the tight of the stones, that, except on one or two occasions, none of the spliutera reached us, asd all the darmage done was a elight iojory to one of the cranea. Perhapa, aloo, our safety may, in some measare, be attributed to a change which I insroducer into the mode of charging the horizontal shots, by which all the risk of punhing home the powder in the ordinary mode with the lamping red it avoided. That connge consisted in using a kind of shovel, formed of a rod, armed with a hellow half-cylinder of sheet copper, which contained the powder, and being inverted by glving the rod half a turn round its exin, made the powder drop out when the cylinder reached the bottom of the bore. It was in all respects, excepting tize, the sanc as the charging-rod nsed for great gana. The amount of materials removed by blasting, as nearly an l conld ascertain, was only about 1,000 cubic yards; and, taking all the circumatences into secount. it may be doubted whether there be any instance in modern engineening of an operation of se small an estent occopying so much time, and involving so great risk. The blasting of the rock, however, wat not the only dificulty with which we had to contend, for it also became necesaery to remove the quarried materials, amounting to abont 2,000 tons, into the deep water round as, to preyent their heing thrown by the wevea apon the rock, and so endangering the future temporary barrack. That wat rather a laborious work, and oceupied two cranes, with temporary rune and trocks, during the greater part of the time we spent on the roct. I am well aware that the quantity of materials which I have just mentioned, will be apt to prodece amile from those who have been chielly converant with the gigantic but mimple operations which generally charecterise the great railways of this country; bat if it be remembered that we were at the mercy of the winds and wavea of the wide Athantic, and were every day in the expectation of a budden call to leave the rock, and betake oarselves to the vemel, and on several occations had our cranes and other tools awept into the sea, the slowneas of our progress will excite lest sarprise; and atill less widl those who duly weigh the dangert of our daily life, both in our little vessel and on the rock, and who, at the eame sime, reflect on the many atriking proofo whish we almest every hour experienced of the care of an Almighty hand, be dis-'
posed to withhold their sympathy from the heartfelt exprescions of gratitade which often went round our little circle in the boats, as we rowed in tbo twilight from the rock to the ship. Inolation from the world, in a situation of common danger, pruduces amongat most men a freer interchange of the feelings of dependence on the Almighty, than is common in the more chilly intercourte of ordinary life.

With a view to lessen the dangers of hlasting in such a aituation, I had provided a galvanic battery on the plen proposed by Mr. Martyn Roberta, but I used it less frequently than I intended. The attachment of the wires were very liahle to be broken from various canser, where there were many men congregated in asmall apace; and as we could not venture to leave the apparatus on the rock, the frequent re-shipment of it in a heavy sea was another canse of the derangement of ita parts. I soon, therefore, laid it aside, and only had recourse to it when any work was to be done under water, or in cases where the timultaneous firing of aeveral mines (for which it is admirably aldapted) was of inportance in effecting any special purpose.
When the finor had been roughly levelled I again carefully aurveyed the mak, with the view of fixing precisely the site of the foundation-pit, and of caking advantage of ite form and atructure to adopt the largeat diameter for the tower of which the rock would admit. In aome places 1 found that parts of the rock, apparactly nolid, had been undermined by the contant action of the waves, to the diskance of 13 feet inward from its face; but none of those cavernous excavationa reached the main nucleus, so that, after much deliberation and repeated examinations of all the veins and fisaures, I was onabled to mark out a foundation-pit 42 feet in diameter, on one level throughont. Tbat was a point of no small importance; and although it had cost great labour at the very outeet, mucb time was saved by it in the aubsequent atages of the work. Not only was the labour thereby avoided of custing the rock into erparate terraces, and fitting the blocks to each successive atep, as was done by Smeaton at the Eddyatone; bot the certainty that we had a level foundation to start from, enabled os at once to commence the dressing of stones without regard to any irregularities in the surface of the rock; and the building operations, when once commenced, consinned unimpeded by the necesity for accommodating the courses to thair places in the foundation-pit, to that the tower moon rone above the level, at which there was the greateat risk of the stones being removed by the waves before the protsure of the superincumbent building had becone great enongh to retain them in their places.

The outline of the circular foundation-pit, 42 feet in diameter, having been traced with a trainer on the rock, numerons jumper-holes were bored in varions placen, having their bottoms all terminating in one level plane, so as to serve at guides for the depth to which the basin was to be excavated. The depth did not exceed 15 inches below the average level, already hid bare by the cutting of the rough borizontal floor which has jnat been daacribed; and before the close of the season of 1839, about one-thind of the area of the circle had been cleared, and was ready for the final pick-dressing which prepared it for the reception of the first conrse. The excaration of this circular basin was conducted with the grenteat cantion, and fow shote were permitted to be fired lett the foundation ahould in any place be thaken by the action of the gunpowder on any of the natural fissures of the rock. The work was cbiefly done by meant of what are called pluge and feathers. In that part of the work the borea were nearly borizontal, and the action of the plug and foatherr was to throw up a thin superficial shelf or paring of rock of from 6 to 12 inches in depth, and not more than 2 feet square. By that painful procese an area of about 1,400 superficial feet was cleared. The chief trouble connected with that operation wat cuting, by meana of the pick, a vertical face for the entrance of the korizontal jumpers or boring rods; and wherever advantage could be taken of natural fisurea it was gladly done. Another considerable source of labour was the dreasing of the vertical edges of the bacin, as that implied cutting a square cheok, 15 inchen deep and about 130 feet long, in the hardest gneiss rock; and the labour attending which, can only be fully eacimated by a practical atone-cutter who has wrought in such a material. The plan employed wat to bore all aronnd the peripbery of the circle, 14 inch vertical jumper-holes, 6 inches apart, to the required deptb, and to cut out the stone hetween them. The surface thus left was aftorwards carefully dreased, so at to admit vertical and horizontal moulde, representing truly the form of the manoury which the check was intended to receive. The experience of the iabour attending tbat operation gave me great reason for congratulation on having adopted a foondation on one level throughout, instead of cutting the rock into soveral terraces, at each of which the same labour of cutting angular checks must necessarily beve been encountered. The cutting of the foundation occupied 20 men for 217 days in all, whereof 168 days were in the season of 1839 , and the rest in the summer of 1840. "

It was not till 1840 that this pit was finished, when Mr. Stevenson sayg-
"The rock, indeed, was in many places so herd as often to make it seem hopeless that tools could make any impression on it. The time employed in the excavation and the namber of tools expended on it, were very great, as a pick seldom stood more than three strokes in the harder quartzose veina; but our perseverance was at length amply rewarded by obteining a foundation so level and so fairly wrougbt throughout the whole area of a circle 42 feet in diameter, as to present to the view the appearance of a gigantic hasin of variegated marble; and so murh pleased were the workmen themselves Fith the result of their protracted toil, that many of them exprosed serions
regret that the foundation must soon be covered up, 50 at (we troated) never to be seen again. In the dresaiag of the rock much inconvenience arose from the amall aplinters which few out before the tools, sometimes rising to the height of 40 feat, and coming in at the windows of the berreck : and after several injuries had been sustained, I at length found it necessary to aend to Glagow for fencing maska to protect the men's faces. In all our work, nothing was more grodged than the ocentional loss of half a day in baling nat the water from the foundation-pit after it had been filled by a heavy sea."

The mortar employed in the building was composed of equal parts of Aberdda lime and Pozzolano earth, being identical with that used by Smeaton.

In 1840 , six courses were set, being a mass of masonry eqnal to the whole of the Eddystone tower. In $1841,90,300$ cubic feet were built, being twice as much as the Eddystone, and more than the whole Belli-rock lighthouse. In 1842, the masonry work wag finished.

The general arrangement of the tower is much like that of the - Bell-rock lighthouse.
"The ascent to the outnide door is by a ladder or trap of gen metal, 26 feet bigh. The first apartment on the level of the entrance door, is chiedy appropriated to the reception of iron water-tanke, capable of holdiag supply of 1251 gallons. The next story is set aside for coaln, which are stowed in large iron boxen. The third apartment is a workahop; the fonth is the provision atore; and the fifth in the kitchen. Above are two stories, each divided into two sleeping apartments, for the four light-keepers. Over them is the room for the visiting officers; then follow the oil store, and latly comes the lightroom, making in all swelve apartments. The nearoest of the oil atore to the lightroom ia a great convenience to the keepers, who are thas ased the trouble of carrying the daily supply of oil to the lightroom, up a long fight of ateps. The parage from story to atory is by oaken trap laddera, pasiing through hatches in each floor and partitioned ofr from each apartment in order to prevent accidents and to check cold dranghte."

The light was exhibited at Skerryvore on the lst of February, 1844.

The whole cost of erection was $90,268 l .128 .1 d .$, but of this very little was spent directly on the lighthouse. The cost may be thus subdivided :-

From the whole cost, 2,839l. is to be taken off for the steamer and materials sold, but each item is given by Mr. Stevenson in detail.

Having thus followed Mr. Stevenson throughout his labours on the tower at Skerryvore, we must keep until next month our remarks on subject no less intereating-that of lights, to which a great part of his book is devoted.

Electric Telegraphs. London: Bogue, 1848.
This is a shilling volume of scraps for the railway carriage, which contains more information about the Electric Telegraph, and more amusement, than any which has yet been published. There is not an invention in England, the United Statea, or abroad, which has escaped the author's attention.

Report on the Supply of Surptus Water to Manchester, Salford, and Stockport, with some Remarks upon the Construction of Rain Gauges, and the Annual $^{\text {Depth of Rain falling in different localitics around }}$ Manohestor. By S. C. Homresisu, C.E. London: Weale, 1848.
This work relates to the great Manchester water controversy, which for the last few years has so much occupied that town. There are three candidates for the supply of Manchester with water: the Manchester and Salford Waterworks Company, the Corporation of Manchester, and the Manchester, Shefteld, and Lincoln Railway Company. Mr. Homersham is the follower of the last-named, and his work is therefore one-sided so far, though we believe it to be for the most part fair and straightforward.
The Waterworks Company suffer from a short supply and the bad quality of their water, which is got partly from peat-moss, and partly from the drainage of an inhabited district, but eked out by a supply from the Railway Company. The supply is clearly neither enough nor good enough for the growing town of Mancheater. The town council have therefore got a bill to enable them to get water from Longdendale, gathered into reservoirs from a mosay surface. In the meanwhile they have likewise bought water of the Railway Company.

The Manchenter, Shefield, and Lincoln Railway Company having bought the Peak Forest Canal, were struck with the profit to be gut by the sale of water to the great towns of Manchester and Stockport. Their canal, beginning in the Peak district of Derbyshire, among the steep hills, gives them a right to all the water not required by the millowners; and as there is much morethan is wanted fur the trade of the canal, it is a clear gain to sell it in those towns. The Compeny do not however wish to retail water to the housebolders, but to sell it wholesale and in bulk to the corporations or water companies. The Manchester and Salford Waterworks Company in July 1844, bought some of this water, and soon after contracted for $180,000,000$ gallons yearly, for three years certain, at ed. per 1,000 gallons, or a rental of 1,000/. yearly. In 1844, they agreed to take $50,000,000$ gallons more. In August 1847, the Corporation of Mancheater took for three years $200,000,000$ gallons yearly, at $3 d$, per 1,000 gallons, or a rental of 2,5001 . yearly. The Hailwey Company offer to supply the Corporation with seven millions of gallons of filtered water daily, at 1dd. per 1,000 gallons, or at a yearly rental of 15,9681 . 158 ,
By the enterprise of the Railway Company, this large supply of good water is secured; and we have no doubt that in many other caees, railway companies might have done great good to the public in the supply of water and gas, if it were not for the prejudices indulged in by the legislature, which shackle railway companies as they do private enterprise generally. Indeed, the whole drift of legislation is to th wart enterprise, even when there is the pretence of consulting the public intereste. Thus, what with the Sanitary measure, threatening to interfere with the companies, and what with the Standing Orders, there is hardly a bill before the House of Commons for waterworks. The Board of Trade inspection presean likewise vory heavily on mall companies, besides the House of Commons fees.

Mr. Homersham thus describes the country around Manchenter from which the water is drained for its supply:-
"The town of Manchester is sitnated at an average height of abont 120 feet abore the mean level of the mea at Liverpool, and is bordered on the morth-weat, the north, the east, and the south, by high hills and upland that, in a diatance varying from twelve to eighteen miles from the town, rise 1,100 to 1,000 foet above the een, when they begin lo fall in a contrary direction. The highest points in this range of hills ure Rivington Pike to the aorih-west of Manchester, 1,545 feet above the mean level of the sea; Biacketome Edge to the porth-east, about 1,450 feet; Holme Moss to the east, abont 1,859 feet; Kinder Scout to the south-east, about 1,981 feet; Ane Edge, couth-east by sunih, 1,751 fout; and Boaley Minns, nearly direct south, about 1,260 fcet. These hills rise rery abruptly, and the numerons valleya and mountain gorges thatintersect them in various directions contaia channels, called rivers or atreems, thet drain of the raia which falls apon them. The names of the principal rivert deriving their waters from the mources now polated oat, are the Irwell, the Irk, the MedLock, the Tame, the Eiherow, the Gojt, the Dace, and the Bollin. The walers of the whole of theme rivers anite in the river Mersey, and by this chaquel are discharged into the sea at Liverpool.
The rivers upon which the towns of Mancheater and Salford are sHagted, are the Irwell, the Irk, and the Medlock; the two latter streams joining the Irwell within the to *a. The aren of land upon which the riaio falls that feeds these atreams before entering Machester is abont 163,000 statute acres ; of which about 11,800 drain into the river Medluck; 17,000 into the Irk; and 184,700 into the Irwell; these rivert, like ali othert having a similar origin, are very irregular as regarda the quantity of water which passes down then at different spatons."
Nothing is idle in that busy district-even tbe water is made to
work hard. Mr. Homersham seys of the rivor-gods of Lancanhire and Cheshire-
"They are made to turn innomerable water-wheels, that give motion to machinery of various kinds ; they are ased to supply buth the means of forming and condensing steem, thet, properly directed, performs such a prodigy of labour with unceasing and ontiring effect; they are aced to aconr, bleach, and dye the goods they here helpod to apin and weave; and their flood-waters, collected in reservoirs, feed with water the canals and rivers that traosport both the raw and manufactored material. They supply our houses with water for domestic parposes, aad they perfurm the office of envenger; removing frum our dwellings the excretion and filth, that, remaining near us, woald uadermine our health, engeuder fevert, and cause premature death."

Of the fall of water two very interesting tables aro given, which show that the depth of rain falling at the same place is very unequal in different years, and that it seems to follow no law, but the greatest depth of water falls to the west, which in nearest to the sea:-

Table,-Showing the Depith of Rain jallen per annam for a series of years in different places situated the the mpland to the weot, morth-east, and south of Manchester, and the level above the mean level of the sea.

Level.	Sharples, near Bolton. 850 feet.	Bolton.	$\begin{gathered} \text { Bary. } \\ 800 \text { feet. } \end{gathered}$	Roch. dale. 500 n.	$\begin{aligned} & \text { Blacit. } \\ & \text { tone } \\ & \text { Edse. } \\ & 1500 \mathrm{ft} . \end{aligned}$	$\begin{array}{\|c\|} \text { Fatr. } \\ \text { deld. } \\ 230 \mathrm{n} . \end{array}$	Marple.	$\left\lvert\, \begin{gathered} \text { Camb's } \\ \text { Recers } \\ \text { vole. } \\ 790 \text { feet. } \end{gathered}\right.$	$\begin{gathered} \text { Chapel. } \\ \text { en.le. } \\ \text { Frith. } \\ 1121 \mathrm{f} . \end{gathered}$
Year.	Inches.	Inchea	Inches.	Inch.	Incbes.	Inch.	Inches.	Ipehes.	Inchet
1882		53.77	87.98	4*.32	81.6				
1834		81.70	51.61	84.78	$47 \cdot 87$				
1884		48.98	4248	4741	89.94				
1845		46.44	4594	47.97	86.48				
1856		5978	$49 \cdot 57$	$61 \cdot 11$	4128				
1837		42.23	4406	$45 \cdot 30$	88-17				
1888		47.15	4828	45.42	35-85				
1839		45.26	40.70	45.76	8579				
1840		45.08	38.83	44.00	88.90				48.48
1841		58.87	$47 \cdot 37$	48.55	8540				\$8,80
1848		8 -63	4.49	87.08	80.70				4170
1849	68.4	49.43	419.4	80.59	\%10 10	88.00			41.93
1844	50.0	84.68	2866	34.41	2460	$25 \cdot 78$	$29 \cdot 40$	4970	850
1845	86.0	$43 \cdot 11$		61.64	3980	38.90	88.80	$81 \cdot 10$	48.81
1848	49.8	40.82		42.4	$87 \cdot 10$	80.20	3285	8810	2880
1847	614	3182		51.72	85.70	40.75	48.70	41.30	4.40
Meast	50.92	46.74	41.72	46.75	86.29	84.84	80.56	4580	425
Lowest	$40 \cdot 8$	8468	28.68	84.41	2480	20-85	2940	88.10	85.40

Tasle, Showing the Dep/t of Rain fallen dupting the past yeer of 1847. at varions places sifuated in the mpland, enst and south of Manchester, and leved above the mean level of the sea.

1897 Level.	Nemton 8letiod.	Wroodheed Tunpel. 1,000 n.	Corsb's Reter. rolr. 720 feet.	Comb's Ridge. 1,670 n .	Todd Break Reaer. volr. 620 feet	Bripkn 1.500 n
	Ipches.	Inchet.	Inchec.	Inches.	inches. 	Ioches.

Note.-The obenrvitioes for Bolmoat wore procuref from J. Megrall, Bea.; and for Bolcon trom B. H. Walson, Eeq. 1 from Bury, from J. Norris, E中Q F, B. A \&., who olace feptember, 1845, hait remored to Howick Hous, neur Pretton; from Rocbdale,

 Whole of the obmerrations, with the single

Mr. Homersham charges against the corporation water that it is drained from peat land, and is charged with organic matter, which is hurtful to health. He affirms that no filtration can remedy this, as when the water is warm the peat is soluble in it.

Our author, not content with charging his opponents on every side, asserts that his own company is free from alf defecta, that the water is most abundant, is collected at the best time, and is little tainted by peat, while he contends that it is likewise the cheapest supply that the corporation can obtain. In his real, he says of the freshets impounded by the Railway Company-
"This system of collecting water is very favourable to its purity, as when it flows of the bill-sides during heavy rains (except in a peats or buggy distriot) it is much less contaminated than water (percolatiog slaniy from the soil, and redaced la quantity by evaporation) which forms the streame in dry weather ; besiden, orer most large tracta of land, cansiating of thow. sands of acres, there will be found farm-houses and a considerable resident popalation, and all the excretion and flth crented from theme sousces, with the solubie parts of manures placed on the land, must, of neoessity, duaim into the streams, and tend to foul them ta camparatively dry weaiher, al. though, in heary rains and foods, the water is not perceptibly soiled fram these inupurities."

We must eay this doctrine is now to us, for we always considered
that the freshets ahould, if the witer could be apared, be prevented from entering the reservoirs.

Under their act of parliament the corporation are to take all the water of Longdendale into their reservoirs, and supply a daily quantity to the millowners. This, Mr. Homersham affirms, will cause a greater expense for reservuirs, and will yield less water to the corporation ; and he contrasts it with the syatem adopted on the Peak Forest Canal, where all the water above a certain gauge goes into the canal reservoirs.
When he says that reservoins for the millowners have not answered (p. 44), and that therefore money is not laid out by the millowners in that way, leaving the inference that the corporation reservoirs will be found expensive and useless, we think he strains his case too much, for there are many difficulties in the case of maillowners, as that of getting all the millowners and landowners on the stream to join, and the great expense of getting an act of parliament.

We must notice that there is a great deal of valuable matter incidental to the discussion of the several schemes, which may be usefully read by the engineer feeling an interest in this important branch of practice. Thus, Mr. Homersham discusses rain-gaugen, the fall of rain, the duration of fall, evaporation, absorption, and filtration. We should like to see complete records of the movement of some considerable streams. Mr. Homersham says below that he has made such, and we wish he had published them.
"The quantity of water flowing down atreams fed from rain falling on the sides of hilts varies with every passing shower; no one or two observations per day can posibly give anything like an accurate result; a tood will momelimes last but a few hours, and jet in this time it frequently happens more water will run down the streams than at other times will flow down in as many weeks. I have had occasion to make observations on streams every hour in fine weather, and overy half hour in showery weather for weeks together, day and night, and in unsetuled atates of the weather almost every measurement varied."

Mr. Homersham gives an estimate of the cost of the corporation worka, which at five per cent. makes a yearly cost of 90,8351 ., while he asserts that the same quantity of water, of better quality, can be had of the Manchester, Sheffield, and Lincoln Railway Company for 15,9681 . 158 . yearly, being a saving of nearly 25 per cent. All this, however, depends on what the real cost of the corporation works may be, and for that purpose we should have the estimate of their engineer, and not of Mr. Homersham. Indeed, the whole gist of the question lies upon this, which must likewise be the comment on his concluding atatement.
"As you are aware, in the spring of last year the corporation coold have made arrangements to secure for the use of the inhabitants of Manchestor, eight millions of gallons of Giltered water per day (as much as will be required for the domentic use of the borough for some yeare to come), delivered at Marple, 820 feet above the high part of the town, for 1 fd . per 1,000 galloas: in August last year (after haring spent a large sum of money in opposing your acheme), the corporation, in conjunction with the Waterworks Company, purchased of yon, for three semrs certain, two bnadred millions of gallons per annum of the same water unfliered, to be delivered in the Gorton reservoirs, at 3d. per thousand gallons; or at double the price they miglit, by adopting a wieer course, a short time previously have secured the same wator filtered."

EXPLOSIONS OF STEAM-BOILERS.

TheCauses and Effects of Explosions in Steam-Engines Investigated; and their result from an explosive principle different from the force of elastic steam demonstrated; and conclusive evidence adduced that more than four-fifths of the weight and strength of the engine are required to sustain the explosive force: with an easy and certain means of preventing its destructive effects, and reducing in great part the enormous weight of the engine. By Joun Winner, New York. 1847.

The elaborate title of this pamphlet fully explains the views and objects of the writer, who lives in the land of steam-boiler explosions, and seems to have had much experience therein. He commences by adducing a number of facts which are valuable in their way, but his inferences from them seem inconclusive, and often very fallacious. After mentioning several instances of the explosion of cylindrical boilers, in which the ends were blown of and projected to great distances, he proceeds to make calculations of the strength of the relative parts of such boilers, and concluden, that "it is impossible that a cylindrical boiler should be rent asunder endwise by the force of elastic steam, since half the force requisite thereto would burst it open laterally." The following is a specimen of the calculations on which he found this assumption:
"The diemeter of the boiler wbich exploded at Balttroore, is atased ln the

Sun at 20 inchea; the circomference, therefore, 62.82 inches, one-fourth whereof, 16.705, maltiplied by 20, the diameter, gives $314 \cdot 1$ square inches at the area of the end of the boiler; but the whole periphery or ring resista the presuure on the ends, and It cohenive strength is the eircamference, $62-82$ inches. In like manoer the rectangular section of the boiler, mada by a plane panaing through a portion of the axim ne-foarth of the circumference in length, is 15.705 , multiplied by 20 , the diameter, is equal to $314 \cdot 1$ aquare inches, the area; and the preasure perpendicular thereto, the effect whereof is to barat open the boiler laterally, is resisted by the cohesive strength of half the circumference, $31 \cdot 41$, or the two portions of the ring or periphery, each $15-705$ incbes long: wherefore, in all cylindrical boilert, the amount of metal which resiata the pressure on the ends is double the amoont of metal which resist an equal lateral pressure; and it appears impossible that they should be rent asunder endwise by the force of elastic stean, which can never exceed the strength of the boiler in Fhich it is genernted. The area of a circle is greatest in respect of it periphery, of any figure what. ever; much less, therefore, can a boiler not cylindrlcal be rent asuoder eadwise by the force of steam. Bat aumerous cases have occurred whereis boilern have been rent asunder endwite, which coold only be effected by an simost unlimited explotive power. No trace of such power is fuoud in the hiatory of boilern other than thowe of steam-engiven; nor in these hat it been indicated by the safety-valve or steam-gange, although they show, with suffcient precision, the variations in the strength of steam. Against the force of elastic steam, as generated in a boiler, a properly losded safery-valve is a complete security, but it hat not the least value as aguinat the effects of ex. plonive action."

The "explosive principle," to the action of which Mr. Wilder attributes most of the accidents in steam-engines, appeare to be electricity, though it is not 80 stated distinctly. This force is, he conceives, generated principally in the valve chambers in the following manner.
"It has been proved (?) that explosions in steam-engines are the consequence of the escape of elementary caloric from its combinatlon with water or ita rapour, and result directly from the removal, in the valve chamber of enginen, of the compressing force which kept up the combination; for when the steam-valve is opened, the ateam which passes into the valve chamber has free aptice to expand and the caloric to eacape, but that eacape and the further opening of the valve moat diminish in a degree the compreasing foree, and be followed by a farther amcape of caloric; bot its amount and consequent sction mast depend more or lest on the temperature and expanaive force of ateam within the boller. The occasional violence of fta ection is shown by the prodigious atrength of the beams, cranks, \&c., which are sometime broken. It is apparant from all considerations, that if the valve chambers be diensed, and the steam let directly through the ends of the cylinder, the amallest clearance of the piaton from the end, which does not admit its toucbing, will be the only vacant apace for expanaion and eacape, and this need not be an handredth part of the apace in the valve ehamber, and of consequence the explosive action cannot exceed the handredth part of its present violence."

Though Mr. Wilder considers he has "proved" his position as to the cause of explosions in steam-engines, we confess that his evidence is not sufficient to satisfy us; and his opinions are frequently formed on erroneous data. He adduces, again and again, as an illustration favourable to his theory, the explosion of a gun barrel when merely corked at the muzzle, but he does not seem fully to comprehend the cause of its exploding under such circumstances; which the explosive force of gunpowder is sufficient to account for, without the supposition that any new force is suddenly brought into action. High-pressure steam is, according to Mr. Wilder, "the most elastic, yielding, and manageable of all prime movers, and only requires to be kept close, so as to prevent the escape of the "elementary caloric," to become as inexplosive Water power. We might hence indeed infer, though probably Mr. Wilder is not prepared to go so far, that high-pressure steam is dangerons only when it escapes, and that what are usually considered eafety-valves ought to be regarded as generators of explogive force.

Carbonic-Acid-Gas Engine.-Another attempt to apply carbonic acid gat as a motive power, has been brought before the notice of the Paria Academy of Sciences, by M. Jagu, C.E., who proves very satisfactorily the great power that may be readily gained by imparting a comparatively low temperature to carbonic acid gas; but the difficult problem of condensiog the gas, to reader it again available, seems not to have been solved. M. Jagn calculates that, by suitahle apparalus placed at each station, six atmospheres of carbonic acid gas may be compressed for an unlimited time, from whence the receiver may be filled. To make the gas ro-enter the condensing apparatus with the absorption of as little power as passible, be proposes to place a lever on each side of the engine, put in motion by eccentrics adapted to the fist moving wheels; at each extremity of the lever to be placed a winch, which will move two pistons of given diameter, 20 that the ges may pans in and out.

APPARATUS FOR SUPPLYING BOILERS WITH WATER.

Report (by Order of the American Government) on an Apparatur for Supplying the Boilers of Marine Steam-Enginer with a Continuous Supply of Fresh Water. Invented by Captain Join Ericsson.[From the Franklin Journal.]

In acceptance of your invitation of the 17th ultimo, we, the undersigned, had the honour to meet together in the city of New York, with the view of testing and reporting upon an apparatus invented by Captain John Ericsson, for the purpose of supplying the boilers of marine steam-engines with a continuous supply of fresh water, and applied by him under your direction in the United States Revenue Steamer Legaré.

We have now respectfully to report, that on the 23rd ultimo we embarked in the Legaré at 12 M., proceeded to sea, and remained on board till the following morning. During this time the boiler was in operation 15 hours, and we had ample opportunity of examining the means employed for supplying it with water and the results produced.

By the ordinary method of condensing steam in marine navigation, boilers are supplied with the water of condensation, composed of the steam that is withdrawn from the boiler and the necessary quantity of salt water required for its condensation. Hence, a boiler in operation is constantly parting with steam (fresh water) and receiving salt water in exchange. The effect of this operation, uninfluenced by a correction, would be, that in a few hours a degree of saturation of the water in the boiler would be reached, that would precipitate upon the plates of the furnaces and flues, a scale of sufficient thickness to arrest the passage of the heat to the surrounding water and cause the destruction of the plates, by exposing them to a temperature destructive of their tenacity. The correction in use is the removal of the water as it approaches saturation, and is effected by blowing, or pumping-off.

In the operation of either of these methods, it is apparent that there is a loss of the heat that bas been imparted to the water blown or pumped off, that neglect to open or shut the blow-off cock, or in the admission of the required supply of water, involves the duration of the boiler and may, as it frequently does, involve the lives of the passengers and the crew, and the safety of the reasel. Even when all practicable attention is given to blowingoff, galt scale will be deposited in long voyages, particularly in the middle latitudes, and accumulate to an extent that renders its removal imperatively necessary. This is at all times a difficult, and oven under the most favourable circumstances, an imperfect operation, and when this deposit coats the surfaces of the flues, the consumption of fuel is increased to an extent unsuited to the economy of mercantile enterprise and to the duration of operation requisite for naval purposes.
This evil may be avoided by furnishing the boilere with a full oupply of fresh water, and as the weight could not be accommodated, nor the space spared in a vessel for an instrument and its fuel for the sole purpose of distilling the quantity required, it is obvious that the steam furnished by a boiler must be returned to it, after being condensed by the radiation of its heat to cold surfaces, and not by the admixture of water. This method was proposed by James Watt, so early as the year 1776, and has been effected to come extent by an instrument invented by Mr. Samuel Hall, of England, and applied to the engines of many steam-vessels, in some of which, notwithstanding its imperfections, it is yet used. It has failed, however, to answer the full purposes desired and anticipated.
In the arrangement of Mr. Hall a great number of thin metal tubes, from one-half to three-fourths of an inch in diameter, were placed vertically in a condenser and exposed to a current of cold water from the sea and into which the steam from the cylinder was admitted, for the abstraction of its heat by the radiation of it to the water without the tubes. Now it is evident, that, by this arrangement, the condensed steam would run down the inner surface of the tubes, in its passage presenting a non-conducting lining to them, and in its collection at their bottom an obstacle to the current of the steam and a diminution of the effective radiating surface.
With this method of condensation, it will be perceived that this instrument provides alone for returning to the boiler, the water that has passed through the engine as steam. It follows, then, that all escapes of steam from the boiler or engine, or water-leaks from the boiler, pipes, \&cc., must be replaced by distillation, at an expence of fuel, directly as the evaporation. Further continued ane of this instrument exhibited an oleaginous deposit upon the inner surface of the tubes from the use of oil and tallow in the
steam cylinder and on the valve facen, which, acting as a non-conductor, materially obstructed the condennation of the steam.
The apparatus of Captain Ericsson was designed to obviate the difficulties and deficiencies developed in that of Mr. Hall, and is composed of two distinct instrumenta, a Condenser and an Evaporator; the first for the purpose of condensation, and the latter for a supply of fresh water to provide for any lowses of steam or water from the boiler by escapes, leaks, gauge vents, \&c.
The Condenser is a cylindrical veseel set at a slight inclination from a horizontal line, containing the requisite axtent of radiating surface in metal tubes of two inches bore, with an open space at each end. By this arrangement there is free space for the current of steam to pass and for the condensed steam to run down the lower side of the tubes, without presenting a lining of water to intercept radiation or an obstruction to the course of the steam. Connected with this is a pump, by which water from the sea is drawn in and forced through the spaces between the tubes and the inner surface of the shell of the condenser. Thus, the latent heat of the steam is absorbed by contact with the tubes, and condensation is effected for the double purpose of affording a vacuum for the enging and of restoring fresh water to the boifer, for continuous evaporation and condensation, to meet the requirements of the engine.
The Evaporator, as constructed, is a parallelopipedon with a semi-cylindrical top and bottom, the lower portion of which is occupied by a number of tubes similar to those in the condenser, which communicate with a valve at each end of the ateam orlinder, worked by the engine : around these tubea, and for some distance above them, water from the sea is admitted for the purpose of being evaporated, and the space above this water is open to the condenser and consequently in vacuo. This instrument being designed to furnish fresh water to replace that which way be lost, its operation is resorted to only as occasion may require, and is effected in the following manner: when the piston is near the termination of its stroke the valve referred to opens (above or below, as the case may be), and closes when the piston begins its return stroke; by this arrangement, steam is withdrawn from the engine that has very nearly performed its full expansive effect, and passing into the tubes of the evaporator its heat is absorbed by the water surrounding them, and as this water is in vaouo it readily boils at a low temperature, and its vapour being led to the tubes in the condenser, it is condensed with the steam from the cylinder and is supplied to the boiler.

Upon the experimental trial to which you were pleased to request our attention, all practicable arrangements for correct observations were entered into; and with a view to acquire full and progressive notes of the operations of the apparatus the observations of the various points were confided to special committees, which upon the conclusion of the trial, reperted full notes for furnishing the following, viz.:
The boiler was filled with fresh water from above the opening of the blow-off cock; below this, salt water had been left, fiom an impression of its effect being too inconsiderable to authorise its removal.

At the commencement of the operation of the eagine, the water in the boiler as indicated by a caline hydrometer, when at a temperature of 150° Pahrenheit, was -f ${ }^{\text {息* }}$

The bighent temperatore of the foed water observed was 158° Fahrenheit. The lowest 132°, and the average 150°.
The highent vacumm observed was from 16 to 18 incheo.
The loweat from 11 to 15 , and the average wet from 12 to 15 inches.
The highest stean presoure was 54 lb . mercurial gange.
The loweat was 20 lb , and the average was 48.6 lb .
The highent number of revolutione wat 47 per minute.
The loweat number was 30 , and the average 42.3
The point of cutting off was at three-eightbs of the atroke.
The temperature of the ses water was 57.
Duration of operatton of the engine and boiler 14 hourn and 20 minutes.
Time during fhich ateam wat rained, 20 houra.
Dimentions or Enoing, dec.
Cylinder.- 36 inches in diameter, with a strolte of piaton of 32 inchet. Boiler. $-1,400$ equare feet of heatiog surface.
Condenser.-637 square feet of radiating surface.
Eboporator.-100 aquare feet of heating aurface.
Upon coming-to, the freshness of the water was again tested, and when at a temperature of 150° by a different thermometer than that used at the first operation (it having been broken in the interim), the hydrometer indicated is ; whether this difference in the indications is to be attributed to a change in the density of the water or to a difference in the thermometers, they being of different

[^14]manufactures, we are unable to deoide; fortunately the difference is quite inconsiderable, and is not regarded as deserving of further consideration.
So soon as the temperature of the Condenser was reduced to a degree that rendered an examination of it practicable, one of its heads was removed in our presence, and the tubes, when examined, were entirely free from any deposit or incrustation upon their surfaces, and the opinion is entertained, that at a temperature of feed water commensurate with economy of fuel, any dificulty from the deposit of oleaginous matter in this instrument is not to be apprehended.
Regarding the particular performances of the Condenser and Evaporator, it appeared that Capt. Ericason had relied too confidently on a general current of the cold water through the former instrument, whereas the current was quite partial, being but directly through its narrowest part, the sides of it: hence, the upper portion of it was almost inoperative-this feature was clearly developed by the application of a hand along the surface-while the effect of it was apparent in the moderate condensation indicated by an attached mercurial gauge.
Of the Evaporator, its capacity was clearly shown, in the facility with which the level of the water in the boiler could be raised through the epace between two gauge-cocks, and by a resort to its operation not being necessary for more than one-tenth of the time.
Immediately after the close of this trial, measures were taken to effect a diffused operation of the cold water, and as diaphragms could not be introduced between the tubes to alter the current of the water, without incurring an impracticable delay, the expedient of causing the steam to circulate throngh the tubes was resorted to, and was effected by the application of diaphragms in the open space at each end of the tubes. Upon the completion of this, a further trial wes had on Friday, the lst inst., when several observations furnished the following:-

Presaure of ateam,	50 pounda merearial gange.
Revolations,	47 per minute.
Vacuaum,	20.3 inches.
Tamperature of foed water,	150° Pahrenbeit.
Temperature of sea water,	62°

Compared with the ordinary method of condensation, the value of the method observed is determined by an investigation and consideration of the following points, viz.: Evaporation, Pressurea, Consumption of Fuel, Safety and Duration of the Boiler.
1.-Evaponation. Ordinary Hethod.

Temperature of Feed Water, 100° Fahrenheit.
$\begin{array}{ll}\text { Temperature of sensible and latent heata of steam, } & 1192^{\circ} \\ \text { Deduct temperature of feed water, } & . . \\ 100^{\circ}\end{array}$

$\begin{array}{cccc}\text { Deduct temperature of feed water } & \text {.. } & 150^{\circ} \\ \text { Heat to be added } & . . & . . & 1042^{\circ}\end{array}$
Then $\frac{1042}{1092}=\frac{.954}{1.00}$ which represents a gain in the evaporating temperature in the new method of 4.56 per cent.
2.-Pressures. Ordinary Method.

Prasure of stemm-mercurial gange .. 50 th.
Vacuum, 28 inchet $\quad . \quad . \quad-13.7 \mathrm{tb}$.
63.7\%

Cut off at three-eighthe of the stroke. Effective presuure oa the piaton			-47 H .	
New Method.				
Presaure of ateam	\cdots	.	-	50 tb .
Yacuum, 20.5 inches	-•	\cdots	\cdots	$=10$ th.
				60 B .
Effective preanure on the piston				

Then $\frac{47}{44 \cdot 5}=\frac{1 \cdot 05}{1 \cdot 00}$ which represents a lose in pressare by the new method of 5 per cent.
3.-Constimption or Puzl. Ordinary Method.

In the Gulf of Mexico and between the Tropics, it is necessary to Howoff, when a hydrometer conatracted similar to the one airenity referred to indicates of, in the Northern and Soathern Atlametic and Pacinc oceans, when it indicaten $\frac{2 \cdot 5}{32}$. Hence $\frac{2 \cdot+2 \cdot 5}{2}=2 \cdot 25$ the average poiat for blowing-of.

As the average degree of anturation of feed water is ${ }^{-75}$; the quantity of water blown off compared to that fed to a boiler is at 75 to $2 \cdot 25$, which is in the proportion of 1 to 3 .
Tomperature of the water blown off at the preasure and degree of saturation given 290°
Deduct temperature of feed water $\quad . . \quad 100^{\circ}$
Temperature lost by blowing. off .. 190°
As the heat to he added for the parpose of evaporation is $1092^{\circ}-$ $1092 \times 3-1$, the proportion of feed water evaporated, $=2184^{\circ}$
And $190 \times 3-2$ the proportion of feed water blown off

The heat absorbed, is

190°
Then $\frac{190}{2374}=\frac{.08}{1 \cdot 00}$ which represents the lose of heat by blawing of io the ordinary metbod of 8 per cent.

Summary of Rasultg.						
Gain hy Rraportion			\cdots	*	456 per cedt.	
Ditto by Con	tion		.	.	8.00	\cdots
Loss by Pressure	*	-•	-	*	$\begin{array}{r} 12.56 \\ 5.00 \end{array}$	\cdots
				\cdots	$7 \cdot 56$	

Which is a saving in the expenditure of heat, affording a like economy in the consumption of fuel and altogether independent of the loss of heat, by the presence of scale in a boiler, when salt water is used, and from leaks incurred by the oxidizing effects of salt water.

With the Ordinary Method, the level of the water in a boiler is constantly varying from one or both of the following causes, viz.: the quantity of the water blown off, or the particular extent of opening of the feed-valve; while the effective operation of the feed-pump and neglect of the blow-off valve, involves the burning, or an explosion of the boiler.

With the New Method, these operations are set aside : thns, blowing off is unnecessary, and the supply to the boiler being first obtained from it, the transit being immediate and the communication incapable of restriction (for if the condensed water was not taken of by the feed pump, the condenser would choke and become inoperative), there can be no decrease in the level of the water, other than that arising from leaks of water and steam. Further, the use of fresh water in a boiler will extend the term of its duration from three and five years to seven and nine.

With a further modification of the condenser, eatablishing a more diffused current of the cold water, it is evident that a full vacuum may be obtained, as the practicability of attaining this end by external condensation has long since been developed, and with a less proportion of radiating surface than is exposed in the instrument referred to. From the analysis however here given regarding pressures and temperatures, it would appear that a full vacuum, with corresponding reduction of the temperature of the feed water is not authorised; and as such departure from the hitherto practice, furnishes the temperature necessary to prevent any oleaginous deposit upon the surface of the tubes of the condenser, practice and utility are in desired harmony.

A very effective and economical element in steam navigation arises with the operation of this new method, from the absence of acale in the boiler, the presence of which is unavoidable where salt water is used, and to avoid the formation of it as far as practicable, other than a low temperature and corresponding pressure are precluded by the waste of fuel and injury to the boiler consequent upon the existence of this scale, acting as a new conductor of the heat to the water-whereas, with the use of fresh water, higher pressures can be worked and economy of fuel attained in an increased expansion of the steam.

Reviewing the facts herein presented, we are of the opinion that the operation of the apparatus of Captain Ericason, as far as developed, was eminently successful, and that, with the modification of the condenser suggested, a higher degree of vacuum can be readily obtained. In view of the very great importance of the successful introduction of this method of condensation in the merchant and naval services, we recommend to your consideration the propriety of sending the Legare on a distant cruise, for the purpose of developing the edvantages of the apparatus by continued and extended use.

> Cbarles H. Haswelu, Engineer-in-Chief, U. 8 . N.

Now York, Oct. 31, 1847.

DECOMPOSING POWER OF WATER.

On the Decomposing Power of Water at High Temperatures. By Ricmabd Tilobman. (Read before the American Philosophical Society, Philadelphia. [From the Franklin Journal.]

It has long been noticed, that partial decomposition is often effected in attempting to render anhydrous, by heat, certain salts which require a comparatively high temperature for the expulsion of their watery crystallization. This effect is not limited to those salts which are capable of decomposition by the action of heat alone, but extends to many which, when previously rendered anhydrous, are entirely unaffected by this agent. The chloride of magnesium offers a striking instance of such an action, being almost entirely reduced to magnesia, with escape of hydrochloric acid, when its solution is evaporated by a strong heat ; the anhydrous chloride, when obtained by other processes, is, on the contrary, unaffected by the highest heat.

Even chloride of calcium, a salt of much stronger radical base, has been observed to give off a portion of acid, when all its water of cryatallization is driven off by a red heat. In these and many other instances it seems evident that the escaping water of the salt is the actual decomposing agent, and that the intensity of its action depends solely upon the degree of heat which the salt can sastain before giving it off.

Contact of the salt and water, at high temperatures, appears to be the only requisite of decomposition. It was therefore thought probable, that by exposing the salt, even in its anhydrous state, to a high heat, and passing over it a current of aqueous vapour, raised to a similar temperature, not only might the sbove-mentioned salts be completely decomposed, but also that many others Which have hitherto given no such signs of partial decomposition, might be seted upon in a similar manner.

On making the experiment, it was found, that not only the anhydrous chloride of calcium, but also the chlorides of strontinm and barium could be rapidly decomposed by exposing them, at a high red heat, to a current of steam; hydrochloric acid was copiously evolved, and escaped along with the excess of steam, while the bases of the respective salts were left in a free state; the lime remaining anhydrous from the intensity of the heat employed, while the baryta and strontia combined with a portion of aqueous vapour, and were found in a atate of hydrates.

In these haloid salts, it is to be observed, that the addition of the elements of water is absolutely essential to the decomposition; as neither the hydrogen which is contained in the acid, nor the orygen in the base, existed in the anhydrous salt. The action is, therefore, the result of a double decomposition between the steem and the chloride, as well as of the affinity of the liberated acid and bese for water.

The oxysalts, and the sulphates of magnesia, lime, strontia, and baryta, unlike the haloid salts just mentioned, contain, even in the unhydrous state, all the elements generally' considered necessary for the separate existence of the acid and bases of which they are compoeed. The application of the strongest heats to these salts, eauses, however, no liberation of their acid; but, as with the chlorides, this effect is immediately produced by the passage of a current of steam over them at a high temperature, the baryta and atrontia being left in the state of hydrates, and the other bases anbydroun.
The intensity of the affinity between the acid and base of the reapective salts, is curiously illustrated by the gradual increase of the heat necessary for their decomposition by the aqueous vapour. Thus the sulphate of magnesia gives off its acid to the current of steam at a low red heat, and consequently a large portion of the acid may be condensed in an undecomposed state. The sulphate of lime requires a high red heat for its decomposition, and on this account the greater part of its acid is resolved into sulphureous acid and oxygen gas. The decomposition of the sulphates of strontia and baryta, requires progressively higher heats, which, in the case of the last salt, must be raised even to low whiteness.

The subphosphate of lime, as it contains an acid much less volatile than sulphuric, combined with an excess of a powerful base, which adds to its stability, was selected as one of the most difficult teats of this decomposing power of aqueous vapour: by a full Thite heat, bowever, its phosphoric acid was slow ly disengaged. This phosphoric acid gave a white precipitate with nitrate of silver, showing that its liberation and subsequent condensation in contact with a great excess of aqueous vapour, had not prevented that change which heat is known to produce upon this acid.
It might be expected from the decomposition of the salts of baryta, that the sulphates and muriates of potash and soda would
undergo the same change with even greater facility. But it $\begin{gathered}\text { wns }\end{gathered}$ found by experiment, that although the decomposition of these last salts commenced with facility, when they were exposed to steam at a red heat, yet the proportion of alkali thus liberated, never exceeded a very small per centage of the residual salt, however long the operation might be contained. Attributing this peculiarity to the volatile nature of the liberated hydrates of potash and soda at high temperatures, substances capable of forming nonvolatile combinations with the alkalies were mixed with their salis, previoualy to subjecting them to the action of the sterm; the acids were then found to be completely disengaged with tacility. The fact that both lime and magnesia, substances capable of forming chemical combinations of but the most feeble character with potash and soda, were found to produce the above effect, was considered as confirming in a great measure, the hypothesis that the volatility of their hydrates was the cause of the apparent dfficulty of completely decomposing the salts of these alkalies.
The subphosphates and subsilicates of lime, baryta, and strontin, act in the same manner as lime and magnesia, and in all these cases the chemical combination is so feeble that, when cold, the alkali is disengaged by the solvent powers of water alone.
Alumina, which possesses so much of the acid character with respect to the strong bases, is proportionably more efficient than any of the preceding substances in aiding the decomposition of the alkaline salts: it remains in combination with the alkali, when cold, as a soluble aluminate; but is easily precipitated from its solution by a current of carbonic acid gas.
The calcination of potash alum leaves a mixture of alumina and sulphate of potash, which Berthier has long since stated to be converted into aluminate of potash by the continued action of heat alone, the sulphuric acid being expelled from the potash by the superior affinity of the alumina at a high temperature. By several careful repetitions of his experiment, in which the accidental presence of aqueous vapours was entirely prevented, no decomposition of this kind could be effected, even at a white heat. Bot by the contact of aqueous vapour, produced by the combustion of the fuel or otherwise, even in small quantity, and at much lower temperatures, the decomposition is rapidly produced. It therefore seems probable that the acoidental contaet of aqueous vapour wat the actual but unnoticed cause of the decomposition in Berthier's experiment.
The powerful action of aqueous vapour upon anhydrous alum at a high temperature, suggented the possibility that a similar action might take place upon its mineral representative, the double silicate of alumina and potaah, or common felspar. It will be remembered that this salt, by the simple substitution of sulphuris for the silicic acid which it contains, would be converted into anhydrous alum. To the action of heat alone, felspar presents this difference from alum, that the silicate of alumina is as unaffected by it as the silicate of potash itself; so that to produce an effect upon felspar anslogous to that upon alum, the silicic acid of both the silicate of alumins and of the silicate of potanh would have to be removed. Silicic acid, in a free state, having been long known to be slightly volatile in aqueous vapour at high temperatures it was thought that, in the present case, it might, like the other acids, be disengaged even from a state of chemical combination, by the same agents. Steam was therefore passed slowly for some time, over moall fragments of highly-heated felspar. Beyond partial fusion, no other visible change than a considerable degree of vesicularity in the parts most exposed was produced. These fragments, being finely pulverised and boiled in water, the concentrated solution was strongly alkaline, and proved, by the usual tests, to consist of aluminate of potash.
After water ceases to extract aluminate of potash from the powdered mineral, dilute sulphuric acid will prodnce from the residue a small portion of alum. The actual analogy between alum and felspar, substances so distinct in their origin and general properties, yet differing only in the nature of their respective acids, is rendered still more striking by buth thus yielding the same product, when deprived of their acids by the same agent. It is worthy of remark, that, although the actual contact of the steam in this experiment is confined to the mere surface of the emall fragments of felspar, yet the chemical decomposition produced by it is not confined to that surface, but epreads by a "cementation action," through their entire mass: pulverization is, therefore, required to obtain evidence of the internal change which has been produced.
All the experiments no far made, would indicate that the following was the general rule applicable to all salts capable of sustaining heat alone withnut decomposition:-
Whenever a salt, from its own elements alone, or by the arldi-
tion of those of water, can produce a volatile acid and a fixed base, the evolution of this acid and the liberation of this base will be determined by passing a current of aqueous vapour over the salt raised to a high temperature. When either the acid or base to be liberated forms a combination with water which can resist decomposition by the heat employed, the tendency to form such hydrates adds much to the decomposing power of the aqueous vapour. Although potash and soda are not by themselves fired bases at high temperatures, yet by the use of the substances before mentioned, they can form combinations which are fixed, and by this means their salts come under the above rule.

The actual number of salts which have as yet been subjected to this mode of decomposition, is not very large; yet, from their perfect analogy of composition with many others, there can be but little doubt of the general extension of the principle.

The chlorides of potassium, sodium, barium, strontium, and calcium, being all thus decomposed, the bromides, iodides, and fluorides of the same and all weaker bases, must probably act in the same manner. The fluoride of calcium, has, in fact, been found to do so, by experiment, hydrofluoric acid being freely evolved. In the same manner, from the decomposition of the sulphates, may be inferred that of the seleniates; from the silicates, that of the borates.
The applicability of this simple mode of decomposition to the explanation of a great variety of geological changes, is too evident to escape the attention of those conversant with that science. In a future paper I hope to be able to give a more complete account of some interesting facts which have been observed in connection with this subject, and to verify, by experiment, many points which must at present be left to inference and conjecture. In fact, although the existence of this law of decomposition was ascertained in 1842, yet it has only been within a few months that I have been able to give much attention to its investigation, which must be my excuse for the imperfect and hurried manner in which it is now communicated.

PROCEEDETAS OF BCIENTIFIC BOCIFTIES.

INSTITUTION 'OF MECHANICAL ENGINEERS.

Aprid 26.-At the quarterly meetiog which took place io the theatre of the Philozophical Institution, Birmingham, George Stephenaon, Esq., President, in the Chair, the following papers were read:-

CYLINDER-BORING MACHINE.

"On the Fittting-up of Cylinder for Loconsotive Engines, and a description of a Machine for Boring them." By Mr. C. Berse.

In the absence of Mr. Beyer, Mr. Fothergill described the machine introduced at the last meeting, but the consideration of which was not then eutered opot. [See Jowrnal, p. 88.] Its object is to attain a aniformity in the make, bore, and general size of cylinders, so that, in the event of an accideat, they may be replaced by spare ones. To accomplish this difficult task, the machine now described was invented. The description of this machine, which would require diagrams to make it intelligible, is briefty this:-The bed opon which it is placed is that of a common slide-lathe, sufficiently long to carry a double aet of driving-gear, and admitting of the sufficient traverse of the boring-carriage. The buring-bar is supported by three bearinge, the former of which is stationary, and firmly fixed to the bed, to resist the ead pressure of the cut when boring ; the latter are fixed upon the carriage, and travel with it along the boring-bar. To cause the boring-carriage to move edgeways, a train of wheels descend at the back of the machine to give motion to the shaft, and are transfixed by meana of a feathered worm, to the worm-wheel and pinion, both of which move loose upon a fast stud of the carriage; this same stud serving as a fulcrum for a lever, carrying, upon two opposite projections, the intermediate pinions. To hold the cylinders while boring, the top of the carriage in formed into a kind of square panel, by means of two plates, planed on the intide, and fastened to the sides of the bearings, and two cross-stretches. These Jatter are also planed opon their inner faces, and are socured to the sides and top of the boring-carriage, and have holes bored in them when secured in their places, by means of the bend on the bar, corresponding in diameter to the torned projecting ends of the cylinder to be bored. This arrangement is for the purpose of securing uniformity between the external and internal sarface, so that the cylinder be fairly perforated, without the dangerous fault of thick and thin sides.

Mr. Fothergill proceeded to explain the diagrams whioh accompanled the paper, and remarked that, without offering aoy oritioiam on the machine, which appeared to him to be admirable lor its purpoee, he would merely direct the attention of the members to the great adrantagen whioh suah an invention must confer on those by whom these oyliaders were naed. Say, that one of those in nse aplit-by this muchine they had the defeot supplied immediately.

Mr. M4Connell also bore testimony to the advantages of a eniformity of cylinder. An acident occured to one of the cylinders in oee on the line with which he was connectod. An order was forthwith despatched to Manchester, and in three days Le had another, which ftted esaolly the place occupied by the first.

ON THE FORMATION OF TEETH OP DRIVRRS OF PIN-WHEELS
The Secretary read a paper, deacriptive of "A Machim for Forming ith Teeth qf B'heel." By F. Bashpostв, M.A., follow of $\mathbf{S t}$ John'a College, Cambridge.

The paper was accompanied by moriol. Referring to Prof. Willis's demonstrations, that the proper form for the teeth of spur-wheels is a compound of portions of epicycloids and hypocycloids, be remarked that no self-acting machinery had been applied to give those forman of metal wheela when mounted on their axes. Tbe principle of the invention submitted to the Institution was the well-known one, that if the pins be supposed to be mathematical lines, the proper forms of the teeth of the driver will be portions of the epicycloids, described by a point in the circumfereace of the pitch circle of the pid. Wheel, whed censed to roll on the pitch cirole of the driver. The tracer being replaced by a cylindrical cuttor, this, as it revolves on its axia, will form with accuracy the interval between the two teeth of the driver. By turoing the wheel to be cat broagh the proper angle, the interval between the next two teeth will be formed, and soon till the whole be completed. He proposed that the pins should be formed in two parts; a solid cylinder surrounded by a tube of iron; and when the tooth of the driver came in contact with the outer case of the pin, it would revolve through a amall angle, and thus all abrasion of the teeth of the driver would be avoided.

Mr. M'Connell was upable to see wherein the model before them differed from the plan oow in use. In fact, it was nolhing more than the old cog-and-drum plan. Probably the idea occured to the inventor without any knowledge of the existing machines, and, if 80 , be deserved commendation for his ingenuity.

Mr. Cowper could not entirely agree with Mr. M،Connell. The toeth, by this machine, were made by a given mathematical rule. That war the only self-actiog machine he had seen that struok a real epicycloid.

Mr. Fothrroill was unable to see agythiog in the machine practically different to those longer in ose. If, however, the inventor was an amateor, great credit was doe to him for the inventive ability be hed displayed in the model before them.

CRADDOCK'S BOILER AND CONDENSER.

Mr. T. Canddoce, of Birmingham, read a paper "Oa his Improbed Boiler and Condeneer-their Suilability for Erstending the Cornish Ecomomy, and Preventing Boilor Explosions."

In submitting to the meeting the sobject of this paper, it appears desirable to call altention to the well-establiahed prectioal data, from which, by the Cornich aystem of generating and using steam, such economical resalts have been obtalned. To this end, a very brief review of the various laws, or principles, jmmediately bearing opon the subject, seems to be essential for placing the matter in its proper light before the meeting. For this purpose, perhaps the classified mode is the preferable one.

1. We have to do with the laws by which heat is transmitted from hotter to colder bodies, and vice verse. These demand in onr steam-boilera and condensers an extensive surface; and, as far as other circumstances will allow of, that such surface be composed of thin metal. It is further necessary, if we would produce the greatest economy in the generation of steam, that the heat profoced in the furnace be, to as great ad exteot as possible, absorbed by the water; this is best effected by a subdivision of the gases by a slow draught, and by completely surrounding the combastible matter in the furoace by the water in the boiler.
2. The hydrostatic la wis require, in order to render high-presanore stean equally safe from explosion as low-pressore, that we diminist the sectional area of the interior avrface of the boilor, opon which the preasere of the steam acts, in the same ratio as we inerease its pressore. If we do this, then the rending force, tending to borst the boiler, remains the same at whatever pressure the steam be generated.
3. The laws relating to latent and seusible heat, when conaidered in combination with large volumes of water, and subjected to the casualties attending the steam-engine, anggeste the diminishing the quantity of water necescary in steam-boilers, as far as practical circumstancs will permit, as one of the surest means of preventing destructive boiler explosions. The importance which attaches to the soggentions these laws present becomet appareat when we conaider the effecte in case of explosion, which euch me amonat of sensible heat produced, as that contalaed in the large volame of water necessitated in boilers of 60 -horse-power, for inetance, and of the usual construction, as the sensible heat contained in so iarge a volume of water would, supposing the pressure of the steam to diminish from 40 lb . to 20 lb . per square inch, generate a volome of steam, at 20 lb . presure, equal to 30,000 oubic feet. Here we have a cave equivaleat to the diffusive and destructive effects exhibited in common and large boiior explosions. The boiler to which this paper refers, reduces the danger from this oanse nine-tentha, though the steam be generated in it at a temperature and preasere of 100 Jb . per equare inch. In this oase we fod the mensibte
beat contnined in the water required by saoh boilers, would give but 8,000 cubic feet of steam at 20 lb . pressare. The boiler under considert. tion is equally anccessful in diminishing the risk from explosion, arising from the rending strain due to the pressure of the steam-as, on a com. parison with the common boiler, in which we suppose the stemmat only 36 lb . presenre, the rendiog force in such common boiler is $5,400 \mathrm{lb}$; whilat in the tubular, even with 100 lb . pressare, the rending force amounts only to 000 lb ., or bat one-sixth of that given in the instance of the common boiler. The most obvious and certnin conclusion to which such wellestabliahed principles lead, cannot fail to show how ill-grounded and unseientific must be the objections raised against high-pressure steam, Then generated in such bollers.
4. The laws relatlig to the expanaive setion of ateam plainly indicate the importance of the two leading features of the matter before the meeting -riz. : that of removing the atmospheric preseure from the exhaust side of the piston on the one hand, and, on the other, enabling us to make use of high-pressure steam with safety; as by the removal of the atmosphere in noa-condensing engines, an economy is produced by this cause alone equal to 88 per cent. ; and, by increasing the preasure of the steem at the commeacement, oan be obtained a farther incrensed economy upon the Cornish system, equal to $\mathbf{t 0}$ per cent.
[Mr. Craddock here describod, by means of plans, his boiler and condepaer.]

Cossiderable discussion ensued upos the reading of this paper; the prisoipal objections to the conclumion maid to be arrived at were those raied by Mr. M'Comarll. It was anked by him, if any trial had been made with the engine in actual work? Mr. CradDoce replied, that the trial be deemed mont proper to submit to the meeting was that made at the London Works (Smethwick), because it must be free from all suspicion; and that to the authenticity of the iodicator Ggares taken off the ongine when there, he bad no donbt Mr. Cowper would satisfy the meeting.

Mr. Cowpes said, he had taken some indicator figuras off the engine, and that it was then doing 20 -horse power-that is, indicator horse-power; the condenser then took if-horse power to work it.

Mr. M Connex. then raised an objection, that the ongine was not tested with the other engines working at the London Works.

Mr. Caadoocs replied, that he had always expressed a wish that it shoold be so tested, but the firm not intimating its assent, it was not for hlm (Mr. C.) to insist apon anylbing of the kind.

Mr. Stephenson, Mr. M'Connell, and Mr. Bucele aaid, that the test of pumping water, or some such work, was the beat test of power.

Mr. Canddoce replied, that he was a little surprised that Mr. Buckle, the representative of an ancient and eminent firm, should object to the in. dicator as a fair test of the power of the engine, when it was well known that the indicator was the instrament ased by them to test the powor of thair own ongines.

It was argued by Mr. Czampton, that the only advantages the doubloeylinder engine possessed over the ringle one was greater ateadiness of motion; bat this did not compersato for the lose of power, which, he considered, arose from the ase of two cylinders, in the steam passing from the one piaton to the other. Some time ago, he had made some elaborate experiments upon that vory subject, and his conclusions theniwere, that the loss amounted to 14 per cent.

Mr. Candoor replied to Mr. Crampton, by admitting a loss io the expansion, which took place between the two pistons; but, in the amall engine before the meeting, it was obvious that this was reduced to the emahest postible amonnt : he further called Mr. Crampton's attontion to the great irregularity of motion that would reanit by carrying the expanaive priaciple to a great ostent into one cylinder. Mr. Craddock bero reforred to an esperiment made on the previous evening with the small eagine before the meoting; it nas acarcely necessary for him to remind the meeting, that in so amall an engine, when first startod, the friction was considerable; yet it had worked up to its speed, with the steam cut off at 1-60th of the struke.

Mr. Canmpron replied, that the stemm would lose all its power before expandiog to auch an extent.

Mr. Candpock said, if Mr. Crampton would favour him with a call at the Works, be would sbow bim the fact experimentally. He wished forther to remind the meeting that, from his own oxperiments, we was conrisced that, by admitting high-pressare steam direct from the boiler into one cylinder, mach of it was condensed by the comparatively cold metal of such cyiinder; and that the water resulting therefrom, being in contact with the metal of the cylinder, did, when piaced in commanication with the condenser, again assume the form of steam, thereby uselessly carrying much heat from the boiler to the condenser, without producing mochanical effect. But as he had stated his viewi opon this aubject else. where, and as it may appear to the meeting a somewhat abstruse subject, If not an hyporhetical one, he would not trespass upon tho meetiug by any further remarks upon it.

Mr. M'Connell said, that be was somewhat surprised that after the leagth of time which Mr. Craddock had devoted to the subject under discosion, he had not arrived at somo more accurate data, and bad not made up his miad an to the real capability and comparative advantages of his boiler.

Mr. Ceaddoce replied, that allbough he had certainly dovoted much time to the practical conaideration of the subject, he had not directly deduced such eccurate data as would juetify him in atating definitely the
comparative merits as to economy of coals in the generation of a given weight of stenm; but, qevertheless, if Mr. M'Condell would favour him with a call at the Works, he had no doubt he should be able to show him he had not been idle, but he had been driving after great points, knowing full well that on these depended the economy.
 valamble for marine purposes.

Mr. Craddock replied, that ite advantages for such purpose may be stated in a few mords, as the condenser would ensure water, free from deposit, for the use of the boiler, thereby rendering tubalar boilers practicable, they enabling us to geoorate bigh-pressare steam with safety; and thus, by carrying out the expansive principle, with other consequent advantages, a saving of $\mathbf{£ 2 , 0 0 0 , 0 0 0}$ sterling per annum may be effected in our sleam navy.

Mr. Jacsson proposed, that in order to test the relative value of the slogle and double cylinder engibe, and set that question at rest-at least so far as that Sociely was concerved-Mr. Crampton be requestod to prapare a paper and diagrams on the subjeot, to be laid before the members at a subsequent meeting.

Mr. Craddoce suggested, that a more conclusive test woold be that of an engine having two cylinders, one of which could be readily thrown out of action; its being connected with the same boiler, expanding the stoam to the same extent, and performing the same work-the steam and coal required, in both cases, being accurately weighed-would give the most satisfactory molution.

The request to Mr. Crampton being carried onanimously, he (DIr. Craddook) consented to compiy with such request.

HYDRAULIC STARTING APPARATUS.

Mr. Pormeralle read a paper, deacriptive of "A Hydraulic Apparatus, for Connecting Heavy Machinery, and Disengaging the same from the Prime Mover, without preducing those Sudden Shocke which the use of Ordinary Clutches occation." By Mir. Jaceson.

A level pinion is supposed to be connected with the engine, or other prime mover, and gears foto a bevil wheel, to which is cast a rim, which is turned internally. The wheel torns loose upon a shaft, being lined with a brase buin ; the shaft, however, is provided with four projections, throagh each of which a hole is bored-the centre lines of thene holen lying in one horizontal plane, and meeting in one common central chamber. In these hoies four raios, which are roupectively cast of one piece, with blocks, are fitted, the block being lined with copper, and turned, so at to fit the internal anface of the rim. Supposing that the mashinery, which is asauroed to be connected with the shaft, required to be started, hydranlio pressure is applied to the under rams, by pressing the ram which is in the shaft down upon a column of water, aloo contained in the shaft and tbe common central chamber, by means of a fly-wheel, wbicb, with its nut and a screw, forms one piece with the ram-this ram, the out, and sorew, being guided and supported by a brass box, which is screwed into the upper end of the shaft. Is is evident, that on the ram in the shaft being thas pressed down, the under rams will gradually and simultaneously press the segments againat the internal surface of the rim, with a power proportionato to the force applied at the circumference of the fly-wheal, until the friction produced ly such pressure shall be equal to the reaistance of the machine to be cot in motion. The machine will, therefore, gradually astume the velocity, which, according to the speed of the driving-shaft, it ought to have; at the same time, that any extraordinary momentary reaistance, such as might bo aupposed to occur occasionally in rolling-mille, or other machinery of a aimilar nature, instend of cauning the wheel to break, will have a tendency to make the rim to slip On the segment until the ohntacie be removed, or overcome. In order, however, that too great a pressure may not be applied to the lower rame, the upper one and the screw are perforated with a amall opening, the extremity of which is ciosed by a valvo, scted upou by a spiral apring, oncased in the bras box-so that if, at any time, the preasure exerted upon the rams should exceed that to which the spring is regalated, the water would lift the valve, and escape throngh it into the box, and through an opening in the lid of the latter into the atmosphere, untid the balance of the presura was again eatablished.

Mr. M•Connele wished to know, whether there wat any other means than that supplied by the safety-valve, if he might so call it, whereby the maximum of presoure could be ascertained.

Mr. Fotaragill remarked that, in fact, the machine was a self-ecting regulator. A certain amonnt of reaistance was required to make the ramis work, and whenever the resiatance became too grest, the apring and the valve carried off the superfluous power.-It was retolved by several of the members, that the cone seemed to answer every parpose which this machine was intended for; but it was argued by Mr. Fothergill, that Mr. Jackson's machine removed the greateat objection to the use of the cone-viz., the backward presuure. By the present invention, the premure was confined allogether to the direction in whicb it was wanted. Several other membera expressed themselves highly pleased with the machine; and after a vote of thanks had been passed to Mr. Jackson, it was resolved to print the commanication, and lithograph the diagram, for the use of the mombers.

PATENT SAFBTY BUFFER.

A paper was read "On am improved palent Safely Buffer." By Mr. Cangenige.
Mr. Bucers, in introducing Mr. Chesthire's invention to the notice of the meeting, took occasion to express his aatisfaction with the principle of the machine, which, with the spiral break of the worthy president, would, be the means of saving many lives on railways. In a former notice of the proceedings of the Institution, we have briefly described the principle of the invention. [8ee, Jowrmal, Jane 1847, p. 190.] It is proposed that each railway carriage shoold he supplied with atrong moveable rod of Iron, solid or otherwise, as might be deemed adriable, supported in the centre of the under framework by bearing socketa. This rod is merely to have an "endway" motion, and is to have a head at each end, similar to the present side buffers, although it is not intended that these heads should act against each other, except in case of collision. When the carriages are screwed up into their ordinary travelling itate, there will be a space between the asety buffers of some few inches, which would permit the ladependent action of the side buffers. Thia safety buffer would be placed in the "van" at the ond of the train, and also in the tender in front-so that it cannot have an eadway motion, farther then being fixed against atrong elliptical springa will admit of, if auch springs should be cousidered advimable. It wet shown, by experiments on a amall model railway, that the effect of this continnous buffer was exactly that which ita inventor claimed for it. A train of carriagea supplied with the rods was brought into collition with an ordinary train; and while the former was unhort, with the exception of the last carriage, which had broken from its couplinga, the other wes thrown into the utmost confusion. The whole force of the shock, in so far at the former train was concerned, seemed to be conveyed to, and spent on, the last carriage, which the inventor proposes should be filled with goods or luggage.

Considerable discustion followed the rearling of the paper and the experiment. The chief objections were-that the absence of all uniformity in the size and make of carriages would, even if the principle was sound, make the invention practically useleas. Then, again, the force of the shock of a collision conld only be conveged thronghout the length of the buffer and to the last carriage, when the train was on a straight line. If, for example, it was on a curve that the collision took place, the centre carriages, or the one where the bend was greatest, would receive the force of the shock, and the lives of the oceupanti of the carriage be macrificed. Mr. M'Connell was the principal supporter of this objection. It wat, moreover, argued by Mr. Ramabottom and others, that the application of the invention would be a practical diadrantage, exoept in one ceso-namely, as a strengthener of the bottom of the carriage. By the present side buffers, the force of a shock was distriboted over the whole train-the first feeling the greatest amount of force-and thence it sensibly diminished, until the passengers in the centre, or the extremity of the train, scarcely felt it at all. Now, making the abock simultaneous throughout the whole train, at it was proposed to do, would have the same effect on the paseengers as if the train had rua against a dead wall. They would be thrown into each other's faces in every carriage in the train. Beaides, if the train was run into, the engine and tender, and the men upon that, would be sacrifced.

Mr. Ceresserine replied, that, with respect to the indisposition of rallway eompaniee to go to the trouble and expense of applying the invention, he thought that the livee of the public wat the firat great consideration; and no expease and no tronble shoald be allowed to operate against any invension that promised to reduce the number of casualties. As for the principle of the invention, he was eonvinced that it was perfectly sound. Accidents seldom took plece in curres; there the enginemen were always on the look out. The foroe of a collition mat be apent somewhere; and he could not understand how it could be an objection to his invention, that he carried it off from the carriages where damage to lifo wonld be done, and concentrated it where nothing of the sort wes to be apprehended. He was convinced that, if the Institution wonld recommend some of the railway companies to adopt the invention, it would be found to act most beneficially.

After some further remarks by Mr. Wright, Mr. Peacock, Mr. Crampton, Mr. Cowper, Mr. Fothergill, and others, Mr. M'Connell recommended that the condideration of the sabject should be handed over to the council, who would diecuse the merits of the invention with Mr, Chesshire, which was sgreed to.

BANKS'S PATENT STEEL TYRES.
Mr. Fotrereill read the following paper :"c The statement of facls relative to Mr. Thumas Banes's Pasenf Plan of Steeling the Tyres of Railway Wheelt, is the reoult of nerrly Pise Yearn' Trial, and shows the Cout and Dwrability of Staffurdshire Tyres, Steeled on his Plan, as compared with Low Moor Tyres."

The present cost of Low Moor tyres, for 3-feet wheels, will be-
Four tyres of 8 cwt each -13 cwt , at 22.
Put thag on the tyree reedy for work
Twice turalag up, after weariag hollow

Suppose these tyres to run 50,000 miles on average-that is $\mathbf{3 0 , 0 0 0}$ miles at a cost of 221.4 s . - the present cost of Staffordshire tyres will be-

These tyres are proved to ran before steeling 18,000 miles, and after steeling 100,000 miles-making a total work of 118,000 milea, at a cost of 202. 4s. 6d. Now, subtracting 50,000 miles-the work of Low Moor tyresfrom 118,000 -the work of Staffordshire tyres steeled-we have 68,000 miles which the latter will run more than she former, and at a cost of 39 s .6 d . per set less. From the above statemsat, we see the cost of Low Moor tyres, per 1,000 miles, is 8 s .10 d d .; whist the cost of 8taffordshire tyres, steeled, is only $3 s .5 \frac{1}{}$. per 1,000 miles. The truth of this atatemens is proved by a test of uearly five years' trial, on those linet on which the plan has been most used. We are aware that railways did not all wear oot the tyres alike; but on those lines where the iron tyres will run more than atated above, the steeled tyres will run more in proportion, and the plan is attended with no danger whatever.

Note.-The above statement ahowa only the adrantage of steeling the tyres once, but we have ateeled many a second time, after they have ran the above distance. The same tyres may be ateeled a recond time at a cont of 51 . per set, when they will run 100,000 milem more-makiag a total of 218,000 , at a cost of $25 \mathrm{l} .4 \mathrm{~s} .6 \mathrm{~d} .$, or 2 s .4 d . per $1,000 \mathrm{miles}$. The adrantage of steeling a second time is secured by taking the tyres in time, while they have the requisite atrength for steeling the first time. The general objection against the plan is, that there will be a deal of trooble to carry it ont ; but this objection, if properly examined, will be found to bo witbout foundation. When the wheels want turning up, they must be taken from under the carriage, or wagon; and, when taken from under, the cutting of the grooves in the tyres for the ateel will not cost more tham 5 e. per pair in men's wages; and, when the grooves are turned, one smith and three atrikes will insers steel segments with 10 pairs of 3 -feet wheels in one day of 10 honm; after which, turning up the steeled wheels will take very little more time than turning up without steeling, which proves that the trouble will not be to great as some people imagine, and nothing, when the darability and aaving which is effected is considered, by the tyres being steeled on this plan.
The paper was accompanied by a letter from Mr. Jenkins, of the Maschester and Leeda Railway, highly commendatary of the ateel tyres.

Mr. Peacoce remarked, that he had tried the wheels iteeled by Mr. Banks's procens, and the result was, that whereas he whe formerly obliged to repair the wheels of the tenders every four months, thone with steel tyres did not require repair oftener than once in 12 months. He had not fully tested their wearing qualities, but he had no doabt that they wonld be found to be most economical as well as useful,-Saveral other of the menbers spoke in high terms of the value of this patent.

ROYAL SCOTTISH SOCIETY OF ARTS.
April 24-Johe Burn Murdoca, Esq., P.R.S.E., V.P., in the Chair. The following communications were read :-

1. "On the value of Gases from different Coalh, and the price of Light in different places; also a new mode of estimating the Conswmption of Gases, \&c., and of estimating Illuminating Power." By Andmet Frya, M.D., F.R.S.E.

The first part of this paper referred to the illuminating power and durability of gases obtained from English caking coal, from Englisb parrot coal, and from Scottish parrot coal, with which gases the towns in England and Scotland are supplied, and consequently to the value of these gacen for affording light. Taking the illuminating power, and the darability, and consequently also the values of the gas from English caking conl, with which Newcastle and many other towns in England are supplied, at the unit of comparison, Dr. Fyfe stated, that he found the illuminating power of the gas from the English parrot coal, such as that from Yorkshire and Lancashire to be, on an average of numerous trials, $1 \cdot 73$, the darability to be $1 \cdot 12$, and hence the value, bulk for bulk, as 1-85. The vilue of ges from the different kinds of Scottish parrot coal varies considerably, scconding to the plece from which the coal is obtained; but, as in the larger tomas in Scothod, a misture of coals of different quality is employed, the gas in these towns is generally very nearly of the same quality. Taking the average of all the trial made at Ediaburgh. Glasgow, Greenock, Dundee, and Aberdeen, the illums nating power was found to lie $3 \cdot 23$, the durability, 1.58 ; thns making the value very nearly 5, compared with the English caking coal gas an 1, and 2.7 thet- oglinh parrot coal gas as 1 ; in other words, to light an apart. nil ef exte日t, und for the same time, by similar methods of cossality of gas froai Sootush parrot conl required, being at 1, naty of gas iroai scotush parrot conl required, being at 1 , -quid be uive times as great. Dr. Fyfo
then alladed to the value of these different kinds of coal for affording gas; and roasequently for affording light by the combuation of their gases. In ascertaining this, the quantity of gas given off from the coals is taken into cecount, slong with the value of the gases themselves for affording light. In thia way he has fixed the value of the coals as follows:-English caking coal being 1 ; that of the Knglish parrot coal is on an average $2 \cdot 3$; and that of the mixture of Scottinh parrot coal, as used in different towna, as 6.

In the second part of the paper, Dr. Fyfe alladed to the methods of finding the value of coal gas, for the purpose of illumination, and more particularly to E new mode of determining the durability; in other words, the time required for consuming a certain volume of gas, and consequeatly the consumpt in given times, and by means of which, also, the specific gravity of the gas could be ascertained. From numerous experiments which he had performed, be bad come to the conclusion, that when coal gases are burned from the same borner, with the same height of fiame, the consumpt is as the square roots of the pressure necessary to keep up the combustion, at the leagth of flame fixed on; and that, consequently, the time required for the consumpt of equal volumes is inversely as the square roots of the pressure He bad ilso come to the conclusion, that the durability, in other words the time required for the consumpt, depends on the specific gravity, and that the ame law is applicable; consequently, the specific gravity being known, the conampt can be determined; as the consumpt being determined, by the preasure, the specific gravity can be ascertained, the rule being, the apecific gravity is inversely as the square roots of the pressures, necessary to keep the gase harning, from similar burners, at the same height of fiame. Dr. Pyfe stated, that he bad put these different rules to the test of experiment, with gases which he bad prepared from different coals, and also with the gues fond in different towns, and he exhibited numerous tables, showing the very close correspondence hetween the results obtained experimentally, and by calculation. He then exhibited an instrument by which the durability and specific gravity, could by the rates stated, be determined. It concints of a jet burner, of the 40th of an inch in diameter, to which is adapted a sule for measnring the height of flame, and a pressure gauge for ascertining the pressure under which the gas is burning, at the length of flame fised on. In this pressure gauge is fitted a graduated scale, with a burner, by which the pressure can be read off, to $\frac{1}{10} \boldsymbol{o}^{\text {th }}$ of an inch. Along with this a table was given, showing the consumpt of gases in a given time-tbe time required for the consumpt of equal quantities, and the specific gravities, according to the pressnres indicated by the gauge. In the table the pressures ranged from $\frac{98}{108}$ ths to $\frac{0 n g}{108 t}$ ths of an inch, which embraces all the pressares likely to occur with the jet hurner stated.
Dr Prie, in conclusion, alluded to a photometer, which, so far as he was aware, is not noticed in any publication, and which, be believed, was the invention of Professor Bunsen. It consists of a paper screen besmeared witb a solotion of spermaceti in oil of naphtha, excepting at a part around the centre. A candle placed behind this transmits light in such way as to make the part uncovered eatily observed, but when another ligbt is placed in front of the screen, at a certain distance, according to the intensity of the light the apot disappears, and the paper becomes noiformly of the same appearase. In using other lights, the distance at which the uniformity on the sarface of the screen is occasioned, depends on the intensity of the light; and thas, according to the usual law, the illuminating power of different lighto is determined by the square of the distances at which they are situated from the screen. Dr. Fyfe atated that he had put this method to the teat of experiment, and found it extremely accurate, and much more easily managed thar the uhadow test. He exbibited the screen in connection with the pressure gange burners, already described, by the use of which, the illuminating power, the durability, and the specific gravity of coal gases are very easily and quickly determined; and hence the value of an inatrument of tbia kind to thoue travelling from place to place, with the view of nscertaining the value of cosl gas in different towns; and of ascertaining the value of different kinds of conl for affording gas, and cousequently for affording light by the combustion of their gases.
2. "On the Composite Ellipse, ar an element in the useful and ornamental ert,being the second of a series of short papers upon the Harmony of Ferm." By Mr. D. R. Hay.

Mr. Har asid that the paper and illustrations he nuw brought before the Society would show that the composite ellipse, as he described and arranged it, wis an important element in the aseful and ornamental arts. He then erphaned the relation which his composite ellipse bore to the circle, and to the regalar ellipse; also his moue of describing it, with an analyais of j ta composition. For this purpone he exhibited six large diagrams. He then west on to show that its beauty consisted in the variety of its parts being in an equal ratio to their uniformity; and that it was to regulate and clasaify the various developments of this variety, that he lad in his work on "Pirst Prisciples of Symmetrical Beanty," classified a series of forty-two of those fatres, by an application of the laws of numerical ratio.

Mr. Hay then stated that he had brought the same subject before the Society about three years ago, as calculated to improve the practice of Vinions arta; and that as it bore apon the humblest productions of the potter's art, the mechanic and the cottager might have, without additional cout, bousehold atenaile of forma as beautiful as the finest specimens of the hentique.
$\mathbf{M r}_{\mathbf{r}}$. Hay then observed that it had lately been atated in the Society that hin composite ellipas bad not novelty to recommend it, bat had long been
familiar to every one who had given any attention to the subject; and that Nicholson's "Dictionary of Architecture" had been referred to in corroboration of this statement. Mr. Hay, however, stated that neither the composite ellipse, his method of describing it, nor its application to the drawing of vasen, wes published in Nichoison's " Dictionary of Architecture," or elsowhere, before be exhibited them to the Society, as just stated.
3. "Description of a new Ball Stop-cock for Trater Cisterne, and of a Nose-cock for Casks or Vats." By Mr. Daniel Erekine.

The new hall-cock consists of two flat surfaces ground air-tight, having port holes for the water when in certain positions, and furnished with a spiral spring, that keeps the surfaces in contact. This spring is serewed down to the preasure of the water that it is fitted for, and as the water tend to lift it off the face, this gives it slight friction on either side, and it is not $s o$ liable to get fixed as the present ball-cocks are. The same kind will be of great adrantage for gas-works, distilleries, and brewtries, where large nose-cocks are required, and will be much less expensive.
4. "Description of a Model of a Stop-cock for Corrosive Fluids." By Mr. James Robe.

This stop-cock is intended to obviate the tendency to stick fast, which the plugs of all the common kind have, especially when the fluids are of a corrosive or drying nature, such as common gas; and as it will have no tendency to leak, it may be employed with advantage in oil, beer, or water casks. Its principal peculiarity consists in using vulcanised india-rubber tubing, connected with the pipe by screw couplings, and compressed by means of a screw, or otherwise, to any extent required, by which the flow of gas, or other fluid, may be regulated at pleasure.

INSTITUTION OF CIVIL ENGINEERS.

April 11.*-Josedia Fizid, Esq., President; in tbo Chair.

The paper read was the second part of a communication made in the jear 1841, descriptive of the "Bann Reservoirs, County Down, Ireland." By I. F. Bateman, M.I.C.E.

The first part, of which a short abstract was read, gave the object of the constraction of these reservoirs, which wero undertaken with the view of regulating the quantity of water in the River Bann, and more effectually supplying water-power to the flourishing and increasing estahliatments on its lanks; this river is, from the bare and naked character of the Mourne mountaina, among which it rises, naturally lisble to the greatest irregularity. in its volume; devastating floods frequently pour down the channel, where, - few hours previously, there was not sufficient water for agricultural purposes. Greatly jajurious as this must have been to the agricalturist, it was inflitely more mo to the mill.owners, who depended entirely on water-power for their manufactories. Mr. Fairbairn was consulted on the subject; he examined the locality, and advised the formation of reservoirs; the author was then appointed the engineer, and, acting in some degree upon the saggestions of his predecessor, whom he continned to consult, the works were undertaken which are described in tbe present paper. The peculiarities in the Act of Parliament, granted in 1836, constituting the proprietors of the mills a joint-stock company, for the formation of the Bann reservoira, are detailed. The work: were originally intended to have been more extensive than have been really executed. The reservoir at Lough Ialand Reavy is alone described; the ground in that spot was admirably adapted for that work, being the bottom of a hasin, which was bounded on all sides by rugged hills of granite; in the centre of the basin was a mall lake, at the bottom of which was discovered a bed, severai feet in thickness, of fossil conferve, similar to those discovered by Professor Silliman, at Masachusetts, North America. This interesting geological fact was first noticed by Dr. Hunter, of Bryansford; the conferve appeared like an impalpable powder, but when viewed through a powerful microscope, they were found to be regular parallelograms, many of them covered with strixe. Thoy are deacribed by naturalists as the fossil skeletons of minute vegetables. The sitaation fixed upon for the reservoir rendered necessary the construction of four embankments, between the hills, so at to raise the water to a height of 35 feet above the summer level of the lake. The particulars are also given of a seriea of observations with. rain ganges, continued for two years, for the purpose of furnishing data for compating the extent of reservoir which would be necessary to insure a supply of water throughout the gear. The continuation described the aubsequent works, which consisted of the Corbet Lough reservoir, which was designed es an anciliary pond, to receive the flood-waters of the lower part of the river, and to retain the night water, to be discharged again during the day, immediately ahove the more extensive mills on the river. A waterconrae, of considerable dimentions, was constructed to effect this, and an embankment was thrown across the narrow outlet of the lake, the water being admitted throngh self-acting flood-gater, which closer as soon as the lowering of the river created a current in the contrary direction. The details of the construction of all thene works were given; and it was shown, by calculations based upon actual experiment, and observation of the quantity of water received, atored, and delivered from the reservoira, that their construction had increased the value of the mill-power of the River Bann full five-

[^15]feld, at a comparatively rery insignificant cost, at the actual experditure for the works at Corbet Lough did not exceed 3,300 . - the closest economy. consistent with the efficiency and durability of the work, being rigidly kept in view, and the utoost atcention being exercised by the reaident engineer, Mr. W. L. Stoney.

May 9.-" Observations on the Caures that are in constant Operation, trading to aller the Outtine of the Coashigf Great Britain, to affect the Entrances of Rivers and Harbours, and to form Shoals and Deepe in the Bed of the Sea." By Mr. J. T. Harrison, M.L.C.E.

After noticing the gradual deterioration which the harboura of Great Britain are undergoing, the /paper gave at the causes of these effects, the action of fresh water, of the tidal wave-the wind wares, and springs, and atmospheric changes, dwelling principally upon the tidal and wind waves. Professor Airy's and Mr. Scott Russell's views on the positive wave of translation (first order), and the oscillating wave (second order), were examined ; the peculiarity of the former being, that the motion of the whole mass of the water was in the anme direction as that of the wave itsolf; whilst, in the latter, the motion of the water was alternately opposed to, and in the direction of, the ware. The tidal wase was considered as a purely oscillating wave in the open sea, changing its character as it passed into shallow water. It was supposed that a wave of the first order was generated whenever the water, heaped up by a projecting headland, passed and made its eacape into the adjoining water, at a lower level, and that it carried with it gravel and shingle into mid-channel. The regularity of the bottom of the English Channel, and the material of which it is composed, were instanced, to prove that the bottom was now in progress of formation from the aqneous action of this deposition of matter. The effects of the tidalware along the coasts at Poole, and in the Isle of Wight, were given, to ahow that such a wave of translation was generated and crossed the Channel, from the Department de la Manche. The results of a series of experiments upon the action of waves on transportable materials showed that certain definite forms were assumed by sand or shingle, under given circumatances-for instance, that the depth of the end of the foreshore below the water depended upon the size and character of the wave acting upon it. It ras urged that the end of such a foreshore was to be found at 90 or 100 fathoms under water, stretching from Ushant to the south-west coast of Ireland, and that the fidal wave, in its progreas up the channel, drew down to the mouth the material thrown into it by the waves of translation from the headlands. The accumulative action was seen in the carriage of sand through the Straits of Dover to be deposited on the sand banks of the North Sea.

Referring to Mr. Palmbris paper "On Shingle Beaches," the destructive, accumulative, and progressive actions of the wind waves were considered. The cases most favourable for the display of the effective actions of each were adduced. The influence of tides by varying the height of the water, and that of an on-ahore wind in facilitating the destructive action, by retaining the water at a higher level, were pointed out. A flat foreshore, was shown to prevent, in a great degree, the destructive action; whilst, on the other hand, deep water, whether from a strong in-sbore tidal current, or from other causes, had a contrary effect, facilitating encroachments on the coast. The progressive action was shown to depend principally upon the angle at which the waves strike the beach. The general question of the travelling of shingle, and of its ultimate destination, was considered at great length-instancing particnlarly the accumulation of shingle at the Chesil Bank and Dungeness. The state of the Great Western Bay, between the Start Point and Portland, was examined, and argumenta were offered to show that it had been formed, in a great measure, by the encroachment of the sea. The process of this encroachment, and the alteration in the months of the estuaries falling into the bay, were analysed; and extracts were given from Sir H. De la Beche's work on the geology of Devon and Cornwalu, to prove that this process was till in operation. The summary of the arguments in the papers was, that the observed changes in our coasts and the months of the rivers were the result of the combined action of the wind wave, and of the tidal wave ; and the attention of engineers was particularly directed to these actions in different localities, in order that, by presenting to the Institution the result of their observations, an invaluable collection of recorded facte might be assembled, which would be of great benefit to the profescion, and to the scientific world.

May 16.-This evening was occupied with a diacussion on Mr. Goocs's paper "On the Resittance to Railway traint at different Velocities," read at the meeting on April 18.-[See Journal, ante p. 155.]

The principal speakers were Messrs. Brunel, Gooch, Bidder, Locke, Harding and Russell, and their arguments were necessarily so complicated by calculations as to render it difficult to convey, within reasonable limits, even an outline of the discussion. It was contended on one side that the subject had been so treated in the paper as to make it almost a question of the comparative gangen; that the experiments upon which the argaments were founded could not be received as applicable to railways in general, inasmuch as it was presumed from the statements that the portion of the line was selected as being in the best working condition; that the engine and the carriages were also picked as being in the best order; and that therefore the results were due to these peculiar circumstances, and not to the ordinary working state of the line; that the amount of resistance per ton was underwtated by Mr. Gooch on these accounts, and that the rate of resistances arrived at by the committee of the Britiah Anociation, by projecting trains
of carriages down inclined planes, whe nearer the troth then the eppression of resistance arrived at with the locomotive and the dynamometer; that the tables were partly made up from the actual retults of the experiments and by using Mr. Harding's formule, which had been repudinted in other cases as incorrect; that the greater weight of the traina in the late experiments, at compared with those of the British Association, dec., reduced the value of the deductions; that the atmospheric railway could alone give the resiatance due to the frontage, which wat not given whes a locomotive was used, as it covered a portion of the carriage frontage, and the dynamometer being behind the engine, the resistance of the train of carriages alone corld be arrived at; and that the valuation of the preasure of the wind upon the train at various angles was not satisfactory. Such wat the general renor of the argumenta; and on the other side it was urged that Mir. Gooch had endeavoured, as much at possible, to avoid introduaing, in any degree, the question of the gauger, and to give the actual resulte of the experimeats, in order that any persons examining them might draw his own conclations; that the portion of the line on which Mr. Gooch's experiments were tried was not selected for its good condition; that it wat fired upon by Mr. Brunel himself only the night previously to the experiments, and was not that part which had been originally intended to be used; that the engiae and carriages were such as could be spared from the working stock and were not picked-in fact, that they were not the beat of their class; that there. fore the resulta were not due to peculiar circumstances, but were those of the average working of the line; but that even had the line, engine, and carriages being selected, engiaeers would, from the resulta, have been able to make allowances for other cases, and that the value of the experimeats woold not have been diminished; that it was believed that in descending Wootton Basset incline by gravity, without the aid of an engine, a greater velocity had been attained than the maximum recorded in the experimenta of the British Associstion; that the tables were divided into columas, distinctly showing what resulted from experiment and what from the use of formulx; that it was impossible, with eagines of the ordinary weight, as now constructed, with an ordinary train, to limit the experiments to such small weights as had been formerly used; that in all cases the sarface of the loconotive was allowed for in calculating the frontage resiatance; that it was expressly stated in the paper that the apparatus for the wind gange wre not so satisfactory as could have been desired, and therefore its reanlis were kept separate in the tables; that Mr. Gooch had not intended to cast any reflections upon the former experimentalists, bat merely to point out the errors into which he thought they had fallen, and to induce, by his experiments, others which should fix more certainly the amount of resistance; this, it was still contended, was leas than had been formerly stated, and although other experiments would be neceamary to set the question completely at rest, it was unanimously agreed that Mr. Gooch's experiments and paper were very valuable contributions, and it was hoped he would contince his observations on this most interesting subject.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

On the 8th ult., a special meeting of the Institnte was held, to take into consideration a memorial submitted to the council in April, 1847, urging the formation by the Institute, of a benevolent fund for the less fortanase mema bers of the profession, signed by thirty-four architect. Mr. Bellamy, VicoPresident, laid before the meeting a summary of the proceedings which bed been taken upon it, the result of which was, that the council had adopted the report of a joint committee (part memorialists, part members of coumij), adviaing the formation of such a fund, and recommended it to the considention of the members at large. The rule of the Artiats' Benevolent Puad, that recipients must be authors of "works known and esteemed by the public," would shut out many deserving members of the profeanion, and those connected with it. Communication had been opened with the officers of that fund, by some mbo thought that the desired end might be better attained by an arrangeraent with them than by a fresh fund. A long discussion followed as to the mode of carrying out the views of the memorial ists, and as to the necessity for the fund. An opinion was generally expressed, that if raised at all, it was quite unnecessary to give the administration of it to another society. Ultimately, on the motion of Mr. Angell, a resolution was passed, declaring the importance of eatablishing such a fond. and appointing a committee of nive, to consider in what way it corid beet be effected, and to report hereafter.

May 15.-Mr. J. W. Papworta read a paper in illuatration of some drawings of Proneste, ancient and modern; and Mr. J. Thomson reed some observations on the ancient village church of Leigh-de-La-Mters Wilts.

Mr. Angells Convertasione-On the 25th a conversazione wat given by Mr. Angell, Vice-President of the Institute of British Architeats, at hin residence in Gower-street, which was attended by all the leading members of the architectural profession, the Marquis of Northampton, and the heade of the scientific world. Many works of art were exhibited, and much gratification was expressed at the valnable example aet by Mr. Angell to his colleagres, in affording such a réunion to the profensors of architecture.

ON PLAME. AND GASBS.

Profesaor Faraday lately read a paper at the Royal Inatitation, "On the Dicmagnefic Condition of Flame and Gases."-Mr. Faradey having triefly secapitulated the ehief subjects of his recent research foto the magnetic con dition of matter, proceeded to atate a still more recent extedsion of these remearthes made by Prof. Bencelari at Venice. Prof. Banealari tras shown that leme, when placed between the poles of a powerful magnet, beoomes ditmagnetic (i e. spresis out in the plane which is perpondicular to the live joiniag the poles of the magnat). Prof. Puraday' object wro-first, to rerepeve eertaln misapprehomions of his own publighed opinions in regatd to this phesomenon ; and, secondly, to give a philosophical account of it. Refariog to bis "Bxpetimental Repearches," in the Philosophical Trawactione, zead in 1845 (part. $2423,2433,2433$), he ohowed that he had never aserted, as bad been imarioed, that the gases were not sabject to magnetio.action; but merely that his experiments had not then entablished that they were atheted by that force. The canues of this magnetic influence were then coasidered. Flame was distected, and its complicated natare-consisting of solld matter, of a surrounding film of heated air, and of gaseons prodacts of combnaion-whe experimentally demonstrated. The following experiments were then exhibited to prove (a) that hot air is diamagnetic with reference to cold air-(b) that carbonic acid gas, a product of combustion, is diamag-natic-(c) that oarbon, which is liberated during combustion, and imparts anminarity to flame, is aloo diamagnetfe.
(E) Hot air is diamagnetic with reference to cold air. The hot air rising trom a glowing apiral of platina wire, placed between the poles of a powerful eleetro-magret, was proved to be bent aride hy the fact of fts infaming a piece of phosphorus in the equatorial plane on either aide of the red.bot platiauta while the magnet was active, and alno by ith yot fring the phorphoras (as would happen in the ordinary condition of thiogs) When this cobetacee whs placed immediately above the beated wire.
(b) Cusbonic aetid gat is diamagnetic. This was proved by a jot of that gat befing meade to diverge from the perpendiculer downward current, which in gravity would eanse it totake, into a fask of limewater (which it rendered turbid) pleoed in the equatorial plane.
(c) Solid surboa is diemagnetic. It was ahown that the smoke of a taper, whan pleced beneath the axial line, divided itecti, as flame was made to diride, lato two streams in the equatorial plane, each on either side of this arinl line.
The singolar condition of oxygen gas, in being far lem diamagnetic than the other gases, and therefore appearing as if magnetic, like iron, when surronnded by other gases or air, was demonstrated by its carrying a cloud of muriato of ammonia (tself dlamagnetic) to the poles of the magnet, around which it seemed to gyrate in vortices.

Mr. Faraday concladed by noticing the apparently exceptional cate of Alame penetrating the pierced poles of a magnet, and coming through them i^{n} an axial tine. He stowed that in this case the maximum of force whe not in this lise, bat in the circle of lines forming the edges of the hollow cylinder drilied through the poles. Therefore-inatmich as the foree in tho vecunt upaee wil feebler than the force at its solid circumference-dame, Which alway goes away from the apot where the foree is strongest to the *pot whece it is walkest, penetrated tho hollow axis of tho cylinder.

PROCESSES FOR UNITING METALS AND METALLIC ALLOYS.

At a reeent meting of the Bertin Acedemy of Sciences, M. Polbrich, founder, of Hambargh, commonicalied an account of his processes for firmity - mititer mathle or metalic alloys, which poasess differeat properties and vahos, moch, for exumple, as bar-iron with cast-iron, gra-metal with castinoe, and thas to oblain pleces of mixed metal suitable to make clasps, gedors, panel equares, railway bearings, wheels, axlo-trees, and other pares made use of in machinery and in bailding, possessing the weight and the cohesion required, but muoh harder and more resistent in certain parts than inothers. The following is the process adopted, as described by the inventor:-
"To Unife Bar-iron to Cast-iron.-In order to unite bar.iron'to casttrum to make, for instance a bar of rectangular girder, of which onetourth the thickness shall consiet of bar-iron, and the three other parts of enathron, or rather in the combination of one rolame of these metals in aty proportione, I proceed at follown:-I take a bar of iron, of the resimed thicknomen, and'I plange it imto a cleaning bath oompoued of nitric acid or any other acid dilated with water. I then take it oat of the cleaning bath, expose it to a red heat in a furnace, and plange it again into the cleaning bath; by means of these operations, I get rid of all the oxide from the surface of the metal. To remove from this har any acid which might remaic, I wash it with any alkaline solution (for instance, sal ammoniac), and I immediately plange it into a bath of melted tin, where I allow it to remain until it has become well tinned over its whole surface. This done, I apply to the tinned iron at the side where it is to be united with the cast-iron, an alloy or aolder composed of copper and tin, in the groportions of fire parts of copper, and 05 of tin. The bar of iron thus
propered is then introduced to the bottom of a mould of the form and dimensioss correspooding to the bar which it is wished to be produced, and it is kept down by iron bolts or nails, which have previously been well tinned; the cast-iron is then poured in a liquid state on the bar of iron, natil the mould is filled. In this etate, in fasion takes place at the sorface of the iron in contact with the liquid cast metal, and under the infloence of the alloy of solder of copper or tin interposed, the two piecen of bar-iron and cast-iron unite so firmly the one to the otber, that it it almoxt impossible to separate them.
"To Unite Stecl with Cast-iron.-Foliow exactly the same process as above described
"To Unite Copper, Broxze, Gun-Metal, or Brass, with Cast Iron.-These alloys, as well as all those of copper, can be united by exactly similar mreas to those above described; except that instead of clearing khe aur faces of the alloys by memos of acid and alkaline solutions as above mentioned, the surfaces should be filed, and the anion with the cast-iron effected at the lowest temperalure possible, in order that the bar of alloy might not be melted
"The proportion indicated above for the composition of the alloy or solder Is that which appears the most suitable, where the pieces of metal to be onitod are of moderate dimenslons; but when they exceed moderate di mensions, it will be better to increase the proportion of copper employed.
"In the examples given above, it is supposed that the different metais wrere anited together on one side only; but one of these metals may be united at two sides, or at two opposite or adjecent faces, to the other metala, or even covered thronghout its entire surface. Further, the piecer of metal may have a curvilinenr, angular, or any other form, and the mmanner of onldiog may be varied according to the rales whioh practice has long since furnished in foundries."

THE EFFECTS OF ZINC ON IRON.

A letter from Mr. James Nasmyth, of Bridgewater Poundry, Patricroft Dear Manchenter, to the Minng Journal, commnuicates the results of some experiments recently made at the desire of the Lords of the Admiralty, with a view to determine whether old iron that had been gulvanised, or coated with zinc, was rendered unft for being again worked-up. The renults of these experiments seem to prove that the quality of the iron is improved instead of being deteriorated by the zine combined with it The following is Mr. Nasmyth's report of the experiments:-
"A piece of galvanised iron-ẉire rope was welded up into a bar, and pat to the most severe test. In the first place it was found, that although itho iron-wire was quite covered with metallic zinc, which, although partially driven off in the process of welding, yet, so far from the presence of the metal, or its oxide, presenting any impediment to the welding of the iron (as in the case of lead), the iron-wire welded with remarkable ease ; and the result was, a bar of remarkably tough, silvery-grained iron, which stood punching, splitting, twisting, and beuding, in a manner such as to show, that the iron was not only excellent, but, to all appearance, actoally improved in quality in a very important degree.
" Enconraged by such a result, a still further, and even more severe, trial was made-viz.: by welding up a pile of clippings of galvanized ironplates, or sheet-iron, oovered with zinc, as in the former experiments. The presence of the zinc appeared to offer no impediment to the welding, and the resalt was, a bloom or bar of iron-the fracture of which presented a most remarkable and beautiful silvery grain-as good, if not saperior, in aspect to the finest samples of 'Low Mowr' or 'Bowiling iron. Bhoom of this iron were rolled ont in rods, and tested in the cable-proving machine, and the resalt indicated from 5 to 10 per cent. higher atrength than the best samples of wrought-iroc-thas entablishing the fact, that, to far from the presence of zinc being destriotive to the etragith and denacity of wrought-iron, the oodtrary is the case.
"I may mention, that bare of iron were heated to a welding heat, propared by Scarf for shembing, in the visual manaer; and, on drawing tbem from the fire, for being welded, a handful of zinc filings was thrown on the welding hot surface, and the welding proceeded with. In this severe test no apparent impediment to the process resulted; the fron wolded as well as if no zinc had been present."
Mr. Nasmyth infers from these experiments, that some improvemedt might be made in the manafacture of iron, by the introduction of metaille zinc in the poddling furnace. In corroboration of this opinion, he addaces the fact that the strongest cast-iron made in Belgiom, and selected for the casting of gous, is made from an iron ore in which the ore of zinc forms a considerable portion.
Mr. Leighton, of Cwmammon, following op the anggention of Mr. Nasmyth, bas commondeated other applications of zinc to iron, which he had devised for the parpose of bringing anthracite coal more into use. His object was the preparation of pure oxide of einc to be need as paint, for iron-work more eapecially, for making joints, ace., in lien of whitelead." If," be observes, "people conld be once induced to make a trial of anthrache cosl, worked by a blast, for several manufacturing operations, the value of this peculiar fuel would be established. It only requires a begtoning; it is quite possible to treat the sutpharet of zioc-a very aboudant ore, kDown as blende, or black jaek-so that pure oxide of tine
and anlphotic acid ahotld be prepared by the eame operation. This voold be a very profitable business, and create a coosumplion for a considerabio quantity of the ore; but at the present price of the metal, it would even pay handsomely to prepare oxide of zinc from spelter. Say, in round numbers, 4 cwt. of spelter, worth $£ 2 \mathrm{los}$., would yield 5 cwt . of oxide of sinc, which, at the price of dry white-lead, would be worth $£ 6$; the coat of labour and fuel being trivial, there would be a profit of eomething like ceat. per cent."

SUPPLY OF WATER FROM THE NEW RED SANDSTONE.

A paper "On the Supply of the Town of Liverpool with Water from Shafta sunk in the New Red Sandstone," was lately read at the Polytechnic Institution, Colquitt-street.-After some observations, at to the jmportance of a plentiful aupply of pore water, the lecturer remarked that the original source of all water found in the earth is the rain rbich falls from the clouds. Though the fall of rain at Liverpool was only about 36 inches per annum, in the interior and hilly parta of the country it was far greater : for inatance, io 1845, there fell at Seathraite 151 inches; Grasmere, 121 ; Buttermere, 87 Keawick, 62; Whitehaven, 49; Cockermouth, 47; and at Manchester, the fall averages ahout 41 inches. He had examined various aprings in the new red andatone, and had never found any above the mean temperature of the climate; and concluded, therefore, that those in the new red sandstose were entirely supplied from the rain which fall from the clouda, estimated in that district at 36 inches per annum. Allowing 18 inches for evaporation and vegetation, would leave 18 inches absorhed and stored in the earth every year, giving 392,040 gallons per acre, or $250,905,600$ gallons per square mile. He maintained that the strata of the new red sandstone, at a level below the aurface of the sea, are naturally, fully, thorougbly, and permanently aturated with water; and that any shaft or excavation aunk to that depth, will always, through lateral percolation, be full of water to that height. He considered the most desiderable mode would be to sink shafts from 1,000 to 2,000 feet deep, which would pierce a stratum highly saturated with water, and wbich would be filled to within a short distauce of the surface. He objected to the plan proposed by some persons to be adopted, that of bringing surface water from a distance, as all such was impregnated with milliona of myriada of animalculse, to the great detriment of public health. In conclusion, he stated as his decided conviction, that the strats of the new ren sandstone formation are not yet exhanated of their water, neither do they show any symptoma of exhanstion, neither is it possible to exhaunt them, so long as they maintain their present conatitution and geological position; so long at they consiat of innumerable beds, of variable hardness, and of variable porosity; so long at they are capable of lateral percolation; so long as the hydroatatic pressure of the sen enables them to keep tbeir lower beds at the full point of aturation; so long as their upper beds are greedily absorbant of water; and so long as Nature, in her hountiful beneficence, is annually pouring down upon them more than $500,000,000$ gallona of water upon every square mile of their aurface.

THE VENTILATION OF TOWNS.

We have received from a correspondent at Liverpool, a description of a plan, which he has for a long time considered, for effectually securing the ventilation of large towns; and if capable of being carried into practice, it would have the effect of not only ventilating the houses in crowded neighbourhoods, but it would also purify the drains, the exhalations from which are frequently the cause of disease throughout large districts. The communication is too lengthy to be given entire; we shall therefore only extract those portions describing the proposed plan, which may be thus briefly stated. It is proposed that in each town one or more large, high chimneys shall be built, with which all the main-drains shall communicate; and that the fire-places of each house, instead of having chimneys carried through the roof, shall have flues carried below and entering the drains. At the bottom of each of the large ventilating chimneys, fires are to be kept burning for the purpose of causing sufficient draught. This plan, which carries out on an extended scale the mode adopted in ventilating the Houses of Parliament and other large buildings, offers important advantages as a sanitary measure, and .ought not therafore to be discarded as impracticable without due consideration. The writer, who is an engineer, affirms that he has tested its practicability, by detailed calculations, We will now let him develope the plan in his own words:-
" lt is proposed, that all house and factory chimneys be discontinued; that the smoke and products of combustion, instead of ascending as heretofore, and being discharged at the roof, be made
to doscend, pass into the house-drains, and through them into the public sewers; the factories having special communication for themselves.
"It is further proposed, that the sewers be arranged to converge and join into larger or main sewers, which would be conducted through the town, to the highest and least-occupied ground in the vicinity, where these mains, culverts, or tunnels, would terminate in chimneys of great height and capacity, placed at suitable distances apart; and in these chimneys, fires would be maintained constantly burning, for the purpose of creating the necessary dranght Besides the communications for withdrawing the smoke from the house-fires, the writer proposes to provide orifices in each apartment, connected with the drains, which could be opened and shut by the inmates at pleasure, and there would also be openinge at suitable distances along each court, lane, and street, commuxicating with the sewers. Still more clearly to illustrate his view suppose we take the case of Liverpool, with the situstion of which the writer happens to be acquainted. Let us presume that four or five large chimneys were erected along the brow of the hill which bounds that town to the east, -one to provide for ventilation of the north-end, one for the south-end, and two or three for the middle district; that leading tunnels were driven downwards towards the river, which tunnels would communicate laterally with, and receive the air and smoke from, the street sewers. Then, let us see how this plan would operate :-Suppose a powerful current upwards, was established in the large chimneys, tunnels, and sewers, it follows that-Firstly, the sewers and drains themselves would no longer give forth noxious exhalations. Secondly, by opening the apertures in the streets and courts, we would withdraw the impure air, and produce a constant influx of pure air, which would descend from above. Thirdly, by upening the orifices in the houses and apartments, although they were crowded with inmates, yet the vitiated air would be so rapidly removed, and replaced by that both fresh and pure, that no injurious consequences would ensue. Fourthly, there would be no more smoke or sulphurous vapour to destroy health, and soil everything exposed to its vile influence; the murky clouds which envelope our manufacturing cities would disappear, and give place to clear skies and a pure invigorating atmosphere.
"But it will be said, there would be serious difficulties to contend with in the execution of such a plan: this is granted-but they are far from being insuperable; in proof of which, the writer will now proceed to consider some of them, only avoiding matters of engineering detail. It may be objected that such a scheme would prove costly: it is not denied that it would require the ontlay of a large, though by no means extraordinary, sum of money; but can we expect to realise great benefits without proportionate expenditure? If it cost a million to supply such a town as Liverpool with water, why should we grudge a very much smaller sam to supply the same town with air? The one is surely as essential to the well-being of the community as the other; and the writer is prepared to show that a large saving of money would accrue, which is at present expended by the adoption of such a plan, irrespective of the immense benefit to the public on the score of health. There would be no factory chimneys to erect; a great saving in the arrangement for house-fires, which cannot here be detailed; smaller houses and smaller apartments would suffice for any given number of individuals, consequently, there would be sm economy in building arrangements, accompanied bylower rents. The same remark applies to streets, lanes, and courts: look at the enormous sums which would be required to alter and widen them, and by that means improve the ventilation. Then consider the contral which would be vested in the authorities over the public health. At present, it is in vain you tell the poor to go dwell in larger houses and more airy situations, - they cannot afford it. It is in vain you tell them not to crowd together in their wretched apartments, or they will suffer from want of ventilation. It is in vain you impress them with the necessity of cleanliness, and of breathing untainted air: the majority disregard it, -how can they do otherwise? But with this plan in operation, let us auppose fever to prevail in some court or alley; we have only to give directions to unclose one or two apertures, and pure air fill fow in, w eeping disease and death away."

Solvent power of Chloroform. -The powerful solveat capabilties of cbioroform are now, by experiment, fully established. Caoutchooc, reshe, copal and gum-lac, bromine, iodine, the essential oils, \&c., yleld to th colvent power. This property may, it is beliered, prore exlensively of advantage in many of the fine and vicfnl arts.

LOCOMOTIVE CARRIAGE WHEELS.

Enward Evang, of the Haigh Foundry Company, has obtained a patent for "certain Improvements in the mode of constructing iron pheels.- -Granted October 28, 1847; Enrolled April 28, 1848.

This invention consists in a mode of securing the tyre or hoop of th ewheel to the spokes or inner rim, without the une of bolts or rivets. The patentee effects this object by using a dovetail groove in the tyre, and a dovetail projection on the rim, which is a method that has been previously adopted, therefore he makes no claim to that; but the peculiarity of his invention consists in making the groove larger than the projections, and filling the interstices with melted sinc. In the words of the specification, the patentee claims "the manufacture of wheels in which the dovetail groove in the tyre is wider at its narrowest part than the dovetail projection on the spokes or the inner rim of the wheel is at its widest part, and the filling the spaces left when the tyre is shrunk on with melted metal or other hard substance. The accompanying section

of the tyre and its junction with the wheel, will sufficiently show the form of the grooves and projections. The dark portions represent the zinc or other easily-fusible metal with which the spaces are filled.

Loconotive Enaines.-George Heaton, Birmingham, engineer; has obtained a patent for "Improvements in locomotive engines." Granted November 9, 1847; Enrolled May 9, 1848.-The object of this invention is to prevent the oscillation of locomotive engines on railways; and the patentee endeavours to effect this by the application of counter-balance weights, moving in an opposite direction to the pistons of the cylinders. The mode of applying these counterbalance weights is as follows:-On each end of the axle of the driving-wheels is placed a crank, to which is united a connectingrod attached at the other end to the counter-balance weight, which is suspended between 'two rods, so as to swing readily to and fro, or it is held between fixed guide-rods, to admit of its sliding easily. The counter-balance weights should always move in the direction opposed to that of the pistons, and should be as heavy as the combined weight of the pistons and the working-gear.

Compound Brame or Girderg.-Henty Fielder, Maida-vale has obtained a patent for "Improvements in iron beams or girders." Granted November 9, 1847 ; Enrolled May 9, 1848.-The patentee constructs his beams partly of malleable, and partly of cast-iron. The lower or tension flanges are made wholly or partly of malleable iron, while the centre ribs and upper or crushing flanges are wholly or partly of cast-iron, according to the duties they have to perform. The lower flange may be made of, or strengthened by the addition of malleable iron, and the centre rib and upper flange remain of castiron; or, the upper and lower flanges may be of malleable iron, united to the centre cast-iron rib, and further strengthened, when exposed to vibration, by angle-iron; or, the perpendicular ribs may also be composed of malleable iron, when exposed to violent concumions. The malleable iron is united to the cast-iron by hot rivetting, and, in all cases, in such proportion that it shall be able to support, alone, the estimated weight to which the whole girder may be subjected. The invention consiste secondly, in the application of the preceding principle of construction to the strengthenlong or repairing of existing beams or girders, with such variation of detail as the particular case may suggest; and thirdly, to the construction of beams or girders composed entirely of malleable iron, in which case the flanges are united to the centre rib by angle-iron, the coupling-joints headed, and the whole are fastened together by hot rivetting.

ELECTRICITY OF MINERAL VEINS.

Ma. Robert Hunt (keeper of mining records at the Museum of Economic Geology) lately delivered a lecture on the "Electricity of Mineral Veins," st the Royal Institution, Albemarle-street.

The lecturer commenced by remarking, that the class of phenomena which would form the subject of consideration that evening, although of the highest interest, had not yet received so great an amount of experimental examination as their importance required; and, as their curious nature was, consequently, not generally known, he trusted that, having spent many days and nights in the mines of Cornwall, in this investigation, he should be able to interest his audience by a narrative of the facts now known, as well as some of a novel character.

As a preliminary of absolute necessity, Mr. Hunt explained the nature of a mineral lode by the aid of a beautiful isometrical drawing of the lead district of Nentsford. A lode was, in fact, 2 fissure, formed by some disturbance of the earth, and filled with mineral deposits. Three theories prevailed as to the origin of mineral lodes; in the first place, they were supposed to be contemporaneous with the rocks themselves; secondly, it was conceived, that fissures were filled by the sublimation of matter from great depths in the earth; and, lastly, that substances were precipitated from solution in water, which flowed through those great rents in the earth. A mineral lode was not to be regarded as being entirely composed of metallic substances; on the contrary, they were most frequently found containing a large portion of earthy matter, amongst which the metallic ore was disseminated. Among the indications which appeared to support the theory of electrical action in these formations, was to be regarded the regular disposition of these substances on either side of the lode. The electrical theory might be explained in a few words. Ampere supposed that currents of electricity traversed the earth from east towest, and these currents were thought to influence the chemical changes which had gone on within the fissure during the formation of the lode, and determine the order of arrangement. The most. striking conditions which appeared favourable to such a view were, that metals of various kinds were associated with peculiar classes of rocks-tin and copper being associated, in a remarkable manner, with the primary rocks; whilst lead was found more abundantly in the limestone formations. These rules, although general, were not constant-many striking exceptions might be named. In the remarkable mining county of Cornwall the rocks were granite, killas or clay-slate, greenstone, and elvan. The mineral lodes were always most abundant near the junction of the slate and granite rocks; they were generally found in a direction nearly from north-east to south-west; and where they were contrary to this, or nearly in the line of the magnetic meridian, there wan almost invariably a great difference in the character of mineral substances contained in the lode. This was shown by reference to a very large map of Cornwall, upon which the lodes of lead and copper were accurately marked. Again, a very remarkable parallelism was observed in most districts between the directions of the lodes, and the veins of granite prophyry (elvan) which occurred in their vicinity ; and this fact had been brought in support of the theory, which refers mineral formations to the action of subterranean heat.
The various questions which arose out of the phenomena of mineral veins, aud their including rocks, had been most ably treated of by Sir Henry De la Beche, Mr. Joseph Carne, Mr. R. W. Fox, Mr. John Taylor, Mr. Hopkins, and others; he would not, therefore, dwell on that part of the subject.
Mr. Hunt next considered, whether any of the conditions known to belong to the rock formations of a mining district were sufficient to produce electrical phenomena. It had been ascertained that granite was always colder than slate-a difference of 20° or 30° was always detected at all depths. This difference might possibly give rise to weak thermo-electric currents; but, in the experiments he had made to ascertain this point, no such currents had been detected. It was also well known that a constantly increasing temperature was discovered as we descended into the earth. By this means, it was evident that any given portion would represent a bar unequally heated. The following table of temperatures, obtained in the rock and lode, exhibited the variations of temperature in the deep mine of Tresavean :-

At rea level..	\cdots	In granite..	\cdots	$57^{\circ} \mathrm{P}$.
At 170 fma.	\cdots	Lade in slate	\cdots	$77^{\circ} \mathrm{F}$.
At 196 fms	..	Do in granite	.	$83^{\circ} \mathrm{F}$.
At 208 fms	.	Do in granito		
At 310 fmi		In granite		

According to the generally received views of thermo-electric
action, such differences would be sufinient to produce currents. That was undoubtedly the case in metallic and good conducting bodies, but no such result had been obtained from experiments on granite, slate, or greenstone.
[A series of experiments was here introduced-and, notwithstanding the use of an aotive galvanic series, it was shown that the voltaic current would not transverse either granite, slate, elvan, or greenstone-connection being made with them and a very delicate galvanometer, upon which not the slightest indication of any action on the needles could be observed:]

When moist, these rocks became over their surfaces conduetors; and, by this means, the action on a single pair of zinc and copper plates, not more than an inch qquare, was detected through a considerable extent of country. Mr. W. J. Henwood had supposed that he had deteeted currents of voltaic electricity through the granite and slate roeks of Cornwall; but the lecturer, who had repeat ed those experiments with great care, was led to believe that the slight deflection of the needle obtained was due entirely to some chemical action in the wires employed at the point of contact with the rock, or within its length-such slight disturbances being of constant occurrence in all experinaents of this class. Although there was not, therefore, any experimental evidence in proof of the voltaic condition of the rocks, yet the regularity of arrangement observed in the lodes themselves-in which zinc, copper and quartz, lime, pyrites, barytes, fluor-spar, argentiferous lead, and quartz, alternated in the most regular order, as was shown by specimens from the mines of Cornwall, Derbyshire, Gaxony, and Mexico-present features so analogous to these which often appear in galvanic experiments, that we are compelled certainly to infer that some modificstion of the electric foroe was concerned in the phenomens. Specimens of pseudo-morphous -bodies from the Cornish mines, and arrangements of brown spar upon quartz, from Schemnitz, quartz upon fluor-spar, and iron pyrites, and the double oulphuret of copper upon large quartz orystals, in all of which a uniform system of arrangement, perfectly independent of each other, was shown-and theee were to be referred, in all probability, to the disposing power of electrical eurrents.

Such were the principal evidences to be adduced in mupport of the electrical theory. Mr. R. W. Fox was the first to disoover any indications of electricity in mineral lodes. By placing copper wires against two portions of a lode, or of two lodes divided by a cross-courge, and connecting those wires with a galvanometer, a considerable deflection of the neodle was obtained-often to such an extent, that from the violence of the action, it was impossible to note the deflection. In nearly all the mineral lodes of Cornwall, upon which experiments were made, these currents had been dotected. Experimonts made by Mr. Fox, in Coldberry and Skeers, in Teesdale, gave, however, negative results; and the results on the lead ludes at the Mold mines were not very decided. Prof. Reich, of Freyburg, obtained very decided results upon the lead and silver lodes of that district; and, in one case, succeeded in detecting a mass of silver ore at some distance behind the rock. Von Strombeck, on the contrary, could obtain no results from the lead and copper lodes on the right bank of the Rhine. In addition to these results, others of a most satisfactory kind had been obtained by Mr. Henwood and Mr. John Arthur Phillips. The lecturer had himself almost invariably obtained very decided galvanometric indications from the copper lodes of Dolcoath, East Wheal Crofty, East Pool, and other Cornish mines-in one instance 80 powerfully, that the electro-chemical decomposition was produced. Mr. Fox has been successful in procuring an electrotype copy of an engraved plate by the current collected from two lodes of iron and of copper pyrites, and also in inducing magnetism in a bar of soft iron. Mr. Pattinson, at the wish of the British Association, made a series of experiments on the rocks of the limestone formation in the lead districts of the north; but he could not detect any evidence of electrical currents.

It now became a question, to ascertain if these currents of electricity, deteoted in mineral lodes, were in any way connected with the general currents traversing the earth, according to the theory of Ampere; or, were they of a more local character? The lecturer was induced to conclude, from all his experiments and observations, that these ourrents were entirely local, and due to the chemies action going on within the lode itself. In all cases where chemical action could be detected, it wes certain the current acting on the galvanometer was-more energetic than-where no chemical change was apparent. In this way might be accounted for the failure of Von Strombeck on the lead and copper lodes of the Rhine, and of Mr. R. W. Fox himself on the lodes of Teesdale-in all probability, those lodes being in a very permanent condition. It westhought
by the lecturer that the fact, that these currents often being fonnd to traverse the ledes in a direction contrary to the currentes of Ampere, and frequently at right angles to them, militated against that view which referred the one to the iniluence of the other. The leeturer had also detected eurrents from piles of ore on the anriseg, which had been exposed to the influences of the atmosphere; ara these currents were certainly only measurers of the amorint of chemical action going on in the pile.

That these local lode currents might have a powerful effect upon masses of matter exposed to their influeaces, was highly probable: and he was disposed to refer the conditions in which cobalt and nickel were often found in the cross-courses, between the ends of dislocated lodes, as due to this local chemical electricity. Tho character of many of the decomposing lades was next desoribed; and it was shown that, under the influence of the percalation of rain-water from the surface, charged with oxygen, and the aotion of the saline water rising from below, few lades admitting water to flow threugh them could be free from chenical setion. He had analysed the waters of many of the deep mines, and the following were the results of a few of these analyses:-

The water from Great St. George contained, in a cubic foot, $\mathbf{5 9 0}$ grains of common salt ; that of the United Mines, rising hot, 481 grains; of Dolcoath, 218 grains; of Great Wheal Charles, 618 grains; Consolidated Mines, at 80 fathoms, 656 grains; and at the 250 fathom level, 918 grains. This muriate of soda was estimated quite independently of the earthy and mineral salts. It was, doubtless, derived by infiltration from the ocean; and, from its quantity, acted, no doubt, powerfully upon the lodes it traversed.

Although these currents, detected by the galvanometer, were not regarded by the lecturer as in any way proving electrical agency in the formation of mineral veins, yet the evidence obtained by Mr. Fox, by Mr. Jordan, and more recently by bimself, that eleo tricity would give to clay a schistose structure and form along e curved line, no doubt related to some line of electrical action, a miniature lode of copper (of which illustrations were exhibited), supported the general view of electrical action. Incidentally, the conducting powers of iron and copper pyrites, galena, and some other minerals, were experimentally shown ; and also the decemposition of yellow. ore by electrical action.

In conclusion, the lecturer carefully recapitulated all the main points of evidence, for and against the electrical views, and pointed out many very curious circumstances, evidently dependent upan some peculiar conditions of the adjacent rocks, but which could not be referred, with any certainty, to electrical action. Probably, those currents now nearly determined as in constant flow around the earth, might produce the curious results observed; but a far larger amount of experimental evidence than that yet obtained was required, before this view could be admitted as one of the received facts of inductive science.

NOTES OF THE MONTH.

Baron de Goldomid': House.-The grand bull-room at St. John's Iodge in the Regent's Park, of which so much has been spoken and written, wets lighted last week, for a party given by the Baran de Goldsmid. The eftect is reported to have been most admirable. Altbough Mr. Barry and Mr. Poynter had exerted every care, the effect of light upon the decorationa must have cansed them some anxiety, and it must be mont gratifying to them to have nucceeded to completely. The richness of the gilding contributes to the grandear of the room, withont destroying its air of chasteness; and if Mr. Barry be reproached that there is a want of repose in the Hown of Lords, and too great profusion of ornamentation, the same objection arnnot be made against a ball-room. This saloon is the great work of the proeent season, and it is pleasing to learn that the monificent patronege of the Baron de Goldsmid has been, as nunal with him, displayed in the oovernragement of Baglich artith, inntead of being laviahed upon forciguers, as in too common with our mobility.

Mineral Produce of Austria.-The Lateat published govemment sceonme give the following at the mineral produce of Anstria :-Gold, 35 ewt ; silvar,
 lead, 6,666 tons; litharge, 1,299 tons; zinc, 227 tons; calamine, 908 tem; tin, 49 tons ; antimony, 231 tons; cobalt, 132 tons; manganese, 64 tons; arsenic, 50 tons; plumbago, 2,327 tons; alum, 1,404 tans; ealphate of iron, 5,354 tont ; sulphate of copper, 288 tons ; sulphur, 1,259 tons ; cont 524 tons.

The Holyhead Steam.Packets.-The principal trial of the new Hokheed steam-packet Llewellym, mastor, Commander Grey \rightarrow vemel ant enginen de signed and manufactured by Miller, Ravenhill, and Co., of Blackwalt-took place on Monday, the 15 th nlt. It is stated that, under adverse circap. stancen, she made four uns at the measured mile, at Long Reach, which
gave her an average rate of speed of $15 \cdot 415$ nantical miles, or nearly 173 gtatute milem per hoor, never making less than 27 revolutions per minute. She then ron to the Nore light, passing the distance from the town pier at Gravesent, in one howr and fiffeen seconde; and then ran from the Nore light to the Mouse light and back twice, during which time her greatest speed was 201 statute miles per hour, and ber lowest rate at 15.845 . The latter, however, in consequence of the throttle-valve being open, was held to be a bad trial, and she was accordingly tried up and down again the $7 \cdot 65$ knots' distance. When working at 28 and 29 revolutions per minute, she mede the same run down in 27 minutes 22 seconds, or at the rate of 16.798 kots; and the return trip in $30 \frac{1}{2}$ minuten, or at the rate of $15 \cdot 049$ knots. Tating the average of the two last runs, the speed of the Llewellyn was nearhy 16 nantical miles an hour, or $18 \frac{1}{2}$ statute miles per hour.

The New Steam-Ship Barin at Portsmouth.-This national worl, which has been conatrocted with the view of affording to steam-ships a fitting and convenient place of reception, was opened on Thursday, the 25th of May. The firat stone was laid Jannary 13th, 1845. Its original design was far of far less magnitude, but as the work progressed, enlargemeats and improvenents were suggested, until the plans were finally extended to their present spacions dimensions. Its mean average length is 774 feet, 400 feet Fide, and 31 feet deep from the coping, covering an area of more than seven acres. The eatrance is 80 feet wide, and the depth of water at the loweat cidea 21 feet. There is alto a fine wharfage outside the basin, in the harboar, where there is water to the depth of 13 feet, which is sufficient to mocommodate stcond-class steamers. There are two inlets on the east side of the basin, each 300 feet long by 70 wide, and 30 feet deep from the coping; these are to enable vessels, whole refitments must be completed in a horry, to be worked upon by the artisans on both sides at once. On the west brink of the hasin is a great factory, of handsome architectnre, 687 feet long. 48 feet wide, and 51 high, and is partially roofed in. On the south wall is a new brass foundry, 90 feet by 110 , which has been for wonse time in partial working. The basin is considered capable of aecommodating around its sides nine steam frigates of the first class, and has emploged, on the average, 1,500 men since tbe commencement, besides an immense body to whom it has given work of the premises-in the quarrien, forenta, iron works, \&cc. Besides the above materials, there have been used in verious parts of the whole about 2,500 tons of cast iron from Staffordshire The rough cost of the labour already turned out of hand is $£ 400,000$.
Sadden Draining of the Niagarn River.-The following extract of a letter we have received from the United States, describes a very curious phenomenon, which recently alarmed the residents near the Falls of Niagara :-"The good people at the falls were greatly alarmed a few weeks ago, fearing that the bottom of the river had fallea out; for all at oace the mills ceased to work, and great part of the falls on Table-Rock were bare. The river, a little above Gioat Isiand, was bare for half the distance across. A gentleman drove his wagon on the bare rock to the middle of the bed of the river, where to have ventured the day previous wonld have been certain death. The worst fears were entertained; some believed the world was coming to an end-indeed, fear was stampad on ewors countenance till the cause was explained. The fact was, that a quantity of ice on Lake Erie had drifted to the mouth of the river, and impeded its flow."

Suspension Bridge near the Falls of Niagara.-The first car, suapeoded by a wire cable, crossed froin cliff to cliff below the falls of Niagara on the 18th of March. Mr. Ellett, the engineer who has undertakeu the conatrection of the suspension-bridge at that place, was the first person who crossed over, anjidst the cheers of a large concourse of people. The Turonfo Colonist observes: "Mr. Ellett must feel gratifioation and consmendable pride that he is the first man who ever crossed in a carriage throggh the air, on wire, from one empire to another; thereby, it is to bs hoped, leading to a happy, prosperous, generous, and reoiprocal unioo-a firm chais of friendship between mother and daughter." We may suppose that among those who experienced alarm at the sudden draining of the Ningara river, noticed above, the shareholders in the anspension-bridge undertaking, were not less frightened than the others.
Comamaications in Ratilcay Trains.-Another of the many plana proposed for establishing a commonication between the passengers and the guard, and through him with the engineer, on railway trains, has been recently patented. The inventor of this plan is Mr. Edward Tattersall, of Newmarket, land surveyor; and it consiats in having a cord run along the tope of all the carriages, communicating with the handle of the steamwhistle, or with a bell. The patentee claims as new an apparatus for leagthening or ehortening the cord, without requiring it to be drawn out longrudinally. To enable the passengers to communicate with the guard, a lamp by night, and a signal board by dag, is to be fixed to the top of etch carriage, and the passenger, by pulling a string may raise a flap that ordinarily secures the lamp or signal-board, and when the guard sees this notice, he is to pull the cord to order the engine-driver to stop.

Irom Ore in Algiers.-A report presented to the Paris Academy of Seiances, on a communication made by M. Fournel, respecting the mineral wealth of Algiers, represents the iron ore to be extremely abundant and rich. In the mountains of Bou Hamra, throughout a distance of four leagues, the croppingo-out of a contiderable number of beds of ore may bo observed, attaining sometimes a considerable size, and never lass than from four to five yards in depth. At the north of Fizara there is an entire momatain (the Mohta El Hadad, or iron quarry), which rises out of the greise, and literally pronents from its base to its sammit, that is to may, a
lueight of about 108 yards, one mass of pure oxide of iron, without the admixture of any other stibstance. To the east of this mountain, M. Fournel traced upwards of 16 points where the ore was cropped-out. M. Fournel has also found large quantities of ancient acoriz, proving that these sources of mineral wealth had been worked by the Romans, or perhaps by the Vaadals; there are also scattered amongst these scoriae, specimens of the metal produced, so that by analyais it can be ascertained from which bed of ore the metal produced at such and such a point, was obtained.

Copying Electric Telegraph.-An electric telegraph which will produce at a distant town fucsimile copies of writing applied to the instroment in London, has just been invented by Mr. F. C. Batewell. We have seen a specimen of the telegraphic writing copied from the original by a separate instrument, only connected with the other by wirea in the ordinary manner. We understand that arrangements are being made to give the invention a trial at a long distance, for the purpose of adopting this mode of telegraphic communication generally, if it be found equally applicable between distant towns as it is at short intervals. The rapidity with which copies may be made with this instrument, will far exceed the manual dexterity of the quickest writer; for the inveutor expects to be able to transmit 600 alphabetical letters per minute. Where short-hand is employed, of course the rapidity of transmission would be much greater; and we anderstaud that even plans and drawings may be cupied by the same instrament.

Phosplutes in the Green Sand.-The green sand formation, situated under the chalk, contains fossil substances in such abundance as to render them valuable us maures, in consequence of the phosphate of lime which is thus obtained. Attention has been recently directed to this subject, and if the fertilizing properties of green sand we as great as is represented, there exists in the south of England vast stores of manure, corresponding in chemical properties with the guano that has been scraped from distant islands, and sold at a high cost in this country. The presence of coprolite (dungstone) nodules in the upper green sand and gault, was pointed ont by Dr. Fitton several years ago, in his account of the "beds below the chalk," published in the "Transactions of the Geological Society," vol. iv. second series; and Dr. F. also ascertained the large proportion of phosphate of lime contained in theso bodies. Dr. Fitton's observations were chiefy made from the gault at Folkestone. But he has also noticed the existence of these nodules in various parts of the upper aud lower green sand. There are cliffs of the upper green sand at Eastbourne, in Sussex, where the fossil and coprolitic nudules may be found. If we pass from the out-crop of the green sand in Sussex and Sarrey, we find it again in still greater force westward, in the fertile vale of Pewsy, one of the firest pieces of wheat land in the kingdon. The whole valiey from Bodwin to Devizes is coveredwith this suil, the stratum dippiag under the ohalk of the Marlborough downs on the north and Salisbury plain on the south.

Improved Maohme for Rolling Iron.-Mr. Benjanin Norton, of Boonton, New Jersey, U.S., has recently obtained a patent in America, for an improvement in the machine for rolling iron. In deseribing his invention, the patentee says-" In rolling the billets of iren that are to be converted into hoop-iron, or into scroil, band, or other iron of a like character, the apparatns used, as ordinarily constructed, consists of three rollers, the axes of which are in the same vertical plane. The billet is passed through a groove in the lowermost pair, and is returned through a groove in the oppermost pair, by which it is prepared to be passed through the smooth or finishing rollers. In my improved apparatus I use but two rollers, in which the billet is first passed in the usual way; as it passes from between these rollers on the rear side, it entert a carved trough, which I call a receiver, and this trough conducts it ronnd the rear side of the upper roller towards the work.' man in front, who passes it into the groove in the first instance, and rho then passes it into a second groove, formed in the same rollers; by which arrangement much time aud friction are saved, and other obvious advantages obtained. The patentee claims the combination of the covered trough, or receiver, with a pair of rollers, for the purpose of conveging the atrand to the front of the rollers, in combination with the employment of the second groove, or grooves, in the lower roller, and thereby admitting of the widening out of the collart.
Ether a substitule for Steam.-M. Zede, Director of the Ports of Pranee, at the request of M. Lafond, a lieutenant in the Marino Navy, has made several experiments on the employment of the vapour of ether in one of the cylinders of a steam-engine. The resolts were very satisfactory as far as regards the employment of the mechanical force contained in this vapour; but as regards afety, M. Zede stated that it is impossible to conceive the danger arising from the use of so inflammable a liquid as anlpburic ether. In order to remove this objection, M. Lafond has proposed to bim the employment of chloroform in place of ether.

Cause of Rain.-At a recent moeting of the Paris Academy of Sciences, M. Babinet explained his theory of the cause of rain, fonnded on numed rous observalions. He sapposes that a volume of humid and heated air having risen into the upper regions of the utmosphere, expands in the rarer air; consequently, the temperature becomea lowered, and the vapour condenses and is precipitated in rain. There seems to be nothing now in this theory, and it fails to assign an intelligible cause for the obseryed phenomen of rain. It is founded also on the queationable assumption, that the portions of the atmosphere near the earth rise when heated into the strata of air above; because, in most circumatances, the difference in the pressure of the atmosphere at higher elevalions, causer a greater difference.

In the relative weights of equal volumes than the different degrees of hemt bbove and below．M．Habinet，indeed，seems to admit this，as the expan－ sion of the hamid air he supposes to be caused by the rurer state of the upper atmosphere，and yet he seems to have forgoten to take into consi－ that the denser and heavier air vould not rise into the lighter．

Amatysis of Phosphates．－Messrs．Dumas and Pelouze have reported very favourably of the process adopted by M．Raewsky，to ascertain the proportions of phosphoric acid contained in phosphates．The process con－ gists in bringing the phosphoric acid to the atate of phomphate of the per－ oxide of iron，and then to ascertain the quautity of lron which it contains． As the phosphate of the peroxide of iron is insoluble in acetic acid，in precipitating the phosphoric acid from an acid liquor by means of the acetate of the peroxide of iron，the salt will be precipitated pure，and can consequently be collected in a filter．After a careful washing，if it be dis－ solved in nitric acid，and reduced to the minimum state of oxidation by the acid of a suitable addition of sulphate of soda，there will remain only to saturate the iron restored to this atate by means of the proportionate quantity of permanganic acid necessary to convert it again into peroxide．

Rotary Heels．－A patent las been laken out for rotary heels to boots and shoes，so that，however unevenly a person may tread，the beel may bo regolarly worn by giving it a turn daily，to expose a fresh surface at the part most trodden on．

Invisible Musicians．－Mr．A．Bain，the ingenious inventor of electric telegraphs and clocks，has obtajned a patent for an invention，part of which consists in causing musical instruments to be played by electro－mag－ neiism，without the apparent agency of any musician．He effects this by placing electro－magnets under the keys of the instrument，and these mag． nets are connected by wires with some other similar instrument in another room，or it may be in some other part of the sume town．Whenever one of the keys of the original instrument is pressed down by the performer，it completes the electric circuit，and induces magnetism in the temporary magnet ander the corresponding key of the distant instrument，and that is instantly drawn down and sonads the note．This arrangenent mizht be continued through several instruments，every one of which would be played at the same time by one performer，who would be touching the keys of ooly one jnstrument，and that，perbaps，a mile apart from the others． In another part of Mr．Bain＇s invention，he proposes to dispense with performers altogether，and to make the printed music play itself．This is done by perforating holes in a sheet of paper，which is to be drava over the openings of wind instruments．Whenever the perforated holes co－ iacide with the orifices in the instruncant，the notes are sounded；and hy arranging the perforutions at their proper distances，the tane is played ！

Manufacture of White Lead．－Some improvements in the manufacture of carbonate of lead have recently been patented by M．Jran Marie Fourmentin，of New Bridge－street，Blackfriars．In this process，the carbonate of lead in produced by the decomposition of oxichloride of lead （obtained by the action of sea salt upon protoxide of lead），by means of carbonic acid，which decomposes the oxichloride；an insoluble carbonate of jead being produced，and a solntion of chloride of sodinm remaining．

Triple Railoouy Break．－A model of a triple railway break，invented by M．Laignet，has been submitted to the Paris Academy of Sciences．Each part of the break most be successively destroyed before any materinal damage can be done，and the resistance offered is calculated to be suffi－ cient completely to overcome the momentum of the train．The action of the break is independent of the engive－driver，and it is constantly ready to act when occasion requires．The name given to this hreak is Parachoc．

New Rifle－Barrel，\rightarrow A now mode of forming the spiral－inside rifio－barrels has been registered by Mr．Lancaster．Instead of making the spiral of a regular helical form throughout，that form is adopted only in the first half of the barrel，commencing at the breech ；the other portion being on an uniformly accelerating geometric curve．The advantages said to be gained by this method are－diminution of the recoil，a anstained spiral motion withont the present liability in rifles of stripplag the ball，and a larger range with the same charge of powder．

The College at Putney．－The Admiralty experiments on coals for the steam navy，are continued at Putney College，in the buildinga erected there by government for the purpose．Dr．Lyon Playfair has recently constructed for this College，the largest magnet that has bitherto been made．

Mammoth Machine．－The Renfrewahire Reformer notices the manufacture by Messrs．T．Shanks，of Johnstone，an immense sloting machine for cutting and dressing up，by self－action，the cranks and cross－heads of the largest marine steam－engines，faishing them throughont，from the rough block as they come from the forge．The machine is erecting for Messers．Fulton and Nellson，of Lancefield Forge，and the weight of the single casting which forms its base is 28 tons．This cast was executed by Mesers．John Goldie and Co．，of the Hayfield Foundry，and took four months in the monlding．

Manual Power Locomotive．－A Manchester paper statea，that Mr．Archi－ bald Farrie，an ingenious mechanic of that town，has invented a locomotive to be propelled by manual lmbour，which was successfolly tried along several of the streets of Manchester．The carriage was stopped every now and then，to allow parties to inspect the movement of the machine－the working of which appeared to cause the driver only a slight muscular effort，aided by manoal dexterity．The machine weighs 8 cwt ．，has no cranks，and has been worked by one man up an incline of $\mathbf{8}$ feet in the yard，while twelve permons were in it．

LIET OF NEW PATENTE

geanted in melland from Apgil 27，to May 26， 1848. Sis Monthe allowed for Enrolment，unlese otherwire esprenwis

William Newton，of Chancery－Ime，Middlesex，civll engimeer，for＂Improvementa in machinery for burring，ginning，and carding wool and cothon or min
equiring those procement．＂（4 commonication．）－8naled April 27.
Edward Walmaley，of Heaton Norfs，Lancashire，cotton splaner，for＂certaln Ina－ proved appartion for preventigg the explosion of stean bollers．${ }^{\text {．}}$－Apri 217.
William Henry Bariow，of Derby，civil engineer，a ad Thoman Fontter，of Streathen Common，Surrey，gentleman，for＂Improvements in electrlc telegrephe and in apparatas connected therewith．＂－April 27 ．

Thomas Edmondson，of Manchester，mechinlat，for ${ }^{*}$ Improvements In martipg and numbernag rallway and other tickets or surfaces，and In arranging and distrbbuting tickets．＂－April 24.
 chinery for connecting rallway carrlages．＂－Aprll 27.
James K．Howe，of the elty of New York，in the United States of America，for＂Im－ provements in bulding shipa and other vescela．＂－April 27 ．
Aoger George Salter，of Birkenhead，in the county of Chester，tarripor，for at eertata Improvemeats in carts for the distribution of Iquid subatances，and in the coastruction of dratas，sewers，and cespools，and in the cieaning of the anme．＂－Aprll 37.
Charlea Flelding Palmer，of Birmingham，for ${ }^{4}$ a new or improved chalybeate wrater．ty －April 20.
Alexander Parken，of Broningham，experimental chemith，for ${ }^{*}$ Improvementa in the manufacture of metals and in coating metalg．＂－Apri 27.

William John Normanvilie，of Pary Village，Middlesex，gentleenan，for＂certain Im－ provements in rallway or other carriages，partly conslating of new modes of constractint the axle－boxes and journale of wheele；aleo an improved method of lobriceting the sald journals or other portion of machinery，by the introduction of equeous，allalive，oleed ginous，or saponaceous molution．＂－May 2.

Irate Harlet，of Rosedale Abbey，Yorkahire，farmer，for＂certain Improwements in machloet or machinery foharrowing，mowng，and manaring land．＂一May 2.
Ialah Darlea，of Birmiogham，engineer，for＂Improvemente In steam－engioen agd locomotive carrlagen，parts of which are aldo applicable to other motive machinery．＂－ May 2.
Alexander Southwood Stocker，of York－place，City－rond，Niddleaer，gentleman，for a Alexander Soutbwood in time teachere and boxes，fhow cards，or holdera formatches， pens，pint，veerlies，and other articlet，and in the mode or modes of manufacturing the pane：＂－May 2.
Fellcite Raleon Sellige，of 6，Boulevart Beaumarchals，Parts，for ${ }^{44}$ certain Improve ments In propelltag，and the machinery employed therein．＂（A communkeation trum her late husbat．）－May 2.
Heary Willam Schwrartz，of Great Eaint Heleo＂e，London，merchant，for＂Improve ments in ateam engines．＂（A communication．）－May 2.
Lewla Dunbar Brodie Gordon，of Abiagdon－street，Clty，for＂an Improvement or tmo provements in rellwaye．＂－May 9.
William Mclardy，of Salford，Lancabhire，maager，and Joeeph Lewila，of the mave place，machine－malter，for＂certain Improvements in machinery or apparatus applicable place，machine－mation aplaning of cotion，wool，ally，fax，and other gbrons substumes．＂ －1ar 9.
Richard Laming，of Clichy la Fiaronge，In the republic of France，for＂an Improve－ ment or improvements to the manufacturt of oxalic scid．＂－May 9.
Edwand Halgh，of Waketield，plumber，for＂an invention for mearuring weter or any otber fuld．＂一May 9.
Vincent Pidce，of Wardour－atreet，Boho，Middieter，machlaist，for＂certain mew of Improved mechanical arrangementa for obtalnlog and applying motive power．＂－May 11 ．
Charies Hancock，of Brompton，Middlesex，geatoman，for＂certaln Improved propar， ations and componids of gutte parcha，and certain improvementa in the mannfacture of articles and fabrics composed of gutte percha alone，and In combination with other eub－ thnces．＂${ }^{\text {＂May }} 11$.
Thomas Beatell，of Tooting．Surrey．watch－maker：and Richard CLark，of the Strand Weatminster，lamp－manufacturer．for＂Improvements in chronometert，cloclos，waches， and other dme－keepers．＂一May 11 ．
George Armitrong，of Neweastle－apon－Tyne，engineer，for＂an Improved weter－pote－ eare engloe．＂－May 11.
Mark Snith，of Heyrood，Lancashire，power－loom milrer，for＂certaln Improvements in looma for weaving．＂—May 11.
Willinm Taylor，of Birningham，mechanlet，for＂an Improved mode of taralog op ot bending tat plates of malleable metala，or mixture of metals，by ald of machataery，fate bending ant pires．
George Henry Burslll，of Albany－place，Hornsey－road，James Paterson，of Baldwh treet，City－rond，and John Mathew，of Norman＇s－bulldings，Old－ntreet，eggineern Widdlewex，for＂a certain Improved method or methods of treating malt liquore and other liquids or fulde，and certain improvementi in machinery or apparatus for effector such improved method or methods of treatment．＂—May 22.
Abraham Bolomona，of London，merchant，and Bondy Amulay，of Rotherhithe，8arre， printer，for

Matthow Hague，of Waterhend Nilis，Lancachire，machiat maker，and Jooph Pirth of Huldernfld，Yoskbire，cotton doubler，for ${ }^{* 4}$ certain Inprovements in machloery fo twisting and donbling cotton yaras and other fbrous materlala．＂－May 25.
Moses Poole，of London，Erotleman，for＂Improvements tu propelling veasels．＂（A communication．）－May 26.
James Parker Percy，of Clarendon－place，Notilng．hilt，gentieman，for＂certaln Im－ provements in obtalning copper from copper oren．＂－May 26.
James Remington，of Warkworth，Nortbomberland，civl engineer，for＂aprovementa In locomotve engives，and in marine and atationary englaes．＂－May 28.
Thomee Richardson，of Newcastle upon－Tyne，chemiof，for＂Imgrovements in the manufacture of manare．＂－May 26.
Felli Hyacinthe Folliet Louls，of Gouthwitk，Surrey，rentleman，for＂an Impact melbod or procest of preterring certaln animal products．＂—May 28.

1307

IMPERIAL INSURANCE OFFICE, OLD BROAD ST., CITY. John Grbon, Esq, Architect.

(With an Engraving, Plate IX.)

The progress of insurance companies, the great interest which is falt by all classes in making a provision for the future, the establishment of new offices, and the extension of business, have caused a demand for large public buildings, of architectural pretensions, and capable of giving the required accommodation. Thus, the City, in addition to the halls of its corporations, its banks, and its dock buildings, has now many ornaments to boast of in the noble offices erected for transacting the business of the asmurance companies. It has been fortunate, too, that with the rise of these establishments, there has been a concurrent improvement in public taste, which has been productive of emulation among the architects, and has given us each year a better class of works.

What the club is to the street architecture of the west-end, the assurance office is to the city ; and the edifices devoted to the more useful purposes of life, it is pleasing to see, are not inferior to those which are only the appendages of luxury. Indeed, the range of assurance offices in London, constitutes in its architectural, as well as in its moral aspect, a characteristic of which England may be proud. The foreigner hus hitherto envied us our charities, our parka, and our clubs; he will now have another feature in the physiognomy of London, which suggests honourable associations in connection with the private and domestic habits of the professional and middle classes, and testifies to their earnest and provident care for those to whose comfort their lives have been devoted.

The Sun, the Alliance, the Amicable, the Globe, and the Atlas, are but a few among the buildings which will readily suggest themselves as coming within the class we have mentioned, each the centre of operations of some great institution, in which property to a large amount is insured, or on which thousands of wives and of children depend for provision when widowhood or orphanage may be their lot. Of the architectural merits of most of the buildings named, we have had the opportunity of speaking on other occasions; we have now to add to our list the office of the Imperial Insurance Company.

The Imperial Fire Insurance Company was formed in 1803 , under a deed of settlement by which the capital was declared to consist of 2,400 shares, of $£ 500$ each, but on which, only ten per cent. has ever been called. The invested capital now exceeds half a million, to secure a permanent dividend of twelve per cent., payable half-yearly, independently of bonuses which have hitherto been equal to as much more, and accounts for the shares boing of greater value than those of any other existing similar establishment. The Life Office (which, although bearing the same name and carrying on its business under the same roof, is a totally distinct concern) was formed under a similar deed of settlement, in 1820. Its capital consists of 7,500 shares, of $£ 100$ each, on which only ten per cent. has ever been paid up; to secure a dividend on which, payable annually, an ample capital is invested in the public funds independently of an accumulated preminm fund now orceeding $\mathbf{\$ 7 0 0 , 0 0 0}$, and bonuses which are declared quinquennially.

The directors of these two companies, finding the accomodation aforded by the premises they have hitherto occnpied in Sun-court, Cornhill, inadequate to the wants of the respective offices, determined, in September 1846, to erect others on the site they had purchased at the corner of Old Broad-street and Threadneedleotreet; for which purpose, several architects were invited to furnish designs, and having done so, Mr. Shaw, one of the official referees was called in to assist the directors in their selection : that resolved on the adoption of Mr. Gibson's design, now nearly completed by the Messrs. Piper, who took the contract for the erection.

Mr. Gibeon is the architect of the Baptist Chapel in Bloomsburystreet, of which we lately gave the elevation, and who may consider himself pre-eminently fortunate in being able to make his professional debiit in two public structures, produced simultaneously. The one which forms the subject of our engraving this month, is the Imperial Insurance Office, which stands at the corner of Old Broad-street and Threadneedie-street, It is an astylar composition, of the Italian Palazzo style, executed in Portland stone, and has unquestionably made a very great improvement in that part of the city, if only by removing what used to be a very ugly and inconvenient sharp corner; in lieu of which, that angle is now cut off, and is made to form a distinct and distinguished compartment of the general design, and is $s 0$ placed as to present itself to
the eye in a very striking manner; and, with its two neighbouring buildings-the Hall of Commerce on one side, and the Mentor Assurance Office on the other-forms a rather important architectural group, in which there is certainly no lack of variety,-the Imperial Office being as studiedly ornate as the other two are studiedly simple, not to say severe and cold in style. Or perhaps we should qualify our opinion by saying, that the facade of the Hall of Commerce would look somewhat cold and bare as an architectural composition, were it not for the panel frieze, which is in a double sense a relief, and which, while it sets off the façade, is in turn set off by its very subdued tone of decoration. A similar universal degree and mode of embellishment in point of sculpture, is also a trait in the design of the Imperial Office, all the key-stones of its ground-floor windows being enriched with carved masks or heads upon them-not a mere repetition of each other, but varying in character,-while the large panel in the upper part of the south-west compartment, between the Threadneedle-street and the Broad-street fronts, will display a relievo, consisting of two sitting female figures, considerably above life-size, with three shields between them, bearing the arms of England, Scotland, and Ireland :-which piece of scuppture, and the key-stones just mentioned (amounting in all to fourteen in the two fronts), are by Mr. Thomas, an urtist extensively employed at the new Palace of Westminster. Highly satisfactory is it to perceive such attention to artistic finish bestowed upon a building which, had it been erected some dozen or fifteen years ago, would have been turned out of hand very differently, -both with the minimum of detail and with the minimum of design bestowed upon that, as witness the Alliance Office, in Bartholomew-lane, and the "Atlas," in Cheapside,-or the City Club-house, in Broad-street; all of which may claim the merit of being exceedingly simple and unartificialprovided unartifical and unartistic be synonymous and convertible terms. The Imperial Office has been enriched with great propriety, the ornaments being in perfect keeping throughout, and at the same time they are profuse and well-executed.

We can now only allude to the interior, as it is not yet quite finished; but every attention appears to have been bestowed upon the official arrangements, and every precaution taken to render the Offices fire-proof. The "strong-room" has been fitted by Mr. Leadbeater with wronght-iron doors, filled with a chemical compound for making them perfectly fire-proof, and ventilating gates. This room appears to be a perfect pattern of safety.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXIII.

> "I muet have llberty
> Withal, as large a charter a* the winds,
> ro blow on whom 1 plemae."

1. One of the essays in the piquant little volume, entitled "Friends in Council," is upon the subject of Public Improvements. As to the essay itself, it is disappointingly brief, and deals too much in, or rather is confined to, abstract generalities. There are, however, one or two remarks introduced in the subsequent conversation between the "Friends" themselves, that deserve to be pointed out. The first of them which I select would furnish matter for a discourse or paper of some length:-"Milverton 'There is one thing I forgot to say, -that we want more individual will in building, I think. As it is at present, a great builder takes a plot of ground, and turns out innumerable houses, all alike-the same faults and merits running through each: thus adding to the general dulness of things."-Such system of housemanufacturing for the market operates, it must be confessed, very injuriously for architecture. A single design is made to serve for scores-perhaps hundreds, of houses; nor is much study bestowed upon that pattern or matrix design. So that it provides a sufficiently commodious dwelling, with all the useful routine accommodations looked for in a "respectable" house, and a sufficiently tasty appearance externally-for your builders deal largely in the "tasty," though not in the tasteful, -nothing more is thought of. London houses have no individuality: never do you find a single original or pet idea carefully worked out in any one of them. One advantage of this is, that you are as well acquainted with every nook and corner of your neighbour's house as you are with yourown; another, that you are relieved from all responsibility on the score of taste, it being that of the confounded builders,-not your own.
II. To continue quoting:-in EHermere's-not the Earl'sreply, we meet with this somewhat perilous question :- " By the way, Milverton, I want to ask you one thing. How is it that governments and committees, and the bodies that manage matters of taste, seem to be more tasteless than the average run of people? I will wager anything, that the cabmen round Trafalgar-equare would have made a better thing of it than it is. If you had put before them several prints of Fountains, they would not have chosen those." To which Milverton responds: "6 I think with you, but have no theory to account for it."-Partly, and even mainly, acconnted for it might be, by saying: It is because in all suoh matterg, committees hold themselves to be utterly irresponsible for their acts, and because no one cares to convincethem of the contrary, by formally calling them to account. So long as Committees of Taste, or whatever else their actual designation may be, are suffered to carry on their councils and operations behind the curtain, what better can be expected than mere random experimentalizing and blundering, at John Bull's expense? Heit is, the British Donkey, though flattered by being drawn as the British Lion, who pays for all.
III. ""Now, Milverton," says Ellesmere again, ""would you not forthwith pull down such things as Buckingham Palace, and the National Gallery ?"" To which the reply is: "cc I wonld pull them down to a certainty, or some parts of them at any rate; but whether "forthwith," is another question.'"-As Mr. Blore's improvement of the Palace had been commenced before the book here quoted from was published, we are at liberty to suppose that, in the writer's opinion, such improvement does not render pulling down at all the less desirable,-perhaps, even more so than ever. As affairs have since turned out, the times are not at all propitious for schemes of building either new Royal Palaces, or new National Galleries. With regard to the Gallery, notwithstanding its imperfeetions, it is susceptible of very decided improvement as it now stands, -capable of easily being made what it ought to have been at first. Even at present, it is not $s 0$ much the "Gallery" itself, as the other baildings and accessories, that render Trafalgar-square a fallure. Those on the east side are in the most pert and vulgar taste, and require to be pulled down quite as much, or even much more, than the "Gallery"-if anything is ever to be made of the Bquare as an architectural ensemble. As to the wost side, the best that can be said of it is, that it serves as a foil to the "Gallery," and is more lucky than the latter; probably owing to its being sheltered from the shafts of criticism by the august name of Sir Robert Smirke. Indeed, it is somewhat unaccountable, that those Who are so dissatisfied with both the Gallery and the Fountains, should be so complacently tolerant of all the rest, and even go into extasies of admiration of St. Martin's Church, which, the columns of the portico alone excepted, is a compound of tastelessness, uncouthness, and deformity. There is not a single feature in it that harmonizes with the order, or is at all in the spirit of the style so professed. In one respect, the Church and the Gallery are nearly on a par, it being difficult to decide which is the ugliest-the steeple of the one, or the dome of the other. Both the une and the other may be ssid to contrast with the respective porticoes; but there is a very wide difference between grating dissonsnce and that artistic contrast which, while it introduces variety and prevents too great sameness, contributes to general harmony. Of such contrast and harmony we have example in the human countenance, where the eyes and mouth are placed horizontally, and the nose forms a vertical line coming in between them. A regular and well-trained critic might object to this, and contend that nature is here at fault; and that there would be more pleasing regularity were either the nose placed in the same direction as the other features, or the latter in that of the noee. Still, there is very great comfort left for him, if not for us-namely, that there is precedentaye, universal precedent-for noses being placed just as they are. But now I am getting too rigmarolish ; therefore, break off.
IV. I find that I have omitted an obeervation in Milverton's reply to Ellesmere's sneer at the taste of governments and committees, that deserves to be attended to. "'I suppose," says the latter, "' that these committees are frequently hampered by other considerations than those which come before the public, when they are looking at the work done. And this may be some excuse. There was a custom which I have heard prevailed in former days is some of the Italian cities, of making large models of the works of art that were to adorn the city, and putting them up in the places intended for the works when finished, and then inviting criticism. It would really be a very good plan in some cases.'"No doubt, but practicable only for small ornamental works, such as fountains, triumphal arches, public statues, monumental crosses, \&c. A full-sized model of such an edifice as the "Howees
of Parliament," or even of the new building at Buckingham Palace, would have been rather too cambrous and costly an affair for an experiment of the kind. Had any other design been chosed for the purpose than the Corinthian column-a model of which would have been altogether superfuous-the Nelson Monument might properly enough have been tried beforehand, by meang of a full-sized model of it put up on the spot. Yet, when we consider what a mere farce was played with the model, or what wim meant for $\%$ del, of the Wellington Statue on the Archway, which was a. bed to remain up only two days, when it was snatched away, lest it should be pelted at with further volleys of cengure and derision, -we must pronounce trial by model-at least, when so conducted-to be nltogether nugatory. If the Statue-committee made a show of "inviting ariticism," they showed also wonderful alacrity in running away from it, after its very first fire. Inviting criticism before-hand, forsooth! committees have no notion of doing that. Their policy invariably is to stave it off as long as they possibly can. The public, it will be recollected, were not permitted to see the model of the facade of the British Museum, notwithstanding that there was one in existence, and that in the building itself; and notwithstanding that some of the newspapers called out for its being liberated from durance under lock-and-key, and submitted to inspection and criticism. Well, we have now the facade itself, and see both positive faulta and numerous short-comings, all which might have been foreseen in the model, and ought to have been corrected accordingly. It in true, the facade is not generally ill-spoken of,-simply because it is not spoken of at all. It obtains not so much as a syllable of praise in any quarter; and such silence is tolerably expresaive of disapprobation and disappointment. The new building at Bnckingham Palace, is in the same unenvisble predicament. It has been abandoned to mockery and contempt, without a single favourable word for it having been uttered by any one; although there are some who would most readily have doneso, had they not stood in awe of general discontent, and been apprehensive that they might injure their own credit with the public for judgmeat and taste, by attempting to persuade them that the design is at least not unsatisfactory.
V. So long as committees, and those who have the management of public competitions for buildings, shall continue to be left irresponsible for their doings, there will be no end to both blunders and dishonesty. Persons who intend to act honourably and fairty, do not need to screen themselves behind a curtain, thereby exaiting a surpicion that what they do will not bear the gaze of broad dajlight. On the other hand, those who care only for the opportu. nity of exerting their own private influence, without regaed to aught besides-even honourable dealing being left out of the ques-tion-ought to be made amare that if they 80 act, it must be at their own peril. There is scarcely a public competition of ay importance that does not occasion complaints of unfair intriguint, and of bad faith on the part of the committee, complaints thet can very well be endured; committees being sufficiently aware that with mere complaints, the matter complained of blows over, without proceeding to the extremity of exposure. All this is doplorable enough; but then, how is it to be remedied? I sbould say, that what would go very far towards remedying it, if not remedying it completely, would be the making it nhesal for apy committee, or other body, to invite architects to a competition by public advertisement, without having a public exhibition beforehand of the designs sent in in the first instance, and without entire publicity in all other respects, the names of the committee being published, and reporters for the pross being admitted to their dicussions on the relative merits of the designs. As matters are cunningly managed at present, we only know that Mr. A, or Mr. B's design has been selected for adoption; but how many votes, or who were the persons who voted for or against, it is impossible to learn, much less the arguments they made use of. The Army and Navy Club, who, it is to be presumed, call themselves gentlemes and men of honour, have laid themselves open to the impatation of the most bungling and bare-faced trickery, by calling an unlimited competition in the first instance, and afterwards setting thet aside, and having a second one limited to sia, of course of eheir own choosing, after the site (at first rather an inconvenient ong and therefore tasking all the ingenuity of the first competitors) had been cunsiderably enlarged, by taking in another hoose in PallMall. The Army and Navy Club ought to blush at being convicted of such downright knavery; yet, they will not do ea, wr causs they know that they are behind a curtain, and that the names of the committee cannot be shown up, as they deserve to be, as those of a pack of tricksy jugglers. One comfort, if a comafort it be, is, that they have tricked themselves; for from what tue
been said of it, they seem to have got a most Pecksniffian plan for their building. Were I, as thank God I am not, a member of the Army and Navy Club, I should be tempted to hang myself out of pure vexation. After what they have done, Navy and Knavery are likely to become synonymous words.

V1. The idea of manufacturing the picturesque out of such things as labourers' cottages is not a little absurd; more especially, when two most embarrassing conditions are annexed to the taskfirst, that they shall be erected at a minimum of cost; secondly, that they shall be free from all those defeots, discomforts, and inconveniences which accompany and contribute to picturesque quality in the works of village Vitruviuses, which marked in their row tate only by uncouthness and meanness, are touched, tinted, tand mellowed down by time and weather, into objects delightful to the painter's eye, and congenial subjects for his pencil. Dilapidation, or something approaching to it, and touches of lichenous vegetable incrustation, are almost indispensable to qualify a cottage for obtaining an artist's interest and vote. Nor must paucity and smallness of apertures be forgotten. Yet all these beauties, and many others not here enumerated, are only so many defects in the oyes of many well-meaning, but prosaic and anti-picturesque people. In fact, a cottage to look at, and a cottage to live in, are two quite distinct things: the former requires all that constitute so many defects in the latter, and vice versa. While your philanthropist would have no such things as rags in the world, the artist, on the contrary, insists upon them; not, indeed, for himself, if he can possibly help it, but rags he must and will have for his beggars and gipsies. And so is it with regard to cottages. I was speakthe other day to an artist friend of mine on the subject, and the schemes for improving labourers' cottages secundum artem. Shorn of sundry emphatic words, that may as well be here omitted, one of his observations was: "At this rate, we shall not have a decently down-falling-looking old tenement, nor a properly beggarly hovel in all England." It was to very little purpose, I obcerved, that painters might draw upon their imagination for cottagee, $2 s$ they now do for a good many other things, cherubim included. So far from being consoled by the comfort I held out to him, he seemed, rather nettled at my remark.
VII. No doubt, cottages may be built so as to be exceedingly convenient and comfortable within, and at the same time sufficiently picturesque in external appearance-at least when Time shall have done his part to them,-until when, they would be apt to look as if they had just been unpacked and taken out of bandboxes. Moreover, they would be comparatively expensive affairs; not perhaps quite so costly as royal cottages, but more so than suits the purses or else the parsimony of the devotees to the picturesque. There are bargain-hunters even in matters archi-tectural,-people who want things both cheap and tasty, but who geacrally find out in the end that by the change of a t into an n, they have got hold of what is termed the "cheap and nasty." It is, indeed, possible to produce tasteful and striking effect with comparatively little or no money cost. Nevertheless, such effect costs something; if nothing, or next to nothing, to the employers, it costs architects a very great deal,-nothing less than a life of study, and infinitely more study than many make to suffice for a whole life-time. Let me not be understood as saying, that comfortableness, convenience, and other more directly utilitarian than poetic or wentimental matters, ought at all to be interfered with for the sake of ensuring picture-like appearance. But I do contend that small dwellings, built with regard both to such comfortableness, and to strict economy in point of cost, can never be beautiful objects in any sense of the term, unless beauty and homeliness be one and the same thing. Neither are they likely ever to become even picturesque,-because what will render a mere hovel so, causes them to appear only tristefully squalid, and equally offensive to feeling and to taste. No one has yet discovered the way of making "a silk purse out of a sow's ear." You may, indeed, tie a silk purse to it, and one well filled with gold: and so may you trick out a cottage with much that shall be from the very first highly pleasing, on account of its being studiedly elegant and tasteful; but then it will be an expensive affair-at any rate, comparatively expensive, because if effect is to be attended to and produced, there must be a good deal more or less beyond what mere necessity would dictate. Besides which, even if cost be not at all regarded, there is very great danger of a building of the kind, when intended partly as an ornamental object, turning out a very finical-looking one. He who is a mere architect, is not capable of treating such subjects properly : in order to do so, he mant have more of the artist in him than falls to the share of architecta in general-or, instead of the artistic or artistiopietureaque, he will only give us the artificial. Was ever painter
so smitten hy what may be called an architectural tricked-out comme-il-faut and secundum artear design, as to venture to introduce it into a picture? As soon would he think of peopling a landscape with the satin-slippered and silk-stockinged peasants of the Operahouse, instead of the vulgar worsted-stocking, or perhaps stockingless, creatures of real life, -whether in the land of John Bull, or any other. Cottages that are really and positively picturesque, are those erected by people who never thought of the picturesque, or perhaps even never heard of such word. If it should be asked what it is then that has rendered them picturesque, I answer, Accident, and all that causes builders, surveyors, appraisers, and auctioneers to shake their heads at them, as if there wras anything in them-I mean in their own heads.

ARCHITECTURE AT THE ROYAL ACADEMY;

and the architectural drawinos at tae exhibition.
Since our preceding publication, matters look more and more cheering-riper for reform, and indicating the necessity for it. The Art-Journal scruples not to tell its readers very bluntly that architectural drawings have no business to be in the Exhibition. The editor seems to have made up his mind that there could not possibly be two opinions as to the propriety of excluding them altogether ; and, to say the truth, they might almost as well be so, as experience the scurvy treatment they now do. As to the illwill which he manifests towards architecture, we will merely say, that it is not exactly the thing for a gentleman to do who conducts an art-journal, and who professes to watch over the interests of art in all its branches,-and some of the lowest of them he takes under his especial patronage : mach good may it do them. Considering the quarter it comes from, we are not at all surprised at the ill-will just instanced; but surprised we are, and that in no small degree, at an outrageous instance of similar feeling on the part of the Royal Academy. As the fact has been publicly noticed and animadverted upon by others, our readers will probably have guessed that we allude to a model of Miss Burdett Coutte's churah having been sent in by its architect, Mr. Ferrey, and turned away! No wonder, therefore, that there is nothing of the kind in this season's exhibition. If there were any other productions of the same class that met with the same fate, we cannot say: it is just as probable as not that there were at least some; yet, whether such were the case makes no difference as to the animus displayed by the Academy. Had more models been sent in than could possibly be accommodated, some of them must, of course, have been excluded. But to reject while there was room-not to suffer so much as a single one to appear in the Exhibition, was really too bad, and showed singular want of tact also. If the Academy were determined not to admit models, they ought at least to have said as much in their advertisements to those who intended to exhibit. That would, at any rate, have been acting straightforwardly. They might have been well aware, that although models actually exhibited might fail to obtain notice, the entire absence of them would excite remark. Had none been sent, whatever remark had been made could not affect them, because they cannot compel persons to exhibit. But to act es they have done is nothing less than a solemn blunder, it being certain to lead to explanations and comments that are not at ail to the honour of the Academy. If the painters are ashamed of having architecture in their company, let them honestly and openly declare as much, instead of resorting to every sort of mean and dirty trickery in order to force it out. If the Academy can shift without architecture, the latter can shift equally well without the Academy, there being, most luckily, another royal, and eminently publicspirited body, which only waits for architecture being dismissed from the Academy, to bring it more effectively before the public. Nothing-so we are assured-but delicacy towards the Academy, has withheld the Institute from getting up an annual exhibition of architectural designs of every class, upon an adequate scale. Well, they need not now be restrained by delicacy, for it would be entirely thrown awry after the "exhibition" of the cloven-foot in their conduct towards architecture.

For our part, we are not at all sorry that the Academy have acted as they have done, because they now leave no room for doubting of their hostility towards architecture. They have now fairly committed themselves; and if architects should not now be stirred up to resent the insults put upon their art, and upon themselves as a professional body, they will richly deserve to be treated with ignominy and scorn. We would fain be of better hope. We
trust that not only they will properly resent it, but that the Professor of Architecture himself will now rouse himself from his lethargy, and stand up for the honour and the interests of his own art. If he do not do so, the sooner he has a successor the better; for even should it be "Mr. Pecksnif" himself, he cannot possibly do less, and might probably do a little more. Mr. Cockerell is, we have no doubt, a very well-meaning gentleman, and sufficiently well qualified to discharge the duties of his office, so long as difficulties do not present themselves; but he does not show himself to be the man who is both capable of and determined to meet difficulties boldly, and to exert himself energetically in behalf of that art which his professorship at the Academy points him out to the public as the representative. If he has expostulated with the Academy in regard to their treatment of architecture, he does himself very great injustice in concealing it from the world; thereby leaving it to be inferred that he is altogether indifferent to the matter.

After this tirade, if so it should be called, though what we have said is neither uncalled for nor unprovoked, we were going to say that we resume, and proceed with our remarks on the subjects exhibited, when, as ill luck, or at any rate luck of some sort or other, will have it, we are perforce, compelled to postpone them till our next number, when we shall lay them before our readers. In the meanwhile, we have at any rate given them something to cogitate upon, inviting those who may agree with us to support us in our opinions by expressing their own, and assuring those who may. happen to dissent from them that we are quite ready and willing to receive and listen to whitever they may have to advance that shall countenance the treatment which architecture receives at the hands of that specimen of royalty-the Royal Academy !

COLLISION OF TRAINS.

In the following paper we propose to determine the shock experienced at any part of a railway train during a collision, and to propose methods for obviating the mischief that ensues. To simplify our ideas, let us first suppose the weights of the separate carriages all equal, and the bufters removed. Let the number of carriages be N ; the impulse on the first carriage that sustains the shock $R ; r_{n}$ the impulse between the nth and $n+3$ th carriage : then the velocity in all parts of the train being the same relatively, both before and after impact, the carriages being supposed inelastic, and the masses of all the carriages equal, we shall have the following equation:-

$$
\begin{gathered}
r_{n}+2-r_{n}+1=r_{n}+1-r_{n}, \text { for all values of } n ; \\
\text { or }, r_{n}+2-g r_{n}+1+r_{n}=0 ;
\end{gathered}
$$

a linear equation of differences, the solution of which is $r_{n}=\left(\mathrm{C} n+\mathrm{C}^{\prime}\right)$; but r, (the impulse on the last carriage outside) $=0$.

$$
\begin{array}{r}
\therefore C^{\prime}=0 ; \text { and } r_{s}=(C N)=R . \\
\quad \therefore C=\frac{R}{N} ; \text { and } r_{n}=\frac{R}{N} n .
\end{array}
$$

If the masses of the carriages had been unequal, m_{n} the mass of the nth carriage, we should have had N equations of the form $\frac{r_{n}+2-r_{n}+1}{m_{n}+2}=\frac{r_{n}+1-r_{n}}{m_{n}+1}$, from which to determine $r_{n}, \& c$.

From this we conclude, that in a train of equally-loaded carriages the shock increases directly as the distance of any given carriage. from the end of the train farthest from the point of impact.

The design of buffers is to diminish the violence of the shock; that is to say, to change impulse (which is intense pressure continued for a very short time) into a lesser pressure continued for a longer time; but, as we shall immediately show, it is not practically possible to construct buffers capalle of thus translating the whole or any considerable part of a violent shock-such, for instance, as is experienced when an express-engine accidentally is turned into a siding upon a heavy luggage-engine. To take an exanple:-Let the express-engine weigh 20 tons; its rate be 40 miles an hour; the stationary luggage-engine weigh 30 tons: then, if n, m^{\prime}, be the masses of the trains, v the velocity of the express, and $R=\frac{v\left(m m^{\prime}\right)}{m+m^{\prime}}$;
vexpressed in feet per second $=60$ nearly ;
$m=\frac{20(2940)}{32} ; \quad m^{\prime}=\frac{30(2240)}{3 z}$ nearly, in masses of a lb. weight.
$\therefore \mathbf{R}=$ nearly 50,400 units of momentum, or the momentum is the same as would be occasioned by a mass of $3,200 \mathrm{lb}$. weight impinging on a fixed obstacle at the rate of 504 feet a second.

Let us now determine the pressure on the head of a buffer which is capable of translating this shock into a continuous pressure. Let the play of the buffer be supposed 2 feet, and the thrust vary as the distance by which the rod is depressed. Let p be the pressure when the rod is thrust in a distance $x ; P$ the pressure when the rod is thrust in a distance 1 : then $p=\mathbf{P}_{\boldsymbol{x}}$.

At the time t, from the commencement of the impact, let the end of the buffer have moved forward a space $=z$; the head of the buffer has moved forward a space $=x-x$: therefore, the luggage-engine has been pushed forward a space $=x-x$. Therefore, neglecting the mass of the buffer as small compared with the masses of either of the engines, we shall have these equations (the luggage-engine being supposed without buffers) :-

$$
\begin{gathered}
m \frac{d^{2} x}{d t^{2}}=-\mathbf{P} x ; \quad m^{\prime}\left(\frac{d^{2} x}{d t^{2}}-\frac{d^{\prime} x}{d t^{2}}\right)=\mathbf{P} x \\
\text { Eliminating } \frac{d^{2} x}{d t^{2}} \text { we get } \frac{d^{2} x}{d t^{2}}=-\left(\frac{\mathbf{P}}{m}+\frac{\mathbf{P}}{m^{\prime}}\right) x ; \\
\left(\frac{d x}{d t}\right)^{\prime}=\mathbf{C}-\left(\frac{\mathbf{P}}{m}+\frac{\mathbf{P}}{m^{\prime}}\right) x^{2}=v^{2}-\left(\frac{\mathbf{P}}{m}+\frac{\mathbf{P}}{m^{\prime}}\right) x^{2} \\
\text { When } x^{\prime}=2 \text { the blow is expended, and } v^{2}=4\left(\frac{\mathbf{P}}{m}+\frac{\mathbf{P}}{m^{\prime}}\right) \\
. \cdot \mathbf{P}=\frac{v^{2}\left(m m^{\prime}\right)}{4\left(m+m^{\prime}\right)}=756,000 \mathrm{lb} . ; \text { and the greatest pres- }
\end{gathered}
$$

sure $=P \times 2=$ twice this quantity, or 675 tons.
It is needless to say that such a buffer is purely imaginary. A far better plan would be, to have one or two carriages of very slight construction, and filled with any kind of soft and yielding material, at both ends of a train. There is little doubt but a contrivance of this kind would destroy entirely the effect of many shocks which, unless so counteracted, would be sufficiently violent to endanger life. In the above example, to avoid the difticulty of calculating the effect of several buffers acting at once, the case of a single engine impinging on another has been considered. But when trains are attached, it is clear that the shock will be still greater than that just calculated.

If the play of the buffers-that is, the distance through which they are capable of moving, be extremely small as compared with the length of the carriages, the velocity at every part of the train will be the same. Therefore, $\frac{d^{2} x}{d t^{2}}$ is the same at every part; and if $P_{n}, P_{n}-1$, be the pressures on the nth carriage, arising from the buffers, $\mathbf{P}_{n}-\mathbf{P}_{n-1}=\mathbf{P}_{n-1}-\mathbf{P}_{n-2}$ (the weight of the carriages being supposed uniform),-and, as before, if F be the pressure on the buffer of the carriage nearest the shock.\mathbf{P}_{n} will $=\frac{n \mathbf{F}}{\mathbf{N}}$.

Returning to the equation $\binom{d x}{d t}^{2}=v^{2}-\left(\frac{\mathbf{P}}{m}+\frac{\mathbf{P}}{m^{\prime}}\right) x^{2}$, when $\frac{d \boldsymbol{x}}{d t}=0$, and the buffer is driven as far as it will go, $v^{2}=\left(\frac{\mathrm{P}}{m}+\frac{\mathrm{P}}{m^{\prime}}\right) \boldsymbol{x}^{2}$.
From this we see the great advantage of having a long play on the buffers: the pressure P will be diminished in a ratio varying as the square of the length to which the buffer plays--that is, if the length of one buffer-rod be twice the length of another, and the strength of the spring of the first be only one-fourth the strength of the spring of the last, the anount of shock destroyed by either will be the same.

The practical effect of buffers, as they are ordinarily dispesed throughout a train, is to resolve so much of the impact as they cannot altogether absorb, into a series of impacts of lesse momentum; for let us consider what would happen supposing ${ }^{3}$ train, the several parts of which are separated by buffers, to impinge on a fixed, immoveable obstacle. So long as the buffers are all acting, $P_{n}=\frac{n}{N^{\prime}}$; consequently, the pressure on the first pair of huffers is greater than the pressure on those behind. Let V be the velocity destroyed by the total shock, eV the velocity destroyed by the time the first pair of buffers has ceased to act: then a velocity ($1-e$). V has to be destroyed in the first carriage by
a force of impact,-for the pair of buffers behind will be still acting for some little time after the first pair have ceased to act.

Again, let e V be the velocity destroyed before the second pair of buffers cease to act; then, as before, the second carriage will be suddenly brought to rest by an impact on the first carriage capable of destroying the velocity ($1-e^{e}$). V in the second carriage. Next, the third carriage will be suddenly stopped; this, likewise, will communicate a shock to the first, though less than it communicates to the second; and so on. These shocks and motions will be somewhat varied by the resiliency of the buffer-springs, and the impulsive friction of the rails against the wheels;-this latter disturbing force we have altogether omitted, as being comparatively insignificant. On the whole, then, it appears that buffers very much diminish the intensity of a shock, although they are incapable of utterly absorbing it, supposing it to be of great intensity.
I. H. R

ON STONE WALLS AND EMBANKMENTS FOR RESERVOIRS OF WATER-WORKS.

By R. G. Clarg.

The intention of this paper is to treat of the pressure of water against walls and embankments of reservoirs for water-works and canals, and to lay down some easy formulw to find the necessary dimensions so as to effectually resist the pressure of the water; the demonstration of these formulm being effected by the simplest methods of investigation. We shall first exhibit some investigations for stone walls. The level of the surface of the water in all cases to be supposed on a level, or co-incident with the top of the wall or embankment, so as to favour the stability of the structure in case of floods or violent agitation of the water by storm winds, -although the water might be when in a quiescent state but two foet from the top. The following description of walls are required to inclose a few acres of water, when there is no suitable kind of earth to be obtained in the locality for forming an embankment. The walls are to be constructed in solid masonry, of a uniform connection in all its parts.
I. Given the height of the wall, the depth of the water being the same, and the batters on each side of the wall equal; to determine the thickness of the wall at the bottom:-
Let ABCD be a vertical section of the wall; $D W$ the level of the water; let x denote the required thickness, $A B$, of the wall; the batter, B F or EA, by b; the height of wall by a; the specific gravity of water by unity; and that of the material by 8 . After some reduction, we have for the equation of equilibrium,

$$
b a b x-\frac{1}{b} b^{2} u-\frac{1}{b} n^{3}+8 M m=0
$$

\qquad
(see "Moseley's Hydro-
 statics," Art. 51), where $\mathbf{M}=$ area, and m horizontal distance of centre of gravity \mathbf{G} from \boldsymbol{A}; $\mathbf{M}=\frac{1}{2} a(2 x-2 b)=$ $a(x-b) ;$ and $m=\frac{1}{2} x$; Therefure,
${ }_{8} \mathrm{M} n={ }_{1} a x(x-b) s=$ moment about A; which substitute in the above general equation,
Fg. 1.1
we have $x^{2}+(b-b) x=\frac{a^{2}+b}{38}$
Er. Given the height of the wall $=24$ feet ; batter each side, \ddagger feet ; and the specific gravity of the material, q : to find the thiekness at bottom and top.

$$
\text { Here } a=94 ; b=4 ; \text { and } s=2
$$

Substitute these values in (1), we have $x^{5}-2 x=98.6$;

$$
\therefore x=11 \text { nearly }=\Lambda B ; \text { and } C D=3 .
$$

11. Let the vertical section of the wall be rectangular, or the vides vertical ; to find the thickness at bottom:-
Nuw area $A B C D \times \frac{1}{}$ distance of centre of gravity from $A=\frac{1}{j} a^{3}$

Ex. Given the height of the wall $=24$ feet, and the specific gravity of the material, 2 : to determine AB.

$$
x=\sqrt{V}\left(\frac{24^{2}}{3 \times 2}\right)=9 \cdot 8, \text { the thickness required. }
$$

III. Let the side of the wall next the water be battered, and the side behind vertical; to determine AB, the thickness at the base.

Let ABCD be the vertical section, and let fall the perpendicular C E.

The momentum of the triangle CEB about A from its horizontal distance of centre of gravity g, $8 \cdot \frac{1}{2} a b \times\left(\frac{1}{2} b+x-b\right)$.
The momentum of rectangle DCAE about A from its centre of gravity,

$$
\text { a }(x-b) \times \frac{1}{b}(x-b) \text {. }
$$

Adding these two together, and substitute for $s \mathrm{M} m$ in equation (a), as in first case, we have, after transposing,

$$
\begin{equation*}
x^{2}+\left(\frac{b}{8}-b\right) x=\frac{a^{2}+b^{2}}{38}-\frac{1}{3} b^{2} \tag{3}
\end{equation*}
$$

Ex. Given the height of wall, 24 feet; batter, 4 feet; and specific gravity of stone, 2: required the thickness of the top and bottom.

By substitution of the above values in equation (3),
we have, $x^{2}-2 x=98 \cdot 7$.
Solving this quadractic, we have $x=A B=9.9$; top, 5.8 .
IV. When the wall is battered behind, and the side facing the water perpendicular.

Fig. .s.

The two first terms of (a) vanish when BD is vertical ; $\cdot s \mathrm{M} n=t a^{3}$.
The moment of triangle A EC about A, by its horizontal distance of its centre of gravity,

$$
\text { s. } \frac{1}{2} a b \times \frac{2}{8} b ;
$$

and also of rectangle C E B D about A,

$$
a(x-b) \times\left(b+\frac{x-b}{2}\right)
$$

\therefore substituting the sum in equation (1),

$$
\text { we have } x^{2}=\frac{n^{2}}{3 \delta}+\frac{1}{3} b^{2}
$$

Ex. Given the dinensions of the wall as in last example; to determine the thickness at bottom :-

$$
\begin{aligned}
& x^{2}={ }_{6}^{94^{2}}+\frac{16}{3}=96+5 \cdot 3=101 \cdot 3 ; \\
& \therefore x=10 \cdot=A B ; \text { and CD }=6 .
\end{aligned}
$$

For additional strength to the above walls, it would be well to insert at the centre of them one tier of bond, about two-thirds the height from the top, which will be at the centre of pressure.
\mathbf{V}. We shall now give a case where earth shall be required in the construction of an embankment, of the form of a trapezoid, having a vertical clay puddle-wall in the middle, and the slope facing the water being paved with suitable material, with a puddle under. In case of any contraction of the clay, there would be a separation of the clay from the earth; therefore, the triangle DEB should be of sufficient strength alone to resist the fluid pressure, either against sliding or revolving on D. The water is supposed to be co-incident with the top of the embankment.

Fig. t.
Let $\mathrm{DB}=a ; \mathbf{B E}=u$. Uraw PM parallel to FE ; and the horizontal pressure of water $=$ momentum BPM \times horizontal distance of centre of gravity from D;
$\because \frac{1}{6} x^{3}=\frac{1}{8} / \theta y^{2} d x ; \quad \cdot y^{2}=\frac{1}{s} x^{2} ; \quad . \cdot \mathrm{UE}=V\left(\frac{1}{8}\right) a$.

Ex. Given the height of the embankment, 90 feet; specific gravity of material $=1 \cdot 4$ (water being unity): to determine the base DE of the triangle DEB; also the whole width of bottom, when it has a horizontal surface A B at top, 3 feet wide.

$$
s=1.4 ; \quad \mathrm{BD}=a ; \quad \therefore \mathrm{BE}=\sqrt{ }\left(\frac{1}{1.4}\right) 20=16.8 \text { feet required }
$$

therefore, the whole width $\mathrm{FE}=36.4$.

THE CIVIL SURVEYORS AND THE MILITARY SURVEYORS.

The Surveyors' Association is proceeding vigorously in its defence of the professional rights against the government usurpation, though we very much wish that they had taken this course at an earlier period, for we long since pointed out to them the course of invasion which the military employees of the government were carrying on against the public. Among the late allies of the government jobbers is our contemporary, the Athencum, usually among the foremost advocates of sound and enlightened policy; and we have no other means of accounting for the remarks contained in the number of the 17 th June, than by the supposition that its sympathy in the cause of sanitary reform has been taken advantage of by some of the jobbers, to foist on the editor a mis-statement of the case. It is by alarming the sanitary reformers that the jobbers hope to hide their own designs, representing that there is an attempt to prevent the sanitary plans from being carried out in the most efficient manner; whereas the same issue is pleaded against them. The Atheneum cannot be expected in its literary capacity to take part in all the details of engineering questions, and it is quite excusable that it should give way to the assumptions of the military engineers. We do, however, hope that the editor will re-consider the case, and not give the weight of his advocacy to a course of policy which is eminently calculated to retard the progress of sanitary reform.

At the present day, there is an assumption on the part of the government functionaries, that it is the government which has effected the great sanitary reforms already made, and that none but government functionaries can carry them out; whereas, the whole statement is utterly untrue. The great improvements in sewage were made by the exertions of members of the engineering profession, before the government had any share in the administration; and the plans now being carried out are those emanating frum the officers of the old commissions. What the government is answerable for, is-first, neglect, in allowing the old irresponsible commissions to exist ; and second, usurpation, in assuming the administration of the sewers to a new set of irresponsible commisgioners, instead of establishing representative commissioners. The government parties make a great fuss about the new era of sanitary reform, with which they have as much to do as a cuckoo has with the construction of a sparrow's nest; the new era of sanitary reform, and the new lights on sewaye engineering, having emanated not from government, but from Messrs. Roe and Phillips, who originated the present cheap and efficient plans, and carried them into practical execution. So, similarly, the plans for the supply of water by constant service did not emanate from the government, but from the hydraulic engineers. Hitherto, all that has been done in sanitary engineering, as in every other department of engineering, which has been done efficiently, has been done by the civil engineers, and not by the government engineers; and it never can be done efficiently except by the civil engineers. For this reason alone, we should view with jealousy any attempt to supersede the civil engineers.

The Athencum has given faith to the assumption that the military engineers have a superiority in their professional capacity, whereas the issue is not whether they have a superiority, but whether they have an equality. Wherever the military engineers have been put to the test, they are found most inefficient; their engineering works in Cauada and the colonies are far from cseditable to them, or satisfactory to the nation; their volume of scientific papers is principally the production of civilians, or on civil works; and their surveys hitherto, although they cannot be subjected to any rigid test, have nevertheless been attended with serious disappointments. In the engineering world, the military engineers have no professional standing or reputation.

The Athencum does not seem to be aware that we have in London, engineers competent 'to conduct a trigonometrical survey, which involves the nicest points of astronomy, and requires all
the resources of mathematical analysia,'-when a reference to the Institution of Civil Engineers is quite sufficient to show the mathematical capabilities of its members; and if the Athencum had adverted to the evidence as to this, given from time to time in its own columns, it would not have had any difficulty in saying who were competent to conduct the survey. If, however, the military engineers are under a slur in their professional capacity, it must be recollected that such as they are, they are not the parties who carry out all the details of the survey, which are done by the body of privates, many of whom are got from hedge-achools in Ireland. If the Athpncum had been aware of this, it would not have spoken of the inferior attainments and little experience of a great many of the lower surveyors-the worst of whom are, we believe, some of the best men of the government corpe, who leave it as soon as they learn something, and sot up for themselves. Even in the operations which are going on, hardly an officer is to be seen in the streets, but the duty is left to the privates. Mr. Bidder, Mr. Gregory, Mr. Simms, Mr. Barlow, or Mr. Buck, is not needed to perform the lower operations of a survey, which will certainly be as well performed by the repudiated surveyors as by the government corporals and privates. With regard to Mr. Edwin Chadwick's statement, that one of the associated surveyors was five years ago a journeyman carpenter, we cannot see what that has to do with the question, unless he states how many of the assistants on the government survey were journeymen bricklayers or clodhoppers five years ago, or what impediment his own former occupations are to his proficiency in sanitary science.
We join issue as to the competency of the government engineers, and as to their merits in comparison with the civil engineers. We join issue, likewise, on the point of chespneas. Mr. Chadwick knows very wall, that in any comparison of cant, the general charges of the body of military engineers must be added to the special estimates. If he ware not trying to uphold a job, he would not quibble upon it. We are, however, most gurprised, that after the declaration in the House of Commons, the government have determined to put the country to an expense for this military survey, while the progress of the ordnance survey will be impeded.
The Achencum has been likewise misled upon the point that the case of the surveyors has been decided by a competent and impartial court; whereas, the decision as yet has been an approval of Mr. Edwin Chadwick's scheme, by Mr. Edwin Chadwick's own board,-8nd this is what the associated surveyors are trying to upset; for they consider, in common with the great body of the profession, that they have not yet got "a hearing," and they are now "trying for a hearing," in which we hope they will be supported by the Athercoum, which, would not, we beliere have countenanced Mr. Edwin Chadwick's plans if it had been informed of the whole truth of the case.
The Athenaum boldly says, that "as the nation builds its own ships, bores its own cannon, and does all things else which can be done with its own workmen, why should it not make its own surveys?" We answer, that the government has ships and machinery made elsewhere, cannon cast elsewhere, and many other things made elsewhere; and that, on the other hand, whatever is done by the government, is neither done well nor cheaply. The ordnance works, the dockyards, the post-office, and the mint, would be a disgrace to any merchant or partnership or joint-stock company. In the present case, the military surveyors have quite enough to do in the north of England, where they are wanted to finish the ordnance $u n$-survey.

Import and Export of Metals.-It appears from the return of the imports and exports of lead, copper, tin, and zinc, ordered by the House of Commons, that the total quantity of lead ore imported was 507 tons, of which 400 tons were from France, and the remainder priucipally from New South Wales. Pig and blicet lead imported amounted to 3,932 tons, of which 216 tons only were retained for home consumption-the rest being re-exported. Of British lead there were exported 8,259 tons, of which France took 1,765 tons; Rassia, 1,754 tons; East Indies, 1,055 tons; and Holland, 806 tons. -The total quantity of foreign copper ore imported was 41,490 tons, of which 23,831 tons were from Cuha-the quantity of fine copper contained therein being 8,920 tons. The quantity of metallic copper imported was 513 tuns ; retained for home consumption, 70 tons. The quantity of copper exported was 15,142 tons. -The total quantity of tin imported wat 1,165 tons, of which 161 tons were retained for home consumption; and the es. ports were 1,741 tons British, and 547 foreign.-The total quantity of uinc imported was 12,769tons; and exported 886 tone British, and 3346 tons foreign.

NOTES ON ENGINEERING.-No. IX.

By Homezsbam Cox, B.A.

Symoptic Tables for caleulation of Earthworks in Level and Sidelong Ground on Railooays.
No earthwork tables have hitherto been published for the express parpose of facilitating calculations for SIDELONG GROUND. The present is an effort to supply this want, which is much felt on account of the number and complexity of the operations usually required for adapting the published tables to the caees referred to. According to the existing methods, it is necessary when the ground slopes laterally, to calculate the areas of the sections, and extract the square root previously to reference to the tables. By the method here proposed, these antecedent calculations are wholly avoided: the numbers are taken from the table without any previous computation, and require only to be multiplied by the natural and artificial slopes.
The tables are also easily applicable in calculation for LEVEL GROUND; and it is believed that for both purposes the methods will be funnd very simple and expeditious. The tabular numbers are calculated for every half foot. When greater exactness is necessary, the calculator is referred to the admirable tables of Mr. Bashforth. The manuscript computations for those tables have been kindly placed at the disposal of the present writer, and have enabled him to check the accuracy of a great part of his own results.
It is not intended to demonstrate at length the formula of computation, as they depend on well-known theorems: the following brief account of them is sufficient for the present purpose.
Let ACDB be a section in a railway cutting in level ground, C D being the formation level, and A C, B D, the artificial slopes. As A B is horizontal, the peints A, E, and B, are all at the same

Fig. 1.
vertical height above the formation level: call this height a, measured in feet.

Let a similar section be taken at a distance along the railway of 66 feet, or one chain from the above, and let the vertical height there be b feet. The solid content in cubic yards of the solid terminating in E D B, is $\frac{2}{2} \frac{9}{\eta}\left(a^{2}+a b+b^{4}\right) r$.
The solid content is ${ }^{\prime \prime}$ arw; r being the "slope" of the embenkments, the measurement of which will be explained more fully presently; w the width in feet of the formation level.
Next, let A C D B be a section in sidelong ground-that is, ground inclined laterally or transversely to the railway. Here

Fig. 2.
there are two sets of heights to be considered-those on the right hand, and those on the left hand of the railway: and there are tro "slopes"-that of the natural ground depending on the inclination of AB; and that of the artificial embankment, depending on the inclination of either AC or B D. Call the natural alope R, and the artificial slope (as before) r. If a and A be the
heights (in feet) of the points A and B respectively, above the formation level CD, the area of the triangle AFC=$=\frac{1}{\frac{1}{2}}(\mathbf{R}+r) a^{2}$; and of the triangle $B \mathrm{FD}=\frac{1}{2}(\mathrm{R}-r) \mathrm{A}^{\prime}$.

Similarly, if another section be taken at a distance 66 feet along the railway, and $b, \mathrm{~B}$, be the corresponding heights, the areas of the two triangles similar and similarly situated to AFC, BFD, respectively, are $\frac{1}{2}(\mathrm{R}+r) b^{2}$; and $\frac{1}{2}(\mathrm{R}-r) \mathrm{B}^{2}$.

The solid content (in cubic yards of the solid terminating in AFC $=(\mathbf{R}+r) \frac{13}{\frac{1}{4}}\left(\mathbf{A}^{2}+\mathbf{A B}+\mathbf{B}^{2}\right)$.

The larger of the accompanying tables gives values, or $\frac{1}{2!}\left(a^{2}+a b+b^{2}\right)$, for every half foot of the two heights, up to 50 and 60 feet, respectively. The smaller table gives values of $\frac{10}{g} a \times$ by various widths of the formation level.

METHODS OF CSING THE TABLES.

For Level-lying Ground.-Multiply the tabular number in the larger table corresponding to the heights of two successive sections a chain apart, by twice the slope, and add the number from the smaller table, corresponding to each height separately. The result is the number of cubic yards required. For instance, let the heights be $29 \downarrow$ feet and 45 feet; the base, 30 feet; and the slope 2 (to one). In the larger table, the number corresponding to $\{291,45\}$ is 1710 . This, multiplied by twice the slope $=6840$. Add, from the column for base 30 in the second table, the number for 291 (which is 1082); and also the number for 45 (which is 1650): and the total (9572) is the quantity of cubic yards required.
The following is an example of the quantities corresponding to four sections, a chain apart, the corresponding heights being 16, 201, 30, and 44j, reapectively: the base, 33 feet : the slope, 24 (to one-consequently, all the first tabular numbers are to be multiplied by twice 81 (or 5).

Belghto	let Tab, Noa.	Moltplied by twlee Slope.	2nd Tab. Non. to Bace 35 .	Sum.
$[16$	3	1990	645	62
L90\% 38		887	3462
[20 ${ }^{\frac{1}{2}}$		3940	827	
430	8	3840	1810 *	
$\left[\begin{array}{l} 30 \\ 444 \end{array}\right.$ 1717	8585	1210	
			1794	1589
			Answer	21028

When the segtions are at greater or less distances than one chaim apart, quantities between esch twe sections must be multiplied by the corresponding distances. For instance, suppose in the above example the sections had been $1 k, 9$, and 3 chains apart: repeating the sums in the last column of the above scheme, we have

For Sidelong Ground.-Here the larger table alone is used. There are two sets of heights, those on the right-hand side of the railway, $\mathrm{B} f$; and those on the left-hand side, Ae (fig. 2). These sets are to be kept quito distinct. Multiply the tabular numbers corresponding to the greater heights by the difference between the natural and artificial slopes, and the tabular numbers corresponding to the less heights by the sum of artificial and natural slopes: the difference between these products is the result required.

For instance, let the natural slope be $6 \mathbf{d}$ ($\mathbf{t o}$ one), and the artificial slope 11 (to one): the sum of the slopes is 8 , the difference 5 . Also, let the heights be: 1st section, $80 \frac{1}{2}, 10$; 2nd section, 58,30 . The two major heights, $80 \dot{\alpha}, 52$, are taken together; and the two minor heights, 10 and 30, are taken together. The number in the table for the first pair is 1707; which, multiplied by 5 , gives 8535. The height for the second pair is 529 ; which, multiplied by 8 , gives 4232. The difference of the two products, or 4303, is the answer required.

Where the slopes remain unchanged for several successive sections, the sums of each set of the tabular numbers may be multiplied by the slopes, instead of multiplying each tabular number separately. For instance, let the natural slope be 3 (to one) ; the artiticial slope, 1 (to one). Also, let the heights be, first section,

35,10 ；second section， 56,201 ；third section， 39,12 ；fourth sec－ tion，45，15．The calculation is as follows：－

If the sections were at unequal distances apart－say $8,1 \frac{1}{4}, 3$ chains－each tabular number would have to be multiplied by the corresponding distance．The above example would then be modi－ fied as follows ：－

To extend the large table where either height exceeds 60 ，take four times the tabular number for half the given heights．For instance， the tabular number for $\{100,80\}$ is four times that for $\{50,10\}$ ．

To extend the small table，where either height exceeds 55 ，add the tabular numbers for any two heights which together make up the given height．For instance，the tabular number for 60 is the sum of the tabular numbers for 50 and 10 ，or of those for 55 and 5 ，\＆c．

To find the tabular number in the greater table．Look for either height in the horizontal row of index figures，and for the other height in the vertical row of indices．The tabular number re－ quired is beneath the one index and opposite the other．In the smant table used for level－lying ground，only one index figure is used ：the tabular number required is opposite it in the column designated by the given width of the formation level．For other widths than those given in the table，multiply the number to＂base 1 foot＂by the given width．－Example：The number for height 87 to base 82 is 92×33 ．

Measurement of slopes．－The slopes on railways are measured by the horizontal distance corresponding to one foot vertical rise．If， for instance，the rise of one foot correspond to a horizontal dis－ tance of 21 feet，the slope is $2 \boldsymbol{f}$（to one）．The same mode of mea－ surement is adopted here for the natural inclination of the ground as for the artificial inclination of the sides of the embankment or cutting．

Change of the natural slope may occur in sidelong ground where the surface is very irregular．The sections ought to be taken so near that the difference of slopes at two successive sections may not be considerable．Now，by using exclusively the greater of these natural slopes with the actual heights，the result would be too large：by using the smaller of them，too small．But as the results obtained in these two ways will not in general widely differ， the truth may be taken as a mean between them．

The difficulty arising from change of natural slope may however， in general be avoided．For the upper surface of the ground being undulating and irregular，the natural inclination is represented by equalising lines drawn so that the small curvilinear areas in excess and defect may balance each other．These equalising lines being in some degree arbitrary in position，may in general be drawn at the same inclination for several sections together．
＊＊These iables，and the method of usling them，are original and copyngbt．They are published separately by Weale，Holborn．

\％ base 29ft． bane 30 O 288 t.

隹密号 E．家1ल

bage
34f．

 2×6 | $20 \frac{1}{4}$ | 295 | 8 | 48 | 49 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 24 | 66 | 6 | | | |

01 2 t 2 $\frac{1}{8}$ ω童 $\frac{1}{6}$ - 1

- $\frac{1}{6}$
7 ह 8 8 $\frac{1}{8}$ 0 e 101备 28 1 6 $12 \frac{1}{2} 18$ 14 18

$\stackrel{m}{0}$

 $1490105910001191112211441168118+12101282$

$$
91900 \quad 91
$$ 919

989
940
949
901
972
983
94
100 ${ }_{948}^{939}$ 95897899810181059 10181039
1029
1050 1089
10.50
1061 1039
10.50
1.72

1.72 ${ }^{-}$ | 1049 | 1070 | 1009 | 1112 | 1133 | 1155 | 1177 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1050 | 11091 | 1091 | 1248 | | | |

 $\begin{array}{llllllllll}1082 & 1103 & 1124 & 1146 & 1167 & 1169 & 1211 & 1238 & 1856 & 1278\end{array}$ $\begin{array}{llllllllll}1028 & 3114 & 1135 & 1157 & 1179 & 1201 & 1228 & 1245 & 1258 & 129\end{array}$

 116S 118011008123012541275129813811841367 $\begin{array}{lllllllllll}176 & 1199 & 1221 & 1243 & 1265 & 1288 & 1111 & 184 & 1857 & 158 t \\ 1190 & 1212 & 1254 & 1256 & 1278 & 1201 & 1824 & 1844 & 1871 & 1895\end{array}$

$\begin{array}{llllllllllllll}1454 & 1479 & 1503 & 1528 & 1552 & 1577 & 1601 & 1628 & 1651 & 1677\end{array}$
 $\begin{array}{lllllllllll}1430 & 1513 & 1537 & 1562 & 1586 & 1611 & 1636 & 1661 & 1687 & 1718 \\ 1606 & 1530 & 1564 & 1579 & 1604 & 1629 & 1654 & 1079 & 1705 & 1781\end{array}$ $\begin{array}{llllllllllll}1528 & 15.47 & 1672 & 1597 & 1622 & 1647 & 1672 & 1697 & 1723 & 1749 \\ 1840 & 1565 & 1590 & 1615 & 1640 & 1645 & 1800 & 1718 & 1741 & 1787\end{array}$
 $\begin{array}{lllllllllll}1558 & 1589 & 1608 & 1688 & 1668 & 1683 & 1708 & 1734 & 1700 & 1788 \\ 1576 & 1601 & 1626 & 1651 & 1676 & 1701 & 1727 & 1758 & 1779 & 1806\end{array}$ $\begin{array}{llllllllllllll}1376 & 1601 & 1626 & 1651 & 1676 & 1701 & 1727 & 1758 & 1779 & 1805\end{array}$ $\begin{array}{llllllllll}1594 & 1619 & 1644 & 1664 & 1694 & 1720 & 1746 & 1772 & 1708 & 1824 \\ 1018 & 1688 & 1668 & 1648 & 1718 & 1780 & 1765 & 1791 & 1817 & 1848\end{array}$ $\begin{array}{llllllllllll}1632 & 1656 & 1681 & 1707 & 1782 & 1758 & 1764 & 1810 & 1830 & 1852\end{array}$

 16881714178917617901816184018091890 $\begin{array}{llllllllllll}1709 & 1733 & 1769 & 1784 & 1810 & 1866 & 1882 & 1869 & 1016 & 1942 \\ 1727 & 1758 & 1778 & 1804 & 1830 & 1856 & 1882 & 1909 & 1036 & 1968\end{array}$

 180818481859100018912194919051972

182718541841190719381960188620131304019068

 19541061 1907 20142041 2068 2085 212321512170 $19871983200920362068 \quad 20902118$ 214; 217442202 1979200520512058208521132141216921972235 200120272053208121092136216421912219224 2028204920762104213121592186221422422271
$\begin{array}{lllllllll}2045 & 2072 & 2099 & 2127 & 2154 & 2182 & 2209 & 2237 & 2265 \\ 2029\end{array}$

 $\begin{array}{llllllllllll}2238 & 2281 & 8289 & 2317 & 2345 & 2374 & 2408 & 2432 & 2461 & 2490 \\ 2258 & 2246 & 2314 & 2342 & 2470 & 2390 & 2428 & 2457 & 2496 & 2516\end{array}$

2283231028882367239524242453248225112441 $23072348523132492 \quad 2420244924782546825372467$
 $\begin{array}{lllllllll}2357 & 2545 \\ 2414 & 2445 & 2472 & 2501 & 2530 & 2559 & 2589 & 2619\end{array}$
 2404244724862455152425532582261226422672
 24602485251825472576260620352665410452728 $\begin{array}{llllllllll}2466 & 2515 & 2545 & 2574 & 2604 & 26,3 & 2662 & 2692 & 2723 & 2753 \\ 2512 & 2542 & 2571 & 2601 & 2630 & 2660 & 2650 & 2720 & 2750 & 2780\end{array}$
 $25672596262526552664271+27442775280520646$ $2593262826532682 \quad 2712 \quad 2742 \quad 27722602228332464$ $28212851284027102740 \quad 2770280028302061$
 $\begin{array}{lllllllllll}2076 & 2706 & 2736 & 2766 & 2796 & 2826 & 2856 & 2287 & 2918 & 2949\end{array}$
 $\begin{array}{llllllll}2732 & 2762 & 2792 & 2022 & 2853 & 2583 \\ 2760 & 2918 & 2914 & 2975 & 5007\end{array}$ $278828192850 \quad 2430$ 2910 24412972 2008 30348065

2817284828952909298929708001802280638095 284620072907 2938 2906829993080806280983125 2276790629372967899830298060819231233185 2935 29f5 2998 $8027 \times 104830893120315281848215$ 2965 2995302680573418831193160318232148246

 $\begin{array}{llllllllllll}14866 & 1289 & 1812 & 1858 & 1848 & 1888 & 1408 & 1439 & 1454 & 148 \\ 1378 & 1801 & 1824 & 1347 & 1470 & 189 & 1418 & 1449 & 1495 & 1491\end{array}$
 $\begin{array}{llllllllll}1: 790 & 1815 & 1388 & 1359 & 1888 & 1406 & 1480 & 1456 & 1479 & 1694 \\ 1302 & 1325 & 1348 & 1371 & 1395 & 1419 & 1448 & 1450 & 145 & 1517\end{array}$

 380 $\begin{array}{lllllllllll}1351 & 1375 & 1359 & 1423 & 144 & 3771 & 1496 & 1521 & 1546 & 157 \\ 1364 & 1388 & 1412 & 1436 & 1440 & 1435 & 1510 & 1534 & 1559 & 1505\end{array}$

1405	1497	14681	477	1802	1527	d	1577		
1419	1449	467	149	1516	1541	15	1591	1617	1642
1433	1457	1481	1508	1531	1550	188		1631	16
144	1471	1496	$15 \% 0$	1545	1370				167
1461	1486	1510	1385	1560	1586	1611			
1476	1501	1525	1580	1575	1800	1626	1681	1677	1-0
1491	1816	1540	1565	1590	1818	1641	1667	1693	1719
1506	1531	1555	1580	1606	1631	1587	164	17	-
1521	1546	1571	1698	1621	1647	1678	169		1717
1537	1862	158	1612	1687	1683	16	175	1742	L
1588	1578	1603	1688	1658	1679	1705	1783	1788	
1569	1594	1818	1044	1670	1695	1788	1748	1778	
1565	1610	1635	1681	16*	1712	1788	1765	1791	1818
1601	1626	1651	1677	1703	1729	1753	170	lidas	
16.7	1648	1668	164	172	174	1772	179	1326	
1634	1660	1685	1711	178	1769	1780	1816	184	220
165	1677	1702	1728	1754		1607	1884	1861	
1668	1694	1719	1745	1772	1798	1826	1852	1809	1900
1685	1711	1737	1748	178	1816	18	18		150

$\begin{array}{lllllllllll}1703 & 1789 & 1755 & 1781 & 1607 & 1894 & 1801 & 1888 & 1918 & 1948\end{array}$
 $\begin{array}{llllllllll}1789 & 1768 & 1791 & 1817 & 1844 & 1871 & 1808 & 1985 & 1985 & 1881 \\ 1757 & 1788 & 1809 & 1886 & 1884 & 1800 & 1917 & 1944 & 1972 & 900\end{array}$ $\begin{array}{lllllllllll}1757 & 1788 & 1809 & 1886 & 1884 & 1800 & 1917 & 1944 & 1972 & 2000\end{array}$ $\begin{array}{lllllllllll}1776 & 1801 & 1828 & 1884 & 1881 & 1809 & 1936 & 1988 & 1891 & 2019 \\ 1704 & 1840 & 1846 & 1878 & 1901 & 1928 & 1055 & 1083 & 9010 & 2048\end{array}$ $\begin{array}{llllllllll}1798 & 1810 & 1846 & 1878 & 1901 & 1928 & 1856 & 1983 & 9010 & 2048\end{array}$ $\begin{array}{llllllllll}1812 & 1899 & 1865 & 1884 & 1940 & 194 & 1974 & 2002 & 2000 & 2018 \\ 1831 & 1888 & 1885 & 1912 & 1489 & 1466 & 1904 & 2028 & 2069 & 8078\end{array}$

1899191619491971190820282054200021102180 1809193619631991201820462074210221802169 19491976 196918972024205220002106 2180 2165 2193 2001
 204220602067211521482174220022498848 2018200121092187216521942248 2241 20008810

200621242152218122092238220822053284234

 $2162219022142247 \quad 2206$ | 2184 | 2218 | 2241 | 2270 | 2290 | 2328 | 2357 | 2387 | 2416 | 244 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 220722362264229823232351292024102440200

 23232352288124112440240260025302500 2801 25423762405243524642444253425352505816

 $\begin{array}{lllllllll}2444 & 2474 & 2503 & 2538 & 2563 & 2594 & 2624 & 2655 & 2600 \\ 2469 & 2499 & 2528 & 2558 & 2568 & 2619 & 2649 & 2680 & 711\end{array}$ 2494252425542544261426442545 251925492579260424642030270127322765208

 $\begin{array}{llllllllll}2049 & 2579 & 2719 & 2740 & 2771 & 2842 & 2883 & 2865 & 2897 & 2969 \\ 2675 & 2708 & 2786 & 2767 & 2798 & 2829 & 2560 & 2852 & 2924 & 2014\end{array}$

2839237029012428296829958027806980983121
 28962426

 29809304180738104313781698207823480288201

81278159819122258257828982288955388

ON THE APPLICATION OF SCULPTURE AND SCULPTURED ORNAMENT TO ARCHITECTURE.
 By H. B. Garling.

At a meeting of the Royal Institute of British Architects, held on the 29th of May, the following paper was read:-"Essay on the Application of Sculpture and Sculptured Ornament to Architecture, and the Principles which should regulate their introduction into Buildings generally, both with regard to Beauty of Embellishment and Propriety of Sifle." By Mr. H. B. Ganling; for which the Silver Medal of the Institute was awarded.

If from the study of some individual branch of fine art, we proceed to consider how to combine any two or arore of them in the same composition with the greatest effect,-in investigating the relation they bear to each other, the means by which the impressions conveyed by the one are influenced by its connection with the other, and the sources from whence our ideas of beauty or grandeur in each department result, we chnnot fail to remark the close and striking analogy which exists between all the various branches into which fine art is divided, whether by the impressions they produce upon the mind, or the means by which those impressions are effected. We shall find that though varying in the organ by which they address the imagination, or the vehicle by which they convey their impressions to the mind, they influence the aame feelings, strike as it were the same chords, and depend upon causes varying in form only, to produce effects substantially the same.

Whether it be architecture or sculpture, painting, music, or poetry that engages our attention, it is but the expression of one and the same sentiment-the collecting and arranging in the most effective manner, the giving form and substance, as it were, to those ideas and images, from which result our impressions of the sublime and beautiful.

Though we may discover in all, this common origin and aim, yet between some the connection is obvious; and the assistance they afford to each other, when skilfully combined, more natural and effective.
Thas, if to the symmetry and proportion of architecture we add the graceful terminations and flowing lines of sculpture, or the relief and rich variety of pictorial embellishments, we enhance the value of each by placing it in its most effective position, and surruunding it with suitable and appropriate accessories.

To the artist it is, therefore, an important as well as an interesting investigation to consider how the architect and sculptor may unite their labours with the most successful result; and what rules we must observe in the treatment of each department to produce s harmonious and effective combination.

If we commence our investigation by tracing the distinguishing featares of the various styles of art as each rose in succession from the materials bequeathed by its predecessor, the first that engages our attention is the collossal architecture of the Egyptians. The distinguishing features of these extraordinary edifices are so well known as scarcely to need description : interesting as they may be to antiquarian research, and rich in matter for reflection and speculation on other points, to the artist they afford but acanty materials for study, and still less for imitation and example. That the germs of beauty and proportion may be traced in a certain propriety of decoration and regular disposition of parts may not, perhaps, be denied; as also that a certain effect of grandeur has been attained; the results of collossal size both in the general mass, and also in the details of the composition. Yet they exhibit a style of art so circumscribed in its object, so limited in its rezources, and so much fettered by conventional ideas and principles, as to limit its advancement beyond a certain point-forming, in fact, a perfect reflection of the social condition of the people with whom it originated.

If from Egypt we turn to Greece (where exquisite refinement of taste and feeling were combined with a social condition more favourable to progress than in the former country), we shall find the powers of the artist rapidly increasing with the demand for their employment, and the scope afforded for their exercise. Aiming at the attainnent of beauty by nicely-adjusted proportions and propriety of decoration, and attaining grandeur and dignity of effect, not by actual size, but by simplicity of parts and regularity of design, we observe even in their earliest efforts the germs of that perfect mastery of all the resources of art, which subsequently ripened and expanded into the inimitable productions of the age of Periclea.
Apart from the merits of each in its particular department, the principles they observed in combining architecture and sculpture
in one composition claim our most careful attention. Whether forming the graceful terminations of the acroteria, or filling up the voids of the pediments, or metopes of the Doric entablature, or decorating the walls in long continuous friezes of elaborate design, we observe how admirably the sculptural accessories complete the general outline of the masses, fill up every void space with rich and appropriste decoration, and relieve the more regular forms of the architecture with the most pleasing variety of lines; imparting poetry of feeling to the whole composition, and assisting in a most important degree the character aimed at by the architect.

The rules observed in the treatment and distribution of sculpture by the artists of Greece, obtained throughout the whole of the best period of classic art.

The triumphal and monumental buildings of antiquity are particularly interesting, as exemplifying the views and ideas of artists of the nost acknowledged skill and judgment. The mausolea of Halicarnassus, of Hadrian, and of Augustus, the Antonine and Trajan columns, the triumphal arches on the Via Sacra, the commemorative monuments in short of every class, when carefully considered, will be found to possess a character admirably adapted to the purposes of their erection : but in the application of these ideas to our own times, we must ever keep carefully in view the particular circumstances which guided them in the forms and arrangement they adopted. As art degenerated towards the decline of the Roman empire, the abandonment of true principles became apparent in all its departments-in none more so than in the treatment of sculptural accessories,-their meretricious character and the profusion of ornament (often exceedingly coarse and inelegant) destroying that repose and chaste simplicity, so essential to true dignity of style and so happily attained in the works of a better period. Of these abuses the latter examples of Roman architecture, particularly the baths and even to a greater degree the gorgeous remains at Balbec and Palmyra, afford remarkable instances.

The political convulsions which for centuries distracted the world, so completely buried in barbarism and ignorance every class of literature and every vestige of art, that scarcely any production worthy of the name can be recorded. This destruction of art seems to have been completed at a period when the true principles of taste being abandoned, and its most essential rules being completely lost sight of, all hope of further progress was stajed; and thus, though for a time its extinction was most complete, this very circumstance may be said to have paved the way for its regeneration on better principles, at a subsequent period. By it was annihilated all mere conventional rules, and by it was destroyed every false standard of excellence; and the absence of precedent compelled the artist to go back to the study of nature, the only source from which, in early ages, he can, and in all ages, he should, derive his ideas, however he may seek to form his taste, mature his judgment, or collect experience from the works of others : and from this constant reference to nature alone, we must trace that freshness of feeling and vigour of conception with which the early productions of art and literature teem, and which we strive in vain to catch when the feeling3 of society have become more refined and enervated, and its structure more artificial and complicated. Art will invariably take its tone and expression from the character of the age in which it is produced; it is an influence the artist cannot resist; it forms the very atmosphere he breathes; and from it the constitution of his mind takes its tone: the experience of the past offers no exception, the character of art at the present day confirms it.

As the arts gradually emerged from the obscurity in which they were buried (fostered by a patronage peculiarly favourable for the development of their loftiest powers), they began to assert their true position and exercise their legitimate influence on society; and while the monuments of classic art were rapidly falling to decay, another style of architecture arose, based on principles of construction and of composition almost as diametrically opposite to those of classic art as the source from whence it sprung, the purposes to which it was dedicated, and the character of the age and people amongst whom it originated. The sculptural accessories are no less different in character than the architecture with which they are associated. These sculptural accessories (often vigorous in design and well conceived, consisting principally of isolated figures, stiff and constrained, distributed and arranged rather by conventional and prescribed ideas of symbolism than by rules of artistic composition), convey ideas more by symbolical arrangement than by a combination of action and expression; of this perhaps the fronts of Wells and Exeter Cathedrals may be adduced as the most striking examples. Thus in the sculptural decoration of mediæval architecture we observe a style of art too subordinate in
its character, too circumscribed in its views, and too much fettered by conventional forms to expand and assert an independent position; aiming solely at the expression of devotional feeling by the adoption of the most simple forms. These remarks do not apply to the artists of the revival in Italy; who, forming their taste on the model of the antique, united to these sentiments the lofty expression of intellect and ideal perfection; and thus produced a distinguishing merit and charm in their works. In the revival of the classic styles in Italy, we, in the treatment of the two arts of architecture and sculpture, meet with the observance of the same principles which guided the artists of classic times; but not, however, carried out with the same refinement of feeling and correctness of taste. The vigorous and fertile imagination of the great Italian masters (though it enabled them to trace out their own path, and to imitate the example and catch the feeling without tamely copying their model) often betrayed them into irregularity, which marred the effect of their most successful works; while by artists of inferior talent, exaggerated action and expression, eccentricity, and extravagant conceits, were too often confounded with the bold originality and vigorous conceptions of true genius. Of these defects the palaces and churches of Italy afford innumerable instances, which will immediately occur to those acquainted with the works of these masters. It cannot, indeed, be denied, that the peculiar character of the Italian style admitted a freedom of treatment in the sculptural accessories which would be offensive and inadmissible in more correct and regular compositions; but at the same time it will be obvious that there is a limit to these irregularities, which can only be assigned by good taste and discriminating judgment on the part of the artist himself.

The first and most important point is to observe a perfect accordance in style and character with that of the building to which we apply it, that it not only should illustrate its object and purpose, by intelligible and appropriate allegory, but convey it also with congruity of feeling and sentiment, even to the minutie of execution, (for the skilful architect not only adapts the main features of his building to the purpose for which it is designed, but also expresses it in every member, and moulds every detail in exact accordance). But to produce that harmony and propriety (which is the source of our most agreeable sensations in contemplating the productions of art), we must in addition, distribute it so judiciously through the composition, and so nicely adjust it in proportion and position, that it shall appear an integral portion of the design,- the work as it were of one hand, and so completely the expression of one idea, that a chasm and void would be created by its removal : that neither by disproportionate size, nor too prominent a position, it should obtrude offensively on the eye; nor by the opposite extreme, appear to retire too much and lose its legitimate effect and place in the composition. The regulation and nice adjustment of these points cannot, however, be determined by rule, since every individual case will require a different treatment, but it must altogether be attained by that refinement and correctness of taste on the part of the artist which can only result from a careful and accurate study of the best models, united with the greatest judgment and discrimination.

As a subordinate and purely decorative feature, it will be of the utmost importance that the outline of the sculpture should be regulated by, and accord most accurately with, that of the architecture; and that it fill up with precision those circumseribing lines within which it is placed; that there be no protuberance, undue projection, or ungraceful deflection in the contour, either in itself, or in combination; and that it do not interfere with, or break off those main lines which indicate the constructive features of the building, or the continuity of which expresses the arrangement and proportions of the composition.

It wifl also be found a point of considerable importance, in combining sculpture with architecture, to adopt a sober and subdued style of composition in the position and arrangement, and particularly in the treatment, of the draperies and accessories, not only in isolated figures and in those which form the terminations and crowning members, but also in the composition of the friezes and pediments. The confusion produced by exaggerated action or intricate grouping will be immediately detected by its discomposing and harshly contrasting, without relieving the lines of the architecture; though on the other hand must be avoided a meagre and straggling arrangement, and the stiff effect arising from perpendicular and horizontal lines. The value of sculpture as a decoration (independent of the sentiment it conveys) consists much in the relief it affords by carrying up the eye with its graceful terminations; filling up what would otherwise be void and blank, with varied and undulating lines and forms of the most exquisite beauty. The success with which the artists of Greece moulded
and adapted these requirements will prove that, when properiy treated, they tend neither to cramp the ideas nor to shackle the invention of the artist.

If it be necessary to observe these rules in the treatment of groups, it will be found still more so in the case of isolated figures; and the infringement of them produces still more ungraceful effects. On the revival of art in Italy, distortion and exaggerated action and expression were too frequently confounded with originality and vigour of execution; and we are continually meeting in their works with the most striking instances both of the infringement of these rules and the angraceful effects resulting therefrom.

In placing sculpture in juxta-position with architecture, it is obviously a point of no small importance to consider the scale thereby imparted to the composition. It will hardly be necessary to demonstrate with argument, that with which every artist mast be acquainted; viz., that magnitude is relative rather than actual, and that by ekilfully proportioning details, or by placing in juxtaposition features, with the size of which, by habit, experience, or instinct, we are acquainted, with those of which we have no other data for determining the magnitude, he can impart a fictitious scale to his composition; or that by diminishing one feature and exaggerating another, he can, by this comparison, produce an idea of magnitude which the actual size does not possess. In practice, this, nevertheless, has but too frequently been lost sight of ; and in many instances, where circumstances institute the comparison, it has been rather the result of accident than design. Perhaps this remark might be more justly restricted to the revival and later productions of art; since, in the works of the antique, we continually observe not only its application, but the success with which it has been attended. The principle must, however, obviously become of peculiar importance in the case of sculpture, since the proportion of the human figure is that with which we are most naturally and necessarily acquainted, and one which we perhaps more readily apply than any other (adjusting everything to this scale instinctively), and although, to a certain exteut, the scale of the sculptural accessories, particularly the isolated figures, will be indicated by various circumstances in the proportions of the architecture, it is not absolutely or invariably so, and the advantage to be gained by akilfully adjusting this scale must never be lost sight of. When, by being in due proportion to the members of the architecture, it would become too colossal, it might be preferable to adopt a different species of decoration; since, where the ordinary features of the composition are merely increased in actual size, and the same relative proportions observed, the scale by which we measure is increased in nearly the same ratio. We may also observe, that the undue exaggeration of the human figure beyond its natural proportions, so far from invariably producing an effect of grandeur, is sometimes productive of impressions akin to those resulting from actual deformity; the proportioning these parts is, however, a point which must depend solely upon the judgment of the artist, and one for which no rule can be laid down : a careful study of the best models and an accurate observation of works already executed, will form the beat and perhaps the only guide.

When we observe how necessary to produce a pleasing and harmonious effect (even in isolated works, which are to be considered as complete in themselves and not affected by external circumstances) are the duly balancing the corresponding parts of the composition; the skilfully contrasting and combining forms and lines of varying contour; the duly filling-in and adjusting every part so as to give one outline to the mass, however varied in detail,-it is obvious, that in combination with architecture, the slightest discrepancy or failing in this respect will be exaggerated, by contrast with the regularity of the lines and masses with which it is associated; and to this point, therefore, the artist must direct his most diligent attention.
In designing groups and figures which crown and form the termination of the composition, it will be found of the greatest importance that the figures in every aspect appear in perfect equilibrium, and firmly planted and balanced on the pedestal on Which they stand, devoid of any protuberance or projection, either in limb or drapery, which may appear to throw the mass more on one side than on the other. It will for this purpose be found necessary carefully to study the work from every possible point of sight from which it can be seen; since we have continually to observe that though perfect when viewed in some positions, this due equil brium of the mass is disturbed when seen in others, and that eren, when, in reality and mechanically speaking, it is duly poifed.
If the ill effects resulting from an imperfect or partial study of
this important point, the works of the artists of the revival above alluded to (though masters of perspective and perspective effects) afford innumerable instances; while of consummate skill and science in meeting these requirements, the inimitable productions of the Grecian chisel afford at once a most striking example, and to the artist an invaluable model for study.

An important part of the subject of the application of sculpture to architecture is the employment of caryatides in the place of the column to support the entablature of the orders. Whether the origin of this feature be that related by Vitruvius, or whether it resulted merely in the fertile and lively imagination of the artist adopting this form for variety only, it will hardly be worth our while to consider; though the employment of the human figure combined with massive columns but not aiding in the support of the mass above, occurring in the Egyptian temples, might induce the belief that the idea has been already suggested by precedent, aud that the character it assumed in Grecian architecture was merely the result of the more refined taste of the artist. The instances in which they were employed, and the manner in which they have been treated, has been already considered, as also that of the same feature by the artists of the revival in Italy. It has elseWhere been but very sparingly adopted. Jean Goujon has left us oome admirable specimens of his taste and skill in the Louvre at Paris, which exhibit all the chaste and refined feeling of the antique combined with the freedom of the revival. Inigo Jones's circular court of caryatides, in the Palace at Whitehall, though not executed, yet forms so beautiful a feature in the design that we must not omit to notice it, and to observe with what peculiar judgment the architect has treated this feature of his design: by applying it to an interior court, a perfectly unique effect is preserved, undisturbed by comparison in size with the columnar arrangement.

It is obvious that, in a great measure, the same rules will regulate the treatment of caryatides which govern the application of sculpture generally to architecture; viz., a general sobriety of treatment; the avoiding all strained and unnatural positions of the limbs; no flutter or discomposure of the drapery; the figure balancing itself most accurately, and appearing in every position in the most perfect equilibrium; the outline of the limbs heing clearly developed through the fulds of the drapery; and, lastly, the absence of the ides of forced and laborious exertion on the one hand, and of positive inaction on the other, that the figure appear easily and naturally to support its superincumbent members, and that they be so treated that the same outline and position do not recur too often. If engaged with the wall, as is frequently the case, a greater freedom of treatment may undoubtedly be adopted, since the outline of the figure will not vary much in different points from which it can be seen.

It might at first be supposed that the study and practice of two arts, so intimately connected with each other, and so naturally and readily combined, might have been united with advantage in the same artist. If, however, we look back upon the history of art, more particularly to the era of the revival in Italy, at which time they were not uncommonly united in the same individual, we cannot but observe that the abuses and deformities are principally to be met with in the works of the architect-sculptors; and that in artistic effect and arrangement, as well as in appropriate and characteristic detail, they were surpassed by their brethren, the architect-painters of the same period. However, they both fall short of those whose whole attention was devoted to architecture alone; showing, more conclusively than argument, that the rules of the artist must, in these points, be his non imperitus; that to compass more than one to its fullest extent-to attain to or approach perfection, where the attention is divided upontwo objects of equal importance and scope,-is beyond the grasp of the most powerful intellect, and that the attempt can only be attended with failure in one, or mediocrity in both. There may be quoted a few brilliant exceptions; yet, if these even be fairly balanced upon their own merits, irrespective of the authority of great names, the observam tion may apply to them.

In conclusion, although it might seem that the rules to be observed in applying sculpture to architecture are rigid, and calculated to trammel the urtist with restrictions incompatible with the free exercise of his genius, there is, in reality, perhaps no point on Which the invention of the artist is less fettered, or on which so wide a field is left for the exercise of his own discretion, since they determine no fixed proportiens, prescribe no particular form, arrangement, or detail, and their very application must depend on the artist's discernment and taste. How little these rules are calculated to induce poverty and tameness of design, or confine the free exercise of the imagination, the example of the gifted artists
of Greece will sufficiently prove. The rules of art, so called, are not arbitrary restriction founded on the caprice of fashion, the authority of precedent, or the practice of approved masters,-but those immutable laws, upon the observance of which beauty, grandeur, and harmony most depend (which admit of no exception), apply to every variation of circumstances; are ascertained by an accurate observation of the effects of certain combinations; and are as inseparably connected with the productions of certain results as cause and effect in mechanical appliances in the physical world. It is the attribute and characteristic of true genius intuitively to know, and instinctively to apply them, however necessary experience, careful observation, and diligent study may be to mature the judgment and refine the taste. To conform to them will exercise its ingenuity rather than restrict its powers, while their due observance will give force and precision to its efforts, by directing them in the right channel, and by preserving it from those irregularities which mar the productions of genius unaided by experience and education.

RESISTANCES TO RAILWAY TRAINS.

EXPERIMENTG DOWN inclined planes by oravity.

Some experiments have recently been made on the retardation of trains on inclined planes; and as the subject has been much debated, a brief analysis of the results may be acceptable,-an account of the experiments themselves will be found at the end of this paper. It is to be observed, that the circumstances under which they appear to have been conducted, render uniformity and certainty in the conclusions from them very difficult, or rather absolutely impossible.

In the first place, to get a general law of resistance by experiments on inclined planes, it is absolutely requisite that the line should be straight, the air calm, and the distance traversed considerable. Of the resistance of curves, and wind in motion, nothing can be known till the resistance in more simple cases be ascertained. To begin with the more complex enquiry is to entangle the subject with phenomens, respecting which ignorance virtually is confessed, by the very circumstance of making the experiment.

Again, it is imperatively necessary that the distance traversed should be considerable-sind we urge this point the more strongly, because it applies, not only to the present experiment, but also to former experiments on the narrow-gauge railways. The report to the British Association on Railway Resistances (1837) contains the following important remark on this head:-
"In every case hitherto examined, the uniform velocity which may appear to have been attained under such circumstances, is somewhat less than that attained on the same plane, when the train has commenced the descent at a considerable velocity; it may therefore be doubted, if trains which may appear to have attained an uniform velocity after starting from a state of rest (on planes on which the experiments have beeu nade), may not really be travelling at a very slowly accelerating velocity, and as the lengths of such planes of one inclination do not enable this to be ascertained with certainty, it has been deemed better to exclude such results. The same rule has been followed for similar reasons in analysing the other series of experiments on inclined planes referred to in this paper."

This remark appears to apply to the experiments before us, and also to those undertaken by Mr. Wyndham Harding, on the Croydon Atmospheric Railway. Of course, it is only where the mass or the train is small, that the resistance soon begins to tell; the effect of the inertia of large trains travelling at high velocities, is best seen by considering the distance they will move when subject to the enormous pressure of the break.

The present experiments being subject to these various sources of error, exhibit discrepancies which greatly diminish the value of the conclusions indicated. For instance, in each of the first nine experiments (except the 6th and 8 th, which may be altogether disregarded on account of the disadvantageous circumstances under which they were conducted), there occurs a sudden and unexplained increase of velocity at the distance 85\$. This may, perhaps, be attributable to local circumstances; but what is more important, is the fact that the alteration of the gradient from nto to abo, makes no perceptible alterstion of the speed in five out of the seven trustworthy experiments on those gradients. This consideration furnishes a convincing proof of the danger of drawing deductions from the apparent uniformity of motion for short distances. If the resistance in pounds per ton for a given velocity
be deduced from the apparently unaltered motion on both gradients, we arrive at the absurdity of giving the resistance two different values, of which one is between six and seven times as great as the other.

To exhibit more clearly the very great effect of the inertia of trains in maintaining their velocity, we will calculate the motion on level ground, at a uniform resistance of 20 lb . per ton, when the train is started at a velocity of 80 feet per second (or rather more than 54 miles an hour). By the principle of Conservation of Vis Viva-

$$
W\left(V^{2}-v^{v}\right)=2 R x ;
$$

where R is the uniform resistance, V the initial velocity in feet per second, v the velocity at a subsequent time when the train has travelled x feet, W the weight, and therefore $\frac{1}{d} W$ the mass (putting 32 feet for the measure of gravity): or one thirty-second part of the weight \times by the difference betueen the squares of the initial and subsequent velocity, is equal to twice the corresponding distance tranersed \times by the uniform resistance. This is a simple arithmetical rule for calculating all cases of the rectilineal motion of a body started with a given initial velocity, and then abandoned to the iofluence of a constant retarding force.

To suit the present case, we put $V=80$, and the resistance $=$ 20 pounds per ton, and multiply the weight of the train by 2840 , to express it in pounds; and the above formula becomes

$$
\frac{2240}{92}\left(V^{2}-v^{2}\right)=40 x ; \text { or, } 11,200-\frac{7}{4} v^{2}=x
$$

to find the distance in feet corresponding to any subsequent velocity. Putting $v=0$, we find that the train moves $2 \cdot 12$ miles before it comes to rest; and putting $v=70$, we find that the train moves 2,985 feet, or more than half a mile, before its velocity is reduced from 80 to 70 feet per second. If, instead of making the resistance uniform, we supposed it to decrease gradually, as it does on railway, the distances above calculated would be increased.

These considerations show the absolute necessity of using long distances in performing experiments on the retardation of trains. But though they throw a doubt on the experiments before us, it would be too much to say that they reuder them absolutely worthless. On the contrary, with some exceptions, the conclusions display a certain degree of consistency which adds to their weight. Of course, the testimony inferred from this consistency would be much greater if we were informed that these experiments are all that have been undertaken, and that none other inconsistent with them have been performed.

Now, of the experiments on the gradient, the 2nd, Srd, and 5 th, with an initial velocity of 50 to 52 miles an hour, exhibit tolerably uniform velocities. This would indicate that at 50 to 52 miles an hour, the resistance is the weight, or $22 \cdot 4 \mathrm{lb}$. per ton. Experiments 1, 4, and 7, show retarding velocities, indicating that at 54 to 58 miles an hour, the resistance exceeds $22 \cdot 4 \mathrm{lb}$. per ton. Again, in the 13th experiment, on a gradient of about $\frac{1}{s s}$, the speed is tolerably uniform ; in the lith, on the same gradient, it is accelerated. In both experiments on a gradient of ito the speed is accelerated. Reasoning as before, we have-on the assumption that the above form of the data is accurate-the following general conclusions, in three pairs, corresponding with the three gradients:-

milee per hour.		lb. per ton.
When velocity is 50-2	Resistance equals	\} 22
54-8		
55	equals) 26
43	less than	
36	legs than	19
37	less than	\} 19

These results agree very well with those obtained in 1846, by Mr. W. Harding, by the dynamometer, on the South Eastern nar-row-gauge railway, and reported in his paper presented to the Institution of Civil Engineers:-

To complete the comparison, we select those of the experiments of the British Association which were made at velocities above so miles an hour, on inclined planes on narrow-gauge lines :-

	mlies per bour.		Resistance
Velocity	31	23.4	
	34		23.4
	37		25
	32		22.5

It is to be observed, that these rates of resistance considerably exceed the former.

We do not bring into the comparison the experimente of the Gauge Commission, in which the resistance is derived from the consumption of water by such an arbitrary and dangerous process, that we feel justified in rejecting that evidence entirely. Neither can Mr. Wyndham Harding's experiments on the Croydon Atroospheric Railway, by the difference of barometric pressurea, be admitted into the comparison. His case for the rapid increase of resistance with increase of speed, rests almost entirely on these experiments, and therefore, as we think, on an insufficient foundation.
The following results are obtained from several distinct experiments :-

miles per hour.		ib. per ton.
Velocity 61	Resistance	52.6
53		41.7
35		36
50		32-9
47		$33 \cdot 7$

In the first place, the results obtained by the barometer are inconsistent with themselves: the resistance at 55 miles an hour is fifteen per cent. more than at a less velocity of 53 miles. The only experiment at upwards of 60 miles an hour, shows an incresese of resistance so disproportionate, as naturally to induce suspicion;at all events, a single result, so inconsistent with all previous observation, ought not of itself to be sufficient evidence of a general law. Moreover, this very experiment was conducted under circumstances most unfavourable to a general conclusion. The distance traversed was 3 d miles, the time of transit four minutes and a half, and the recorded velocity fluctuated from 32 to 61 miles. And yet this singes trial is the mainstay of the theory of high resistances at high velocities! We have already shown the great effect of the inertia of trains at high velocities, and the extreme uncertainty of any conclusions from the apparent uniformity of motion;-that the uniformity is apparent only and not absolutely certain, the brief duration of the experiment and its great fluctuations are sufficient testimony.
It is important to observe, in confirmation of this view of the subject, that the barometric method of calculating resistances, always gives results which, as far as they can be compared, exceed those obtained by any other method.
On the whole, we are inclined to an opinion, from the insuffcient evidence before us, that the resistance does not increase so much with the velocity as has sometimes been contended; and that the resistances per ton, do not differ widely on the broad and narrow gauge. The advantage, if any, belongs to the former; principally, we imagine, on account of the comparative smoothnes of motion over longitudinal sleepers. There can be no reasonable doubt, that comparing the longitudinal and transverse sleeperg, when both are in perfect order, the former, by giving more perfect support to the rails, render them less liable to vibration and concussion. It may be laid down, aff a general rule, that whatever increases the regularity of motion, diminishes the resistance. One of the consequences of this rule is, that the resistance of trains is diminished by diminishing their lateral oscillation. On this subject we have not space to speak at length; it is sufficient to observe, that the tendency to oscillate depends on what is known in mathematics as the radius of gyration, and is therefore diminished by diminishing the weight projecting beyond the wheels outside, and by reducing the proportion of the height of the centre of gravity to the distance between the points of support.

[Abbreviated from the " Morning Herald."]

We retnrn to the consideration of this intereating and important practical railvay inveatigation. As we have previously stated, the question of the "reastances to railray trains at certain velocities," is not a mere scientioc question, but one in which the convenience and accommodation of the public are very materially involved. The establishment of the truth of the "formula" which makes the resistance, at 60 miles per hour, some 40 lb . per ton, or 50 per cent. bigher than we shall presently show it to be, would present a strong economical argument either against express travelling, or for the restriction of the accommodation of quick transit to first-clase passengers at high fares.

In the observations made by as a few days since, in reference to the extraordinary differences of opinion existing on the suhject between practical engineers, we noticed the singular fact that while a uniform velocity of not more than 36 miles per honr hat ever been maintained with narrow-gange trains, by the force of gravity, down an incline of 1 in 100 , a uniform velocity of npwarde of 53 miles per bour had been maintained with broad-gauge trains by gravity down an equal incline. We then atated that we had ourselves gone done the Boy Tonnel incline (1 in 100) at a greater oniform velocity than 53 miles per hour. We have since made a series of experimenta down the Wootion Bassett incline, stated to be 1 in 100, but come portion of which is I in 110 only; and down other inclines on the Bristol and Exeter Railway; and from the details given beiow, it will be seen that a
woch greater uniform velocity than 53 miles per hour, even under very
 that consequently the foundation on which many railway engineers have rested the very pillar of their thenry of high rates of resistance at high velocities, is atterly without substantiality,-that, indeed, it is mere fallacy, which will hereafter be numbered amongst the delusions and visions of practical men.

The whole of the following experiments were made with ordinary working trains, and the object was not to collect minute data from which any scientific results might be deducer, but simply to prove-exclusive of the reandte of experiments made by either broad or narrnw gange engineersthat what has long been considered an "established fact" in reference to the reastance to railway trains descending inclined planes by force of gravity, is a mere "circumstance," which, although applicable to narrowgange trains, is utterly inapplicable to broad-gauge trains. The diversities in the rates of speed shown in the workings given below arose, no donbt, from a great variety of causes. Nearly the whole of the portions of the line over which the experiments mere made consists of a series of curves, and of cuttings and embankments. The carriages were of different weights, and may occasionally have been well or badiy coupled. One day the weather was calm, the next it was unsettled; in some of the experiments there was a slight head wind, in others a moderate side wind from the right, or a moderate side wind from the left prevailed, and during three of the experiments there was a brisk aide wind. The speed, too, at which the trains were running when the steam was ahut off would, in rela. tion to the weights of the carriages, as well as to the direction of the wind, enfer into the causes of these diversities of speed. We shall, however, not hazard a single opinion on these matters, but confine ourselves to demonstrations that the "formula" of high resistances at bigh velocities is worthless in respect of the resistance sdue to broad-gauge traiks deacending inclined planes by their own gravity.

In the experimenta made down the Wootton Babsett incline with the dyammometer carriage, constructed onder the directions of Mr. Bronel, the carriages were weighed to 10 tons each. In no one of the experiments given below, which were made with the ordinary passenger trains, did any of the carriages amount to this weight-that is, they were not full of parsengers. The engives employed belong to an old class, and weigh, road-worthy, about 23 or 24 tons.
It has been objected against the experiments made down the Wootton Bassett incline with the dynamometer carriage, that the distance over which a uaiform or increasing velocity was attained, viz., 10 or $11-16$ thes of a mile, is tno short to produce a useful practical result. To meet this objection we took the rates of speed not only down the mile sad one-eighth of the fall of 1 in 100, bot down the next seven-eightha* of a mile, wbich are on a fall of 1 in 660 only. The fall of 1 in 100 commences a few chains beyond the 85th mile-post, and terminates a few furlongst beyond the 86th mile-post. Trence to the $86 \frac{1}{4}$ th mile-pont, the fall is I in 660 .

The first experiment was made with a train consisting of four passenger. carriages, tbree horse-hoxes, and one luggage van, weighing about 60 tons. The engine was the "Orion." The table gives the working for the quarter raide immediately preceding the 85th mile-post, an well as from the 85th to the $86 \frac{1}{t}$ th mile-poat. The rails were dry, and very little wind was stirring.

It will he seen that the speed for upwards of half-a-mile down 1 in 660 is very lintle below the uniform velocity down nearly three-quarters of a mile of 1 in 100. We meroly record the fact, leaving those who have more time at their command than we have ourselves to explain or suggest the causes.

The second trip was with a train of four passenger-carriages and borsebox, weighing about 41 or 42 tons, and was attached to the "Mars" engine -rails dry and weather calm.
The third trip was with the same engine, with three passenger-carriages, one luggage-van, and two horse-boxes, weighing about 45 or 46 tons.
The fourth experiment was made with the "Pirebrand" engine. The train consisted of three passenger-carriages and a luggage-van, weighing about 36 tons. The carriages were well filled with passengers.

The fifh experiment was with the "Orion," with four passenger-carriages, three horse-boxes, and a luggage-van, weighing about 59 or 60 tons. The steam was not shot off in this case until the engine was within a fow chains of the 85$\}$ th mile-post.
The sixth experiment was with the "Load Star." The train conaisted of four passenger-carriaget and a luggage-van, weighing about 41 or 42 tons. A brisk side wind was blowing. It will be observed that the ratea of speed alternate over the whole extent of the $2 t$ miles.
The seventh trip was with the "Arab," with a train consiating of three pasenger-carriages and a loggage van, weight about 38 or 40 tons-carriages well flued. In this trip we obtained the greatest uniform velocity-rails dry; weather calm.
The eighth experiment was with the "Bellona," with four passengercarriagea and a loggage-van, weighing about 41 or 42 tons.
A brisk side wind prevailed on this occasion, and the same result was prodaced as in the previous experiment, where a side wind affected the train, viz, alternating rates of apeed.
The minth experiment was with the "Pirebrand," witb a train of four carriages and a laggage-van, weighing about 45 or 46 tons-raila dry; slight side wind.

The tenth experiment was upon the Bristol and Exeter line from the 174 th to the 176 th mile-post. This portion of the line is on a fall of 45.75 feet per mile, or about I in 120. The engine employed wat the "Load Star," and the train consisted of four passenger-carriages and a luggage-van, Feighs abont 41 or 42 tons. The descent was commenced at a speed of about 36 miles per hour-rails dry, and slight hesd wind.
In this experiment the velocity down an incline, less by 20 feet per mile than that down which the narrow-gauge trains have never yet maintained a uniform velocity of more than 36 miles per hour, increated from 36.3 to 42.4 or 6.1 miles per hour. And yet we have little doubt we shall atill find practical men contending for the high rates of resistances which tome of the narrow-gauge party pertinacioutly ansume to be due to all railway traina travelling at bigh velocitien.

The eleventh experiment was from the $172 \frac{1}{5}$ to the 170 - viz., two miles. The engine employed was the "Saturn," and the train consisted of five pat-senger-carriages and a loggage-van, weighing about 56 or 57 tons. Por about two-thirds of a mile the fall is 1 in 82 ; this is followed by a fall of about 6 chains of 1 in 90 , and another fall of about 7 or 8 chains of 1 in 82 . The rest of the distance is on a fall of 1 in 90 . The average velocity of the train through the White Ball Tunnel, 49 chains in length, and which immediately precedes the inclines over which we took the working of the train, was 42.5 miles per hour. It will. be seen that this speed was increased to 50 miles an hour at the 170 星th mile-post.

The twelfth experiment was a second run down the 1 in 120, between the 174 th to the $176 \mathrm{t}^{2} \mathrm{~b}$ mile-post. The engine omploged was the "Firebrand," and the train consisted of four carriages and a loggage-van, weighing about 44 or 45 tons-rails dry, and moderate side wind.

The thirteenth and last experiment was with the "Milo," and a train of three passenger-carriages and a loggage-van. Weight, about 34 or 35 tons. A brisk side wide prevailed.

In this experiment the steam was shut off at the $172 \frac{3}{4}$ mile-post, which is in the White Ball Tunnel.

Tables of Experiments.

Gra. dient.	MhePoses.	Velocity in milles per Hour.								
		$\begin{gathered} \text { 1st } \\ \text { Expe. } \\ \text { rimpt. } \end{gathered}$	$\begin{gathered} \text { 2nd } \\ \text { Expe- } \\ \text { :Imat } \end{gathered}$	$\begin{gathered} \text { 3rd } \\ \text { Expe- } \\ \text { rimat } \end{gathered}$	$\begin{gathered} \text { 4th } \\ \text { Expe- } \\ \text { imat } \end{gathered}$	$\left\lvert\, \begin{aligned} & \text { 6th } \\ & \text { Expe- } \\ & \text { rim } \end{aligned}\right.$	$\begin{gathered} \text { 6th } \\ \text { Expe. } \\ \text { rimnt } \end{gathered}$	7th Experimnt	$\left\|\begin{array}{c} \text { 8th } \\ \operatorname{expen} \\ \text { ni } \end{array}\right\|$	$\begin{gathered} \text { 9th } \\ \text { Expe. } \\ \text { rmant } \end{gathered}$
10.0	818	48.1	50	52.2	54.5	51.4	56.3	$58 \cdot 1$	86.3	bs 8
		60	50	53.7	54.5	61.4	58.1	$88 \cdot 1$	${ }^{36 \%}$	545
	85	58.1	50	50.7	51.4	52.9	57.1	57-1	58.7	545
	85	69	52.2	54.5	$52 \cdot 9$ 51.4	52.2	$5 \mathrm{SH}^{\text {P3}}$	69	53.4	51.9
	${ }_{86}^{80 \%}$	64.5 64.5	60.7 50.7	522.2	31.4 51.4	65.7 52.9	${ }^{82} 8.9$	${ }_{67.1}^{57}$	629 68.7	50.7 50.7
	66\%	6.5	50.7	522	51.4	$52 \cdot 9$	59.9	57.1	52.9	50.7
बहेठ \{	${ }_{86}^{89}$	68.7 62.9	$\begin{aligned} & 50 \cdot 7 \end{aligned}$	$\frac{51.4}{50}$	$\begin{aligned} & 51 \cdot 4 \\ & 51 \cdot 4 \end{aligned}$	822	$\begin{aligned} & 54 \cdot 6 \\ & 52 \cdot 4 \end{aligned}$	$\begin{aligned} & 56 \cdot 3 \\ & 56 \cdot 3 \end{aligned}$	63.7 68.7	30.7 50

Gradient.	Mi'e Potse.	Velocity in Miles per Hour.		Gra. dient.	3us Ponts.	Velocity in Mile: per Hour.	
		$\begin{gathered} \text { Expert- } \\ \text { ment } \end{gathered}$	13th Bxpert. ment			10th Experimont	$\underset{\substack{\text { Experi- } \\ \text { ment }}}{\text { 22th }}$
\% $\frac{18}{}$	1734 1724 172	43.9 44.5 46	58.4 88.4 58.3		1744 174 174 175	363 $88 \cdot 8$ 383 380	37.5 87.9 37.9 88.9
	1714	$46 \cdot 2$	85.4	120	1784	40	$38 \cdot 3$
	171	$47 \cdot 4$	64.5		175	40.9	3 ± 1
\% 2	${ }_{171} 17$	48.6 49.3	66.3 68.8		${ }_{176}^{175}$	41.4 41.9	347 $34-1$
,		50	66.8 56.3		176	42.4	40

REVIEWFS.

Account of the Skerryvore Lighthouse, with notes on the IUumination of Lighthouses. By Alan Stevenion, LL.B., F.R.S.E., M.I.C.E., Engineer to the Northern Lighthouse Board. Edinburgh: Adam and Charles Black, 1848.

[sECOND NOTICE.]

What Mr. Stevenson calls "Notes on the Illumination of Lighthouses," may more rightly be called another work, and one not less important nor valuable than the account of the Skerryvore Lighthouse. Indeed, he calls the furmer Part II. He begins it by a short history of lighthouses, in which he shows a great deal of learning; and as by the former part every one will gee that he is a hard-working man, so by this they will see that a man many be able to understand Homer in Greek, and yet be good engineer.

We think both of those are wrong, those who wish to make the engineer a man of book-learning only, and those who want to make him a boor under the name of a working-man. Brunel, Robert Stephenson, Locke, the Rennies, Walker, and many more, have shown that to be a great engineer, and to make great works, there is no harm in a man being well-taught. We would always put the two together if we could,-we would have the man of learning and the working-man.

Mr. Stevenson's way of commenting on the classics is rather a new one,-rather unlike the Byzantine school, Scaliger, and the Revival critics, or the great High Dutch lights of this day. Some of these who went before Mr. Stevenson have put forth the bold thought, that the Cyclops were the keepers of lighthouses; some bolder still, that by the Cyclops was shadowed forth the liphthouse itself. Mr. Stevenson's answer is, that in the ninth book of the Odyssey, and at the 146th line, Homer tells us that in the darkness of the night, the fleet of Ulysses went ashore on the Cyclopean island. Mr. Stevenson looks at it with a workman's eye, and he says if there had been a lighthouse, the ships would not have struck in the dark. The words he brings forward show that it was pitch dark, and give no hint of a lighthouse; and therefore we think Mr. Stevenson right, in the teeth of the commentators. He has not, however, taken the trouble to set his Greek into English, so that his working readers may understand it.

What Mr. Stevenson says of the lighthonses of our days is the more worthy of being read, as he has seen many of them himself, and looked at them with the eye of a master.
Speaking upon lighting, Mr. Stevenson says, that down to a very late time, the only way was to burn wood or coal in chafing dishes on the tops of high towers or hills. Many now living know that the Isle of May light was of that kind, before it came under the care of the Board of Northern Lights in 1786. For forty years after the time of Smeaton, the fine tower of the Eddystone was lighted only with tallow candles. These lights were therefore very weak, and there were no means of knowing one light from another, so that the seaman might shape hisway. Even now, it too often happens that seamen mistake lights, and by going inside, instead of outside or otherwise, they go aground and are wrecked. The old lighthouses were of little more good than to give warning that land was near; so that ships might, if they could, lie by or put out to sea until daylight.

Mr Stevenson now speaks of flame. He says:-
"Solid substances which remain so throughout their combustion, are only luminous at their own aurface, and exhihit phenomena, such as the dull red heat of iron, or of most kinds of pit-coal, and are therefore more suited for the purpose of producing hest than light. Bat by using aubstances which are formed into infammable vapours, at a temperature below that which is required for the ignition of the substances themselves, gas is obtained and flame is produced. Much light is thus evolved at a comparatively low temperature. The gas necessarily rises above the comhustible substance from which it is evolved, owing to its being formed at a temperature considerably higher than that of the surrounding air, than which it is necessarily rarer, Oi this description are the flames obtained by the huraing of the various oils, which are generalty emploged in the illomination of lighthouses. In the combustion of oil, wicks of some fibrous substance, such as cotton, are used, into which the oil ascenda by capillary action, and heing supplied in very thin films, is eatily volatilized into vapour or gas by the beat of the burning wick. The gas of pit-coal has been occasionally used in lighthouses; it is conveyed in tubes to the burners, in the same manner as when employed for domestic purposes. There are certain advantages, more especially in dioptric lights, where there it only one large central fiame, which would render the use of gas desirable. Tbe form of the tame, which is au object of consider. able importance, would thas be rendered less variable, and could be more easily regulated, and the inconvenience of the clock-work of the lamp would be wholly avoided. But it is obvious, that gas is by no weane suilable for the majority of lighthouses, their distant situation and generally difficult access rendering the transport of large quantities of coal expensive sand uncertain; whilat in many of them there is no means of erecting the apparatas necessary for manufacturing gas. There are other considerations which must induce us to pause before adopting gas as the fuel of lighthouses; fur, however mach the riak of accident may be diminithed in the present day, it atill forms a question, which ought not to be hastily decided, how far we hould be justified in runaing even the most remote risk of explosion in establishments such a lighthouses, whose sudden failure might involve consequences of the most fatal description, and whose situation is often such, that their re-establishment must be a work of great expense and time. Gas is, besides, far from being suitable in catoptric lights, to which, in many cases (especially when the frame is moveable, as in revolving lights), it could not be easily applied. The oil most generally employed in the lighthousea of England is the sperm oil of commerce, which is obtained from the South Sen whale (Physeder macrocqphalu). In Prance, the colza oil, which is expressed from the seed of a species of wild cabbage (Brastlca oleracea colsa),
and the olive oil are chiefly used; and a species of the former has lately been saccessfully introduced into the lighthousen of Great Britain."

Sperm oil is that which has been hitherto most burned; bat colza oil will, it is thought, be found much better, and that a saving of one-half can be made. It was Mr. Joseph Hume, when chairman of a committee of the House of Commons on Lighthouses, who showed that colzs oil was cheaper. Since then, Mr. Stevenson has tried it, and has told the Northern Lighthouse Board that it will give s saving of $£ 3,966$ yearly; but since that, colza oil is worth more, and Mr. Stevenson is not so strong in his feeling about it.

Of the Drummond and Voltaic lights, the writer asys :-
"The application of the Drummond and Vollaic lights to lighthouse par. pones is, owing to their prodigious intensity, a very desirable consummation; but it is surrounded by so many practical difficulties that, in the preseot state of our knowledge, it may safely be pronounced unaltainable. The uncertainty which attend the exhibition of both these lights, is of itself a iufficient reason for coming to this conclusion. But other reasors unhappily are not wanting. The mallness of the fiame renders them wholly inappli. cable to dioptric instruments which require a great body of fame in order to produce a degree of divergence sufficient to render the duration of the tash in revolving lights long enough to answer the purpose of the marinep. M. Fresnel made some experiments on the application of the Drommond light to dioptric instruments, which completely demonstrate their unfitness for this combination. He found that the ligbt obtained by placing it in the focus of a great annular lens was much more intense than that produced by the great lamp and lens; but the divergence did not exceed 30^{\prime}; so that, in a revolu. tion like that of the Corduan light, the flashes would last only $1 /$ second and would not, therefore, be seen in such a manner as to suit the practical purposes of a revolving light. The great cylindric refractor used in taxed lights of the first order, was also tried with the Drummond light in ito focos; but it gave coloured apectrs at the top and hottom, and only a amall bar of white light was transnitted from the centre of the instrument. The ame deficiency of divergence completely unfits the combination of the Drummond light with the reflector for the purposes of a fixed light, and even if this cause did not operate against its application in revolving lights on the catoptric plan, the supply of the gases, which is attended with almost insormountable difficulties, would, in any case, render the maintenance of the light precarious and uncertain in the lant degree.

The Drummond light is produced by the ignition or combustion of a ball of lime ($\frac{1}{8}$ inch diameter) in the united fames of hydrogen and oxygen gases, and is equal to about 264 flames of an ordinary Argand lamp with the best spermaceti oil. It deriven its name from the late Lient. Drummond, R. B. who first applied it in the focus of a paraboloïd for geodetical purposen, and afterwards proposed it for lighthouses. (See bis account of the light in the Phil. Trans. for 1826, p. 324, and for 1830, p. 383.) The Voltaic light is obtained hy passing a stream of Voltaic electricity from a powerful battery between two charcoal points, the distance hetween which requires great nicety of adjustment, and is the chief circumstance Fhich influence the stability and the permanency of the light. The Voltaic light greatly exceeds the Drummond light in intensity, as ascertained by actual comparison of their effects; but the ratio of their power has not been accurately determined. It was first exbibited in the focus of a reflector by Mr. James Gerdner, formerly engaged in the Ordance Survey of Great Britain."

After speaking of what Argand did, and of the burner he made, which was such a great step, Mr. Stevenson comes to the reflector:
"Tbe name of the inventor of paraboloïdal mirrors and the date of their first application to lighthouses, have not been accurately ascertained. The earliest notice which I have been able to find, is that by Mr. William Hutchinson, the pious and intelligent author of a quarto volume on 'Practical Seamanship' (published at Liverpool in 1791), wbo notices (at p. 93) the erection of the four lights at Bidstone and Hoylake, in the sear 1763, and deacribes large parsbolic moulds, fashioned of wood and lined with mirror-glass, and smaller ones of polished tin-plate, as in use in those lighthouses. Mr. Hatchinson seems to have understood the nature, properties, and defects of the instroments which he describes, and has shown a good acquaintance with many of the most important circumstances to be attended to in the illumination of lighthouses. Many claims to iurentions reat on more slender grounds than might be found in Mr. Hatchinson's book for concloding him to have first invented the paraboloidal mirror and applied it to use in a lighthouse; but, in the ahsence of any statement as to the dato when the mirrors were really adopted, the merit of the improvement must, in justice, be awarded to others.
M. Teulere, a nember of the Royal Corps of Engineers of Bridgen and Roads in France, is, by some, considered the firat who hinted at the edrantages of paraboloïdal refectors; and he is said, in a memoir dated the 26th June 1783, to have proposed their combination with Argand lampe, ranged on a revolving frame, for the Corduan lighthouse. Whatever foundation there may be for the claim of M. Teulere, certain it is that this plan was actually carried intn effect at Cordaan, under the directions of the Chevalier Borda; and to him is generally awarded the merit of having concaived the idea of applying paraboloïdal mirrors to ligbthouses. These were most important stepa in the improvement of lighthomea, as not only the power of
the lights was thta greally increased, but the introduction of a revolving frame proved a valuable source of differences in the appearance of lights, und, in this way, has since been the means of greatly extending their utility. The exact date of the change on the light of the Corduan is not known; but as it was made by Lenoir, the same young artist to whom Borda, about the year 1780, eatrusted the construction of bis refecting circle, it has been conjectured by some that the improvement of the ligbt was made about the same time. The reflectors were formed of sheet-copper, plated with silver, and had a doable ordinate of 31 French inches. It was not long before these improvement were adopted in England, by the Trinity House of London, who sent a deputation to France to inquire into their nature. In Scotland, one of the frst acts of the Northern Lights Board in 1786, was to sobstitute reflectors in the room of the coal-light then in use at the lsle of May in the Prith of Forth, which, along with the light on the Cambrae lsle in the Prith of Clyde, had, till that period, heen the only beacons on the Scotch cosst. The first reflectors employed in Scotland were formed of facela of mirror-glasa, placed in hollow paraboloïdal rooulda of plater, sceording to the denigns of the late Mifr. Thomes Smith, the Engineer of the Board, who (as appearr from the article Reflector, in the Supplement to the third edition of the 'Enclyclopsedia Britannica') was not aware of what had been done in France, and had himself conceived the idea of this combination. The same aystem was also adopted in Ireland; and in time, variously modiGed, it becarse general wherever lighthouses are known."
The reflectors used in the best lighthouses are made, says the writer,
" Of sheet-copper plated in the proportion of six ounces of silver to sixteen ounces of copper. They are moulded to the paraboloïdal form, by a delicate and laborious process of beating with malleta and hammers of various forms and materials, and ore frequently tested during the operation by the application of a mould carefully formed. After being brought to the curve. they are stiffened round the edge by means of a strong bizzle, and a strap of brass which is attached to it for the purpose of preventing an accidental alteration of the figure of the reflector. Polishing powders are then applied, sod the instrument receives its last finish."
"The flame generally used in reflectors, is from an Argand fountain-lamp, - bose wick is an inch in diameter. Much care is bestowed upon the manu. factore of the lamps for the Northern lighthouses, which sometimes have their harners tipped with silver to prevent wasting by the great heat wbich is evolved. The burners are sloo fitted with a sliding apparatus, accurately formed, by which they may be removed from the interior of the mirror at the time of cleaning them, and returned exactly to the same place, and locked by means of a key. This arrangement, as shown in figs. 1 and 2,

in rery important, as it insures the burner always being in the focus, and does not require that the reflector be lifted out of its place every time it is clesned; so that, when once carefully set and screwed down to the frame, it is sever altered."
It vill please our readers very much to find in Mr. Stevenson's book, the many clever tools which are used, and care which is taken to make the lamps and lights as good as may be. He has written a good deal about feeding the lamps with oil, and indeed everywhere he has shown that he is master of his work, even in the smallest things. It was said of the Duke of Wellington, that even to the horses shoes he knew everything in his army, and that he thought nothing beneath him which had to do with the welfare of his men: and so should it be with the ongineer; and this is the way in which he can truly become a working-man. Mr. Stevenson may not perhaps have put on a fustian coat, nor spent his time in
filing, rasping, and fitting; but an enginear may be a working-man without that.

Lights are found by seamen so useful, that they are always calling out for more; but when put up, it becomes very troublesome to know one from another. A light ought to make known to the benighted mariner the land he has made, as the sight of a hill or tower would have shown him in the day; therefore, it becomes needful that each should be readily known, so as not to be mistaken.
"Catoptric lights are susceptible of nine separate distinctions, which are called fired, revolving white, revolving red and white, revolving red with two whiles, revolving white with two reds, flashing, intermitlent, double fixed lights, and double revolving while lights. The flrst exbibits a steady and uniform appearance, which is not subject to any change; and the reflectors used for it (as already noticed) are of smaller dimensions than those employed in revolving lights. This is necesaary in order to permit them to he ranged round the circular frame, with their axes inclined at auch an angle, as shall enable them to illuminate every point of the horizon. The revolving light is produced by the revolution of a frame with three or four sides, having reflectors of a larger size grouped on each mide, with their axes parallel; and as the revolution exhibits once in two minutes, or once in a minute, at may be required, a light gradually increasing to full streagth, and in the same gradual manner decreasing to total darkness, its appearance is extremely well marked. The succession of red and white ligbts is caused hy the revolution of a frame whose different sides present red and white lights; and these, as already mentioned, afford three separate distinctions, namely, altornate red and white ; the succesaion of two white lighta after one red, and the succession of two red lights after one white light. The flashing light is produced in the seme manner at the revolving light; but owing to a difterent construction of the frame, the reflectors on each of eight sides are arranged with their rims or faces in one vertical plane, and their axes in a line inclined to the perpendicular, a disposition of the mirrors which, together with the greater quickness of the revolation, Which shows a flash once in five seconds of time, produces a very atriking effect, totally different from that of a revolving light, and presenting the appearance of the flash alternately rising and sinking. The brightest and darkeat periods being but momentary, this light is farther characterised by a rapid succession of bright flashes, from which it gets its name. The intermittent light is distingnished by burating suddenly into view and continuing ateady for a short time, after which it is suddenly eclipsed for half a minute. Its atriking appearance is produced by the perpendicular motion of circular shades in front of the reflectors, by which the light is alternately hid and diaplayed. This distinction, as well as that called the fashing light, is peculiar to the Scotch coast, having been firat introduced by the late Engineer of the Northern Lights Board. The double limhts (which are seldom used except where there is a necessity for a leading line, as a guide for taking some channel or avoiding some danger) are generally exhibited from two towers, one of which is higher than the other. At the Calf of Man, a triking variety has been introduced into the character of leading lights, by substituting, for two fixed lights, two lights which revolve in the same periods, and exhibit their fashes at the same instant; and these lights are, of course, susceptible of the other variety enumerated ahove, that of two revolving red and white lights, or flashing lights, coming into view at equal intervals of time. The utility of all these distinctions is to be valued with reference to their property of at once atriking the eye of an observer, and being instantaneously obvious to strangers."

Although colour is needful, it is in itself a very great evil, for the coloured screens stop much of the light. Several colours have been tried, but red, blue, and green have alone been found useful; and the two latter only at such short lengths, that they are altogether unfit for sea-lights. Even the red lights take up from foursevenths to five-sixths of the whole light, which is a very great loss; and the deeper the red, the greater the loss of light,-whife the less red there is, the less can it be seen by the seaman. Red lights ought, therefore, to be used as little as may be. In Scotland, instead of a red acreen or disc, a chimney of red glass is used.

We now come to the use of lenses, upon which the writer says :-
"One of the earliest notice of the application of lenses to lighthouses is that recorded by Smeaton in bis 'Narrative of the Eddyatone Lighthouse,' where be mentions a London optician, who, in 1759, proposed grinding the glass of the lantern to a radius of seven feet six inches; but the description Is too vague to admit of even a conjecture regarding the proposed arrangement of the apparatur. About the middle of the last century, however, lenses were actually tried in several lightbouses in the south of England, and in particular at the South Foreland io the year 1752; but their imperfect Ggure and the quantity of light alsorbed by the glass, which was of impure quality and of considerable thirkness, rendered their effect so much inferior to that of the parabolic reflectors then in use, that after trying some strange combinations of lenses and reflectora, tbe former were finally absindoned. Lensea were also tried at the lights of Portland, Hill of Howth, and Waterford, by Mr. Thomas Rogers, glass manufecturer in London; who possessed, it is said, the art of blowing mirrors of glass, 'and by a new method nilvered over the conver side without quickailver.'
"The merit of having first suggested the building of lenses in separate
pieces, seems to be due to Condorcet, who in his Eloge de Buffom, published $s 0$ far back as 1773, enuraerates the advantages to be derived from this method. Sir David Brewster also deacribed this mode of building lenees in 1811, in the Edinburgh Encyclopedia; and in 1822, the late eminent Freanel, unacquainted with the suggestions of Condorcet or the dencription in Sir David Brewster, explained, with many ingenious and interesting details, the same mode of constructing thone instruments. To Freanel belongs the additional merit of baving first fullowed up his iavention, by the conatruction of a lens and, in conjunction with MM. Arago and Mathieu, of placing a powerfal lamp in its focus, and indeed of finally applying it to the practical purposes of a lighthouse."

To show Fresnel's system fully would take more room than we ean give, and many wood-cuts, and we are sorry that we must leave it alone, and send our readers to Mr. Stevenson's book, where everything is given in full,-Fresnel's brother having put his papers in Mr. Stevenson's hands.

One of Mr. Stevenson's own works was with the Isle of May light.
"Having been directed by the commissioners of the Northern lighthouses to convert the fixed catoptric light of the Isle of May, into a dioptric light of the first order, I proposed that an attempt should be made to furm a true cylindric, instead of a polygonal beit for the refracting part of the apparatus; and this task was successfully completed by Messrs. Cookson of Newcastle in the year 1836. The disadvantage of the polygon lies in the excess of the radins of the circumacribing circle over that of the inscribed circle, which occaions an anequal distribution of light between its angles and the centre of each of its sides; and this fault can only be fully remedied by constracting a cylindric belt whose generating line is the middle mixtilinear section of an anrular lent, revolving about a vertical axis passing through its principal focus. This is, in fact, the only form wbich can possibly produce an equal diffusion of the incident light over every part of the horizon.
"I at first imagined that the whole hoop of refractors might be built between two metallic rings, connecting them to each other solely by the means omployed in cementing the pieces of the annular lenses; but a little consideration convinced me that this construction would make it necessary to build the zone at the lighthouse itself, and would thus greatly increase the risk of fracture. I was therefore reluctantly induced to divide the whole cylinder into ten arcs, each of which being set in a metallic frame, might be capable of being moved separately. The chance of any error in the figure of the inatrument has thus a probability of being confined within narrower limits; whilst the rectification of any defective part hecomes at the same time more easy. One other variation from tbe mode of construction at flrst contemplated for the Isle of May refractors, was forced upon me by the repeated failures which occurred in aitempting to form the middle zone in one piece; and it was at length found necessary to divide this belt by a line pasaing through the horizontal plane of the focus. Such a division of the central zone, however, was not atteuded with any appreciable loss of light, ts the entire coincidence of the jupction of the two pieces with the horizontal plane of the focus, confines the interception of the light to the fine joint at which they are cemented. With tbe exception of those trifling changes, the ides at firat entertained of the construction of the instrument was fully reslised at the manufactory of Mesars. Cookson."

Speaking of Fresnel's lamp, used in the French lighthouses, Mr. Stevenson writes:-
"The only risk in osing this lamp arises from the liability to occasional derangements of ita leathern valres that force the oil by means of clockwork; and several of the lights on the French coast, and more eapecially the Corduan, have been extioguished by the failare of tbe lamp for a few minutea, an accident which has never happened, and scarcely can occur with the fountain lampa which illuminate the reflectors. To prevent the occurrence of such accidents, and to render their consequences less serious, various precautiona have been resorted to. Amongst others, an alarum is attached to the lamp, consisting of a mall cop pierced in the bottom, which receives part of the overfiowing oil from the wicks, and is capable, when full, of balancing a weight placed at the opposite end of a lever. The moment the machinery stops, the cup ceases to receive the supply of oil, and, the rernainder ruaning out at the bottom, the equilibriom of the lever is destroyed, so that it falls and disengagea a spring which ringa a bell auficiently loud to waken the keeper ahould he chance to be asleep. It may justly be questioned whether this alarum would not prove a temptation to the keepers to relax in their watchfulness and fall asleep; and I bave, in all the lamps of the dioptric lights on the Scotch coast, adopted the converse mode of causing the bell to cease when the clockwork stops. There is another precaution of more importance, which consists of having alwaya at hand in the light-room a spare Jamp, trimmed and adjusted to the height for the focus, which may be substituted for theother in case of accident."

In the French lights, "these diatinction depend upon the periods of revolation, rather than apon the churacternatic appearance of the light ; and therefore seem less calculated to strike the eye of a seaman, than those employed on the coasts of Great Britain and Ireland. In conformity with this syatem, and in consideration of the great loss of light which results from the application of coloured media, all distinctions based upon colour bave been discarded in Freach light.
"The distinctions are, in fact, only four in number, viz.: fixed; fixed raried by fashes; revolving, with daches once minate; and revolving
with fashes every half minute. To thuse might be added, revolviag, with bright periods once in two minutes, aud perliaps fushing once in fare seconds (as introduced by toe at the Listle Ross, but I cannot say with such complete success as would induce ine to reconamend its geueral aduption). My own experience would ulso lead me to reject the distinction called 'fixed, varied by lashes,' which 1 do not consider as pusseasing a marked or eficient character."

For putting lights on a shore, Mr. Stevenson lays down a few laws for the engineer, which will be found very useful for those of our readers who may have to build lighthouses in our settlements abroad:-
" 1 . The most prominent points of a line of coast, or those first made on 1 over-sea voyages, should be first lighted; and the most powerful lights should be adapted to them, so that they may be discovered by the maricer as long as possible before his reaching land.
2. So far as is consistent with a due attention to distinction, revolving lights of some description, which are necessarily more ponerful then fixed lights, should be employed at the outposta on a line of coast.
3. Lights of precisely identical character and appearance should not. if possible, occur within a less distauce than 100 miles of each other on the sume line of coast, which is mude by over-sea vessels.
4. In all cases, the distinction of colour should never be udopted except from absolute necessity.
6. Fixed lights and others of less power, may be more readily adopted in narrow seas, because the runge of the lights in such situations is generally less than that of open sea-lights.
6. In barrow seas also, the distance between lights of the same apprarance may often be safely reduced within much loner limits than is desiruble for the greater sea-light; and there ure many instances in which the distance separating lights of the same character need not exceed 50 miles, and there are peculiar cases in which even a much less separation between similar lights may be sufficient.
7. Lights inteuded to guard vessela from reefa, shoals, or other duagers, should in every case be placed, where practicable, to the seaward of the danger isself, as it is desirablo that seamen be enabled to make the ligbts with confidence.
8. Views of economy in the first cost of a lighthouse sboold nerer be perinitted to interfere with placing it in the best possible position; and, when funds are deficient, it will geverally he found that the wisest course is to delay the work outil a sum shali have been ob:ained sufficient for the erection of the lighthouse on the best site.

9 The elevation of the lantern above the sea should not, if possible, for sea-lights, exceed 200 feet; and about 150 feet is sufticient, under almost any circuinstances, to give the range which is required. Lights placed on high headlands are subject frequently to be wrapped in fug, and are often thereby rendered useless, at tines when lights on a lower lryel right be perfectly efficient. But this rule must nut, and indeed caunot, be strictly followed, especially on the British coast, where there are so many projecting cliffs, which, while they sabject the lights placed on them to occasioual obstruction by fog, wuuld also entirely and permanently hide from view lights placed on the lower land adjojning them. In such cases, all that can be done is carnfully to weigh all the circumstances of the locality, and choose that site for the lighthouse which seems to atford the greatest balauce of advantage to navigation. As might be expected, in questions of this kind, the opinions of the most experienced persons are uften very conflicting, according to the value which is set on the rerious elements which enter iuto the inquiry.
10. The best pusition for a sea-light ought rarely to be neglected for the sake of some neighbouring port, however important or influential; and the intereste of navigation, as well as the true welfare of the port itself, will generally be much better served by placing the sea-light where it oughe to be, und adding, on a smaller scale, such subsidiary lights as the channel leading to the entrance of the port may require.
11. It may he held as a general maxim, that the fewer lights that ean be employed in the illumination of a coast the better, not only on the score of economy, but also of real efficiency. Every light needlessly erected may, in certain circumstauces, becowe a source of confusion to the mariner, and, in the event of another light being required in the oeighbourhood, it becomes a deduction from the means of distingaishing it from the lights which existed previous to its estahlishment. By the ueedless erection of a new lighthouse, therefore, we not only expend pubhio treasare, but waste the means of distiuction among the neighbouring lights.
12. Distinctious of lights, founded apon the minute estimation of intervals of time between fushes, and especially on the measurement of the duration of light and dark periods, are less satisfactory to the great ma. jority of cusstung seamen, aud are more liable to derangement by atmospheric changes, than those distinctions which are founded on what mas noore properly lue called the churacteristic appearance of the lighis, in which the times for the recurreace of certain appearances difier so widely from each other as not to require for their detection any very minate observation io a stormy night. Thus, for example, fashing lights of fire econds interval, and revolving lights of half a mioute, one minute, and two minutes, are much more characteristic than thuse which are distioguished from each other by intervals varying accordiog to a alower meries of $5^{\prime \prime}, 10^{\prime \prime}, 20^{\prime \prime}, 40^{\prime \prime}$, \&cc.
18. Harbour and local lights, which have a circumscribed range, shoold generally be fixed iostead of revulving; wad may often, for the same
reasoo, be safely distinguished by coloured medis. In many cases also, where the porpose of guiding into a arrow channel is to be gained, the Jrading lights which are used, should, at the same time, be so arranged as to serve for a distiaction from any neighbouring lights.
14. Floating lights, which are very expensive and more or less nacertain from their liability to drift from their mooring. as well an defective in power, should never be employed to indicato a turning point in a nevigetion in any situation where the conjunction of lights on the shore can be applied at any reasonable expenee."

The building of the lantern is a work of great care, and in which our writer has very cleverly made an improvement:-

H A considerable practical defect in all the lighthouse lanterns which I beve ever seen, with the exception of those recently constructed for the Scoteh lighthouses, consists in the vertical direction of the astregala, Which, of course, tend to intercept the whole or a great part of the light in the arimath which they aubtend. The consideration of the improvenent which I had effected in giving a diagonal direction to the joints of the fixed refractors, first led me to adopt a diagonal arrangement of the framework which carries the cupola of zones, and aflerwards for the astragals of the lantern. Not only is this direction of the ssiragals more advantageons for equalising the effect of the light; but the greater stiffuess and atrength which this arrangement gives to the frame-work of the lantern make it safe to use more siender bars, and thus also absolately lese light is intercepted. The pares of glass at the same timo become triangolar, and are necessarily stronger than rectangnlar panes of equal ourface. This form of lantern is extremely light and olegant. To avoid the neceasity of painting, which, in situations so exposed as those which lighthouses generally occopy, is attonded with many inconveniences and no small risk, the framework of the laptern is now formed of gun-metal and the dome is of copper; so that a first-order lantern of 12 feet diameter and 10 feet height of glase costs, when glazed, abont $£ 1280$. In order to give the lightLeepers free access to cleance and wash the upper panes of the lantern (an operation which in snowy weather must sometimes be frequently repeated daring the night), a narrow gangway, on which they may safely tand, is placed on the level of the top of the lower panes, and at the top of the cecond panes, rings are provided of which the ligh(keepers may lay hold for secarity in stormy weather. A light trap-ladder ia also attached to the outside of the lantern, by means of which there is an easy accese to the vestilator on the dome.

Great care is bestowed on the glazing of the lantern, in order that it may be quite impervious to water, eren during the heaviest galos. When iron is ased for the framen, they are carefully and frequently painted; but gunmetal, as just noticed, is now generally used in the Scotch lighthouses. There is great risk of the glass plates being broken by the shaking of the lantern during bigh winds; and as much as possible to prevent this, verions precautions are adopted. The arris of each plate is always carefully rounded by grinding; and grooves aboat balf an inch wide, capable of holding a good thickness of patty, are provided in the astragala for receiviog the glass, which is a quarter of an inch thick. Small pieces of lead of wood are inserted between the frames and the plates of glass against which they may press, and by which they are completely separated from the more unyielding material of which the lantera.frames are composed. Papes glazed in frames padded with cushions, and capable of boing temporarily fixed in a sew minutes, in the room of a broken plate, are kept ready for use in the store-room. Those framed plates are called sformpames, and have been found very usefal on ceveral occasions, when the glass bas been shattered by large sea-birds coming against it in a stormy night, or by aqall stopes violenaly driven against the lantern by the force of the wind.

The ventilation of the lantoms forms a most impurtant element in the preservation of a good and efficlent light. An ill-ventilated lantern has its sides continually covered with water of condensation, which is produced by the contact of the ascending corrent of heated air; and the glass thos obatracts tbe passage of the raye, and diminishes the power of the light."

We must now shut up Mr. Stevenson's book, though we could very well take more from it, for it is full of new and useful matter. We cannot, however, do so without giving our thanks to the Board of Northern Lights for publishing this book, as they before did the elder Stevenson's book on the Bell-rock lighthouse. In our last number we called stronglyon the engineers to write books on their works; but, perhaps, we should have done better if we had called on the railway and other undertakings to find the money for it, as the Board of Northern Lights have done. There is something wrong now, and we cannot help thinking that the engineers are those most to blame. If Mr. Robert Stephenson would take under his care a book on the London and Birmingbam Railway, we do believe that the shareholders would not grudge the money, as each of them could have a book. They have not grudged money for Wolverton, and we do not think they would for this, if it were fairly put before them by their engineer. The shareholders would never miss the money, while they would do a great deal of good. If the engineers do not stir, we hope the shareholders will; and that we shall have books on our great railway works, which may keep up their name and the honour of England.

Mathematics for Practical Men, being a common-place book of Pure and Mixed Mathematics, designed chiefly for the use of Civil Engineers, Architecls, and Surveyors; by Ounthus Grecony, LL.D., F.R.A.B. Third Edition, Revised and Enlarged. By Hensy Law, civil engineer. London: Weale, 1848. 8vo. pp. 510.

This is a new edition of a very well known book. An editor who undertakes the revision of the scientific labours of another writer, undertakes an onerous and difficult task. If he alter and interpolate freely, he may be charged with disrespect towards his author: if, on the other hand, he adhere too faithfully to the text, he becomes responsible for the original errors, as well as for all which he himself may happen to commit.

Dr. Olinthus Gregory, of the Woolwich Military Academy, published the first edition of his "Mechanics for Practical Men," in 1825 ; and eight years after, a subsequent edition, in which he says, "I have corrected a few errors which had escaped my notice in the former impression." The work commences with an elementary treatise on arithmetic and algebra, and the remainder is devoted to geometry and the mechanical sciences. This part of the work is, in his own phraseology, "synoptical." "The definitions and principles are exhibited in an orderly series, but investigations and demonstrations are only sparingly introduced." So mach the greater, then, the importance of accuracy. Where results only are given, the reader must trust entirely to the authority of the writer: the process of investigation being omitted, there are no possible means of ascertaining the accuracy of the conclusions. They must be taken on trust. Like bank-notes, they may or may not represent sterling value; but in the absence of direct information, their circulation depends entirely on the credit of the issuer.

Engineers at the present day are pretty well agreed, that the accuracy of formulse is something more than a matter of mere speculative interest-that, on the contrary, it has a real and tangible importance, quite apart from theoretioal considerations. It was at one time thought that mathematical investigetions of questions of engineering were matters of mere curiosity-learned pastimes. Now it is found, that if a bridge be constructed according to ingufficient formulse, it not only ought theoretically to fall down, but practically will do so. And if the duty of a steam-engine for a given quantity of fuel be inaccurately computed, not only are the laws of science infringed-but the pocket of the owner of the engine suffers also. In this way, scientific accuracy comes to have a practical importance, a real money value : and those who prided themselves that they were "practical men," and thanked heaven that they never troubled themselves about scientitic theories, -which were all very well for college-students, and people who have nothing else to do,-discern faintly that their self-congratulation is premature.

These considerations render us very anxious that the theoretical science should not suffer discredit, nor practical engineering injury by misplaced confidence: and with this object in view, we proceed to the more particular examination of the work under review, premising that, as far as we have compared it with the preceding edition, most of the errors appear to be Dr. Gregory's originally, and Mr. Law's by imputation only; and it is nothing but fair to suppose that the latter was actuated by a feeling of deference towards his anthor.

We pass over the treatises on arithmetic and algebra without examination; being altogether elementary, they may be presumed to be correct. Our criticism commences with the definitions of Curves.
"A cycloid or trochoid is an elegant mechenical curve, first noticed by Descartes, and an account of wbich wat published by Mersenne in 1615. It is in fact the curve described by a nail in the rim of a carriage-wheel while it makes one revolution on a fat horizontal plane."

Cycloids " or" trochoids are used as synonymous words! They are names of curves essentially different: for the former, the tracing point is on the circumference of the generating circle-for the latter, the tracing point is within or beyond that circumference.
"If the generating circle, instead of rolling along atraight line, it made to roll upon the circumference of another circle, the curve dencribed by any point in its circumference in called an epicycloid."

It is not called an epicycloid except when the generating circle is equal to the fixed circle, and rolls on the exterior of it. In the other cases, the curve generated is either a Hypotrochoid, Epitrochoid, or Hypocycloid. In the figure illustrating the definition of an epicycloid, this mistake is aggravated, by representing the rolling curve as much larger than the fired curve.

It is of the very essence of mathematical definitions that they should be precise and comprehensive; and in no part of mathematics is this exactness of definition more necessary than in me-
chanics. What will our mathematical readers say of such a definition as the following?
"When the forcen that act upon a body, deatroy or annihilate each other's operation, so that the body remains quiescent, they are said to be in equilibrism, and are then called preserures."

This is clumsy and incomplete, to say the least. It is assumed, that when two forces "annihilate each other's operations," the body is at rest,-the case of uniform motion is overlooked. Besides, the word pressure is restricted to statical forces, whereas it is properly applied to dynamical forces also.
"Vis viva, or living force, a term used by Leibnitz to denote the force or power of a body in motion; or the force which would be required to briog it to rest."

Leibnitz never did anything half $s 0$ absurd as is here said of him. Vis viva is not a force (or power,-for Dr. Gregory previously states that the words force and power are synonymous). Vis viva is a mere technical phrase-signifying, simply, mass multiplied by the aquare of velocity-which Dr. Gregory and his editor are determined to distort into something very complicated and abstruse. So far from vis viva being a force, it is not even measured by force alone-another element being the distance through which the force acts. When a body is acted upon by only one uniform force, the vis viva generated is equal to twice the force multiplied by the distance described in the direction of the force.

In the second problem of the chapter on Statics, the calculation respecting the strain on tie-beams and struts is totally erroneous. It is not worth while to state the problem here, as we could not make it intelligible without the diagrams. To the reader who has the work before him, it will be sufficient to state that the error arises from considering the forces at one end of the strut and tiebeam, and neglecting the forces at the other end of each. The conclusion is manifestly erroneous, for when the tie-beam became indefinitely long, it would be vertical, and the tension equal to the weight suspended; the strain on the strut at the same time becoming zero.
"If the particles or bodies of any system be moving aniformly and rectilineally, with any velocities and direction, the centre of gravity is either at rest, or moves uniformly in a right line."

This is not true. Does the author mean to assert, that if two bodies be moving with different velocities in straight lines perpendicular to each other, the common centre of gravity moves in a straight line?

In discussing the pressure of earth against walls, the line of rupture and the natural slope are said to be synonymous-they are entirely different things; the line of rupture being that which defines what is technically termed the wedge of maximum pressure. In the next paragraph is discussed the pressure exerted against the wall by the prism resting on the natural slope; whereas, by the very definition of natural slope, that prism exerts no such pressure, the friction being of the exact amount necessary to sustain the weight.

The section on the stability of the arch discusses the conditions for a case of rupture which is mechanically and geometrically im-possible-that where there are only two joints of rupture, equidistant from the crown, the loading symmetrical, and the piers incapable of sliding. In the last of the formules in this section, the right-hand side of the equation has double it proper value.

The preliminary part of the chapter on Dyiamics has been re-written,-not however, as we think, with great success. The confusion of ideas respecting vis viva is really marvellous, considering how simple the real signification of the phrase is. Mr. Law says, first, "Mechanical effect is measured by the product of the mass or weight of the body into the space over which it has moved." Then he defines the vis viva of a moving body as "the whole mechanical effect which it will produce in being brought to a state of rest." This definition is by no means satisfactory. First, the mass of weight are spoken of as convertible terms. Next, coupling the two definitions, the vis viva is said to "produce" the mass or weight multiplied by the distance. This is a strange expression: however, if we leave out the word "mase," and for "distance" read "twice the distance," the idea intended to be conveyed is tolerably correct, where the motion is vertical and the only force is that of uniform gravity. For bodies acted on by variable force, and for ourvilinear motion, the definition is totally inapplioable.

In place of an enunciation of the three laws of motion, we have the following experimente as the foundation of dynamics.
"From carefully conducted and often-repeated experiments, the following rounlts with regard to bodies in motion hare been obtained :-
" I. If a hody of a certain weight, and moving with a given velocity, meet anotber body of double that Feight, and moring Fith half the velocity, the
two bodies will deatroy each other's motion, and bofk will be brought to otate of rest.
" II. A body of a certain reight and moving with a given velocity, beiats suliject to a uniformily retarding force (i. e. a uniform force acting constantly in a contrary direction to the body's motion), will move over a certala apace in being brought to rest, and will occapy a certain time in doing so; them another body of the same weight, but moving with half the velocity of the former, being subject to the same uniformly retarding force, will move over one quarter of the space moved over by the former, in being brought to a atate of rest, and will occapy in doing so half the time. And another body of the same weight, but moving with one-thind of the velocity of the firat, will move over one-ninth of the space, and occupy one-third the time of the first, in being brought to a itate of rest."

The second experiment would be analogous to that of trying whether all points in the circumference of a circle possens the property of equidistance from the centre! It is a matter of definition that they should do so. In the same way, the mere definition of uniformly retarding force leads to the inference here indicated as the result of numberless experiments. The conclusion depends on mere geometry, not on any law of mechanics. If a horse set off at a constantly diminishing speed- 50 feet the first second, 49 feet the next, 48 feet the next, and 80 on-it requires no knowledge of mechanics, but a simple arithmetical computation, to ascertain how far he has gone, and the time which has elapsed, when his velocity is reduced to 20 feet a second. In the same way, if a body be acted upon by a uniformly retarding force-that is, one which diminishes the velocity at an assigned uniform rate-the law of motion is assigned a priori, and it requires no experiment to determine the distances corresponding to subsequent rates of velocity. The rule that the distance traversed before the body comes to rest is proportional to the square of the velocity destroyed, depends on purely geometricul computation.

In the section on Motion on Inclined Planes, we find the follow-ing:-
"Each particle of matter in a rolling body resists motion in proportion to the square of its distance frum the asis of motion."

There is no such resistance, either in proportion to the square of the distance from the axis of motion, nor in any other proportion. It is incorrect to say that matter resists motion ; it neither resists nor assists it, but is perfectly impassive and inert. The foroe of inertia, as M. Poisson observes, is an incorrect phrase, arising from inaccurate notions of the properties of matter-it, in fact, implies an idea that matter has some inherent property of altering its own motion.

In the section treating of Pendulums, it is asserted, that if a body suspended from a fixed point by a flexible string be made to vibrate, it will always rise the same vertical distance as it has descended. This is of course true when the motion is not disturbed; but it is added, that if the motion of the string be intercepted by a projecting peg, 80 as to shorten the radius of the arc in which the body moves, the same property holds. That this is not generally true is obvious, from the consideration that the peg may be so near the vibrating body, that the radius becomes too short to allow the body to regain its original height. Moreover, the string receives a jerk; and therefore, unless it be perfectly elastic, there is a loss of vis vita.

After a confused and inaccurate definition and table of values of the radius of gyration for several bodies, we have the following lucid explanation of the principles of rotation :-
"If the matter in any gyrating body were actually to be placed as if in the centre of gyration, it ought either to be disposed in the circumference of a circle whose radius is R, or at two points R, R, diametrically opposite, and each at a distance R from the centre."

All that cen be made out of this is, that if the body be in one place, it "ought to be" in another. The ouly inference from such a statement is a querulous determination on the part of the writer to be dissatisfied with the position of the body under all circumstances. The feoling is that of the wolf toward the lamb in the fable-s general disinclination that the body should have any position, Several preceding sentences gave rise to the suspicion that the author did not clearly understand the subject on which he was writing-the sentence just quoted converts suspicion into certainty.

The following are the definitions at the commencement of a chapter on Central Forces :-
"(1.) Centripetal force is a force which tende constantly to solicit or to impel a body towarde a certain fixed point or centre. (2.) Centrifugal force is that by which it would recede from such a centre, were it not prevented by the centripetal force. (3.) These two forces are, jointly, called cen/ral forces."

Centrifugal force is not, as here stated, directed towards a fixed centre. It is normal to the path of motion; and, therefore, there is
only one particular case-that of circular motion-in which the above definition is satisfied. In elliptical and other kinds of motion it is violated at every instant. This consideration is of itself sufficient to show that the third definition is also incorrect. Central forces are always taken by mathemsticians to be forces directed from or towards a fired centre-which centrifugal force is not.

The laws of motion about centres of attration are applied to cases to which they have no relation. The following problem is an instance:-
" If a fiy, 2 tons weight and 16 feet diameter, is sufficient to reguiate an engine when it revolves in 4 seconds; what must be the weight of another fy of 12 feet diameter revolving in 2 seconds, so that is may have the same power apon the engine?"

It seems scarcely credible that the solution of this problem is derived from the law of motion of a free body in a circle about a central force-that " the forces are as the distances or radii of the circles directly, and the forces inversely." Could it be believed, that a student who had read mathematics for six months, would apply a law, which is wholly independent of the mass acted upon, to a problem in which the mass is the most essential particular? By such logic, the following relation between the weights of the two fly wheels is established:-

$$
\frac{W \mathrm{D}}{\mathrm{~T}^{2}}=\frac{20 d}{t^{2}}
$$

Where W, x, are the weights; D, d, the diameters of the wheels; and T, t, the times occupied in revolution. Now, to show the $\mathrm{ab}-$ surdity of all this, we have only to express the times in terms of the linear relocities, V, and v, and the above equation becomes

$$
\frac{W V^{2}}{D}=\frac{w v^{2}}{d}
$$

which leads to the conclusion, that for two fly wheels of equal reight, that having the greatest velocity must also have the greatest diameter!-a conclusion to which our practical readers would probably demur.

It would take up too much space to explain all that appears objectionable in the work before us. Mr. Law certainly has the credit of rendering the new edition somewhat better than the preceding, by introducing De Pambour's investigations of the power of the steam-engine, and by several improvements of arrangement.

In the paper on the Strength of Materials, which is almost entirely re-written, Mr. Law gives some valuable views of the subject, which cause us to regret that he has not exercised keener criticism in other parts of the work. In estimating the tranverse strength of materials, an ingenious theory is proposed, for representing the total forces of extension and compression in any section of a girder by solids, of which lines proportional to those forces are the horisontal ordinates. Unfortunately, he overlooks the fact that the total forces of longitudinal compression and tension are equal and opposite. He assumes also that their moments are equel-which is incorrect. This error vitiates equation (I), page 373, and all that depends on it.

Our resiew must close here, not from want of subjects for further comment, but because of the space which they would occupy. We havedone little more than point out, in the briefest possible manner, a few errors here and there; and have avoided general observations, lest our criticism should appear unduly severe.

The High-Pressure Steam-Engine; an eapasition of its Comparative Merits, and an essay towards an Improved System of Construction. By Dr. Ebnst Alban, practical machine maker, Plau, Mecklenberg. Translated from the German, with notes, by Wuriam Pow, C.E. London: Weale, 1848. 8vo. pp. I 50.

This is the conclusion of a work of which the first portion was reviewed ante, vol. X., p. 45. It will be remembered, that the distinguishing feature of Dr. Alban's subject is an earnest advocacy of the merits of the high-pressure steam-engine, which, he contends, is for all purposes and under all circumstances, superior to the low-pressure engine. He proposes to increase the steampressure greatly begond the limits now usually assigned to it ; and as his observations are the result of long practical experience in the manufacture of engines, and in superintending their working, they are at least deserving of consideration. His arguments are those of a careful and judicious observer, and the details of his experience prove that he has pursued his profession with no ordinary amount of energy and ability.

In the present portion of the treatise, onr author describes the form of the boiler and furnace adopted by himself, and which he recammends as models for general adoption. We must demur, how-
ever, to the notion of a model engine, and to any one routine of construction prescribed for universal practice. The steam-engine would lose much of its value if the arrangement of its parts were immutable. The diversity of forms which may be given to it, and the facility of adapting them to local exigences, render the steam-engine the most convenient, as it is the most economical, of motive agents.

The principle which characterises Dr. Alban's oo 0
 the tubes, and the return to the boiler of the o 0 o water which has been carried upwards in a liquid 0 o 0 form with the current of steam. The dots in the
diagram will sufficiently explain the relative $0_{0} 0$ position of the tubes. c, d, are two capacious vessels above them.; The ends of all of them communicate with c, the "separator," into which, therefore, the steam generated, and the water mechanically mixed with it, are carried. At that end of this vessel where steam and water are admitted, violent ebullition goes on; but as the capacity of the boiler is large, the water and steam become more and more separated as they progress to the further end, whence they pass quietly by their respective pipes to the receiver d, in which an undisturbed water-level is maintained. From d, the steam passes off to the engine, and the water is returned to renew its labyrinthine course through the tubes of the boiler.

Our author assures us that he has determined the efficiency and economy of this invention, by actual and careful experience. The advantage which he claims is, chiefly, that of having a tube surface, subject to the direct action of the furnace, and yet not liable to excessive ebullition or boiling dry. The tubes are of small diameter; consequently, their heating surface bears a higher proportion to the volume of water in them, than would be the case with tubes of a larger diameter. This circumstance, Dr. Alban insists upon as most important for the economical generation of steam. At the same time, the tubes lie so far below the waterlevel, that a want of water in them is scarcely likely to occur : and if it did, it would take place first in the higher tubes, which are the least exposed to heat.

It will strike some of our practical readers, that this mode of construction, and the smallness of the tubes, must render then exceedingly liable to be impaired by the accumulation of deposit. We are told, however, that this is by no means so formidable a difficulty as it may at first sight appear, as the stony concretion is confined to the upper tiers of tubes, and the arrangement affords easy access to them. It is however allowed, that tubes of so small size as those here described wonld not be applicable to marine boilers, in which a great deposit from salt water takes place.

After a minute description of the boiler, the writer proceeds to an examination of improvements of the furnace. He does not deem of much importance the "smoke nuisance," as it is emphatically termed in England, and decries the legal restrictions to which engine owners are subjected in Germany, to prevent them from forcing the bituminous vapour and soot of their furnaces down their neighbours' throats. "The English," says he, "continue to live well among their smoke, and find themselves well off on it ; they neither turn up their noses nor get asthma, but they live, and live long." We, however, who live in England, are not easily to be persuaded that the vitiation of the air by smoke is a slight evil. The pollution of the air in London and the manufacturing districts, inflicts mischief of which the magnitude can only be appreciated by actual observation. The cities of the continent, by the limits of their size, and the comparative insignificance of the manufactures carried on in them, are so little subjected to the injury in question, that it is not surprising that a foreign writer should speak slightingly of it. But the thousands who annually fall victims to the chimney-polluted atmosphere of this metropolis, give mournful proof that it is no false sentimentality-no popular prejudice, that have at length rendered the sanitary regulation of manufactures an irresistible obligation on the legislature. Dr. Alban considers all the self-acting contrivances for consumption of emoke useless; and deems it vain to expect that any future inventions for the purpose will succeed. It is sincerely to be hoped, however, that an object of such paramount importance will not be given up in despair. There can be no question that much improvement has already been effected, and that the combustion of fuel is conducted in a more complete and perfect manner now than it was a few years ago. When the necessity of further exertions becomes apparent, that parent of invention will stimulate our mechanicians to greater efforts and to the discovery of methods which, we are convinced, have not yet been attained, because the inquiry has been partially or feebly conducted.

The subject next considered is the engine itself, in which several improvements are proposed. According to our anthor's principle of confining himself to one exclusive model for every part of the steam-engine, he here selects the oscillating-cylinder for universal adoption. The history of these cylinders as given by the translator is curions, and affords interesting testimony that a discovery, after being abandoned by the original inventor as useless, may be taken up by others with complete success. In 1802 , Trevethicz took out a patent for an engine, in which cylinder, boiler, and furnace all swung together; and adds, that if it be desirable, all the other parts may be fired except the cylinder, which may be suspended on trannions or pivots perforated for the admission of *team. Other patents were aleo taken out for moveable cylinders; but the first oscillating-engines actually made, were those of Mr . Aaron Manby, and his son, the present able secretary of the Ingtitution of Civil Engineers. The important addition of the slide-valve was patented by Joserp Maudshay, in 1827 ; who, by combining the D valve with eccentric gearing, made an important step in perfecting these engines.
Dr. Alban proceeds to discuss the several objections usually urged against the the oscillating-cylinder, and to explain its advantages. To the objection, that injurious lateral strains are produced every time the motion is reversed and the momentum arrested, he replies, that in steam-engines of ordinary construction, the parts subjected to reciprocating motion (the beam or sidelevers) are usually heavier than the cylinder, and vibrate through a much greater arc. Though this be true, we must remark that the arrangement of the oscillating-engine renders it mechanically, or rather geometrically, impossible that its motion can be so even and regular as that of the beam-engine. By the arrangement of the ordinary crank, the motion of the beam is slowest at the two limits of its motion: it comes gradually to rest at the extremity of the arc of vibration, so that every thing like concussion is avoided : and that this advantage is attainable in the most perfect degree, is proved by the fact that in properly constructed engines, the most ponderous beams move without producing a jar or concassion. In the oscillating-engine, however, there is a peculiarity in the arrangement which precludes uniformity of motion. The arc through which the crank revolves while the cylinder oscillates in one direction, is less than a semicircle-and greater than a semicircle while the cylinder oscillates in the contrary direction. Hence, if the motion of the crank be uniform, the cylinder oscillates from right to left, and from left to right, in unequal times. If, on the contrary, the oscillations of the cylinder be regular, the crank moves faster when it is near the cylinder than when at its greatest distance from it. In practice, these two variations are compounded-or, if the phrase be allowable, the irregalarity of motion is shared between the crank and the cylinder. Of cenrse, the motion of the piston and other parts is affected by it. The actual amount of it depends on the relation between the length of the crank and connecting-rod, and the distance of the trunnions of the cylinder from the centre of the crank; and, coeteris paribus, the uniformity is increased by increasing the distance of the swing centre from the crank-shaft: but perfect regularity is unattainable.

To the objection, that the cylinders are unequally worn by the piston pressing first on one side and then on the other, the author replies, that this objection can only apply with much force where the pistons are large and heavy, and that the hemp packing (which he always prefers to metallic packing) almost entirely remedies the evil.
The disadvantage arising from the friction of the trunnions on which the cylinders swing, and which are usually perforated for the admaission and eduction of the steam, is remedied by the author by suspending the cylinders-net on the gudgeons through which the steam passes-but on a separate frame, having no communication with them. After enlarging on the great increase of friction resulting from the heat of the metal, he shows that by keeping the actual bearings on which the weight of the cylinder is supported, meparate from the steam passages, the heat of the rubbing parts is comparatively trifling, and that a great amount of friction is consequently avoided.

The fourth objection considered is, that "when the distance of the trunnion-axis from the crank-shaft is too small, the vibrations are unequal, as is also the force transmitted to the engine." "To this remark the translator briedy replies, in a note, that "the objection has no weight at all." With great deference to Mr. Pole's authority, there is considerable weight in the objection. He thas not appended to his dictum any reasons in defence of it, and there is therefore hardly any other way of meeting him than by wunter-assertion. Does he mean to assert that the vibrations are
performed in equal timen? If so, it is quite clear, from the geomotry of the case, that the crank moves at variable rates; and this ia sufficient proof that the force is not uniformly transmitted to the working parts. If, on the other hand, the motion of the crank and the transmission of force be uniform, the oscillations of the cylinder take place in unequal times. There is no escaping from one or other of the horns of the dilemma. We do not insist on the disadvantage as necessarily serious; but that it exists, and is unsvoidable, is obvious from mere inspection of a diagram showing the relative positions of the cylinder and crank.
The advantages of the oscillating-cylinder on which our anthor earnestly enlarges, are-1st, its simplicity, arising from the omission of the beam, parallel motion, and other parts; \&nd, the facility of construction, the fitting being in a great measure effected by the lathe; 3rd, compactness, and consequently suitability for steamvessels; 4th, comparative lightness; 5 th, the consequent portsbility; 6th, diminution of prime cost; 7th, the simplicity of working management ; 8th, the diminution of friction; 9th, the saving of grease for lubrication; 10th, the little repair required; 11 th the facility of discovering and rectifying any error of adjustment; 12th, the omission of guides for the piston-rods; and lastly, the direct and advantageous transmission of force.
There is one remark to be made on this enumeration of the advantages of the oscillating-engine, which, though simple, deducts greatly from its claims to pre-eminence.-The greater part of the merits claimed for it do not belong to it exclusively, but are common to all kinds of direct-action engines.
Among the prominent features of Dr. Alban's views, is the preference which he tells us that long experience has induced him to assign to hemp packing for the piston. Contrary to the opinion of many practical men, who believe the metallic packing absolutely indispensable for high-pressure engines, he considers that method fraught with inconvenience. It may however be observed, that many of the disadvantages (those arising from imperfect workmanship) are more likely to arise in Germany than in England, where we may justly pride ourselves on the marvellous perfection which has been obtained in the manufacture of the details of the steamengine.
Other objections to metallic packing are not to be thus disposed of. The cylinder and the piston are frequently of different metals, and therefore liable to different rates of expansion; consequently, the adjugtment of the packing, though perfectly accurate when the metals are cold, becomes untrue after they are heated. Dr Alban denies that the packing grinds itself steam-tight by working; on the contrary, he believes that if any imperfection exist originally, it is aggravated by use. We are however inclined to believe that he speaks on this point from limited experience, for while the elasticity remains unimpaired, it presses against the cylinder any irregular protuberances which may exist, and the adjacent parts are protected from attrition till these be worn down to an eren surface. Of course, if the elasticity of the packing be unequally distributed, those parts most forcibly pressed against the cylinder will wear thin and be destroyed before the portions of the packing subjected to less pressure.
The liability of the packing to lose its expansive power, either by the component parts cohering and losing their mobility, or by the heat destroying the elasticity of the springs, is strongly insisted upon. It is also asserted that the complexity and number of the parts render them liable to get out of repair, and that they can never fit so closely as to be perfectly steam-tight. Hemp packing is preferred on account of its simplicity; and the author states, as the result of his experience, that a packing of rope, of loose ungpun fibres, thoroughly lubricated, works well and remains steam tight under high pressures. We will not absolutely assert that there are not any circumstances usder which this kind of packing may be used with advantage, but many of Dr. Alban's prejudices must have arisen from observing the working of metallic packing of inferior construction; and probably, if he were acquainted with the great improvements which have been effected in England in this part of the steam-engine, he might be induced to modify his opinions.

There are many other topics of the treatise before us deserring attention, but we must content oursel ves with remarking, generally, thast the very original views taken by the author are not those of an ingenious schemer merely, but of one who combines originality of invention with practical knowledge, and enhances both by the power of logical induction exhibited in the methodic arrangement of his arguments, and the distinct statement of the results of his experience.

The Assistant Engineor's Railway Guide. By W. Dafis Hasmown, C.E. Part II. London : Join Williams and Co., 1848.

Many excellent works on subjects connected with the profession of the civil engineer have at various times been published. But while the wants of the more advanced portion of the profession have been comparatively well supplied, the junior members have been left at their entrance on the practical duties of their calling, almagt without any guide to assist them. The need of a book, treating in a practical manner of the minor, though most important, operations which form the principal duties of the assistant engineer, has long been felt; and we are glad to find that this requirement has been satisfied by Mr. Haskoll, in the work before us.

In the first part, published in 1846, the subjects of setting-out the centre line, taking the permanent section, boring, and the other operations preliminary to breaking ground, were discussed; in the second part, the author has devoted his attention to the setting-out of works, the subject of earthwork, the formation of the permanent way, and the many operations necessary while the railway is in progress of construction. These various topics are treated in a clear and practical manner: every variety of work, Thether on the skew or square, on a straight line or curve, is conmidered; and the methods of setting-out, and the precautions necessary during the construction are shown. The author is no advooste for the "rough-and-ready" system, but inculcates a careful attention to accuracy in every particular. Were this course more commonly adhered to, we should not so often hear of failure in worke, causing often loss of life, and always profuse expenditure of capital. The following passage will illustrate the author's views on this subject:-
"Let me persuade the young practitioner, that the gratification he will feel at finding the string-courses of his bridges and viaducts at their true height and gradient, or the formation of a tunnel at the intended levels, will alone amply reward him for his trouble, independently of a reputation for accuracy, which he will not fail to obtain in the opinion of a judicious chief, as also in the estimation of directors. Let him beware of the vaunts of 'rough-and-ready' men (rough work and readiness to blunder), who disguise their incapacity and ignorance, by pleading the impossibility in practice to obtain truly correct levels; for if there be any truth, rationally speaking, in this excuse, the greater should be the engineer's care to avoid errors, and not to do his work in a sloventy manner, whereby he mas double and treble his 'mistake; 'and he will find that contractors, masons, bricklayers, \&c., will be careful and attentive, exactly in proportion to the care and attention which he himself bestows on the works. This observation applies exactly in the same sense, and to the same extent, in setting-out works. He will, moreover, have the satisfaction of knowing, that his mind on this subject will be at ease as the works proceed, and that no reproach can be made to him; on the contrary, an error of this kind carried out can be considered little better than wilful neglect of duty. ${ }^{\circ}$
After giving an example of a section book, containing columns for the half-widths, distance, total rise, finished levels, excavation, and embankment, on one side,-with a sketch of the surface, and notes of the position and particulars of bridges, culverts, \&c., on the other,-the anthor adde the following hints:-
"The pocket section being prepared so far, we should, as soon as the works of construction are determined on, insert notes from the working drawings, or otherwise, of the angles of skew at Which the line crosses roads, canals, \&c.; the spans of arches on the square and skew, the rise of the arch, the depth of arch stones, of puadle, if any; also, if the works be on an inclined plane, the rise or fall from centre to centre of piers; memoranda also, of nearly similar nature, should be made of girder bridges, culverts, drains, and other works occurring along the line. These remarks are more than necessary; because, when on the works, the drawings, when required, are often mislaid, or partially defaced or deatroyed. It must be added, however reluctantly, that the tracings with which contractors and sub-contractors are supplied, are often wrongly figured ; and the site of construction, amidst the moving to-and-fro of masons, labourers, and 'navvies,' is not the place Where such errors may be most readily detected and corrected."
The second chapter is devoted to earthwork; and here the anthor shows a practical acquaintance with the numerous considerations that determine the course to be taken in the treatment of this most important feature of the works of a line of railway. We subjoin a few extracts on cutting and embankment:-
"The determination of slopes for earthwork is one of the
most uncertain subjects the engineer has to contend with, if he be anxious to reduce as much as possible the quantity of excavation, and that of land to be purchased-both formidable items of expense : but this reduction is attended with one great dangernamely, a 'slip,' which will often, for a considerable length, occasion a double and treble quantity of excavation, and the purchase of a corresponding quantity of land. * * The slopes of cuttings in gravel will stand at almost any depth at $1 \frac{1}{d}$ to 1 , and at depths of 10 feet and 15 feet at 1 to 1 ;-chalk is more uncertain; in solid rocky masses, it will stand perpendicular; friable, it may require slopes of 1 to 1 ;-shale will stand at a $\frac{1}{4}$ to 1 , if the stratification be horizontal and dry, but when wet and soapy, there will be great uncertainty ;-clay, however, is by far the most uncertain and treacherous earth to be met with in excavating; we have known it for many months to stand perpendicular for a depth of 40 feet, and suddenly slip off, determining a slope of 3 to 1 ; there is no doubt, that one of the most dangerous practices of excavators is to allow a gullet of this depth and nature to stand for a great length of time without lightening the sides, nor should it under any circumstances be allowed. A thin bed of clay will very often occasion the slip of material of a better nature. *** When a slip has once fully declared itself, there is little left but to submit to the circumstance, and to form the slope to the extent determined by the slip; except, indeed, in the case of buildings, or gardens, \&c., when we must have recourse to retaining walls and long counterforts, with a good system of drainage, which will always be found indispensable; so much so, that no good results can be expected from the best built and thickest walls without it."
"The best materials for the formation of embankments are gravel and sand, both from the facilities they offer for drainage, and their more rapid final consolidation; -soft, shaly earths are unfavourable, but if hard and dry they form good embankments, and settle well at slopes of 1 to 1 ;-vegetable earths, or what is termed soil, must be entirely rejected for the embankment, from their being so easily converted into soft mud; landowners, however, are always ready to carry these away, but care should be taken to preserve a sufficient quantity for soiling slopes, as when a good depth of soil has once produced a strong vegetation, it forms one of the best safeguards to slopes;-clays mixed with a quantity of stones, are by no means a bad material, and if dry, will form a sound embankment, though rather long in consolidat-ing;-wet clay is as bad as peat, if not worse; it should never be allowed to be used under any circumstance whatever; a few wagons of wet clay, tipped in a deep embankment, will'do more mischief by its slipping, and saturating all other materials laid on it, than one or even two thousand of good Etuff will rectify, besides becoming for many years a continual source of settlement, and perhaps of danger, on that portion of the line. Where the less favourable materials must be employed for forming embankments, it is as well to make an exception to the general rule, of forming at once an embankment to its full height and width, and to leave a few feet in height to be raised up with drier materials, if conveniently at hand; isolated masses of this description are often found in excavations, otherwise of very inferior materials, which may be successfully employed for this purpose."

Two tables are given at the end of this chapter, which will prove of great assistance in estimating earthwork. The chapter oni setting out of works goes very completely into the whole subject, and will render most valuable assistance to the young beginner; indeed, the information therein contained can be found in no other book than the one before us. After tables of experiments, by George Rennie, Esq., on the strength and other properties of various materials, now for the first time published, are given the specification and drawings of a very elegant and scientifically, designed laminated arch, over the river Ouse, on the East Anglian Railway, designed by J.S. Valentine, Esq.; and at the end of the book are placed many tables of a useful character.

Facts and Evidence Identifying the Authorship of the Letters of Juniue By Joyn Britton, F.S.A.

Mr. Britton, who takes in a wide range of subjects in his antiquarian ken, has added a new book to the many on the vesata questio of the authorship of "Junius." He favours Colonel Barré. This discussion does not come within our scope,-but it does to record the labours of one who has contributed so much to architectural literature.

Irish Wants and Practical Remedies; an Investigation on Practical and Economical Grounds, as to the Application of a Government System of Railways in Ireland. By Humparey Brown, Esq., M.P. London: Barnett, 1848.

Many of our readers will care very little about a sygtem of railways for Ireland, though this little work deserves attention for what it says on that subject; but it requires notice as being the only attempt yet made to apply statistically to a given case the doctrine that railways can be made by means of existing resources, and that they are of a reproductive character. An additional value is given to it, that it contains the latest statistics on railway subjecta, and many novel applications of them.

Among the chief points discussed, are the number of persons temporarily employed and permanently employed ; the saving and reproduction on agricultural resources; the effect of extending the area of supply by extending the radius of communication; the average contribution and mileage of each head of traffic; the pecuniary or capital resources of Ireland; the correspondence between traffic estimates and traffic returns; and the existing traffic on Irish lines of road.

The following is a curious illustration of railway economics, and supplies evidence on a question which has been often mooted :-
"Mr. Porter, in the new edition of his work on the Progress of the Nation, p. 30, has given a table of the estimate of traffic given to parliament by several railways, and by appending to them the actual traffic from the returns made in 1845, we shall be able to see bow far the eatimates have been borne out.

The estimates for the railways constitutiag the Midiand Railway, are as follows:-

	Paseagers.	Cattle.	8heep.	$\begin{aligned} & \text { Merchandise } \\ & \text { by Land. } \end{aligned}$	Coals by Water
Birmingham and Derby	145,747	7254	27,105	14,547	
Norih Midland	149,812	-	-	124,350	-
Midland Counties	255,424	-	-	12.948	285,000
Total estimated	550,085	7254	27,105	151,855	285,000
Midland Railway	,809,145	30,000	120,000	371,154	113,85

The Midland Railway traffic included, likewise, 30,000 pigs, and $\mathbf{C 6}, 290$ tons of lime. The merchandise carried by water was estimated at $\mathbf{2 5 5 , 7 3 8}$ tons, and this, and a great quantity of coals, are still carried by water, so that the railway has. as it were, created an amount of trafic.

The estimates and returns for the Manchester and Leeds Railway atand thus:-

$$
\begin{array}{lrrc}
& & & \begin{array}{c}
\text { Merchapdise } \\
\text { by Land. }
\end{array}
\end{array} \begin{gathered}
\text { Total Goods by } \\
\text { Land and Water. }
\end{gathered}
$$

Thne the traffic on the railway is greater than all that previously moving by land and water, although the canal traffic is as great as before.

The estimates and returns of the York and North Midland Railway stand thus :-

Merchandive Merchandive Coal

硣		Merchandive	Merchandi	Coal		
	Passengers.	by Lapd.	by Wate	by Water.	Cattle.	Sheep.
		Tons,	Tons. 95,100	Tons. 08,000		
Returus	461,755	351,022			15,364	87,6

The traffic in 3 , 351,022 its results.
The following are the estimates and returns of various other rail-ways:-
$\left.\begin{array}{llrr} & & & \text { Pasengers. }\end{array} \begin{array}{l}\text { Merchandise. } \\ \text { by Land. } \\ \text { Tons. }\end{array}\right]$

This will be found useful as a book of reference, on account of the facts and figures it contains, and the mode in which they are applied, as it is the only work which has yet embraced the subject of railway traffic in a practical and comprehensive manner.

सEGIETBA OF MSU RATDATE.

REDUCTION OF COPPER ORES.

Chables Low, of Roseberry-place, Dalston, Middlesex, gentleman, for "Improvements in the manufaoture of sinc, copper, tin, and other metals."-Granted November 4, 1847 ; Enrolled May 4, 1848

The title of this patent is more comprehensive than the specifcation, as the patentee disclaims all parts of the title, excepting that relating to copper. The object of the improvements is to quicken the manufacture of copper from its ores, and to diminigh the loss of metal. In reducing the ores a compound is employed, consisting of oxide of manganese, plumbago, nitrate of potash, nitrate of soda, or lime, and carbon. The proportions of these materials the patentee states to be, oxide of manganese forty-two parts, plumbago elght parts, nitrate of potash, nitrate of soda, or lime, two parts, and carbon fourteen parts; the carbon to be used, the patentee prefers to be either anthracite coal or wood charcoal. The mode of operation is as follows: the ore is roasted in the usual manner and then melted; and when in this state, the composition of the four materials named is introduced into the furnace and well mixed with the melted ore. The composition is introduced in the proportion of twenty-five pounds weight to one ton of ore operated upon, and acts as a flux. The slag rises more rapidly than ordinary to the surface of the melted mass, and is then to be skimmed off. When the workman perceives the metal is in a su年ciently forward state of manufacture, a second quantity of the composition in equal proportions is udded, and the mass is again stirred and skimmed. Additions of the composition are repeated if necessary, until the copper is in a sufficient state to be removed and operated upon in the usual manner. Should it be considered desirable, the composition may be introduced at any of the subsequent meltings of the ores, either in addition to, or without being introduced at, the first melting. The patentee does not confins himself to the precise proportions specified of the materials, nor to the precise mode of operation described, but claims the employment of the compound of oxide of manganese, plumbago, nitrate of potash, nitrate of soda, or lime, and carbon.

DRESSING ORES OR MINERALS.

William Brunton, jun., of Poole, Cornwall, civil engineer, for "certain apparatus for dressing ores or minerals."-Granted November 16, 1847 ; Enrolled May 16, 1848.
This invention consists in the application of centrifugal force combined with the upward impulse of water in the dressing of amall ores. The first part of the apparatus consists of a tank from five to six feet square; within this is fitted a sieve, having a wove wire or perforated metal bottom, the apertures being adapted in size to the ore about to be dressed. This sieve is fixed upon an upright shaft or spindle, revolving in a bearing at the bottom, and having a turned journal at its upper end. The depth of the annular margin or sides of the sieve is about eight inches. Immediately under the bottom of the sieve a partition, enclosing about one-third of its area, crosses the tank, and having communication with the discharge pipe of a force-pump. On the opposite side of the tank is a receptacle for the ore, and this is supplied by an instrument termed a "skimmer;" its lower end forming a mouth, and equal in breadth to the semi-diameter of the sieve; the stem being hollow, and bent at a certain portion of its length (turning downwards), so that anything passing through it will be deposited in the receptacle attached to the tank. A rotating motion being given to the sieve by means of wheels and pulleys fixed upon the upper end of the upright spindle, and the sieve being charged with ore or mineral by means of a hopper placed above it, the mouth of the skimmer is so regulated that, as the whole revolves, the water is forced upwards through the sieve by the action of the forcepump. The ore, by excess of weight, falls through the bottom of the sieve into the tank, and the waste is carried into the mouth of the skimmer, in consequence of the rotating force, and passes thence through the pipe or stem into the adjoining receptacle. The stream of water which is carried with the waste returns into the tank, and is sufficiently clean to be used again. The area of the piston of the pump should not be less than one-third the area of the sieve, and from 60 to 100 impulsions should be given by the pump before the skimmer is set to work; by this means the particles are raised, separated, and adjusted according to their specific gravity and bulk. Should the "orey" stuff be larger than the apertures of the sieve, the feed from the hopper is shut off by a little door that closes its mouth, and a shoot being placed on or
under the lower end of the stem of the skimmer which is lowered to take up the ore, it then passer through the stem into any receptacle placed to receive it. By another arrangement of the machine the skimmer revolves instead of being fixed, and traverses the ore at a regulated depth from the surface, and the waste is carried by the rotating force and the stream of water into the skimmer, and from thence into the central compartment, from whence it passes down the hollow shaft into the receptacle appointed to receive it. The second part of the invention relates to a method of dressing small ore and sleinen of ore. A hollow frame or trunk, has for its section the exterior form of a cone, which converges to its centre from the extremes of its base, and terminates in an aperture having a cock. To this centre is fixed an iron arm or step, upon which the whole apparatus revolves. The apex is formed like a goblet, for the purpose of a funnel, into which the small ores are poured. On each side or limb of this trunk or hollow frame are attached three receptacles, the first opening from the trunk into the uppermost one, being about one-third from the apex or funnel ; the second communicating with the middle one, at about two-thirds from the apex; and the third at the angle or extremities of the base. A pulley is fixed to the under side of the funnel, by which a rotating motion is imparted to the whole of the hollow frame, and the small ores in a moistened state are poured into the funnel, and pass down the hollow trunk. The centrifugal force of the revolving trunk causes the heaviest of the ores to be discharged at the upper opening into the adjoining receptacle; the next less in size into the middle one, and the least, or sleines, into the lower one. The water which passes into the trunk with the small ore or sleines of ore, is discharged by means of the cock at the base, immediately above the step upon which the whole revolves. When the receptacles are full, the small doors in front of each are removed, and the ores are taken out and placed in the usual bins, according to their various sizes. The patentee claims-first, the conveying the ores and waste into another receptacle over the annular margin of the aieve, by means of a skimmer-pipe and stream of water; mecondly, the application of the force-pump; and thirdly, the application of centrifugal force for producing artificial gravitation.

MANUFACTURE OF PIGMENTS.

Wiluiay Edward Newton, of Chancery-lane, for "Improvements in the mode or modes of manufacturing or preparing certuin mattere to be employed as pigments." (A communication.)-Granted November 16, 1847 ; Enrolled May 16, 1848.

This invention relates to the manufacture of zinc-white, zincyellow, and zinc-green, though it is principally directed to the formation of zinc-white, the other pigments having been the subjects of a former patent. The processes are deacribed at great length in the apecification, but the claims of the patentee will sufficiently explain the nature of the proposed improvements. He claims-First, the distillation of metallic ainc, of oxide of zinc, or zinc ore, by one of several means mentioned. Second, the application of furnaces similar to glass furnaces and coke ovens, and the modification of them respectively in order to fit them for the purpose of manufacturing zinc-white. Third, the construction of furnace, formed of two cylindrical tubes placed side by side with furnaces or fireplaces formed in the lower part of the brick-work. Fourth, the isolating the retorts from each other and also cutting off the communication between the retorts and the oxidizing chamber when required. Fifth, the employment of suitable apparatus for cleansing the mouths of the retorts without being obliged to enter the oxidizing chamber. Sixth, the arrangement of apparatus by which the retorts may be charged, cleansed, and replaced, or submitted to any operation required, without interfering with the oxidizing chamber. Seventh, the application or employment of blast furnaces for the production or manufacture of zinc-white or oxide of zinc, whether such furnaces ase circular or of any other guitable form, and whether they are constructed and arranged in a vertical; inclined, or horizuntal position. Eighth, the employment or introduction of currents of air into an oxidizing or other chamber, for the porpose of converting the metallic vapours of zinc into zinoWhite or oxide of zinc; also the employment of an exhaustion-tube or blowing-apparatus for conducting the metallic vapours to the oxidixing chamber. The patentee claims also the employment of wire-gauze or sieves for sifting the products; also the arrangement of vessels for receiving the heaviest portions of products. Ninth, the arrangement of the oxidizing chambers so as to allow of the products being collected without the necessity of entering them. Having deacribed all that appertains to the manufacture and manber of collecting zinc-white, the patentee next proceeds to an explanation of that part of the invention which relates to the
yellow of zinc and green einc. As the manufacture of sinc-yellow forms the subject of a previous patent, he merely remarks that hydrochloric acid may be used instead of sulphuric acid. To form ginc-green, yellow (having been produced by the patented process, is diluted with a suitable quantity of water, and mixed with a certain quantity of prussian blue (previously mixed with a suitable quantity of water, oil, or other appropriate liquid), either in a hot or a cold state. Green of zinc will thas be formed, the colour of which will be as durable as the blue itself. These pigments may be employed for painting of any kind.

SMELTING COPPER ORES.

Wizhiak Birkmyre, of Southdown, Cornwall, for "Improvements in smelling copper and other ores."-Granted November 16, 1847; Enrolled May 16, 1848.

The chief object of this invention is to remove the nulsance arising from the sulphuric and sulphurous acid vapours, and from the vapours of arsenic, during the smelting of copper ores. The process is thus described :-A double iron pyrites kiln is constructed upon the usual principles, the ash-pits being furnished with a leaden cistern, filled with water, to abate the nuisance arising from the sulphurous and arsenious acids, when drawing out the mundic ashes. Over the charging-door for the mundic, is an air-hole, provided with a damper, to regulate the passage of the oxygen necessary for combustion. The size of the double iron pyrite kiln should be 13 feet long, 7 feet 4 inches wide, and 8 feet high, and each furnace should be s feet in diameter, and of an octagonal form, lined with fire-bricks. Above the charging-door for the mundic, resting on two or three bars, is a tray, made of iron or copper, 4 feet 6 inches long, 3 feet 6 inches wide, and having a rim round it three or four inches deep. This is so placed as to enable the air and acids to pass freely out of the top of the furnace into a vitriol chamber, which is placed over the kilns. The vitriol chamber should be 150 feet 6 inches long, 11 feet 3 inches wide, and 9 feet deep, divided into three compartments, technically called "bottoms." The acid in that compartment nearest to the kiln being impure, should be kept apart, but the acid in the second and third compartments will be found to contain good vitriol. These pair of kilns will be found capable of producing two tons of copper per diem, by means of mundic, and, at the same time, of three tons of vitriol of a apecific gravity of $1 \cdot 847$. The copper ore being broken into pieces, about the size of wnlnuts, is put into the tray by means of a shovel or hopper the furnace being charged with iron pyrites and previously kindled . After a lapse of six hours the other kiln is to be charged in like manner, and so on alternately. For every 8 cwt. of mundic ashes withdrawn, add a charge of 10 cwt . of mundic containing 40 per cent. of sulphur, as for every 32 parts of sulphur it loses, it gains only 12 parts of oxygen; but in copper ores, if the process is carefully completed, it gains as much in oxygen as it loses in sulphur ; some copper ores it is stated will gain as much as four per cent. About if cwt. of ore should be placed in the tray, and the charge should be spread out into a body of from one to two inches thick, which should be turned over now and then, in order that every part of it should be exposed. After being submitted to the process for one hour, it is to be turned into a leaden cistern, supplied with hot water from the cooling cisterns underneath the kilns, to undergo the process of lixiviation. The tray is then again charged with ore, and the process is continued. It requires two roastings and lixiviation by the electro-metallurgic process to obtain the pure copper. Another method of calcination is, when the pulverized copper pyrites are exposed in the tray, pour upon then a bot solution of nine parts of saltpetre, and eight parts of oubic nitre, or 16 per cent. of saltpetre and 10 per cent. of vitriol, or equal quantities of saltpetre and vitriol to half the quantity of the ore. By this system, the deutoxide of nitrogen, necessary for making vitriol on a large scale, is separated, and the oxidation of the ores accomplished. The patentee claims-First. the roasting separately common ores of copper and other metals, by exposing then in an open vessel in a muadic-kiln, so that the vapours shall freely mix with the vapours of combustion of the iron pyrites, and be condensed at the same time in the vitriol chamber. Secondly, the separating simultaneously the deutoxide of nitrogen, for the vitriol chamber, with the oxidation of the ores by saltpetre or cubic nitre. Thirdly, the supplying the vitriol chamber with stean, by using saltpetre or cubic nitre; and, fourthly, the action of sulphuric acid upon the ores, either before or after they have been freed from the sulphate and arsenic of potash and soda.

ROTARY ENGINES.

Israrl Kinsman, of Ludgate-hill, London, merchant, for "Improvements in the construction of rotary engines, to be worked by steam, atir, or other elastic fluid." (A communication.)-Granted November 11, 1847; Enrolled May 11, 1848.

The principal feature in this form of rotary engine is a "piston wheel," provided with any desired number of pistons upon its periphery. The pistons are formed radially from the centre of the piston-wheel, and bear and work against the interior of a stationary cylinder. From the curved periphery of the piston-wheel to the interior of the stationary cylinder, there are stops which pass into the cylinder, the ends of which bear againat the periphery of the piston-wheel or the pistons, and thereby render that portion steamtight. The peculiar form of the pistons enables the stops gradually to recede from the interior of the cylinder until they become flush with the interior surface of the cylinder, and thereby allow the pistons to pass them without obstruction. Immediately that a piston has passed a stop, the stop is again projected into the cylinder to act as a surface, arginst which the steam acts to propel the piston-wheel forward. The patentee claims-first, the emplovment of the piston-wheel, upon which the number of pistons shall always be one more than the number of steam-stops on the cylinder, there being one steam-port and one exhaust-port to each steam-stop; the steam acting upon one or more pistons at the same time. Secondly, the mode of moving the slides or steamstops by a cam or cams, corresponding in form to the periphery of the piston. Thirdly, the connecting all the steam-ports with the steam-pipe, so that steam shall have access to the cylinder at the same time, by the pistons passing the ports. Fourthly, the connecting all the exhaust-ports with the main exhaust-pipe, so that steam may be exhausted from all the ports of the cylinder at the same time by the pistons passing the ports. Fifthly, the connecting all the ports with the steam-pipe, by a branch-pipe provided with a suitable shut-off valve, and also connecting all the exhaustports with an exhaust-pipe, by a branch-pipe, also provided with a suitable shut-off valve. Sixthly, the mode of packing the pistons by means of a central metal-piece acting against two side pieces, having bevelled edges.

COMBUSTION OF FUEL.

Richard Coad, of Kennington, Surrey, chemist, for "Improvements in the combustion of fuel and in applying the heat 80 obtained." Granted November 25, 1847 ; Enrolled May 25, 1848.
The object of the first part of this invention is to divide the gases and the smoke resulting from the combustion of fuel in the furnace into numerous small streams, by causing them to pass through apertures in the heated fire-bricks or lumps before they pass into the chimney. The great heat of the fire-bricks thus effectually ignites the unconsumed gases and smoke. The firelumps enclose the fire-place at the sides, the end, and at the top, through the whole of which are made the apertures or openings which open to the general flue common to all. There is also an aperture over the fire-door to be regulated at pleasure, for the purpose of admitting a supply of atmospheric air in a heated or other state above the fire-bars for assisting the combustion of the fuel and the gaseous products. The second part of the specification relates to reverberatory furnaces, and consists in supplying through numerous apertures in the sides and the ends of such furnaces above the fire-bars, any requisite supply of atmospheric air in a heated or other state, for the purpose of more effectually accomplishing the combustion of the fuel in the fire-place,-the mode of construction described by the patentee being to form a passage or channel around three sides of the furnace, the fourth being open to the hearth of the furnace; this passage or channel is formed within the brickwork of the furnace. The portion between the fireplace and the passage being of fire-bricks or lumps, it is through these fire-bricks or lumps that the apertures are made through which the supply of air is admitted from the passage to the fireplace above the fire-bars. The patentee states he is perfectly aware that atmospheric air has before been admitted into various descriptions of furnaces above the fire-bars; but it has not hitherto been so employed and admitted with respect to reverberatory furnaces. The third improvement noticed in the specification relates to a more effectual and more economical arrangement of apparatus for the heating of water, and for the warming of rooms or bulldings. This improvement consists in the mode of arranging the bars at the back of the grate or fire-place to prevent the fire from lying immediately against the tubes containing the water. There are a
top and a bottom veasel connected together by these rows of vertical pipes or tubes, through the interior of which there is a communication betweal the vessels. From these vessels pipes commanicate to warm apartments, buildings, or to other similar apparatus. The rows of vertical pipes or tubes connecting the vessels are placed immediately at the back of the fire-place, the flame and heated air passing amongst them in its way to the chimney in front of the rows of pipes; and between the fire-place and the pipes are bars for the purpose of preventing the fire from acting immediately against them. These bars are placed in vertical positions; the horizontal section being convex in front against the fire and angular behind next to the pipes, they prevent the contact of the fire with the pipes; these bars may be composed of fire-clay or of metal, but the patentee prefers the former. Above the fire-place, the front of the flue or chimney is perforated or pierced with a number of small apertures, for the purpose of admitting air to assist the action of the apparatus.

MANUFACTURE AND PRESERVATION OF TUBES.

Pigre Armand le Comte de Fontainemoreav, of South-street, Finsbury, for "certain Improvements in the process and vachinery for making, uniting, and preserving metallic and other tubes or pipes." Granted November 18, 1847 ; Enrolled May 18, 1848.

The specification of this invention is extremely minute in describing the different processes of manufacturing and preserving pipes, and the patentee claims seven distinct improvements, the enumeration of which claims will give a general idea of their character. The invention consists, first, in making and uniting metallic pipes simultaneously, by acting over the top or head of the rivet. Secondly, soldering, laterally, galvanised iron, leaden, and tinned pipes, (either riveted or clasped,) by means of a long thread or fillet of solder. Thirdly, uniting metallic pipes by means of a certain improved clasp. Fourthly, uniting metallic pipes by inserting in the clasps employed for the purpose certain compressible substances for preventing the escape of gas and fluids. Fifthly, uniting metallic pipes, by using a helix for elbowing without flattening the leaden elbow. Sixthly, preserving metallic and nonmetallic pipes by the application of resinous matters, fatty bodies, and chalk. Seventhly, in the process of preserving iron and castiron pipes from oxidation by means of galvanic action.

CASTING WROUHT-IRON.

Wilmian Rocke, of Dudley, Worcestershire, for "a new mode of treating and applying wrought-iron."- Granted November 18, 1847; Enrolled May 18, $18+8$.

The object of this invention is to obtain the form required which the facility of casting affords, retaining at the same the qualities of wrought-iron. Having previously prepared the moulds in a similar manner to that adopted in the moulding articles when made of cast-iron, the melted wrought-iron is to be run into the mould. The articles are then of a brittle nature, and deficient of malleable properties, to impart which the patentee next proceeds to treat or anneal them in an annealing furnace. For this purpose the articles are piled in an iron box lined with firebricks, leaving sufficient room to surround the articles with a quantity of Cumberland red ore, or other iron ore, or charcoal reduced to a fine powder, the articles being so completely covered as to prevent all admission of the air. In this state they are to be subjected to the required heat for a sufficient length of time to give the required malleability, in which great care must be observed by the workman, and until he has sufficient practice to perform it without, it is advisable to employ a small bar or trial-rod composed of the same metal, which may be withdrawn from time to time, to ascertain the state of the iron and detect the completion of the process, when the articles may be removed. When the density and close compactness of texture obtained by the use of wroughtiron is not required, he mixes a proportion of cast-iron therewith, according to the quality or texture of metal necessary for the article proposed, but in no case to exceed the weight of wroughtiron used; and when it is neceasary to impart to the articles manufactured the nature and temper of steel, he mixes with the wrought-iron a portion of cast-steel, but in no case to exceed the weight of wrought-iron employed. These mixtures of wrought and cast iron, or wrought-iron and cast-steel, being melted, are to be cast in moulds, and treated or annealed in the same manner as that described for the manufacture of articles entirely of wrought-iron, when they will be found to have acquired the mal-
leable properties required. The patentee does not claim as of his invention the melting of wrought-iron, this having been practised already to a limited extent; but he claims the treating and applying wrought-iron by melting the same by itself, or with a mixture of cast-iron or steel, and the reproducing malleability in the castings of the molten iron by annealing them in the manner described.

INLAYING METALS.

Cfprien Marie Tegsie Du Motay, of Paris, for "Improvements in inlaying and coating metals with various substances."-Granted November 4, 1847 ; Eurolled May 4, 1848.
The specification of this patent is exceedingly verbose, and it consists of fifteen articles, showing different modes in which the invention may be applied. The object of the invention is to produce ornamental designs on various articles, by depositing metal thereon after the articles have been properly prepared by marking or cutting out the intended design; and which articles, when finiahed, have the appearance of being richly ornamented with inlaid work. This method of ornamenting, by inlaying in metal, is known in France as "damasquinerie."
The work produced by this invention is very durable, and not liable to be worn away by cleaning or friction; it being quite equal in solidity to the inlaid work produced by the ordinary means, and even superior in point of finish.
Before depositing the metals intended to form the design, the patentee commences by producing designs, either in intaglio or in relief, upon the body of the article to be ornamented, those parts where no metal is to be deposited being coated with a varnish.
When an inlaying of one metal only is required, the patentee proceeds as follows:-The metal is first cleansed, and then immersed in a bath of the metal, to be deposited by the galvanic current. When the metal has been deposited to a thickness equal to the depth of the hollow parts of the design, it is withdrawn from the solution and washed in water, and dried with sawdust, or by any other convenient means, and the damaskened surfaces are laid bare, by means of freestone, or by filing, scraping, or by any other means which will remove the layer of superfluous metal, in order to uncover the inlaid or damaskened work.

Damaskenes or inlaying in several metals may also be produced by means of pressure. For this purpose, a piece of metal, with an even surface, is covered without soldering, either by immersion or by electro-deposition, with several coats of different metals; each of these layers is of a certain thickness, according to the depth of the parts of the die which are in relief. The last coating being deposited, the piece is to be withdrawn from the last solution, washed, and wiped dry. When dry, it is to be submitted to the action of pressure or stamping by means of dies or matrices, the intaglio parts of which are of equal depth and the reliefs of different heights, or reliefe of equal heights and intaglios of various depths. These must be calculated in such a manner, that, by reason of the penetration of the projecting parts of the die to a greater or less depth, the layers of metal (being, in certain parts, thereby driven to greater or less depths) may, on the surface being laid bare, be of the same level as the inlaid surface.
In order to produce devices or ornaments to be inlaid in wood, marble, \&c., by the ordinary means, the patentee proceeds as follows :-He takes a plate or sheet of any metal, and coats it, first, with a layer of copper, of suitable thickness; then with a coating of zinc ; and upon that another of copper: and so on until the desired thickness is obtained. As the successive costs of metal entirely cover the tin core, parallel layers of metal are thus obtained, which differ from each other, hoth as regards the different kinds of metal and their various thicknesses. On cutting the sheet thus produced into thin strips, in the direction of its thickness, designs will be produced consisting of parallel lines of tin, copper, and zinc. With regard to other devices or ornaments, such as roses, stars, circles, \&c., these can be produced by taking a metal core, of a certain length, either solid or hollow, and of the form desired to be produced, and coating it with successive and alternate layers of different metals; and when these deposits have been made to the required thickness, they are cut into thin discs. If the core, of whatever form, or metal, be solid, the parallel layers of metal will only be on its outside; but if it be hollow, they will also be inside, as the metal will be deposited on both sides.

HYDRAULIC LIFTING-JACK.

Registered by Mr. Simmons, and Manufactured by Messrs. Thobnton and Sons, of Birmingham.

Under the head of the proceedings of the Institution of Me^{-} chanical Engineers at Birmingham, in the Journal for March last (page 87), we gave a short account of this jack, and now are enabled to give an engraving of it, which better explains its use. It is stated by the inventor, that one man with the jack can lift from 15 to 20 tons.
A is a hollow vessel forming the base of the jack, and also a reservoir for the water. B, the cylinder ; C, the ram ; D, the pump; E, the plunger ; F, the slide; G, the pumplevers; H conical pointed pin; I, a small air-tap. Before using the jack, tighten the pin H, and open the air-tap I. When it is requisite to lower the weight, slacken the pin H. When the jack is not in use, close the air-tap I. Bhould the water get too low, take out the tap I', and fill the cistern when the ram is down. The ram can be pressed down by hand when the pin H is slack.
Scale, 2 inches to 1 foot.
For the purpose of increasinglthe leverage of the pump-lever G, an iron bar about 3 feet long, with a socket at one end, is fitted on to the lever G.

Mr. WHISHAW'S TELEGRAPHIC INVENTIONS.

We were present in the course of last week at a private view of the numerous contrivances invented by Mr. Whishaw for telegraphic communications. A great part of these inventions apply only to the communications at short distances, and of these an improved speaking tube is the most readily available. The improvements consist in using gutta-percha tubes of various diameters, and in applying removable whistles at each end, to afford a convenient means of calling attention when a communication is to be made. In a tube, two hundred feet long, coiled round so that the two extremities were near each other, the facility with which sound is transmitted was very strikingly exemplified. The slightest effort of the breath sounded a whistle instantaneously, and by blowing at one end, a musical instrument was played at the other as readily as if it had been applied to the mouth.
The chief peculiarity of the telegraphs exhibited, is the application of moveable "codes" to the face of the same instrument; each code consisting of all conceivable questions and answers on any given subject. The fired dial contains the letters of the alphabet, the titles of the codes to be referred to, and several questions and answers of common occurrence, or most likely to facilitate the communications. The index of the dial may be moved by electrical agency or, for short distances, by mechanism, to be worked by the hand; and when the subject matter contained in any of the codes is to be communicated, the operator causes the index to point to that code marked on the dial. The codes are printed on large card-boards, and have circular apertures in the
centre, through which the inder and dial can be ween when placed on the instrument. The questions and answers are printed radially, so that a great number are coutained within the range of the index in its circuit; and as it stops at ary one, a whole sentence may be at onee indicated. Should any word not on the code be requined, the index is made to point to the word "spell," and afterwards it indicates the letters of the alphabet that form the ward to be communioated. One plan of operating is by waterlevelindicators, the wher in two vertical tubes being elewated or dopremed till it stops at the signal wanted. Another telegraph, which however requires great delicacy in the manipulation, conaints of two chronometarg, each of which has a lang seaand hand pointing to mediallyplased words and sentences on the dial. It is emential to the acourmoy of the working, that the two chenometers ehould mave syohronously, for if there be the loest deviation, it mould tramonit inoorrectly. Gupposing that the hands on the two dials at diatance from each other, are always pointing to the same wrode, in their revolutions,-whanever the tramsmitting matrument points to the sentence required, the operator is instantly to sound a bell at the distant station by means of electricity; and the obeerver. there must notice at what sentence the band is pointing when the bell sounds. If both opersters be not very prompt in making and observing the rignsis, a wrong message would the eommanicated. This difficulty, however, Mr. Whishaw thinkarmay be overcome, and he has had much practical acquaintance with the difficulties in working telegraphs during a connection of tome duration with the Electric Telegraph Company.

THE "ART-JOURNAL"

Not content with excluding architeeme, and all matice of it from his colnmns, although he bringe mere industerial art, as it is called, prominently forward, showing nnmerous specimens of it in every number of his publication, the majority of which are calculated to diffuse exceedingly bad taste among the public, the editor of the Art-Journal appears anxious to get architecture thrust out of the Roysl Academy. Some short time ago, he protested against architects being elected members of that body; and he now tells us that architectural drawings have "no business" to be in its exhibitions. This is very much like saying that there ought to be no exhibitions anywhere of such productiong-the Academy's being the only one where they are admitted. It is to be hoped, however, that this marked insult will now arouse architects, more especially the leaders in the profession, and those who are members of the Academy, to a sense of their duty, and of what they owe, if not to themselves personally, at least to their brethren. Should it not do so, they must be lethargic indeed; and will fully justify at least one-half of the Art-Journat's opinion, by showing that at all events they have "no business" in the Academy.

What is the Professor of Architecture about, that he can patiently put up with the precant atate of matters with regard to architecture at the Academy? Hardly can he be ignorant of it, or not perceive how greatly it calls for correction; nevertheless, he makes no effort at all to correct it. Had he bestirred himself at all, we should of course have heard of it ; moreover, if he had, and had done so ineffectually, we should have heard of his resignation, which would be far more honourable to him than is the making himself a cypher,-not only withont infuence, but without even 80 much as a tongue or a voice.

Whatever-if any at all-the emoluments attached to the Professorship of Arohitecture may be, they cannot be such as to be of any moment to Mr . Cockerell. So long as the situation confers honour on him who holds it, it is worth having, whether any emolmment at all be attached to it or not. But rather quite the reverse of honour attends it, when he who holds it is expected to sit by very tamely, and see all kinds of slights and affronts put uponarchitecture, without so much as attempting to check them.

There is, indeed, no danger of either the Professor or the Acailemy being called to account for the dereliction of their duty in regard to architeeture, by the public press-that is, the newspapers; architecture being the very last thing of all to excite their attention ror engage their sympathies. Yet if they, thercfore, think that they are released from all responsibility to public opinion, and that their conduet excites no animadversion in other quarters, they are very much mistaken.

As to the editor of the Art-Iournal, he ought to be hanged-in effgy, at least-by the architects. But, somehow or other, archi-
tects invariably show themselves to be the most pluckless rwe imaginable. Whenever their own personal interests are touched, or at all endangered, they are gemerally sensitive enough; bat when it is only the credit of their art and their profession that concerned, they show themsalves to be the most torpid and aluggivh of mortals.

Z $=$ mo

THE DIBPUTED INV HNTION OF TUBDLAR BRIDGES

We regret to perceive, now muccem hes attended stre bali experiment of constructing tubular bridges, that attempts are being made to deprive Mr. Robert Stephenson of the merit 80 justly his due, as the original deaigner of the plan, and the auperintender of its execution. Mr. Fairbairn, who, with Mr. Eaton Hodgkinson, assisted Mr. Stephenson in working out the design, claims to have the merit of all but the "original idea;" and he maintains that the working out of the idea and the development of the principle, as well as the greater portion of the construction, are the results of his labours. He states, also, that the origina idea of Mr. Stephenson was a cylindrical tube, to be supported by chains; which plan, he says, can be proved would never have succeeded; and that it was only by a long eeries of inductive ressoning, founded on experimental reaearch, of which he claims the exclusive merit, that the present strength and form of the Convar and Britannia tubular bridges were established.

It is of great importance not only to Mr. Stephanson, bnt to civil engineers and inventors in general, that these claims of Mr. Fairbairn should be estimated at their proper value. The original idea of overcoming the difficulty of taking the railway across the Menai Straits, by the coustruction of a tubular bridge, is admitted to be due exclusively to Mr. Stephenson. Mr. Fairbaixn and Mr. Eaton Hodgkinson were employed by him to assist in its construction, and to make the experiments necescary to determine the best form for obtaining the requisite strength. He must, of course, have expected, from their known skill and experience in the strength of materials, that they would be able to afford important assistance in devising the means adapted to overcome the difficulties which such a novel structure necessarily presented. The experiments they made were sabject to Mr. Stephenson's approval, and may be said to have been conducted under his superintendence. The mode of making them would however, for the most part, be necessarily entrusted to Mr. Fairbairn and Mr. Hodgkincon; who were not employed as mere mechanical agents, to act strictly under directions, but as practical men of science, expected to bring their skill, ingenutiy, and mathematical knowledge to bear on the important work entrusted to them, and to arrange the details by which Mr. Stephenson's invention could be hest carried into effect. That Mr. Fairbairn has amply fulfilled what was expected from him, and has, under Mr. Stephenson's superintendence, completed the task ably, skilfully, and successfully, is a great merit, of which he may well be proud. Beyond this, he ought not to wish to carry his claims. Not only the original idea of tubular bridges, but a mode of carrying it into effect, unquestionably belong to Mr. Stephenson. Whether that was the best mode, was to be determined by experimental researches; and the result Ied to an improvement in the means first devised. This is the general and almost necessary course in the perfection of any invention; and whether the inventor carry on the experiments exitirely by himself, or whether he obtain the assistance of others in perfecting hin invention, does not affect his claim as the original imventor. is appears to us that a machinist, or a draughtsman might, with nearly equal pretension, elnimp to be the inventor of an apparstus or the architect of a making the machir plans,-as Mr. Fairl bridges. We trust will be satisfied wi persist in claiming -

Floating Tumel ac submitted for approw Ferdinand, engineer, to Dover, for the wir traversed by small $]$ was referred to one

ON CHEMICAL AND ELECTRICAL FORCES.

By Profebsor Fabaday.

Profescor Faraday has this season delivered a course of seven lectares at the Royal Institation, "On the Allied Phemomena of the Chesuical and Eleotrical Forces." The last leoture of the couree was given on Saturday, the 17th rilt, and wo now sabjoin a brief sketch of the whole, showing the mode in which the subject was treated, and dencribing the principal experiments by which it was illamernted.
The first lecture was devoted entirely to explanations of the character and illastrations of the nature of chemical force, commencing with its aimplest forms. In the first plece, Profeecor Faraday explained the dif. forenoe between mechanical foree, or the force of gravitation, which prodroeen molecular action and aggrogation of masses, and the action of ohmical force, which takes plaoe among the particles of matter. At the zame time as he entertains the opinion that all forces are clogely allied, if not idsotical, be showed sovoral experiments in which chemical metion is cifcted by meehanioal foree, of which the explocion of fulminating powder by percustion afforded an example. The illostrations of chemical action in its teblest form, he showred to be clocely alled to mechanical force, as the aggrogation of the particles of water, he said, doperds on the anme force as the mont onergetic cbormioal action; the difference between them being ouly in degroe. As an illuatration that chemical action takes place during the siring of suids, be poured some spirits of wine gently on to the top of water in a glass vescel, into whicb a long tube was inserted. The vesel and the tobe being quite filled, he inverted the apparatus, to mix the apirits of wine with the water, when contraction in the volume of gaid was manifest by the tobe being no longer fall. Among other exemplifications of ohereicel netion, wore the solidification of two genes (muriatic acid gas and ammoniacal gas) on boing mixed, and tbe conversion of two limpid Iiquids (carbonate of potase and muriate of lime) into E white aolid mass. The resalts of ebemical action, Professor Farnday observed, are the prodaction of compoonds distinct from, and frequently quite dissimilur to, the original substances that entor into combination. To show in astrikiog ramer the difference between a mixture and a componnd, he mired together some copper and iron fllings, and then separated the iron from the opppor by means of a magnet; whereas in a ohemical compound, no mochanical force can separate the combined particles, and they can only be rowolved into their originel elementa by the chemical action of some more ewergetic agent. Though the original sobstances that enter into chemical combination seem to be entirely lost in the resulting componad, yet thene is no destraction nor any alleration in the elements, nor is there any creation or destruction of powor produced by the combination. Professor Pareday illustrated the reppoduction of the elementary subotance of a compound after it had been apparently destroyed, in the following mannor. Ho pot some iodine into a glass fiact, which, on being heated, emitted the purple or violet-coloured fomen peouliar to that substeoce. He then addod gine and water to the iodine, when a combination took place, in which the properties of the iodine were apparently lont, and by no application of heal could the violot fumes be produced. On the addition of sulphuric acid, however, the iodine was set free from its combination with the zine, ad its fumes were again perceptible. That there is no destraction or change in the partioles of matter produced by chemical action is generally admitted, but the Profomor observed, that some philosophers still cling to the notion that there is a oreation of power, as exhibited in electricity; bot this opinion, he maintained, is not founded on fact, for tbere onn be no creation of power without the oreation of matter.
In the second lecture the consideration of the difforent actions of chemical force was resumed in the conmeneoment, and then its gradual trassition into electrical force was developed. In the first place, the Professer pointed out the differecoe that exists between the force of gravitation and chiemical force in the relative constancy of their actions ; for whilat gravitation never ceases to act at any moment, chemical affinity, on the contrary, often lies dormant for ages, until circumstances arise that bring it into action. Several experimente were performed to illustrato this, and also to thow that the resalts of chemical aotion may be reversed by varying the temperature and the other conditions under which it takes place. A mixtare of nitrous and oxygen gases, for example, producos no change on either litmus or turmeric paper, but when a sirean of thone mixed gaces issues into the atmosphere at the ordlacery temperature, a picce of moittened litmus paper exposed to the current is reddoned, thus proving the presence of an acid. When the same stream of mixed gases is beated, the previously reddened litmus paper is restored to its original blue colour, aod turmeric puper is turned brown, showing that the directly opposite property has been given to the gases, which then beoome alkaline inslemd of ucid. When approaching to those chemical actions which are accompanied by the development of eloodricity, Profensor Faraday first oxhibitod the solution of copper by an acid, and its reproduction in a metallic form on pieces of iron and zinc, which metals having a greater attraction for the acid that beld the copper in solution than the copper itself, entered into combination with the aeid and liberated tbe copper. He afterwards exhibited the action of oxygen and zine, by first pouring some dilutad salpharic acid on a piece of that metal, whioh decomposed the metor by attracting its oxygen, with which it entered into combiantion, and liberated the hydrogen as gas. On introducing a few shilliogs into the glese, the Vigomr of the action increased, and the decomposiag power of the sine seomed to be tranaferred to the silver, from which metal copioms atreans of
hydrogen gas arose. A more obvious oxhibition of the extension and transfer of chemical action from one metal to another was effected by the deposition of copper on silver from a solution of the sulphate of copper. When a piece of silver is immersed alone in a solution of sulphate of copper, no action whatever takes place, and it might so remain for any longth of time without sensibly decomposiag the solution; but as soon as a piece of zinc or iron is brought in contact with the silver in the solation, the copper is deposited on the gilver as readily as on the zinc; and when the latter is amalgamated with quicksilver, the effeets of decomponition are transferred entirely to the silver, and nono of the copper is deposited on the amalgamated zinc. This effect is equally produced, whether the two metals are broaght into contact in the solution, or whether conneation between them is made by a wire, through which the action is readily trans. mitted. A new class of phenomena is brought into play by this oxhibition of chemical force in dissimilar metals. When the wiro that conreots the two pieces of metal is made to pass over a suspended magnetic needio, the noedle is deflectert on one side, and by oxpanding the sarfaces of the metals sufficient power is obtained to make a wire red hot. The deflecthon of the needie at any part of the connecting wire where it may be placed, shows that the action ocours along the whole course of the wire, and exem. plifles one of the positions which the Professor wished to establieh, vie., that the distent and local actions are identical. This new class of phemomena, Professor Faraday said, was, in his opinion, attribatable merely to another exhibition of chemical force, bnt he ahould, in deference to received usage, denominate it electrical force.
The greater portion of the third lecture was occopied with the consideration of the decomposing power of electricity, in which respect its action seema the reverse of that of cbemical force. The latter power acts by the affinities of the particles of one substance for those of another, and the resalts of its action are the formation of new componada; electical force, on the contrary, resolves compound bodies into their elements, and may act at a distance from its exciting cause. Numerons illastrations of the decomposing power of the voltaic battery were afforded, one of the most curions of which was the decomposition of mariatic acid by the following arrangement :-A glass vessel was divided into three compartments by diaphragms of blotting paper, and glled with diluted muriatic acid, - the acid in the two end compartments being colonred with indigo. When the wites from the negative and positive poles of the battery wore inserted in the two coloured divisions of the ressel, the mariatic acid became decomposed, the chlorine passing to one end, and the hydrogen to the other; which effect was rendered visible by the bleacting of the liquor in the end to which the chlorine was determined, whilot the middle compart: ment, through which the current force must have passed, remained unctanged. The decomposition of iodide of potassium afforded a striking example of the rapidity with which decompositton takes place ander the infuence of electricity. Across a piece of paper, wetted with a satarated solution of iodide of potassium, Professor Faraday drew rapidly one of the wires from the battery, when a strong brown mark was left, showing that the iodide bad been decomposed. By pressing a coin on paper similarly prepared, and then touching it instantaneously with the wire of the battery, an impression of the coin was left on the paper, caused by the decomposition of the iodide where the parts most in relief bad tonched the paper. The amount of decomposition is, in all cases, proportionate to the current force; and though chemical decomposition does not take place exceptung when the current is iuterrapted, yet the power is always active in its circuit through the connecting wires. The deflection of a magnetic needie, when placod parallel to the conductiug wire, was adduced as a proof that the power exerts an infuence at every part of the circuit, and the plates of the voltaic battery were shown to have the same power as the condacting wire, in deflectiog the suspended needle from its ordinary position of north and south. This current of force throughout was notlced by Professor Fara. day as one of the many instances in which electrical force differs in its action from chemical force, which is always local, though the two forces are really identical. The constant evolution of electricity, when wo least suspect the presence of such an agent, was curionsly exemplifed by culting a raw beef-ateak with a steel knife and a silver fork, the knife and fork being connected by wires with a voltameter. As soon as the knife touched the meat, a current of electricity was evolved sufficient to deffect the needle of the voltameter. A cooked steak, peppered and salted, produced a still more powerful effect on the needle.
In the fourth lefture the alliance between the chemical und electrical forces exhibited in the evolation of light and heat, formed the principal point to which the Profescor directed autention, and he illustrated the subjoct by numerous brilliant experiments. The light and heat produced by violeat chemical action, of which e barning candle is a good example, form no essential part of the action that takes place among the combining particlos, but are merely trassient phenomena resulting from the activity of the combination. In the same manner, the light and heat evolred during combustion of substances by the voltaic battery, are the results of the comr bination of the zine plate with the oxygen of the exciting liquid. To exhibit the voltaie light the lecture-room was darkened, and then pieces of charcoal were exposed to the action of the battery. The intenaity of the light thos evolved was contrated with the flame of an argand lamp, which whe scarcely perceptible in the overpowering splendour of the voltaic spark. The combuatios of silrer-leaf, of iron-wire, of platinum, and of marcary, formed olther daculing exhibitions of the heat and light evolved by the voltaio battery, when the two poles were brought into contact with the
metal. The heat thus generated is owing, Profensor Faraday observed, to the passage of electricity through the substances acted on, and to the resistance they offer to its passage, for when the conductors are sufficiently large and perfect to afford a free passage to the electricity, no effect of heat is observable. A very corious experiment in illustration of this property of electricity was exhibited. In a glass vessel full of distilled water the charcoal points from the opposite poles of the battery were introduced, and When they were brought near to each other a most brilliant light was evolved under the water, dimmed only by the bubbles of steam generated by the heat. The water being an imperfect conductor of electricity, offered snfficient resistance to its passage to hring into action the heating and light-giving powers of the voltaic battery; but when it was afterwards made a better conductor, by mixing sulphuric acid with it, the effect was greatly diminished. In the preceding lecture, Professor Faraday showed that wires proceeding from the opposite ends of a voltaic battery possess different powera in the decomposition of compound sabstances, and he now showed that their heating powers also differ; for the copper wires from the two poles, on being held close to each other within a short distance of the ends, the one became much hotter than the other. The quantity of heat evolved by the action of the voltaic battery is in proportion to the amount of zinc oxidized, and Professor Faraday remarked there is good ground for supposing that the heat evolved is equal to that produced by the combustion of the same weight of zinc. Though the intensity of the light varies in the phenomena of voltaic electricity, just as it varies in different circumstances during ordinary combastion, yet the heat remains the same to both cases. As an illastration of this position, the Professor directed his breath against a gas light so as to greatly diminish the brightness of the flame, yet in both circumstances, he said the heat of the burning gas was the same. The latter part of the lecture was occupied with the considera. tion of the effects of electricity on the sensitive system of animals, and it was illustrated by several curious experiments. The original experiment of Galvani with the hind legs of a frog was very successfal; for when the legs were placed on a sheet of platinum, and connection was made between that metal and a piece of zinc that tonched the uerves, the mascular contractions of the limbs made them jomp as far as the animal could have done when alive. A large live eel, in a glass jar, plunged about violently when the electric carrent from the battery was passed through the water, thus showing, that without any direct connection with the battery, the electric shock is felt by fishes when the water they swim in is made part of the circuit. Professor Faraday alluded to the experiment made with the gymnotus electricus at the Polytechnic Instilution, from which he had obtained all the effects of an ordinary voltaic battery. The eel itself does not feel the shock it commonicates to the fishes within its infinence, thongh when an electric current from a voltaic battery is passed throngh the water, it exhibits as much annoyance as any other fish. The Professor observed that the effects of electricity on the nerves of animals, give an insight into the phenomena of life, since they seem to prove that nerrous tritability, on which the action of the muscles depend, is cansed by elecrical influence, thongh by what means the electricity is generated remain: unknown.
The commencement of the fifth lecture was occupied with exhibition of the phenomena of electricity, when the circuit is not interrapted. The simplest evidence, that a constant action is going on in the conducting wire, is afforded by the deflection of a magnetic needle, when a wire that connects the two poles of a battery is held over it, parallel to the direction of the needle. Small pieces of bent iron, resting on the wire, became magnetic when the electric circuit was completed, and when the wire was twisted several times round a thick piece of iron, to increase the effect, the magnetic power hecame so strong, that it lifted an anvil of at least fifty pounds weight. The heating power of the voltaic battery, when the corrent is passing uninterruptedly along the wires, was shown by its making charcoal, and various thin wires red hot, in which state they would have remained as long as the battery continued in vigorous action. The couducting power of gold being greater than that of platioum, a fine wire of gold became a much brighter red by the passage of electricity through it, than one of platinum; and yet, when the two wires were joined together, the platinum wire became red hot, whilst the gold was not perceptibly beated. This anomaly Professor Faraday explained, by stating that the platinum wire obstructed the passage of the electricity, consequently the gold wire, which was capable of conducting a larger quantity, did not become sensibly affected by the sinall quantity which the platinum allowed to pass. The increase of heat diminishes the conducting power of metals, and several experiments were shown, for the purpose of illastrating this pecaliar property, the red heat of one part of a fine communicating wire being brightened when another part of the wire was cooled; aud the contrary effect being produced when the wire was heated by a spirit lamp. A great part of the lecture was occupied in explaining the two most popalar theories respecting the nature of electricity, deither of which, however, Professor Faraday is inclined to adopt. One supposition is, that electricity is an ethereal imponderable body, distinct from the substances in which it is excited, and that it is transmitted along wires, in like manner to the rashing of fuids through tubes; the other, and as he observed, the more beautifnl theory, is, that the phenomena of electricity are prodnced like sound, by vibrations. The Professor performed several experiments, for the parpose of showing the facts adduced in sopport of each of these theories. One of the difficalties to be overcome in any theory that purports to explain the nature of electricity, is to account for the instantaneous transmission of the power, which has been ascertained to exceed the rate of
five thousand miles in a second. In support of the first theory, it is urged that as there is an immense difference in the rapidity with which different fluids pass along tubes-water, for example, fowing slowly in comparisan with bydrogen gas- 80 it is asserted that the assumed imponderable fluid may pass with a rapidity vastly greater than bydrogen gas. The vibrations of sound, however, present much greater similarity to the transmission of electricity. Thoogh sound passes in air at the rate of only thirteen miles a minute, it passes throngh water four times as quickly, and through glas sirteen times faster than through air. There is this resemblance also be tween the passage of sound and the transmission of electricity, that sound may be tranamitted sensibly through solid bodies and become andible at the end. Two corions experiments were performed to illustrate this property of sound. A thin strip of deal was suspended from one end of the lectnre-room to the other, and at the farther end it bore against a box. A tuning-fork, when strack and applied to one end of the strip of wood, cansed the box at the other extremity to emit a loud masical sound, though the taning-fork itself could scarcely be heard. In the other experiment a rod of metal passed through the floor of the lecture-room, and was placed in connection with a pianoforte in a room beneath. When the instrument was played, scarcely any sound was heard, until a guitar-case was placed on the rod, and then the notes were distinct and loud, as if proceeding from the gaitar-case. There is a similarity also between vibrations and electrical shocks, as may be proved by striking a bar of iron when holding it near one of the points of vibration, the jarring sensation bearing a close resemblance to an electric shock. This vibratory sensation is felt yet more strongly when a wet string is fastened round the waist, and some oue pulls the end of it through the fingers.

In commencing his sixth lecture, Professor Faraday said he was about to direct the attention of his anditors to a different condition of the electric force from that in which he bad hitherto considered it, wherein the phenomena not only differ from, but are in many respects directly opposed to, those oxhibited by chemical action and voltaic electricity; and yet the forces are the same. In the first place, he exhibited voltaic electricity in a higher state of tension than he had before doue, by employing a waterbattery, consisting of a great number of pairs of plates, by which arrangement a small quantity of elentricity in a high state of concentration was excited. In this condition voltaic electricily nearly resembles the electricity excited by rabbing a stick of sealing-wax or a rod of glass, In the ordinary development of voltaic electricity, the effect is produced only when the current is passing, and ceases when it is broken; but in fricLional electricity the power may be exerted when there is no current, and when the source of power is withdrawn. In this respect, indeed, the water-battery evolves electricity resembling that of the electrical mechine, and forms the connecting link between frictional and chemically-excited electricity, serving to prove that they are identical. In the first place, Professor Faraday showed that by tonching an electroscope with only one of the wires of the battery, the gold leaves diverged, and continued divergent when the wire was removed, thus exhibiting the development and the retention of the power when there was no current passing. When the wire from the opposite pole of the water-battery was bronght in contact with the electroscope, the gold leaves collapsed. To show the identity of the electricity thos evolved by the battery with the electricity excited by friction, Professor Faraday caused the gold leaves of the electroscope, when diverged by the battery, to be collapsed when an excited rod of glass was brought near, and to be made more divergent by an excited rod of gatta percha, or by a rod of shellac. The different means by which the effect is produced affords no ground for supposing the electricity of the battory and that excited by friction to be distinct, for what is termed frictional electricity may be excited in varieties of ways, and is, in fact, continually being called into action, without our heing sensible of its presence. The mere act of dusting a piece of metal with flannel was shown to ex. cite electricity by its causing the leaves of the electroscope to diverge. We can scarcely touch angthing without exciting this power, which, however minute and imperceptible in its development in these instances, is precisely the same force which produces the grandest phenomena of nature-thunder and lightning. Having given illustrations of the similarity of the forces developed by chemical agency and by friction, the Professor dwelt on the apparent differences between them. One remarkable difference is, that the substances by which frictional electricity is excited andergo no change, the metals and the glass remaining just the same after having developed the power as before; whereas volthic electricity cannot be excited without chemical action, and an apparent destruction of the zinc. Another variation in the phenomena of voltaic and of frictional electricity is exhibited in their condaction through various substances. Water, for instance, which is so imperfect a condactor of voltaic electricity, will readily conduct the whole quantity excited by a powerful electrical machine, through the moisture contained in a wetted silk thread. Frictional electricity is spread over the surfaces of bodies, and does not enter them. This property was exbibited by several experi ments, the most remarkable of which were the following :-A small metal ice-pail was placed on an insulated stand, and then a metal ball, suspended by a silk string, and charged with electricity, was lowered into the pail. The electricity instantly diffused itself on the ontside of the ice-pail, and there was none within; for when the ball was again lowered into the pail and withdrawn, it produced no effect on the electroscope, but when the ball touched the outside the instrument was stroagly affected. In the other experiment a wire-gauze vace was substituted for the ice-pail, with exactly similar results. When an electrical machine is excited, every
person within sight of it is more or less affected by its influence, and a condition of electricty is induced in that part of their bodies towards the machine of a different kind from that developed by the conductor; and on the opposite side, or that farthest from the machine, electricity of the contrary kind is induced. This induction of positive and negative electricity on distant bodies, leads, as Professor Faraday observed, to important practical consequences. He had, he said, been often consulted by Government as to the propriety of having metal roofs on the powder-mills at Waltham Abbes, and he had always objected to them as dangerous, becanse a thnnder-cloud might induce in the extended metal surface, an amount of electricity capable of discharging itsolf to the earth. In illustration of this, a large insulated metal ball, placed at a distance of two feet from the conductor of the machine, was brought near a jet of gas, which became ignited by the induced electricity passing off in a spark to the metal gaspipe, though the ball was far too distant from the conductor for any spapk to pass between them. This experiment was repeated several tives, and each time with the same success.

The chief point to which Professor Faraday directed attention in the sceenth and concluding lecture was, the cause of the difference between the phenomena of voltaic and of frictional elecricity, his object being to prove that they are really identical. The marked differ ence botween frictional and voltaic electricity, which were dwelt upon so much in the proceding lecture, are caused entirely by the different degrees of intensity in which the force is developed, and Professor Faraday showed, in the concluding lectore, that, by diminishing the intensity of frictional electricity, the phenomena may be rendered similar; the great difficulty in showing these effects being cansed by the very small quantity of electricity that can be evolved in a given time even by the most powerfal electrical machine when compared with the amount evolved by the voltaic battery. Though the machine employed was a plate of glass, about four feet in diameter, which yielded a rapid succession of strong sparks five inches long, it would require about five million turus of the plate to produce a quantity of electricity equal to that evolved by a grain of water in the voltaic battery. The different appearances of the sparks emitted in the highest state of intensity by the electrical machine from thos prodaced by the discharge of electricity accumulated in the Leyden jar, and the alterations the light and the length of the sparks may undergo by being transmitted through various media, were shown in numerous experiments. Thongh the rapidity of the electric spark is evidently rery great, it far exceeds, in reality, the appearance to the oye,for the duration of the impression on the retina after the light is extinct occasions a prolongation of the effect. It has been ascertained by Mr. Wheatstone, that the duration of the light of the spark is leas than the millionth part of a second, and Professor Faraday exhibited the mode by which this fact had been eatablished. A concave mirror, placed horizontally, was made to revolve with great rapidity by multiplying-wheels, and when in action a bright light from the combustion of lime was reflected to a foens on the ceiling. The rapidity of the motion caused tbe light to form a circle, in the same manner as the turning rapidly round of a lighted stick or of any other bright object meems to form a circle, in consequence of the impression on the retina remaining until the effect is renewed by the raturn of the light to its former place. When an electric spark was substitated for the permanent light, each spark was seen separately, and no circle or prolongation of the light was produced. Tbe velocity of the mirror and the number of succeseive eparks being known, an approximation can be obtained to the daration of the light. It is in consequence of this instantaneous duration of electrical discharges that they fail to prodnce many of the effects of voltaic electricity, and if the continuons action of the latter during a second could be concentrated one million times its effects would be tremendons. By diminishing the intensity of frictional electricity whilst retaining its quantity, Profemsor Faraday ignited gunpowder, which was blown away without ignition by the undiluted discharge. The following experiment afforded a good illustration of the different actions of frictional and voltaic electricities caused by the concentration of force in the former. A gold thread twisted with silk was deflagrated by a discharge from an electrical battery without injuring the silk, the action having been so instantancous that there was not time to bura the silk, though the metal was destroyed by the heat evolved. When similar gold thread was exposed to the action of the voltaic battery, the silk was instantly consumed by the wire being made red hot, whilst the metal remained. The statical cbaracter of frictional electricity, Professor Faraday said, may be rendered current by applying a conducting uabstance to draw it off from the machine as quickly as it is excited, and the imperceptible effects of snch a current prove how small the quantity of electricity excited really is, and it is only by allowing it to accumalate that we become sensible of ita presence. The phenomena of lightning and thander are owing to the facility with which Franklinic electricity can be aecumnlated, and thas reserved in store for an instantancous discharge. Some apecimens of the effects of lightning were exhibited on the lecturetable. A number of splinters from a riven oak, a branch from a mulberry tree, the rent and shivered hundle of a hay-fork, and the partially-melted iron cable of a ship were displayed. The latter is such an extraordinary exhibition of electrical power, that Professor Faraday said nothing but the strongest evidence could have induced him to believe it; the ship was atated to have been struck with lightoing during an earthquake at Callao. This rending power of frictional electricity cannot be imitated by the voltaic battery, but all other phenomena of the one kind can be produced oy the other. The decomposition of chemical compornds by the discharge
of the Leyden jar was shown by the decomposition of iodide of potassium, small indeed in effect, bot corresponding with the quantity of electricity which the electrical machine evolves. The alliance of the phenomena of the two electricities had been shown in the course of these lectures, Professor Faraday observed, by their physical effects in communicating shocks, by the equal rapidity of their transmission, by their decomposing and heating powera, and by the communication of magnetism. The difference between the two consists solely in the degree of intensity, the electricity of the machine exciting a small quantity in a high state of intensity, whilst the voltaic battery evolves a much larger quantity in a low state of tension. Professor Faraday, taking a small flock of gun-cotton and exploding it in the flame of a candle, observed that the chemical force thus instantaneously called into action was equal to the production of an amount of electricity greater than would be contained in 500,000 charges of the powerful battery of Leyden jars which he had employed to deflegrate metal wires and gold leaf; and the important problem now remaining to be solved was, the conversion of such rapid chemical actions into carrent forces. Chemical decomposition, he said, when taking place less energetically, had been shown to evolve electricity, which became manifest and available as a current force by the voltaic battery, and it was quite within the reach of scientific discovery to render the most energetic phenomena of chemical force sources of continuous power.

PROCEEDINGR OF BOLENTLFIC BOCIETYEB.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

May 29--Ambrome Porntge, Esq., V.P., in the Chair.

A paper was read "On the Application of Seulpture and Seulptured Ornament to Architecture." By H. B. Garling, Associnte. Being the Rumy to which the Medal of the Institnte was awarded on 21st February, 1848; and which is given in foll in our present Number (p. 201).

Jume 12.-Sidney Smyrike, Esq., V.P., in the Chair.
A paper was read "On the Thealres and Porticoes of Ancient Rome." By the Rev. Riceard Burgsse, B.D.

June 26.-A paper wan read "On the Triforium of the Mediaual Churches." By the Rev. R. Willis, M.A.

This erening's meeting closed the session.
Next month we will endeavour to give an abstract of both the above papers.

INSTITUTION OF CIVIL ENGINEERS.

May 30.-Mr. Pined, the President's Converazione.

The accustomed annual converazione of the President, which was heretofore held at the residence of the President, was this year held at the Hows of the Institution in Great George.street, a change we do not approve of ; as also the one limiting the convertazione to one evening, which led to the rooms being most inconveniently crowded-so mach so, that many of the numerous models and works of art could not be seen.

On the walls of the theatre we observed three faithfal portraits, by Lucas, of Mr. George Stephenson, Mr. Robert Stephenson, M.P., and Mr. Bidder; they were contributed by Messrs. Graves, for whom they are about being engraved. The Electric Telegraph Company-Mr. Bain, Mr. Bratt, and Mr. Reid-contribated instruments exhibiting their various systems of telographic communication, electric clocke, and electric printing. Mr. Rand's fy press, for raiaing at one blow the collapsible tubss or capsulen. Mr. Whitworth's beantiful machine for knitting stockings was worked by a young girl sent up from the factory of Messrs. Ransome and May, of Ipswich, and formed an attractive object. The models of greater interest were those of Mr. Stephenson's wrought-iron tubular bridge erected at Conway; with that of his wrought-irou tubnlar girders for large spans. Mr. Fowler's steambont floating landing stage, with its long approach over the mud banks, all to be sapported apon Mitchell's screw piles, for the Humber Ferry. Mr. Branal'h excellent truss, of 110 feet span, used by him in the Somerset Bridge, on the Briatol and Exeter Railway. Mr. Fowler's pian for opening or shatting simultaneously four gates for a level crossing on the line of the Manchestor, Sheffield, and Lincolnshire Railway. Messrs. Taylor, Williams, and Jordan's model of their machine for carving by machinery ornamental objecta, figures or gronps, such as we have previously noticed. This machine, by moans of a tracer which guides the cutting tools, in enabled to perform the mont delicate and elaborate work with great speed and at a cheap rate. Messru. Seaward and Capel contributed a large collection of models of paddle-wheala and screw-propellers. Mesars. Maudalas and Field alao contribated an interesting series of models of steam-engines, screw-propellers, and paddewheels; as dld also Mr. Penn, of his horizontal trunk stenm-engine. Mr. Clerke exhibited a beantiful model of the Great Britain stenmer, full-rigged, and containing fac-similes of the engines, wlth the screw-propeller completo, and working by means of condented air, the whole only woighing 1 ot

Among the remaining models, we observed Messrs. Blake and Varley's atmospheric pile-driving machine, - Mr. Varley's rotating alr-pomp,-Mr. S. P. Bidder's simple and effective coal-drops,-Mr. Dodd's rail-straightening machine,-Mr. Sontham's wedge and screw fix, -Mr. Thornton's improved hydraulic lifting-jack, -Mr. Wetherall's iron-twister,-Mr. Chrime's patent fire-plug ralve,-Mr. Beatfie's new wooden railway, with the drawing of the rystem of manufacturing it, model of a folding boat, of which each side was made of two thicknesses of water-proof cloth, filled in on Capt. Light's principle with very buogant reeds, rendered non-absorbent, and consequently rendering the boat incapable of sinking, even when full of water, and even Then partially torn by accident. The expedition in search of Sir John Franilin has been furnished with boats of this description, in order that they may be easily transported across the ice, and may bear injories which would deatroy a wooden boat. The Gutta-Percha Company sent a selection of their products from the rough material throughont all its atages of manufacture to the finished articles. Mr. Chubb's safety chest and locks and keys,-Mr. De la Fon's ingeniows locks and bolta,-Mr. Defrie's improved dry gas-meter,-the new Aneroid barometers,-nad numerous other interesting models and specimens.

June 20.-Josmea Fierd, Esq., Preaident, in the Chair.

"On Harbours of Refuge." By the Bight Hon, the Earl of Lovelacz.
The paper consiated chiefly in a succinct review of the Reports of the Commisaioners on Shipwrecks and on Harbours of Refuge; giving the opinions of the naval officers and civil engineers on the necesaity for harbours, in certain situations, and the naval qualities pomsessed by thone positions-the possibility of conetrueting herbours in them, and the natore of the structures. The necessity for harbonrs on our cossts, capable of sheltering fleets from stormin in peace, and the enemy daring war, appeared to be admitted, particulariy at the preaent moment, when the duturbed atate of the continent and the reatien character of our pear neighbours ware considered. It was atabed, that, of various situations pointed out, that of Dover wat the only one yet decided upon, although great worka we contemplated at Portland, where, from Mr. Rendel's denignis, a syitem of construction would be adopted, which would be both economical and stable, and, at the same time, would afford employment to a class of pertons whose labour it had been difficalt hitherto to use efficiently. The varions projeete of floething breakwaters, and other artificial shelter for vessels, were then examined, and were generally condemned, a ontirsly fineliciont for the obinete proposed.

The questions relative to the movement of and, the drifting of the ahingle, and the deposit of silt in Dover Bay, and other places, were trented at great length, and remons given for the various forms of construction, and of the projects for meeting the difficulties induced by these circumstances.

The nert question whe the place of the harbour, and the mode of conatraction of the works. After quoting all the authorities on both sides, including the naval officers, the commissioners, the civil engiveers, and the scientific writest, the preforence was given to a large berbser, with two entrances, so placed as to allow a anficient ran of the tide tbrough it, to prevent any very concidernble deposit of silt, bat so conatracted as to afford ahelter to the veacels within. The pier walls inclosing the harbour to be brilt vertically up from the bottom, or with a very alight inclination in their height, iastead of throwing in mases of rubble stope, to find its own angle of repese, which, it wes shown, was not less then four or five to ona, and that it only attined solidity after a lapae of many years, even with a due admirtnre of small materials to fill op the interatices, and after conotant supplies of stone, to replece that which the seas had removed. The reports of Cept. Washington weme quoted, to prove the failorea that had ocenrred at certain harbonre in Ircland, where it was stated that the long slopes had been dentroyed by the wea, and had ruined the harboum they were intended to protect. The procesdings at Cherboarg and Plymouth were followed in great detail, with a view to deducing argumente against the long alopes, and in favour of vertical sot-walls.

The protest, by Sir Howard Douglas, in favour of long slopes, wat anmised at great lesgth, and the arganonta need on both aides were analyeed with ekill and candour.

Colemel Emy's theory of the effects of the " flocat de fond," wan careinlly oremined; md, withont going to the entire length that be did, it whe admitted, in many casen, the effects produced were as be deseribed them, and that the subject, as be had brought it formard, was well worthy the attention of civil engiseern.

The piacing a vertioal wall upon a aubstratum of rabble, in the form of a leag slope, was shown to be pregnant with mischief, and had never bean mocemful; and that the adoption of that system at Cherbourg had been a mestier of neoessity rather than of choice.

Mr. Alan Stevenson's clever experimenta, on the force of waves atriking apposiag bodion, were given; and it was urged, that the force ahown to be daveloped by a breaking wave could not act upon a vertical wall, up and down which it would merely oscillate; whereas it might fall, with all its aycumulated force apon a alope, upon which it would naturally break. In conclasion, it was urged that, although for Dover, which wes the upot whereon to monnt guard over the channel, in order not only to prevent invalion, but to maintein oor present naval supremacy, it might be permitted to expend a large sum of money ; yet it would not do to have erveral Doeers; and, therefore, it behored the anthoritien to comider carefully the site, the
plem, and the method of construction, before commencing warks, in whica, in the present state of engineering science, the experience of the pent should be used to aroid the errors that had occorred in former and aimiler worke.

In the dincuasion which enseed, and in which the principal civil enginean engaged on great hydraulic woriss took part, after juatiy complimenting the Barl of Lovelace, for the very able and impartinl analyais he had made of the evidence contained in the Government reporta, and the documents in his possescion, the speakers explained most matisfaotorily the actual circum. stances and conditions of the works which had been inatanoed as failaron ; and it was shown, that far from being expensive or uselese wrors, they had been completed within the original estimates; and that wherever the construction had required rentoration, or addition, it had arisen from the nee of defective materials, which, being on the spot, it had been obligatory to employ, and not from the use of the long slope, which, as compared to vertical walls in similar situations, was shown to be more durable, and to have been, in many instances, successfully substituted for vertical walls, after they had succumbed to the asmalts of the raging billows.

INSTITUTION OF MECHANICAI ENGINEERS.

June 18.-J. E. M'Connell, V.P., in the Chair.

ON THE BALANCING OF WHEELS.
Mr. M"Connell read the following interesting papar on the above subject:-The paper treated on the balancing of wheela an a very in portant matter, as most of the acoidents from carriagas jumping of the line, had arisen from the balance in the wheels of the engine. The fies who made this matter of practical ohservation was Mr. George Henton, of Birmiogham, on examining a lathe in the torningrooms of Eart Craven, the palley of which he found to be ont of balance. This he remedied, and the lathe worked wall again. Mr. M'Connell instanced eeveral railway accidents of late, which had arisen from a weat of proper belance in the wheels of the engine. He then proceeded to illuatrate the wanl method of balascing the whoels of locomotive enginea, which he considerod an improper one, and, on reforence to experiments with another model, pointad out the desicability of obtaining an acourate balance in the piston and piston-rod.

In the coarse of the paper, Mr. M'Commell exhibited varions expeciments with a model railway carriage, explanatory and illustrative of the statements edvaneed in the above paper. The firt experiment wis made with wheols in balance, the motion to which weas given by a speing and the matained regularity of the motion was nuesceptionable. In the second experiment, a small piace of iron was insarted in the wheels, and the balance consequenty destroyed-the netural tendency boing to oase a jumping and jerking motion, to obviate which was the object sought in this contrivance. Similar experiments wrere made, to ahow the neceesity of adopting a similar systom of balancing the piston and piston-rods, in order to obviale this mame jumping motion.

In explanation, Mr. M'Connell mid, that the wheels conld be properhy balanced together. First, one wheel was bulanoed, and then they pat the other wheel on apon the other side of the engine, and balaooed it in the same manner. When the matter was first placed before Mr. Bobert Stephonson, that gevtleman considered it of no service, and it mat with much opposition; but since that time Mr. Stephesson, and many other gentlemen, had adopted a plen of balancing their wheole, which, in bir (Mr. M'Connell's) opiaion, wes not the correct ons. Wben a locomotine engive wan connected, and the driving-wheels and working part attachen, it was lifted up opoa centres, and set slowly in motion, balacoe-weighty being added natil it moved at a certain speed without oncillatiag and it became perfectly settled on its centres. That plan might answer tolarably well, but it was the really troe mode of balancing whoels. He cowsidered that great evil resulted from the piston and piston-rod not being in balance; it hed been the casse of accidents in several ceses where the engine did not leave the rails when the wheols wore in belance. If the ongine attained a certain velocity-the piston-rod moving 1,000 fent a minute-this momentum became so great, that the engine must jopp; and the front wheels were, in some instances, claar of the road, and they conh see between the wheel and the rail. They had an eaging at Wervertom, fitted up with those correcting. weighte, and it had been tried, for the fris time, that morning on blocks. The engise at a certain spoed on the bloeks, threw itself down, and they were not able to run it so fast as might be wished; but, on atteching the balance-woight, the motion of the ongine was completely neutralised.

Mr. Midpleton said, that this appeared to be the ayntem of belapaing wheels, which had been introduced to the notice of the North. Weatern Mailway, some years ago, by Mr. George Heaton, and againat which hitherto there had been much projudice. He felt coarinced that it whe one of the beat methods ever suggested for recaring the safoty of the public, when travelling on railmays, and a sreat many wocidents might be obriated by the adoption of this, or some similer plan of balancing the whoels of eagines and carriages. It was aupposed that the North-W entern line had dimapproved of Mr. Heaton's plan, but he wea happy to fad that there was now some probability of Mr. Hentol reapias the rewerd of his industry by the nee of his patent.

Mr. Cowpes said, that a systom of belncing wheels was used by the

Eastern Connties Company elovon years ago; but this was decidedly a superior plan to any he had ever witneaned, and in many respects enperior to the plan he had seen of Mr. Heaton's.

Mr. M'Connell maid, that Mr. Robert 8tephenson hed expressed his entire epproval of the nitity of the proposed mode of balanoing wheels, aud had already given oriers for it to be altached to an ougine he was now construeting.

HEETI ENGINESGLIGHT TRAING.

The Becretary road the following paper on the ebore subject, by Mr.
 motive, Intely Introduced on the Ratern Countios Rallway, beving attreted some considormbic attention, bas tadreed me to present to your zotice a shert dowription of it ; and, at the same time, to ofter a fow obarvations on tho practionbillty of the primeiple to the conveyance of pabsengers. This carriage was constructed under my cuperintendence, for the purpene of convertag myealf and ingpeotors on the lines of the Eenters Counties Railmay and thereby avoiding the great axpense of apecial engioes. The lotal leagth of the carriage is 18 f .6 in., and iscludes machinery, water-tank, and seats for seven passengers, on one frame, which is hoog below the axles, and is carried on foar wheels, of 8 ft .4 in in diameter, the floor being within nine inches of the level of the rails. It is propelletzy'two eylimder, 洦 incbes in diameter, with a 6-inch stroke, placed on each side of the boiler, and acting on a crank axle. The boller toylindrical, placed vertically, and is 1 ft .7 in . in diameter, by 4 ft .3 in . in height; containing a fire-box, 16 inches diameter, by 14 -irches high; and 86 tuben, 3 ft .6 th . lang, by 14 inchen diameter: giving 51 feet heating curface on the fire-box, and 38 feet on the tubes. The engine is fitted complete, with link-motion, feed-pumps, \&c. The water-tank is placed under the seats, and will contain 40 gallons. This carriase is capmble of conveying coven persons, at the rate of $\mathbf{2 0}$ milos an hour. It has, at times, attained a speed of 44 miles. The consamption of soke is anly \& 1 lb . per mile; and the weight of the whole machine does not exceed 25 owt., inotuding ooke and watar. The reanlt of observetuos, which I have for a considerable time been making, on the Branch Passenger Tramic of Railways, bas been to convince me that, on the Whole, it is not remunerative, and, in some cases, is even worked at a loes. I heve been, therefore, led to.consider whether the expenses might not be reduced, by the introdaction of a system of steam-carriages more vaibible to the amonnt of trafic to be conveyed. It is evidert, that the more we can reduce the dead weight of the trains and onginen, in proportion to the number of passengers, the less will be the expense of repairs, both of the carrying stock and engines, and of the way and works of the line. The average woight of a train, an the branch lines of the leading railweys, is 56 tom; the number of paseengers, conveyed by each train, metereeding 26 to 40 on zany of the brach railways in England. Sup. posing each passenger, with luggage, to weigh $1 \frac{1}{4}$ owt., the total weight of passengers convesed is about $\$$ tons; or, in other words, for every ton of paying load we are now carrying by the preaent system of locomotion, we have from 18 to 20 tons of dead W eight. It is, therefore, in a commercial point of view, of the greatert importeace, not only to railway com. periee, bet to the public generelly, that come less expensive, and, at the same time, equally safe, means of transit be adopted. It it, therwfore, proposed to subsittute steam-carriages for locomolives on brasch railways, similar in constraction to the drawings berewith produced. These drawings represent a patent steam-carriage, now in coarse of constructlon, noder my direction, by Mr. W.B. Adams, the patentec, for the Eatern Counties Railway Company. The following are a fow of the principal dimensicns 5-Dianeter of cylinders, 7 inches; leng th of atroke, 12 inches ; diameter of driving-wheels, 5 feet; distance between centres, 90 feet; width of franing, 6 f.. 6 in. The boiler is of the ordiaary locomotive construction; 5 feet long, by 2 ft .6 in , in diameter. The firo-bor is 2 a. 101 in. by 9 f. 6 in. There are to be 115 tubet, of 11 inch in diancter, and $6 \Omega 3$ in. in length, giving 910 feet of heating surface in the tubes. The area of the fire-box is 25 square feet, giving a total of 936 feat of heattog serfices on the boiler. The consongetion of coke I have estimated at 7 lb . per mile, at a velocity of 40 milers per hoar. The total weight of the ateam-carriage, with its coke and water, will not exceed 10 tons, and is will be capable of conveying abont 48 passengers, at a speed of 40 miles per hopr. The water is to be carried bolow the floor of the carriage, in wrought-iron tabes, of 12 inohes diameter, and 12 feet toog. One great object attained in this machine, is the reduction of the cantre of gravity, and the consequent absence of lateral osolllation. This carriage is intended for the Enfield and Edmonton branch of the Eantern Gounties Railway, and is expeoted to be at work in abont three months from this date. When tie praction atility ead economy has been proved, I chall be glad to submit the rearlt to the Inditution at a future meeting; 8 I feel convinced that the arbject is one deoerving the atlention of the members, and of all parties intengated in the profitable workiog of rallways. I may also add, that were the aystem of llght stemm-carriages adopted, branoh raidwas might be conetrocted at a very amall cost incleed, compured with tho.present outlay (which is anavoidable eo long an the present system of heery engines is contimued) ; and the adrantagen of railway eccommodation might be extended to those districts, which can

[^16]pever hope to enjoy them, if the construction of railways continue to require such large outley of capital."

Mr. M'Connell also read a eommonication on the ame anbject. He had declined giving eny opinion, wiahing to take the tanve of the Inatitution upon the merite of the engine in quetion.

Mr. Saycer corsidered that him ongine would ave a conniderabla ann in the wear and tear of the rails, if not in coke, in consequance of the great reduction in the weight of the engine. He eutimated the wear and tear of rulls at $\$ 80$ per anrum, independent of the low in the tyces of drivingwheels, which wra a lege source of ontley. He angeeted the running of number of small traiss on a light deseription of rifi, which would reduce the eont of branoh railway, ad, at the mame time, be adequate.to all the local trafilio.

A Member inquired, how the projector wrould be enebled to eonvoy herry enctinge upon such a line?

Mr. Sayusl aid, that might be obviated by diatributing the weight over soveral tracks, ta was sometimes fonnd necounry apon the lines now in uw; and, in cate of hollday excomions, he proponed ranning a number of these small trains, instead of the present heavy ones.

Mr. AT'Connell anid, that he preamed it would be deairable to have the rails sufficlently heary to allow an ordinary locomotive to travel over them, in case additional carriagea had to be taken on at certain point of the line, for extra trafic arising from holldays, races, de.

Mr. Sasumi mid, lt would be desirable that such should be the case, where it could be done. It was proposed to constract these rails on longitudinal bearings of timber-therefore, a comparatively heavy engine might traverse is without danger. In reply to forther quastione, Mr. Samuel said, that the pressure usually used in this engine was 120 lb .; but it was not proposed to work those branch engines at a preasure of more than 80 lb .

Mr. M'Connell and Mr. Cowpra connidered thit engine peculiarly calculated to be worked with economy on the branch lines, as it would tend very much to make them pay, by economiting the locomotive expenditure.
Mr. Buccus inquired, how the dintance of the wheele would anit the prewent turn-teblen?

Mr. Sayusl said, it whe usual, at every terminum, to have a large turntable, anited for engine and tender; and, where thare was not ach a contrivance, they coald make a triangle, which would be as good. The increnad speed obtained on theac trains would obviate the neeessity of frequent changes of carriages ; and he eatimated the average cont of conveying the pasaengen would not exceed one-fifth of a penny per mile. Many of the branch lines did not pay, and some economising principle was needed to effect that object. In anawer to further queations Mr. Samuel said, that he proposed to work the goods traffic in a simillar manner.

Mr. M'Conmell still thought that the rails should be equal on these branch lines, to bear the ordinary engines now in ase on the main Ilnes, in case they went over them; the wear and tear would also be leas upon strong rails.
Mr. Cowper conaidered the ordinary rail in use were much too light, and, at the preent price of iron, he thonght it bed policy to lay downe light rail.

The meeting expressed their entire approval of the engine for all the pur. poses of the ordinary branch linea of rilway.

NOTES OF THE MONTH.

Dagwerrootype Plater.-The platea prapared by dopesiting silver by eleetrical ageacy have been fonad far uparior to the ordinarily-prepared plates, The mode adopted by Mr. Kilburn to tent the saperiority of the elactroplated metal is to deposit silver, by a Smee's battury, on one-hulf of a re-galarly-prepared plate, and then to apply the sensitive coating, and to ge through the uanal proows of taking a pictore. He says that the lights and shadowe on the hair that bas been electro-plated will be much more cloar and dintiset, and that in comparion with that portion of the plate, the other will appear greang. The requinite time of expegre also it foand to be rednced about onethird.

Aerial Nevigation-Mr. Pitter, of Lannton, Oxfordnhire, hay pablinhed plans and descriptions of an "improved Archimedian Balloon," wheroby it is proposed to move througt the air by paddle-wheelh, et in motion by a stenm-mgine. This serostatic machine will indeed be a "monater balloon," at it is proposed to give it broyancy auficient to raise thirteen tom $;$ and it in to be 120 feet long, excluaive of heminphericel eude. Mr. Pithor eapocives there will be little difficuity in stearing this marlal ship, bat he meems allagether to overtook the etbence of a guiding rouictampe, for thongth he may be able to tarn the machine ronnd, that world be of no amil in eteering, unlem there be some retinting force maperior to that of the wind.

Delloways Opened. -0 me of the Hines of rails of the Bolton, Bleckborn, and Weat Yorkhire has been opened. The Tiverton branch of the Bristol and Breter line was opened on the 12th Jone.

Compromive of the Gauge Qmeation.-It has been derided by a committee of the Howe of Commons, "that the doable forge theil be haid dow
from Penny Compton to Wolverhampton, the mode of laying down to be such a the Railmay Commistioners may approve." "By this decision," says the Raihoay Chromicle, "the settlement of the gange queation, to attin which a commistion was appointed in 1845 and legislation took place in 1846, is sent to the wind."... "Thus, diversity of gange is being allowed to take root in the moat pernicions form which it could adopt-namely, the double gauge system."

New Almaspheric Raihocy.-A working model of Measrs. Harlow and Young's atmospheric railway has been recently exhibiting, and it works very astiefactorily on a length of 150 feet, with a four-inch tube. The peculiarity of the invention depends on the formation of the valve. The tube is cant with a longitudinal opening, similar to Clegg's; but, instead of a flap-valve, the action is precisely similar to the slide-valve of a steam-engine. The sides of the opening are so cant, that one side presents a horizontal groove, and the other a tabular face, both planed perfectly true. On the tabolar face the alide-valve reatt, when foreed out of the groove hy the pasage of the coulter, connisting of bars of iron, in a full-sive working tube, proposed to be 4 or 5 feet in length. At each end of these bars a semicircular opening is taraed through about half their thickness, forming, when two abut against each other, a circoler slot, in which is placed a dise of iron, ground perfectly true with the under surface of the barn, and thus presenting a sort of rule joint without any fixed axis, and forming collectively a loose chain which aliden over the opening, and rendern it air-tight. To each of these barr, or links, is pleced a steel spring, in the shape of a carriage-spring, merely of sufficient power to press the valve into its place, after the panage of the coulter. The whole is covered by a top plate, to keep out grit, wet, snow, sec., with the exception of a small space to allow the coulter to pasis, which is not much thicker than a saw blade, and which connects the leading carriage with the piston in the usual manner.

Preservation of Wood for Raihoay Slecpers.-Mesars. Hutin and Bontigny have obtained a patent in France, for the preservation of wood intended for railway sleepers; the process of which depends on flling the pores at each end with a bituminous cement, after the ends have been previously charred. The process is thos described: "Immerse the ends of a piece of wood in some liquid carburetted hydrogen, such, for instance, as the oil of schist, which penetrates quickly some distance into the nood. 2. Set this carburatted hydrogen on fire, and at the moment the fame has barnt out, plunge the wood to the height of a few inches jnto a hot mixture of pitch, tar, and shellac, which will be slighUy drawn up between the fibres. and form at each extremity of the wood a kind of hermetical seal, nnalterable by moisture and air. 3. Coat the wood with tar over its whole surface by the ordinary methods."-A process nearly similar was not long since commonicated to the Paris Academy of Sciences, by M. Gemini, In his plan, tar is used for the purpose of filling the pores of the wood, without the addition of any substance. He encloses the wood in a cylinder, Fherein it is dessicated by bigh-pressure steam. A vacuum is then produced, and additional force is given to the tar in its penetration of the fibres of the wood by a force-pump. M. Gemini observes that a separation takes place between the solid portion of the tar (the pitch) and the oily portion; and that the first penetrates only an inch, whilst the oily matter will penetrate throughout the whole substance of the wood.

The "Divining Rod."-It is a practice not nncommon in tbe mining dis. tricts of Cornwall, to search for veins of ore by the "divining rod," which is supposed to be attracted towards the metal on walking over the surface of the ground. The following letter, in the Mining Journal, signed "H.F. Penny, Notting-hill," thus describes the modus operandi, as having been succesafally practised in his presence. If Mr. Penny be neither deceiving nor deceived, this is one of the things that philosophy cannot account for:"I have witneased the operation of the divining rod, in a manner most conclusive and satisfactory to my own mind. I went, accompanied by Mr. H., first to Wheal Jane, the underground captain of which is what they call a douser. He ordered one of the men to cut half-a.dozen withes, of the requisite shape, from a nelghbouring hedge, and we then proceeded to a field, across which the lode lay. We each held a rod, and walked abreast, the captain in the middle. Upon crossing the lode his rod bent downwards, and, to my surprise and delight, I felt, at the same time, mine pretsing against the fiesh of the finger, when it went down gradoally from heing perpendicular to horizontal, but would not go lower. Mr. H.'s remained perfectly stationary! We tried it again and again with the same result-the captain's, however, going lower and more freely than mine. We then went to another mine beyond Perran, and sent for a labouring miner from underground, who is a celebrated douser. We had another gentleman, a Mr. C., Fith us, an old farmer, a clerk of this mine, and myself-thus making six, all armed with roda. On crosting the lode, the dowser's rod went down like a shot, completely inverted! Mine went down gradually, but its pressure was quite perceptible, until one of the limbs of the rod, close to my fast, actually broke off, from the mysterious force in operation. Now, holding my hands perfectly still, and grasping each limb of the rod, it is impossible to move it downwards by any voluntary motion, much less to hreak it. Mr. H.'s remained an urnal, quite stationary, as also the clerk's; the farmer's and Mr. C.'s acted nearly as powerfully as mine, very much to the astonishment of the latter, who was an unbeliever. I may mention, that it will not ect with one person out of 50 , or, perhaps, out of 100 ."

The Magnetic Tolegraph-Mr. Nathaniel Holmes, who is in the omployment of the Electric Telegraph Company, ham made an improvement in the
magnetic telegraph which promises to be of great utility. The invers thus described by himself in a letter to the Athencoum:-" It may uninteresting to record the recent improvement I have made in reduci expenditnre of battery power to one-tenth of the amount required b $s 0$ that now, insteed of working on the long circuit (a distance of abo miles), with an equivalent of 240 pairs of plates, 24 pairs do duty, much more effective result-the rednced intensity not suffering so mu the effect of bad insalation. The most important point, however, economy of power when it is applied to the numerous stations throe the lingdom, and the increated facility of working through a mach amount of circuit renistance. The addition consints in the substitation aingle small steel lozenge, three quarters of an inch long, for th 5-inch astatic magnetic needles, and placed between two amall coils, culiar shape. Thil form has the adrantage, beaides thome already ment of giving a aignal free from that conatant vibration of the needle, Which so much has been said-the pendulous action of gravity being limited, from its better adapted form."

Telegraph Profits.-The profits of the New York and Washington graph Company are reported to amount to 1,000 dollars per month. Western Telegraph Company is, however, anid to be doing a better bo thas that.

LIST OF NEWW PATEETTS.

grantid in england fion May 30, to Junt $16,1848$. Sis Monthe allowod for Ehrolment, wiless othervise erpreasd.

Willam Wood, of Cranmer-place, Waterloo-romd, 8arrey, carpet mannfacter "Improvementa in weaving carpets, and in pintlag carpetis and other fabrica." May 30 .
Wuliam Seaton, of Camden Town, Middlemax, gentleman, for "Improveris cloaing tubes, and in preventlog and remoring the incrastation in bollora,"-May Jusper Wheeler Rogert, of Nottagham-atreet, Dablla, civl engineer, for "f I mproved methods and machinery for the preparation of peat a
ton with certaln eubatances an a compost or mance."-Jane 1 .
Ruchard Christopher Mansell, of Gravge-romd, Surrey, gentle
Richard Chrlstopher Mamsell, of Gragge-road, Surrey, gentleman, for "certat' provements in the construction of vehicies used on rillways or on common row Jume 1.
Thoman Hunt Barber, of KIng-atreet, Cheapaide, for "Improvementa in machire awing wood." (A commanication.)-June 1.
Jamen Bariham, of Stratford, Ester, manafacturer, for "Improvementa in the facture of mate."-June 1 .

Thomen Burdetz Tarton, of Shefilield-ntreet, manafactarer, for "certaln Improw, in machinery for beading and fitting plates or bars of ateel, iron, and other matert
 Henry Adcock, of Moorgate-atreet, London, civil engineer, for "certaln Improw In furnaces and fire-placen."-Jane 3 .
Wiliam Brindier, of Birmingham, manufecturer, for "Improvements in the fucture of articles of papler-mache."-June 6 .
Fichard Barnes, of Wigan, Lancaater, gan engineer, for "certaln Improvod app for manuffecturing gat for llinmination, part of Wheh improvementu is applicel retorts for diatilling, pyroligneous, and other slmilar parponen."-June 6.
Beajamin Lathrop, Esq., of King-itreet, Cheapalde, London, for "an Improved for riliway purpowee." -June 6 .
Jomph Foot, of Spital-equare, Middiesex, allik manuficturer, for "Improveme mating akeins of allk."-June 8 .
Johhua Procter Weathead, of Manchenter, manufactarer, for "Improvema, manufactariag fur into fabrlen."-June 8.
Thomes Daton, of Coventry, allk dyer, for "Improvements in the manuface frlingen, glmps, and bullons."-J ane 8.
Paul Marte Dariu, of Parls, In the Republle of Frunce, for "Improvements in obt motive power."-June 8
Richard Want and George Vernum, both of Enfield, Middlesex, engincers, fe Improved ateam-engine, which may be alno worked by alr and other finlds."-June?
John Miller, of Henrietta-ntreet, Covent Garden, gentleman, for "a new agis accelerated menatrite locomotion, even by animal Impuialon, for overy apectes of tre? machness actung by means of wheeln, whether on land or water:" (A communicat June 13.
Charies Henry Capper, of Edgbaton, Warrick, gentleman, for a method of phe and cleansing minerala and other mubstances."-June 13.
Josham Taylor Beale, of East Greenwich, Kent, chill engineer, for "Improveme the construction and arrangement of enginel and machinery for propeling be veacels on water, with a means of preventing lncrustation in the bollers, parts of Improventrits are applicable to lund purpones."-June 19 .
恖 Willam Hant, of Dodder Hill, Worcenter, chemiat, for "Improved apparatuc, used in proceasen connected with the manuficture of certiln metali and salts."-Ju 8ir Henry Hart, Commlenioper of Greenwich Horpltal, Rear.Admiral In the Nay "Improvements in apparatue for preventing what are called 'amoky chimneyn.
Whlliam Chamberiln, jun., of 8t. Leonard's-on.the-Sea, Suncer, gentleman, for 4 provements in apperatus for recording voten at elections."-Jane 13.
James Roone, of Duriaston, Stafford, tube manufuctaner, and Wuliam Haden Ruct son the pounger, of the asme place, for "Improvements In the manufacture of tol" mon the yous

George Emmott, of Oldham, In the county of Lancater, elvll engtneer, for "a Improvements in the manuficture of fuet, and in the construction and arrangenw, furnaces, flues, bollers, ovena, and retorta, haying for thair object the economicil apt,
tlon of caloric, the manuficture of gas for llumination, and the coarmaption of is, tlon of caloric, the manufinture of gas.
and other gacous producta."- June 16 .

THE JACQUARD PUNCHING MACHINE. (With two Engraving, Plates X. and XI.")

Datent Machine for Perforating Metal Plates, such as are used Stearn-Boilers, Sc.; and employed for Punching the Plates of tho mular Bridge at Conway; made at the Globe Works, Manchester, Cesars. Roberts, Fothereinh, and Co.
Pr. Roberts, the patentee, has most liberally, at our particular pat, furnished us with all the detailed drawingn of this very Ftant machine; for which we are sure all our mechanical mrs will join with us in awarding thanks for his liberality.
6. I (Plate X.) represents a sectional elevation of the machine ; , an elevation of the back of the machine; fig. 3 , a plan-view of epparatus for putting the punches out of action without pang the fly-wheel; and fig. 4, a plan-view of a fow of the pard plates. Fig. s (Plate XI.) represents a front elevation; fo side elevation; and fig. 7, a horisontal section, taken through iotted line A^{1}, A^{1}, in figs. 1 and 9 . Fig. 8 is a detached view Te traverse-spparatus; and fig. 9, a detached view of the ing-down or stripping apparatus. A, A, the standards. B, bed, through which there is an opening for the punchings, or 1 punched ont of the plate, to fall through; this bed is inod into the standards. C, a stretcher-bar, to connect the top pe standards. D, fulcrum of the levers q, q, which withdraw punches, and of the lever ω, which traverses the plate. E, a fum-shaft, to which the levers j, j, and k, k, are keyed. F, the or eccentric shaft, working in bughes in the standards. G, Fr-wheel, keyed on the eccentric-shaft. H, a pinion, working the wheel G. I, the fly-wheel shaft, on which are the fast loose pulleys $K_{\text {, }}$ and L, the pinion H, and the fly-wheel J. M , connecting-rods, fitted to the eccentric necks of the shaft \mathbf{N}, N, cape of the connecting-rods $\mathrm{M}, \mathrm{M} . \mathrm{O}, \mathrm{O}$, guide-plates the punch-rams P, P. Q, the cam-shaft. R, a spur-wheel, te on the cam-shaft, and having on one side two projections, ween which there is an opening. R^{*}, a locking-disc or plate, fed on the shaft Q, having upon it a spring catch 38, which es into the opening between the projections on the wheel R. and R^{*}, are seen detached in fig. 5 , and the dotted lines on R^{*} resent a weight to counterbalance the levers k. S , a toothedbel, keyed on the main-shaft F. T, the punch-ram-depressor, pured to the connecting-rods M, M, by knuckle-joints at the fer end of the connecting-rods. U, a slide-bar, on which the me traverses, which carries the plate to be punched. V, V, two Ft alide-bars, to carry one side of the traverse-frame. W, a ck of iron, fastened with short wedges to the bed B, to carry die-plate X, into which the dies d, are inserted, and prevented n rising by a collar at the lower end of each, as seen in fig. 11. e square shaft, carrying the holding-down levers, or strippingpers, o, o. Z, \mathbf{Z}, levers on each end of the shaft \mathbf{Y}. a, a, the Sches let into the punch-holders b, b, bolted to the rams P, as \Rightarrow in the detached view, fig. 5 . c, c, pieces bolted to the bed to carry the adjusting alide-bars' V , V. α dies inserted into holder X. e, e, (fig. 1), are the selecting slide-bars, which, en allowed to pass through the card-plate, enter the card-roller f, thont being pushed backward by them; the card-roller has in Scase six sides, and the belt of Jacquard plates after passing fer it in the usual manner, passes over a round roller suspended a swing-frame, at such an angle as shall keep the belt oderstely tight, whilst the roller f advances tuwards and recedes on the selectors e. g, g, brackets projecting from the depressor , and carried up and down with it. h, h, sliding-blocke, in which e journals of the card-roller turn. To an upright cast on each of hese blocks, is fitted a rod of round iron, thus, *, with a flat foot, bong enough to extend over two of the six pins in the ends of the pard-roller, against which the flat foot of the rods is made to press, by spiral-springs coiled around them in the usual manner employed in the Jacquard-loom, which is generally known, and need not be further described. i, i, (fig. 1), are two sets of guide-blocks, for the selectors e, one on each side of the depressor, adjustable laterally by set-screws on flat bars, extending across the machine; the use of these blocks is to carry the selecting-bars a, which are round at the end that enters the cards, and flat at the other end, to keep them in their proper positions; the centre portion of each selecting-bar is a solid piece of iron, projecting as much below the round stem as will, when the selecting-bar is driven backwards by a card-plate, permit the depressor T to complete its downward stroke without the selecting-bar touching the ram \mathbf{P}, under it. j, j,

[^17]are levers keyed on the shaft F , and connected at their lower end by links to the alide-blocks $h, h . k, k$, are levers also keyed on the shaft E, and having each a friction-roller at its lower extremity. On the shaft Q, are two cams, one of which worka a lever k, on one side of the shaft, and the other cam works the other lever th on the opposite side. One of the cams, through the medium of the levers j, j, and the links before referred to, causes the roller f to approach the selecting-bars e, and the other cam causes the roller to recede from them, until by a catch employed in the ordinery way in the Jacquard looms, the roller f is made to turn through one-sixth of a revolution, and is then retained in that position by the pressure of the spiral spring and flat foot above referred to. L, L are brackets attached to the depreseor T, at the back of the machine, seen best in fig. 1. m_{2} a bar resting on the brackets h, b, and connected by rods with the sliding-blocks h, h, which, on receding, cause the bar m to bring all the selecting-bara e into the position for depressing the rams, as seen in fig. 11 . n, n, are levers having their fulcra on studs screwed into the standards; one end of these levers is connected by a rod p, with the levers Z, Z; the other end is furnished with a roller which is acted upon by a cam u, on the shaft Q, (see fig 8). o, o, are the holding-down levers, adjustable laterally on the shaft \mathbf{Y}, so as to admit of one of them being placed on each side of every punch. p, p, are rods connecting the levers n, and Z. By adjusting the length of these rods, the levers $o, 0$, are made to press upon plates of different thicknesses, so as to hold the plates down while the panches are being withdrawn. q, q, levers turning on the fulcrum-bar D, for withdrawing the punches by means of the cama r, r, that actuate levers q, q. 8 , a broad but rather thin bar, extending through the series of punch-rams P, shown by dotted lines in figs. 7 , and 2. The punch-rams P, are made with slots, through which the bars passes, and these slots mast be about two inches longer than the width of the bar 8 , in order to allow the punch-rams to be forced down when the bar is at the bottom of its stroke. t, t, are links connecting the bar s with the levera $q, q . u$; u, are cams which depress the holding-down levers 0,0 , through the medium of the levera n, n, rods p, p, and levers Z, Z, and hold down the plate while the punches are being withdrawn. v, a cam for the tra-versing-rack 5. w, a lever turning on the fulcrum-bar D, and worked by the cam $0 . x$, the cam for lifting the rack 5 . y, a lever turning on a stud in the standard, and worked by the $\operatorname{cam} x$, for lifting the traversing-rack s. z, a rod connecting the lever y with the lever 8 , seen best in fig. 10 . 1 , is a lever on the traverseshaft 8 . 3 , another lever on the shaft 2 . 4 , a link connecting the lever 3 with the rack 5 . 6, a rod connecting the lever w with the lever 1, for traversing the rack 5.7 , a shaft for carrying the levers 8, 9 , and 10 . I1, a link connecting the levers 10 and 18. 13, a shaft carrying the levers 12 and 14. 15, and 16, are links connecting the rack 5 with the levers 9 and 14. 17, the upper or retaining rack. 18, a stud carrying the elbow-lever 19, which is provided with a handle. 20 , another stud carrying the elbowlever 91 , which is connected by a link 22 with the lever 19. The rack 17 is carried on studs in the horizontal arm of the levers 19 and 21. 23 , division-studs in the bar 24 of the traversing-frame.
The plate to be punched is put into a traversing-frame formed of two side-bars, 94 and 25 , and two stretcher-bars secured by cottars to the side-barg, which are rabbeted to support the plate, and, when required, furnished with clamps to hold the plate down. 24 represents one of the sides of the traversing-frame, in which there is a groove to fit on the slide-bar U; into the outer aide of the bar 24, is screwed a series of studs' 83 , represented in the engravings as being 12 inches from centre to centre apart from each other. The side 25 of the frame slides on the bars V, V. When the plates to be punched are very long, rollers may be used to carry the projecting ends of the traversing-frame. In fig. 9 is ahown part of a frame, with a plate partly perforated. The racks 5 , and 17 , (fig. 10, are drawn with three teeth in the length of a foot, which will divide plates to a four-inch pitch; but it will be obvious, that for a different pitch the racks must be changed; and it may, in some (cases such as when the pitch required is not an aliquot part of a foot) be necessary to alter the distance between the studs 23 . Fig. 10 represents the traverseapparatus, in the position it will be in when the retaining-rack is down, and the punches in the act of passing through the plate, and the traversing-rack having completed its return-stroke.
When the punches are being raised, the traversing-rack will rise also; and by the side-piece 26 (which is attached to it) acting against the roller 27, on a stud in the rack 17, will raise it also, and set the frame at liberty to be advanced by the cam x, through the mechanical means already described. In fig. 1 , this treveritiapparatus is shown in the position it assumes when the plate is all
vancing. The spiral-spring 98, acts on the lever 91, and forces the rack 17 down on to the pins 88 . For every hole required to be punched in line with the width of the plate under operation, a corresponding hole must be made in a plate of the Jacquard, and an additional hole, marked 30 , (see fig. 9), is also made, into Which the stopping-bar 31 enters at every stroke until the punching be completed, at which time the Jacquard plate 32, which is left blank, will push all the selecting-bars e beyond the rams P, and at the same time, by pushing the bar 31, disengage the camshaft Q, by the mechanism to be hereafter explained, at the point where the punches and the levers o, are held up, and thus will Nllow the perforated plate to be taken out of the machine, and another plate to be put into it. The stopping-bar 31, is provided with a projection on its lower surface, which depresses the clicklever 39, when the bar is pushed back; the lever 33 is keyed on a shaft 34, moving in bearings at the back of the depressor; on the other end of the shaft 34, is keyed the lever 35, to the upper end of which is attached the link 36 , connecting it with the elbow-lever 37 ; theend of the other arm of this lever is inclined, for the purpose of unlocking the plate R^{*}, and is provided with a atud, on which is a latch 38 , the tail of which comes in contact with the incline on the elbow-lever 37, when it is in the position shown in dotted lines in fig. 3 ; and as the wheel R revolves, the latch becomes disengaged from the opening between the two projections cast on the said wheel, at which time the cam-shaft \mathbf{Q}, ceases to revolve. When the stopping-bar 31 has been pushed back, it depresses the lever 39 , and liberates the lever 33 from behind the projection on the lever 39 , when the spring 40 will pull the elbow-lever 37 into the position shown in dotted lines. To the blocks h, a small shaft is attached, on which are two levera, suspending by links a plate of metal similar to a blank card-plate, except that the holes for the guide-pins are cut at the bottom edge. At each end of the mame shaft is a lever-handle, held up or down by a side-spring in the ordinary way. The use of this apparatus is as follows:Should it be required to atop the machine before the plate is finished, by raising the lever here referred to, the blank plate will come in front of the roller, and will act the part of a blank Jacquard plate, and stop the machine.

Having now described the principal parts of the machine, we ahnll proceed to explain the manner of its working. The plate to be punched having been placed in the traversing-frame, on the sides U , and V , is then pushed forward. In its progress, the first pin of the series 2s, passes under the inclined end of the rack 17, antil the first notch in the rack falls upon the pin. The drivingstrap being now on the fast pulley K, the machine is set to work by pulling down the handle 4%, keyed on the shaft 34 , until the lever 38 is latched by the click-lever 39 ; the elbow-lever 37 is then, by the spiral-spring 40, brought into the position shown in fig. 3. The latch 38 being now liberated, will, by the action of the spring 41, (see fig. 1, drop into the notch in the wheel R, the first time it comes round; the cam-shaft Q will now revolve at the same speed as the shaft F, and the Jacquard-roller f, will be drawn back and made to perform one-sixth of a revolution on its centres; after which it will be advanced, and the first card of the eries will remove those selecting-bars for which there are no holes in the Jacquard plate; the other selecting-bars will remain over their respective rams P, which will then force down the punches through the plate, by the descent of the depressor T. A little before the punches have gone through the plate under operation, the levers o, are made to press upon it, and are held there while the punches are being withdrawn by the bar s, which rises simultaneously with the depressor T, during one-half of its ascent.

Whilst the depressor is contlnuing its ascent and descent through the other half of the stroke, the roller f recedes, and draws with it the bar m, which brings all the selectors again over the punch-rams P. The roller f, while receding, having performed another aixth of a revolution, will, on advancing, bring another of the Jacquard plates against the selectors, and the operation will be repeated until all the holes are punched in the plate under operation.

Iron Foweh.-Mr. Rowles of North Shields, suggests the following in. provements is the comstraction of iron veasels, by forming the keel and Irdeon of plate or bar-iron in ose or two breadtha, from $1 \frac{1}{1}$ to 21 inches in thicknem, and from 20 to 24 isches deep, and then to form the floors of angle-iron in two lengthe, and turn the ends of each op the alde of the kelson, and connect them together by rivets through the kelson from side to aide. The floor plates alvo to be in two lengthn, which being rivetted to the loors, the twe sidet of the ship will be connected together.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXIV.
 " I munt have liberty
 Withal, es large a charter sa the wiade,
 To blow on whom I place."

I. In that very amusing, but slovenly and in parts rather dall congeries of gossip, entitled "Nollekens and his Times," Museum Smith speaks of a certain "happy possessor of some of the ecort fragments of the antique in this kingdom, who employs a mere macon to put them together, and is perfectly satiafied though a right foot has been most ingeniously placed upon a left leg ${ }^{\prime \prime}$ Who the "happy possessor" alluded to was, I know not, but I do know that, mutatis mutandis, the satire applies as forcibly, or in general far more forcibly, to the stupid, and tastelesa, and bungling, botch ings-up of architectural odds and endo-whether antique or mediaval, clasaical or ecclesiastical-into a design intended to pass as an unexceptionable apecimen of the particular style which is profeseedly imitated, but generally caricatured more or less when 0 treated, -recundum artem, but contrary to all artistic principle and not unfrequently contrary to meaning and purpose also. Would that in architecture no greater blunders were ever committed than that of sticking "a right foot on a left leg,"-in which case the artiat might fairly have excuced himself by swearing point blank that it Was not the right foot.-Our being imitators at the present day might be forgiven; but we are not so much imitators, as mere copyists, incapable of entering into the spirit or meaning of our models, -which are to us little better than blind guides, simply because we ourselves follow them blindly, and without the least regard to widely-altered circumstances. What more may, under present circumstances, be made of a style, is what we never conider. Yet if we really studied our models, we should find-at least, in all those most deserving of being studied-every part well motived and adapted to the express occasion. How far we in that respect imitate those who have gone before us, I leave it to the impartial reader to determine for himself.
II. In his above-mentioned book, Smith is pleased to gey: "Men of true taste visit a mansion only upon the report of its statues, busts, and pictures. The architecture of a house unadorned by euch productiong of art, would not induce the general traveller to drive twenty miles out of his road, nor even five. How few allurements indeed, would the Marquis of Lansdown's, Lord Pembroke's, Lord Egremont's, Lord Farnborough's, Sir Abraham Hume's, Mr. Peel's, (now Sir Robert), and many other noble mansions have, if totally destitute of their fine collections of statues and pictures !"-No doubt such would be the case, but why ?-first, becsuse there is nothing whatever of architectural interest in the "noble mansions" themelves; and, secondly, because if there were. your "general travellers" have very little, if any taste at all for architacture. I was the other day in a house here in town, -one that I may fairly call an "architectural house," which although totally " destitute of pictures and etatues," with the exception of a baseo-rebiew by Lough, over a chimney-piece in one of the rooms, is in itself all picturo-as superior to Peel's as a pine-apple is to a pippin. For my own part, whenever I go over a houge for the first time, I have neither eyea nor thought-nor if I had, I have not time-for anything but the architeoture itself. As to pictures and statues, any dowdy house may be bedizened out with them, and still be, as a house, as dowdy as ever,-a perfect cluster of C's: very convenient. very comfortable, very commodious, very correct, very comne-it faut, and very (most of all) common-place.
III. In his anecdotes relative to Cosway, Nollekens' biographer says that, after quitting Pall-Mall, "he (Cosway) fitted up his new residence (No. 20, Stratford-place) in 80 pict uresque, and indeed so princely a style, that I regret drawings were not made of the general appearance of each apartment ; for many of the rooms were more like scenes of enchantment pencilled by a poet's fancy than any thing, perhaps, before displayed in a domestic habitation." If suck really was the case, they certainly were worthy of being delineated; yet we may be allowed to entertain some miagivings-first, becaust such a charscter of the house partakes too much of the "glamour might" of some of George Robins's advertisements; and, secondly, nothing is said to corroborate it, or to give us any idea whatever of those "scenes of enchantment," notwithstanding that the writer could at leagt have done that,-have spoken of "the general appearance of each apartment," and have so far rescued them from complete oblivion. Instead of which, he merely goes on to astound at by enomerating some of the costly articles of furniture and erti
which were displayed in the habitation of that once fashionable and now forgotten painter :-to wit, "ancient chairs, couches, and conversation stools, elaborately carved and gilt, and covered with the most cootly Genoa velvets; escritoires of ebony inlaid with mother-of-pearl; rich caskets for antique gems exquisitely enamelled, and adorned with onyxes, opals, rubies, and emeralds (!). There were also cabinets of ivory, curiously wrought; mosaic tablea set with jasper, blood-stone, and lapis-lazuli." Suffice it to say, that there were besides, among a variety of other thinga, 4 masaive musical clocks, ottomans superbly damasked, Persian carpets, chimney-pieces carved by Banks, bronzes, models in wax and terracotta, crystal cups adorned with the Yory and Lancaster roses, \&c. \&c." To meet with such prodigal sumptuousness in the house of a painter must have been astonishing enough-almost incredible when contrasted with the scrubby, though never scrubbed, dog-hole rooms in which old "Nolly" and his amiable spouse therived 50 Well ; or the Wretched, but richly cobwebbed, garret in which Barry entertained Burke with a beef-ateak and a pot of porter.-Still, I am quite at a lose to make out, from all that Smith says of Cosway's house, aught that warrants the expression of the rooms being so many scenes of enchantment, there being not a syllable even with regard to any of their decorations, or to indicate any particular fancy, or recherché taste, or well-studied effects in the rooms themselves. Sumptuous furniture and almost priceless works of art may be put into a very common-placs room; but in sach case, the latter is merely the receptacle of the other objects, akipped of which, it would not be worth looking at; whereas-in a first-rate mansion, at least-every part of it, except the entirely private and domestic rooms, should be laid out with studied regard to effect, and to variety of effects-without, however, departing from consistency as to general character. Each apartment should be itself a picture,-strikingly beautiful in itself, charming, captivating, before it receives its finishing touches in the way of furniture and other accessories. At present, as they are left by architects, rooms (even those in the best houses) are lítlle better than blanks, -large four-sided boxes for the cabinet-maker and upholsterer to fill ; in doing which, they may chance to empty your purse before you are amare of it, -or if they do not actually do that, they are fikely to disgrace your taste by cramming your rooms with a medley of ill-assorted articles, agreeing only in being all slike very expensive ones.
IV. In snecdotizing some of the former residents in St, Martin's-lane, Smith notices No. 60, as the house once occupied by Chippendale, "the most famous upholsterer and cabinet-maker of his day, to whose folio work on household furniture the trade formerly made constant reference. It contains, in many instances, specimens of the style of furniture so mach in vogue in France in the reign of Louis XIV, but which, for many years past, has been discontinued in England. However,"-I entreat my reader to mark this-" as most fashions come round again, I should not Wonder, notwithstanding the beautifully classic change brought in by Thomas Hope, Esq., if we were to see the unmeaning scroll and shell-work with which the furniture of Louis' reign was so profusely encumbered, revive; when Chippendale's book will again be sought after with redoubled avidity, and as many of the copies must have been sold as waste-paper, the few remaining will probably bear a high price." Smith's apprehension is already to a considerable extent verified ; and that same Louis Quatorze taste, which, although dignified by such title, is essentially both puerile and barbsrous, corrupt and unprincipled-quite contrary to every sound principle of sound art, seems to be now spreading through all branches of decorative deaign and ornamental manufactures; some recent specimens of which, though cried up by those who profeseing to guide public taste ought to know better, are chiefly remarkable not for elegance or beanty of form and combination in any respect, but rather for quite the reverse, and for what has been quaintly termed "the depravity of elegance;" which singular pervergity of taste is the more unaccountable, as well as lamentable, now that we have Government Schools of Design. Really, if such institutions produce no better fruits than the specimens alluded to, the sooner they are broken up altogether, the better. The instruction there given, no more qualifies for producing artistic design, than learning to read and write qualify for a literary career. Were things left to take their natural and healthy course, very few except those who really possessed talent-or what is next to it, a decided relish for art-would think of applying to it. Where talent really exists, such institutions are no doubt highly beneficial, by enabling it to develope itself; but then, on the other hand, they are mischievous, inasmuch as they turn out upon the world a great many more who are quite talentless, though furnished with a certain degree of manual proficiency; and as
such talentless creatures "must live", and cannot porsibly bo interdicted from exercising pro malo publico what they are pleased to call their "talent," the ultimate injury to art and to public taste is greater than the benefit. I remember a priggish young Oxford student boasting in company of the many eminent men who had been educated in his college, when he was cut short by some one calling out to him-"But you don't say a word of the thousands and tens of thousands of blockheads which it has also turned out," adding, sotto eoce, "and I take you to be one of them."
V. In a letter on the subject of the the Architectural Publication Society, a correspondent of the Athenaum says, after quoting what is stated in that Society's prospectus, as to the paucity of architectural works in this country: "Surely the thumb-screw must have been applied to extort this confession!" When a remark to the same effect-that is, animadverting upon the paucity of English architectural publications, was made some short time ago in the Westminster Review, a gentleman who now figures among the "Promoters" of the above-mentioned Society, thought proper to contradict it publicly at one of the meetings of the Institnte; nevertheless, what was then deemed an injurious calumny, is now proclaimed to be the fact. Indeed, it is wonderful that any one should have had sufficient hardihood to dispute it. For a certain class of architectural books, there has beena considerable demand and corresponding degree of supply, of late years; but they are merely elementary ones, and besides, almont erclusively confined to the Gothic style and to ecclesiastical architecture. Even graphic publications, such as those by Haghe, J. Nash, Hichardson, and others, have been entirely mediseval-at least, of the "olden times" in subjects, and some of them altogether continental in their subjects also. We possess no satisfactory illustrations of contemporary English buildings, either in colleetions containing examples by different architecta, or in works brought out by the respective architects themselves. Sir Jeffrey Wyatville's "Windsor Castle" is the last and almost the only English publication of the kind that has sppeared in the present century ; and that was by no means so satisfactory and interesting as it might have been, it doing only half its work, owing to the entire omission of sections, notwithstanding that they were indispensably requisite for much important information that is not to be obtained at all, except by means of such drawings. 'To whatever it may be ascribed, this falling-off in architectural publications is all the more surprising, when we consider how very much has been done in architecture during the last thirty years. Some few years ago, Mr. Weale, as will very well be recollected, made an offer to the Institute to bring out annually a volume of designs of the best buildings executed by living architects; but instead of such liberal offer being thankfully accepted, it was rejected not only once, but twice-for some time after the first rejection, it was repeated, and rejected moreover in the most sulky and ungracious manner. Yet now, these same people-for many, if not most of the "Promoters" belong to the Institute-come forward and whine out, that in architectural publications we are far behind all our continental neighbours, and "our deficiencies are very great, as a comparison of catalogues will show"! It would seem, then, that something like shame is at length felt. Let it be dieguised as it may, the fact is, architectural works of a higher class (consequently expensive ones), similar to those which have appeared on the continent during the last thirty or forty years, are not raleable-that is, do not obtain a remunerating sale. There is no encouragement for bringing them out; wherefore, all enterprise of the kind is checked by certainty of loss. There are no publishers of them, for a plain and unanswerable reason-viz., there are no purchasers of them. It is not indeed to be supposed, that every copy would remain unsold, but the purchasers are so exceedingly few, that works of the kind could not be provided for them, except by putting an enormous price upon the books. Why all this should be the case, it is more easy to guess than it would be fiattering to say. According to all appearances, the demand for them ought to be far greater than ever. The architectural profession has surprisingly increased in numbers; then we have a Royal and chartered Institute, which of course exerts itself most laudably in promoting and diffusing on all sides a taste for architectural studies; then, again, we have a Fine Art Commission, under whose cognizance architecture comes very prominently forward-pity, let me observe, par parenthèse, that said Commission did not take under their cognizance also Mr. Blore's additions to Buckingham Palace! -and as the Commissioners are selected from the aristocratic classes, the very natural presumption is, that Architecture, as well as the other Fine Arts, is studied among our aristocracy and the higher ranks of society. We have bhe-bookes on matters of art, architecture included; item, architec-
tural societien almont innumerable;-nevertheless and notwith standing all thee favourahle symptoms, architeotural study-at nuy rate, architectural publishing, is now at the loweat ebb. Yet, hardly is it because we in this country are so poor that we cannot aford to indulge in those book-luxuries, which our certainly not wealthior continental neighbours do. The plain truth is, that not withstanding all our present chattering about art, we know nothing about it, and care less :-now, if any one calle that a bull, 1 return the compliment, by calling him a great calf.
VI. If architectural works, corresponding in charscter with those which used at one time to be published in this country, and Which up to the present time have continued to be brought out upon the continent, are no longer engaged in by us, it is to be attributed, some will perhaps say, to their being supplied to us by the continent itself. That such publications as those of Schinkel, Kleuze, Gärtner, Famin, Gauthier, Letarouilly, Cicognara, Canina, Caseina, Diedo, Runge, Gladbach, Tietz, Joly (Chambre dea Deputes), Calliat, (Hotel de Ville de Paris), and a great many otherk, are known here, there can be no doubt. One or two of them are stook-books with English booksellers. Yet, whether they have been imported to such ortent as to render all homeproduction of the same sort quite unnecessary, may very well be doubted. Granting, however, such to be the fact, the consequence is, the continent gets nothing of a similar kind from us in return; wherefore, foreign architects, who would probably be benefitted by some exchange of ideas with us, are left to suppose that Engliah ones produce nothing worthy of being shown, or that will bear the test of examination when fully exposed by being delineated in all its parts. We can very well afford, it may be said, to let other countries entertain whatever opinions they please of us, in the matter of architecture and art. Very true; why, then, are some among us so sore, so piqued, and so tonchy, whenever it happens to be intimated that we lag far behind foreigners in regard to architectural publishing, "as any comparison of catalogues will ahow"-a confession now paraded before the public with the consent and under the auspices of eeveral of our leading architects? If we have acted right of late years in entirely abstaining from producing architectural publications that might proudly rank with the best foreign ones of the kind, there is nothing at all to be angry or to blush at, whenever as mach is stated. Rather ought we to congratulate ourselves upon our superior prudence and discretion. Why should "any comparison of catalogues" disturb us, or discompose the serenity of our tempers? O_{n} the other hand, if it be now considered desirable to show rivalry with the continent, in respect of architectural publications, what is contemplated by the "Architectural Publication Society" will go bot a very little way indeed towards accomplishing such object.
VII. It might very naturally be imagined that architecture is pretty generally studied by our higher and middling classes, and that there would accordingly be a considerable and constant demand for books relating to it, it being from those classes that those who sit in committee and in judgment upon designs sent in at competitions are selected, or else elect themselves. They are of course all "highly respectable" and "honourable" persons, and so forth; yet that avails nothing, if they possess not at the same time some intelligence of architecture itself, which certainly does not come all at once by intuition, just when there happens to be occasion for exercising it, nor is it to be acquired without considerable study and application. Possibly, it may be that those who enter committees of the kind are so exceedingly ignorant, as not to be at all aware of the responsibility they take upon themelves, or their own utter unfitness for the office they assume. The consequence is, that although by undertaking it they are dig-nified-at least, fancy themselves to be so-art is damned. According to the present precious system of managing such matters, the sending in a carefully-studied design is no better than casting pearls before swine. A production of the kind elicits nothing better than a grunt, and the decision is made in favour of swifl and Sansovino. Now, if gentlemen like to call for a bottle of genuine old Saneovino, they are welcome to do 80 ; but it is, as my Lord Liverpool would have said, "really too bad" to cause other people to send in a hundred samples of various sorts, when the said Sansovino alone was wanted. Alas ! for both the nous and the honour of the Army and Navy, -at least, for those of the Army and Navy Club, who, after taxing in no ordinary degree (owing to the limited space of the first sight) the ingenuity of between sirty and seventy architects, decided in favour of a prosaic affair vamped-up after Sensovino. That busy-body prig, Count d'Orsay, deserves to be well ducked in a'Orse-pond, for leading the Army and Navy -our British Army and Navy, or their Club at least-by the nose. Rather ought the "club" to have been so wialded at to knock his

Countahip down, and send him to grope in the abyis of his cescombical conceit. However, if English architects like to be kicked by French counts, without attempting to resent it, $s 0$ be it. They may be both kicked and apit upon for aught that I care, if they are too cowardly to protect themselves.
VIII. In what he mays of the Royal Exchange, the writer in the carrent number of the "Weatwianter" makes no objection to that edifice being so greatly disfgured by the shops. It is also comewhat strange, that while he so vehemently condemns the excess to which decoration has been carried at the Honses of Parliament, he is quite silent with regard to what persons lese critical will be likely to consider the greatest fault of all-namoly, the enormous cost $s o$ incurred. Mr. Hume's words, when he asid (in 1836) he firmly believed that the expense of Mr. Barry's plan would be double the estimate, have already been verified. Mr. Mackinnon went even further, and declared that "Two Millions will not cover the expense." Let us then "firmly believe" that Three Millions will do 80.

ARCHITECTURE AT THE ROYAL ACADEMY.

[tilid notioe.]

Owing to the Exhibition's terminating this season somewhat carlier than usual, and to our not knowing that it was about to close until just a day or two before, when we were prevented fram re-visiting it, we must now trust to our memory and a few slight notes proviously taken down by un, for such further account as our readers must now be content with. Of the one hundred and aizty drawings in the Architectural Room, forty-six may very well be said to have "no business" there, they being not original architectural productions-not designs and compositions by the respective exhibitors, but merely views and other portraitures of different buildings, or bits of buildings. Now, in our opinion, subjecte of that kind are at the beat somewhat out of place in an architectural exhibition, if only because an annual exhibition is, unless otherwise expressed, expected to show us the performances of contemporary talent. Were the Architectural Room three or four times larger than it is,-or, what would be better still, were there two sufficiently spacious rooms, one of which might be set apart for what is mere architectural portraiture, there would be no objection to productiona of the latter description being admitted, provided they were worthy of being so, either on account of intringic interest or freshness of subject, or superior ability and charm as regards artistic execution. Unfortunately, the reverse of this is the case : buildings that have become quite hackney and stale (having been shown again and again both in book-engravings and drawings, and also in copies from them, till we almost sicien at the bare mention of their names) are allowed to find admission at the Academy, in hundreth-edition representations of them. And not only are such things admitted, while original architectural productions are turned away, but many of them-and perhaps some of the stalest or else most trivial in subject, are allowed to occupy better places than drawings which show us, or rather would show us what we have not before seen, were they not hung where they cannot be seen themselves. As we have already observed, this is the unhappy case of No. 1095, the new Coffee Room of the Carlton Club-house; while, as if on purpose to render that case a still more scandalous one several large frames, which contain only very uninteresting views of architectural ruins, are placed very conspicuously nearly upon the "line." Had No. 1095 been differently described-had it passed, as it very fairly might have done, under the name of Mr Sydney Smirke, with the information that the encaustic embellishments were by Mr. Sang, it would, we suspect, have been very differently treated. Well, let us hope that it will be admitted again next meason, for it certainly cannot be rejected as having been "already publicly exhibited," unless being publicly put out of sight is just the same as being "publicly exhibited." The hangers neem to think that they are at liberty to do just as they please in the Architectural Room, and commit all sorts of absurdities there without incurring the slightest censure. Theyknow well enough that the architectural drawings are never spoken of by the newspapers press; the hangmen however, are merely the executioners : they are not responsible for judicial blunders and want of judgment in the judges themselves, who not content with condemning this year many meritorious architectural performances, by rejecting them, have, by admitting them signified their approbation of a great many others which, whatever come among them may be as drawings, are below mediocrity as designa. If it be the policy of the Acedemy to bring architecture-that in,
architectural drawings, into still further disoredit and disfisvoir with the public, as a step towards such works being exoluded altogether, after its being voted to be beneath the dignity of a Royal Acedemy to admit them into its exhibitions, much as we may admire the astuteness of such polioy, we must reprobate its treacherousness.

Tobegin-as it is now high time for us to do, our notices of such drawings as we can now speak to, we will first of all mention those which belong to what is invariably the most scanty, though assuredly not the least interesting or least important class of subjects, we mean Interiors. One of them, whose title excites curiosity the most, is, as has already been stated, put quite out of sight. The next, No. 1117, "The Drawing Room and Corridor of the Army and Navy Club-house, "Messrs. Allom and Crose, fares vexy little better, it consisting of two small drawings in the same frame, which being only slightly tinted in sepia, and hung up considerably above the eye, are hardly observable. Of these two subjects we prefer the "Corridor" one, as manifesting, besides taste and considerable novelty also, more judgment with regard to due gradation of effect than the usual mistakenly ambitious practice of making the approach to the apartments in a club-house or private mansion far more impressive and important-architecturally speaking-than the rooms themselves,-pompous prefaces to what is, if not actually paltry, more or less common-place. We question whether the actual Club-house now in progress will be able to show anything half 00 full of effect - +0 scenic, yet not at all extravagantly or furcedly 80 , but rather quite the reverse-ss this portion of Messrs. A. and C.'s design would have been. At the same time, we think there was more than one other design offered that was upon the whole still better than theirs. However, the Club, or perhsps the Countthe Hercules who wields that club, and against whom all the arguments of criticism count for nothing, has decided differently. We find that we have passed over in its numerical order, an interior pleced conspicuously enougb, therefore not at all likely to be passed by unnoticed on the wall, viz., No. 104, "Design for the Interior of a Room, decorated with Inustrations of the Coldstream Guards" H. Shawo. This design is about as odd as its title is oddly worded. The drawing is a large and pains-takingly laboured one; the "interior" of the room shows what is meant for florid Tudor Gothic in all its floridness, in which flage and heraldic embellishments bear a prominent part; still it is not by any means to our taste, and we therefore consign it over to the "illustrated" if not illustrious Coldstream Guards, for their especial admiration. As No. 1999, "Drawing of an Ancient State Pall belonging to the Company of Fishmongers," is by the same exhibitor, it may properly enough come in for notice immediately after the preceding. Its title shows it to be an exceedingly antiquarian affair-far more antiquarian than at all architectural. It is, in fact, little more than a highly-laboured drawing of a more curious than tasteful needle-work relic. What business it has to be here in one of the very best situations, we do not understand; on the contrary, marvel much at finding it here at all, knowing, as we happen to do, some of the architectual designs which were turned away in order to make way for such a very old-ladyish affair as this. Perhaps it took the fancy of the old ladies in the Academy.

No. 1200 , "Entrance Hall and Staircase of the British Museum," as decorated by L. W. Collman, is a large and most captivating drawing, and strange perhaps to say tolerably wellplaced. As to its subject, it is not so acceptable as one less known would have been, the Museum being freely open to every one; and so far, we could wish that Mr. C. s drawing had changed places with Mr. Sang's, the interiors of club-houses being not made of "penetrable stuff," but their beauties as carefully secluded from gaze profane and critic's eye, as are those of an eastern harem. In itself, the Museum staircase is not particularly striking-striking only by comparison with the plainness and bareness of the other parts of the building-the King's Library alone excepted. Faithful, too, as is Mr. C.'s representation, it is a flattering one, because of the hall itself it shows nothing more than what serves as fore-ground to the staircase, which is seen directly in front. All disturbing circumstances-all that detracts from or interferes with the scenic effect, as the staircase is thus shown, is kept out of sight. You are at liberty to fancy that it displays itself thus on first entering, or that if not at one extremity of the hall, it comes in at least at the centre of one side of it.-No. 1224 gives another staircase-viz., that at "Beaumanor Park, Leicestershire," W. Railton; in favour of which very little can be said, either as regards the design itself, or the manner in which the view is taken. The style adopted is the heavy, cumbrous Elizabethan, whose quaint carved-work is far more costly than elegant, although
it corte an architect nothing-no etudy or thought, if he be content merely to copy without studying how to refine upon such atyle, and bring it into keeping with modern taste and notions as displayed in all respects throughout a modern reaidence-No. 1288_{2} "Design for an Entrance Baloon, adapted to the English climate," W. Papuorth, puzzles us exceedingly. In what particular respect it is more adapted to our climate than any other room, we are unable to guess; unless it be that its excessive gaudiness and flutter of colours is intended to counteract the chilling influence of an Engliah sky. Nor is the architecture at all better than the taste shown in embellishment as regards colour. The room has the look of a tawdry tavern " galoon.

We have got to the eud of "Interiors," for we do not comprehend under that designation those of churches, both old and new; the former of which are of course mere views, not the designs of those who here exhibit them; while the latter, which might else be made to afford some exercise for inventive power and imagination, are, thanks to our modern ecalesiologists, their pedantry and their prudery, strictly bound to imitate, and as far as possible facsimilize, the old ones;-wherefore, to ecclesiologists and to Mr . Urban, we leave them. The only design of that class which struck us at the time, or which we can now call to mind with any distinctness, is 1183 , "Highbury New Church, now erecting" by T. Allom. That this is a very charming drawing-one distingushed by its artistic treatment, we hardly need say, its author's name being a sufficient guarantee for nuch merit; but it has also great merit in other respects. The architecture itself is treated artinti-cally;-all the spirit and better qualities of the style-Gothic or mediaval, as now matter of course, are preserved. 'I'he view here given of the church is, however, so exceedingly picturesque and episodical, that we cannot judge from it what the strncture is or will be, npon the whole. Having mentioned this subject, we may be allowed to turn at once to another and quite different one, by the same architect-viz., No. 1899: "Continuation of a Design for Improving the Property on the Banks of the Thames, \&c." This we take to be altogether "a cantle in the air"-too gigantic a scheme; not, indeed, an impracticable one, but one which has not the slightest chance of being realised, or even seriously thought of at all in our time, or Mr. Allom's. When he conceived it and was at work upon his drawing, Lovis. Philippe was upon his throne : that Louis is so no longer; neither is Ludwig. Tempora mutontur; all Europe has received a shock-but we are getting prosy. To speak more architecturally and critically, we may observe, that for "improving property on the banks of the Thames," we should read " on the north bank of the Thames," becanse, like every other which has had a similar object in view, Mr. Allom's scheme provides no improvement whatever for the south or opposite bank of the river, the meanness and deformities of whose buildings would become more offensive than ever, were they to be confronted by, and looked at from terraces and quays on the north side, fianked by much facades as are represented in this design.

There is more than one good drawing and very fair deaign for houses in the Elizabethan style-shall we ever get to a Victorian style? -which we are unable now to particularise, but among which, if our memory deceives us not, as for reason explained it may do-is No. 1115 , "A House now erecting at Southend, Sydenham," H. E. Cox and E. Goodroin. There is another drawing apparently by the same hand, but of a design by a different exhibitor, though in the same style, and similar also in many other respects; yet which it is we cannot undertake to say, the pencil notes in our marked catalogue being nearly effaced. To confess the truth Fe must now hurry on to Finis, and content ourselves with merely naming some of the few things that deserve to be rescued from the imputation of dulness and mediocrity, or even worse, with which the architectural part of this year's Exhibition is chargeable.-No. 1112, "The Stoke Station, now erecting from the designs, and under the superintendence of H. A. Hunt," G. Buckler, has considerable merit in parts, but is very unequal, and therefore unsatiofactory as a whole. Here again the style is Elizabethan; and did the drawing represent a bond fide production and monument of that age, it would be interesting enough; but as a design at the present day, it partakes too strongly of the fidelity of the Chinese tailor who copied all the holes in the coat which was sent to him as a pattern of an English one. Considerable praise is due to No. 1211 , ${ }^{4}$ Court-yard of a Gentleman's Farm-house lately erected; and No. 1913, "Design for a Chapel at Edmonton, both by F. W. Ordish; also to No. 1970, "Additions to Frankleigh House, Wilts" H. Clutton. Although there is too much of the aforesaid Chinese tailor in it, we confess to relishing Mr. Harkwick's design for a "House about to be erected at Aldermaston, Berks," No. 1217. Pity that it is of the "alden time" and not of our own; for if we
continue to go on thus, the nineteenth century will be positively a blank in the history of architecture, and, unlike that of Elizabeth, the reign of Victoria an absolute nullity. With No. 1201, "New Buildings in the Temple," S. Smirke, we are by no means so well satisfied. Not only are they more continental than English in physiognomy, but they do not at all accord with any thing near them; on the contrary, are quite a patch stuck upon that range of buildings which they are intended to carry on and complete. While others are effacing and defacing Soane's works, Mr. Smirke seems to be anxious to undo or else go quite counter to Sir Robert's doings.

ON TRIGONOMETRICAL FORMULE FOR FINDING THE LEVEL OF TWO DISTANT OBJECTS.

By R. G. Clark, C.E.

The object of this communication is to exhibit some simple formuls, that may at one operation serve to determine the levels of distant objects with respect to the station from which the angles are taken. The subject may be considered thus: we have on a vertical plane HADB, the given angles HAC, HAD, from HA the sensible horizon, and the given height $C D$, to determine the level of D at the base with respect to B, the base of the station A. (see fig. 1.)

There are two cases: first, when the vertex A of the station is above the level of the summit of the object CD; and, secondly, when the vertex A is below the level of C.

1st. Let the given angle of depression $\mathrm{HAC}=\beta$; also the angle $H A D=8$; the given height of the object $C D=h$; and $H D=y$. Then by the triangle $\mathbf{C A D}$ we have
$\sin (\theta-\beta): h:: \sin \left(90^{\circ}-\theta\right)$ or $\cos \theta: \frac{h \cos \theta}{\sin (\theta-\beta)}=A C$.
By the right-angled triangle A H C, we have

$$
\sin \beta: y-h:: 1: \frac{y-h}{\sin \beta}=A C
$$

Fig. 1.
Equating the above values of $\triangle C$,

$$
\frac{h \cdot \cos \theta}{(\theta \sin -\beta)}=\frac{y-h}{\sin \beta} .
$$

Therefore, $h \cdot \cos \theta \cdot \sin \beta=(y-h) \cdot \sin (\theta-\beta)$

$$
=(y-h)(\sin \theta \cdot \cos \beta-\cos \theta \cdot \sin \beta)^{\prime}
$$

$=y \cdot \sin \theta \cdot \cos \beta-y \cos \theta \cdot \sin \beta-h \cdot \sin \theta \cdot \cos \beta+h \cdot \cos \theta \cdot$ $\sin \beta ;$ by transposing, $y(\sin \theta \cdot \cos \beta-\cos \theta \cdot \sin \beta)=h \cdot \sin \theta$.

Hence $y=\frac{h \cdot \sin \theta \cdot \cos \beta}{\sin (\theta-\beta)}, \operatorname{or} y=h \cdot \sin \theta \cdot \cos \beta \cdot \operatorname{cosec} \cdot(\theta-\beta)(8)$
Dividing each side of (1) by $\sin \theta \cdot \cos \theta$, we have

$$
\begin{array}{r}
y=\frac{h}{1-\cot \theta \cdot \tan \beta} ; \text { but } \tan \beta=\frac{1}{\cot \beta} ; \text { therefore, } \\
\left.y=\begin{array}{c}
h \\
\cot \beta-\cot \beta \\
\beta
\end{array}\right] \ldots \tag{3.}
\end{array}
$$

The formula (8) may be adapted for logarithmic computation, thug-
$\log y=\log \sin \theta+\log \cos \beta+\log \operatorname{cosec}(\theta-\beta)+\operatorname{logh}-30$.
The equation (3) can be effected by natural co-tangents, to be found in Hutton's "Mathematical Tables." An example is subjoined to elucidate the equation (z).
Ex. It heing required to determine the level of two objects by angles of depression from the sensible horizon, taken at the summit of an edifice, as St. Paul's, the height being 404' (soofig. 1); the angle $\mathrm{HAC}=\mathbf{s}^{\circ} 20^{\prime}$; the angle $\mathrm{HAD}=\mathbf{8}^{\circ} \mathbf{3 0 ^ { \prime }}$; and the height $\mathrm{C}^{\circ} \mathrm{D}$ $=300$ feet.
Here $\theta=8^{\circ} 30^{\prime} ; \beta=3^{\circ} 20^{\prime} ;-\beta=5^{\circ} 10^{\circ}$; and $h=300$.

By formuls (8) we have

Log $\sin 8^{\circ} 30^{\prime} \ldots$... 9-169702
Log $\cos .3^{\circ} 90^{\prime} \ldots$... 9-999265
Log cosec . $5^{\circ} 10$... 11-045501
Log 300 2477181

Therefore 491.7 - $\mathbf{4 0 4}=\mathbf{8 7 . 7}$ feet.
Hence B is $87 \cdot 7$ feet above the level of D.
and. When the summit of the station A is below the level of the vertex C of the object C D, fig. 8.
Let $\mathrm{HD}=y^{\prime \prime} ; \mathrm{DC}=h^{\prime}$; the angle $\mathrm{HAD}=\theta$; and the angle $\mathrm{HAC}_{\mathrm{A}}=\beta$; and proceeding exactly the same manner as before, we have

$$
\begin{align*}
& y^{\prime}={ }_{-}^{h_{-}^{\prime} \cdot \sin \theta \cdot \cos \beta} \sin _{(\theta+\beta)}, \text { or }=h . \sin \theta \cdot \cos \beta \cdot \operatorname{cosec}(\theta+\beta) \ldots \tag{8.}\\
& \text { And } y=\frac{h \cdot \cot \beta}{\cot } \frac{\beta}{\beta+\cot } \theta \tag{8.}
\end{align*}
$$

The only difference being in the aigns.
Hence DC-AB=height of one object above the level of the other.

Remark. When the sngles are taken to seconds, it is more advantageous to use (2) and (4), as the case may be, to ensure greater accuracy. To solve the foregoing question by the Finst Case of Plane Trigonometry would require thereby nore than two operations : hence the manifest value of the above formula.

The subject is a valuable exercise to the young student in surveying, as giving him proper ideas of the utility of tigonometrical formulw for the means of readering operations ntore simple tor computation.

ISOMETRICAL PERSPECTIVE.

It is to be regretted that isometrical perspeotive is not in more general use amongst engineers and architects; but the infrequency of its application to designs of machinery and buildings, arises in a great measure, perhaps, from the difficulty usually experienced in properly representing curved lines. In this kind of perspective, we know that a circle inscribed within a square is represented by an ellipse touching the centre of each side of an oblique parallelogram, as in the annexed figure. Now, there is no instrument which can be set to describe such an ellipse, unless we first dis-
 cover the transverse and conjugate diameters a, b, and c, d, \rightarrow somewhat troublesome prelimiary. It is, therefore, much to be desired that an instrument comid be contrived, whereby the Araughtsman would be enabled to produce the ellipse with no more trouble than the simple messurement of the radius of the circle to be represented. Penhaps the fullowing suggestion may supply that desideratum :-
To a block of metal a, let there be two projecting pieces, c and d, each one carrying a pair of radius-barg e, f, and g, h; let thoee bars exactly agree in length, and let egah pair be so united by a pin passing loosely through the projecting piece, that their centre lines form an angle of 30°. Then, if e and g be made to carry a straight bar k, and f and h an arch h, having a tongue or blade $m_{\text {, }}$ which bears upon k, we shall hove an instrument by means of which we can describe an isometrical ellipse; and the mode of using it will be to press upon a, with the thumb of the left hand, and with the fingers of the same hand turn the arm m, and thereby the two pairs of radius-bara-while at the same time the right hand holds a pencil point in the corner o, at the crossing of m and k. The pencil will thus be made to describe half the isom etrical representation of a circle, whose radius is equal to that of
the arms a, f, g, h; and by turning the instrument or the paper round, the other half may be drawn with equal facility.

By constructing the instrument so that the arms could be adjusted to any radius at pleasure, we should then be enabled to represent a circle of any diameter within its range. Ellipses, also, could be represented in this kind of perspective, by its means. If it were required to show the semi-ellipse a, b, c, d, the only adjustment necessary would
 be to set the radius of f and h to the line a, b, and that of e and g to the line $b, d-$ and the curve produced would be the true figure, according to the rules of the art. Moreover if the angles formed -by the arms could be altered at pleasare, we should have at command an infinite variety of simple curves, embracing all that are derived from the isometrical projection of regular figures in any plene.

The form of the instrument may differ materially from that represented here-it may be made to describe the whole figure without being moved from its first position; but our sketch and description will, no doubt, be sufficiently suggestive of all that is required to render it efficient.
R.B.C.

PORTABLE COFFERDAM,*

grectally adapted for harbour and othre marine worys.
Br Thomas Strvensor, F.R.s.E., Civil Engineer, Edinburgh.
(Read before the Royal Scottish Society of Arts, January 10, 1848.)
When it is necessary, in the execution of marine works, to carry on founding or excavation in exposed situations within the highwater mark, cofferdams of the common description are not found to be answerable. Many circumstances conspire in rendering such erections inapplicable in situations where they are required to stand for sevoral tides. The waves occasioned by a very moderate breese of wind will, in many cases even in the course of a few hours, either entirely break up a well-constructed cofferdam, or render it leaky and unserviceable. Again, where there happens to be covering of a few feet of sand above s rocky bottom, the piles will be found, even where there is shelter from the waves, to have no stability, and to fall inwards as the sand is removed from the interior, although every care be taken to support them with shoree or etruts.

The temporary dams which are generally employed in the execusion of tide-works are of a very simple construction, and are insended to be eerviceable during only one or two tides. They consist of a row of short piles which are driven in the line of a runner or waling-piece, and as the excavation proceeds, the piles are from time to time driven farther down. But this kind of erection is very unsatisfactory, and in many situations, und for a variety of purposes, it is in fact quite useless; for I have always found that it was impossible with this dam to drive the piles straight, from there being only one waling-piece to direct them. But even although they could be driven, a farther source of inconvenience still remains, for, as the stuff is removed from the interior, there is nothing left but the single waling to resist the pressure from the outside, and the bottoms of the piles being speedily forcedinwards, all attempts to carry the excavation farther must necessarily be abandoned.

- An ebetrect of thits paper wis siven in the Journal of February licts p. 62.

At Hynish harbour, Argyllahire, in 1843, I had a talug-wall to found on sand, which covered a rocky beach to the depth of from two to three feet. At another place, the rock was not only to be bared, but a navigable channel, twenty feet wide, and in some places as deep as eight feet in the rock, together with a small tidebasin, were to be excavated to the level of the low-water springs. The ahores also were frequently subject, even during the summer months, to a very heavy surf.
The excavation of the tide-basin, which formed the landward part of the work, was effected by means of a series of dams, congisting of walls, built of pozzolano rubble. These were found to be quite water-tight, and to answer remarkably well in every respect; but they required, for their protection against the waves, a considerable bulwark or break water of Pierres perdues to shelter them from the waves.

In the excavation, however, which had to be undertaken seaward of the breakwater of Pierres perdues, any attempt to exclude the water during the whole of the tide, was what I never considered practicable. A trial was accordingly made to effect the excavation by means of a low wall, composed of a clay-rubble, resembling in its object those low dams consisting of logs of wood bedded in clay, which are often adopted in harbour-works, and which are only intended to keep out the tide during the first part of the flood, and to be pumped dry before the operations of the next tide are begun. But after many attempts with this clay-wall, it became quite evident that it would not be possible, with its assistance, to carry the excavations to near the level of low-water springs, which was due principally to two causes. First, because sand and shingle were, during almost every tide, washed in large quantities over the top of the wall into our excavation pit ; and, secondly, because the waves washed out the clay from among the stones, so as to render the barrier no longer water-tight.
Being now compelled to set about some other way of carrying on the work, I had recourse to the simple method shortly to be explained, and which more than realised my expectations. Before giving a description of this method, however, it will be interesting, as well as atill farther explanatory of the required objects, to quote a few lines relating to somewhat similar dificulties, from a Report upon the Harbour of Peterhead, which was drawn up in the year 1806 by the late Mr. John Hennie :-"The next material object of consideration," says the Report, "is that of deepening the harbour, which at present cannot well accommodate vessels drawing more than 12 feet of water in the spring-tides, but in neaps is not sufficient. To render this harbour more extensively useful, it would be advisable to have 17 or 18 feet of water over the greatest part of its bottom, and particularly along the west quay. The mode of performing this kind of work will be different, according to the difference of situation. Those places where the tide ebbs from the surface, and continues so for some time, may be done by blasting, or by loosening the stones with quarrying tools in the usual manner; but in those parts where the tide seidom leaves the bottom, and in others but for a short time, different methods must be resorted to. The best of all would be enclosing large spaces by cofferdams, and working at all times of tide by quarrying tools or blasting, as might best suit ; but in some situations this would be inconvenient, as the dams would be in the way of vessels going into and coming out of the harbour. In such situations perhaps the simplest and most expeditious mode would be to use cast-iron cylinders of 7 or 8 feet diameter, having strong canvas fixed to the lower flanch, which might be kept to the bottom by bags of sand in places where there was but little agitation; but where there is much, an oute. cylinder might be sunk thereon, to keep them in their situations."

The cylinders proposed by Mr. Rennie were, no doubt, quite sdequate to the special purpose and locality for which they were designed, and they unquestionably possess some advantages not to be gained by other means; but, on the other hand, they are attended with difficulties and disadvantages which precluded their adoption in the present case. Those objections were the limited area, the weight and unwieldiness of such cylinders, their inflexible nature and unalterable form, as affording no means in themselves of adaptation to the very irregular rocky bottom which was to be excavated, and what was of as much consequence, the difficulty which must have attended the removal of the partitions of rock, or those parts which would necessarily be left between the different compartments of the cutting. The last two objections, it may be remarked, refer equally to wooden caiseons, or other contrivances on the same principle.

In the present case, then, the following requisites were to be provided for. In the founding of the talus-wall, all that was required was some method which would enable the found-stones to be laid as deep in the sand as possible, for which purpose the dam did not require to be absolutely water-tight, provided it were
eapable of excluding from the inside the sand which was so liable to replace what was removed from the interior. For the excavation of the rock, on the other hand, it was necessary that the dam chould be water-tight, and suitable for taking out all the partitions; and both situations required piles for fitting close to the irregular bottom, and those piles needed some support other than the soil into which they were to be driven.
To effect such objects, it was clear that the means to be adopted must be at once easily managed and efficient. For although where there is time for their employment, many complicated and tronblesome refinements of construction are forced to answer purposes which might have been attained by simpler means, or by less cumbrous arrangements, yet 1 was well sware that in the hurry and bustle attending tidal operations and night-work, nothing can be tolerated but what is in every reapect easily managed and truly efficient.

In the accompanying diagrams, A represents a frame of double waling-pieces connected at the angles by the uprights I I, and bound together by the long bolts L , with forelocks

and washers, while E F ahowi similar double-framed walings for the inside of the dam, and of smaller dimensions, with their uprights D , and connecting bolts K . These frames being placed in the required position, the one frame inside of the other, the piles C, are driven down between them with heavy malls.

The dam was 18 feet long by 10 feet broad inside, so that five men were able to work in the interior.* If it was to be fixed within low-water mark, the two frames being placed in the water, were guided to the spot by the men in charge, and whenever they were in the desired position, the men at once moored or fixed the frames to the bottom, by driving down a pile at each corner. After this was done, all the piles were placed between the framea and driven down, and keyed up by the small piles called "clusers." Four iron jumpers J, were then driven down to their proper places outside of the frames, and edge planks for retaining the clay were slipped down upon the jumpers through iron staples, which were fixed to the planks. After this, good clay (which should have some gravel mixed with it, to protect it from the wash of the sea) was punned hard between the planks and the cofferdam, after which the mast \mathbf{N} was erected, and the water taken out by means of the iron scoop shown in the drawing, which not only was used in taking out the stuff, but proved far more efficacious than any pump we ever had. Indeed, to get the dam pumped dry was for long the greatest difficulty we had to contend with. But Mr. Willism Downie, to whom 1 gave the charge, soon removed this dificulty, by using the scoop instead of a pump. The capacity of the scoop was about 37 gallons, and they generally made nine deliveries a minute, so that we found this method greatly more expeditious than any other.

As the excavation proceeded, the piles were from time to time driven down; and when the rising tide began to come over the pile-heads, or to rise above the clay, the men, before leaving their work, placed the flooring or "dock," as it was called, within the piling, with the ends of the planks resting upon the top of the inner frame. On this deck, ballast (consisting of stones of a convenient size) was deposited to prevent the whole frame from being floated up,-the quantity so deposited varying with the height of tide, or appearance of the weather. As each compartment of the excavation was completed, and before the dam was removed, the rock below the two rows of piles which adjoined the next cuttings was completely taken out, and the piles driven down to the bottom of the excavated pit, and left standing. + When the dam was taken up, the frames were, for the next compartment of cutting, again superimposed upon one of the rows which had been left standing in the last pit. In this way no rock could possibly escape being removed; and when the frames were to be put down anew, there was no difficulty (although the pit was entirely covered with sand) in knowing exactly the position which they were to occupy, as the piles which had been left standing were an infallible guide.

The advantages peculiar to this description of dam are its cheap-ness,-its portability,-its ready adaptation to a sloping, or even to a very irregular bottom,-the ease and certainty with which the partitions between the different pits are removed,-and the doubleframed walings that support and direct the driving of the piles. Wherever excavations require to be made in a rocky beach, covered by a stratum of sand, however thin, there need not be any hesitation in adopting this form of dam, as there is no kind of lateral support, such as stays or shores wanted, the structure containing within itself the elements necessary for its stability. It possesses, indeed, all the properties of a caisson, and has the further advantage of accommodating itself to an irregular bottom. \ddagger
1 may observe, in conclusion, that although this form of construction is specially adapted to marine works, in the execution of which it has proved a most valuable auxiliary, the same principle might also be carried to a greater extent, and be rendered fit, with little trouble, to answer for a variety of works, -such as underfooting quay walls, founding bridges, and in removing fords or other obstructions from the beds of rivers. The application of a double-framed waling 1 have also found in itself a very useful application in several situations, and for a variety of purposes.

[^18]
THE THEATRES AND PORTICOS OF ANCIENT ROME.

Paper read at a meeting of the Royal Institute of British Architects, Jume 12th. By the Rev. Richard Busozas, B.D.

In looking among my antiquarian and literary stores to prepare a subject for the Institute, I again found that it was not necessary for me to go out of old Rome, for although in a series of papers epread over some twelve years, I have led you "o'er steps of broken thrones and temples," and placed you in forums, baths, or balls, I have never yet described to you the theatres and porticoes which formed so important a feature in the architectural beauties of Rome.

The amphitheatre was an edifice unknown to the Greeks, the theatre was hardly ever naturalized among the Romans, and with the exception of some tragedies, ascribed to Seneca, which are lost, it does not appear that a single Roman tragedy was ever composed upon a Roman subject. Porticoes, which were generally in the vicinity of theatres and circuses at Rome, are the natural growth of a climate subject to great heat and sudden rains: we lose in these northern regions that great ornament of a city, the portico. Our admiration is limited to arcades and covered markets, which it must be confessed are more for use than ornament. But I retura to the theatre. The ancient and modern drama differ as widely as the buildings in which they were respectively acted, and I shall hardly succeed in making my Roman theatre intelligible, unless I first indicate a few of the leading features which run through the Greek drams and its Roman descendant. The subject is by far too vast and intricate for me to attempt anything like an essay upon the Greek stage, and therefore I must limit my observations to what is strictly necessary for explaining the internal arrangements of the edifice. The Greek drama dealt more in set speeches than in broken dialogues, and did not admit more than three interlocutors at once: the action or event represented was brought within the space of time in which it might in reality have been accomplished. As a general rule, there was no change of scene during the piece. In every tragedy there was a body called a chorus, who took no part in the action of the piece, but reflected upon what was going on, and generally expressed what might be supposed to be the sense of the audience. The chorus did not come upon the stage, but occupied the orchestra, varying the dialogue which they sometimes held with the actors by choral songs and dancing. These terms of stage and orchestra I shall shortly have to explain.

Dramatic entertainments, both in Greece and Rome, formed part of the public expenditure, or they were exhibited gratuitously by some wealthy or ambitious citizen. The theatres, therefore, were of immense size, for they were meant to contain (in Greece, at least) the whole male population of great cities. The performance usually took place also in an uncovered theatre in Greece; but Roman luxury, at a later period, invented the awning. I once deacribed to you, when I read a paper on the Colosseum, how this awning was contrived to cover such an immense space; and I must be allowed to suppose that you have not entirely forgotten that description. If any of you are desirous of satisfying your curiosity upon the Greek stage, I must refer you to "Butenger de Theatro," for I now hasten to the buildings themselves, which it is the principal object of this paper to describe. The origin of the theatre is rather ignoble;-it was originally a wagon, in which Thespis conveyed his actors about, with their faces besmeared with lees of wine, and from which they spoke their parts to the crowd assembled around them. To the ambulatory wagon of Thespis succeeded a moveable wooden structure, which was set up and taken down at pleasure, and it was in consequence of one of these structures having given way under an unusual crowd, that the first stone theatre was erected in Greece, by Themistocles, not long after the defeat of Xerxes. From this they began to increase in number, and we have the remains of geveral yet existing, both in Greece and in that part of Italy which was Greek in language and customs long after it came under the Roman dominion. We have also those remains of Greek theatres in Rome, to which I shall shortly direct your attention. A theatre became so necessary an appendage to a town, that Vitruvius gives systematic directions concerning the selection of a site. In his fifth book, cap. 3, we have the following:-"When the forum is finished, a healthy situation must be sought for, wherein the theatre may be erected, to exhibit sports on the festival days of the immortal gods, for the spectators are detained in their seats by the entertainment of the games, and remaining quiet for a long time, their pores are opened and imbibe the draughts of air, which, if they come from marshy or otherwise unhealthy places, will pour
injurious humour into the body. Neither must it front the south, for when the sun fills the concavity, the enclosed air, unable to escape or circulate, is heated, and then extracts and dries up the juice of the body. It is also to be carefully observed that the place be not dull, but one in which the voice may expand as clearly as possible." One cannot let pass this quotation from the great architect of the Augustan age, without remarking that the selection of a site for an important public building was considered by Vitruvius as falling within the province of the architect. A healthy place for the theatre selected, we come next to consider its shape and disposition.
The form of the Greek theatre originated, as is thought, in the natural recess of a hill-side, and most of the theatres whose vestiges I have visited in Greece, occupy that position. Mantenia, built in a marshy place, offers an exception, and I believe there is another exception in Asia Minor; but it was evidently the practice to lighten the labour of erecting such buildings by making use of a ravine, or locality adapted to the purpose. At Megalopolis I was able to trace the whole cavea or hollow of the theatre, partly cut out of a hill; but the seats are overgrown with thick hrushwood. The same economy is observed in most of the Greek stadia also, and even the council of Areopagus sat on seats, cut out of, or inserted into Mars' Hill. At Nicupolis, near Prevesa, the form of the theatre on the hill-side is preserved, and much of the proscenium. At Smyrna I was able to trace the cavea in a similar position, and also at Ephesus we get to the slope of Mount Prion, which overlooked the Temple of Diana, in the plain of the Cayster, before we find the theatre. Whilst the Greeks, however, hewed seats out of the rock, or excavated to a depth suitable to their purpose, as the nature of the ground allowed, the Romans usually built their theatres upon arches, and massive walls rose (as we see the theatre of Marcellus still existing at Rome), with two or three orders, like the Colosseum. The hollow which perhaps originally was adjusted accurding to the nature of the ground, in no definite curve, ended in a perfect semicircle. This was called in Greek "koiAur," and in Latin cavea, and was the part for the audience. The other part was devoted to the business of the play, and thus we arrive at the two principal parts or divisions of the theatre. The кoniov, or caven, is easily described; it was bounded by the segments of two concentric circles, the inner arc separating it from the orchestra; in the Roman theatre it seldom exceeded a semicircle, but sometimes the extremities of the semicircular arc were prolonged by straight lines; the Greeks took more of the circumference of the circle, and cut the koidor by lines drawn from its extremities converging towards the centre of the circle, by which arrangement more space was made in width for the scena or stage. The cavea was fitted up with rows of seats rising in succession, so as to afford each tier an uninterrupted view : the whole was divided, as in the amphitheatre; into Hights by diacゃuara or precinctiones, which is the Vitruvian term for our landingplace. The pracinctio ran round the whole, and afforded an access from one flight to another. The entire arc was again cut into sub-divisions, called ккpkides, in Latin, cunei, from being formed like wedges: the lines which effected those sub-divisions were called кגıaves, or scale; these (which in the Roman circus were called via) led from the bottom to the top of the theatre, and they all converged to the centre of the orchestra. The lowest seats were considered the best, and were, in fact, the reserved seats for the magistrates and persons of office. As the audience rose in height, it descended in quality, until it reached the open portico at the very top, which has its counterpart in our shilling or sixpenny gallery. This portico, however, in an uncovered building was of some use, in confining the sound and giving shelter to the spectators from a passing storm. A koiAor, or cavea, such as I have now described, would contain, in some of the largest theatres, as many as 30,000 to 40,000 spectators, which is about the capacity of those whose remains are yet to be seen in Rome. I now come to the other part of the theatre, which is more complicated and more dificult to describe. In Greek we
 In the Roman language, we have the three corresponding terms of orchestra, pulpitums or scena, and postscenium, to which we are to add the porticus. I shall content myself with describing the Roman arrangements, and simply pointing out where the Greek theatre differed. Taking the cavea to be a semicircle, the concentric arc which separates the audience was also a semicircle, and this space, bounded by the diameter, was the orchestra, -not so called from anything relating to music, but because it was the place for the dancers. In the Greek theatre the segment was less than a semicircle; but if the circle be completed and a square inscribed in it, whose sides are parallel to the diameter, the side
farthest from the carea fixes the front of the stage; but in the Roman theatre the diameter itself determines the front of the stage, or pulpilum. The stage, therefore, in the Roman theatre, is brought nearer to the audience, and made deeper. The length of the stage was two diameters of the orchestra. The increased depth was rendered necessary on account of the greater number of persons assembled upon it; for the Romans put both the chorus and the musiciansupon their stage. The points from whence the several staircases began to ascend the cavea were fixed by the vertices of four equilateral triangles, inscribed within the circle (when completed) of the orchestra. In the Roman theatre, as we have already observed, the front of the stage was called the pulpilum; and it was from that part that the interlocutors spoke. Some think that the pulpitum was a little elevated above the level of the stage; but at all events, the word has passed into use for designating a place to speak from in our sacred edifices. The lowest range of seats was raised above the area of the orchestra (one-sixth of its diameter), and the seats themselves did not exceed 1 ft .4 in . in height. The stage in the Roman theatre was only elevated 5 feet above the seats in the orchestra: in the Greek theatre it was double that height. I have only hinted at the geometrical precision with which all these things were defined, and I shall relieve you from such dry details by a reference to the drawings behind me. The pastscenitem speaks for itself: it was a long narrow gallery behind the scena, where the actors retired, and where apartments or compartments were provided for them. From the postscenium were passages into the porticoes or gardens, which generally surrounded the theatres: but to these I shall have occasion to refer when I have finished the history and description of the theatres at Rome, to which I now come.

I have already remarked, that the earliest theatres at Rome, 88 well as at Athens, were but temporary erections of wood. The Romans were satisfied with standing-room for 200 years, and no seats were allowed; "lest," as Tacitus says, "if the people sat, whole days might be spent in idleness." Notwithstanding this prohibition to build permanent theatres, the temporary edifices were constructed with a magnificence which surpasses all belief. The wealth which supplied those theatrical exhibitions was generally the plunder of rich provinces : easily earned, and as easily dissipated, merely to obtain favour with the people, and procure still more lucrative appointments. All the bribery and corruption that ever came before a committee of an English House of Commons sink into insignificance compared with those times "when Rome was free." The treating of our "worthy and independent electors" at the open house of the candidate, was economy and parsimony compared with the lavish expenditure of a candidate for the honours and emoluments of a Koman governorship; and we cannot doubt, that whilst those worthy citizens were feasting for whole days at the expense of a Scaurus or a Curio, they would be loud in the praises of liberty; and had they known how to put their exclamations into the polite language of modern Europe, the air would have resounded in the midst of those entertainments with "Vive la République!" It was not until the year of the city 699 (that is, within 53 years of the Christian era), that a theatre of solid materials was built at Home, and this was constructed by Pompey on his return from Asia, at the close of the Mithridatic war; but even Pompey found it expedient to pay a deference to the popular feeling. "Therefore," says Tertullian, "Pompey the Great, less great by his theatre only, when he erected that stronghold of wickedness, dreading lest the rebuke of the Censor might injare his memory, he built a temple to Venus on the top of it, and when he invited the people to come to the dedication, he did not call it a theatre, but the Temple of Venus, to which, he said, 'we have subjoined seats for seeing shows.'" The seats were therefore considered as the steps by which to ascend to the temple. We may call this either a pious fraud or a legal fiction. A piece of marble was found, in 1525, near the site of Pompey's theatre, on which Marliano read the words, "Veneris Victricis." This building was erected in the third consulate of Pompey, and when the inscription came to be placed on the frieze, a dispute arose whether it should be cos. tertio or tertium. The matter was referred to Cicero, who advised the disputants to settle the controversy by writing cor. tert.

At the dedication of his famous thentre, Pompey produced twenty elephants; and when he was accused in the senate of introducing too much luxury into the city, he convinced the conscript fathers that it was an economy to build a solid theatre at once instead of raising a temporary structure on every occasion of giving shows. The Temple of Venus served very well as a pretext for making seate, gradus spectaculorum; but it could not equally be alleged for erecting a solid stage. It was not until the reign of Tiberius
that this part of the theatre was added, and finally completed by Caligula. It was dedicated anew by the Emperor Claudius, who restored it after a fire, and it reached its greatest splendour in the time of Nero. Two vanquished chiefs, who came from the north of Germany to render submission to the emperor, were taken to Pompey's theatre in order that they might see the greatness of the people. It contained, according to Pliny, $\mathbf{4 0 , 0 0 0}$ spectators; and when Tiridates, king of Armenia, came to Rome, Nero caused the whole to be gilded, to show off the magnificence of the Romans to the vanquished Asiatic. It passed through a succession of eventa until'Theodorus commissioned Symmachus to rebuild it; butnot long after it shared the fate of the rest of the splendid edifices of Rome, and finally came into possession of the Ursini family, who occupied that quarter of the city in the wars of the middle ages. In the fifteenth century, an inscription, found with the name of Pompey, directed the antiquary to find out its site. Another indication of the place where this theatre stood was given in the finding of the famous statue which is now in the Palazzo Spada. That statue was found under the partition wall of a house, and lying across in such a way as to give two proprietors of the house a claim to the treasure: not able to agree about dividing the spoil, they came to the resolution of cutting Pompey in two, and each man taking his own half. The matter having reached the ears of Cardinal Capodifezzo, he hastened to Pope Julius III. to inform him of the judgment that had been pronounced upon the statue. The astonished pope dispatched a messenger with all haste, and sent 500 scudi to be divided between the litigants, instead of Pompey. Flaminius Vacca, who relates this anecdote, says the statue was found near the Palazzo della Cancelleria, in the Vicolo dei Scutari. The statue did not stand in the theatre, but in the Curia which Pompey built as an appendage to it; and the belief still obtains that it is the statue at the feet of which Cwsar fell. Being thus directed to the site of this famous building, we find ourselves in the immediate neighbourhood of the Church of St. Andrea della Valle. From near that church to the Palazzo Pio, the site is marked by a gradual rising of the ground, but no vestiges meet the eye. In order to see the remains of Pompey's theatre, we enter the court-yard of the Palazzo Pio, and descending into the vaults upon which the Palazzo is built, we find ourselves, at the depth of 40 Roman palms, among the foundation arches. These have been originally hollowed out of the natural rock, and they are pointed at the angles with large blocks of peperine stone. One of the cunei or sections of the cavea belonging to the lowest tier, may be perfectly traced; and after ascending to the court-yard again, and upon entering the stables, we see a second story of arches for supporting the seats, the construction of which is remarkable for its solidity; and it would not be difficult to trace, among the modern buildings and in the cellars of the Palazzo, at least one-half, perhaps twothirds, of the whole cavea. I will not stay to describe to you the blocks of peperine and opus reticulatum, for the great point gained by tracing the cunea is the fixing of the position of the scena or stage. This appears to have reached very near the present site of the church of St. Andrea. But the most remarkable circumstance attending an investigation of the buildings erected by Pompey in this part of Rome, is the being able to present a groundplan of them, although they have almost all vanished from off the face of the earth. In the sixteenth century there was found behind the church of SS. Cosma and Damiano a plan of ancient Rome, done in marble, and which had served to encrust the walls of the Temple (it is supposed) of Romulus and Remus. 'This marble map, where the gronnd-plan of all the public buildings was laid down, was found broken into fragments; some of them irrecoverable; others, gathered up with care and put together, presented an idea of a building. They now encrust the walls of the staircase of the Capitoline Museum, and are known under the designation of the Pianta Capitolina.* The two fragments most perfect happen to represent the Theatre of Pompey and the Portico of Octavia. By a reference to that fragment of the Pianta, you will not only see the ground-plan of the theatre, but also of some other buildings which were attached to it. Vitruvius cites the Porticus Pompeians as an example of what a portico should be, when attached to a theatre for the convenience of the actors, or for the people to take shelter in, in case of rain. We know, from Martial, that Pompey's Portico had a hundred columns. Eusebius calls it, in conse quence, "Hecatonstylon." The Pianta Capitolina exhibits some of those columns, but the fragment is imperfect. This celebrated portico was painted by artists of renown-Antiphilus, Pausias, and Nicias-the subjects being suited to the atmosphere which Ovid's lovers breathed. About the portico were rows of plane trees,
-These fragments were first engiaved and illuntrated by Bellario, and are reproduced at the ead of tom. IF. of the "Grveriul' Roman Antiquilica,"
interspersed with stone statues of beasts ; and a fountain threw up ur poured out, its aparkling waters. The Pianta Capitolins exhibite two rows of columns, running in a direction towards the river, and not unlikely conducting to a grove along the banks of the Tiber. Besides these appendages to the theatre, there was the Curia, or senate-house, which is, no douht, identical with the "Regia Theatri" of Suetonius: but I must forbear to expatiate beyond the proper limits of my subject. A careful inspection of that part of Rome where all those buildings stood, with the aid of the Pianta Capitolina and the antiquarian notices which I have cited, might still furnish a fine subject for the genius of a restoring architect; and when we consider that those extensive and magnificent buildings (whose very remains, at the end of nineteen centuries, excite our wonder) were erected out of the private resources of a single individual, it will be long before we find in another republic a popular favourite, who may vie in wealth, taste, and splendour, with citizen Pompey.

I shall pass quickly over the next theatre, which time and foods have not spared. It was erected in the twelfth year of the Christian era, by Cornelius Balbus, in compliment to Augustus, and whs capable of containing 33,000 spectators. I am not aware that a vestige of this theatre remains, but Piranesi took considerable pains to ascertain the site, and found some remains of one of the cunei. The Palazzo, and Monte Cenci, now point to where it stood, and Camucci, one of the oldest of Roman antiquaries, who probably saw some remains of it in his time, states that from its vicinity to the Tiber, it frequently suffered from inundations. We are not aware of any portico attached to this theatre, but there was a crypta Balbi, which stood near it, and of this there are some remains.

The third theatre which adorned imperial Rome was that of Marcellus, and along with it I take the portico of Octavia: when I have given you some account and description of these two objects, I shall relieve you from this tedious coneversazione

The remains of the theatre of Marcellus are worthy of the architect's admiration. Eleven arches of both orders, and part of a twelfth, are conspicuous, though mutilated and disfigured by the dusky habitations into which they have been metamorphosed. The first order is nearly half interred, but the capitals of the Doric columns, as well as the entablature, are well preserved in several places. The second story exhibits a specimen of the Ionic order, es it was brought to perfection in the age of Augustus. Within those arches which formed the ambulacra, as in the amphitheatre, the gradus spectaculorum rose, and some of the cunei may be traced to the stables of the Osteria della Campana. The materials are tufo, mingled with brickwork, resembling those in Pompey's theatre, and one may perceive by a solitary column in the Via Savelli, standing at an angle with a piece of wall running in the direction of the scena, that the stage and its outworks must have touched the very banks of the river. The Palazzo Orsini, formerly Savelli, is built upon the ruins of the stage. Piranesi has calculated the capacity of this theatre to contain 25,000 persons: it was therefore the smallest of the three. Julius Ciesar, perhaps, laid the foundation of this edifice; but it was left for Augristus to complete it, and he dedicated it with the name of the Young Marcellus. On the feast of the dedication it is said that 700 wild beasts from Africa were consumed, and then, for the first time in Rome, there was seen a tamed tiger. We have an account of a fire having partly destroyed this theatre, but we hear very little of its history until Pierleone, in the twelfth century, made it a fortress. It passed successively into the possession of the Savelli and Orsini families, and there is no reason to suppose it has existed for several centuries otherwise than it now presents itself: in ${ }^{4}$ Carnucci's Antiquities," we have a drawing of it, bearing date 1565, and it is there exhibited just as we see it at the present time. I may mention that its exterior walls are of travertine stone. The 25,000 spectators are now replaced by some workers in charcoal, and some mules, the former occupying the places reserved for the magistrates, and the mules having taken possession of what was the orchestra. Near to the theatre of Marcellus stood the famous Portico of Octavia, to which I have finally to call your attention. And although we must penetrate into the filthiest habitations in Home, among stinking fish, in order to see the remains of this splendid work, it will amply repay us for our excursion, and stamp indelibly upon our memories the flavour of the Pescheria and the conservative habits of the Jews who live within the Portico of Octavia.

The first marble building ever erected at Rome was a portico which stood on this self-same site. It was built by Metellus Macedonicus: two temples were comprised within it. The architects were two Spartans, whose names were Sauros and Batrachus. They
not only contributed their skill, but, as they were rich men, they employed their wealth also in the undertaking. The only reward for their services which they asked of the Romans was that their names might be mentioned in an inscription on the temples; but this honour being refused, they contrived to introduce their names allegorically: Sauros meaning a lizard, and Batrachus a frogthose animals were introduced into the capitals of the columns. The architects of the Portico of Octavia were also Spartans, and they respected the works of their distinguished countrymen. The new portico comprised in its circuit the two temples, made more magnificent and probably much enlarged : the fragment of the Pianta Capitolina, with the mutilated inscription "cvs octavide," gives us the plan of those splendid works. Bellori, in his illustration, computes about 270 columns. I confess I cannot make out that number with the utmost stretch of my feeble imagination, but I can present you with a plan made on the authority of the fragment and the ruins which still exist, adjusted on the dark tints, Which show them in their proper places. By this plan it will be seen that the principal remains consist in six large columns of the vestibule or entrance (and who that has seen Rome has not admired the magnitude and elegance of those Corinthian columns), eight more columns of the exterior row of the peristyle, which are only to be seen by contending with the fish-stalls made out of the spoils of the portico; and there are also further remains of one of the temples to be seen in a Vicolo behind the church of St. Angelo: three columns standing at an angle indicate the position of the prostyle of the Temple of Juno; the other was dedicated to Jupiter. I must now leave you to raise up from this ground-plan, and from the splendid vestiges which remain, the elevations and architectural views of the portico and its temples; but even your ingenuity would not be able to restore to their proper niches, or affix on their respective walls, the works of art which once adorned the Portico of Octavia. In the remple of Juno was her statue, made by Dionysius and Polycles; and a Venus by Philiscus of Rhodes. In the corresponding Temple of Jupiter was the much admired statue of the god, which was equally well executed by those sons of Timarchus. There was a group representing Pan and Olympius wrestling together, the work of Heliodorus; and perhaps the Venus of exquisite beauty which Pliny tells us adorned this portico (the work of Phidias) may be the very Venus de Medici which Santo Bartoli declares was found here in the Pescheria. In a part of the building called the Schola Octavie was the famous Cupid of Praxiteles, which called forth the eulogia of Cicero, Strabo, and Pausanias. It is more than probable that several of those statues perished in the fire which took place in the reign of Titus, and still more might be lost in that which happened under Sep. Severus. The paintings which adorned the walls and vaults were not less celebrated. There was the famous work of Artemon representing Hercules ascending from Mount Eta to Olympus, having put off his mortality with the consent of the gois; there was the painting by Antiphilus, where four figures of satyrs were grouped around the noble Hesion; and Alexander and Philip, with Minerva. You may exhibit to us an elevation restored; a few columns will direct you to complete the portico, and a medal will give you a finish for the pediment. You may square us off the basements, and crown the balustrade with colossal statues and urns ; and you may festoon or triglyph the entablature ;-but you cannot paint afresh the works of Artemon and Antiphilus, nor mould again the forms which the innate flash of the mind of a Phidias or a Praxiteles could produce. You must therefore be content with the bare recital, and inscribe upon the very best edifice I can describe, "Stat nominis umbra." But you will remark in the enumeration of the names of those celebrated artists, that they were all foreigners, and Rome owed her most splendid works of art-I may say all of them-to the Greeks; and they owed much of their theatrical amusements to the Syrians and Egyptians. It is, in fact, a mistake to attempt to nationalise either art or science. If there be such a thing as communism in the world, it exists in the realms of genius, and no petty jeslousy should ever attempt to exclude the foreigner who brings his originality of thought and genius to adorn a country of which he is not a native. It was written over the tomb of Ludlow, in Switzerland, "Omne solum fortipatria;" and the same may be said of the man of true genius-he belongs to every country : and I should say it generally betrays a sense of inferiority wherever there is an attempt to exclude from fair competition the genius which comes from a foreign shore. The Romans did not this, even in the histrionic art ; they excelled in gladiators, but they were inferior in sculpture, and painting, and architecture : by admitting foreigners they ended by taking the lead in architecture, at least; and perhaps the studio of Emilius might have furnished a work worthy of the best Greek
coulptor. And let me remark, that there are some things which no patriotism or spirit of nationality will accomplish. It will never make a man of taste admire an ordinary painting or an ungraceful statue; it will never reconcile him to a meagre elevation of an illdesigned public building.
I have generally attempted, in my papers which I have had the honour to read at the Institute, to show the influence which the public institutions under consideration might have upon the character and destiny of the Romans; and perhaps there is much more connection than at first sight appears between the works of the architect aud the national character of the people. The architect is called upon to create only those works which are suitable to the habits of the people, and his object should be to study to do these well; and I, for one, do not regret that he is now compelled to study the construction of churches and schools, rather than that of theatres and porticoes. I am more than satisfied with the unarchitectural erections of Covent-Garden and Drury-Lane for theatres; and for porticoes and groves Vauxhal and the Surrey Zoological Gardeus.
I am still compelled to speak only of the comparative innocence of our places of public resort; they are immeasurably inferior in architectural beauty, but they are a great improvement upon the moral aspect, and the restraints and the reflective influence of Christianity have even reached our public amusements. We cannot wonder at the indignation with which the early Christian writers viewed the theatres and places of public entertainment among the Romans, where every brutal passion or lascivious desire was gratified, aud where vice in every form was enthroned by universal suffrage. We can excuse these holy men applying to these rendezvous of iniquity the title of "Devil's houses," for which I would hope no member of this Institute will ever have to give a plan. It is to my mind a happy circumstance that the cavea is now transferred to the lecture-room, the orchestra transformed into an Exeter-hall platform, the stage to the floor of the Honse of Commons, where sometimes members offer to die, and the pulpitum to the place from which the people are instructed in the truths and duties of Christianity. You will excuse me, then, if I rather rejoice over the ground you have lost in modern times for the exercise of your beautiful art; and that my profession has so amply supplied, by the sacred edifice, the field that is gone from you in the profane. I rejoice, not because either you or I have a stage more or less for our exertion, but because I think that the best interests of mankind and the happiness of the human race are more likely to be promoted by a church than by a theatre; and if we compare the national tastes of two neighbouring and rival countries in this respect, we at least shall be satisfied with the results;-and although I am loath to end this paper with a sentiment that may sound harsh to some, I cannot but be of opinion, that as the influence of Christianity prevails, and sober-minded pursuits follow as a matter of course in its train, theatrical representations, except for children, will give place: meanwhile, whatever tends to purify our places of public resort, and make them really places of recreation, is a benefit conferred on the morals of the rising generation.

THEORY OF STEAM-ENGINES.

Account of the experiments underiaken by order of the Minister of Public Works, France, upon the recommendation of the Central Committee upon Steam-Engines, to determine the principal Laws and numerical data which enter into the calculation of Steam-Engines. By M. V. Reqnault.*
Introduction.-The theoretic calculation of the work done by steam-engines is founded upon some incontestable principles of general mechanics, and upon several physical laws which are far from having been, up to this time, established upon certain bases. The authors who have written upon the theory of these machines, have been obliged to admit as the basis of their calculations, laws which ought only to be considered as hypotheses to which physical philosophers have been led, most frequently, by extending to vapours, laws which are not even rigorously exact for permanent gases. Thus, when the work really done by a machine is compared with that deduced from the theory, we always find, even in the best machines, a considerable deficit. A great part of this deficit may be attributed to the disturbances produced in the physical conditions, by the very motion of the apparatus; it is due to the loss of active force (force vive) occasioned by the

[^19]cooling of the steam; to the resistance which is developed during its course through tubes of irregular forms, and in its passage through openings, more or less contracted. Finally, there are losses of active force produced by the friction and vibration of the different pieces of which the machine is composed. But a great part of the difference may well be occasioned by the inaccuracy of the fundamental laws which have been admitted into the calcula tion.

Mechanics have, for a long time, greatly desired a general investigation for the purpose of establishing these fundamental law upon a series of direct experiments executed with the means of precision which physical sciences now present. I had for some time formed the determination of devoting myself to this work, and had several times tried some introductory experiments, which however served only to show me that precise results could only be obtained by means of large apparatus, whose expense of construction far surpassed the very narrow means which we have at our disposition in our physical laboratories, and I should have been completely stopped in the execution of my projects, if the Minister of Public Works (upon the suggestion of M. Legrand, under Secretary of State), had not, with a kindness which will be appreciated by all the friends of science, placed at my disposal the funds necessary for the execution of this long and laborious work.

In order to show clearly what are the principal laws upon which the theory of steam-engines rests, it appears to me necessary to explain, in a few words, the principles of this theory. All known systems of steam-engines may be divided into four classes :

1. Engines without expansion, and without condensation.
2. Engines with expansion, and without condensation.
3. Engines without expansion, but with condensation.
4. Engines with both expansion and condensation.

The first three classes, may, in a theoretic point of view, be considered as particular cases of the fourth class, which presents the most complex case; the only one to which it is necessary fos us to pay attention. We shall suppose an imaginary engine, which is not subjected to any external cause of cooling, nor to any loss of active force by friction, contractions of orifices, \&c, \&c. We shall suppose the boiler to be of very great capacity in comparison with the cylinder, so that the pressure of the steam may be considered as absolutely constant in the boiler during the motion of the machine; the heat of the furnace reproducing, constantly, the quantity of steam consumed by the machine.

Let m be the surface of the piston expressed in square metres*.
x, the space described by the piston from the instant of the arrival of the steam in the cylinder, with the tension which is has in the boiler, until the moment at which we are examining it.
P, the constant pressuse of the steam in the boiler, expressed in kilogrammes and referred to a square metre of surface.
T, the temperature of the steam.
v, the capacity, in cubic metres, of the part of the cylinders doscribed by the piston from its starting point to the height, x.
V, the total capacity of the cylinder.
I. A first law, which it is important for us to know, is the law which connects the elastic forces with the temperatures.

We will distinguish two periods during the stroke of the piston: during the first of these the cylinder communicates freely with the boiler; the total pressure of the steam upon the surface of the piston is $\mathrm{P}_{\boldsymbol{c}}$.
If the piston advances by a quantity $d x$, the element of work produced wil be $\mathrm{P}_{\infty} d x=\mathrm{P}_{d \boldsymbol{v}}$.
The whole quantity of work produced during the first period, that is, from the beginning of the motion of the piston until the introduction of the steam is stopped (corresponding to a capacity \mathbf{V}, described by the piston in the cylinder), is $\mathbf{P} \mathbf{V}$.

During the second period, which is that of the expansion, no more steam comes from the boiler, but the steam contained in the cylinder continues to press upon the piston; as this rises, the steam occupies a larger space, its elastic force diminishes, and it temperature is lowered by the absorption of latent heat during ita dilatation.

Experiment has not decided what are the laws which govern these variations; but one of the following cases must happen:

First case.-The quantity of heat absorbed by a kilogramme of liquid water at $0^{\circ}\left(38^{\circ}\right.$ Fahrenheit) in passing into vapour (which, for the sake of simplicity, we shall call the total heat of the steam), is the same, whatever may be the pressure, provided the vapour be at its maximum of density. If this law be exact, the eteam will

[^20]always remain in a state of saturation during the whole period of the expansion; the pressures of the steam will vary in the inverse ratio of its volumes, and they will constantly present the relations to the temperatures, which connect the temperatures of saturated steam with its elastic forces.

Second case.-The total heat of the steam increases in proportion as its elastic force is greater. As we suppose that the steam is not subjected to any external cooling influence, it is evident that, in proportion as the steam dilates into a larger space, it will require a smaller quantity of total heat to keep it in the state of rapour. Consequently, during the dilatation, there will be a disengagement of a certain quantity of latent heat, which will become sensible to the thermometer, and will raise the temperature of the steam above the point which corresponds to its saturation. The temperature of the steam will then be more slowly reduced than in the former case; the steam will be found overheated during the expansion, and the pressure of the steam upon the piston will diminish more slowly than it would according to the law of Mariotte.

Third case.-The total heat of steam is less in proportion as its elastic force is greater. If this law were true, there would be a precipitation of liquid water during the expansion, the steam would remain constantly saturated, but the elastic force would decrease more rapidly than according to the law of Mariotte.
In the absence of decisive experiments to show the accuracy of one of these three hypotheses, mechanicians have generally adopted the first, which is at the same time the most simple and the most precise. This hypothesis assimilates the expansion of steam to that of a permanent gas, dilating in a variable space, whose walls constantly restore to the gas the quantity of heat which is absorbed in the latent state during its expansion, so that its temperature remains invariable.

The work developed during the expansion is then calculated in the following manner:-Let v be the volume of the steam, and p its pressure at a given moment; $d x$ the space described by the piston while the volume becomes $v+d v$; the element of work produced will be $p \infty d x=p d v$. At the commencement of the expansion, the volume is V, and the pressure P, and as we admit the law of Mariotte between the volume of the steam and its elastic force during expansion, we shall have

$$
p=\frac{\mathrm{PV}}{v},=p d v=\mathrm{PV} \frac{d v}{v}
$$

and the whole work produced, while the volume of the vapour passes from V to V^{\prime}, is $\int V^{\prime} \mathbf{P} V \frac{d v}{v}=P V \log . V^{\prime}=P V \log \cdot \frac{P}{V^{\prime}}$

This is the expression for the work produced during the period of the expansion. The total quantity produced during a complete stroke of the piston, is then

$$
\mathbf{P V}\left(1+\log \cdot \frac{\mathbf{P}}{\mathbf{P}^{\prime}}\right)
$$

We have heretofore attended only to the pressure which is exerted upon one of the faces of the piston, but the other face is constantly submitted to the pressure which exists in the condenser. We will suppose this latter pressure to be constant during the stroke of the piston, and represent it by f. The amount of reaistance which it will have produced during the stroke of the piston, will be $f V_{2}=f \frac{V P}{P_{2}}$. So that the moving power will be expressed by $\mathbf{P} V\left(1+\log \cdot \frac{P}{P_{1}}-\frac{f}{\mathbf{P}_{1}^{-}}\right)$.

If n represents the number of strokes of the piston per minute, the power developed during this unit of time, will be expressed by

$$
n \mathrm{PV}\left(1+\log \cdot \frac{\mathrm{P}}{\mathbf{P}_{2}}-\frac{f}{\mathrm{P}_{1}}\right)
$$

Bat the accuracy of the formula depends upon the accuracy of the hypothesis which we have admitted, and it is necessary to determine by direct experiments-
II. The quantilies of heat which must be given to a kilogramme of mater, at 0°, to vapourize it, under different pressures.

These quantities of heat are composed of two distinct partothe heat necessary to raise the temperature of the liquid water from 0° to the point at which the change of state takes place, and the latent heat of vaporization. If we wish to distinguish these two parts of the total heat of steam, we must determine by ex-periment-
III. The capacity for heat of enator at different temperatures.

Finally, if the total heat of ateam is not constant under all
pressures, in order to calculate the effect of expansion, we must still learn-
IV. The specific heat of the vapour of water in different stater of density, and at different temperatures.

The theoretic power of a steam-engine may be estimated, by stating the amount of power which it is capable of giving for each kilogramme of steam consumed.

To do this, let be the weight of a cubic metre of steam under the pressure P, and at the temperature T; π the weight of steam consumed by the machine in one minute. We shall have $n \mathbf{V}=\frac{\pi}{\infty}$, and consequently the power given by the machine, from a kilogramme of steam, will be expressed by

$$
\mathbf{P} \frac{\pi}{\omega}\left(1+\log \frac{P}{P_{1}}-\frac{f}{P_{2}}\right)
$$

But in order to calculate, under all circumstances, the value of 0 , we muss know-
V. The law according to which the density of saturated vapour of water varies under different pressures.
VI. The co-efficient of dilatation of the vapour of eoater, in its diffferent states of density.

Mechanical philosophers generally admit that the weight (ω) of a cubic metre of steam, under the pressure P, and at the temperature T, may be calculsted by applying to saturated steam the law of Mariotte, and the law of the uniform dilatation of gases. Now, these laws are not even rigorously exact for the permanent gases, and it is to be feared that they are completely false for saturated vapours. Finally, the method most generally adopted to compare steam-engines, consists in stating the work which they perform for each kilogramme of fuel consumed. To do this, we must know the weight (K) of steam under the pressure P, which a kilogramme of fuel can develope under the circumstances in which it is employed; and we then have, for the work performed by a kilogramme of fuel, $P_{1} K \frac{\pi}{\omega}\left(1+\log \cdot \frac{P}{P_{1}}-\frac{f}{P_{1}}\right)$.
The quantity K, depends upon a variety of circumstances which we cannot now discuss, such as the quality of the fuel, the nature of the furnace, the arrangements of the boiler, \&c.

To sum up then, the theoretic calculation of steam-engines requires the knowledge of the following laws and data:-
I. The law which connects the temperatures and elastic forces of saturated steam.
II. The quantities of heat which one kilogramme of liquid water at 0° absorbs, in being converted into saturated steam, under different pressures.
III. The quantities of heat which one kilogramme of liquid water at 0° requires to elevate its temperature to that at which it assumes the state of steam, under different pressures.
IV. The specific heat of aqueous vapour, in different states of density, and at different temperatures.
V. The law according to which the density of saturated steam varies, under different pressures.
VI. The co-efficients of dilatation of steam, at different densities.

Before commencing the search for these different laws, it was necessary to treat several preliminary questions, so as to fix with certainty the indispensable auxiliary data, and, above all, to define clearly the conditions which must be fulfilled by the thermometers, by means of which we measure the temperatures, in order that these instruments may be rigorously comparable.

These preliminary researches obliged me to undertake successively, long series of experiments, the necessity of which I was far from foreseeing when I undertook the work. I was in fact obliged to undertake the re-determination of a great number of data, which, for the most part, appeared to be fixed with complete certainty by the researches of my predecessors, and as to which physical philosophers entertained no doubts whatever.

The whole of these resesrches will be published in a series of detached memoirs. I intend, at the end of my labours, to sum them up in a report, which will be addressed to the Minister of Public Works, in which the results will be presented under a form suitable to the especial view with which the work was undertaken -that is, the theoretic calculation of steam-engines.

My experiments frequently required the assistance of a great number of observers. I was frequently obliged to avail myself of the kindness of several of my students, among whom it gratifies me to cite especially MM. Bertin, Grassi, Bertrand, Lisajoux, and Silberman. Let me be permitted to return to them, thus publicly, my thanks.

But I must, in a verv especial manner, testify my gratitude to my friend M. Izarn, for the zeal and complete devotion with which lie has aided mp in this long series of labours, some of which were not without danyer, and all were very troublesome, as well as in the long and tedious numerical calculations which were the connequence of them. By the aid of his active co-operation, 1 have leen able to terminate these labours in much less time than it would have heen possible for me to have dune it if 1 had been reduced to my own personal efforts alone.

First Memoir.-on the dilatation of elastic fluins.
Part I.-Dilatation of Atmonpheric Air, under the ordinary Pressure of the Atmosphere.
M. Regnault commences his memoir, by remarking that there is, in physical science, no numerical element which has been submitted to a greater number of experimental determinations than the co-efficient of dilatation of atmospheric air, and that nevertheless we cannot yet say that this co-efficient is known to us with sufficient precision. The experiments of the elder physical philosophers gave numbers so different from each other that no use can be made of thein. The greater part of the circumstances which influenced the phenomenon were unknown to them.

Tite experiments of M. Gay Lussac (Annales de Chimie, 1st Series, tom. xliii., p. 137. Biot. Traite de Physique, tom. i., p. 182), seemed to have settled the question finally. He showed ly a great number of experiments that between 0° and 100° (38° to 218° Fahrenheit) the co-efficient of dilatation was the same for all gases, and for vapours, when they were at some distance frum their point of condensation, and that its value was 0.375 .**
This co-efficient was adopted by all physical philosophers, and employed in calculations, until in these latter years a Swedish philosopher, M. Rudberg, cast a doubt upon its exactness. By a series of experiments made with care, M. Rudberg endeavoured to show that the co-efficient of M. Gay Lussac was much too large, and that its true value was comprehended between 0.364 and $0 \cdot 365$.

The experiments of M. Rudberg are then described at length, by M. Regnault. These experiments were originally published in two memoirs contained in Poggendorf's Annals, vols. xli. and xliv., and the English reader will find them in the valuable Scientific Memoirs, edited by Richard Taylor, vol. i., pages 507 and 514.

Rudberg terminates his second memoir by an important remark, which had already been made in 1803, by Gilbert (Gilbert's Annals, vol. xiv., page 267), but had been entirely forgotten, viz : that the experiments of Messrs. Dalton and Gay Lussac, which had been regarded as having given almost identical results, differed, on the contrary, very much. In fact, in the memoir of Dalton (Memoirs Soc. Manchester, 1st Ser., Vol. v., Part 2, p.'598), he says:-
"I have repeatedly found that 1000 parts of common air, of the temperature 55°, and common pressure, expand to 1,321 parts of the thermometer; to which, adding four parts for the corresponding expansion of glass, we have 325 parts increase upon 1000 from 55° to 218°, or from 157 of the thermometer scale (Fuhrenheit)." It is evident that the volume of air here assumed as the unit, is that of air at 55° Frlirenheit, or $12 \cdot 78$ cent. If, on the contrary, we take for unit the volume of air at $0^{\circ}\left(32^{\circ}\right.$ Fahrenheit), and put the dilatation between 0° and $100^{\circ}=100$ a, the results of Dalton give
$1+12 \cdot 78 a: 1+100 a:: 1000: 1325 ;$ whence $100 a=0.392$.
This, then, is Dalton's true result. In truth, Dalton himself does not appear to have observed the error which had slipped into his calculations, for he bays in his new system of chemical phi-losophy:-"The volume of air, according to the experiments of M. Gay Lussac and Minè, being 1000 at 32^{\prime} Fahrenheit, becomes 1376 at 212° Fahrenheit."

In a note M. Regnault notices a series of experiments upon the same subject, made about the same time with his on n, by Professor Magnus of Berlin. An extract from Professor Magnus' menoir will be found in the Annales do Chimie et de Physique, 3rd Ser. tom. iv., page 330 ; and a second memuir upon the same subject, tom. vi., page 353.
M. Regnault then proceeds to give his own method of experimenting, and the details of his experiments.
These methods were five in number. In the first four, the dilatation of the air was deduced from the observed changes in its elastic force at the temperatures of 0° and 100° cent., assuming as

* The resulte arrived at by Mr. Dalton, about the same time (Memolri Lit. and Phil.
 sicul, or neaply mo_{i} with that of Gay Lussuc, (0.708), mud confrmed bia maprtion an to the equal dilazation of differert gasea, so that air. Dalton hlaself edupted the co-aficiont found by M. Gey Lugac.
true the law of Mariotte, that the elastic force of a gas varies inversely as its volume, when the temperature remains the same. The fifth method was an attempt to measure directly the angmentation of volume due to the change of temperature.
The first nethod was similar to that used by Rudberg, in his first series of experiments, and by Dulong and Petit, in their comparison of mercurial and air thermometers.
The apparatus consisted of a glass cylindrical reservoir, from 25 to 30 millimetres in diameter, and about 110 millimetres long, containing from 800 to 1,000 grammes of mercury. To this was soldered a capillary stem, of which the diameter varied in the different experiments, from to $\&$ millimetres. This was bent at right angles, at some distance above the reservoir, and drawn out to a fine point. The reservoir and the greater part of the stem were immersed in a vessel of water boiling under the usual atmospheric pressure, and filled with perfectly dry air, by exhausting it from 25 to 30 times, by means of a small pump, and re-filling it each time with air which had passed through two tubes, each one metre in length, filled with pumice-stone, saturated with concentrated sulphuric acid. This being done, the apparatus wes suffered to stand from half an hour to an hour, the water being maintained in full ebullition; the end of the capillary stem was then closed by the blow-pipe, and the height of the barometer noted. The reservoir, with its stem, was then inverted upon a stand, so that the point of the stem dipped to some distance in a cup of mercury, the cup was broken off under the mercury, and the reservoir surrounded with pounded ice, and left in its condition for an hour or more, until the whole of the air (now contracted 80 as to fill only a portion of the reservoir) was reduced to the temperature 0°. The end of the stem was then again closed by a little wax, the barometer again noted, the position of the surface of the mercury in the cup marked by a point adjusted by a screw-the cup removed, and the reservoir and its contents suffered to take the temperature of the surrounding sir. The height of the mercurial column above the level of the mercury in the cup was then measured by the cathetometer. The reservoir and its contents were then weighed, entirely filled with mercury, first builed to free it from air and moisture, the point again immersed in mercury, and the reservoir surrounded with ice. At the end of one or two hours, when it was satisfactorily ascertained that the whole apparatus had taken the temperature 0°, the ice was removed, the mercury which was discharged by the rise of temperature was received in a capsule, and the apparatus placed in a boiler, as at first, and brought to 100°. The mercury expelled was collected in the capsule, and the height of the barometer at the moment of ebullition noted. By this means, all the data necessary to calculate both the dilatation of the air, and that of the glass vessel which contained it, were given.

In performing these experiments, M. Regnault observed a serious cause of error. When the point of the stem was broken under the mercury, he observed that a small quantity of air leaked into the reservoir, even when the point was plunged to the depth of $\frac{1}{10}$ metre under the mercury. This air was a portion of that which remained in contact with the glass tube, which not being wetted by the mercury, allowed, as it were, a tube of air from the point to the surface. This difficulty was obviated by attaching to the glass stem, plates of well-cleaned brass, to which the mercury adhered, and thus the entrance of air was prevented. In addition to this, a layer of sulphuric acid was sometimes poured upon the surface of the mercury, before the point was broken, and was carefully removed before the point was again closed. Equal care was taken to prevent the air enfilming the pincers used to break the point, from getting access to the interior. In this method fourteen experiments were tried, the mean of which gives for the volume of 1,000 measures of air, at the temperature of 0°, when heated to $100^{\circ}, 1 \cdot 36623$.

The highest number obtained in any experiment, was 1.36689
The lowest
$1 \cdot 36549$
The difference is
0.00140
or about $\frac{1}{1 / \mathrm{d}}$ of the mean.
The lowest number was above the mean result obtained by Rudberg. M. Regnault believes that this may probably be due to the phenomenon of the entrance of the air upon breaking the point having taken place in the experiments of the Swedish professor, and he remarks that the error would be greater in proportion as the quantity of air operated on was less. He also states that he believes the first experiments of his own series were affected by this phenomenon, and as an evidence of this states, that from the moment that he succeeded in preventing it entirely, no experiment gave a number below $1 \cdot 3659$.

The second series of experiments was tried with an apparatus differing but little from the one just described. The reservoir was a glass globe of from 350 to 400 cubic centimetres, soldered to a thermometer stem, about 38 centimetres long; upon this thermo-meter-tube was soldered, at the distance of 11 centimetres from the bulb, a piece of tube very regular in its diameter, about 50 millimetres long, and of a diameter sufficiently large to present but feeble capillary action. The thermometer-tube was bent at right angles, and drawn out to a point. The first operation was to gauge the apparatus carefully, and to ascertain its co-efficient of dilatation. This was done by filling it with mercury at the temperature 0°, then submitting it to a temperature of 100° collecting the mercury expelled, and weighing this, and the quantity which remained in the bulb.

The dilatation of the air was then determined very much as before. Eighteen experiments were tried in this way, the mean of all of which was $1 \cdot 36633$; the maximum $1 \cdot 36708$; minimum, 1.36585 ; the difference, 0.00123 , or vitr of the mean.

The third series of experiments was performed with an apparatus imitated from that described by Rudberg in his second memoir. Upon a shelf within a copper alembic, the cover of which is firmly fixed upon an appropriate support, is placed a glass cylindrical reservoir, 35 millimetres in diameter and 170 millimetres long; to its upper extremity is soldered a thermometer-tube, which passes through a tubulure in the cover, and bending twice at right angles, is soldered to a larger tube, which dips down into a cistern of mercury, passing air-tight through a tubulure in its cover. On the same shelf is placed a precisely similar reservoir, terminating in a straight thermometer-tube, which passes through another tubulure in the cover, and this apparatus being properly filled with mercury, furnishes a delicate thermometer for noting the temperatures in the alembic. The mercuriul cistern is furnished, in its lower part, with a piston, moveable by a screw. Through a second tubulure in the cover of the cistern, passes a straight gauge-tube, open above, aud dipping into the mercury below, and of the same diameter as the tube which terminates the thermome-ter-stem. The capacity of this apparatus liaving been gauged, and the co-efficient of dilatation determined by a previous experiment, the reservoir is filled with dry air, and the alembic filled with ice, so as to reduce the temperature to 0°; the piston in the mercurial cistern is then raised or lowered, until the mercury in the tube communicating with the reservoir, stands exactly at a mark previously made upon it, and the difference between this point and the top of the column of mercury in the gauge tube, is measured. The ice is then removed from the alembic, and replaced by water, which is boiled, and the temperature of the reservoir being thus brought to 100°, the piston is again adjusted, so as to bring the mercury to the same height as before in the tube communicating with the reservoir, and the differences of its height in this tube and the gauge-tube again read. These two readings of course give the elastic force of the air at these temperatures, and from these the co-efficient of dilatation is deduced. The experiments tried with this apparatus, give a mean of 1.36679 -the difference between the maximum, 1.36747 , and the minimum, $1 \cdot 36612$, being rotise of the mean. M. Regnault does not believe this method susceptible of the same accuracy as the other, on account of the irregular action of capillarity in the tubes, although purposely taken of equal diameters. He also remarks that the resulte obtained by him are larger than those got by Rudberg from a somewhat similar apparatus, which he believes may be attributed to the latter having made his mark upon a capillary tube, and to his neglecting the small quantity of air contained in the thermometer-tube, which is not heated to 100°. As however, unfortunately, M. Rudberg bas not stated the dimensions of his apparatus, it cannot be ascertained what influence this had upon his results.

For the fourth series of experiments a form of apparatus was devised similar in principle to that just described, but free from its objections. This consisted essentially of a glass globe, of a capacity of from 800 to 2,000 cubic centimetres, to which was added a capillary stem about 80 centimetres long. The globe was placed in an appropriate metallic vessel, so that it could be alternately heated to 100°, and cooled to 0°; the tube passing out of a lateral opening terminated in a small copper pipe which had two other openings-one of these was for the moment closed, the other communicated with the apparatus for drying the air, by whose means the globe and tobe were filled with dry air with the usual precautions. Another glass tube of 16 or 17 millimetres internal diameter was cemented at its lower end into an iron cap terminated below by a stop-cock, and carrying a lateral branch bent parallel to the axis of the tube; into this lateral branch was cemented a second
tube, which was for a certain distance of the same diameter as the first, and terminated above by a capillary tube, a part of that Which formed the neck of the globe, which was bent at right angles. This system of tubes being firmly and carefully adjusted in a vertical position, the second tube with its attached capillary branch was carefully dried and filled with boiled mercury, and the upper part of the capillary tube, which was of course horizontal, was then fitted into the third opening of the small copper tube, so as to be in immediate communication with the neck of the globe. When firmly fixed, the stop-cock at the bottom of the compound tube was opened, and the mercury flowing slowly out was replaced by air drawn through the drying apparatus, and the apparatus filled with air to a certain mark a, placed upon the vertical tube, where it was of greatest diameter, the glass globe being all the time immersed in boiling water: the drying apparatus was then removed, and the branch of the copper tube with which it communicated hermetically sealed, and the height of the barometer noted. The hot water was then discharged from around the globe, and replaced first by cold water and afterwards by pounded ice, the level of the mercury being kept at a, by suffering it to flow off when necessary by the stop-cock. When the globe has certainly reached the temperature of the ice, the barometer is read, and the difference of the heights of the mercury in the two communicating vertical tubes is measured. We have thus all the data for calculating the co-efficient of dilatation of the air, but another observation may be had by reversing the experiment. To do this, re-connect the drying apparatus with the copper tube, the mercury will fall in the vertical tube in connection with the globe, but must be kept at $\quad 0$ by pouring mercury into the other vertical tube: when equilibrium has been attained, remove the drying apparatus, and close its branch of the copper tube, then replace the ice by boiling water, and repress the dilatation of the air by pouring more nercury into the vertical tube; when you are satisfied that the air has taken the temperature of boiling water, read the barometer, and measure the difference of the heights of the mercury in the two vertical tubes.
The mean of six experiments tried in this way gave $1 \cdot 3665$ for the co-efficient of dilatation : the maximum result being 1.36710 ; the minimum $1 \cdot 36580$; difference $\frac{1}{0.5}$ of the mean.

By this method the dilatation of the air is determined under very different pressures; in fact, during the tirst period of every experiment, the air is under the atmospheric pressure 0.760 metre when at 100°, and only under the pressure of 0.550 metre when at 0°. In the second period, the air at 0°, is under the atmospheric pressure 0.760 m ., and when heated to 100° under the pressure of about $1 \cdot 040$. It is even easy to arrange the apporatus so that the experiment may be tried under still greater differences of pressure. As the experiments showed no difference in the numbers obtained during these periods (1.36655 during the first, and 1.36645 during the second period,) we must conclude that within these limits of pressure, the co-efficient of dilatation of air is sensibly constant.

Fift series of experiments.-In all the experiments hitherto described, the dilatation of the gas was determined indirectly froin a direct measurement of the augmentation of its elastic force when brought to a constant volume at a higher temperature, assuming the truth of the law of Mariotte. In order to get the dilatation directly, the gas enclosed in an eminently elastic envelope should dilate freely without changing its elastic force, and the augmentation of volume must be carefully measured, the gas being all at the same temperature. It is difficult to see how these conditions can be realised in practice, but it may be done approximately by following the method adopted by M. Pouillet in his air pyrometer. (Traitè de Physique, 4 me edit. tome 1, p. 255.) In this way the elastic force of the gas remains sensibly the same, but a very notable portion in the reservoir of dilatation is at a temperature but slightly differing from that of the surrounding air.
The apparatus used by M. Regnault was to a great extent similar to that just described, but the iron cap into which the two vertical tubes were cemented was differently adjusted. It had two stopcocks, by one of which the barometric tube could be made to communicate at pleasure with the exterior, while the other, which was placed under the tube in communication with the globe, was so bored that it might make a communication either between the two tubes or between this second vertical tube and the external air. These two tubes were placed in a glass vessel which could be filled with water so that they could be maintained at any and a uniform temperature. The experiment was conducted as follows: The globe being surrounded with ice, and the communication with the drying apparatus opened, the level of the mercury was brought to the mark a on the vertical tube; the communication between the two tubes being open, the mercury would of course be at the same
height in both tubes；the commanication with the drying apparatus was closed，the barometer and the temperature of the water around the tubes noted．The globe was then brought to 100° ，the mercury in the vertical tube was of course depressed，and in order to keep that in the barometric tube at about the same level with it，its stop－cock had to be opened aud the mercury suffered to fiow out； the two columns were thus kept nearly at the same height，that in the tube in which the air was dilating，being brought to a second mark β ，and the exact difference in the heights of the two columns was carefully noted，as well as the height of the barometer，and the temperature of the water in the surrounding vessel．In order from this experiment to determine the dilatation of the air，it is only necessary to know the capacity of the globe，and of its stem as far as the mark a，and that of the vertical tube between a and β ； these are all easily determined by the weight of pure mercury necessary to fill them．

Four experiments tried in this way gave a mean dilatation of $1-36706$ ：the maximum being $1 \cdot 36718$ ；the minimum 1.36693 ； difference sम⿱亠䒑口阝 of the mean．The co－efficient of dilatation given by this fifth method is sensibly greater than that got from the others． This circumstance is not accidental，as in the second part of the memoir similar differences are shown for other gases，and in cer－ tain cases these differences are very cunsiderable．${ }^{7}$

M．Regnault then proceeds to the discussion of his formula，for the purpose of determining the probable error in his results，and he shows that in the first three series－principally owing to the uncertainty of the readings of the barometer within is millimetre， the maximum probable error is about J ，which is about the greatest difference between the maximum and minimum results in any one series．The two last series include the same source of error，and another arising from the uncertainty of the temperature of the air in the capillary tube，which，however，he believes may be altogether neglected in his experimenta，the apparatus having been carefully arranged so as to make this a very small fraction of the whole volume of air under experiment．

He finally assumes 0.003665 as the mesn co－efficient of dilatation of dry atmospheric air as determined by the first four series of experiments，and remarks that the number 0.00367 given by the fifth series must be adopted in experiments where the gas dilates freely and preserves its original elastic force．He also gives as a fraction easily recollected，the remark of M ．Babinet that $0 \cdot 00366666$ should be expressed by $\frac{11}{1}$ ．

Part II．－On the Dilatation of some other Gases under Pressures near that of the Atmosphere．

Physical philosophers admitted that all gases had the same co－ efficient of dilatation，but since so serious an error in the numerical value of this co－efficient had been shown，it was necessary to submit this law also to verification，the result of which was to show its incorrectness．The experiments were tried chiefly by the methods 1．and IV．under constant volumes，and V ．under constant pressure． It is not necessary to describe them in detail，as M．Regnault has done，nor to give the methods by which the gases were purified； suffice it to say that all necessary precautions were taken，and the general results were as follows：－

He also describes an apparatus，an easily－imagined modification of method IV．，by which the difference in the co－efficient of dilata－ tion of any two gases may be at once shown．
Part III．－On the Dilatation of Gases under Different Pressures．
It has been generally admitted that the dilatation of gases is constant between the same limits of temperature，no matter to what pressure they may be submitted；consequently，that it is altogether independent of their initial density．But it is difficult to cite conclusive experiments upon which this law is founded． Several observers having obtained the same value for the co－efficient of dilatation of air，under different barometric pressures，concluded

[^21]that the co－efficient of dilatation of gases was constant under all pressures；but the barometric variations in any place are not suffi－ ciently extensive to permit so general a conclusion to be thus deduced．
Sir Humphrey Davy is the only philosopher who has studied the dilatation of gases under very different pressures．（Phil．Trans． 1823，vol．ii，p．204．）

He states that he found the same dilatation for air taken with the densities $\frac{1}{6}, \frac{1}{3}, 1$ ，and 2 ；but his experiments were not mede by a sufficiently delicate method to allow his results to be con－ sidered exact．

The experiments of M．Regnault upon this subject were tried with apparatus of the same character as those before described，as methods IV．and V ．，with such modifications as the peculiar cir－ cumstances of the experiments rendered nocessary：and the con－ clusion at which he arrived was that＂the air dilates，within the same limits of temperature，by quantities which are greater in propor－ tion as the density of the gas is greater：that is，in proportion as ite molecules are brought nearer to each other．＂

The following tables exhibit the results of his experiments upod air，carbonic acid，and sulphurous acid：

Dilatation of Gases under different Presoures，determined by the method of Constant Preasures．（V．）
Atmospheric Air．Carbonic Acid．Hydrogen．Sulphurous Acid．

Preastura	Volume	Premate	Volume	Prepante	Volum	Presaure	Premegre	Volume
Mili．	at 100° ．	Milli．	at 100° ．	Milli．	at l（1）10．	at 0° ．	at 100° ．	－ 1100°
760	1：36706	760	137099	760	1－36613	${ }^{7} \mathrm{RO} 000$	760.00	1－50030
2525	1－36944	2520	1.88 .455	25.45	1．36516	98243	0.764	1－30004
26：20	1.86964	－		－	－	－		\rightarrow

The general conclusions of this memoir are as follows ：－
1 st．The co－efficient of dilatation of air， 0.375 ，heretofore ad－ mitted by philosophers from the experiments of M．Gay Lussac，is much too great for dry air under the ordinary atmospheric pres－ sure．The co－efficient 0.3645 ，which is the mean of the experiments published by M．Rudberg，is too small．When the co－efficient of dilatation of air is deduced by calculation，from the changes of elastic force which the same volume of gas undergoes when carried from 0° to 100° ，its value is 0.3665 ．But when this co－efficient is deduced from the changes of volume of the same mass of gas in passing from 0^{5} to 100° ，its elastic force remaining constant，we find a value rather higher ：that is－-0.3670 ．
snd．The co－efficients of dilatation of the different gases are not equal，as has been hitherto admitted；they present on the contrary， notable differences，as may be seen by the numbers before cited． There is often obtained for the same gas，very different values for its co－efficient of dilatation，according as this is deduced immedi－ ately from the observation of the change of volume which the same mass of gas undergoes between 0° and 100° ，its elastic force remain－ ing the same，or calculated from the variation in the elastic force of the gas between 0° and 100^{\prime} ，its volume remaining constant．

3rd．The air and all other gases，except hydrogen，have greater co－efficients of dilatation in proportion as their density increases．

4th．The co－efficients of dilatation of the different gases approach nearer equality as their pressures are lighter；so that the lav which is thus expressed，＂all gases have the same co－efficient dilato－ tion，＂may be considered as a limiting law which is applicable to gases in a state of extreme dilatation；but which is farther from the truth in proportion as the gases are more compressed，or，in other words，as their molecules are brought nearer together．
（To be continued．）

CONTRIBUTIONS TO RAILWAY STATISTICS,

In 1846, 1847, and 1848.-By Hyde Clagex, EsqNo. 1--PASSENGERS AND PARES.
Having published an analysis of the Railway Returns for 1845, I have taken the earliest opportunity after the appearance of those for 1846 and 1847 , of giving a similar analysis of them, under the same title of "Contributions to Railway Statistics", which I hope may prove equally acceptable to practical men as the former series.

The following are the totals of each class of passengers in the years ending soth June :-

	1844.	1845.	1846.	1847.
1st ding,	4,875,332	5,474,163	6,160,354	6,572,714
20d clasa,	12,235,686	14,325,825	16,931,065	18,699,2881
3rd clase,		13,135,820	18,506,527	22,850,803
Mixed	2,069,4981	855,4451	2,193,126	3,229,357
Altogether,	27,763,6021	39,791,2531	43,790,983	51,352,163

The amount received for each class, in each year, was as fol-bows:-

192	$\begin{gathered} 1844 . \\ £ 1,432688 \end{gathered}$	$\begin{gathered} \text { 1845. } \\ £ 1,516,805 \end{gathered}$	$\begin{gathered} 1846 . \\ \boldsymbol{\kappa 1 , 6 6 1 , 8 9 8} \end{gathered}$	$\begin{gathered} 1847 \\ \mathbf{x 1 , 6 7 5 , 7 5 9} \end{gathered}$
2nd class,	-1,375,679	. $1,598,115$	1,937,946	2,048,080
3nd clan,	483,069	651,903	1,032,206	1,286,710
Mixed,	147,858	209,518	93,164	146,733
Altogether,	£3,439,294	£3,976,341	£4,725,215	£5,148,002

The yearly increase in numbers on each class of passengers is as follows:-

	1845.	1846.	1847.	
1at cless,	12 per cent.	12 per cent.		per cent.
2nd clans,	17 n	18	10	"
3 rd clas,	50	41	23	"
Altogether	21	24	17	\cdots

The yearly increase in money on each class of passengers is an follows:-

lat clese,	$1845 .$ 6 per cent.	$1846 .$ 9 per cent.	1847. - per cent.
2nd clans,	16 "	$21 \times$	
3rd class,	34	58	24
Altogether,	16	18	9

It is to be observed that no deductions can be drawn from these figures, as the Railway Department returns are defective and informal.

The grose returns in each year from passengers, goode, \&cc., were follows:-

1842-3,	$\mathbf{\$ 4 , 5 3 5 , 1 8 9}$
1843-4,	$5,074,674$
$1844-5$,	$6,209,714$
1845.6.	$7,65,569$
$1846-7$,	$8,510,886$

According to Mr. Hackett, in Herapath's Raihoay Journal, the receipts for the years ending 31 st December, have been as follow:
$\left.\begin{array}{rr}1842, & \mathbf{E 4 , 3 4 1 , 7 8 1} \\ 1843, & 4,827,653 \\ 1844, & 5,584,982 \\ 1845, & 6,649,224 \\ 1846, & 7,664,874 \\ 1847, & 8,949,881 \\ \text { For the year ending } & \\ \text { June } 30,1848,\end{array}\right\}$

Mr. Hackett's totals are taken from the trafic returns published in Herapath's Journal, and do not include many small companies which make returns to the Railway Department.
The following will show the totals of the Railway Department and of Mr. Hackett for the same period :-

1842-3,	Rallmas Department. £4,341,781	$\begin{aligned} & \text { Mr. Hackett. } \\ & \text { E4,530,401 } \end{aligned}$
1843-4,	5,074,674	3,114,575
1844-5,	6,209.714	6,065,956
1845.6,	7,565,569	7,159,562
1846-7,	8,510,886	8,194,767
1847-8,		9,423,963

Except in the first two years, it will be eeen that Mr. Hackett's totals are below those of the Railway Department, for the reason already given.

1844.5,	
1846.7,	

Theee figures show that any error in Mr. Hackett's figures must
be on the safe side; and if we take the difference for the year 1847-8 at 300,000 ., this will give as the gross yearly traffic for the year ending 30th June last, $9,700,000 \mathrm{l}$, or nearly ten millions sterling.
The increase of passenger receipts in each year is an follows:-

$1844-5$	$\mathbf{5 3 3 7 , 0 4 7}$
$1845-6$	748,874
$1846-7$	422.787

The increase in the number of passengers in each year stands
thus:-

1844.5	$£ 6,027,651$
1845.6	$9,999,730$
1846.7	$7,561,180$

The gross increase of revenue in each year stands thus:-

$1844-5$	$£ 1,135,040$
184.6	$1,355,855$
1846.7	945,317
1847.8	$1,200,000$

Mr. Hackett has shown (Herapath's Journal, 3rd series, vol. X., p. 38), that the number of miles of railway on which his figures are taken, and the average trafic per mile, are as follows:-

	Miles.	Mile opened.	Trafic per sulle.
1842,	1532	59	$\mathbf{E 3 , 0 3 6}$
1843,	1586	194	3,081
1844,	1780	263	3,283
1845,	2043	593	3,500
1846,	2610	839	3,288
1847,	3449	381	2,862
$1847-8$,	3830		2,719

(Half-year.)
The last line has been made up from other data.
The capital expended on railways has been likewise given by Mr. Hackett, from which we can learn the amount expended in each year.

1842,	$£ 52,380,100$	whole capital,	\quad expended.	
1843,	$57,635,100$	$"$	$\mathbf{2 5 , 2 5 5 , 0 0 0}$	$"$
1844,	$63,489,100$	$"$	$6,844,000$	$"$
1845,	$71,646,100$	$"$	$8,157,000$	$"$
1846,	$83,165,100$	$"$	$12,519,000$	$"$
1847,	$109,528,800$	$"$	$26,363,700$	$"$

The total amount of railway expenditure from 1842 to the end of 1847 was $57,548,7001$.
The total amount of railway income in those years has been-

1842,	$\mathbf{£ 4 , 3 4 1 , 7 8 1}$
1843,	$4,827,655$
1844,	$5,584,982$
1845,	$6,649,224$
1846,	$7,664,874$
1847,	$8,949,681$
Add from Bailway Return	865,984
Altogether,	$\mathbf{E 3 8 , 8 8 4 , 1 8 1}$

Of course the whole of this income cannot be treated as real capital, no more can the whole of the expenditure ; but it is a significant fact, that while the whole expenditure has been $57,548,7001$., the whole income has been $38,884,181$ l, or more than two-thirds of that amount. This is deserving the attention of thoee who direct their attention towards the subject of railway capital.
It may be noted upon the decrease in the mileage receipts, that it is to be accounted for from the greater economy in working expenses allowing of lower fares, and from the progress of railway improvement allowing lines to be more cheaply constructed. It will be found that the net return is not less in 1847 than in 1849.

In "Irish Wants and Practical Remedies," by Humphrey Brown, Esq., M.P., (p. 63), is given a table of the estimated passenger and grods traffic of several English lines, as given before the House of Commons. This I have extended as follows :-

The trafic realiced on the above lines in 1846 was an follows:-

Names		Pameorgers.	$\begin{aligned} & \text { Gooda. } \\ & \text { Toco. } \end{aligned}$
Midhend,		1,809,146	715,272
Lancashire and Yorkshire,	-	1,674,946	507,859
York and North Midland,	-	464,755	351,022
Iondon and Brighton,	.	788,386	65,747
London and South Eentarn,	.	728.896	87,119
Grest North of England,	.	196,722	234,198
Great Western, and Bristol and Breter,	\bullet	1,993,088	209,563
Lancaster and Preston, ..	.	135,344	26,099
Glaggow and Ayr,	\cdots	843,078	168,376
Hall and Selby,	-	263,402	227,869
Iondon and Cambridge*	..	534,206	44,572
Dundee and Arbroath,	.	269,187	81,484
Shefficld and Mancheater,* ..		1,168,448	32,000
Altogether,	\cdots	10,868,503	2,751,180

- Partally opened.

The results are as follows :-

In Mr. Brown's book on a length of 702 miles the same increase of per centage is shown, namely, 160 per cent. on passengers, and 170 on goods.
The whole traffic in 1845 was $33,791,253 \frac{1}{2}$ passengers, and of goods, \&c. $11,600,000$ tons. Supposing the proportions to be the same, the number of passengers carried in 1845 more than was provided with means of conveyance before the existence of railways was $20,800,000$, and the number of tona of goods convejed was $7,200,000$. Thus the railways not only accommodated the full number of passengers for whom conveyances already existed, but catried the above enormous number in addition, besides a great quantity of goods. It will be found that this calculation is, however, far from representing the amount of accommodation now afforded.

Taking the later returns, where they are available, we ahall find the increase still greater, ss in 1846 for instance:-

In 1847 there were separate returns from some of these lines, wthe following:-

| Name. | | | | Pastengers. |
| :--- | :--- | :--- | ---: | ---: | Goods. Tons.

The increase over the estimates on the traffic of 1846 is still Ereater than on 1845.

		Passengers.	Goods. Tons.
Eatimated traffic,	\ldots	$4,135,836$	$1,038,504$
Realised traffic, 1846,	\ldots	$13,718,503$	$\mathbf{3 , 5 3 0 , 4 4 1}$
Eicess over eatimates,	\ldots	$9,572,667$	$\mathbf{2 , 4 9 2 , 9 3 7}$
Increase per cent.,	\ldots	230	$\mathbf{2 5 0}$

The traffic on these lines stands as follows:-

		Pastengers.	Goods. Tona
Rutimated	-	4,135,836	1,038,504
Mealised, 1845,	\cdots	10,868,503	2.751,180
- 184 $\mathrm{T}_{\text {\% }}$.	\cdots	14,078,697	3,530,441

The lines for which there are eeparate returns in 1847 are as follows :

Great Weatern, 4c.,	231 miles.	
Glapgow and Ayr,	18 是	"
Lencester and Preation,	20	"
Dondee and Arbroath,	161	"
Sheffield and Manchoater,	44	"
South Bastern,	67	\because

The traffic stands thus-

			Pamenyert.	Goode. Ton
Estimated	-	-	2,378,995	529,618
Bealined 1845,	-	.	5,138,041	604,641
1846,	-	-	7,006,625	891,333
1847,	\cdots		7,382,586	1,236,081

The actual increase of traffic depends upon the length of time given for its development, beginning at 160 per cent. and going up to 230 per cent., and in the case of the selected railways even more. Taking the increased accommodation to passengers at 160 per cent... this would give the following as the increased number of traveller: provided with travelling accommodation in each year:-

1844,	\cdots	$17,400,000$
1845,	\cdots	$20,800,000$
1846,	\cdots	$27,000,000$
1847,	\cdots	$30,000,000$

If the proportion be taken at 200 per cent., the number accommodated by railway for whom no accommodation was before provided, would be $34,000,000$.
The following shows the proportion of traffic on railways in each year for which accommodation by coach, \&cc. was provided, and for which no accommodation by eoach, \&c. was provided:-

	Travellers from old conches, kc.	New
1844,	$10,300,000$	$17,400,000$
1845,	$12,900,000$	$20,800,000$
1846,	$16,000,000$	$27,000,000$
1847,	$21,000,000$	$30,000,000$

Reckoning that each passenger is on the average carried 90 miles, each male adult in this country will be carried that distance six times in the year,-an extent of accommodation which must have a great effect on trade and on the distribution of labour.

It appears from the averages given in the returns of the Railway Department, that there has been a still further reduction in fares on most of the lines, and an increase in the average speed per mile.
The total increase on each class of passengers is as follows :-

	1845.	1846.	1847.
1st class,	594,81	686,191	412,460
2nd clas,	$2,190,139$	$2,615,240$	$1,768,223$
3rd class,	$5,552,735$	$5,471,707$	$4,344,376$
Altogether,	$6,028,651$	$9,999,730$	$7,561,180$

It is to be observed that these figures cannot be absolutely relied on, as the proportions of each class cannot be fully shown on account of the confused state of the returns published by the Railway Department.
The total increase on each class of passengers between 1844 and 1847 has been as follows:-

lat clasa,	$1,697,382$
2nd clas,	$6,463,602$
3rd class,	$14,267,718$
Altogether,	$23,588,561$

This is probably more than the whole traffic of the country in 1885, and it shows at any rate that there has been a great increase in the accommodation given to the working classes.

The number of first, second, and third class passengers in 1841 on the leading lines was:-

Nam	19 1.	2nd.	d.	Total
London and North Western,	1,112,970	3,323,380	2,163,285	6,599,736
South Bastern,	657,380	1,493,142	2,008,230	4,420,759
Midland,	445,260	1,260,312	2,571,836	4,277,419
London and Blackwall,	858,201	2,279,166		3,137,767
Lancashire and Yorkshire,	216,791	581,790	2,090,624	2.689,206
Great Western,	459,734	1,996,824	419,663	2,876,222
London and Brighton,	425,948	699,898	1,489,985	2,615,832
Dublin and Kingstown,	154,889	1,269,092	814,969	2,238,930
Eastern Counties,	287,526	741,486	1,044,168	2,074,170
South Western,	399,7\%6	1,095,050	472,482	1,967,308
Mancheater and Sheffield,	82,201	151,606	1,335,900	1,569,707
York and Newcastle,	152,083	753,927	643,203	1,553,213
York and North Midland,	163,837	309,782	731,207	1,204,826
Newcastle and Berwick,	67,734	174,890	944,891	1,187,315
Edinburgh and Giangow,	105,373	206,485	836,025	1,147,883

On the London and North Western, Great Western, South Western, and York and Newcastle, the proportion of third-class passengers is much below the regular proportion.

The largest receipts from passengers in 1847 are-

	London and North Western.	11,173,798
	Great Westero,	674,241
	Midiand,	667,126
	South Eastern,	335,764
	Brighton,	314.493
	Eastera Counties,	296,393
	South Westorn,	286,273
	Lancashire and Yorkshire,	184,762
	York and North Midiend,	165.434
	York and Newcastle,	147,953
	Edinburgh and Glasgow,	112,532

The largest amounts received for first-class passengers are-

London and North	Westera,	¢513,795
Great Westerd,		232854
Midland,	..	178,424
Brighoo,	..	124,220
South Eastern,	\ldots	117,659
South Western,	.	97,689
Eastera Countiea,	\cdots	93,30」

The largest amounts received from third-class pasengers aro-

d North Westera,	£209,840
Midland,	153,354
Lancashire and Yorkshire	90,286
South Eastero,	85,403
Great Western,	77,129
Eastern Counties,	74,234
York and North Midl	65,507

No. II.-CATTLE TRAFFIC.

The lact parliamentary returns are still more defective than their predecessors, so that it is necessary to estimate some of the numbers.
The following shows the number of cattle carried in the year ending 1st July, 1846 :-

Nune.	Cattle.	8heep.	8 mine.
Ardrosean,	467	3,826	06
Chester and Birkenhead,	7,508	5,461	740
Dablin and Drogheda,	429	1,186	3,630
Duadee and Arbroath	351	58	86
Eastera Counties: Cambridge,	36,238	106,055	2,613
" Colchester,	17,134	89,211	11,190
Glasgow and Greenock,	640	1,492	
Glasgow and Ayr,	2,136	6,567	1,424
Great North of England,	27,625	32,466	5,305
Great Western,	20,389	165,860	63,702
London and Birmingham	55,017	232,058	120,461
Grand Junction,	41,595	45.742	337,626
Loodon and Brighton,	1,079	16,785	982
London and Soath Westera,	6,390	62,454	8,412
Manchester and Leeds,	10,448	66,029	40,346
Maryport and Carlisle,	239	575	609
Midland, (Estimated),	22,000	15,000	129,000
Birmingham and Bristol,	2,641	5,274	20044
Newcastle and Carlisle,	11,009	49,263	8,291
Newcastle and Dariogton,	16,581	36,505	3,276
Newcastle and North Shielde,	2,874	30.894	599
North Union	5,909	\%,679	7,796
Norfolk	24,439	21,509	627
Preston and Wyre,	908	3,726	13,899
Manchester and Sbeffield,	416	30,030	6,240
Soath Eastern,	3,892	48,344	8,224
Stockton and Darlington,	1,316	2,649	390
Stockton and Hartlepool,	302	860	420
Ulster,	999	878	27,388
Whitehaven,	15	19	
York and North Midland,	37,657	62,249	4,944
Holl and Selby, ..	2,662	49,734	1,311
Total	360,314	209,447	818,967

As the returns are incomplete, this does not show the whole namber of cattle, which will be as follows :-

Cattle,	370,000
Sheep,	$1,250,000$
Swine,	$\mathbf{8 5 0 , 0 0 0}$
Total,	$\mathbf{2 , 4 7 0 , 0 0 0}$

This shows an increase of 25 per cent. over the number of saimals carried in 1846.

The number of calves carried in 1846 .was as follows :-

Chestor and Birkentead,	6,288
Maryport and Carlisle,	$\mathbf{1 , 3 7 9}$
North Union,	106

In other returns they are not distinguiahed.
The amount of revenue derived from cattle traffic was in 1846 as follows:-

Ardrossan,	Cattie, 30	Sheep, 3 20	$\begin{gathered} 8 \text { wine } \\ 6 \end{gathered}$	$\begin{array}{r} \text { Total } \\ 56 \end{array}$
Chester and Birkeahead,	237	45	18	294
Dublin and Drogheda,	96	57	180	38:
Dundee and Arbroath,	28	1	1	30
Eastern Counties : Cambridge	9,864	8,693	178	13.735
" Colcheater,	2,997	2,454	239	5,690
Glasgow and Greenock,	98	21		122
Glasgow and $\mathbf{\Lambda y r}$.	218	135	14	369
Great North of England,				4691
Greal Weatern,	7,106	7,460	2,968	17,511
London and Birmingham,	11.715	8,817	6,161	26,093
Grand Junation,	9,126	4.000	28,265	35,491
Manchester and Birmingham				636
London and Brighton,	802	584	100	986
Loniton and South Western,	1,251	2,083	479	8,813
Mancheater and Leeds,	750	1,159	1,630	8,739
Maryport and Carlislo,	20	10	10	41
Midiand, ..	-	-	\square	8,960
Birningham and Bristol,	368	151	906	1,420
Newcastle and Carlisle,	1,158	1,101	230	2,489
Newcastle and Darlington,				2,339
Newcastle and Norch Shields,	107	198	7	807
North Union,			-	20,919
Norfolk,	8,072	458	16	8,056
Preston and Wyre,	74	26	86	186
Manchester and Sheffield,	-		-	1,420
South Eastern ..	-			8,079
Stockton and Darliagton,	87	32	4	128
Stockton and Hartlepool,	16	8	4	28
Ulster,	131	21	448	600
York and North Midiand,	8,360	1,708	240	4,208
Hall and Selby, .-	798	1,491	12	2,206
	Total			07,201

On account of the very imperfect state of the returng, it is impossible to give the proportion paid in 1846 under each head of cattle traffic. In 1845 the proportions were-

Cattle,	$\mathbf{8 3 0 , 0 0 0}$
Sheep,	26,000
Swine,	30,000

The proportion for cattle must now be larger, and that for swine smaller.
In 1847 the number of cattle carried by each company was as follows:-

Ardrossan, Nume.	Catule. 820	Sheep. 332	8wine. 760
Chester and Birkenhead,	1,688	6,582	1,065
Dublin and Drogheda,	680	1,794	4,388
Dundee and Arbroath,	325	32	6
Eastern Counties : Cambridge,	14,792	258,880	10,480
و Colchester,	20,722	107,693	26,076
Edatera Union,	6,681	19,151	2,420
Ipswich and Bary, ..	1,408	4,848	749
East Lancanhire,	287	1,290	40
Furness	3	42	
Glasgow and Greenock	698	497	
Glasgow and Ayr, ..	1,759	6,137	332
Great Southerm and Western,	5,058	14,830	15,846
Greal Western, ..	28,231	201,833	14,360
Kerdal and Windermere,	108	1,814	73
Leancashire and Yorknhire, (M.\&)22,449	75,011	20,733
London and North Weatern,	161,171	899,998	150,674
London and Brighton,	2,617	29,858	8,018
Londonderry and Enoiskillen,	28	108	47
London and Soath Western,	13,665	75,365	1,402
Manchester and Sheffield,*	6,000	5,000	10,000
Marsport and Carlisle,	924	615	2,282
Midland,*	30,000	150,00*	80,000
Bristol and Birmingham,	, 680	12,771	10,684
Middleaborough and Redcar,	361	585	7
Newcastle and Carlisle,	14699	66,688	9,759
Newcaslle aed Berwick,	1,908	32,224	697
North Union, ..	6,998	81,185	7,411
Norfolk,	38,888	85,349	8,634
Preston and Wyre,	2,245	8,788	6,169
South Eastern,	7,006	47,167	2,587
Stockton and Darlington,	1,878,	2,181	258

The whole number of cattle in 1847 will therefore be as follows, allowing for the incompleteness of the returns :-

Cattle,	500,000 Sbeep, 8wipe,
$\mathbf{2 , 0 0 0 , 0 0 0}$	
Total,	$\mathbf{8 9 0 , 0 0 0}$

Making nearly three million head of stock. The falling-off in swine arose from the Irish famine.
The number of calves carried in 1847 was as follows :-

Chester and Birkenhead,	..	$\mathbf{6 , 5 3 4}$
London and South. Western		
O,282		

The amount of revenue derived from cattle traffic was in 1847 follows:-

Neme.	Cattle.	8heep.	8 8ipe.	Total.
Ardrossan, \quad.. ${ }^{\text {e }}$	6	± 1	1 2	\& 9
Cheater and Birkenhead,	257	54	20	881
Dablin and Drugheda,	138	65	183	817
Dundee and Arbroath,	28			29
Eastern Counties, Cambridge,	15,112	9,656	206	25,064
" Colchenter,	8,949	2,710	484	6,093
Eastera Uniod, .	444	158	80	682
Ipswich and Bary	108	46	15	163
Eant Lancashire,	11	13	1	85
Glangow and Greenock	92	91		113
Glaagow and Ayr,	923	188	28	878
Great Sonthern and Western,	764	584	455	1,308
Great Western, ..	7,864	9,021	776	17,661
Kendal and Windermere,	1	5		6
Lancester and Carlisle,	595	875		1,470
Lancashire and Yorkshire.	2,192	1,276	844	5,812
London and North Weatern,	25,435	16,622	17,223	60,280
London and Brighton,	657	880	200	1,787
London and Sorth Westorn,	1,808	2,204	188	4,150
Londonderry and Enniskillen,	5	2	1	6
Mancheater and Bheffield,				3,086
Maryport and Carlisle,	71	10	25	106
Midland, ..				10,270
Bristol and Birmingham,	487	380	590	1,243
Middleaborough and Redcar	9	3		12
Newcastle and Carisle,	1,393	1,306	973	2,902
Newcastle and Berwick,	71	204	9	284
North Union, ..	-	\square		15,581
Norfolk,	\square	-		6,508
North Britiah, ..				757
Preston and Wyre,	170	88	48	250
South Eastern, .				3,884
Stockton and Darlington,	129	81	8	163
Shrewsbary and Chester,	19	80	1	40
South Devon, ..	11	2		13
Stockion and Fiartlepool,	31	85	6	69
Ulster, -	172	92	887	501
Whitchaven, ..	2			2
York and Newcastle,	4,255	8,025	286	8,466
York and North Midiand,	2,820	2,068	1,068	6,456
		Total	-	£188,400

The total receipts for cattle traffic in each year were as follows:

1845,	$f 102,000$
1846,	167,200
1847,	183,400

The great advance in cattle traffic was made in 1846 ; but the progress was not so great in 1847, as there was a positive falling-of in the number of swine carried. The greatest increase is in the conveyarice of fat stock and sheep.
The following are the proportions of cattle carried in each year:-

	Catle.	8beep.	8 8*Ine.
1845,	286,000	$1,200,000$	550,000
1846,	870,000	$1,260,000$	850,000
1847,	800,000	$2,000,000$	890,000

The cattle carried to the London market in 1847, may be reckoned as follows :-

	Cattio.	8beep.	swise.
London and North Weatern,	65,000	200,000	65,000
Great Western,	20,000	150,000	10,000
South Weatern,	13,000	75.000	3,000
South Eastera,	7,000	40,000	9. 600
Enatern Connties : Cambridge,	10,000	200,000	19.000
Colchenter,	15,000	75,000	20000
Brighton,	2,500	95,000	3,000
Total,	132,500	765,000	103,600

The number of cattle sold in Smithfield in 1846 was 218,525 , and of sheep $1,527,280$, so that the railways must have engroseed a considerable part of the cattle traffic. For the conveyance of cattle to the London market the railway companies receive at least \&75,000.

Great reductions have been made in the charges for the converance of cattle since 1845. The charges are as follows :-

London and North Weatern,			连.	8
	1845,	$\stackrel{\text { d. }}{1.020}$	${ }^{\text {d. }} 160$. 160
	1847,	$\cdot 628$	-135	-145
Eastern Counties: Cambridge,	1845,	-980	-200	-400
	1847,	-948	-148	$\cdot 107$
Eantera Counties: Colchenter,	1845,	-980	-200	-400
Great Weatorn,	1847,	-890 1.630	-163	$\cdot 178$
	1847,	-819	-156	-188
York and North Midiand,	1846,	- 600	-200	- 500
	1847,	-500	-200	500
Lancashire and Yorkshire,	1845,	-870	-250	-250
	1847,	${ }^{7} 768$	-177	-378
London and Sonth Western,	${ }_{1847}^{1845}$	1.750 1.460	$\begin{aligned} & -200 \\ & .10 n \end{aligned}$	600

No reduction has taken place on the York and North Midland Railway, because the rates were already low.

The largest cattle traffics in 1846 were as follow:-

London and North	Cattle. 08,619	Bheep.	sulde.
Eastern Conaties : Norfolk and \}			
Eattern Uniod,	77,804	216,775	180
Great Wentera,	20,889	165,860	53,702
York and North Midland, and Holl and Selby	40,310	109,992	5,295
Great North of England,	97,625	89,466	3800
Lancashire and Yorkabire,	10,448	66,099	40,546
South Western, -.	6.390	62,454	5,412
North Union,	5,096	25,679	7,796
Newcasile and Carlisie	11,009	49,263	8.291
Soath Eastern,	3,892	48,544	6,224
Newcastle and Darlingtod,	16,521	38,505	3,376
Manchaster and Sheffeld,	416	30,030	6,240

The gross amounts received in 1846 for cattle traffic range a follows:-

London and North Western,	f69.890
Eastern Counties, \&c.,	28,971
North Union	80,919
Great Western,	17,531
Midland,	8,960
York and North Midind, do.	6,584
Great North of England,	4,591
Londou and Soath Westera,	8,818
Lancashire and Yorkshire,	3,789
South Eastorn,	8,079

The largest cattle traffics in 1847 were as follows :-

London and North Western,	$\begin{aligned} & \text { Cattle. } \\ & \mathbf{1 6 1 , 1 7 1} \end{aligned}$	Bhesp. $\mathbf{8 9 9 , 9 9 8}$	$\begin{aligned} & \text { 8=1ise } \\ & 150,674 \end{aligned}$
Eantern Counties, -*	82,491	460,721	48,389
Great Weatern,	28,231	201,001	14.360
York and North Midland	41,081	84,656	7,014
York and Newcastle, ..	41,899	88,287	0,14t
Leancanhire and Yorkshire (M \& L)	22,449	75,011	20,783
South Western,	18,568	75,365	8,468
Newcantle and Carlinge	14,699	66,628	9,759
North Union,	5,906	25,679	7,796
South Eastern,	8,692	48,244	8,294
London and Brighton,	2,617	28,858	8,018
Newcastle and Berwick,	1,908	82,224	697

The following will show the progress of the cattle traffic of the principal companies :-

Loadon and North Western,	Cattle.	Sheep.	Swise.
1845,	61,466	289,945	315,989
1846,	96,619	977,800	858,087
1847,	161,171	399,908	160,074

Eastern Countios,	Catrle.	Sheep.	8wine.
1845,	80,661	125,564	4,218
1846,	77.804	216,775	14.430
1847,	88,491	469,721	48.850
Grat Wentern,	Calte.	Sheep.	8wide.
1846,	14.058	172,204	69.418
1846,	20,989	165,860	53,709
1847,	48,231	201,901	14,360
York and North Midland,	Caitle.	Sheep.	8vine.
1845,	15,264	88.148	81.708
1846,	40,319	109,992	6,265
184T,	41,981	84,656	7,014
York and Nowcastle,	Cattle.	Sheep.	Swine.
1845,	19,685	20000	5,000
1846,	44,146	68,971	6,581
1847,	41,309	88,287	9,143
Lancashire and Yorkebire,	Catule	Shrep.	Swine.
1846,	9,686	149,022	27,485
1846,	10,448	66,029	40,846
1847,	29,449	75.011	20,788
Soath Western,	Catte.	Sheep.	Swine.
1845,	8,763	58,441	8.080
1846,	6,300	62,454	6,412
1847,	18.565	75,365	3,462
Newcsatle and Carlisle,	Catte.	Strep.	8wide.
1845,	8.782	87,526	8.116
1846,	11,009	49,268	8,291
1847,	14,699	60,688	9,769

The Belgian cattle traffic from the retarns was as follows:-

	Catue.	sbepp a 8\%
1848,	8609	89,508
1844,	12,691	39,056
1845,	7.597	29,704

Taking the saving by conveyance of catkle on railwaye at 10 lb . per quarter, 2 lb . for sheep, and 5 lb . for swine ; or 40 lb . per beast, 8 lb . for aheep, and 90 lb . for swine, the groes saving in 1846 will be-

On	870,000 cattle,	14,800,000 lb .
	1,250,000 sheep,	10,000 000
	850,000 swive,	17,000,000
	Tol	41,800,000

The grose saving of animal food on the cattle conveyed by railway in 1847 was as follows:-

In the late report on Smithfield market, 80,50 evidence is given bearing on the question of the conveyante of cattle by railway:-

Mr. R. Healy said that there is a much greater quantity of dead meat brought to the London markets in consequence of railway communication. By means of the railways, great quantities of hind-quarters of mutton are sent up from the country, as the butehers there kill large quantities of sheep and sell the forequarters at home amongst the population there, and send the hind quarters by railway to London.

Mr. Laneran, a butcher, said that country-killed meat is better than town-killed meat, and that it comes in excellent condition from scotland. It is the general opinion of butchers that this is the case.

Mr. Hroks, the salesman, maid that he has a very large quantity of meat sent up from the country by railway, and that it is not dameged by the journey even in hot weather. He has used the electric telegraph to obtain a supply of meat from the country. A communication was sent the same night by the country graxier that he would send up 600 or 700 stone of meat by the next morninge train. At 1 oclock in the morning it started from Ipswich, and before 5 o'clock it was in his premises in Newgate market on sale, having been alive the day before. Mr. Hicks has sometimes 300 carcases on a Monday.

Mr. Lavoran likewise stated, that since the railways have been opened a country trade in meat has been growing up. Beasts have been ment from Smithfield to Liverpool, sind he has seen immense quantities of mest going down to Birmingham. The south country also is supplied from the London market with beefBrighton in particular. The Brighton butchers are frequently geen io Smithfield purchasing cattle, which they take down with thean the same day. Sometimes as many as 300 or 400 beasts have gone down by the Birmingham railway on a Monday.

Theee facts will show the nature of cattle traffic on railways.

THE « WESTMINSTER REVIEW, No. XCVII.: THE NEW BOUEES OF PARLIAMENT.

Although political topics and subjects of a grave atilitarian cast form the staple of this periodical, with only occasionally an article of a lighter cast, the "Weatminoter" has in its time, and especially under its present editor, contributed more largely to architectural information and criticism than either of its rivala. In fact, the "Edinburgh" has scarcely once, during the whole of its long career, touched upon aught connected with architecture. One prevalent fault in Roviow articles of the kind, is the dall and impertinent prosing with which they are eked out, in order to fill up a printed sheet, or as much more as may be the space allowed, although all that the writer has to communicate would perhaps occupy not more than s couple of pages. In the present instance, we have no such complaint to make: the writer comes at once to the point, and criticises in succession (besides the New Houses of Parliament) the New Treasury Buildings, Backingham Palace as altered by Mr. Blore, the British Museum, and the Royal Exchange; and his remarks are upon the whole so good, as far as they go, although we do not subscribe our own opinion to every one of them, that we wish he had entered more into particulart with regard to the three last-mentioned structures. How they and the "Houses" themselves are spoken of, except as regards ability on the part of the writer, we have not yet said. With respect to the Palace, indeed, it may be taken for granted that his opinion is anything but favourable, that unhappy building being abandoned to universal derision; but the writer is severe upon the others also-and not least of all, or rather more especially so, upon the Houses of Parliament, which proves that he does not tace his cue from the vulgar flatteries of the public press, heaped upon Mr. Barry and his "great work." In short, he expresess himself exceedingly dissatisfied with that edifice; nor is he by many the only one who is so, for even among our own acquaintancethose, too, whose judgment in matters of architecture is entitled to some deference-we have heard opinions equally otrong in disfavour of it. One serious complaint alleged against it is, that however well the florid and exuberant embellishment bestowed on the river-front may shine or sonnd in description, or show itself in an elevation drawing, it is all but entirely lost in the building itself;-that there is abundant sculptural decoration of some sort or other may be seen, but it cannot be at all made out. The decoration is beaides, not only too minute, considering the vast extent of the river-front, and the distance of the nearest accessible point from which it can be seen by the public, but is also so profuse, as quite to destroy "repose." While this is to be regretted for artistic reasons, it is also to be condemned for financial ones; an immense expenditure having being incurred for mere ornament, to scarcely any purpose at all. Surely the water-aide of the building might very properly have been made some degreew less ornate than the other fronts, and still have been sufficiently finished-up, and sufficiently dignified and imposing,-nay, even more effective in its ensemble than it now is. Hitherto, stingy parsimoniousness has been allowed to betray itself more or less in nearly all our public buildinge, where the effect of what is perhape a handsome façade in itself is sadly marred by the meanness of plain brick walls, shabby chimneys, and other eye-oores that come into sight in every angular view of the building, $-a s$ is mowt offensively the case in the new façade of the British Museum, notwithatanding that it is decked-out in Ionic pomp, or what is meant for such. In the Houses of Parliament, the architect has fallen into the contrary extreme of error; and anxious to avoid the reproach of parsimoniousness, has incurred that of extravagance.

Besides wasteful excess of decoration, the writer in the "Wertminster" urges againgt the "Houges" what he considers two capital and now irremediable defects; one of them being the want of greater loftiness in the river-front, more especially as the gituation itself is very low; the other, the position of the Victoria Tower. No doubt, when all the towers in the rear of the riverfront ahall come to be completed, and the sheds, coffer-dam and other obetructions are cleared away, some expression of loftiness, at well as variety of outline, will be imparted to the general ensemble; but then that will again be counteracted by the much greater loftiness and bulk of the Victaris Tower. If exigences of plan required that the royal entrance should be just at the south-west corner of the pile, -if it was impossible to bring in that entrance as the central feature of the weat aide-or perhaps the east one, by forming a commodious carriage approach to it along the terrace -there was at all events no imperious necessity for carrying op much an enormous tower over it as is now intended to be done. It is true, in many mediaval edifices Which have grown up by
degrets, and contist of parts added to the original plan at long intervals of tima very great ineongraities and discordsnt contrasts may be found, and may be pleaded by some as sufficient precedent. But the "Houses" will have been erected from one comprehensive original plan, laid down by the architect from the very outset ; and so far from aiming at variety and contrasta in his elevations, Mr. Berry has most studionsly attended to perfect regularity of composition and uniformity of festures, -at least, such is the case with regard to the river-front, which, although a secondary one in regard to its situation, will hardly be secondary in regard to display. Nevertheless, so lofty a structure raised at one corner of the general mass as the Victoria Tower will be, must inevitably show itself as a striking irregularity, an architectural excreacence, and apparently an after-thought-at least to those who may not happen to know that it was so planned from the very first.

With regard to the river-front, the quastion now is : How can it be rendered acceesible to the public, so that its elaborate ornamentation can be fairly seen and enjoyed ? At no very great distance of time, perhaps, and owing to the very insecure condition in which it now is, Westmingter Bridge will be taken down, and either considerably lowered or rebuilt further off from the Houses of Parliament ; in which case, Bridge-street will be converted into a cul-desac, similarly to the streets which run from the south-side of the Strand down to the river; consequently, the "Houses" will no longer be looked down upon from the bridge-but then how is their river-front to be looked at at all, except from a boat on the river itself? The only way of enabling the public to contemplate that facade, will be to form a second terrace or quay for foot passengers, advanced about fifty feet into the river, and perhaps about a couple of foet lower than the terrace between the advanced extremities of the building itself. Unless something of that kind were to be done, quite as much would be lost as gained by the removal of the present bridge; to say nothing of the great inconvenience attending the disturbing euch long-established line of communication and traffia.

That we agree with the Westminater" in much or most of what it says, both in regard to the Houses of Parliament and the other structures which it notices, we freely admit. And it is pleasant to us to find opinions that are upon the whole in accordance with our own entertained by others. Speaking of Buckingham Palace, the "Westminster" observes that the Marble Arch "might have been advantageously incorporated with the design by an artist of resource and genius;" and again, of the British Museum, that the central portico or octastyle ought to have been loftier than the other colonnades, both which ideas have been brought forward in sketches in this very Journal. Although we should not have been displeased at his noticing that circumstance, supposing him to have been aware of it, we do not accuse the writer of making use of "our thunder;" on the contrary, we are right glad to meet with the coincidence of opinion, and to find that we are not altogethe solitary in our own. Here we will conclude, by earnestly recommending a perusal of the article in the "Westminster" to our readers. It certainly bears rather severely upon Mr. Barry, but he, if any one at all, can very well bear on his part to hear unpalatable truths. Of flattery and adulation he gets enough, or more than enough-more than may be altogether wholesome for him. An occasional draught of "bitters" will therefore do him no harm.

RAILWAY LOCOMOTION.

Riotard Werghton, of Lower Brook-street, Grogvenor-equare, for "Improvements in apparatus to be applied to raiheay carriages and engines."-Granted December 92, 1847; Fnrolled June 92, 1848.

The apparatus consists of five distinet applications to railway carriages and engines for different purposes. The first part consists in the construction of apparatus attached to the breaks of railway carriages; the actuating force upon the breaks being that of steam. The patentee claims under this head of his specification, the combination and arrangement of spparatus, whereby the piston of a steam-cylinder may be made to act upon central trac-tion-rods or shafts, for the purpose of working the breaks of carriages and causing them to act simultaneously upon the wheels throughout the whole train; also the construction of box-coupling for connecting the shafts, and the power to the breaks. -The econdimprovement consiets in theemployment, in railway carriages,
of one central buffer in lieu of the two side onee as hitherto used; this the patentee constructs in combination with the drawlink. The annexed dingram represents this arrangement. $\boldsymbol{A}, \mathbf{A}$. are the buffer-plates of adjoining carriages; they are atteohed to

the buffer-rods B, B, the ends of which are made of the looped form shown, for the purpose of admitting the loop of the connect-ing-links \mathbf{C}, \mathbf{C}. The buffer-plates A, A, are made with holes through their centres, through which are passed the double-ended hooks D, when the carriages are required to be connected, which are hooked to the links C, C, upon the buffer-rods B, B. Immediately behind the loop are cut threads, upon which work the nats, E, E, upon which are loose collars, that do not revolve with the nuts. To the loose collars are attached by studs the links \mathbf{C}, C; When it is required to connect two carriages, the buffer-plates are brought together, the two nuts are turned up to the looped ends of the buffer-rods, and the double hook inserted and hooked on to the links; the nuts are then to be turned back until the links and the hooks become tight. Instead of passing the treetionrods entirely through the carriage as hitherto, the patentee parser the rod B, only through the ond-frames F, F, of the carriage, where the helical spring G, is placed upon the rods, and acta as the buffing-spring.-The patentee claims as his third improvement, the employment of helical springs or other elastic substance, incombination with adjusting-screws, for making the couplings of railway carriages; also the combination of a double-joint with the adjusting-screws.-The patentea's fourth improvement consiste in constructing the axle-box and the axle in such manner that the lubricating material employed shall be retained in contact with the journal and the bearing, and thereby prevent a considerable portion of the waste which has hitherto taken place with axle-boxes as usually constructed. He constructs the axle of one piece or of two pieces, as in the usual way; the brass forming the bearing is properly fitted in, and the end of the axle is inserted into the sulebox from the back; the axle inside against the journal is tarnod with a flat or taper shoulder, agsinst which is fitted and placed a metal ring; between the ring and the back of the axle-box is inserted a ring of vulcanized india-rubber, or other similar zubstance, thereby preventing the escape from the axle-box of any considerable portion of the lubricating material employed.-The fifth improvement consists of a means of enabling any of the peesengers in railway carriages of a train to signal and commanicate with the engine-driver or guard, by the sid of electricity. To the middle partition of each railway carriage, near the roof, is fired a small voltaic battery, by means of which the passongers are et abled to bring into action an electro-magnet, that explodes a per-cussion-cap or rings a bell.

COKE OVENS.

Grobos Ambroise Micestit, of Epieds, France, for "Improsements in the production and application of heat, and in tho manafocture of coke."-Granted December 15, 1847; Earolled June 15, 1848.

The application of the heat evolved during the formation of coke is the object of this invention. Several ovens are combined together, which are provided with fire-bars that oceupy only a small portion of the area of the bottom. The ovens are separated from each other by partitions, and in the upper parta there are openings to permit the flame and products of combustion to pas from one oven to another; and there are openings in the top of each oven, through which the flame and heatod grees ascend, in order to heat gas-retorts, lime-kilns, steam or other boilers, ar other apparatus, situated above the coke-ovens. The patentee states, that by means of this invention the heat may be more advantageously obtained and applied than before. When the ovens are at work, the charges of coal are introduced in succession, in ouch manner that the charge in two out of three may be in a hift
un of ignition when freah coal is put into the other. The operntor will know when to withdraw a charge, by the flame consing on the surface; as soon as this is the case, the charge is to be withdrawn and cooled with water; a fresh charge of coal in then to be put into the oven, and, the fire-door being closed, the charge will soon be ignited by the heat of that oven and the flame from the other ovens. The esh-pit doors are to be kept closed at all times, excopt it be found requisite to introduce air to expedite combustion; and the ach-pit door of the oven, into which the air is to be mimitted, is opened.

STEAM-BOILER FURNACES.

Henay F. Baxce, of Boaton, United Statee of Amarica, for a "artain now and usoful improvernent in atoam-boiter furnaces." Granted December 22, 1847; Enrolled June 24, 1848.
The annexed diagram represents a longitudinal vertical section of the furnace, as applied to the cylindrical boiler of a highpressure engine. The fire-box a, is placed at one end of the boiler. At the end of the fire-bars there is placed a vertical grate a which reaches nearly to the bottom of the boiler, for the purpose

of preventing ashes from being carried into the reverberatory chambers; in the addition of which, the peculiarity of the invention consists. The bottoms of these chambers are placed below the level of the fire-bars, and the number of them may be four or more as required. They are of a parabolic form, for giving a revolving motion to the gases and other inflammable matters, thereby retuining them till consumed; e is a plate of iron placed in an inclined position, whereby it receives the direct force of the entire flame from the furnace, pert of which is deflected against the bottom of the boiler, while the remainder is turned downwards, and caused to circulate in the chamber below. Openings are left at the upper part of the plate e, between it and the bottom of the boiler, which allows the flame to pass along; f and g are air-channels, for the admission of atmospheric air or oxygen, in order to ensure the perfect combustion of the gases. These chanvela are carried into the brickwork at the side of the boiler, through which they may be conducted, and furnished with valves if necesaary, for regulating the quantity of air; h, h, are curved platee, which extend across the furnace, the openings in which are so arranged that, while part of the heat and flame passes along immediately in contuct with the boiler, part also is deflected against the bottom of the boiler, and the remainder is directed down into the hollow bottoms of the reverberatory chambers. Gratings i; i i, are placed in the bottom of each of the reverberatory chambern, to allow any small partieles of incombustible material to escape, that may be carried over by the draught. These gratings open into a pit k, below, which must be kept closod. The fire having been ignited, the flame and gases evolved will be carried over and through the vertical bars c, and will come in contect with the plate e, by which they will be deflected against ths boiler, and aleo turned downwards into the hollow bottom of the first chamber d, causing them to rovolve and be retained a ahort time, to further the combuntion. They then pass over the upper part of the air-distributing bor, on the further side of Which are numbers of amall openings, whence the atmospheric air iesues, as indicated by the arrows, the current of air or oxygen causing the unconsumed volatile product to be converted inte flame, which, by the force of the current, impinges on the bottom of the boiler. The gases are also in this next chamber caused to revolve by the curved shape; and they are disturbed by the plate b, in the next chamber, where they are again retained a short time, the revolving in these chambers causing the heated particles to be brought in contact with the boiler, the last reverberatory chamber being also furniched with an air-distributing bwx g_{0} which
is supplied by channals through the brickwork. Froma the fourth chamber the incombustible product is conducted by a flue at the bottom of the boiler to the chimney.

AXLE GUARDS AND BUFFERS.

Cbarles de Berque, of Arthur-street West, City, engineer, for "Improvements in carriages used on railways."-Granted January 5; Enrolled July 5, 1848.

These improvements in railway carriages relate only to the axle-guards and boxes, and to buffers. The patentee constructs his axle-guards in such a manner, that a wooden surface shall be presented as a guard for the axle-bor (which is of castiroa) to rub agsinst. For this purpose he secures two uprights to the main framing of the carriage, at a dintance from each other ruitable for recoiving the axle-bor, which has a flange, its whole depth on each side embracing both sides of the uprights. These wood uprights forming the guard, are strengthened by plates of tron, placed on each side, the width of such plates being less by the breadth of flasge on the axle-box, than the wood against which they are bolted; thus the face of the arle-box slidee flush with the face of the axle-guard. The upper parta of these platen are carried up the side of the frame to which they are secured. The springs are of the kind previously patented, and consist of a series of india-rubber rings, separated by plates of metal. This apring is placed between the uprighte of the arle-guard, the bottom plate being supported by a vertical rod resting in a step on the axde-box, immediately above the centre of the bearing, being within the grease-box, which forms part of, and is cast in one piece with, the axle-box. The wood faces of the axle-guands and the chase in the sides of the axle-boxes must be rendered partioularly smooth, in order to prevent abrasion of the surface of the wood. The second improvement consists of a mode of making the conical centres of plates used for separating the rings of indiarubber in the buffer and other springs. In making those plates the patentee forms a thin disc of metad of the required diameter, having a hole in the centre larger than is necessary, to go over the buffer-rod; he then incloses this plate in a suitable mould, in which is poured a quantity of soft metal, such as zinc and tin, in order to form the conical centre of such separating-plates. The soft metal mould, being larger in diameter than the hole in the centre of the plate, it consequently becomes securely imbedded in the goft metal centre, which is cast with an opening suitable to receive the buffer-rod or other spindle, according to the purpose it may be intended for. The third part of this invention relates to what the patentee denominates a long-range buffing apparatus, which is applied to a van or truck placed between the engine and tender and the train of carriages, in order to protect the train as much as possible from violent concussion. The range of resistance in this apparatus is to the extent of several yards, and, unlike other buffers, it is not attended hy any recoil. The resistance is produced by the friction of straps passing over a drum, which atraps are so arranged in connection with levers and a train of Wheels, that as the force of the collision increases, the straps are tightened and the resistance is augmented.

SCREW PROPELLERS AND PUMPS.

Edward Humparefrs, of Holland-street, Surrey, engineer, for "certain improvements in stearm-engines, and in engines or apparatus for raising, exwausting, and forcing liquide."-Granted January 4: Enrolled July 4, 1848.

The improvements in steam-engines have reference solely to the mode of driving the screw propellers of steam-boats. The apparatus and the driving multiple wheels are so arranged, that the cranks usually employed are dispensed with, the place being supplied by the driving spur-wheels themselves. The pins to which the connecting-rods are attached, and which have hitherto been fixed to the cranks upon the ends of the shaft, are, by the patentee's arrangement, now fixed to the bosses of the drivingwheels, which take the places of the cranks. The second part of the invention consists in the construction of the valvee for pumps for raising or lifting or forcing water, as applied to an air-punp. The patentee proposes to form the passages through the bucket, radiating from the centre ; the passages being in pairs, having a thin partition of metal between them, each pair of the passages being covered by a valve, which is composed of a thin piece of steel or other flexible metal, one end of which is firmly secured te the inner part of the bucket, while the other part rises from ite seat, when required to allow the flow of water. The putentee
claims in respect to the first part of his invention-First, the placing the direct-acting marine steam-engines between a line drawn through the centre of the piston-rod, and a parallel line drawn through the adjoining bearing, or in the spaces usually occupied by the crank in ordinary engines; also the connecting the piston-rods to the driving-wheels, without the aid of cranks.

LAP-WELDED IRON TUBES.

Jos Cutler, of Birmingham, civil engineer, for "certain improvements in welded iron pipes or tubes to be used as the flues of steam-boilers."-Granted January 13; Enrolled July 13, 1848.

The object of the patentee is to produce lap-welded iron tubes or pipes, so formed as to give increased atrength to those parts which are exposed to wear, without additional weight to the entire length of the tube, and thereby to obviate the evils to which boiler tubes are at present exposed. He makes the internal diameter of the tube greater at one end than at the other, insteed of its being the same, or uniform throughout, as has hitherto been the case; the external diameter remaining, however, the same, and uniform throughout the entire length of the tube. The tube will, of course, be cylindrical upon the exterior, and conical upon the interior surface. The increased thickness of metal at the one end is to be drawn from the remaining portion of the entire length of the tube. And further, the operation is effected at one heat, so that the ductility of the iron of which the tubes are composed shall remain unimpaired.

The modus operandi is as follows :-The patentee employs a series of grooved rolls, moved by suitable toothed wheels and a mandril, with a conical bulb or head, the stem of which is of increasing diameter towards the opposite end. The skelp, after being properly prepared, as is usual in the manufacture of lap-welded iron tubes, is heated and passed between the first of the series of rolls. It is then welded over the conical bulb, and forced, at the same time, over the stem of the mandril. This mandril is held by a grip, attached by a hinge thereto in a stop, so as to allow of its being lowered and passed, after the conical bulb has been removed between the second series of rolls, the diameter of the groove of which is smaller than that of the first series. The tube, with the mandril still inside, is then passed through the third series of rolls, the groove of which is amaller than that of the second series. The object of these successive rollings, after the skelp has been welded on the mandril, is to remove any irregularities upon either of the surfaces, and to make the edges of the tube perfectly smooth and uniform. The tube is then taken to the drawing bench, in front of which is a stop, and against which the pipe rests. The stop is furnished with a hole to allow of the passage of the grip of the mandril, which is held by a pair of pliers ; and, the bench being made to move while the pipe remains stationary, the mandril is withdrawn. When it happens that the mandril adheres too tightly to the tube, it is proposed to heat it in a muffle or furnace, then to cool the end which rests against the stop, and repeat the above operation, or to roll it cold between three rollera, as is usually done in straightening shafting.

ATMOSPHERIC RAILWAY.

Wrusay Froude, of Darlington, Devon, civil engineer, for "Improvements in the valves usod in closing the tubes of atmospheric railways."—Granted January 5; Enrolled July 5, 1848.
The material which is employed in this invention for closing the slit in the tube, is vulcanized india-rubber; and the advantage proposed to be gained is the dispensing with any unctious substance for keeping the valve air-tight. Flat valve-seats are formed on each side of the slit, both of which are bounded by vertical flanges; the right-angles formed by the vertical flanges and the valve-seate, being rounded off, and the valve-seats alightly recessed by shallow circular recesses, which thereby form the hinges or centres of motion of the valves. There are two valves employed, the lower portion is composed of plates of iron, of about eight inches in length each plate, the shape of the lower surface of which agrees in contour with the seat upon which it is placed; the one edge of the plates forming, with the shallow circular recess in the seat, the hinge or centre of motion. The other edge of the plates is nearly over the centre of the line of opening, thereby nearly meeting the edge of the opposite plate upon the other valve-seat. The under side of the plates over the aperture, is formed of the same curvature as the inside of the tube. The upper surfaces of these plates are flat, except that part over the
aperture immediately adjoining the edge, where it is lower then the part over the seat. Upon these plates are placed a continuad sheet of vulcanized india-rubber which extends from beyond the centre of the line of opening or aperture over the whole surfice of the plates up the inner side, and also on the top of the vertical flange. The portion of the vulcanized india-rubber sheets which are over the line of opening, are increased in thickness and fill the Whole of the depressed part of the plates, thereby forming at that part a thick pad. The upper surface of the vulcanized indisrubber is covered with canvas. Above the vulcanized india-rabber sheets are placed fiat plates of iron, of similar length to thome beneath and lying over them ; they are securely rivetted together, thereby holding firmly between them the vulcanized india-rubber. The vulcanized india-rubber is secured to the side and top of the vertical flange by means of a series of iron bars, which are bolted to the flange, and which are to be about 15 feet long, which securea that edge of the valve air-tight, or nearly so. When the valves are firmly pressed upon their seats, the edges of the ralcanized india-rubber pads in contact are below a line drawn between the centres of motion of the two valves, whereby the tendency of the elasticity of the pads will be to further press the valves upon the seat instead of raising them therefrom. The patentee proposes to employ, for the purpose of opening the valves for the passage of the bar connecting the piston apparatus with the carriages, a geries of not less than five wheels placed in advance of the connectingbar; the first of these wheels being placed at about nine feet before the bar, and the other at intervals of about two feet fram centre to centre. After the passing of the connecting-arm, the valves are lowered and closed over the opening by a wheel attached to the upper part of the connecting-bar, or to the carriage, in such manner as to run over the valves, and thereby press thera down upon their seats, where they are securely retained, and effect an air-tight, or nearly air-tight, joint.

MINING APPARATUS.

Prerar Augustus Puls, of Paris, for "Improvements in apparetus for raising and lowering heavy bodies in mines."-Granted December 28, 1847 ; Enrolled June 22, 1848.

The principal feature in this invention is the application of atmospheric pressure to the raising of weights, and to the draining of mines. The first plan by which the patentee proposes to raise bodies is by having a vertical air-tight tube in which there is a solid piston, to the under part of which the weights to be raised are to be attached; and the upper part of the tube being exhausted, the atmospheric pressure below will force up the piston and ite load. In the drawinga attached to the specification, two piatora are represented, the one following the other in the ascent. When the upper one reaches the top it is relieved of its load by means of a slide, which passes in bolow it, cutting off communication with the rest of the tube, and the weight is removed by a door in the side of the tuhe; the upper piston is then carried by exhaustion in a continuation of the tube above the shaft. The next one is then brought up and unloaded in a similar manner. The bottom of the tube is closed after the weights are introduced, the air being admitted by a small tube proceeding from the top of the mine by which the admission of the air to the underside of the pistons is regulated. In another method of applying the atmoepheric tuba instead of raising the weights within the tube, they are elevated on the outside, by means of arms projecting through a continuons slit. For the purpose of raising water in mines, the apparatas consists of a series of air-cylinders, which are placed at regular intervals down the shaft. Each of these is in communication with an exhaust tube. The lower pump draws the first lift by suction the water then passes through the bucket, and is forced up a step higher to a small reservoir placed for the purpose. The next pump above repeats the operation, drawing the water from the reservoir, to which it has been previously raised by the pump below, and ao on till the water arrives at the top. The action of the pumpa is produced by alternately exhausting and admitting the air from and to, the cylinders, on the upper side of the pistons. Another part of this invention relates to the raising weights in mines by a series of vertical rods, which are attached to each other, forming one continuous rod to the bottom of the pit. Two of these combbined rods are placed side by side, and suspended at the top by two chains, attached to, and passing round, wheels supported over the mouth of the shaft. These wheels have a semi-rotary move. ment imparted to them from a steam-engine, by which means a continual reciprocating motion of the two rods is kept up. Hooks or notches are formed on the vertical rods at regular distances,

[^22][^23]
"perameres;" for whiah, however, in addition to that of Profeasor Moseley, I have the sathority of Dr. Whewell,' who says, "Slatical forces are called proscures;" and Dr. Young," who says, "A pressurs is a force counteracted by another force, so that no motion is produced." If, then, your reviewer is correct, it follows that Professor Moseley, Dr. Whewell, and Dr. Young are wrong.

Your reviewer next takes up the subject of vis viva, on which I exy,

Vis vive, or living force, a term used by Leibxitz to denote the force or power of a body in motion; or the force which would be required to bring it to a state of reat." p. 108
Professor Barlow ways: "Yis viva, or living force, is msed by the same author [Leibnitz] to denote the force or power of a body in motion."p
Dr. Hutton says: "Vis mortua, and Vis viva, are terms used by Leibnitz and his followeri for force; understanding by the latter, that force or power of acting which resides in a body in motion." ${ }^{10}$
Notwithstanding, however, th united testimony of Professor Barlow, Dr. Gregory, and Dr. Hutton, that Leibnitz used the term vis eion as here stated, your reviewer is perfectly sceptical upon the point, and boldly asserts "that Leibnitz never did anything half so absurd as is here said of him; that he did do so, is however a matter of fact, for here are his own words:-
"Hine Vis quoque duplex : alis elementaris, quio et moriuam apello, quis in ea nondum existit motus, sed tanùm sollicitatis ad motum, qualis et globi in tabo, aut lapidis in fanda, etiam dam adhoe vinculo tenetor; alia verò vis ordinaria est, cum motn actuali conjuncta, quam voco vieam. Bt vis mortuse quidem exemplom eat ipsa vis centrifuga, itemque vis gravitatis, seu centripeta; ris etiam qua elastrum tensam se reatitnere incipit. Sed in percussione, ques niscitur a gravi jam aliquamdiu cadeate, sot ab arce se aliqumadiu reatituente, ant a simili cansa vis est viva, ex infinitis vis roorture impressioaibus continuatis nata. Et hoc eat quod Gulitews voluit, cam cenigmatice loqnendi ratione percussionis vim infinitam dixit, scilicit, si cum simplice gravitatis nisu comparetar. Etsi autem impetus cum vi viva semper sit conjunctus, differre tamen hoee doo, infra ostendetur." ${ }^{14}$
Not content, however, with denying that Leibnitz said that, which his own works prove that he did say, your reviewer denies that ois viou is a force at all, and says that it is a mere technical term; Dr. Whewell, ${ }^{12}$ however, says, "The vis viva of a body in motion is a force;" and Professor Moseley, "s "That the difference between the aggregate work of the accelerating forces of the system, and that of the retarding forces, is equal to one-half the vis viea accumulated or lost in the system." Therefore, either your reviewer is wrong, or else both Dr. Whewell and Professor Moseley.
He next states that, "in the second problem of the chapter on Statics, the calculation respecting the strain on tie-beams and struts is totally erroneous;" to which I answer that the calculation is correct, and that your reviewer is wrong; as he will find if he refers cither to Tredgold, ${ }^{14}$ Dr. Whewell, ${ }^{\text {is }}$ ' Professor Moseley, ${ }^{10}$ or Professor Wallace, ${ }^{\text {' }}$ ' (who quotes from Dr. Gregory the very problem denounced as incorrect).

Your reviewer then extracts the following proposition relating to the centre of gravity :-
${ }^{*}$ If the particles or bodies of any syatem be moving uniformly and rectilineally, with any velocities and directions whatever, the centre of gravity is either at reat, or moves uniformis in a right line " p. 193
Emerson aafs: "If two or more bodies move aniformaly in any given directions, their common centre of gravity will either be at rest, or move uniformly in a right line. ${ }^{126}$

Dr. Whereell says: "If there be several bodies, which eitber all attract and are attracted by a sinale body, or all attract each other, these also will move in auch a manner that the common centre of gravity will either remaio at rest, or move uniformly in a straight line." ${ }^{10}$

He then asks a question; "Does the author mean to assert, that if two hodies be moving with different [uniform] velocities in straight lines perpendicular to each other, the common centre of gravitv moves in a straight line?" To which I answer very

[^24]decidedly, "Yes, I do; and if you are at all soepticat upon the point, if you refer to Emerson's 'Principles of Mechanick,' P. ■., you will find the truth of my answer demonstrated."

The next objection of your reviewer is to my use of the term, line of rupture; which, however, I prefer to apply to the actual case of rupture of the ground, which takes place when the wall falle, and which is then obviously the same as the naturad slope : the line dotermining the wedge of maximum pressure is only an imagionery line, and not that on which the ground would really separate.

Your reviewer has quite misunderstood Dr. Gregory, when he asserts, that the conditions upon which he examines the stability of an arch, are "that there are only two joints of rupture, equidistant from the crown, the loading symmetrical, and the piers incapable of sliding," no such conditions being assumed, or indeed necessary.
The next paragraph of your reviewer reqnires no comment from me; the obvious mis-quotation of my words does as much violence to common-sense and grammatical construction, as it exhibits the desire to pervert the meaning of what 1 actually asy.

He then states that I have given certain experiments (which he extracts) "as the foundation of dynamics" and "in place of an enunciation of the three lawe of motion," which is not the fact: I have merely employed them to illustrate the necessity of re garding time in estimating the forcea of moving bodies: m Atwood, ${ }^{20}$ Barlow, ${ }^{21}$ and Hutton. 22

Your reviewer next finds fault with my using the expression, "Each particle of matter resists motion; is he aware that Dr. Whewell": repeatedly uses a similar expression-" the inertia of the particles to resist the communication of motion " ${ }^{\prime \prime}$ and that \mathbf{M}. Poncelet, in the introduction to his Mécanique Industrielle, has rovived the term vis inertia, and has associated with it the definitive idea " of a force of resistance opposed to the acceleration ar the retardation of a body's motion."

Your reviewer next takes objection to the assertion, that (neglecting the effects of friction) if a body suspended from a fixed point by a flexible string, have its path altered by a projecting pin, it will rise to the same height as it would have done if not 0 interfered with; Dr. Young, however, speaking on this subject says: "We may alter the form of the path in which it deacends by placing pins at different points, so as to interfere with the thread that supports the ball, and to form in succession temporary centres of motion; and we shall find in all cases, that the body at conds to a height equal to that from which it descended, with a small doduction on account of friction." ${ }^{44}$
After stating that Dr. Gregory's definition of the centre of gyrztion is "confused and inaccurate," although identical (as he will find by reference) with that given by Dr. Hutton, ${ }^{93}$ by Emernon, ${ }^{24}$ and by Professor Barlow, 2 , he proceeds to show by reference to the "fable of the wolf and the lamb," that one of the propositions relating to the centre of gyration cannot be correct, and arrives at the certain conclusion that the author (as also Emerson, from whom the same proposition is taken) did not clearly understand the subject on which he wrote:-

Emerson's Proporition.

"If the matter of any gyrating body were actually to be placed in its centre of gration, it ought either to be disposed of in the circumference of a circle, whose radius is $\mathbf{S} \mathbf{O}$, or else into two points, diametrically opposite, equal and equidistant from $S .{ }^{\prime \prime}{ }^{2}$

Proposition Criticised.
" If the matter in any syration body were actually to he placed a if in the centre of grration, it ougbt either to be disposed in the circumference of a circle $\boldsymbol{m b o s e}$ radius is m , or at two points R, R_{1}^{\prime} diametrically opposite, and each at the distanot R from the centre." p. 230.

Your reviewer next informs us that centrifugal force is not always "directed towards a fixed centre," in which I perfectly agree with him, and am not aware that any person has stated the contrary.

He then points out an error of Dr. Gregory's, relating to fywheels, which had escaped my observation, and one of my own. in equation (I) page 373, which should read $\frac{1}{4} L P_{s}=E(a+\Delta)$; but which fortunately does not affect any other part of the subject. He then states that the total forces of longitudinal compression and tension are equal and opposite; this is, however, only the case when the applied forces are perpendicular to the beam, for wheo

[^25]indined at any angle, Professor Moseley has shown that the eifarence of the forces of comprestion and tension is equal to the realtant of the applied forces multiplied by the sine of the ande which it makes with the normal to the neutral line at the point of ruptures ${ }^{38}$

In conclusion, if your reviewer is right, it follows that Dr. Hatton, Dr. Young, Professor Berlow, Dr. Whewell, Professor Moseley, Profeasor Wallace, Emerson, and Tredgold, one and all of them, must be wrong; but I think that any reasoning man will require momething more, to coavince him that the laboured domonatrution of theme men, who have hitherto justly been regarded at Bigh arthorities on the subject, are false, than the mere demial of an individnal writer. Considering, then, with whom it is that your reviewer is at issae, -not with Dr. Gregory and me, but with all the first mechanical and mathematical writers who have lived, Fould it not have been wiser, had he assumed a little less positive tone in his attempta to lay down the law?

I remsin, \&c.,
Lomlon, July 15, 1848.
Heney Law.

* " Mr. Lav cannot accase ns of want of good nature, for we print his letter at full length. We had no original prejudice against Dr. Gregory's book. The author has a kind of celebrity from his position at Woolwich, and from having written copiously, which, though he has not made a single step in the advancement of science, led us to imagine him capable of compiling a book like the present without groes and systematic blundering. The first two or three mistates occasioned a little surprise, but were charitably attributed to insivertance. It was only glowly and reluctantly that we yielded to the conviction, that the book was radically and essentially erroneous, end that a real mathematician could not by any chance have written it.

Still, we clung to the hope that Mr. Law was guiltless of the various delinquencies to which he had given his editorial sanction. It was, at least, a good-natured excuse-a pious fraud, to delude ourselves and readers with-that he had uttered false coin, not well knowing it to be spurious. Alas! even this pleasing selfdelusion is destroyed.

The various subjects of discussion are not questions of authority, but of reason. If Newton, Lagrange, and Laplace were to arise from the dead, and asoure us that they had discovered the ordinary multiplication table to be incorrect, not even their united cestimony would produce conviction in our minds. We may as well set out by avowing, that if those illustrious names were quoted in support of Dr. Hutton and Mr. Law, even they would not produce the slightest change in our convictions. We should feel perfectly certain that their words were misquoted, or strained begond their intended signification, or-(out it must come) that they had lost their wits!

Our task is a very simple one as regards the definitions; it is to refer Mr. Law to books in which he will find them correctly laid down. That Barlow, Hutton, and Young, have fallen into the same mistakes as Dr. Gregory, only corroborates an opinion independently arrived at-that they were just the men to do so. The distinctions betreen the cycloid and the trochoid are given correctly, and in exact accordance with our criticism, in fill's $«$ Differential Calculus, and in page 137 of the "Examples on the Differential Calculus," by the late D. F. Gregory, fellow of Trinity College, Cambridge, one of the most profound analysts in Europe -and therefore a very different mathematician to Dr. Gregory of Woolwich.

Professor Peacock, in his collection of Examples on the Calculus, distinguishes in a similar manner, between the cycloid and trochoid. The other curves in question are thus defined by him, page 192 :-
-. If oue circle revolve upon another as its base, and in the same plane with it, it is cnlled the Epitrochoid, which becomes the Epicycloid when the deacribing point is in the circuinference of the revolving carcle. If a circle sevolve in a similar manner upon the concave part of the circumfereace of another circle, the carve described by a point is its plane is called the Hypdrockoid, wbich becomes the Hypocycloid when that point is in the circumference."

The definition of equilibrium criticised by us, begins "When forces that act upon a body destroy ur annihilate each other's operation, so that the body remains quiescent" \&c. If the words "so that" have the meaning generally adopted by persons who speak and write the English language, it is here asserted that if the forces acting on a body destroy each other's operation, the body must be at rest. It is wearying to have to repeat the cor-

[^26]rection of so obvions a blunder, bat we have again to tell Mt. Law, that the case of uniform motion has been careleasly onerlooked by his author. On Dr. Whewell's authority, it is deciared that statical forces are called pressures; bnt he does not doay what we asserted, that dynamical forces are called presenres aloo; repeated instances of such a use of the expression, may be foum in his works.
Dr. Gregory's asoertion as to the manner in which Leibnits used the term oie oion, is said to be confirmed by Barlow and Huttom. However, we need not inquire at second-hand what Leibnits baid, or did not say, because his very words are quoted at length. Now, does Mr. Law really mean to assert that in the Latir quotation vis viea is called a force? If so, all we can reply is, that he iliplays considerable fortitude under trying cireumstances.

The Latin quotation first specifies the cases in which the two thinge called vis mortuo and vis vive respectively exist-the former where there is no motion, and the latter where there is motion. Then it is added, that " where a body has been some time falling, or a bow has been some time unbending itself, or in any similar case, there is ois oion, generated from the continued infinite impressions of vis mortua," ${ }^{\prime \prime}$ perfectly distinct recognition of the truth which we asserted, that vis oina is not force, but something generated by it. Of course, the true interpretation of the phrase must be obtained from the context-not from an arbitrary translation of the word ois, which has a great diversity of meanings.
Professor Moseley's statement of the principle of vie ais to clear, that it is really marvellous that Mr. Law did not perceive that he quoted an authority decisive against him. He says vis oitos is a force; Moseley, that it is equal to a certain amount of wort of formes :" work" being previously explained to be the product of force and distance. It is also important to remark, that eis oien is not said to be work, but to be equal to work. Twenty shillings are equivalent to a sovereign, but they are not a sovereign, but differ from it in weight, sise, colour, and almost every other particular, except current value.

We will follow the example of printing the contradictory etatements side by side. The case then between the authority late quoted and our present correspandent, stands thus :-

> Mr. Late.

Fis vita of a body "is the Whole mechanical effect which it will produce in being bronght to a state of rest."

The discrepancy between "the whole" in the one quotation, and the "one-half" in the other, would be a fatal objectiou to Mr. Law's views if no other existed.

The following definitions, in which, be it observed, "force " is not even mentioned, are conclusive as to the use of the phrase vis viva among modern mathematicians:-
"The cis vicn of a particle is the product of its mass and the squaro of its velocity." Eardshaw's Dynamics, page 177.
"Since the publication of D'Alemberi's work, the term vis rira has been used to signify merely the algebraical product of the mass of a moving body und the square of its velocity."-Walton's Mechanical Prublems, page 387.
"Tbe sum of wll the bodies of a syatem each multiplied into the square of its velocity is called the ris tion of the system." -Wheweli's ElemenLary Treatise on Mechavics, page 292.
"The term ris cira is still used to express the product of the mass and the square of the velocity."-Prati's Mechanical Philosophy, page 202.
"Un appelle force cire d'un point matériel, on, plas féteralement, d'un corps dont tous les points ont les meme vitesse, le produt de son masse par le carré de celte vitesse."-Poisson Traité de Mécaniqur, ton. ii., phge 29.

The proposition respecting tie-beams was condemned by us because some of the forces acting on the beam and strut are neglected; and we showed as corroboratory proof of the incorrectness of the solution, that it led to an absurdity. Of all this our correspondent takes no notice ; but refers us to Professors Moseley and Whewell. If both these references were relevant, which they certainly are net, they would not justify a palpable and obvious error ; and we must tell Mr. Law plainly, that we should have had far more reapect for him as an opponent, if he had made the necesary correction, instead of endeavouring to transfer the blame to euthurities mo way involved in it. As for Professor Wallace's adoption of the problem, we can only say that in this instance he has made an unfortunate selection.

By inserting the word "uniform," in quoting our remarks upen page 193 of the "Mathematics for Practical Men" Mr. Law makes us talk nonsense. However, we freely admit that we hare
inadvertently misteak the purport of one of Dr. Gregory's sentances, and though what we sajd was true, omitting the word which Mr. Law forces upon us, Dr. Gregory's sentence with that word is perfectly correct also. Mr. Law unnecessarily injures his case by a quotation from Dr. Whewell, which has not the remoteat connection with the subject. Dr. Whewell speaks of accelerated velocities in the several bodies: Emerson and Gregory, of uniform velocities only. The law stated by the two latter depends for its proof on wholly different principles to that enunciated by the former. The connection between them which Mr. Law attempts to eatsblish, is of that kind which exists between the 1st of March and the foot of London-bridge. We have not the slightest objection to let the whole dispute between us and our correspondent rest on the reply of any real mathematician to this question:Does not this attempt to confound two principles essentially different display either the most profound ignorance or the most hopeless confusion of thought respecting the science of exact mechanics? If Mr. Law can get one competent umpire to answer that question in his favour, we will give up the whole controversy.

The idea respecting the natural slope has the merit of originality. Mr. Law "prefers" giving it a meaning which it has not hitherto received. He says, the natural slope is the slope along which rupture would take place if the revetement wall were removed. Now, the definition of natural slope, as ordinarily used, is that it is the oery slope along which rupture cannot take place-its friction being just capable of sustaining the superincumbent mass without the assintance of the wall.

We are next said to have misunderstood Dr. Gregory respecting the conditions on which he discusses one of the cases of the equilibrium of arches. This is mere assertion. We repest the coun-ter-assertion, that in the case referred to, conditions are assumed which, quite independently of all statical considerutions, render it impossible that the arch from its mere form could be overturned. Mr. Law says that " no such conditions are assumed, or indeed necessary." Not necessary, indeed! Why, they make Gregory's lucubrations nonsense. Does Mr. Law mean to infer, that sometimes it is necessary that Gregory should talk nonsense?

Then follows an accusation against us, of having maliciously misquoted and perverted the words of the book under review. The best answer to personality is silence.

With regard to the "sareful and often-repeated experiments" which Mr. Law asserts to have been repeatedly made, we have already explained, as clearly us we could, the confusion here made between mechanical experiment and pure geometrical measurement of distances. The words, "uniformly retarding force," involve the very conclusion which is declared to be the result of numerous trials; just in the same way that the first proposition in Euclid is a pure deduction from his definitions. Experiment would be as preposterous in the one case as the other.
The following quotations, the former from Moseley's Principles of Engineering, the latter translated literally from Poisson's Traité de Mécanique, are offered in a faint hope of clearing Mr. Law's ideas respecting the resistance of inertia:-
"So many dificultics, however, oppose theuselves to the introduction of the term ris znertice, associated with the detinitive idea of an opposing force, into the discussion of questions of mechanics, that it has appeared to the author of this work desirable to avoid it."-1'rinciples of Engineering, page viii.
"It is important to rectify an inexact expression, which is often employed and tends to a confusion of ideas. I magiue that a body is placed on a horizontal plane, and that it is not retained by any friction. If I wish to make it slide on this plave, it is nevertheless necessary, on account of the inertia of the maller, that I exert some effort; if to this body he added u second, then a hird. \&c., it is necexsary that I employ, to produce the same degree of motion, a force more and more considerable. I shall in each case experience a sensation of the effort which I shall be obliged to exert: but 1 ninst not thence conclude that the matter opposes any resist. ance to this effort, and that there exisis in the bodies what is very improperly termed resistunce of inertin. Whed any one expresses himself in this manner, he confounds the sensation which he has experienced, and which results from the effort which he has made, with the sensation of a resistance which does not exist."-Traité de Mécanique. No. 120.

Respecting the problem of the weight oscillating at the extremity of a flexible string, Mr. Law himself shadl be umpire, if he will promise to make the following experiment :-Let the oscillating weight descend a vertical distance of one foot, and let the peg interfere with the string at a distance of one inch from the weight. If, then, he find the string so accommodating as to stretch itself out the odd eleven inches, necessary to permit the weight to rise to the former height, we will acknowledge ourselves beaten.

The propositions printed side by side after the next paragraph, amount to this: If a body ba in one place, quoth Emerson, it ought to be somewhere else. To which Dr. Gregory responds, Amen.

From the manner in which Mr. Law meets our criticism upos his author's erroneous definition of centrifugal forces, we infer that he finds there is no tenable defence. Healso candidly acknowledges two other mistakes, and therefore we have nothing further to say of them. Our remark on the equality of the total forces of compression and tension in a beam, were manifestly restricted to the particular case under examination-that where there are not appreciable horizontal forces acting externally on the beum.

It is important to observe, that throughout Mr. Law's letter, he never discusses any question on its own merits. He contents himself with appealing to authorities. This course is at least dexterous for with the unlearned an array of imposing names is but too apt to carry conviction. The authorities quoted are, however, easily disposed of : several of them are of little weight when opposed, as we have shown them in several instances to be, to the most profound continental writers. The rest of the citations are either irrelevant, or make directly against Mr. Law's tenets. Had he suffered the controversy to rest on its own abstract merits, our task would have been more easy to ourselves, and more satisfactory to the cause of truth. It would be an insult to his understanding, to suppose that he did not perceive that muny of the errors which he defends by quotations were, in reality, indefensible in any other way. Casuistry and perverse ingenuity, however well suited for mere disputation, are never the weapons of a man of science.

Mr. Law seems very fond of appealing to Woolwich Professors. Why did he not quote Mr. Davies or Mr. Rutherfordgentlemen who have acquired for themselves reputations not confined to the regions of Woolwich? It is very unfortunate, that the only two works written by Woolwich mathematicians which we have lately had to review, have been anything but very creditable to the scientific character of that institution; and this is the more to be regretted, since, as we have already hinted, inaccuracy in conceiving physical ideas, and clumsiness in developing them analytically, are not common to all the Professors-at least to all the Teachers-of the Royal Academy.

SANITARY LAWS AT HOME AND ABROAD.

The most destructive scourges of the human race are the epidemics and contagious diseases produced by a polluted atmosphere, and the congregation of men in crowded cities. Famine and the sword slay their thousands-the pestilence that walketh at noonday and in darkness its tens of thousands. The ravages of war and want are, partially at least, within human control; but when the destroying angel comes, borne on the breath of "quick pestilence," human skill and energy are all but powerleas against him This sudden destruction, moreover, is not all that is caused by the infected air and artificial habits of populous places. The maladies indirectly induced, the remote consequences of a morbid habit of body which renders it a kindly soil for the future seeds of death, the degeneracy of sickly offispring who reap in a later generation the bitter fruit sown by their parents-these are among the penalties which the denizens of large towns too often pay for inhaling the hot vapours of the foundry or furnace, or breathing the stagnant air of crowded courts and lanes, where overhanging house tops shut out the pure breath of heaven.

Prevention is almost the sole defence against these evils; for when once developed, they are either too sudden or too deeply rooted to admit of effectual remedy. A curious chapter in the history of the internal economy of states is that which the various sanitary provisions adopted under different forms of government. Nations working for the same end, the public health, seek it by entirely different means. On the Continent, where the rights and liberties of individuals seldom constitute a serious obstacle to Stato purposes, the most stringent sanitary regulations have long existed and the surveillance of police, which is almost unknown in England, constitutes the principal means of effecting them. Here, the public jealousy of state interference, and a sensative regard for the rights of property, have long prevented the ingtitution of a peneral organised sanitary system. The Public Health Act, which will soon be the law of the land, makes the first provision for such a system in England ; and it becomes, therefore, interesting to compare it with the machinery adopted for the same purpose by our continental neighbours.

The Public Health Act comprises two parts, the construction of a new Central Board of Health to put it in motion, and of Loosd Boards, for the purpose of carrying its details into effect. As the
fanctions of these former and latter are entirely distinct, they may be stated separately.
The Central Board of Health consists of three commissioners, and the President is the first Commissioner of the Woods and Forests for the time being. These commissioners, upon the petition of one-tenth of the rated inhabitants of any town, may direct an examination as to its sewerage, drainage, supply of water, \&c.; and after hearing the representations of parties locally interested, may report to her Majesty. An order in Privy Council may then be made directing the application of the Act in cases where existing local Acts are not infringed upon, and the local boundaries are intended to remain unaltered. This order simply directs that the Act, or any part thereof, is to be put in operation.

Where, however, it appears necessary to alter the constituted local boundaries for the purposes of the Act, or to apply it in cases where local improvement acts already exist, the order in council is not made ; but the General Board of Health have power to make such a provisional order for the application and execution of the Act as they may deem fit. This provisional order cannot be carried into effect until it have been sanctioned by Parliament. The orders issuing either from the Privy Council, or from the General Board of Health may, from time to time, be amended or extended, after due notice to persons locally interested.
The only other functions of the General Board are to determine appeals from certain derisions of local general boards, and to regulate intra-mural interments, by certifying upon the representation of the local boards, that certain places of interment are dangerous to health, and appointing a time after which it ceases to be lawful to bury in such places.

The Local Boabds have much more diversified duties. When the whole of a district formed under this act is within a corporate borough, the corporation constitutes the local board. In other cases, it is selected by rate-payers. The offices assigned to it are principally these-to appoint inspectors of nuisances and officers of health-to prepare maps exhibiting a system of sewerage-to assume the control of public sewers, and purchase private sewersto alter, extend, and cleanse the same-to cleanse and water public streets-to provide public necessaries-to register or provide and regulate slaughter-houses-to prevent (subject to an appeal to the general board) the establishment of noxious manufactures, and the erection of churches, hospitals, factories, or any other large building, without proper means of ventilation-to register, and if necessary, cleause, or disinfect common lodging-housesto reatrict the use of under-ground cellars as dwelling-rooms-to level and pave streets-to move water or gas pipes, provided that their use and efficiency be unaffected-to prevent (subject to appeal to the General Board) the laying out new streets of objectionable width and level-to purchase premises for the purpose of widening streets-to provide public walks and pleasure-grounds -to construct water-works-to compel occupiers of houses to receive a proper supply of water-to supply cisterns and conduits for gratuitous use-and to levy rates for the purposes of this act. In cases of damage by the acts of the Local Board, compensation is to be made; and if its amount be disputed, it is to be settled by arbitration. The bye laws of the local boards are to be submitted to the Secretary of State for the Home Department for his approval.
It will be seen that in the actual administration of the act, little or nothing is assigned to the Central Board. The power is almost entirely in the hands of the Local Board, which is not amenable to the General Board for acts of omission or commission, except in one or two instances above referred to, in which appeal may be made. And as the Local Boards are popularly selected, the power of putting the act in force ultimately belongs to the great body of inhabitants of the districts affected. There seems, therefore, little reason to fear that people will be compelled to be clean, and drink wholesome water, and breathe fresh air, against their own free-will and consent.

On the Continent, however, the popular voice is not heard on these questions; and the power of enforcing measures for public health, is vested almost exclusively in central or government boards. It must be acknowledged that, notwithstanding the greater stringency of sanitary regulations with France and Germany, the practical effects of them have been even more imperfect than in England. In Paris and Vienna, the gewerage, drainage, paving, lighting and cleansing of streets, are far less complete than in London. On the other hand, our neighbours have local advantages wanting here. The boulevards, and other public walks of Paris, are far more extensive in relation to the number of the population, than the parks of London; and are aleo more easily accemible on account of the less size of the former city. There
are no cattle markets within Paris, and the alaughter-houses are removed to the suburbs. Vitriol manufactories, and similar abominations, are not suffered to pour their pestilential vapours into the very heart of the city, nor consume human life and vegetation as they do in the close vicinity of this metropolis. Intramural burials have long been prohibited in Paris, and are of very rare occurrence.
The sanitary state of the capitals of France, Austria, and England, is partially indicated by the rate of annual mortality. It appears from the returns of the Registrar-General, published in 1845, that the average annual mortality for every hundred inhabitants of

$$
\begin{aligned}
& \text { Vienna, is about } 4 \cdot 898 \text { per cent. } \\
& \text { Paris (department of the Seire) } 3 \cdot 038 \\
& \text { London } 8 \cdot 392
\end{aligned}
$$

But, of course, the rate of mortality is influenced by many other considerations beaides sanitary regulations; the vicissitudes of climate and the habits of the people having important effects on the duration of life.

It is comparatively recently, that Paris assumed the appearance of a well-lighted and well-paved city. The idea of paving it is said by Faderé, a copious writer on the hygiene of France, to have originated with Philip Augustus, who, looking out of his palace windows one rainy morning, and surveying the marshes in which his capital was built, conceived the brilliant idea that it would be a convenience to himself and subjects to walk upon dry ground. So early as 1486 an ordonnance of the Prevot of Paris prohibits the erection of noxious and offensive manufactories within the town; and the records of French municipal law refer to many subsequent regulations of a similar kind. No very effectual or important measures seem, however, to have been taken till after the great revolution; and to Napoleon, the most uncompromising of reformers, is due the credit of founding the present system of law regarding public health. His attention having been directed to the insufficiency of the existing laws on the subject, the Academy of Sciences was consulted, and the class of physical and mathematical science reported to the Government, on the effects of various manufactures on the health of the people. On this report was founded an imperial decree of 1810 , subsequently confirmed by a royal ordonnance of 1815 , which, with some modifications suggested by subsequent experience, constitutes the modern sanitary code of Paris. For an account of it we have consulten, amongst other works, that of Foderé, last cited ; Trebuchet's Code Administratif des Establisscmens dangereuses et insalubres (8vo., Paris, 1832); Parent Duchatelet's Prostitution dans le Ville de Paris (8vo., Paris, 1836) ; and the Hygiene Publique, of the same author.

The principal feature of the decree of 1810 was the division of noxious and offensive trades and manufactures into three classes, the first consisting of those so prejudicial to life and vegetation as to be required to be moved to a distance from human habitations; the second and third of those noxious in the less degrees. The distinctions between these three classes are carefully defined, and the exactness of the definition is practically of great importance, as the mode of applying for licenses for their establishment are different for earh. 'The formalities necessary previous to the erection of a manufacture of the first or most dangerous class are very numerous and stringent. After notice publicly advertised of the intended application for license, the Mayor of the commune (or in Paris the Cummissary of Police), reports on the nature of the localities infected, the distance of habitations, and the character of the processes to be employed. This investigation is technically termed the inquiry de commodo et incommodo. His report is referred to the Conseil de Salubrits, a body which takes cognizance of the establishment of all manufactures, which are "classified," or included in either of the classes above-mentioned. The Conseil de Salubrité delegates a sub-commission of its own members, to examine the locality of the proposed manufacture, in company with the Mayor, and to report upon the nature and importance of the manufacture, its salubrity, or inconvenience, the rate of flow of water required in its processes, the sufficiency of the apparatus, the merits of the principles on which it is constructed and applied, and lastly, on the admissibility of the application, and the conditions on which license should be granted. This report of the sub-commission is presented to, and discussed by, the general board. Among the other functions of the Conseil de Salubritt included the inspection of barracks, prisons, markets, and other public buildings. Besides the Conseib de Salubrité at Paris there are similar bodies at Marseilles, Lille, Bordeaux. and other large towns.

The Architect-Commissary is another public officer who discharges most important and valuable duties. A detailed plan of the pro-
pared meaufnotory is submitted to him before the commencement of the building, and on its completion, he inspects the details of the workehopa, furnaees, chimneys, and other parts, and determines whether the laws and prescribed conditions have been strictly observed in their construetion. He mant also also assure himself, an far as posaible, of the stability and security of the baildiags, both internally and externally, and ascertain whetber the arrangements and situation agree with those indicated upon the plan previously deposited with him. M. Trebuchet, who rpeaks from practical experieace as chief of the office in the Prefectare of Police which takes cognizance of establishments affectizg public health, remarks, that this verification by the plan would be greatly facilitated if all plans were required to be laid down to the same scale ; for instance, five millimetres to the metre. The ArchitectCommissary hae another very important duty. Whenever it becomes necessary to elassify an altogether now manufactory, he is consulted ss to the class in which it is to be placed. Upon all complaints against existing manufactories, his opinion is also required.

The actual execution of the laws respecting manufactories is assigned to the Mayor of the commane. His vigilance must be exercised to see that they are never infringed or evaded; and it is his especial office to maintain a surveillance, so that no manufaetory be established without the requisite license.

To the Prefecture of Police the saprome municipal power belonga. The Prefecture instituten periodical inspections of authorised manufactures, and on its authority the execution of all official acts depends.

Steam-engines are put under a peculiar system of regriation ae the ordinary laws respecting classified manufactores are not entirely applieable to them. As a general rule, stationary enginem 2 are ranked in the third class of mannfactories. The rules for highpressure steam-engines have been so greatly altered from time to time, that it is scarcely worth while to refer to more than one or two of the most important. All high-pressure engines are, or used to be testod hydrostatically to triple their intended working pressure which is then marked apon them by a government stamp. Every new steam-boat is inspected by a commission of engineera appointed by the prefecture of police, and is required to have on board a person duly qualified to superintend the machinery, and see that it is in proper working order. Captains of steam-vessels are compelled to register the limit of their nambers of passengers, and are made personally liable for accidents arising from overcrowding or excessive speed.

The sewerage of Paris has been made the subject of that scientific and systematic inquiry which charaoterises the public administration in France of all matters relating to the acts. It appears from the Hygiène Publique of Parent Duchatelet, published in 1836, that the total length of sewers in Paris, was

Some of these sewers are of great size, and have been excavated at great expense. That of the Rue Rivoli was excavated at un expense of $\mathcal{Z} 32,000$, and with a solidity and excellence of workmanship which appears extravagant. Another of the largest sewers, that under the Rues St. Denis and Du Poncean, contains the pipes of pure water which supply the fountain of the Place des Innocens. Napoleon took great interest in this work, on account of the novelty of the application of the sewer to the purpose of conveying water, and examined it in all its details.

Paris atands on a gravelly alluvial soil ; and the level above the bed of the Seine, is so small as to render inundations of frequent occurrence. This circumstance increases the difficulties of emptying the sewers of which the river is the general receptacle. The impetuosity of the current during winter has, however, the effect of preventing a permanent accumulation of impurities in its channel.
In supplying Paris with water, the conduits from the great aqueduct pass through the sewers. The practicability of rendering the sewerage serviceable for the purposes of agriculture, is recommended in a memoir presented to the prefect of police in 1835, by a sub-commission of the Conseil de Salubrit'; It appears from the same authority, that the quantity of frecal matter deposited in the Seine, is so small as to have no appreciable influence on the purity of its waters; and in a report of the Academy of Sciences, it is stated that the volume of water supplied by the fowing of the seise, in a given time, is 9,600 times that of the utmoot amount
of inpare mantances which case bo doposited in it daring ano e per iud.
In Austris the manitary institutions of the whole empire are placed under one gemeral syatem, which appears to be carried out pa an effectual manner. The lawa ralating to public health belong to the bent part of the imperial code; and there are fow countrien in the world of which the medical institutions are cenducted on such a magrificent ecale. The administration of them is eotroated by the Autrian Government to a dnly qualified corps of officers at the head of wbom, in every province, is a chief officer, called the Proto-Medicus; and in every circuit there mre sab-officers who congtitute boards of health for their own districts. The functions of the Proto-Modious are to inspect medical institutions honpitals, lunatic asylums, and prisong, to regulate the medical police and report on epidemaics. The poor-law system of Austrin providen for the gratuitous supply of medicine to the poer, and the attendance upon them by the district medical officars.
The Austrian police imspect all food exposed for sale, and have the power of examining houses and lodgings to ascertain that they are in good and healthy condition. All barial griounds are requirel to be at a distance from towns, and the instances in which burim in family vaults is permitted are exceedingly rare.

The vicinity of Turkey readers the quarantine laws of Azstris very strict. A military cordon of 4,900 men is always maintained on the Turkish frontier, and the number can be increased to ten thousand on occanions of danger. Owing to the vigilance thras exercised, it is asserted that the plague has not crossed the frontiet for upwards of a centary.

On the whole review of the Continental and English sanitary systems, the essential distinotions between them appear to be that the former are administered by central, the latter by real, povernment ; the former makes public health a matter of state policy, the letter of popular discretion. Our own system has the advantage of pleasing the governing power in the hands of those whote personal observation renders them the beat judges of local wanta, and generally the most mealous protectors of local interests. The ques tion whether they will prove also the most streauous promotery of sanitary improvements, must be determined by experience alose In numerous cases, the intelligence of the beople will dietate, that public health be regarded as the paramount object. Other local bodies, from motives of false economy, may refuse to tax themselves for providing the means of health, or from apathy, mary decline to exercise vigorously the powers of the most confided to them. Yet, these cases will be exceptioned ; for the most prejadiced and the most indifferent must learn, sooner or later, that sordid neglect is never cheap. Health is wealth; for health given energy and hope; and these beget industry and frugality, whict are the sources of all wealth. But equalor and disorder are lifeconsuming, and the very canker-worms of social existence: they beget sloth and indifference-and these are spendthrif: they beget crime and disease-and these destroy.

WATERLOO EXTENSION OF THE LONDON AND SOUTH-WESTERN RAILWAY.

The extension of the London and South-Western Railway from Nino-Elum to Waterloo-bridge-road, was opened on the 1lth ultimo. It appeare to e that it woold have boen far better if the Waterloo Station bad been made on the vacant ground adjuining, north of the present Waterloo terminus, and the principal entrance in York-road. The entrance to the railway wonld then have been as near to Westurinster and Hungerford-hridges as it is now to Waterloo-bridge, without increasing the distance to the latter place, or the length of the railway. This alteration might now be easily made ; it moold save nearly half-a-mile, and eight minutes' walk, to foot passengera from Westminster and Charing-cross; the present approachea might be retsised for a goods depôt-and if a steam-boat pier were made arjoining to the Surrey approach of Hungerford-hridge, and arrangements made with the steam boats to come direct from London-bridge to the pier, the extension d the railway to London-bricge might be abandoned, and therelig nearly a million sterling saved. This would, weare sure, enhance the value of the shares, and give confidence to those capitaliats in the city who are now alarnad at the apparent recklesi manner in which fundzare being expeaded by rio. ways on branches and extenaions.
"The works of this undertaking were commenced in Jaly 1846, by Mears. Lee, the contractort, who engaged to complete the work
ay the lat July, 1848. Mr. Thompson ected as the saperintenden to the contractore, and Mr. Curlien on behalf of Mr. Locke, the en gineer. The length of the new line is nearly $2 ;$ miles. The first quarter of a gile is carried over an embankment; thets ancceeds a viaduct, con tatios of six masaive iron girder bridgen, and 300 arches (exclusive of thoee forming the present mation in the Waterioo-rond). These arches, which are expetted to form a very considerable item in the receipts of the company, have been so carefully constructed, as to be easily applicable to varions parposes, and their perpetanl dryacss has been insured by the applicatlon of the Seyasel asphalte, which has rendered them impervions to wet. There are four diatinct lines of rail, and the quantity of iron alone conanmed in leying down what is technically called the 'metaln,' is at least 1200 tons, independently of about 800 tons weight consumed in the erection of the bridges. In the constraction of the viaduct and atation of the Water-loo-road, upwards of $80,000,000$ of bricks have been consumed; and the present serminus, which is all on arches, covers a space of three-quarters of an acre of gronnd, ita width being 260 feet. The major part of the present terminos has been coated with Clanidge's asphalte, so that the arches on which it reats may with safety be made nse of as storehousen, \&c. To the present terminus in the Waterloo-road there are no less than foar approschem for carriages and foot-passengera, the pedeatrians having in each approach footpaths 8 feet in width. The stations at both Waterloo-road and Vaunhall are only temporary. The fares on the main line are increased as follows :- First clase, 6d.; second class, 4d.; third clase, 2d. The Nine Ihat atation is now elosed entirely to passenger trafic."

STEAM-ENGINE GOVERNORS.

We give the following extract of the Daily Netos, from the police reports of the Mansion. House of the 22nd ultimo, as some allusion is made to our Journah, and to state that we were much surprised, after the ex posare of the letters therein given, that Mr. Cousens should heve had the andsciomanest to end us the paper for publication. Immediately after its receipt we returned it to the anthor, sad ordered to be cancelled an introductory paper on Steam-Engine Governors, which Mr. Cousens aent ni previously to the appearance of the police repurt. We trust tbat Mr. Woods' praiseworthy resolution may deter othera from attempting a similar proceeding. It is fortunate for Mr. Cousens that he had soch a lenient magistrate to hear the case.

Nanation- Hoate, July 22, 1849.-Alleged Astempted Extortion of Money--Mr. R. D. Coosens, of No. 4, Bedford-place, Old Zent-road, apoeared to auswer a charge of having offered to prevent the printing and publinhing of certain matters touching the complanant fith intent to extort movay. The charge was brought upon the 6 and 7 Vic., cap. 96 , sec. y, and it was stated, for the prosecution, that the defendant had by menns of the following letier enceavoured to eccomploin his purpose:-
"A, Redford-plece, Old Kent. rond, July 8, 1848.-Sir, - 1 have written for publication a smali treatise on the cause of the ine Pim ciency of steam. engine governors; and in laventigatlas the primeiples of the chronometic governor, of which you are the paterite, I And mpreif cosppelied to speak of it in a way which may, perhaps, leasen its ralue as a commeretal speculation. Now, as I write only for pecuntary protic, I am willing to withbold the pader from the public eye, if, afer perusing the eccompanying copy of that part of 4 which concerns the ehronometric governor, you feel dibposed to purchase it at a fair remaperation. It is quite immaterial to me whether it be read by many or by one, Whether it be preserved in the pages of a sctentific periodical or dentroyed, if I probt hy 16. It is ungrecenary to say more in explanation of my cbject in tradamitting to jon the M8. copy. I shall merely mdd to coscluasion, that after Wednesdey, the 12 th instant, I ghall feel at liberty to forward the original to the publisher, uniene I am previonaly favoured with some commanceltion inducing no to withhold it--Hobert B. Cousens.To Joeeph Woode, Eeq."
Upon the recelpt of that commanication Mr. Woods sent to the writer a note, to which the following answer was returaed by that genuleman :-
${ }^{6}$ Eedford-plece, Jaly 10.-Measra. J. Woods and Co.-Gentlemen, - In obedieace to your request 1 have 20 sequalirt you thas my paper on 'governors,' if published in ove of the pertodicals, will moal likely appear in the 'Civil Engineer and Architect's Journal;' but that 1 an pet nodecided as to whether it shall mppear in a pertodical or form part of a eparate pemphiet on that and apotber part of the steam-eogine. In all probabilty It sboald purrace the latter cosirne, as being the more remunerative. Robert 8 . Cousens."
After be had received the second letter Mr. Woods recolved not to submitt to be rictimised, and, haring it in his power to produce wituesses in aupport of the charge, was trised to sepresent the case at the Mabalon-House. - It was now urged for the defenca that the case was one in which the magiatrate had no jurisdiction, all the act of perliament directed that, In case of a libel, the person necused should be proceeded againat by indietmeat. The offer made could not, it was mald, be conatrued into au offer to refrala from pabliobing a ulbel upoa the patestee.- Alderman Gibbe andid it wan undeniable that We hetter wis written for the purpose of anialigg money. - Mr. Humphreys cuptended agaloat Mr. Bobler's vew of the case that the magistrate had the power to compel the defesdant to appens to anawer an indictment as upun a charge of felony or misdemeanor of an ondimary description made before him. The charye againat the defoadant was clearty misedemeanor, as dectared by the statute, and indiciable at the sedaiona, and he enbmitued thes the masiatrate had full juriadiction as to holding the defendant to ball.Mr. Hobjer ald if Mr. Woods considered that an offence bad been commltiod he had his remedy. He conld go to the grand jury with his indictment, and if they found a true olll be could briog the matter to trial; and it the defondant was found gulity, paniahmeot moald be indilied; bat it would be a very difficult matleer to show his client's Minoility under aveh circumatarcen.- Mr. Humphreys: The charge against him to that he has etlesapted to extort money by means of ibrents.-Nr. Hobler maid that if Mr. Consers med threats, those threata were by no means conveyed in inncuage of which cognisance could be talen.- Alderman Gibbs ald be cruld not see that tine lether was aliluel upon Mr. Wooda, or that it contained matier of which he could tale any notice, whatever zenderey and jatenilion it might have bad to extort moner. He ahoula therefore diamisa Lbe ous.

NOTES OF THE MONTH.

The Athenarm and the Engineers.-The Afkencum of the 15th ult contains some remarks in reply to oar's of last month, with regand to Mr. Chadwick. the Military Engineers, and the Metropolitan Survey. The Athencam has replied to our remarks, as if we advocated the employment of the Surveyor's Association; whereas, we did not advocate the employment of that association, or of any particular individual or individuals. We objected to the employment of the military engineers, and named several civil engineers, who were quite competent "to condoct a trigonometrical survey, which involves the nicest points of astronomy, and requires all the resources of mathematical analysis." We again refer to the minutes of proceedings of the Institution of Civil Engineers, in the columns of our conteinporary, as giving ovidence of the attainments of the members in all respects, as oxemplified in the discussions on atmospheric resistances, the atmospheric railway system, and the many mathematical debates which have occupied the Institution of late years. We now refer our contemporary to the account of the Ordnance survey of Liverpool given lo a report lately issued by the borough engineer, and which we shall publish next month.
Sonth Hackney Church.-This has been three years under construction by Mr. Hakewill, and was consecrated on the 20th of July. It in in the Early English style, and in the sbape of a crosa, and is executed with great care and solidity. The cost was $\mathbf{£ 1 5 , 7 0 0}$, besides land. The length inside is 172 feet; outside, 192 feet; width across the nave and aisles 01 feet, and transepis, 92 feet ; height inside to roof, 00 feet, outside to top of spire, 187 feet. There are eight bells, and several painted windows, and a large sum was laid out in decorution. This is a building which possesses considerable merit; for too much has not been attempted, and a good effect has been produced. The proportions are well kept, and an air of grandeur and chasteness preserved.

Indepeadert Chapels.-We are glad to see that such an advance is being made by the Independents in ecclesiastical architecture. Mr. Edward Walters, an architect of ability at Manchester, has been employed in erecting a chapel in Cavendish-street, in that city. It is in the mediaval style, with a tuwer and spire risiug to the total height of 171 feet from the ground, and cost $\mathbf{~} 24,000$; so that it will be seen that it is an importaut bailding, as it is one likewise highly ornamental und artistic. Another chapel, erected by Mr. Walters, at Darwen, cost $\mathbf{£ 5 , 0 0 0}$. A peculiarity in thia building is a kind of acreen raised above the ronf; which, thougb of beantiful design, baving no idea of usefulness attached to it, conveys to the mind an impression of superfluity.

Safety Mininf Lanthorn.-Mr. Crane, of Birmingham, has forwarded to the Alining Journal the following description of a mining lanthorn that he has invented. The annered drawing is a representation of the safety-lanthorn:-It is adapted to born composition candles that require no snuffing. The same principles can, however, be applied to oil lamps, if any party prefer oil to candles. The front is made of strong glass ; the back of polished tin-the two sides of wire gauze, soldered to the framing, having 900 aperturea in a square inch of surface. It will do coarser: but the size stated is safest. Olver the wire gause sides are fixed covers if tin, hinged to the top of the lanthorn, which cotirely cover the sides, and are kept fast by a small hasp at the bottom. The lower edge of each tin cuverside is beat inwards to rest against lie framing- s^{0} that the tin plate may be kept at I distance of i inch from the wire ganze. Suasient space is thus provided to allow of the pastage of air for the supply of the light.-These is coversides are useful to protect the wire gave irom injury and dirt, as well as to stop any curent, or "blower," of gas from blowing oot the light. No direct current of wind can have any effect upon the light, because there is no admission into the lanthorn but obliquely at each corner. The candle is held between four short wires, soldered in the dish of a moveable socket, which fis into a socket soldered to the bottom; this candle socket is useful for retaining any waste fut that may run down; it can be lifted out by the wire baodle, and cleaned, whoa necessary. The inside of the lanthorn is thus kept quite clean. The candle is put in through the neck on the top of the lanthorn, upon which a hinged lid 6 its down tightly. The lid is pierced with two rows of holes, through which the heated air and smoke escape; and to the top is fised a large ring, by which the lanthorn is carried and hung up. This ring is kept cool by a simple, but effective, contrivance. A piece of tin, bent into the form of an inverted cone, is soldered inside the lid, which causes the hot uscending air to flow towards the sides, where it immediately escapes through the openings. To prevent any inflammable gas enteriug through the lid, a circular dise of wire gauze is soldered inside the rim of the lid -so that no gas can enter but through the wire gaure; this wire gauze will never become red-hot, so that no explosion can possibly occur. The size of lanthorns made is about 5 inches square, and 12 inches high; other parts in proportion. The inside of the tin coversides, and the outside of the lanthorn, are japanned of any dark colour.

The Soap Plant.-In California this plant is used by the people for washiug every description of cluthing in cold running water. In using it as soap, the women cut the roos from the bulba, and rub them on the
clothes, when a rich and strong lather is formed, which cleanses most thoroughly. To propagate the plant the bulbs are set in a rich soil, and grow luxariantly in the soft bottoms of valleys or bordering running streams.

Cupper Sheathing.-A correspondpat of the Mining Jomrnal states, as the consequence of his expericace, that, in the treatment of the sulphurets of copper, there should be one calcining, one roasting, one smelting, and one retining-four operations in all; and that care be tuken that no iron tools be used, except the ladles foi the refining process. The carbonates of copper require only two operations-smelting and refining; but if copper pyrites be mixed with the earbonate, it will require three operations instead of two. By attention to these operations all foreign matter will be diseugaged. The production of good malleable and pure copper depends on the refiner; the copper is brittle before, and should be stirred with a wooden rod. It requires conniderable care to keep the metal to a proper heat ontil the moulding is faished, to give it due ductility, and nuke it saitable for the demads of commerce. In general, most operators go too far in the refinery, which readers the metal fibrous, and the result is serious lamination on one side of the sheet. If the copper ore is properly treated in the above operations, this metul is decidedly the best fur ships bottoma. The per centage of copper is also much increased by careful treatment, and the scoria comes out cleaner.

Method of Welding Iron, Steel, and Sheef.Iron.-In an earthen vessel melt borax, and add to it $\frac{1}{10}$ th of sal-ammoniac. When these ingredients are properly fused and mixed, pour them out apon an iron plate, and let them cool. There is thus obtained a glassy matter, to which is to be added an equal quantity of quicklime. The iron and steel which are to be soldered, are first heated to redness; then this compound, first reduced to powder, is laid apon them-the composition melts and runs like sealirg-wax; the pieces are then replaced in the fre, taking care to heat them at a temperatare far below that asually employed in welding: they are then withdrawn and hammered, and the surfaces will be found to be thus perfectly united. The author asierts that this process, which may be applied to welding theetiron tuhes, never fails.-Rec. de la Soc. Polytech.

Dolfing Electric Telegrayh.-A patent has been recently granted in this conntry to M. Dujardin, of Lille, for a new kind of electric telegrapb in which the signals consist of dots made on paper. The telegraphic pen is fased to a magret, and it marks dots on a revolving traversing cylinder. The dots, by a previons alphabetic arrangement, are made to signify letters, each letter being characterised by a certain group of dots. The process is complicated, and must necessarily be a slow one; nor doen the inventor, who is a physician, seem to have been aware of the invention of Mr. Morse, which accomplishes the same olject more efficaciously, and with a much less complicated mechanism; Mr. Morse's alphabet consisting of short and long strokes, by which means tbe letters of the alphaliet may be indicated by a smaller number of marks than by dots of the same size.

Time Signals.-Mr. Torrop, of Edinburgh, has patented an apparatus for giving notice of the approaching departure of railway trains, 80 as to supersede the use of bella or whistles. The apparatus cunsists of a hollow pole erected vertically at any convenient part of the station where it may be most advantageonsly seen both by those at the station itaelf, as also by those hastening towards the station. Upon the outside of this pole is placed a large ball, the pole passing through a hole through the centre of the ball, anficiently large to allow free motion up and down the pole. The hallis auspended by cords, attached at the bottom of the pole to a clockwork movement, having a pendulum, the vibrations of which regulate tie descent of the ball apon the polc. When the spring of the clockwork is wound up, the ball is raised to the top of the pole, which then begins tu descend to the bottom of the pole, being regulated in its velocity by the clockwork and pendulum. The time of its descent will therefore lo regularly the same each time the ball is raised to the top and then allowed to descend. The ball being reised to the top of the pole at the adjusted period of time (say ten minutes before the departure of each train), and then allowed to descend, the position of the ball upon the pole during its descent will gire notice of the length of time to elapse before the departure of the train. During the night a lamp is to take the place of the ball.

Afew Degrees of Difference.-In an action recently tried in the Court of Queen's Bench, the question was raised whether the variation of three degrees in the inclination of a wood pavement constituted an infringement of the patent right. The defendants (Badaile and C . .) were licensees under Rankio's patent for wood pavement, and the plaintiffs (Hulse and Co.), entered into a covenant with them to pay certain royalties if they infringed apon the principle of Parkyn's patent. The principle was the inclination of the fibre of the wood to the horizon; and that was described to be from 40 degrees to 70 degrees. The defendants laid down parement in Corahill and at a bringe at Chalk-farm; and the blocks they laid down were at an inclination of 73 degres. The contention for the plaintiffs was, that althongh the inclination was not within the precise words used in the deed, atill that for all practical purposes there was not the slightest difference between 73 degrees and 70 degrees.-Mr. Justice Wightman, in summing up, observed, that if parties chose to bargain in specific terms they must abide by their hargain, and though in practice the two inclinations mentioned could make no difference, atill the terms of the covenant were express therefore, onless the inclination adopted by the defendants was within that limit, the plaintiffis on that ground were not entitled to recover. The jury therefore gave a verdlet for the defendant, the plaintiff having liberty to move te enter a verdict of 30 L .

College for Cicil Eugincers.-On Tuesday the 18th ult, the yearj ex amination of the students of the College for Civil Engineers was held a Putney, and was attended by H.R.H. tbe Duke of Cambridge, and many of the aristocracy. The college seems to be advancing in public opiaion We inspected the druwings, models, workshops, and other practical departments, which we are happy to say show considerable advance. ment in the knowledge of engineeriag. We were sorry on such an ocession, and in an Instifution so promising, to mee year after year, in the workshops, such schemes as the locomotive air-engine, and the imitation of Hero's rotary engine; fur in an establishment like the college, it is better to be too far belind-hand, than to be suspected of running after whas savours of visionary projects.

HIST OF \#SW PAMENHE.

granted in england thom Jung 24, to July $18,1848$. Sis. Monthe allowed for Barolment, wales otherwise expreased.

Desne Samuel Walker, of London-bridge, merchunt, for "Improvementa in the mana theture of bands or strap: for hats, caps, shoes, and storkn."-Sealed Jane 24.
Henry Archer, of Shaflesbury-crescent, Planlico, Middiesex, gent'eman, for "4mprore ments in matches, and in the production of Hght, and in the apparatas to be tred chere vith, "-Jane 24.
Williem Hunt," of Dodder-hill, Woreester, chemist, for "Improvementa to obtalaing certain metals from certain compounde containiog thete metale, and in obtalning olbe products, by the use of certaln compounds contatring metals."-June 24.
Rtchard Claris, of the Strand, Weatminster, Lamp manofacturer, for "certaln Improwe ments In gas burners, and in candle lanps and other lamps."-Jupe 26.
Frederkk Willinm Mowbray, of Lelcenter, paper-dealer, for "Improvements In in menufacture of loopen fabrics."-Jume '27.
John Mclntosh, of Glaggor, gentloman, for "Inprovemente in obbainlag motio power."-June 28
Joteph Skerichly, of Anstey, Leicemtershire, gentleman, for "Improvemente in bricth and to the manufacture of tobaceo-pipes, anc other like articlet."-Jube 30 .
Elizabeth Dakin, of No. 1, St. Paul's Chnreh yard, London; widow, for "Improve conte In eleanting and roanting enflee, in the apparatu and machipery to be oned therein and also in the mpparalus for miniag tufusions and decoctions of coffee."-July 3.
Nathaniel Beardmore, of 13, Great College-atreet, Weatminater, for "certain Improve ments in founding and coastructing walis, plers. and breakwaters, parts of umproita ments in founding and coastructing wati, piers, and
John Nartin, of Kiliylenph Mills, Down, Ireland, manufacturer, for "c Improvemeale in preparing and dressing lax, tow, and other ibroan aubscances, and doubling. dratiag and twisting fax, tow, and other fibrous subtiances, and ta the machinery to be med for uch purposes."-July 6.
Joseph CIIntion llobertson, of Fleet-sireet. London, cirll engineer, for "Improvements in the manufacture of gas." (A communication.)-July 6.
George Beattle, of Fdinburgh, builder, for "an Improved air-spring and atmorpheric resisting power."-july 6 .
Anthony Lorimier, of Bell's-bulldinga, Salisbury-square, City, book-bioder, for ${ }^{4}$ Im provemente in combining gutte perche and caoutchouc with othor meteriale." July 5 . Willian Edward Newton, of Chancery-lane, Middiesex, for "Improvements in the conatruction of stoves, grates, furate or fire-placen for various useful phrpoeen."-July 6
Whilam Swain, of Pembrokf, Mereford, brick-maker, for "certain Impropements in the conatruction of kitns for the drying and bupning of bricks, tlew, and other earthes substances, and for the consumption of smoke and other noxious gases arising therefrom and which latter Improvements may be applied to all chlmneys."-July 6.
Enoch Sieel, and William Britter, of Lambeth, Surrey, manufacturers, for ${ }^{*}$ Improwements in the nunufacture of tobacco-pipes."-July 6.
Walter Orbel Palmer, of Southacre, near Swafham, Norfolk, for "Improvements is manhinery for thrashing and drenoing corn."-July 10.
Kichard Roberte, of Globe Worky, Manchester, engineer, for "certain Improvements in. and enplication to, clocks and oither time.keepers, in machinery or apparatost fo rinding clocke and boistin s wetphts, and for effecting telegraphic communleation beifres distant clocks and places otherwise than by electro-magnetism."-July 11.
Leon Castelain, of Poulton-square, Aldddesex, chemdst, for "Improveraente In we manufactare of soap." - July 11 .
Fellx Alexander Teatud de Beaurepard, of Paris, eng!netr, for "Improvements is generating steam, and in the means 0 : obtaining power from steam-engines."一July il.
Nathew Kirtley, of Derby, engineer, for "Improveneate to the manufactare of rill way-wherls." -July 11 .
Jerse Ross, of Leicester, agent, for "Improvemente In apparatus for dibhlling and other agricultural paposes, part of which improvemente is applycable to propelling vessels. ${ }^{n}$ July 11 .
Whliam Edrands Staite, of Iombard-atreet, City, gentleman, for "Improvements ia the construction of galvanic batteries, in the formation of magnets, and in the application of electictiy and magnetism for the purpose of Ifghting and signalliag, as ajon a mot or modes of employing the suid gelvanic luitertes or some of ithem, for the purpowe u obtaining chewical products." (Partly a communication.)-July 12.
William Swain, of Pembridge. Hereford, brick.maker, for "certain Inprovemente in kilns for buruing bricks, tiles. and other earthen aubatances."-July 18.
Jenn Louls Lamenuude, of $\mathbf{3 0}$. Passage Touffroy, Paris, Jewrller, for "a netr proceen of applying or fixing lettera of metel upon glas, marble, wood, and other mubetmente.... applyigg
July 18.
Charlet Parapll. of Liverpool, dock-master, for "certaiu Improved apparatus to in applied to timber. loaded and other vewels laden whth materials the specitic grastif if which is lighter than water, preventing the neccasity of abandoning them at sea by ridding them of the auperineumbent water, and enabing them thereby to carry mall. ${ }^{\circ}$ july 18.
William Edwned Newton, of Chancery-lane, Middlesex, for " certaju Improveasents io machinery for letter-press printing."-Juiy 18 .
Joseph Stenton, of Northampton, enginetr, for "Improvements in stenm-enginee and boilers, parts of which tmprorements are also spplicaule to other molive machloetr." July 18.
Joham Arnold Stelpkann, of Leiceater- otreet, Leicenter-square, Midtesex, gealfeomes for " Improvement ly the manvfacture of angur from the cane."-July 18.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXV.

" 1 must have llberty
Witbal, an large a ebarter ac the widds,
To blow on whom I please."

I. Architects are apt to pay by far too little attention to locality, sspect, and other circumstances which influence the effect of buildings;-such, for instance, as distance-too little space for obtaining a satisfactory view from any point, or so much that it looks diminutive in comparison with what the design, whether shown in a model or a drawing of it (that is, an elevation), promises. Neither the model nor the elevation conveys, or can convey, the slightest idea of locality; and even if recourse be had to perspective and pictorial representation, the probability is, that there is a vast deal of imposition passed off under the plansible and innocent name of artistic liberties. Liberties of the kind are, however, sometimes carried so far as to amount to downright lies-an ugly word, it must be confessed; but the imposition so practised is a far more ugly thing. And surely it amounts to nothing less than a lie, although not a spoken one, to represent a front that will always be in shadow throughout the whole day, kindled-up and illustrated by sunshine, with all its details sparklingly touched and brilliantly brought out. In Mr. Blore's view of the new building at Buckingham Palace, the sun is made to shine from the north-east ; which, not to call it a miracle, is at any rate a piece of great complaisance on the part of that luminarya direct testimony to the all-commanding talent of that Mr. B. Such deceptions are, it would seem, not lies, but merely poetical and graphic fictions; and we ought to congratulate ourselves upon getting anything poetical at all, where the design itself is so terribly prosaic.
II. Locality has so very much to do with the actual appearance which a building makes, that unless some information be afforded in regard to it, we may be totally ignorant and unsuspicious of many circumstances that require to be understood. If a building has been seen, it is of course known how it is situated with respect to other buildings; whether in an open space or in a street ; and if a street, whether it is a wide one or a narrow one; or if an open space, whether it is a regular or irregular one. It is desirable also to know what is its aspect, for it makes a very considerable difference whether a portico or colonnade faces the north or the pouth-the east or the west. Therefore, if a building is known to us only by means of plans and other drawings of that kind, confined to the edifice itself, we may form very erroneous ideas. Of course, such drawings acquaint us with its actual dimensions, but leave us in entire ignorance as to its relative size in comparison with adjoining or neighbouring buildings. It may chance, for instance, to be so greatly over-topped by them, that instead of answering to the prepossessing appearance which it makes when shown apart from other objects, as to make but a rather insignificant appearance in reality; consequently, much as the design may be admired, the structure disappoints when seen, -at least, at first, though it may recover our first good opinion $^{\text {a }}$ afterwards. The reader knows the story of the lady who fell in love with a portrait, but was cured of her passion on finding that her Adonis wore a wooden leg. In order to judge what figure a building actually cuts, it is necessary to know something more about it than elevations, \&c. show. The "about it" is here to be understood literally; since, with regard to effect, much depends apon accidents of site and locality-upon aspect, point of view, and various other circumstances, any one of which may be more or less influential, even taken by itself singly; therefore, when combined, must be so in a high degree, either favourably or the reverse.
III. In some stringent remarks that have just appeared upon the "Houses of Parliament," in another publication, it is hinted that it would not have been amiss had the excessive decoration of the river-front been considerably moderated, and the saving so effected been applied to the finishing-up another public and national edifice--namely, the pile of buildings which are termed collectively Somerset-place, whose now exposed west, or rather couth-west side, makes a most mean, though not exactly beggarly, appearance-yet beggarly as manifesting the pinching poverty of a government which cannot afford to get rid of such an unseemly public exhibition of architectural sans culottism. It is no reproach to Chambers that he did not provide against an event which he could not pussibly foresee. He would have been regarded as a
madman, had he advised that the terrace-front should be returned and continued northward, in order to form a west facade that might possibly some time or other be exposed to view, on the side most of all favoured by aspect. He conld no more have any idea that Waterloo-bridge would be erected, than that such architecture as King's College would be brought so closely into contact, as to be made to appear part of his design. The bridge has certainly rendered one service to Somerset-place, since it enables us to obtain a view of the river-front and its terrace. But the formation of the street leading to the bridge has laid open to sight what was never meant to be seen at all, and therefore now detracts sadly from the grandeur of the façade which is beheld in connection with it. The disparity between the two is nothing less than offensive. The feeling it produces is akin to that which we should experience on beholding a costly sideboard and a kitchen-dressar cheek-by-jowl in a dining-room. The juxta-position which here presents itself is not like that of "pearls upon an Athiop's arm," but of a blooming face upon the shoulders of a Blackamoor,-the head of Hebe upon the shrivelled carcase of a hag;-in short, we perceive Chambers and Pecksniff arm-in-arm together: no disrespect is intended to the former, he being sufficiently excused by What has been stated above. Still, that is no excuse for our neglecting to do what the greatly-altered locality of the building renders so highly desirable. If it is not worth while, merely for appearance-sake, to bestow a decent architectural exterior on the exceedingly unsightly and disfiguring range of building alluded to, how can we reconcile ourselves to the enormous outlay for mexe embellishment in the river-front of the Houses of Parliament; and which, after all, does not produce any corresponding degree of effect? Either the "Houses" accuse us of the most niggardly meanness for allowing Somerset-place to remain in the disgraceful and unfinished state which it is; or Somerset-place accuses us of absurdly wanton extravagance, for crowding such a profusion of minute details and carved-work into that front of the "Houses" where they are quite lost, and where a few boldly-touched finishings would have told quite as well-perhaps even very much better. The west wing of Somerset-place, on the contrary, though at present a most offensive eye-sore-and perhaps doomed to remain so-is most admirably situated for architectural display. There is not any spot in the whole metropolis which affords so many of the requisites for a fine architectural scene. That side of the buildings of Somerset-place is favoured, not only by aspect, but by due space before it-neither so great as to take off from the size of the building, nor insufficient for viewing it as a whole. To these advantages, other peculiar and accidental ones may be added: the building descends so much below the level of Wellington-street, or the roadwayleading to the bridge, that the street becomes as it were a terrace or elevated staging, from which it shows-that is, would show itself, most picturesquely, were it a worthy piece of architecture, instead of being the abomination it now is. When looked down upon from the parapet of the road, it would be seen rising statelily from a deep substructure. And that west front and the river-front-which latter shows at present only as a mere maskseen together, would produce a fine palatial mass, and in combination with Waterloo-bridge, a most striking and noble group of architecture. The river-front itself, which now looks only like the fragment of an unfinished design, would gain in importance by becoming a portion of one consistently grand design. Besides all which-but let us have done with "Ebesides's." We have "Marble Arches," and "Nelson Columns," and "Wellington Statues," and a good many other things that shall be nameless, to show huw freely tens-of-thousands have been flung away on very futile if not absurd objects. Let us then have at least one public edifice that will serve as a monument of our notable economy and frugality. Therefore, since so it must be, let it even be Somersetplace. Let the foreigner who gazes with astonishment at such an achievement by individuals as Waterloo-bridge, look with astonishment of a different kind-with scornful wonder at the paltrineas that is allowed to disfigure and disgrace a government building which might, with comparatively little cost, be rendered a uniformly noble pile.
IV. My good friends, the architects,-the friendship between us is not, perhaps, of the most cordial kind, my own share being marked more by boisterous freedom than by compliments and cour-tesy-still I say my very good friends, the architects, may be said to have contrived to outwit and enslave themselves. So long have they gone on preaching up the accursed and superstitious doctrine of its being unlawful to deviate from established forms and proportions, or from the precise letter of mechanic-enacted rules, that even those who could do so successfully, dare not even attempt it, so greatly do they otand in awe of the sneers of the whole tribe of

Incapablea, who scout the ides that it is poasible for any other than hackneyed forms to be beatiful, and who flatly deny it to be in the power of artistic conception to produce what, though different in character, should be equally beautiful in its peculiar way. Unhappy architects! ye have locked yourselves in, and flung away the key that would open the door and send you forth-the worthy and really gifted among you rejoicing once more in liberty and light. Unhappy architects !-unhappy architecture, also! for thou art now fettered, and delivered over to the tender charge of thy jailor, Precerent!
V. Precedent is adhered to even for that lawless, hybrid atyle which we denominate Elizabethan. No one, indeed, has yet attempted to draw up a formal code of rules and regulations for it perhaps, because it would be a task of very great labour to attempt to systematize so chaotic a mass as the various examples of it constitute; any one of which, however eccentric and exceptional, may now be quoted as sufficiently valid authority. This must be sulowed to have its convenience; no more being required than to follow Precedent merely piece-meal, and patch up a design out of odde-and-ends, taken at random, and put together without any regard even to general consistency of composition. The name "Elizabothan," at once sanctifies all absurdities and all crudities : it operates as a talisman and an mgis against the shafts of criticism. It is in vain to object to that offensive inequality of design which results from plainness and coarseness in some festures, and atudied ornateness, perhaps finicality, in others. The greater the incongruity, the greater, it would seem, is the Elizabethan-ness. The utmost and most convenient latitude is freely allowed : forms and features strongly partaking of the latest-expiring Tudor style may be mixed up ad libitum with ultra-Italianized ones; no matter how incoherently, when incoherence is thought to belong to, if not actually to be the very genius of the style itself. Although for a very different reason, Elizabethan possesses one great recommendation in common with the pure Grecian style. What it is you shall learn by-and-by-that is, in my next Fasciculus; till which appearg, 1 leave you to cogitate upon the matter, and solve the riddle, if riddle it be, for yourselves. Or, should your curiosity evaporate in the interim, it will not greatly matter. Putting, like a frugal hostess, that dainty bit "by for supper-time," what I now say is, that we do not at all avail ourselves as we might do of the opportunity which Elizabethan architecture holds out to us, -of the convenient pretext which it affords us for working out a style founded upon the Italianism or early Cinque-cento ideas which, although they show themselves only here and there partially, and more or less imperfectly, strongly mark those examples in which they occur to any extent. In reverting to Elizabethan, we have considered it rather as being the latest stage of expiring Gothic, than as the incipient one of a quite different architectural system; which, had it been allowed to proceed as it originated, and to develope itself freely and naturally out of its first rudimentary shoots, instead of being put into the hot-house of Palladio and Jones, would doubtless have produced other blossoms and fruits than those which have attended such "forcing" system. When Elizabethan was recommended as the style most of all suitable for the new Houses of Parliament, people-and architects among the rest, were puzzled to know what was to be understood by such name. Was it to be interpreted literally or liberally? If the former, it of course excluded every style that had been used hefore or up to the period of Elizabeth's reign, unless Elizabethas and AnteElizabethan mean one and the same thing, and unless Elizabeth reigned before she was born-a mystery I willingly leave to wiser heads than mine. On the other hand, if Elizabethan was to be interpreted liberally and latitudinarially, it would seem to imply that the style to be adopted might be either that which was actually employed during the latter half the 16th century, or which ufterwards came up in the earlier part of the following one; and the way for which had been opened by the influences and tastes of the previous Elizabethan period. It is perhaps just as well that the taste of Elizabeth's grandfather-at least, that of his age-was preferred to that of her own. Nearly all the competitors for the "Houses" eschewed Elizabethan, and no doubt very prudently; for it weuld, perhaps, have occupied them till now to elaborate out of it aught that would have been both worthy of and suitable for the occasion.
VI. Some are so very sensitive and captious about terms and names, that I wonder they do not affect to be scandalized at that of the "Lancet style." It cannot, indeed, be said to be a very blunt one; on the contrary, it is sharp enough-so sharp as to pierce an ear that is at all refined. It must surely have been invented by Dr. Sangrado, or other practitioner of phlebotomy. Or it must have originated with the Conıpany of Barber-Surgeona
so truly barberous is it in sound. If not so, it must have boen applied in sneering derision by some such critics as those who make themselves merry with Nash's extinguisher in Langham -place, and Barry's dumb-rouiters in Trafalgar-square. Lancet-style!-horrible name; suggeating ideas of bloodshed, at least of blood-letting! Let it be reformed by all means; more especially as people are now endeavouring to substitute more appropriate terms for those introduced by Rickman, notwithstanding that they have obtained general currency among as. If "Perpendicular" is to be transformed into "Rectangular" style, surely "Lancet" will no longer be tolerated by "ears polite," or ears archmological. Let a General Council of Archmologists be held forthwith; let the Institute so semble in solemn or somnolent conclave, to devise some less odioudy vulgar name for what is now called the Lancet style. Should they not be able to think of one, still, they might possibly dream of one ; or else they go to sleep to very little purpose indeed.
VII. Plans, elevations, and sections of Stowe, would just now possess considerable interest, even for those who would not care for them at any other time. None, however, sre in existence, at least, no published ones. There is no work which so describes that princely mansion;-no plates of it in any of the several collections which assume the title of "Vitruvius Britannicus," at though they all contain subjects of far inferior note, and inferior merit also, and more than one which has nothing whatever to recommend it. Almost all that is known of the architectural authorship of Stowe is, that the original house is said to have been designed by Viscount Cobham, and the additions, comprising the stately south front, by the first Lord Camelford (about the year 1775). Vanbrugh and Kent designed some of the garden-buildings; but of the professional architects employed upon the mansion itself, the only names which appear to be known are those of Borra and Valdrè, both foreigners. Stowe is infinitely too modern to excite any sympathy among the admirers of ruins and rubbihh. When it becomes an antiquity, and thereby entitled to the epithet of "venerable," it may acquire that value in the eyes of posterity which it has not in our own. And let us hope that it will be permitted to remain; and not doomed to be taken down and sold piecemeal, as were both Wanstead and Worksop. We can illafford to spare such an example of a palatial English residence, now that nothing else of the same class and character is erected. Scarcely a mansion of any architectural note at all has been erected for many years. What few large country-houses have been built, mostly affect antiquity, without either the charm or the merit of it. The tide now runs in favour of Model Lodginghouses and Buckingham Palaces, of Baths and Washing-houses: but Greenwich Hospitals, and Blenheims and Stowes, are quite be yond our mark. Neither the aristocracy of rank nor the aristocracy of wealth patronise such architectural grandeur as marks the lastmentioned piles. Let it not be supposed from this, that unqualified praise of either Blenheim or Stowe is intended. In both of them there is much to censure-a great deal that might be many degrees better: still, there is the magnificent and the noble-which, as things now go, is a very great deal indeed. As to the grandione where will you now find it? Go and look for it in the facader of the British Museum or Buckingham Palace; and if you can discover it there, you may congratulate yourself as being able to discover the longitude also.

NOTES ON ENGINEERING.-No. X

By Homersham Cox, B.A.

The Dynamical Deflection and Strain of Railoay Girders.

There is no subject in practical science which has been more elaborately investigated than the theory of the statical tranaverse strength of beams. It has fortunately happened that two different classes of investigators-mathematicians and experimentulistehave cooperated in the research: and the result of their united labours has been a valuable and comprehensive system of know. ledge.
But the dynamions strength of beams, or their capability of auttaining weights moving rapidly over them, has never been satiofactorily discussed. There does not appear to be extant a single theoretical investigation of this subjoct-and the deficiency is due to two causes: it occurs partly because the subject has but com. paratively recently grown into importance ; partly because of its excessive and insuperable difficulties when investigated by the exact methods of theoretical mechanics. The following paper is a contribution to a more accurate knowledge of this important
queation, which has at length attracted the attention due to its infuence on the security of railway traffic. The necessity of further inquiry seems to be generally acknowledged among enginears; and by the recommendation of the Commissioners of Railways, in a published minute of the 29th of June 1847, a government commission has been appointed for the very purpose. The minute expresses a doubt "whether the experimental data and the theoretical principles at present known are adequate" for the "designing iron bridges, when these are to be traversed by loads of extraordinary weight at great velocities."

There seems to exist great discrepancy of opinion as to the effect of the velocity of transit. Some have imagined that it may become a source of safety, by causing the railway train to pass over before the girder has had time to yield. Others, again, have estimated the effect of the moving load as highly as six or seven times that of the same load at rest. In the following investigathon, both these opinions will be shown to be incorrect: they are here cited merely as indications of the extreme uncertainty prevalent on the subject.

The method of inquiry about to be explained consists, not in determining the dynamical strain absolutely, but by comparison with the corresponding statical strain. The results will consequently be much simpler than they would be if the dynamical strain were estimated independently. The defection which a given load at rest upon a girder produces, will be always taken as one of the known data of the problem. The determination of this statical defiection, as it forms the basis of all the remaining calculations, is the first point of inquiry.

When a beam is not affected by a permanent set or defact of elasticity, it appears, both from theory and actual experiment, that the deflection by a weight resting at its centre is very nearly proportional to that weight-that is, if a given number of tons deflect it one inch, double the number of tons will deflect it two inches. This result is arrived at by Professor Moseley in his " Me chanical Principles of Engineering" and M. Navier in his "Rearnè de Leçons de Construction," by independent methods. Its near accordance with practical truth has been abundantly confirmed by experiment, as may be verified by reference to numerous published accounts of actual observations on the subject, and egpecially to Mr. Hodgkinson's invaluable "Experimental Re_{o} searches on the Strength of Cast-Iron." This work gives the results of an exceedingly large number of experiments, made by the author and others, on the transverse strength of beams loaded at their centres; and although these beams were of very different forms and dimensions, the law indicated is nearly observed In all of them. Whether the eection of the beam be rectangular, triangular, or T-shaped, with the vertical rib either upwards or downwards, the constant ratio, in each beam, of each deflection to the corresponding load is nearly maintained : and the same remark applies to beams of the form most useful for railway purposesthat of an upper and lower flange connected by a vertical rib.

It will be found, however, by reference to the tables in Mr. Hodgkinson's work, that the actual deflections are somewhat more than the theoretical law would make them. This discrepancy may be accounted for by attributing it to the defect of elasticity, which the ordinary theory of beams does not consider. As this defect is not generally very great, it will here in the first instance be neglected: the deflections will primarily be estimated as if the elasticity were perfect; and subsequently the modifications due to defect of elasticity will be taken into consideration,

Work Done on the Deflection of a Beam.

The "work done" by a moving force may be defined to be the product of that force into the distance through which it acts. A pamiliar instance of the use of this measure is the Steam-Engine; where the work done receives the particular name of Horge-Power. If the pressure on the piston were uniform, that pressure(in pounds) multiplied by the distance through which it is exerted (in feet) Fould, if divided by 33,000, give the horse-power. But in the steam-ongine, and all other practical instances, where the pressure le not undform, but varying, it is impossible to calculate the work done by this direct multiplication. Where the value of the moving force is constantly altering, we may resort to either of the collowing methods of ascertaining the work done by it, \rightarrow we may maltiply its average value by the distance through which it acts; or, when that average cannot be ascertained, we may consider the whole distance divided into elementary partions, 80 gmall that it may be supposed without sensible error-that the pressure is at lenet uniform while it acts through each portion in succession. The aggregate work done, is the sum of the work done on esch of theae portions-that is, it is the sum of the productia of esah porton of the distance and the corresponding pressure.

This process of summation, when carried out with the greatest possible accuracy, is equivalent to that of mathematical integration; in which case, the work done by a varying pressure may be defined, in mathematical language, to be the integral of the product of the pressure, and its " virtual velocity." The work done in deflecting a beam by pressure at its centre is easily ascertained, if that pressure be assumed proportional to the deflection. Calling the deflection x, and therefore the pressure $a x$ (where a is a constant depending on the dimensions \&c. of the beam) we have-

$$
\text { work done }=\int_{0}^{a} x d x=\frac{a x^{2}}{2}=\frac{a x}{2} \cdot \pi
$$

Now $\frac{a d}{q}$ is the pressure or weight which would statically maintain half the deflection x. Hence, the work done in producing a given deflection is equal to the weight which would statically maintain half the deflection, multiplied by the whole distance of deflection.

The value of this rule will appear hereafter.

Distinction of Gradual and Instantaneous Loading.

When experiments are made on the strength and deflection of beams, they are generally loaded very gradually at their centres. Each addition to the load is allowed to produce its full effect before more be imposed. Consequently, at every stage of the experiment, the beam is in a state of statical equilibrium: the pressure of the load on the beam is always just equal to its weight, and is never increased by any momentum arising from downward velocity.

But if the whole load be suddenly and at once placed on the heam, while it is as yet undeflected, the effects are entirely altered. The deflection is greater than the same load would produce if gradually applied: for when the beam has reached the point of statical deflection, the momentum acquired by the downward motion urges it further; and the descent of load continues till it be brought up (so to speak) by the increased resistance of the beam. Afterwards, the beam and load rise again, as the deflection has been carried beyond the degree at which it can be statically maintained.

In the case here supposed of instantaneous loading, nothing like impact or sudden collision occurs. The pressure at the centre of the beam is finite and continuous. The load does not fall upon the beam-it is merely supposed to be placed originally in close contact with the beam, and then suffered to instantaneously rest upon it.

For the sake of elucidation, one or two instances of analogous aotion may be cited. If a common balance have its fulcrum above the points of suspension of the scales, and a weight suddenly rest in one of the scales, the lever will turn through a much greater angle than if the same weight were applied in small successive portions.

If an elastic string suspend vertically a weight from one end of it, the string will be more stretched if the whole weight be suffered to act at once, than if applied in small portions. It will be found, that if the extension of the string be proportional to the stretching force, the extension produced by the descending weight will be twice that due to the gradual effect of the same weight.

A light cylinder of wood, loaded at its lower end, and floating vertically in water, furnishes another illustration. If the cylinder be raised a little above its position of equilibrium and then let go, it will sink twice the distance it has been raised, if the motion be so small that the resistance is equal to the hydrostatical pressure.

In the same way, in perfectly elastic horizontal beam, loaded at its centre, the effect of instantaneous loading is double that of gradual loading. For, by a known principle of mechanics, when a material system moves from one position of rest to another position of rest, the work done by the retarding forces is equal to the work done by the accelerating forces. For any small deflection of a beam by instantaneous loading, its position of ultimate deflection is one of instantaneous rest, for immediately before it arrives at that position, all the parts of the beam descend, and immediately after, ascend. Also, the work done by the accelerating force is the weight actually resting on the beam, multiplied by the space of deffection : and the work done by the retarding forces is, by what has been said above, "equal to the weight which would statically maintain half the defection, multiplied by the whole distance of deflection." Therefore, putting the two amounts of work done equal 80 one another, we see that the weight actually upon the beam is that which would atatically maintain half the defection. In other worde, the deflection is doubled by instantaneous loading.

Tranait of a Single Feight.

We now proceed to examine the effect of the transit of a single
weight along the girder, and first of all to show that its effect cannot exceed that which it has just been eatimated to produce, if stationed at the centre of the girder and allowed to descend freely from the undeflected position-in other words, it will be proved that at whatever rate the weight may travel over the girder, its ultimate strain and deflection cannot be more than doable the correeponding statical effects produced when it reats at the centre of the girder.

There is a general rule of constant use in engineering which, expressed in practical language, states that power is never gained, but only modified, by the intervention of machinery. This rule may be more scientifically expressed and extended by tracing it to its origin-it is a particular case of the principle known in theoretical mechanics, as the Conservation of Y is V iva. This principle may be very conveniently enunciated by employing the term "work done," as defined above: and it then assumes this form of ennnciation-that the vis vive gained or lost by a system in moving from one position to another, is equal to twice the difference between the work done by the accelerating, and that done by the retarding, forces in the same interval.

From this it follows, that where there is no gain or loss of eis vica, there is no difference between the work done by the accelerating and retarding forces respectively. Hence, if the parts of the system be moving at the same velocity in the second position ss in the first-or if both positions be positions of rest-the aggregate work done in the interval by the retarding forces is equal to that done by the accelerating forces.

A very simple case will illustrate this theorem. If a locomo-tive-engine travel a mile along a railway, and its velocity at the end of the mile be the same as at the beginning of the mile, the work done by all the forces which have resisted its motion is in the aggregate just equal to the horse-power developed in the steam-cylinders. And this equality holds good, however the engine have moved in the interval-whether on a straight level road, or on severe curves and gradients-whether the speed were uniform or very irregular-whether the steam were on the whole time, or the engine during large parts of the journey moved by its momentum only. The intermission of the moving force and all other irregularities disappear in the result. To establish equality between the work done in moving, and that done in retarding, the engine, all that is necessary is that the engine be moving neither faster nor slower at the end of the mile, than at the beginning of it.

Another illustration will serve to show the extreme generality of the principle in question. If a certain quantity of water have to be raised a certain height, the amount of work actually requisite for effecting the object is in all cases equal to the weight of water multiplied by the vertical height. This amount of necessary power or work is incapable of being diminished by any mechanical or hydraulic contrivance. The water may be contained in a vessel which is drawn up perpendicularly, as from a well, or which is drawn up an inclined plane or by a spiral path; or the water may be raised by an Archimedian screw, or by buckets attached to the periphery of a revolving wheel, or by a hydraulic-ram, or by a force-pump; or lastly, it may be thrown up in a jet, as from a fountain or fire-engine. But it is physically imporsible, by these or any other methods, to diminish the requisite amount of labour. It is of course, easy to increase the amount by a waste or unprofitable expenditure of labour, such as is caused by friction of the machinery, or the mutual action of the particles of water among themselves. But supposing no waste of force to occur-supposing all the power usefully employed in simply raising the water without doing anything else; then the amount of that power is in all cases just what has been stated-the weight of water multiplied by the vertical distance through which it is raised.

The rule is of universal application, and there is no other principle of dynamics of such grest and constant utility in practical acience ; for it embraces all those cases of motion with which the engineer happens to be concerned-cases where the motion either ceases, or has the same valuea, at regularly-recurring intervals.

The case before us, of the transit of a weight along a girder, is a striking exemplification of this Principle of the Conservation of Work. For this principle enables us immediately to compare the effect of a weight moving along the girder, and that of the same weight stationed at its centre, and descending. If the deflection be the same in both cases, the work done by the descent of the load in both cases is the same-namely, the weight multiplied by the vertical descent: and this is true, whatever be the path of descent. Now, it has alresdy been shown, that in the case of instantaneous loading, the work done by the deacent of the weight is equal to that neceseary to produce in the beam the defection which
twice the weight would statically maintain. Hence, the travelling weight can do no more.

The value of this conclusion appears the greater, when it is considered that it avoids all hazardous hypotheses as to the forms assumed by the beam during the transit. However the beam may be bent-whatever may be the nature of its vibrations and internal action, this is certain,-that when its elasticity is onimpaired, a weight travelling along it cannot, under any circumstances whatever, more than double its corresponding statical deflection. To suppose it capable of doing more, is to suppose the physical impossibility of a gain of power.
But though the travelling weight cannot, under any circumstances, produce more than double the statical deflection, it is quite possible that it may do less. A large portion of the work done by the weight may be absorbed in producing lateral vibrotions and other irregularities of motion in the beam. All these concomitant operations act by way of diminution, and tend to make the dynamical deflection less than double the statical central deflection.
In determining the actual amount of this diminution, the velocity of transit must be taken into account. For that there is some particular velocity for which the deflection is a maximum, is obvious from this simple consideration-that when the weight travels exceedingly slowly along the beam, it always exerts a statical pressure, and does not tend to increase by momentum the deflection beyond its statical amount ;-and, on the other hand, when the weight travels with excessive rapidity, it may not have time during the transit, to sink even the distance of statical deflection. To take the limiting case, when the velocity is indofinitely great, the descent of the weight must be indefinitely small; for even if it fell freely, and there were no beam to support it, the distance of descent in an indefinitely short time is inappreciable.

Effect of the Inertia of the Beam.

There is, then, between the exceedingly high and the exceedingly low velocity, some particular intermediate speed which produces the greatest possible deflection. Before, however, considering what that velocity is, or endeavouring to establish a direct relation between the velocity and the deflection, it is necessary to examine more particularly the case just referred to-where the velocity of transit is 80 great, that the weight has not time to sink beyond a certain degree.
Now, there are two ways in which this consideration of time might be supposed to affect the amount of deflection. The first is that already stated, where the period of transit is so short, that even if the weight descended freely, without support from the beam, its descent would be inconsiderable. This case may, however, be at once excluded, when it is considered that at all practicable railway velocities, the time of transit over a long girder (50 to 80 feet could not be much less than one second, that a body would fall freely upwards of 16 feet in that time, and that its actual descent (equal to the deflection of the girder) is only a few inches.
But there is another way in which the consideration of time might be supposed to affect the deflection : there might not be time enough to overcome the inertia of the beam. This case requires more particular examination.
A person skating over a weak piece of ice may sometimes, by moving rapidly, glide over it safely before it have time to breakthat is, before the pressure of his body have impressed on the ice the downward motion sufficient for it to attain the point of fracture while he is passing over it. Now, by the general principles of mechanics, the same pressure which, acting for a given time, would produce a great velocity in a small mass, will produce proportionably little velocity in a large mass. In order then that the inertia of the ice may, in the case supposed, be a cause of safety, it must be large in comparison with the pressure acting on it ; that is, the mass of ice acted upon must grestly exceed the mass of the man's body.

In the same way, in order that the inertia of a girder might be a cause of security, the mass of the girder must be very much greater than that of the train passing over. But it will be shown that the mass of the former does not, for heavy loads, exceed that of the latter so greatly as to perceptibly diminish the deflection. It has sometimes been found useful to add to the inertia of the girder by laying on it heavy ballast, and by this means the structure is rendered steadier, -that is, the slight lateral oscilletions and other irregularities of motion are reduced. But it is only these smaller or subsidiary movements that can be diminished by adding to the weight of the girder. Its mass, and that of the permanent load upon it, is not in generalso large as to materially influence the main, or vertical, deflection, when produced by nearly as heavg a load as it will safely bear.

When the train passes over the girder, the centre of gravity of the whole system sinks, the impressed moving force downwards being the weight of the train, and the motion of the centre of gravity being retarded by the elastic force of the girder.
To take a caee every way unfavourable to the conclusion which we -ish to establish, let the greatest deflection be 3 inches, and the velocity of the transit 80 great that the weight passes over the girder in a second of time. This would be the time of transit over a girder 88 feet long, at the rate of a mile a-minute. Now, the extreme deflection may be supposed to be accomplished in half the time of transit, or the centre of the girder sinks 3 inches in half a second. The centre of gravity of the whole system at no time sinks so much as the centre of the beam sinks, for its two ends do not sink at all. On the whole, it seems an ample allowance to suppose the maximum vertical descent of the centre of gravity of the beam $1 \frac{1}{2}$ inch. Now, to find the work which would alone produce this velocity, we must have an equation of vis eien, excluding the retarding force.

By the ordinary rules for calculating the rectilineal motion of bodies, if a given mass M originally at rest be acted upon at its centre of gravity by one uniform force f moving through a space a in the time t,

$$
2 M x=f t^{3}
$$

Suppose the force to be that of a small weight. The mass of this weight will be found (on substituting numerical values and putting gravity $=32$) to be only the 32 d part of M , if the latter move through $1 \frac{1}{\frac{1}{2}}$ inch in half a second.

The beam is usually constructed to bear a pressure considerably exceeding its own weight. In that case less then one sid of the work actually exerted by the travelling weight would suffice for the mere acceleration of the beam : and we come to the conclusion, that even at the highest practicable velocity, the power required to get the beam in motion subtracts very little of the power producing deflection. In other words, when the mass of the load is not small compared with that of the beam, the deflection is never materially influenced by the inertia of the beam.

Influence of the Velocity of Transit on the Defection in the case of a Single Weight.

Having arrived at the important conclusion that when the travelling weight is large, the inertia of the beam is an immaterial consideration, or that the effective moving forces are inconsiderable compared with the impressed forces, we might suppose the mutual pressure between the beam and the weight statically equal to the force which the former by its elasticity exerts in an upward direction to resist deflection.
But, in fact, the mutual pressure between the beam and the reight is an unknown force, not generally susceptible of exact determination. During the first part of the motion, the weight does not, so to speak, exert its full pressure on the beam, for the surface yields and recedes before it. During the latter part of the descent, on the contrary, the pressure in question exerts a superior power, to destroy the momentum previously acquired by the descending weight. The weight then moves downwards, first with an accelerated, and subsequently with a retarded, velocity: or the pressure on its under side is in the former stage of motion, leas, and in the latter stage greater, than the effect of gravity.

The path of the weight is likewise unknown, for the motion is made up of two parto-the motion along the beam, and the motion of the beam itself. If, indeed, it be assumed that the motion is sways along the beam, or that at every instant the curvature of the beam has, at the point of mutual contact, the same tangent as the path of the weight, the problem would be capable of solution. The investigations of Professor Moseley and M. Navier have determined the curvature of the beam sufficiently to afford means of tracing the curve described by the moving weight; and therefore its pressure, which is equal to its centrifagal force + the effect of gravity, might be ascertained.

The hypothesis which would lead to these results is, however, mitrary and unsafe: and besides, the curvature of the beam as mathematically determined, is not exactly that which occurs in actual practice, where the elasticity is always more or less imperfect. The difficulty is however of no great importance, because, as will be presently shown, it does not occur where the moving body is not a single weight, but a long train. And the subject is here referred to, merely to show the almost insuperable difficulties of determining the motion of a single weight along an elastic beam.

Uniformly Distributed Load.

We have hitherto considered the effect of a single weight preasing only at one point of the girder. The more important practical case, where the pressure is applied to a considerable surface, remaina to be examined.

In entering upon this inquiry, the consideration of horizontal motion will be in the first instance excluded. The distinction between the effects of gradual and instantaneous loading has been already pointed out, in reference to a single weight; and the comparison may now be extended to the case of an uniformly distributed load. If this load be gradually laid on, it produces less deflection than when laid on all at once. A series of weights applied simultaneously all along the undeflected girder, will move vertically downwards, and acquire momentum which has to be destroyed by an increased exertion of the elastic forces of the girder. In this case, as in that of a single weight, the ultimate deflection and pressure will be doubled, as will be demonstrated by analogous principles.

The beam being, as before, supposed to be perfectly elastic, the central deflection is proportional to the weight of the uniformly distributed load. If a be the length of the beam, x the central deflection, u the waight of a unit of length of the load, we may put ua $=a x$, where a is a determinate constant.

Let x^{\prime}, y^{\prime} be co-ordinates of any point in the surface of the beam, which is supposed to have the same curvature as its neutral axis. Then as the curvature is always exceedingly small, $u d y^{\prime}$ is the weight of an element of the load, and $u d y^{\prime} d x^{\prime}$ represents the product of this weight and its virtual velocity, when the centre of the beam is displaced through a small vertical distance $d x$. The product of all the pressures and the corresponding virtual velocities is equivalent to

$$
\int u d x^{\prime} d y^{\prime}
$$

taking y^{\prime} between the limits 0 and a. It may mathematically be shown that this integral is equal to $u a d \bar{x}$, where \bar{x} is the vertical ordinate of the centre of gravity of the load. Also, from the equations given by Professor Moseley, in his "Principles of Engineering," Art. 374, it may be shown by a simple process, which is here omitted for the sake of brevity, that \bar{x} is proportional to \boldsymbol{a}, and may therefore be put $=\beta x$, where β is a determinate constant.

$$
\text { Hence, uadx}=\mathrm{a} \beta x d x \text {. }
$$

The integral of this, between limits 0 and x, is the total work done in producing the central deflection. This integral is equal te

$$
\text { a } \beta_{2}^{x^{2}}=\frac{a x}{2} \cdot \bar{x}
$$

Or the "work done" is equivalent to that produced by a weight which would statically maintain half the deflection, moving through the whole space which the centre of gravity actually described. Hence, by the same reasoning as applied to the case of a single weight, the statical deffection and pressure are doubled by instantaneous loading.

Transit of a Continuous Load.

By combining the conclusion just arrived at with the principle which has here been termed the Principle of the Conservation of Work, it is readily seen that the statical strain and deflection cannot be more than doubled by the transit, at any horizontal velocity, of a uniform load of the same length as the girder. Indeed, the dynamical will in general be considerably less than double the corresponding statical effects.
It has been shown that where the weight of the load sustained is nearly as great or greater than that of the beam, the force required to produce motion in the beam is inconsiderable compared with the actual deflecting forces. The beam itself, therefore, is then always nearly in a state of equilibrium, and its form nearly the same as that which would be statically produced by the external pressures. If this be assumed to be strictly true, it follows that the curve of deflection is concave in every part, and therefore that no part of the beam sinks while another part is rising-that an the parts sink together, and all rise together. The vertical motion is so extremely small and gradual, that there can be no danger in assuming that all the parts arrive at their lowest positions at the same instant. It follows then, as previously to that instant the motion was downwards, and subsequently upwards, the beam in its lowest position is at rest, either instantaneously or for a definite period.
In this position of rest, the pressures on the surface of the beam are in statical equilibrium with its internal forces. At the same time, the pressure produced by the travelling load is the same as if the curve of deflection were a fixed curve.

Effect of Centrifugal Force.

When a body, moving along a fixed curve, is acted upon by no forces but the pressure of the curve and its own weight, the pressure on the curve (by the known principles of mechanice) is
equal to the centrifugal force, plus the normal component of the weight. The curvature of a defected girder is in general so exceedingly amall, that it will be quite safe to assume the pressure equal to the centrifugal force, plus the weight itself. The curve assumed by the surface of the beam depends on the forces acting on it; and we here suppose the beam to be at rest, although the load upon it is in motion. Hence, the elastic forces of the beam are in statical equilibrium with the pressures on the curve.

The origin of co-ordinates being at one end of the beam, and the axis of x, measured vertically downwards, at any point (x, y) of the curve, the tangent of the angle of horizontal inclination is $\frac{d x}{d y}$, which is always very small. Hence, neglecting the square of that quantity as inconsiderable compared with unity, we may put the inverse of the radius of curvature at the point $(x, y)=-\frac{d^{2} x}{d y^{2}}$. (The sign never changes, as the curve is everywhere concave uprards.)

From the theory of perfectly elastic beams, it appears that $\frac{d^{2} x}{d y^{2}}$ is, at every part of the beam, proportional to the moment about (x, y) of all the pressure acting between that point and either extremity of the beam. Here, the pressures between (x, y) and the origin are the centrifugal forces and the weights acting downwards, and the pressure of the abutment acting upwards. The moment of all the centrifugal forces may be first ascertained.

Each small portion of the load may be supposed to act independently of the rest, or to press on the curve with its own weight and its own centrifugal force. Let m be the unit of mass; and therefore, at any point ($x^{\prime} y^{\prime}$) intermediate between (x, y) and the end of the beam, $m d y$ the mass of an element of the load. Calling V its linear velocity, it appears from what has been already said about the radius of curvature, that $V^{2} \frac{d^{2} x^{\prime}}{d y^{\prime 2}} m d y^{\prime}$ is the centrifugal force of that element. The moment of this centrifugal force is $-\mathrm{V} \frac{d^{2} x^{\prime}}{d y^{\prime *}}$. $\left(y-y^{\prime}\right) m d y^{\prime}$.

The moment of all the centrifugal forces about point (x, y) will be found by integrating this expression between the limits $y^{\prime}=0$ and $y^{\prime}=y$. So it may be ascertained that the moment of these forces is

$$
m V^{2}(y \tan \beta-x)
$$

where β is the horizontal inclination of the curve at the origin. $y \tan \beta-x$ is the length of a vertical line drawn downwards from the point (x, y) to meet the tangent drawn from the origin; and is very small.
The weight of the portion of the load upon the horizontal length of the beam y is $m g y$; and its moment about the point (x, y) is the same as if the weight were collected at a point half way between (x, y) and the origin, and therefore equala $\frac{m g y^{2}}{z}$. Also, if \mathbf{P} be the pressure of the abutment, $P y$ is its moment; and representing the constant, by which the radius of the curvature has to be multiplied to render it equal to the sum of the moments, by EI, we have-

$$
\mathrm{EI} \frac{d^{2} a}{d y^{2}}=m g \frac{y^{2}}{q}-\mathrm{P} y+m \mathrm{~V}^{2}(y \tan \beta-x)
$$

This equation is integrable in its present form; but as the last term of it is very small, we may make an alteration which will tend very much to the simplicity of the resalts. The centrifugal pressures cannot under any circumstances be great compared with the other forces, as may readily be foreseen by considering that in all cases of actual practice, the curvature is very small on account of the very small proportion which the central deflection bears to the length of the beam. For any central defection previously assigned, the curve would be very little altered if the centrifugal pressure were uniformly distributed. Therefore, in the above equation, the small term $m V^{2}(y \tan \beta-x)$ is neglected in estimating the radius of the curvature merely. Now, it appears from the "Mechanical Principles of Engineering," Art. 374, that when the beam is subject to any uniformly distributed pressures whatever,

$$
\frac{d^{2} x}{d y^{4}}=\frac{24 \mathrm{D}}{\delta a^{4}}\left(\frac{1}{2}-a y\right)
$$

where a is half the length of the beam, and D is its central deflection. The corvature of the beam, when it assumes its perma nent form ander the influance of a pasing. load, will dot greatly
differ from that which this equation indicates Of course, this hypothesis does not suppose the distribution of the centrifugal pressures to be actually uniform-it merely presumes that the curvature of the beam, for a given deflectiom, is nearly the same a if the pressures were so distributed.

From the equation last given, the value of $\frac{d^{2} x}{d y^{2}}$ at the centre, is $-\frac{24 \mathrm{D}}{10 a^{2}}$. Therefore, at the centre, a woight moving with velocity V, has a centrifugal pressure $=V^{\mathbf{y}} \cdot \frac{94 \mathrm{D}}{10 a^{2}}$ timee its mace.
To ascertain the whole effect of centrifugal pressure, we have evidently the expression

$$
-\int m V^{i} \frac{d^{2} x}{d y^{4}} d y=-m V^{2} \frac{94 \mathrm{D}}{5 a^{4}} \int\left(\frac{1}{d} y^{4}-a y\right) d y
$$

integrating between limits $y=0$ and $y=2 a$.
From this, it appears that the total centrifugal preasure

$$
=\frac{32}{m} \frac{\mathrm{D}}{\bar{V}^{2}} 10 \text { a, which becomes } m g a \frac{1}{10} \frac{V^{2}}{a^{2}} \mathrm{D}, \text { if } g=39
$$

Now, if T be the number of seconds in which either end of the load traverses the beam, $\underset{T}{V}=2 a$, and $\frac{V^{i}}{a^{i}}=\frac{4}{T}$. Substituting this value, and remembering that the total weight on the beam is $2 m g a$, we find ultimately,

Centrifugal pressure on whole beam $=\frac{1}{5} \frac{\mathrm{D}}{\mathrm{T}^{2}} \times$ the weight.
What very strongly confirms this conclusion, and shows that no materially great error is contained in it, is the consideration that if the curve had been supposed to be a circular arc passing through the middle and two ends of the curve, the effect of centrifugal pressure would be almost the same as the above formula gives it. The only difference (as will be seen hereafter) would be, that in the formula we must substitute t for $\frac{1}{f}$. When it is considered how exceedingly small the curvature of the beam must necessarily be in all practical cases, it becomes clear that a circular arc of large radius would represent the curve with at least tolerable ao curacy. At all events, that assumption furnishes a safe test of the foregoing conclusions.

Rule for Calculating the Pressure.

The formula then gives all the information that can be generally required, respecting the influence of the velocity of the train, or its pressure on the deflected girder, when the mass of the former is not small compared with that of the latter. Put into ordinary language, the formula amounts to this-that when a long uniform load moves over a girder which is perfectly elastic, originally horivontah the greatest pressure on the girder is that of the weight on it at argy time + a small fraction of that weight, which fraction is fourd by dividing one-fifth the deflection (in parts of a foot) by the equare of the number of seconds in which either end of the lood traversee the girder.

In order to give a clear idea of the value of the formula, and to show how small the influence of velocity generally is, one or two practical applications may be given.

A heavy train moves over a girder 88 feet long, at the rate of a mile a minute, and the observed deflection is one-third of a foot. To find the pressure on the girder.

In this case, either end of the train moves over the girder in one second. The square of the number of eeconds is therefore 1 . The deflection is $\frac{1}{2}$. Therefore, the fraction of the weight is $\frac{1}{2}$. Or the extreme pressure on the girder is one-fifteenth more than the weight on it at any time.

A train moves off a girder in three-fourtha of a second, and the observed deflection is one-fourth of a foot.

Here the square of $\frac{1}{2}$ is. One-fifth the deflection is stan and I $\frac{1}{10}$ divided by fio gives $\frac{4}{4}$; or the pressure is not quite one-twelfth more than the weight at any time on the girder.

These instances give the dynamical pressure as large as it in evar likely to be with a properly-constructed girder-bridge. They consequently show that the dynamical pressure of heary losd, even at high velocities, very little exceeds the stationa; and at low velocities, differs from it only in an inapprecisble degree.
It will be observed, that if the velocity be indefinitoly increased, or T in the formula indefinitely diminished, the dynamical pressure is indefinitely increased. But the formula virtally exafule these hypothetical cases; for the invertigation proceeded on the assumption that the centrifugal pressures are comparatively ment and that the whole pressure produces but a small deflection

Defect of Elasticity.

It now remains that something be said of the defect of elasticity, and the modifications of the above results when applied to jointed or compound structures. The ordinary mathematical theory of the girder is based on the law of perfect elasticity, known as Hooke's law-namely, that the elastic force is proportional to the extersion or compression.
It appears from experimental inquiries, subsequent to, and more extensive than, Dr. Hooke's, that this law is not quite true. The elastic force is in reality less than the law would assign it to be. Mr. Hodglinson, in his recently published "Researches on CastIron, ${ }^{-1}$ Art. 106, seems inclined to think that the elastic force may be expressed by a $x-b x^{3}$, where x is the measure of compression or extension, and a and b constant empirical co-efficients. That this bypothesis is near the truth may be inferred from the consideration, that if the elastic force be expressed by a series in ascending powers of x, all terms involving high powers must be very small, as the elastic force is always nearly equal to the first term, and \boldsymbol{x} is very small. It may, however, be worth while to remark, that if $a x-b x^{2}$ be taken to express correctly the elastic force, the same value of x, which reckoned positively gives the tension, will not, when reckoned negatively, give the same value for the pressure. In order that this may be the case, only uneven powers of x must be involved.
But whatever law of elasticity be assumed, this is easily ascer-tained-that where the elasticity is imperfect (that is, where it is less than in proportion to the extension or compression), the defecting pressure of a girder will be less than in proportion to the deffection. In cast-iron girders, cast in one piece and in metal of goud quality, the defect of elasticity is small; and consequently the deflection is pretty nearly proportional to the pressure. But in jointed structures, compounded of several parts connected by rivets or bolts, this is by no means the case. In them, the defect of elasticity must be great; and the deflection will therefore increase at a considerably higher rate than in proportion to the external pressure. If a load of 200 tons produce in a compound girder 2 inches deffection, 300 tons will produce considerably more than 3 inches deflection. Or, if 300 tons produce 3 inches defiection, 400 tons will produce considerably more than 4 inches deflection. How much more can be ascertained only from actual experiment.
It is very important that this distinction between simple and compound girders should be always taken into consideration, for the neglect of it would lead to very erroneous conclusions respecting the strength of structures of the latter kind. As cases in point, may be instanced calculations respecting the strength of girders formed in three pieces and supported by tension-rods. Formulm which determine the strength of simple, unjointed girders, are inapplicable to these structures, and are not likely to give even an approximation to the amount of their real strength.
Where, however, the compound-girder is so well constructed, that its curvature, when deflected, is regular and free from sudden infections, the formula given above for the dynamical pressure of long trains on perfectly elastic beams, will apply with considerable accuracy. For the defection being previously assigned, is a safeguard against any very great error. That deflection being small, the carvature will also be small; only, on account of the defect of elasticity, it increases coteris paribus more rapidly towards the centre of the beam, than it would if the beam were perfectly elastic. Consequently, the pressure towards the centre is comparatively greater in the compound, than in the simple girder: and pressure towards the centre is more effectual in producing deflection than pressure near the ends of the girder.
Consequently, there are two reasons why velocity increases the deflection of a compound, more than that of a simple, girder. In the first place, on account of the defect of elasticity in the jointed structure, its deflection increases in a higher degree than in proportion to the external pressure. Secondly, that external pressure is of necessity greater for the jointed than for the simple girder, because in the formar the curve is sharper towards its centre. Velocity of transit has therefore much greater influence on the security of girders of the former, than of the latter kind.
It would have been satisfactory to have been able to confirm the results of these investigations, by reference to actual experiments. Unfortunately, however, there are at present but very scanty data for the parpose. An account of two experimenta made on the Deo-bridge, of the Holyhead Railway, is all that can be cited. These experiments are described in a Report to the Commissioners of Railways, 15th June, 1847. An engine and tender, about 30 tons weight, passing over the bridge at 15 miles an hour, produced "a defection nearly the mame as with the engine cost-vix.
from to $1 \frac{1}{8}$ of an inch." In another experiment, "an engine and train of 48 tons, at rest, gave a deflection of 24 inches; while the deflection caused by the same train at a speed of 15 to 20 miles an hour, was only if of an inch."
These accounts do not however furnish much information suited to our present purpose. In the first place, the experiments were made on a jointed structure of a complex nature, and of which the deflection appears, even from this brief account, to have followed no simple law. Moreover, in the first experiment, the deflection is not actually determined : it is merely said to have been from z of an inch to three-sixteenths more; and in both, the mass of the girder greatly exceeded the mass sustained. All the inference that can be drawn is that velocity did not very materially influence the deflection, but that the deflection was diminished at the highest velocity, the load sustained being comparatively light.

Means of Diminishing the Dynamical Pressure.

When a ball moves along a perfectly horizontal surface, the pressure on its under side is just equal to its weight, for this simple reason-that if the pressure were greater, the ball would rise ; if less, sink.
In the same way, if a train moved along the surface of a girder which remained perfectly horizontal during the transit, its pressure would be just equal to its weight. But the train generally sinks a little, and acquires a momentum downwards, which has to be destroyed by increased pressure. The simplest precaution against this effect is-not to remedy it-but to prevent its existence. Suppose it be found that, when a certain weight travels along a certain girder which is originally perfectly horizontal, it produces a deflection of three inches at its centre: then, if the rails had a rise given them of three inches towards the centre, it is clear, that when the same weight travelled over them, it would be no lower when at the centre, than when at either end, of the beam.
Suppose now the reverse case-that there is a hollow or depression originally in the beam. Then, when the weight passes over the beam, it sinks the distance of this original depression, in addition to the defection produced by pressure. Hence, the downward momentum is materially greater than if the beam had been perfectly horizontal originally. Or, to take another view of the question, the original hollow or depression, added to the deflection, increases the curvature of the beam, and therefore the centrifugal pressure of the load. Either way, then, of viewing the effect of the hollow, either in increasing the momentum downwards, or in increasing the centrifugal pressure, leads to the same result-that the pressure is increased. Mathematically, these two views of the case coincide.
It is seen, then, how extremely important it is that there should be no original hollow in the beam. On the contrary, it is advantageous that its surface should be convex, instead of concave-or should have a camber. In this case, the centrifugal pressure would act upwards instead of downwards; so that the pressure, instead of being greater than the weight, would be less at high speeds.

There is a very simple way of calculating this diminution, or of estimating the centrifugal force. And it may be remarked, parenthetically, that the method about to be given is useful for many purposes besides that to which we are to apply it. For example, it furnishes most simple and ready means of ascertaining the horizontal pressure on the flanges of the wheels of carriages going round railway curves.
If a be the length of the ohord of a circular arc, which is of large radius, and x its lineal versed-sine, or the length of the perpendicular drawn from the centre of the arc to the chord, it will be found that the radius nearly equals $\frac{a^{2}}{8 x}$.
Now, if V be the velocity of a mass m, moving round this curve, its centrifugal force becomes $m \mathrm{~V}^{*} \frac{8 x}{a^{*}}$; and if T be the number of seconds in which any part of the mass describes the distance a, $\frac{V^{2}}{a^{2}}=\frac{1}{T}$. Substituting this value, and putting $g=32$, the centrifugal force is equal to $\frac{x}{4 \overline{\mathrm{~T}}^{2}} \times$ the weight. This formula applies to horizontal zailway curves, as well as to the vertical curves of a beam. Confining attention however to this application of it, we see that a very considerable reduction of the pressure of the weight may be effected by curving the upper surface of the beam. Suppose, for instance, that the time of transit were one second ($T=1$), and that it were practicable to give the rails sucha
convexity that the rise at the centre was one foot $(x=1)$. Then, from the formula, it appears that the centrifugal pressure would be one-fourth the weight, or that only three-fourths the weight pressed on the beam.

It may be remarked that this law has most important effects on such stupendous structures as the tubular bridges for the Chester and Holyhead Railway. The Conway-bridge, after it was constructed, sank eight inches at the centre by its own weight; this depression was anticipated and corrected by a previous upward convexity of the tube. But in this, and all analogous cases, a rise or convexity, considerably exceeding the natural depression, would tend greatly to security : because, the curve being convex, an increase of the velocity would diminish, instead of increasing, the pressure of a given load. It may therefore be safely asserted, that it contributes to the security of girders to give their upper surfaces as great a convexity as is consistent with other practical requirements.

General Conclusions.

At the close of these investigations, it may be convenient to recapitulate the general conclusions derived from them. They comprehend the following laws for the motion of very heavy loads st practical velocities over horizontal girders.

1. If the girder be perfectly elastic, the pressure exceeds the weight on the girder by a fraction of the weight, not more than onefifth the actual deflection (in parts of a foot), divided by the square of the number of seconds in which either end of the load traverses the girder.
\&. In compound and imperfectly elastic girders this fraction is increased.
2. The influence of the inertis of the beam on its deflection is inconsiderable.
3. In all girders, a convexity of their upper surface, or rise of the rails from end to centre, may be made to materially diminish the pressure.

These conclusions will, it is believed, furnish a tolerably accurate idea of the influence of moving loads upon railway girders. The only subject on which no definite investigation has been here attempted, is the defect of elasticity in jointed girders. The modes of construction of compound girders are so numerous, that to establish any general law respecting them is obviously impossibleno accurate knowledge can be derived of the law of elasticity or deflection in these cases, but by direct experiment.

No pains have been spared to render the views here expressed, correct. They have occupied many months of reflection, and have been subjected to the careful revision of the author's mathematical friends. As the great object has been to exclude all operose mathematical investigations, it will be readily understood that the subject, by constant corrections and simplifications, has asumed an entirely different shape to that originally given to it,

ON MR, CLARKES SURVEYING PROBLEM.

The problem proposed and solved by Mr. Clarke, in last month's Journal, p. 230, is by no means so new as he appears to think. The form under which the problem is most usually presented, is :-

Given the base and the angles at the base; to find the perpendicular, and the segmonts into which it divides the base.
Mr. Clarke's angles β and θ are the complements of the angles at the base of the triangle CA D , as is obvious. (See his figure, p. 230.)

The following investigation of the question is taken, almost literally, from the 1 gth edition of "Hutton's Course"; and it will be at once perceived to be more brief and simple than Mr, Clarke's.

Let $C D$ be the perpendiaular from the vertex to the base, and denote the angles of the triangle, as usual, by A, B, C, respectively. Then, by right-angled triangles, we have -
$\mathrm{C} D \cot \mathrm{~B}$
$C D=$
$\cot B+\cot A \quad=\frac{c \sin A \sin B}{\sin (A \pm B)}=\frac{c \sin A \sin B}{\sin C}$

This value of CD is often required in problems of this ches, giving (in Mr. Clarke's illustrative example) the horizontal distance of the point of observation from the observed object. It likewise as frequently occurs in determining the height of an object, as a hill, upon a horizontal plane.

From substituting the above value of $C D$ in the equations, $A D=C D \cot A$, and $B D=C D \cot B$,we obtain

$$
A D=\frac{c \cos A \sin B}{\sin C}, \text { and } B D=\frac{c \sin A \cos B}{\sin C}
$$

I have left these expressions in sines and cosines, instead of changing the denominator into the factor cosec C. There is no doubt that the better form of working, when C does not contain second (with the ordinary tables I mean, for surveyors seldom use tables to seconds), is the form which Mr. Clarke has adopted: but in the other case it is somewhat questionable.
AB_{a}, however, this is a mere question of experience-perhapa, too, of habit-every one should adopt the plan he can most easily use.

This mode of treating such problems is, in fact, the same with finding the co-ordinates of the point of observation, referred to the horizon and the vertical object observed. I have often been led to think, that if the greater part of the problems (if not all) which occar in surveying were systematically treated, according to the calculus appropriate to the co-ordinate system, the processes of computation would be considerably improved. Even were the actual work not materially lessened, the systematising of the entire class of problems would be in itself a great practical advantage.

When, however, we confine ourselves, as Mr. Clarke has done, to finding the difference of levels, a still shorter method of operating may be used, for it requires one reference less to the tables. It may be thus investigated.

Let M be the middle of AB ; denote AB by $q a$, and $\mathrm{M} D$ by a.
Then (fig. 2) $\mathbf{A D}=x-a$, and $B D=x+a$; whence

$$
\begin{aligned}
& A D \tan A=C D=B D \tan B, \text { becomes } \\
& (x-a) \tan A=(x+a) \tan B, \text { or } \\
& \frac{a-a}{+a}=\frac{\tan B}{\tan A} ; \text { or again, } x=\frac{a \sin (A+B)}{\sin (A-B)}
\end{aligned}
$$

A corresponding form, adapted to the case represented in fig. I, is deducible in the same way ; but further notice of it here is unnecessary. A formuls so simple, and so easily derived, can scarcely be new. Still, I do not recollect to have noticed it elsewhere.

Another variation of the same general problem is often useful. It is, where the segments of the base A B , and the angle C , ure given, to find the perpendicular $\mathbf{C} \mathbf{D}$.

Put DA $=a ; D B=b ; A C B=2 \nu ;$ let $C D$ bisect BCA; and denote NCD by θ, and $C D$ by x. Then we have

$$
\mathbf{B C D}=\theta+\gamma \text { and } \mathbf{A C D}= \pm(\theta-\gamma)
$$

Wherefore,

$$
\text { and } a=4 a \tan (\theta-\gamma) ; b=x \tan (\theta+\gamma)
$$

$$
\begin{gathered}
a=\frac{+\tan (\theta-\gamma)}{\tan (\theta+\gamma)}= \pm \frac{\sin (\theta-\gamma) \cos (\theta+\gamma)}{\cos (\theta+\gamma) \sin (\theta-\gamma)}= \pm \frac{\sin 2 \theta-\sin 8 \gamma}{\sin 2 \theta+\sin 2 \gamma} \\
\text { and hence, } \sin 2 \theta= \pm \frac{a-b}{a+b} \sin 2 \gamma .
\end{gathered}
$$

Whence the angle θ becomes known, and is very easily computed; and hence the perpendicular $\mathbf{C} \mathbf{D}$ is obtained from either of the preceding equations,

$$
\pm= \pm a \cot (\theta-\gamma), \quad=b \cot (\theta+\gamma)
$$

--But I need not further dilate on so simple a subject.
Ubigue.
sth August, 1848.

THEORY OF STEAM-ENGINES.

Account of the experimente to determine the principal laves and numerical data which enter into the calculation of Steam-Engines. By M. V. Regnault.

(Continmed from page 240.)

Second Memore,-the determination of the dengity of gases.
The common method of determining the density of a gas consists in weighing a glass globe of great size:-
1st. When the globe contains perfectly dry air of a known temperature, and under a known atmospheric pressure:
gnd. After having exhausted it by means of the air-pump, so that the inclosed air exerts only a very feeble pressure, which, as well as the corresponding temperature, is noted:
3rd. After having filled the globe with the gas perfectly purified, the atmospheric pressure and temperature being again noted:
4th. After having again exhausted the globe, noting, as before, the pressure and temperature.
By which four weighinga, and their accompanying observations of pressures and temperatures, all the data necessary for determining the density of the gas are given. But this method requires the eract knowledge of several elements, the determinations of which present generally great uncertainty.

In the first place, the temperatures which the air and the gas present at the moments of closing the globe, must be very exactly known; but the method generally used of having a thermometer placed near the globe is very defective: the temperature indicated by the thermometer may be totally different from that of the air in which it is bathed, and still more so from that of the gas which fills the globe.
MM. Dumas and Boussingault, who have lately (Ann. de Chim. a de Phys., 3d strie, tome III., p. 270) very successfully endearoured to determine the densities of certain gases, place the thermometer intended to indicate the temperatures of the gases in the very centre of the globe; and for more security, they cause that temperature to be almost constant, by placing the globe in an inclosure formed by a large cylindrical vessel of zinc with double walls. The annular space left between the walls is filled with water, at a temperature differing but little from that of the surrounding air. With this arrangement, we may admit that the temperature of the gas is known with sufficient accuracy.

But the greatest uncertainties exist in the weighings of the globe; for we must weigh the globe in the air, and, to have its true weight, we must add to its apparent weight that of the air which it displaces. And, in certain cases, this latter weight is greater than that of the gas which fills the globe, so that it must be knomn with at least equal exactness. We are, up to a certain point, masters of the gas which we pass into the globe. We may prepare it so as to be sure of its purity; but it is not so with the external atmosphere; we are obliged to take it as it is. In a close chamber the air may change its composition very perceptibly; its temperature, and the quantity of moisture which it contains, very incessantly. MM. Dumas and Boussingault thought that they had completely avoided the errors arising from this source, by placing below their balance a large chest lined with lead, in which the globe sugpended from one of the scales of the balance floats. A rery senaitive thermometer is placed in this chest, and gives the temperature of the sir. This arrangement is certainly far preferable to allowing the globe to hang freely in the air of the room; the globe suspended in the chest is kept from the currents of air, which render the weighings very uncertain, and the temperature of the air in which it is placed changes but slowly; but it does not do away with the errors arising from the changes in the composition of the air, and these are by no means negligible, especially when we are working with very light gases-such, for instance, as hydrogen.

At the same time that MM. Dumas and Boussingault were weighing gases, M. Regnault was also engaged in the determination of the density of steam under different pressures, and especially under very feeble pressures. He was struck with the uncertainties which the ordinary methods of weighing gases present, especially owing to the alteration of the density of the surronnding air, which seems to have attracted but little attention from men of science, and he was led to a method which presents a degree of certainty and precigion which throse heretofore used do not offer.

He avoids completely, and by a very simple artifice, the uncertainties which arise from the changes in the air in which the globe
is weighed. In place of equipoising it by means of weights on the opposite scale, he balances it by means of a second hermeticallysealed globe of the same kind of glass, hung from the opposite scale. All the variations which take place in the air then affect the two globes in the same way, whether they arise from changes of temperature, barometric pressure, or composition of the atmosphere. It is not, therefore, required at the moment of weighing to watch the thermometer, barometer, and hydrometer; it is sufficient to wait until the two globes are in equilibrium of temperature, and when this is the case, it continues indefinitely. We have, in consequence, a very definite character by which to know when to read the weighings. This method presents also another advantage, that is, of avoiding the error arising from the different amount of moisture deposited upon the globe during different weighings. As the globes are made of the same glass, and equally dried before the commencement of the experiments, they may be assumed to condense the same amount of moisture when bathed in the same air, and consequently will remain in equilibrium.

The globes had a capacity of about 10 litres ($8-2$ gallons). The globe in which the gas is to be weighed has a stop-cock adjusted to it, so that it may be exposed to the temperature of boiling water without leakage. It is weighed when full of water, first in the air, and afterwards in water of the same temperature as that which it contains; thus is obtained the weight of water displaced by the globe.

The balancing globe is so selected that the weight of water displaced by it is rather less than that of the first, even after the addition of its metallic mounting by which it is hermetically sealed, and hung from the opposite balance scale; there is then added to it a glass tube of such capacity as that the weight of water displaced by it shall just make up the difference.

Before closing the second globe, a quantity of mercury was introduced into it 80 as to render it about 10 grammes ($15+38$ grains troy) heavier than the other. The two globes thus adjusted were submitted to several tests, in order to be sure that they satisfied the required conditions; they were left hanging for fifteen days under the balance scales, and the equilibrium was rigorously maintained all this time, although in the interval the temperature of the air had changed from 0° to $17^{\circ},\left(32^{\circ}\right.$ to $68 \cdot 5^{\circ}$ Fahr., $)$ and the barometric pressure from 741 to 771 millimetres (29.6 to 30.8 inches.) The general mode of operating was as follows:-A vacuum as complete as possible being made in the globe, it is placed in communication with the apparatus for producing the gas whose dengity is to be determined, and the stop-cock is opened in such a way that the gas in the apparatus preserves a slight excess of pressure. When the globe is filled with gas, it is again placed in communication with the air-pump, a very perfect vacuum made, and it filled a second time with the gas. In order to avoid any correction for temperature-a correction which would require the knowledge of the co-efficient of dilatation of the gas, and that of the globe-the globe is placed in a zinc cover and completely enveloped in melting ice. Before closing the globe, it is placed in direct communication with the atmosphere, so that the gas may place itself in equilibrium with the exterior pressure.

The globe taken out of the ice is carefully washed and dried, and hung from the scale of the balance. It requires a long time (often more than two hours) for the globe to take eractly the temperature of the surrounding air, and for its surface to cover itself with its normal amount of moisture. The balance used was able to appreciate with certainty a half milligramme when charged with one killogramme upon each scale.*. It was placed over a large chest, such as used by MM. Dumas and Boussingault. At the end of the weighing, the observer did not approach the balance, but observed the oscillations of the index at a distance, with a telescope.
M. Regnault then notices the electric effects produced by wiping the globes, and the effects upon the weighings; he avoided it by wiping the globes with a napkin dipped in distilled water, and tested them by the gold-leaf electrometer. The pressures were measured by an apparatus which he describes under the name of a barometric-manometer. It consists of two tubes, one of which is an ordinary barometer of 20 millim. (0.8 in . diameter,) made very carefully; the other is a glass tube of the same diameter, which may, by a lead tube, be connected with the vessel in which preas sures less than that of an atmosphere are to be measured; they plunge below into a cistern of mercury having a partition, so that the two instruments may be separated at pleasure by drawing off the mercury in the cistern of the manometer below the top of the

[^27]partition; this is necessary during the exhaustion of the globe, and the re-admission of the gas, for these operations produce such great oscillations in the barometer as to introduce small quantities of air into the instrument, and thus vitiate the vacuum. The exhausted globe is weighed with the precautions that have been indicated. If P represent the weight of the gas when the barometer stands at H, and p that weight when the elastic force in the globe corresponds to a barometric height h, the weight of the gas at 0°, and under the normal pressure of 760 mil., is $(P-p) \frac{760}{H-h}$
To obtain a new weighing of the same gas, the exhausted globe, enveloped in ice, is placed in connection with the apparatus for generating the gas, and the series of operations which have been pointed out, repeated. The gas thus becomes purer at each operation. M. Regnault found that it is only from the fourth filling that the gas presents rigorously the same weight. It is desirable to satisfy ones self whether the gas upon which we are operating follows the law of Mariotte, at pressures below those of the atmosphere: this verification is absolutely necessary if the density of the gas is to serve for the determination of atomic weights. For the law of the volumes of gases, and the simple ratios which exist between their densities and atomic weights, exist rigorously only at the limit-that is, in a state of extreme dilatation; we must therefore see whether the anomoly in these laws does not commence already near the atmospheric pressure.

This is done by measuring the weight of the gas, with great care, at different degrees of elastic force, as marked by the comparison of the manometer and barometer.

Finally, by this means we may determine the weight of the gas which fills the globe at the temperature of 100° and under atmospheric pressure, and thus determine the density of the gas when compared with air at 100°. This new density must be exactly the same as that calculated for 0°, in order that it may serve in the calculation of the atomic weights; for it is necessary for this purpose that the gas should have the same co-efficient of dilatation as the atmospheric air; at all events the weight of the gas which fills the vessel at 100° compared with that which fills it at 0°, permits us to calculate the co-efficient of the dilatation of the gas.*

Again, in order to determine whether the gas follows the law of Mariotte, at the temperature of 100°, we have only to repeat the former experiments, filling the globe at this temperature, instead of at 0°.
M. Regnault then recapitulates the advantages of this method, which are,-that it gives the density of the gases with more precision, and far less trouble, than the methods formerly used; it gives these densities at identical temperatures at 0° and 100°, that is, at the fixed points of the thermometer, and consequently gives immediately the co-efficient of dilatation of the gas; and, finally, it permits us to determine with great exactness, whether the gas follows the law of Mariotte, at the temperatures of melting ice, and boiling water.

He then proceeds to give the detail of all his experiments, without a single exception, in order to allow the reader to judge of the legree of precision obtained by this method. It is not necessary that we should give these details-or those of the processes by which M. Regnault purified his gases; they were such as might be expected from one so familiar with all the minutis of physical science.

He first determined by nine experiments the weight of pure atmospheric air, freed from carbonic acid and watery vapour, which filled his globe at the temperature of 0°, and under the barometric pressure of 760 millim . ($29 \cdot 944$ inches). The mean of these experiments was $12 \cdot 7781 \mathrm{gr}$. The minimum, $12 \cdot 7744$. The maximum, 12.7809. The difference, 0.0065 or $\frac{1}{10}$, very nearly yote of the mean; and he remarks that it is probable that a great part of this error is due to the variations which occur in the composition of the atmosphere. He regards it as unfortunate that men of science should have selected the atmospheric air, whose constitution is known to vary, as the standard of densities for gases, in place of some gas which could always be obtained perfectly pure, such for instance as oxygen, which would be the more convenient since this gas is already chosen as the basis of the tables (adopted by continental chemists) of chemical equivalents.

Founded upon this determination of the weight of a given volume of air, he proceeds to determine the densities of different gases, and his results are as follows:-

[^28]

If we calculate the theoretic density of carbonic acid gas, admitting for the atomic weight of carbon 75, (oxygen $=100$, or 6 if hydrogen $=1$,) lately found by M. Dumas, we get the number $1-52024$, which approaches the density found for this gas under the pressure of $295 \cdot 17$ millim. (less than nine inches.)

The density found at the temperature 0° and normal atmospheric pressure leads to an atomic weight for carbon 76.6 which approaches very nearly the number 76.44 ($6 \cdot 1152$, if hydrogen $=1$) which chemists for a long time admitted from the experiments of M. Berzelius.*

We see, by this example, how much circumspection is necessary in deducing the value of the atomic weight of a gas from its density.

Three experiments to determine the co-efficient of dilatation of the air between 0° and 100°, gave as the result 0.03663 , which differs but little from the value obtained in the First Memoir.

An attempt to verify the law of Mariotte showed slight differences, in which the weights by experiments were always a little lower than those got by calculating the density by means of Mariotte's law from the observed elastic force; but these differences were always within the limits of the errors of observation.

The co-efficient of dilatation of carbonic acid gas between 0° and 100° was determined to be 0.003719 . (In the First Memoir, the determination by the method V., in which the gas preserved the same elastic force at 0° and 100°, as in the present case, was 0.0037099 .)

The experiments to determine whether carbonic acid gas obeys the law of Mariotte at pressures less than that of the atmosphere, gave the following results:-

so that it appears that carbonic acid gas deviates notably from the law of Mariotte at ordinary temperatures, but conforms to it with the limits of experimental errors at 100°.
Third Memoir.-determination of the weioht of the hithe \dagger OF AIR AND OF the density of mercuiv.
In the preceding memoir, the densities of the different gasea were determined, referring them to that of air assumed as the unit; but in a great number of circumstances, it is required to know the absolute weight of these gases : this is easily obtained when we know the absolute weight of air under the normal conditions, that is at a temperature of 0°, and under a pressure of 760 millimetres of mercury.

The weight of the litre of dry air under the normal conditiona was determined by MM. Biot and Arago, with all the care which they could take-they found that at Paris this weight was 1×299541 gr. (Memoirs of the Academy of Sciences for 1806. Biot Traite do Physique, tom. 1, p. 387.) This number has been generally adopted.

But if we reflect upon the imperfections which the theory of gases and vapours still presented at that time, and the great nomber of uncertain corrections which they were obliged to introduce into their calculations; and if we note that they operated upon air charged with aqueous vapour, for which they endeavonred to allow by a correction; and that, in spite of the most minute preceutions, this circumstance must necessarily introduce great disturbances into their experiments, we shall understand how absolutely necessayy it was to make new determinations of this important doctrine, which will be frequently used in the following investigations.

In the preceding memoir, the weight of dry air which filled in globe at 0°, and under a pressure of 760 mil , whs determined win great care; it will be enough then to find the capacity of this g

[^29]${ }^{1847 \text { Tho Freech isere is equal to } 0-22 \text { of the impertel gethens. }}$
at 0°, to determine immediately the weight of the litre of air. Now_{2} according to the principle upon which the French system of messures was established, the kilogramme is the weight of a litre of distilled water, freed from air, at the temperature of its maximum density, which is about $4^{\circ}(39 \cdot 2$ Fuhr.) ; it will suffice then to determine the weight of water at 4° which fills the capacity which the globe presents at 0°.

To do this M. Regnault operated in the following way:-
The open globe was weighed upon a good halance; its weight Was found to be 1258.55 gr ., the surronnding temperature being 49°, and the height of the barometer reduced to $0^{\circ}, 757.89$ mil.
A small quantity of water was introduced into the globe, and the globe exhausted by means of the air-pump, and at the same time heated. In this way the atmospheric air was completely expelled by means of the vapour of water which was constantly developed. The stop-cock of the globe was then closed.
On the other hand, perfectly pure distilled water was boiled in a large globe to free it completely from the air which it always holds in solntion at ordinary temperatures. Upon the tubulure of the first globe was fixed by canutchouc a glass tube, twice bent, one of whose branches descended to the bottom of the vessel in which the water was kept boiling. On opening the stop-cock of the globe, the boiling water entered it slowly, without coming in contact with air ; it was consequently perfectly free from that gas.
The globe being completely filled, the recurved tube was removed, and replaced by a tube having a bulb which was kept filled with the boiling water, and furnished the quantity of water necessary to keep the globe filled as its temperature lowered.
When the globe, filled with water, had come down to the surrounding temperature, it was placed in a zinc vessel, and completely surrounded with melting ice, care being taken to pack the ice in proportion as it melted, upon the walls of the globe.
The globe was left in the ice for a time varying from 6 to 18 hours; the stop-cock was then closed, the bulbed tube detached, and the tubulure above the stop-cock carefully wiped.
The globe was placed in alarge vessel filled with water at a temperature a little above that of the chamber in which the balance was; it was left for two hours, so that it should take nearly the temperature of the chamber. As the water contracts in proportion 28 its temperature rises from $0^{\circ}\left(\right.$ to $\left.4^{\circ}\right)$, the globe could be kept closed without danger of breaking. When the globe had acquired the temperature of the chamber, it was weighed, and this weighing (the temperature of the room and the height of the barometer being noted) gives the means of calculating the weight of water at 4°, Which fills the capacity which the globe presents at 0°.
According to the experiments of M. Pierre (Annales de Chimie et do Phyoique, $3 d$ série, tome xv., $p .348$), if the density of water at 0° be taken as 1 , at 4° it is $\frac{1}{0.999881}$.
Whence we can calculate the weight of the water at 4° (its maximum density), which fills the capacity which the globe premante at 0°. Three experiments give the following results :-

> I. 9881.060 grammes. II. $9881 \cdot 119 \quad "$

The third weighing gave a number "probably a little too high, because the globe was intentionally left but a little time in the ice, in order to see what influence this circumstance would have upon the result. On this account, M. Regnault adopts the mean of the former experiments, viz. : $9881 \cdot 086$.

Desiring to ascertain whether the correction made to reduce the weight of water from 0° to 4° was sufficiently eract, M. Regnault made two direct experiments, which gave a mean differing only 0.159 or $\frac{16}{100,000}$ from the result of the calculation. The capacity of the globe at 0° was therefore 9.881086 lit., and since (ses Second Memoir) the weight of air which filled it at 0°, under a presture of 760 mil , was 18.7781 gr ; the weight of the litre of air, under these normal circumstances is $\frac{12 \cdot 7781}{9 \cdot 881086} \mathrm{gr} .=1 \times 293187 \mathrm{gr}$. a ralue notably less than that which was heretofore admitted from the experiments of MM. Biot and Arago* (1-29954!).

[^30]From this and the numbers obtained in the preceding memoir for the densities of the gases we deduce, that at Paris

The litre of Atmospheric Air weighs 1 '293187 grammes.

$"$	$"$	Nitrogen	$"$	$1-256167$	grammes.
$"$	$"$	Oxygen	$"$	1.429809	$"$
$"$	$"$	Hydrogen	$"$	0.089578	$"$
$"$	$"$	Carbonic Acid	$"$	1.977414	$"$

Strictl" considered, these values are"only correct for the locality in which the experiments were made-that is, for a latitude of $48^{\circ} 50^{\prime} 14^{\prime \prime}$, and a height of about 60 metres above the level of the sea.
M. Regnault finds the weight of the litre of air, under the parallel of latitude 45°, and at the same distance from the centre of the earth as that at which his experiments were tried, $=1 \cdot 292697$.

And assuming this as the standard number, he deduces for any other latitude, and any other distance from the centre of the earth, the formula

$$
w=1.292697 \text { gr. }(1 \cdot 00001885) \frac{1}{1+\frac{2 h}{\mathbf{R}}}(1-0.009837, \cos 2 \lambda)
$$

$$
\begin{aligned}
& \text { Or, more simply } \frac{1}{w=1.292673 \mathrm{gr} .} \frac{1+\frac{\mathrm{R}}{\mathrm{R}}}{}(1-0.008837, \cos 2 \lambda) ; \text { in which } w \text { is }
\end{aligned}
$$

the weight of the litre of air (the litre is $61 \cdot 09908$ cubicinches); R, the mean radius of the earth $=6,966,198$ metres ; h, the height of the place of observation above this mean radius, expressed in metres; and λ, the latitude of the place.

Applying this formula to the level of the sea, in the latitude of Philadelphia ($39^{\circ} 56^{\prime} 51 \cdot 5^{\prime \prime}$), and assuming the radius of the earth at this point $6,367,653$ metres:

The weight of the litre of air will be $1-2914392$ grammes.
And assuming the litre as $61-09908$ cubic inches, and the gramme as 15.433159 grains troy:

The weight of a cubic inch of air will be 0.32621 grains troy. Or, (assuming Mr. Hassler's determination of the weight of a cubic inch of water, $\mathbf{2 5 2 6 9 3 4}$ gr.) water is 774.63 times heavier than air.

Density of Mercury.

The density of mercury has been determined several times by M. Regnault, and with the greatest care; as he wished to satisfy himself whether this liquid, purified by the means employed ordinarily in the laboratories, presented a constant density.

A glass globe, of a capacity of from $\$ 50$ to 300 cubic centimetres, was filled with mercury. The globe terminated in a capillary tube of about $\&$ mil. diameter, upon which a mark was made, and this tube was surrounded by a larger one which was used as a funnel. The funnel could be hermetioally olosed by a ground glass stopper. The globe being filled with mercury, this liquid was boiled, and suffered to cool. The globe was then placed in ice for several hours, and the level of the mercury brought exactly to the mark. As soon as it was satisfactorily ascertained that the level of the mercury did not change, the mercury wes suffered to take the temperature of the air, and its weight determined. The same globe was then filled with distilled water, first boiled to deprive it of air. It was suffered to cool, the funnel being kept full of boiled water, and closed with its stopper. The globe was then surrounded with ice, and when the water had taken exactly the temperature 0°, the water level was brought to the mark, and the sides of the funnel wiped with filtering paper. The closed globe was then placed in water having nearly the temperature of the surrounding air, so as to bring it more quickly to the temperature of the air in which it was to be wrighed.

The three determinations of the density of mercury, which are reported, were made at very different times, upon specimens from different sources, and in three different globes:-
I. The first specimen was mercury designed for the construction of a standard barometer for the obeervatory of Paris. This mercury came directly from the mine; it had been twice distilled in an iron vessel. It was then suffered to stand for several days under weak nitric acid, to dissolve the oxide of mercury which always forms during distillation. The metal was then washed with much water, and dried in the air-pump. The density of the mercury at 0°, compared with that of water at 4°, was $13 \cdot 59599$.
II. In the second experiment, the mercury employed was that used by M. Regnault, in the construction of his manometer. This mercury was distilled several years ago, in an iron retort, and has
 mallog a pert of the welfint of the air, and pe
Biot's "Tralte da Phyaque," tome $1, p .867$.)
been kept in glass vessels. It was frequently purified by shaking it in flasks with concentrated sulphuric acid, then washing with much water. Its density at 0°, compared with that of water at 4°, was 13.59578.
III. Recently, M. Regnault has determined the density of mercury prepared with the greatent care by M. Millon, by the calcination of crystallized nitrate of mercury in a porcelain retort. The metal was then shaken up with concentrated sulphuric acid, to dissolve the oxide. Density of the mercury, $13 \cdot 5960$.

Thus we find for the densities of these three specimens of mercury :-

$$
\left.\begin{array}{r}
\text { I. } 13 \cdot 59599 \\
\text { III. } 13.59598 \\
\text { III. } 13.69602
\end{array}\right\} \text { 13•59559. }
$$

These densities may be considered as identical.
MM. Biot and Arago found the density of mercury, $18 \cdot 588595$.

This density differs but little from those which we have found. The little difference ought probably to be attributed to the uncertainty of the corrections which these illustrious physical philosophers were obliged to make in their method of operating.

It is often necessary, as in measuring heights by the barometer, to know the ratio of the density of mercury to that of air. Now 1 lit. of air at 0°, under a pressure of 760 mil., weighs 1 ' 293187 gr . " water at its maximum density weighs $1000 \cdot 000000$, $"$ mercury at 0°
13595.93

The ratio of the densities of mercury and air at the temperature 0°, and under the pressure of 760 mil. observed at Paris, is then 10513.5. At the level of the sea, and in latitude 45°, it becomes $10517 \cdot 3$; and at the level of the sea, at Philadelphia, 10527.735.
(To be continued.)

CONTRIBUTIONS TO RAILWAY STATISTICS,

In 1846, 1847, and 1848.-By Hyde Claree, Esq.
(Continmed ftom page 245.)
No. III.-COAL TRAPFIC.
Coal traffic is one of the largest and most important items of railway transit; but here, as elsewhere, the returns published by the Railway Department are insufficient to show the whole amount. This is the more to be regretted, as the great reduction in the price of coal by railways has largely increased the demand for household use, as well as for manufacturing purposes. The monopolies of the canal proprietors, and of the wharfingers connected with them, have been broken up, and each year some new operation throws open a fresh district.
Coal traffic is of three kinds: from the colliery inland; from the colliery to the sea; and from the sea-shore inland.

The following shows the gross tonnage of coals, coke, and culm on the undermentioned lines for the years ending 30th June, 1846 and 1847.

	$\begin{aligned} & 1846 . \\ & \text { Tona. } \end{aligned}$	$\begin{aligned} & 7847 . \\ & \text { Ton. } \end{aligned}$
Arbroath and Forfar,	12,012	14,025
Ardromsan,	66,782	70,090 \dagger
Ballochney,	139,206	185,969
Bodmin and Wadebridge,	5,123	5,129
Caledonian (Glatgow and Garnkirk)	227,183	335,319
Dunformline and Cbarlestown,	28,654	27,626
Dundee and Arbroath,	19,000	$500+$
Dandee and Newtyle,	10,000*	10,000
Darham and Sunderland, ..	394,974	
Kastern Counties : Cambridge,	15,000*	15,000 ${ }^{\text {a }}$
Colcheater,	26,976	20,0004
Ipawich and Bury,		15,7494
Enstera Union,		18,744 \dagger
Norfolt,	6,000	15,000 ${ }^{\circ}$
Edishorgh and Dadkeith,	95,571	
Bast Lancesbire,		1,181+
Forness,		2,748
Glasgow and Greenock,	28,429	30,387
Glasgow and Ayr, -*	180,130	242,443
Grent North of England,	251,484	
Hartlepool,	893,701	789,673
Holl and Selby,	40,000*	
Kendal and Windermere,		1004
Lanceater and Carliale,		6,886
Lancater and Preston,	10,000*	

The quantity enumerated amounts to about $8,900,000$, or nearly $0,000,000$; the number enumerated in 1845 being 7,000,000 tona.

The amounts received for the carriage of coals in the years onding June 30, 1846 and 1847, were as follows:-

Arbroatb and Forfar,	$\begin{gathered} 1846 . \\ 1,749 \end{gathered}$	$\begin{aligned} & 1847 \\ & 2,012 \end{aligned}$
Ardrossan,	2,339	3,200 \dagger
Ballochney,	8,765	7,091
Bodmin and Wedebridge,	616	628
Caledonian (Glatgow and Garnkirk)	5,123	17,535
Chester and Birkenbead, ..		$120+$
Cockermouth and Workington,		$105 \dagger$
Dunfermline and Charleatown,	3,078	2,910
Dandee and Arbroath,	4,000	$28+$
Durham and Sunderland,	20,604	
Eustern Counties: Cambridge,	22,796	8,158
" Colchenter,	7,274	
" Eastern Union,		$200+$
Ipswich and Bary,		1,264
Norfolk,	700	2,000*
Eant Lancashire,		$51+$
Edinbargh and Dalkeith,	4,160	
Glangow and Greenoct,	2,917	3,323
Great North of England,	20,978	
Hartlepool,	35,958	31,477
Lancaster and Carlisle,		$929+$
Lencashire and Yorkshire,	2,257	4,840
" Preston and Wyre,	3,172	2,821
- Mancberter and Bolton,	3,043	1,142
Llanelly and Llandilo,	6,579	3,284
London and North Weatern (Birmingham)) 4,633	36,657
n (Grand Junction)	17,807	
" (Manchester and Birm.)	5,470	
London and Brighton (Brighton)	2,000*	
$" \quad "$ (Croydon)	683	
Manchester and Sbefficld, .	1,938	8,564
Maryport and Carlinle,	10,518	13,982
Midiand, $\quad . \quad$..	63,183	85,590
") Bristol and Birmingham,	8,608	7,660
Mldalemborough and Redcar,		325
Newcastle and Carlisle,	18,259	23,944
Newcantle and Berwick (North Shields)	1,314	1,474
Newcastle and Darlington,	31,679	

North Union,	-	20,000*	20,000*
North Britich,	.		1,571
Preston and Longridge,	.		16%
Pontop and Sonth Shields,	d,	46.283	
Stockton and Darlington,	,	65,736	71,842
8tockton and Hartlepool,	.	782	247
" \quad (C	(Clarence)	30,261	33,472
Slamannan,	..		2,325
South Eastern,	-	-	9,554
Scottish Midiand,	-	-	349
Shrewshory and Chenter,	*-		86
St. Helen's,	..	10,671	10,469
Taft Vale,	\cdots	24,447	28,620
Ulster.	..	406	376
West Cornwall (Hayle)	-	3,220	3,667
Wishat and Coltness,	-	13,623	19,184
Whitehaven,	-	14	$350+$
Wilsontown,	-	36	233 \dagger
York and Newcantle,	-•		111,384
York and North Midland,	,	16,179	19,637

This constitutes a total of nearly $£ 550,000$, so that the grose total is most probably nearly $£ 700,000$, being the sum received by railways on account of the convegance of coal. Among the linea amitted are the following:-

> Great Weatern,
> Edinhargh and Gleagow,
> Glasgow and Ayr,
> London and South Weatern.
> Eastera Counties: Colchester,
> Monkland and Kirkintilloeh.

The rates of charge vary much on the several lines, depending on many circumstances, so that it is impossible to institute an accurate comparison. In some cases, the coal-owners supply their own locomotivea and wagons, and are charged with toll only. In others, they supply wagons only. In others, they are charged with an additional rent for wagons. In many cases the company hauls and supplies wagons.
Rate per ton per mile for toll only, and for total chargee-

On the whole, the ratea for the carriage of coal are lower than they were in 1845 ; only a molll quantity of coal is carried on the higher priced lines.

The following shows the quantity of coal carried in the year ending June 30, 1847, at each rate of charge :-

3d. and upwards,	302,126 tons.	
2d. and upwards,	198,252	$"$
ld. and upwards,	$3,930,795$	$"$
Under ld.	629,416	$"$

Of the $3,980,795$ tons carried at prices between 1d. and $2 d$. , $\mathbf{3 , 8 1 8 , 7 9 5}$ tons were carried at rates less than $1 \frac{1 d}{} d$. per ton per mile. It will be seen that nearly all the coal carried by railway is carried for less than lit̨d. per ton per mile.

The maximum charge for carrying coal is now $5 \cdot 82 d$. per ton per mile, being on the W est Cornwall or Hayle railway. In 1845 the maximum charge was $6 d$ per ton per mile, being on the Canterbury and Whitatable railway.

Many of the companies make no return of their charges for carrying coal, which is the more to be regretted, as the anralgamations have caused great alteration in the carrying rates.

The chief coal lines are the following:-

	1844.5. Tons.	$\begin{gathered} 1845.6 . \\ \text { Tonn. } \end{gathered}$	$\begin{gathered} 1846.7 . \\ \text { Tons. } \end{gathered}$
York and Neweastle,	1,616,555	1,962,334	1,654,029
Stockton and Darlington,	900,000	904,358	911,643
Hartlepool,	796,486	893,701	789,673
Stockton and Hartlepool,	300,000	521,508	544,498
Midland,	492,420	393,325	481,344
London and North Weatern,		481,568	440.000
Caledonian,		227,183	335,319
Taff Vale,	125,066	284,066	314,621
St. Helen's,	229,775	245,573	247,734
Glasgow and Ayt, ..	120,000	180,130	242,443
Newcastle and Carlisle,	205,500	190,068	236,649
North Union, ..	321,923	395,021	\$33,137

The Ballochney, Monkland, and other railways in the neighbourbood, hare a vast coal traffic; but from the state of the returas, no calculations can be made as to its extent.
The following show the lines on which the largest receipts for coal have been obtained in each of the years ending June 30, 1845, 1846, and 1847 :-

It cannot be said that the coal trafic greatly advanced in the year ending June 30, 1847. Though a great advance was made in the previous year, there seem to be in 1847 symptoms of the effecta of the commercial crisis. A decline took place in the receipts of the York and Newcastle, and Midland, though an increase took place on the Stockton and Darlington, and Newcastle and Carlisle.
The coals conveyed by railway from the several fields are am follows:-

It is impossible to separate the returns accurately, but it may be assumed that the quantity of coal carried by railway has increased in the Scotch and Cumberland fields. The produce of the Staffordshire fields cannot be separated.

The following shows the quantity of coals carried inland from the sea in each year :-

Eastern Countien : Cambridge, \quad T			1846. T"onn. 15,000	
"	Col	20,000	26,976	20,000
-	Eas			16,000
n	Ipswich and Bury			19,000
"	Norfolk,		6,000	13,000

South Easters,	35,519	45,350	71,723
Brighton,	36,000	40,000	40,000
South Westera, ..	4,000	18,830	31,659
London and North Weatern,	10,000	10,000	10,000
Cornwall,	28,000	30,055	33,545

The quantity of coal carried inland by means of railways has increased.
The saving in coal supplied to the city of York, in consequence of Mr. Hudson's railway measures, is not less than $£ 30,000$ yearly.
In the south-east of England, which is supplied mostly from the Northumberland and Durham coal-fields, the quantity carried upland by railway may be reckoned as follows :-

$$
\begin{aligned}
& 1845,120,000 \text { tons. } \\
& 1846,162,000 \mathrm{n} \\
& 1847,240,000 \mathrm{n}
\end{aligned}
$$

How trivial this is, may be seen from the quantity of coals imported into London, which is thus shown.

$$
\begin{aligned}
& \text { 1825, } 1,921,091 \text { tons. } \\
& 1835,2,299,816 \quad \text { " } \\
& 1845,3,461,199 \quad \text { " }
\end{aligned}
$$

It will be seen that in the supply of the inland districts the railways have proved very effective; but they have as yet done very little for those districts which are supplied from the sea. This must be attributed to the inability of the railway companies to give their attention at present to this branch of traffic ; but when they do, a complete revolution must be effected in the aupply of coals. The only lines from which we have detailed returns are the South Eastern and South Western, which show a great increase in the quantity of coal carried. There is every reason to believe that a great trafic is growing up in the Eastern Counties district-not less than 85,000 tons: but the returns do not show this fully.

No. IV.-COKE TRAFFIC.

The traffic in coke must be considerable in some districts, but there is a want of detailed returns. It is a lucrative branch of revenue to the Midland Railway Company.
The following shows the traffic in coke in each year on the under-mentioned lines:-

Midland,	$\begin{array}{r} 1844 . \\ \text { Ton. } \\ 26,826 \end{array}$	$\begin{aligned} & 1845 . \\ & \text { Tons. } \\ & 29,767 \end{aligned}$	$\begin{array}{r} 1846 . \\ \text { Tons. } \\ 57,015 \end{array}$	$\begin{array}{r} 1847 . \\ \text { Tons. } \\ 78,246 \end{array}$
Mancbester and Bolton,			2,200	
Newcastle and Carlisle,	3,504	8,333	3,312	8,221
York and North Midland,		16,013	50,785	93,899

The following shows the receipts for coke :-

Midland,	$\begin{gathered} 1846 \\ £ 20,210 \end{gathered}$	$\begin{gathered} 1847 . \\ \text { £24,198 } \end{gathered}$
Manchester and Bolton,	16	
Newcastle and Carlisle,	391	457
York and North Midland,	4,772	7,792

No. V.-IRONSTONE AND IRON TRAPFIC.

These form great branches of mineral traffic, but the extent of them is very imperfectly expressed in the returns.
The traffic in ironstone on the following railways in the years ending June 30, 1845, 1846, and 1847, is shown below in tons.

Ballochney,		$\begin{array}{r} 1846 . \\ \text { Ton. } \\ 190,352 \end{array}$	$\begin{array}{r} 1847 . \\ \text { Tona. } \\ 229,362 \end{array}$
Monkland,		200,000 ${ }^{\text {* }}$	200,000
Newcastle and Carlinle,		7,000 \dagger	7,000*
Tafi Vale,	58,850	49,231	54,614
Ditto, Aberdare,	\cdots	-	4,546
Furness,			106,301
Whitehaven, ..	\cdots	406	$140 \ddagger$
Wishaw and Coltnesa,	32,240	42,231	27,0005

The returns for the Ballochney railway include kron likewise.
The amount received in each of those years was as follows:-

Ballochney,	$\begin{array}{r} 1845 . \\ \times 6,931 \end{array}$	$\begin{array}{r} 1846 . \\ \underset{55,353}{ } \end{array}$	$\begin{array}{r} 1847 . \\ \times 8,901 \end{array}$
Furnesi,			7,221
Noweatle and Curlisle,		2,700 ${ }^{\text {* }}$	
Taft Vale, \quad -	6,786	5,907	6,457
Ditto, Aberdare,			170
Whitehaven, \cdot		11	
Wibhaw and Coltreas,	191	526	500°

The ratea changed for the conveyance of ironatone and iron-ore are as follows:-

Ballochney, ..	Per ton per mille. $2.25 d$.
Nowcastle and Carligle,	1.37
Taff Vale,	$1 \cdot 16$
Whitehaven,	$1 \cdot 25$
Wishaw and Coltress,	$2 \cdot 23$

The traffic in iron for the three years is as follows :-

	1845.	1846	1847.
	Tons.	Tong.	Tons
Ardrosean,	7,881	14,065	40,000 \dagger
Glaggow and Ayr,	25,000	39,679	56,823
Lancushire and Yorkshire,		9,000 ${ }^{\circ}$	15,001
Maryport and Carlisle,	-	2,937	1,652
Shrewsbury and Cheater,	-		9,488
Slamannan		\square	881
Taff Vale,	88,493	61,996	67,039
Whitebaven, ..		1,233	1,200\$
Wishar and Coltaess,	73,429	77,826	80,0005

The amounts received are as follows :-

Ardrossan,	$\begin{aligned} & 1845 . \\ & £ 305 \end{aligned}$	$\begin{aligned} & 1846 . \\ & 8556 \end{aligned}$	$\begin{gathered} 1817 . \\ \mathcal{f} 781 \end{gathered}$
Glasgow and Ayr,	2,400		
Lancashire add Yorkshire,		1,011*	3,705
Marsport and Carlisle,	-	557	297
Shrewsbury and Chester,	-	-	$85{ }^{\circ}$
Slamanaan,			78
Taff Vale,	4,901	6,974	7,770
Whitehaven,		52	87°
Wishaw aud Coltness,	2,006	3,371	1,441*
- Imperfect returat.			

The iron carried is mostly pig-iron.
The rates for the carriage of iron are as follows:-

A considerable quantity of dross and slag are carried, but there are only returns on the Wishaw and Coltness railway:-

Wishaw and Coltness,	Dross,			
		1847. Tuns. $90,000^{*}$	$\begin{gathered} 1816 . \\ \underset{1,968}{2} \end{gathered}$	$\begin{gathered} 18.47 \\ \underset{2,000}{8} \end{gathered}$
	Slag and Char.			
Wishaw and Coltnega,	882	1,000 \dagger	9	30

* Half-year, 45,201 tods, 1,0021. F Half- year, 844 tona, 171.

The rates for carrying dross are $1 \cdot 12 d$. per mile per ton, and for carrying slag $1 \cdot 35 d$. per mile per ton.

The traffic of the Glasgow iron district in coals, limestone, ironstone, iron drose, and slag carried by railway was in 1846 and 1847 as follows:-

$$
\begin{array}{ccc}
& 1846 . & 1847 . \\
\text { Tons, } & 2,500,000 & 2,900,000
\end{array}
$$

The traffic of the Welsh iron district in coals, limestone, ironstone, and iron, stands as follows:-

$$
\begin{array}{ccccc}
& 1844 . & 1845 & 1896 . & 1847 . \\
\text { Tons, } & 212,000 & 323,000 & 396,000 & 441,000
\end{array}
$$

The traffic of the Furness iron district consists solely in the shipment of ironstone to South W ales, to the extent of 106,301 tons in 1847.

No. VI.-COPPER AND TIN TRAFFIC.

The traffic in copper and tin ores is confined to the Cornish lines. There are no data now to show this, In 1845 I estimated it A° follows:-

No. VII--LIMBSTONE AND LIME,
The following shows the quantity of lime cartiod in the geaco ending June 30, 1846 and 1847 :-

	1846. Tons. 1,000	$\begin{aligned} & 1847 . \\ & \text { Tons. } \end{aligned}$
Middlesborough and Redet	1,000	808
Maryport and Carlisle,	2,549	2,844
Leicester and Swannington,	2,727	
Newcastle and Carlisle,	2,032 ${ }^{\text {a }}$	
Slamannan, ${ }^{\text {a }}$	4,000	
York and North Midland,		4,669

The following shows the amounts received for the carriage of lime:-

Leicester and Swanniugton,	$\begin{aligned} & 1846 . \\ & £ 109 \end{aligned}$	$e^{1847 .}$
Maryport and Carlisle,	108	122
Middlesborough and Redcar,		25
Newcastle and Carlisle,	80	
York and North Midland,		830

The following shows the quantity of limestone and lime carried in the years ending June 30, 1844, 1845, 1846, and 1847:-

The traffic in limestone and lime in 1847, so far as details exist, may be calculated as follows:-

Arbroath and Forfar,	1,000 tons.	
Ballochney, ..	5,000	
Furness,	579	"
Llanelly and Llandilo,	2,500	"
Maryport and Carlisle,	2,841	"
Midland,	50,677	"
Middlesborough and Redcar,	808	"
Newcastle and Carlisle,	40.000	"
Slamannan, ..	7,292	"
Wishaw and Coltness,	18,000	"
York and North Midland,	14,000	"
York and Newcastle,	2,500	"
Total enumerated,	146,000	tons

The total enumerated in 1845 was 139,544 tons.
Much of this is used for agricultural purposes; some for building; and some in the iron-works. The quantity carried for agricultural purposes may be reckoned thus :-

Dlatrct,	Tons.
Scotland,	$\mathbf{4 0 , 0 0 0}$
Northern,	50,000
Yorkshire,	25,000
Lancashire,	25,000
Mlidland,	50,000
Southern,	20,000
Tolal,	210,000

The amounts received for the carriage of limestone and lime in 1845, 1846, and 1847, were as follows:-

Arbroath and Yorfar,	$1845 .$ £800	$e^{1846 .}$	1847.
Ballochney,			66
Furness,			2
Llanelly and Llandilo,	19		
Maryport and Carlisle,	82	108	122
Midland, \quad -	6,020	0,6:2	6,360
Middlesborookh and Redcar,		0,0こ2	-25
Newcastlo and Carlisle, Slamanam,	2,774	276	308
Wishaw and Collmess,	124	323	386
York and North Midland,	929	1,175	830

The total receipts for the carriage of limestone and lime in 1847
wers not less than $£ 11,000$, but there has been a falling-off in the Midland traffic.
The rates for the carriage of a ton of limestone and lime per mile are as follows:-

	Lime.	estone.
Arbronth and Forfur,	2.6d.	$\longrightarrow d$.
Llanelly and Llaodilo,		1.00
Maryport and Carlisle,	$1 \cdot 50$	130
Lancashire and Yorkshire,	$1 \cdot 33$	
Newcastle and Carlisle,	$1 \cdot 25$	$1 \cdot 25$
Slamandap,	1.9	
Wishave and Coltness,		1.35 1.50
York and North Midland,	1.50	1.50

The greatest traffic in limestone and lime is carried on by the following companies:-

plonion	s.	$\boldsymbol{2}$
Midland,	56,677	6,369
Newcastle and Carlisle,	40,260	8,774
York and Norib Midland,	14,000	830
Wishaw and Coltness,	13,000	823

The limestone traffic on the Midland is on the old North Midland line.

No. VIII.-STONE TRAPRIC.

The number of tons of bailding and paving stone carried in the years ending June 30, 1845, 1846, and 1847, distinguished in the returns, is as follows:-

	1845. Tons.	$\begin{aligned} & 18.66 . \\ & \text { Tons. } \end{aligned}$	$\begin{aligned} & 1847 . \\ & \text { Tons. } \end{aligned}$
Arbroath and Forfar,	20,000	14,239	11,711
Chester and Birkenhead,			478
Maryport and Carlisle,	2,381	3,075	3,637
Midland (Leicester and Swannington)	10,412	3,203	
Lancashire and Yorkshire (Preston and Wyre)	852		
Preston and Longridge,			37,000 \dagger
St. Helen's and Runcorn,	17,169		
Stockton and Darlingion,	20,030	55,907	89,540
Stockton and Harllepool,		18.219	7,388
Whern (Clarence)		26,977	13,857
Wishaw and Coltness, ..	6,492	4,466	11,000+
York and North Midland,		100,000*	91,349
Ditto (Whitby and Pickering)	30,465		
York and Newcastle (Great North of England)	4,000		
, (North Shields Branch)		9,484	7,0009
Total enumerated, 1	12,000	266,000	404,000

$$
\begin{array}{ll}
\text { Half-year, } 51,030 \text { tons. } & \$ \text { Half-year, } 5,291 \text { tons. } \\
+ \text { Half-year, } 18,071 \text { tons. } & \text { Half-year, } 3,465 \text { tons. }
\end{array}
$$

The figures above given by no means represent the gross traffic in building and paving stones for each year. From an examination of the detailed figures, there seems to have been a falling-off in the the use of building and limestones in 1847, although the groes quantity carried on railways increased.
The total quantity of building and paving atones, limestoner, and lime carried on railways in 1847 was as follows, according to the enumerated returns :-

$$
\begin{array}{ll}
\begin{array}{l}
\text { Buildiog stones, } \\
\text { Limestones and lime, }
\end{array} & \begin{array}{l}
404,000 \\
146,000
\end{array} \\
\text { tons. }
\end{array}
$$

The enumerated traffic gives the enormous quantity of 550,000 tons of stones carried, but the whole quantity carried must be nearer $1,000,000$ tons.

The amounts received for the carriage of building and paving stones stand thus:-

	(\mathbf{x}	\pm
Arbroath and Forfar,	1,100	945	740
Chester and Birkenhead,			701
Mary port and Carlisle,		183	168
Midland (Leicester and Swannington)	269	211	
Lancashire and Yorkshire (Preston and Wyre)	91		
Preston and Longridge,		T	$2400{ }_{+}^{+}$
St. Heler's and Runcorn,	674		
Stockton aud Darlington,		2,023	3,050
Stockton and Hartlepool, ..		304	123
" ${ }^{\text {P }}$ (Clarence)		780	436
Wishaw and Coltness	151	88	174
York and North Midland,		7,000*	9,453
Ditto (Whitby and Pickering)	1,110		
York and Newcastle (Great North of England)	800		
45 (North Shields Branch) - Half. year, $8,925 \%$ T Half-year, got. ; Half-yeur; 68. 1 Hall.	$\begin{aligned} & \text { t Hall. } \\ & \text {. } \pi, 3921 \text {. } \end{aligned}$	$\begin{gathered} 473 \\ 5,1,208!. \end{gathered}$	7004

The total receipts enumerated in 1847 were about $\mathcal{\ell} 18,000$, and those for limestone and lime $£ 11,000$; making about $£ 30,000$ enumerated.

The rates for the conveyance of building and paving stones are as follows:-

Arbroath and Forfar	Per mille per ton. 250 d.
Maryport and Carlisle,	2.04
Lancashire and York hire,	$1 \cdot 33$
London and Soath Wegtera,	250
Preston and Lougridge,	300
St. Helen's and Huncorn,	$1 \cdot 12$
Wishaw and Coltness,	$2 \cdot 50$
York and North Midland,	1.00

The greatest traffic in building, paving, and limestones, and in lime, is carried on by the following companies :-

	Ton	\boldsymbol{f}
York and North Mid	105,0no	10,300
	60,000	6,869
Newcastle and Carlifle	40.000	3800
Stockton and Darlingion,	89.640	8,030
Prestod and Longridge,	87,000	2,400
Stockton and Hartiopuol,	21,245	560
Wisham and Coltoem,	24,000	600

PLAN-PRICKING INSTRUMENT.

Sig-Amongst other duties, I am engaged in making a most extensive and minute survey of a large city, showing every house and all the drainage throughout, the scale being very large1 inch to 100 feet; and I am preparing duplicate fair copies of each sheet, which is being done by pricking through all the sheets at once, the original working drawing being placed uppermost. In doing this with the common pricker, I found that the draughtsman did not hold the pricker perpendicular; consequently, the lower sheets could not be accurate copies of the original. To obviate this, I have contrived an instrument, by which any attention on the part of the draughtsman in keeping it perpendicular is not required : all he has to do is to be careful that he pricks through the proper points of the plan correctly; the holes are then sure to be vertically under one another, let the sheets of paper be ever so numerous.

Plas.
The engraving is a plan and elevation of the instrument, the full size. The arch a, is of brass, with a cylindrical crown b, in which a piston e, works. At the lower end of the piston the needlepoint is fixed; the arch is moved over the paper until the needlepoint is precisely over the spot to be pricked through; the finger then presses on d, the top of the piston, which effects the punc-
ture; and upon relieving it of the pressure, the spiral spring wound round the piston immediately raises it, and withdraws the needle-point from the paper;-in this way the work is done both correctly and rapidly.

To prevent the needle passing far through the paper and making a large hole, or sticking into the drawing-board, 1 have had a sheet of zinc to cover the board, and fastened down to it. This zinc sheet being a little less in size than the drawing-paper, admits of the latter being all (one upon the other) pinned down to the board round their edges, which overlap the edges of the zinc. I find the zinc to be very advantageous in use, as it causes the needie to make no other than extremely fine holes.

STREET PAVING.

Sir-It is not necessary at this time to revive the controversy formerly raised between the respective advocates of wood and stone paving; experience or experiment-that great test of truth-will, ere this, have determined the opinions of most persons, as to the relative value or conditions of applicability of the two systems. It may not, however, have been considered how far combinations of the two might be made with advantage-adapted especially to certain cases.

The repairing of Holborn-hill, consequent on the recent removal of the houses on the north side of Holborn-bridge, brings to consideration the inconveniences-nay, dangers, occurring to the carriage traffic on declivities such as this, with any mode of paving hitherto adopted.
The placing of the granite stones obliquely to the line of surface, whereby the edges of the stones formed a series of aharp angles or steps (thus giving a rough surface and good foot-hold for horses drawing up, and obstructions to the too rapid sliding of wheels down the hill), appeared a vast improvement-and truly would be 80, if the uneven surface thus obtained were not rapidly worn off by the continued traffic, and especially by the action of the drage on the wheels of carriages descending the hill. Thus the surface sona becomes smooth and slippery, whatever be the material used or form of laying, whenever the material is of one and the same kind, and consequently of equal wear throughout.
If, however, we employed materials, in conjunction, of different characters and rates of wear, we should then maintain inequalities of surface, affording continuous foot-hold for horses, and obvisting existing defects.
Suppose that between each course of granite paving there were placed a thin course of wood, then the difference in the wear of the two would give the effect desired.

The annexed sketch shows the arrangement. A course of granite stones, A, to be laid in the usual way across the road, being about three inches in thickness; following this with a plank of wood, B, one inch thick, and of the depth of the granites; then following on with stones and planks in alternate courses.

Let us not stand arguing doubts and probabilities, but put the question to the true test-experiment. This can be done within a small space, and at little cost.

Hampstead, August 8, 1848.

[A plan something almiliar to the above has lieen tried in Cheapolde and in Piesadily, but netiber was of wood, shey boih prodaced a very disagreeable ratiling and joltug to the cmrringr.]

EXPERIMENTS ON COALS

Report on the Coals Suited to the Steam Navy. By Sir Henby de lis Becre and Dr. Lyon Playfair.
Experiments necessary to ascertain the true practical value of coal involve a very large series of observations, extended over a cinsiderable period, and directed to special objects of inquiry. The qualities for which particular kinds of fuel are pre-eminent being so varied, it is impossible to deduce general results from a limited series of observations. Even in the economical application of coals, their evaporative value, or their power of forming steam, one variety of coal which may be admirably adapted from its quick action for raising steam in a short period, may be far ex. ceeded by another variety, inferior in this respect, but capable of converting a much larger quantity of water into steam, and therefore more valuable in the production of force. A coal uniting these two qualities in a high degree might still be useless for naval purposes, on account of its mechanical structure. If the cohesion of its particles be small, the effect of transport or the attrition of one coal against another by the motion of a vessel might so far pulverise it as materially to reduce its value. Even supposing the three qualities united, rapidity and duration of action with considerable resistance to breakage, there are many other properties which should receive attention in the selection of a fuel without the combination of which it might be valueless for our steam navy.
There is an important difference existing between varieties of cjals in the bulk or space occupied by a certain weight. For the purposes of stowage-room this cannot be ascertained by specific gravity alone, because the mechanical formation of the fragments of coal may enable one of less density to take up a amaller space than that occupied by another of a higher gravity. This is far from an imaginary difference, being sometimes as great as 60 per cent., and not unfrequently 40 per cent. The mere theoretical determination of the density of coals would, therefore, give results useless for practice. The space occupied between two varieties of coals, often equally good as regards their evaporative value, differs occasionally 20 per cent.-that is, where 80 tons of one coal could be stored, 100 tons of another of equal evaporative value might be placed, by selecting it with attention to its mechanical structure.
These facts are mentioned merely to show that a hasty generalization should not be made, and to account for our drawing attention to these various points as a means of preventing the selection of a fuel from any one quality. We do not, in the present stage of this inquiry, consider it proper to offer any recommendation of our orn as to particular kinds of fuel, leaving the experimental facts to decide for themselves.
After preliminary experiments had proved that no practical result could be attained by mere laboratory research, it was determined to test each variety of coal on a scale of sufficient magnitude to check the theoretical views by the practical results. As it was impossible for either of us to devote our whole time to this inquiry, our services being required by other official duties, we appointed assistants* to superintend its special parts, under our geueral direction.
It will be obvious that there are several circumstances which must receive attention before the true evaporative value of a fuel can be obtained. Thus, the water in the tanks has a varying temperature during the day, dependent on atmospheric changes, and is always different from that in the boiler. The temperature of water in the boiler also varies with the external temperature, and the circumstances under which the experiments are made. The shape of a Cornish boiler favours an inequality in the temperature of the water in its various parts, the colder and denser water sinking to the bottom, and having a tendency to remain there; so that the temperature of water at the surface is far from being the mean temperature of water in the boiler, the difference between the surface and bottom water being, on an average, 70°. Other circumstances naturally affect the evaporative powers of the coal, as for example the fact that all the water exposed to the action of the fire in the boiler is not converted into steam, and that wood is used to light the fire. Another circumstance of considerable importance, is the expansion or contraction of the boiler from an increase or diminution of the temperature. In the early stage of the experiments, those conducted by Messrs. Wilson and Kingsbury, it was thought unnecessary to make a correction for this variation in conditions; but on ascertaining experimentally

[^31]that the difference was as much as 69.625 lb . of water in the contents of the boiler, between the temperature 150° and 812^{\prime}, it became desirable to make an allowance for it, even when the difference between the initial and final temperature was not greater than 10°. Other circumstances of less importance, but influencing the results, have been neglected, because the application of sueh corrections would have only complicated the results, and would have had little practical value when the errors of observation in such approximative experiments remain so large. Among these may be mentioned the quantity of gases evolved during combustion, the elevation in temperature of the air entering the fire place, the barometrical and hygrometric conditions of the atmosphere, the radiation from the boiler (very small in amount, owing to its brick covering, the hygrometric state of the fuel, or the heat necessary for obtaining mechanical draught in the chimney. In most of these cases the necessary observations have been made, to enable the corrections to be applied, should it afterwards appear desirable.

In making the calculation for the evaporative value of a fuel, the quantity consumed was divided into two portions, the first being that necessary to raise the whole mass of water exposed to the fire from the mean temperature to 212^{3}, the second portion being that required to evaporate the water taken from the tanks from a temperature of 912^{2}. To enable this to be done, the mean temperature of the whole mass of the water is ascertained-that is, the temperature of the water in the boiler at its initial temperature after being mixed with the tank-water at its average temperature. The average of the latter was the mean of several observations taken during the day, and is designated by t.
Let w be the weight of water from the tanks at temperature t^{\prime};
W the weight of water in the boiler at temperature $t^{\prime \prime}$, this being obtained from surface temperature corrected by experiment; t, temperature after mixture.

$$
\text { Then } t=\frac{\mathbf{W} t^{n}+20 t^{t}}{W+20}
$$

The correction for the wood was made from data procured by Messrs. Wilson and Kingsbury, but it can only be employed for the particular wood used, as in subsequent experiments the evaporative value was found very different from another quality obtained. The co-efficient of the evaporative power of the wood may be deduced from experiment, in which a certain weight of water was raised from a known temperature to the boiling point, and then a certain portion of it evaporated. The following formuls have been used by Mr. Kingsbury for the calculation:-
\mathbf{N} is the total weight of wood used in raising $(W+w)$ (the weight of water in the boiler, and of that let down from the tanks during the experiment) from the mean temperature t to $21 z^{\prime}$; then it is necessary to find the weight N^{\prime} necessary to evaporate * from 218°.

$$
\text { Then }{ }_{\mathbf{N}^{\prime}}^{v}=e \text {, the evaporating power. }
$$

Let m be the weight of wood required to raise $W+w$ from t to 212°, the number 1000 being assumed as the latent heat of steam. N^{\prime} to evaporate $\mathbf{W}+w$ from 212°
N^{\prime} to evaporate $\mathbf{W}+w$ from $81 \mathcal{Z}^{\circ}$

$$
\begin{gathered}
\text { Then } m+\mathrm{N}^{\prime}=\mathrm{N} . \quad \text { Now } \frac{l}{212-t}={ }_{m}^{n} \\
\text { But } \frac{n}{\mathrm{~N}^{\prime}}=\frac{\mathrm{W}+w}{w} ; \quad \therefore \mathrm{N}^{\prime}=n \frac{w}{\mathrm{~W}+w} ; \\
l\left(\mathrm{~N}-\mathrm{N}^{\prime}\right)=(212-t) n=(212-t) \mathrm{N}^{\prime}\left(\frac{\mathbf{W}+w}{w}\right) ; \\
\mathrm{N} l=\mathrm{N}^{\prime}\left\{\frac{\mathrm{W}+w}{w}(212-t)+l\right\} \\
=\frac{\mathrm{N}^{\prime}}{w}\{(212-t)(\mathrm{W}+w)+l\} ; \\
\therefore \frac{w}{\mathbf{N}^{\prime}}=\frac{(212-t)(\mathbf{W}+w)+l w}{\mathrm{~N}}=e
\end{gathered}
$$

or, introducing the value of t as given by the first formula,

$$
\stackrel{(l+212-t)}{ } \mathbf{N} l+\left(212-t^{\prime}\right) W=e .
$$

If q be the quantity of wood used in lighting the fire, $e q$ will be the weight of water evaporated from 212^{\prime} by the wood, and must be deducted from the weight of water evaporated in calculating the work done by the coal.
The co-efficient of the evaporating power of the coals, or the
number of lbs. of water which one lb . of coal will evaporste from 9120, may be calculated as follows:-

Let P be the total quantity of coal consumed, then the work done by P will be to raise $W+s$ of water from t to 918°, and to evaporate $w-$ e q from 812°.
Let m be the weight of coal required to raise $W+\infty$ to 912°, from t

$$
\begin{gathered}
\text { Then } \frac{w-e q}{p}=E_{4} \text { the evaporating power. } \\
\text { Now } P=m+p ; \frac{\varepsilon 1 \varepsilon-t}{l}=\frac{m}{n} . \\
\text { But } \frac{p}{n}=\frac{w-e q}{W+w} ; \therefore l\left(\frac{\infty-e q}{W+w}\right)=p-p-t \\
\frac{(W+\infty)(\varepsilon 1 \varepsilon-t)+(\infty-e q)^{l}}{P l}=\frac{\infty-e q}{p}=E .
\end{gathered}
$$

Introducing the values from which the mean temperature t was obtained (first formula), we have eventually-

$$
\frac{\left(l+212-t^{\prime}\right) w+\left(q 12-t^{\prime}\right) W-l e q}{\mathrm{P} I}=\mathrm{E}
$$

in which W is the weight of water in the boiler;
wo the weight of water drawn from the tanks;
t^{\prime} the mean temperature of water in the tanks;
$t^{\prime \prime}$ the corrected initial temperature of water in the boiler.
In the preceding formule, the latent heat of steam has been taken at 1000, the number generally used in this country; lut after all the calculations had been made on this subject from the experiments by Messrs. Wilson and Kingsbury, and the results sent in to the Admiralty, Regnault's excellent memoir on the "Latent Heat of Steam" was published. It became necessary, therefore, to use these new results in the future experiments. These, so far as they apply to the present inquiry, are reduced in the following table.

Table I.-Showing the Specific and Latent Heat of Water and Sleam.

Air Ther-mometer Centi. srade.	Sfercurial Centigrade.	$\begin{gathered} \text { Number } \\ \text { of } \\ \text { Unities } \\ \text { of } \\ \text { Heat } \\ \text { aban. } \\ \text { donediby } \\ \text { one rilo. } \\ \text { of water } \\ \text { in de. } \\ \text { scending } \\ \text { from } \\ \mathrm{T} \text { oo } \end{gathered}$	Air Thermo moter Fahrem- helt.	Mercural Fah-renbedt.	Number of Uoitice of Heat contajn. ed in one pound of preter at T.	Mean Spectic Heat of Water between ∞^{∞} and T ceat. or between 32° and T Fahr.	Spectic Heat of Water from T to $T+d T$	Latent Steam to the ture Ceatd. grede.	Heat of turnted empersT. Fabreaheis.
0	-	0.000	$\stackrel{0}{82}$	-			1-0000	608-5	
10	*	10.002	80	.	50.003	1.0002	1-0006	8995	1079.1
20	.	20.010	68	0	68.018	1.0005	$1 \cdot 0012$	8926	$1066 \cdot 7$
30	-	30.026	86	*	86046	1.0009	1.0020	585.7	1064-2
40	-	40.051	104	-	$104 \cdot 091$	1.0013	$1 \cdot 0080$	578.7	1041.6
60	60.2	80.087	1×2	12256	122156	$1 \cdot 0017$	1.0042	\$71.6	10289
$6)$	-.	$60 \cdot 137$	140	..	140.246	$1 \cdot 0023$	$1-0056$	564.7	10164
70	-	$70 \cdot 210$	168	-	158.381	1.0030	1.6072	557.6	1089 7
80	-	80.288	176	.	176.807	1.0035	1.0089	5806	$991 \cdot 1$
90)		$90 \cdot 361$	194		194685	10042	10109	543.5	$978 \cdot 3$
100	$100 \cdot 0$	100:500	212	212.0	212900	1.0050	1.0130	636-5	9657
110	.*	$110 \cdot 641$	230	-.	231.153	1.0058	1.0153	529.4	9529
120	.	$120 \cdot 806$	248	**	$249 \cdot 460$	1.0067	1.0177	322.8	$940 \cdot 1$
131	-	130.997	266	\cdots	207.794	$1 \cdot 10076$	1.0204	$515 \cdot 1$	$827 \cdot 2$
140	\cdots	141.215	284	\cdots	$236 \cdot 187$	1.0087	1.0282	808.0	$914 \cdot 4$
150	150.0	161.462	302	802.0	304682	1.0097	1.0262	800.7	$901-2$
160	**	161.741	820	-	323 -143	1.0109	1.0294	4986	8889
170	.	172.052	343	-	241.693	1.0121	1.0328	486.2	$875 \cdot 1$
180	-	152:398	856	.	\$60-816	1.0153	$1 \cdot 0364$	4790	8822
190		194.779	874	\cdots	379.002	$1 \cdot 0148$	$1 \cdot 0401$	4716	848.9
200	200.0	:243 200	842	3920	397.760	1.0180	1.0440	464-3	835.7
210	..	213640	410		416388	10174	$1 \cdot 0481$	$455 \cdot 8$	$822 \cdot 2$
220	\cdots	224152	428	\cdots	$435 \cdot 480$	10189	1.0524	$449 \cdot 4$	$808 \cdot 9$
230	\cdots	2 SH 708	446°	-	454.474	1.0204	1.0568	4.1 .9	703•4

It also became desirable to introduce new corrections, which the progress of the inquiry showed to be needful. Thus, Mr. Phillips's careful experiments determined the alteration in.the capacity of the boiler at different temperatures, and correction was in future made for this difference. The alteration in the capacity of the measuring tanks was also estimated, whenever the temperature differed 8^{8} from that at which they were ganged. Another cause of error, for which allowance should be made, is any difference which may exist between the initial and final temperature at the beginning and close of the experiment. This diference being known by observation, the correction may be applied from the table of expansion of the water in the boiler, given. Introducing these dew corrections into the experiments for ascertaining the
co-efficient of the heating power of the wood, the following are the formulw used by Mr. Phillips :-

$$
\frac{\left(\mathbf{W}+w-w^{\prime}\right)(l+t)+w t^{\prime}+\left(w^{\prime}-w\right) t^{\prime}}{\mathbf{P} l}=\mathbf{E} .
$$

In which W is the water let down from the tanks during the experiment.
$w=$ The weight of water found in the boilers at commencement of experiment.
$w^{\prime}=$ The weight of water in boiler at close of experiment.
$l=\mathrm{Co}$-efficient of the latent heat of steam.
$t=$ Quantity of heat necessary to raise the water in ranka from its mean temperature to that at which it is evaporated.
$t^{\prime}=$ Quantity of heat necessary to raise the water in the boiles from the initial to the final temperature.
$\boldsymbol{t}^{7}=$ Quantity of heat necessary to raise water at the tempertoture of tanks to the final temperature of water in the boiler.
$\mathbf{P}=$ Weight of combustibles consumed during experiment.
$\mathbf{E}=$ The co-efficient of the heating powers of wood.
But when the initial is lower than the final temporatare, the formula becomes-

$$
\underbrace{\left(\mathbf{W}+w-w^{\prime}\right) l+\mathbf{W} t+w t^{\prime}+\left(w^{\prime}-w\right) t^{\prime \prime}}_{\mathbf{P}!}=\mathbf{E} .
$$

All the terms retaining their original value except the bat, in which $t^{\prime \prime}$ is replaced by $t^{\prime \prime \prime}$ (or the heat necessary to raise the final temperature to that at which the water was expanded), and mast be regarded as having a negative value, while t^{\prime} becomes ponitive. If now q is the weight of wood used in lighting the fire, the formula for estimating the evaporative power of the coal will be
$\frac{\left(\mathbf{W}-\mathbf{E} q+w-w^{\prime}\right) l+\left(\mathbf{W}+w-w^{\prime}\right) t+w t^{\prime}+\left(w^{\prime}-w\right) t}{P^{\prime} l}=\mathbf{B}^{\prime}$

As the experiments are etrictly comparative, and under like conditions, the want of the other corrections, to which we bare alluded above, will not be felt in oxamining the resulte; while their execution would have introduced a refinement into the erperiments which never could be ubtained in practice, and which, in fact, would be useless and unwarrantable while, as previoasly remarked, the errors of observation in all such approximative experiments remain so large.

The only omitted correction which in appearance might be sapposed necessary for practical purposes, is that for the hygroseopic condition of the fuel. Had wood been employed, this must have been done; but the hygroscopic nature of coal is very much leen than that of wood. The latter contains if its own weight of hygroscopic water; and the heat necessary for the evaporation of this quantity might be shown by a simple calculation to be nearly equal to 92 per cent. of the total heat obtained by the combustion of the wood. The hygroscopic water in coal is however very small, as Fill be seen by the following determinations of some of the Welsh specimens experimented upon:-

Gruigola Coal	\because	Hygrosenple water.		
		-		ce
Anthracte		.	2.44	"
Oidentle	..	.	6.74	\%
Ward's Flery Veia	-	..	$1 \cdot 27$	"
Mynydd Newydd	.	.	$0-67$	"
Pentrepoth	.	..	0.78	\%
Pentrefelin	.	.	0.70	

Had we introduced corrections for these small quantitiea, practice would have been misled; because the coals will rarely reach a vessel in the dry state that they did in the present case, wheu they were packed in hogsheads and kept under cover.-It wat found unnecessary to correct for any inflammable gases flying up the chimney, because repeated analyees of the chimney gases proved them not to contain any combustible constituent; the only products ever found being carbonic acid, sulphurous acid, oxygen, and nitrogen. The quantity of free oxygen in the chimney varied from $\frac{1}{2}$ to $\frac{1}{2}$ of the oxygen which combined with the fuel; in other words, nearly trice the quantity of air passers throngh the fire than that which is strictly necessary by theory.

With regard to the selection of the coals for trial, we have to refer to Mr. Wilson's letter. This letter gives the information obtained in a tour made by Professor Wilson for the purpose of ascertaining the best coals fitted for trial in the South Wales coal district, and the ports from which they can conveniently be shipped. This district was selected because the varying charteter of the coals, from the bituminous to the anthracitic, offered those which were most likely to combine the qualities desired for
naval parposer. It was intended, as being most convenient for the inquiry, to have adhered strictly to districts. In the experiments this has hitherto been done, oxcept in opecial cases at the request of the Admiralty.

The following table (Table II., contains an abstract of the resulta, so far as regards the evaporative value of the fuel. This table relates only to the economical value of the coals examined, and to the steam generated by a unit of the raspective coals, without however implying a unit of time. The details with reference to time, which forma a most important element in the value of the respective fuels, will be given hereafter.

Table LI.-Showing the Ecomomic Valuee of the Coals.

Namen of Conla enpleyted is the Expuimepte.			$\begin{aligned} & \text { Weight of } 1 \text { cubic foot at calcu. } \\ & \text { Lated from the dendidy. } \end{aligned}$					$\begin{aligned} & \text { Weight of Water eraporated from } \\ & 212^{\circ} \text { by l cubic foot of Coal. } \end{aligned}$	
$\begin{aligned} & \text { prust } \\ & \text { cougs } \end{aligned}$	A.	$\begin{gathered} \text { B. } \\ 1 b_{.} \\ 60 \cdot 166 \end{gathered}$		D. E. .74234 .8	P.		16	1.	Mean.
Anthinclie, Jones	9.46	58.25	85.766	-679 4.26	38.45	68.3	9.7	565-02	409•37
Oidenalie Vela.	894	511.916	$80 \cdot 4$	-633 57.486	43.99	57.7		$455 \cdot 18$	46430
Waxte fery vela	9-40	57-433.	83.85	-6.5 46.	39°	$46 \cdot 5$	106	614678	8:29.90
	994	37.08	81.357	-702 42.53	39.24	51.2	$10 \cdot 3$	587-92	426.95
P	8.86	56.93	81.85	-695 43.76	39.34	53.5	$9 \cdot 2$	522375	$373 \cdot 22$
	$8 \cdot 72$	57.72	81.73	-705 40.17	$38 \cdot 80$	$46 \cdot 5$	$8 \cdot 98$	518-32	381.50
	6.35	$6 \mathrm{~F}^{-168}$	84.728	-781 28051	$33 \cdot 85$	\$2.7	$7 \cdot 4$	48962	247-24
	$10 \cdot 14$	53.22	82.72	-643 65.43	42.69	$56 \cdot 2$	11.30	5-40-12	$409 \cdot 32$
Xfupde Xewndd	932	86.33	81.73	-689 45.09	$39 \cdot 76$	53.7	10.39	5:36-36	47069
	$8 \cdot 8$	56.888	8360	. 67448.26	$39 \cdot 72$	52.7		49846	4×8.86
Cuthrood noc	870	55.277	78.219	-706 41.648	$40 \cdot 52$	$72 \cdot 5$	0.35	480-90	379•80
y-stoe	$8 \cdot 42$	56.0	79859	-701 $42 \cdot 60$	40.00	$65 \cdot 7$	$8 \cdot 82$	$471 \cdot 52$	404. 16
	953	58*96	82.354	-712 40,39	38.19	35.0	10.44	559.02	390.25
	$7 \cdot 47$	$55 \cdot 7$	82.35	-676 47 -845	$40 \cdot 216$	57.5	$8 \cdot 04$	416.07	$250 \cdot 40$
	979	50.5	82-6	-611 63565	4-32	640	999	40439	476.96
Tala	10.21	63.3	78.81	-676 45.98	$42 \cdot 26$	450	10.64	54-19	$460 \cdot 22$
	7.53	$53 \cdot 3$	85.782	-614 $62 \cdot 7$	42.02	620	$7 \cdot 75$	401-34	8474
Combill	8.0	53.0	80.463	-651 51.85	$42 \cdot 26$	62.	8.34	424.0	$406 \cdot 41$
D-imith Jewel	7.08	$49 \cdot 8$	79.672	-626 59.984	$4 \cdot 98$	857	$7 \cdot 10$	352.58	355-18
- Cororation	$7 \cdot 71$	5166	78.611	-657 52.17	43:36	8 c 2	$7 \cdot 86$	398.29	370.08
Whanead Eldn	8.46	546	78611	-644 4378	41.02	64.	8.67	$450 \cdot 82$	$435 \cdot 77$
Forid spllat .	$7 \cdot 56$	$55 \cdot 0$	78.611	-699 4 -92	40.72	63.	769	415-20	464.98
	$7 \cdot 40$	84.25	80.48	-674 4835	$40 \cdot 13$	$69 \cdot 7$	$7 \cdot 91$	$401 \cdot 45$	$380 \cdot 40$
min	$7 \cdot 3$	52.5	77.988	-673 49.55	$42 \cdot 67$	65.7	$7 \cdot 66$	383.25	397.78
	8.52	$54 \cdot 444$	80046	-68 47.02	$41 \cdot 14$	65.0	898	463-86	487/19
$\underline{2}$	9.85	62.8	99-57	-630 68.55	$35 \cdot 66$	74.	10.49	618-58	473:18
	8.92	65.08	$68 \cdot 629$	-948 5.45	$34 \cdot 41$		974	430.51	418•89
4-3.	853	65.3	71-124	-914 891	3430		865	357.0	349.11
Wealleh's.	$10 \cdot 36$	69.05	72284	-955 4.49	32.44	- ${ }^{4}$	10.60	$715 \cdot 36$	457.84

The economical results obtained by evaporation in the bestapplied practice are ascertained to be only a small part of the theoretical result following from the actnal quantity of heat capable of being generated. Still, as a comparative statement, it is necessary to contrast the economical heat given out by a coal with the theoretical quantity. The cause of the difference between the applied and theoretical quantities is, at least in a great degree, of vious, and does not by the apparent difference prove the fallacy of calculation. Before the comparison can be made, it is necessary to have a knowledge of the composition of the respective coals: of this we subjoin a table.-(See Table III.)

Chemists differ as to the mode of calculating the theoretical heating values of coals, but, as an approximative rule, without inefsting on ite absolute accuracy, their calorific values are found to mand in relation to the quantity of oxygen required for their complete combustion. This may be estimated experimentally by heating the coal with an excess of litharge; or it may be determised by calculation from the known equivalents of the combustible ingredients of the coal. From the quantity of lead reduced by the coal, the oxygen employed in itt combustion may be estimated, and the calorific values stand in direct relation to this quantity. The amount of oxygen necessary to consume the combustible constituents may more accurately be determined by elementary analyais; and thus calculated, the results are gene-

Table IIL.-Showing the Mean Componition of aperage amples of the Coals.

* Included in the Ash.
rally found to be about $\%$ greater than those indicated by experiment with the litharge. The calculation from the elementary analysis depends upon the circumstance, that 6 parts, or one equivalent, of carbon requires 16 parts, or two equivalents, of oxygen for combustion, while 1 part of hydrogen requires 8 parts of oxygen; it is only necessary, therefore, to subtract from the hydrogen a quantity corresponding to the oxygen contained in the coal to enable the calculation to be made on these principles.

As the calorific values are only relative, it is useful to refer them to the heating power of pure carbon, one part of which requires $\$ \cdot 666$ parts of oxygen for combustion, and is capable, according to Despretz, of heating $78 \cdot 15$ parts of water from its freezing to its boiling point. The calculation may be simplified by multiplying each part of lead obtained by 2-265, which gives at once the weight of water capable of being heated between these temperatures by a unit of the coal used in reducing the litharge. On these principles the following table is constructed. (Nee Table IV.
With regard to the practical application of fuel, such a table could not aupersede experiment, as the economical values of the coal depend also on adventitious circumstances connected with their physical as well as their chemical condition. This table, while on the whole it agrees with and confirms the practical results of experiments, still differs in a marked degree in one or two instances: this difference arising as much from the chemical as from the physical differences of the cosle. Thus, if by deatructive distillation, which oecurs in furnaces before combustion, a large quantity of the constituents of the coal are rendered gaseous, so much heat is exponded in this act that the heat developed by their after-combuation is frequently not greater than that abstracted during their formation, in which case a thermo noutrality occurs. To ascertain the proportion of fixed and volatile products in the various coale, a very difficult and elaborate process was adopted; but the todiousness and chances of failure in this kind of analysis have induced us to include only a limited number of coals (thoee given in Table V.), especially as for steam purposes it was sufficient to determine the per centage of coke, as statod in Table II.

Table IV．—Showing the Calorific Values of the Coals．

Locklity or Name of Conl employedin the Experimenta．	$\begin{aligned} & \text { Quanlity of Lead reduced by one } \\ & \text { pastof Coal. } \end{aligned}$					
Gralgola ${ }_{\text {WELSH }}$ COALS．	${ }^{\text {A }}$ 2． 108	B． 2． 49	$\underset{2}{C .}$	D. $2 \cdot 26$	E. $98 \cdot 4$	$\underset{7}{P}$
Anthracte（Jonem and CÖ．）$^{\text {a }}$	35.49	$2 \cdot 60$	$2 \cdot 69$	2.43	97.5	75.73
Oldcastle Flery Vetu ．．	81．4：	$2 \cdot 4$	$2 \cdot 71$	$2 \cdot 34$	91.5	71－16
W＇nri＇s Plery Veln ．．	31.40	2.44	$2 \cdot 65$	$2 \cdot 34$	91.5	71－25
Binee ．．．	$81 \cdot 64$	$2 \cdot 46$	272	$2 \cdot 36$	$\mathbf{9 2} 2$	71.0
Llangenneck ．．	32．66	$2 \cdot 5.3$	2－85	2.28	84.9	73.97
Pentrepoth＊－	31.16	$2 \cdot 39$	$2 \cdot 69$	$2 \cdot 36$	896	70.57
Pedirefelin	30：52	2： 17	$2 \cdot 5.1$	2.28	89%	$6 \mathrm{~F} \cdot 13$
Powel＇s Duffryn \quad.	30．0）	$2 \cdot 33$	$2 \cdot 71$	$2 \cdot 35$	$87 \cdot 7$	67－9．5
Mynydd Nawryd	$30 \cdot 84$	$2 \cdot 35$	$2 \cdot 67$	$2 \cdot 25$	8×5	$64 \cdot 72$
Three－quarter Rock Vein	26.62	$2 \cdot 6$	2：4	$2 \cdot 00$	77.2	60） 29
Cum Prood Rock Vein	$2 \times \cdot 30$	$2 \cdot 19$	2＇62	$2 \cdot 19$	82.5	64.19
Cum Nanty－Gros＊＊	$29 \cdot 64$	$2 \cdot 28$	$2 \cdot 47$	$2 \cdot 14$	$65 \cdot 5$	67．13
Reso＇ven ．．．．．	32．14	$2 \cdot 50$	$2 \cdot 4$	$2 \cdot 11$	$93 \cdot 7$	72.64
Pontypool ．．．．	$27 \cdot 46$	$2 \cdot 13$	$2 \cdot 3.5$	$2 \cdot 15$	$80 \cdot 3$	$62 \cdot 19$
Bedwas	$2 \mathrm{2F} \cdot 20$	$2 \cdot 19$	$2 \cdot 6$	$2 \cdot 15$	$82 \cdot 1$	A．5．67
Fubw Vale	$32 \cdot 00$	$2 \cdot 45$	$2 \cdot 50$	$2 \cdot 89$	9：0	72．43
Porthmanr Rock Vela	24.78	1－92	2：33	$1 \div 9$	$72 \cdot 0$	$56 \cdot 12$
Coleshill	$28 \cdot 14$	$2 \cdot 03$	$2 \cdot 28$	$1 \cdot 96$	$76 \cdot 1$	59.21
SCOTCR COALS． Dalkelth Jewel Seam ．．	26－42	2005	$2 \cdot 24$	1.98	$76 \cdot 3$	$59 \cdot 84$
－Coronation Seam	$24 \cdot 66$	$1 \cdot 96$	$2 \cdot 82$	$2 \cdot 05$	$73 \cdot 5$	55．63
Eigln Wallsend	25406	$2 \cdot 25$	2：38	$2 \cdot 02$	84.7	6.582
Fordel Spllint ．．．．	$29 \cdot 00$	$2 \cdot 25$	$2 \cdot 47$	$2 \cdot 12$	$8-47$	$65 \cdot 63$
Grangemouth ．．．．	28.48	$2 \cdot 20$	246	$2 \cdot 13$	82，8	64.51
Broomhill（Engllab）．．	25.82	1.96	$2 \cdot 63$	$2 \cdot 18$	$73 \cdot 5$	57.35
Sllavardagh（Iriah）．．	30.10	$2 \cdot 33$	2.31	2－13	87.7	$70 \cdot 4$
PATENT PUEL． $\mathbf{W}^{\boldsymbol{y}}$ ylam	$28 \cdot 82$	$2 \cdot 23$	2－52	2•13	$84 \cdot 0$	65.27
Belly	28.52	$2 \cdot 21$	$2 \% 5$	2－34	$83 \cdot 2$	8.4 .39
Warlich＇a	31．50	$2 \cdot 44$	284	2－40	81.5	71.35

Table V．－Showing the Amount of Various Substances produced by the destructive Distillation of certain Welsh Coals．

Neme．	Coke．	Ter．	Water．	Amino	Car． bonic Actd．	Sulph． Hydro－ gen．	Olegant Gas and Hydro． Carbon．	Other Ganes Intam－ mahle．
Graigola ．．	85.6	1.2	$3 \cdot 1$	$0 \cdot 17$	$2 \cdot 78$	Traces．	0.23	701
Anthracite．．．	929	None．	$2 \cdot 87$	0.20	006	00.4	7	393
Oldcastle dery vein	798	$5 \cdot 86$	$8 \cdot 39$	$0 \cdot 35$	0.44	$0 \cdot 12$	$0 \cdot 27$	$9 \cdot 77$
Ward＇s dery veln		1.80	8.01	0.24	1.80	$0 \cdot 21$	$0 \cdot 21$	\cdots
Bines $\quad \therefore$ ．．	$88 \cdot 10$	208	858	0.08	$1 \cdot 68$	0.09	031	408
Llangenneck ．．	83.69	I＇22	4.07	008	821	002	$0 \cdot 43$	$7 \cdot 28$

It has been for some time asserted，that the evaporative value of a bituminous coal is expressed by the evaporative value of its coke，the heat of combustion of its volatile products proving in practice little more than that necessary to volatilise them．If this supposition were even near the truth，the most useful practical results might follow from it．By a larger and better applied system of gas manufacture，the volatile products of distillation might be made useful not only for the purposes of illumination，but also for domestic heat，and the residual coke might be used with an equal economy in our manufactures＊；thus preventing the emission of that smoke which at present is so destructive to the comfort of our large cities．It is easy from analysis to examine whether the duty performed by the coal is to be attributed to its fixed ingre－ dients or coke，by estimating the work which the latter is capable of performing．This may be done by subtracting the amount of ashes in the coal from its amount of coke（Table III．）and esti－ mating the remainder as carbon．This carbon multiplied by its heating power， 13268 ，and divided by $965 \cdot 7$ or the latent heat of steam，indicates the number of pounds of water which the coke by itself could evaporate，without the aid of the combustible vola－ tile ingredients of the coal．These results are placed in column 3，of rable VI．，in juxts－position with the actual work done by the $d n n$, and it will be seen，that notwithstanding several striking

[^32]exceptions，which might have been expected，they on the whole show that the work capable of being performed by the coke alone， is actually greater than that obtained by experiments with the original coal．

The whole system of manufacturing coke is at present very im－ perfect．Besides losing the volatile combustible substances，which under new adjustments might be made of much value，an immense quantity of ammonis is lost by being thrown into the atmosphere． Ammonia and its salts are daily becoming more valuable to agri－ culture，and it is their comparative high price alone which prevents their universal use to all kinds of cereal cultivation．By a construction of the most simple kind，the coke ovens now in use might be made to economise much of the nitrogen which invariably escapes in the form of ammonia．As an inducement to this economy，we have appended to Table VI two columns（H．and I．）， showing the quantity of ammonia（ NH_{π} ），and its correspondin． quantity of commercial sulphate（ $\mathrm{NH}_{4}^{\mathrm{n}}, \mathrm{O}, \mathrm{SO} \mathrm{O}_{\mathrm{a}}$ ），which each 100 lb ．of the respective coals may be made to produce．When it is remembered，that the price of sulphate of ammonia is about $\mathscr{E} 3$ per ton，or that 100 tons in coking is capable of producing，on an average，about 6 tons of this salt，its neglect is highly repre－ hensible．

By the preceding data，the actual value of the coals will be con－ trasted with that which is theoretically possible，supposing their combuation proceeded under circumstances which prevented any loss of heat．The actual duty obtained by a pound of coal from the boiler employed may be easily expressed by the number of pounds raised to the height of one foot．This result may readily be obtained by the simple formula－

$$
\mathbf{W}_{\eta} \times 965.7 \times 782=x
$$

W representing water，of which \geqslant pounds are evaporated by a pound of coal．This formula is deduced from the fact that η pounds of water multiplied by $965 \cdot 7, *$ or the co－efficient for the latent heat of steam at 212＇，indicates the number of pounds of water which would be raised 1° Fahrenheit；and the number 788 arises from experiment on the mechanical force denoted by the elevation of a pound of water 1° Fahrenheit；that force being equal to 718 lb ．，raised to the height of one foot，sccording to the careful experiments of M．Joule，on the friction of oil，water， and mercury．

The theoretical value of the coals，with reference to the number of pounds of water which one pound of fuel will convert into steam，is obtained by the formula－

$$
\left(\frac{\mathrm{C} \times 18268}{965 \cdot 7}\right)+\left(\frac{\mathrm{H}-h \times 62+70}{965 \cdot 7}\right)=x ;
$$

in which C is the quantity of carbon，H the quantity of hydrogen in a unit of fuel，and h the quantity of hydrogen corresponding to the oxygen contained in the coal．These multiplied by their heating powers，according to the results of Dulong，and divided by the latent heat of steam，indicate the number of pounds of water that can be converted into the latter by a pound of coal． The numbers thus obtained can be changed into the expression of mechanical force，by the previous formula．

The result of these calculations are thrown into Table VI．
The best Cornish eugines are stated to raise $1,000,000 \mathrm{lb}$ ．to the height of one foot，by every pound of coal consumed；so that only about $\frac{1}{0}$ of the actual force generated becomes available，or only $\frac{1}{1}$ or ty of the force theoretically possible，is applied in practice． The various experiments made on boilers，with regard to the eva－ porative power of coal，have not given very uniform results． Smeaton，in 1772，with one pound of Newcastle coal，evapurated 7.88 lb ．of water from 212^{3} ；Watt，in 1788 ，came to the conclusion that 8.62 lb ．of water might be evaporated by the same quantity of coal ；and later（in 1840 ），Wicksteed found that 1 lb．of Merthyr coal could be made to evaporate 9.493 lb ．of water from 80° ，which is equal to 10.746 lb ．from 212^{2} ．In some experiments made on the boiler of the Loam＇s engine，at the United mines，in Cornrall， each pound of coal was found，by a trial of six months，to evapo－ rate 10.29 lb ．of water from 212^{-}，this being the reduction of the result given，viz，that 234,210 cubic feet of water at 120^{\prime} were evaporated by 700 tons of coal．Statements have indeed been made that 14 lb ．of water have been evaporated by 1 lb ．of coal burned in Cornish boilers；but as this is the utmost quantity theoretically possible，it is difficult to conceive that it has been realised in practice，even in the best－constructed steam－engines．

[^33]Table V1．－Shoving the Actual Duty，and that which is theoretically possible，of the Cocls examined．

Name or Locality of Coal employed in the Experimenta．									
Gralgola	${ }_{9}^{\text {A．}}$ ．	$\begin{gathered} B \\ 11 \cdot 301 \end{gathered}$	$\begin{gathered} \text { c. } \\ 11 \cdot 66 \end{gathered}$	$\underset{1 \cdot 903}{\text { D. }}$	$\begin{array}{r} \text { E. } \\ 13 \cdot 36 \end{array}$	7,0f0,908	G.	$\underset{0.497}{\mathbf{H}}$	$\frac{1}{1 \cdot 032}$
Anthracte	$9 \cdot 48$	12.354	11.563	2.030	$14 \cdot 5$	7．143，978	11，020，308	0.225	0.090
Oldcastle Flers Vein	8.94	10－601	$12 \cdot 046$	2.890	14.9	6，751．285	11，279，349	1.540	$6 \cdot 175$
Ward＇a Fiery Veln	$9 \cdot 40$		12.072	2． 8.42	14.6	7，098，667	11．036，162	$1 \cdot 238$	$4 \cdot 808$
Binet．．．	$9 \cdot 94$	11.560	12．181	$2 \cdot 912$	$15 \cdot 093$	7，506，463	11．397，592	1－58：	$6 \cdot 741$
Langeonect	$8 \cdot 68$	10.599	11.741	2.519	14.260	6，690，871	10，768，829	$1 \cdot 299$	$5 \cdot 0.44$
Peotrepolh	8.71	10.873	$12 \cdot 189$	26.49	14.8	6，585，146	11，205，322	0－218	0.648
Pentrefelln	636	$10 \cdot 841$	11.749	2.038	18.7	4，802，923	10，411，630	Trace．	
Powell＇s Dufiryn	10.149	$11 \cdot 134$	$12 \cdot 126$	2.936	15.0	7，664．295	11，397， 137	$1.76{ }^{\text {t }}$	6.835
Myoysd Newydd	$5 \cdot 53$	9.831	11．433	3．441	14．904	7，189，288	11，255，163	$1 \cdot 808$	$7 \cdot 310$
ThrectquarterRock	8.84	$7 \cdot 081$	$10 \cdot 325$	$2 \cdot 781$	$18 \cdot 100$	6，675，7 ${ }^{\circ} 8^{\circ}$	9，897，355	$1 \cdot 249$	5．044
Cwron Frood Rock	6.70	$8 \cdot 628$	$11 \cdot 300$	3.488	14.788	6，57），043	11，167，663	$1 \cdot 3.47$	5－232
Cwnon ${ }^{\text {Naty－Gros }}$	$8 \cdot 42$	$8 \cdot 2+4$	$10 \cdot 767$	8.165	13.832	6358.593	10，521，131	$1 \cdot 919$	7．448
Remolven ．：	9.53	10.234	$10 \cdot 899$	3.072	15.97	7．106．840	10，550，583	$1 \cdot 675$	6.505
Pontypool	7.47	8－14	11.028	3.207	$14 \cdot 295$	5，541，175	10，79， 2×0	1.639	6.30 .4
Bedwras	$\begin{array}{r}9.79 \\ \hline 10.21\end{array}$	$8 \cdot 897$	11.075	8.746	$14 \cdot 841$	$7.398,186$	11，2 27,587	1－748	$6 \cdot 788$ 0.189
Fbow Vala	$10 \cdot 21$	$10 \cdot 41$	$12 \cdot 335$	$8 \cdot 300$	$15 \cdot 63$	7．710．361	$11.025,198$	2－622	10.182
Porthmawr Roct	$7 \cdot 53$	6.647	10.263	$2 \cdot 543$	12－81	5，686，483	9，674，577	1.554	6．133
Coleab＇tt	8.0	6．+68	$10 \cdot 1+5$	$2 \cdot 654$	12.7	6，041，419	9，6 ${ }^{\text {a }}$ ， 515	1.785	6．933）
Daltreith Jewel	7.03	$6 \cdot 239$	$10 \cdot 242$	$2 \cdot 071$	12.313	5，546，655	9，296，499	1－214	$0 \cdot 471$
DaltretthCoronation	7.71	6.924	$10 \cdot 570$	$2 \cdot 202$	12.772	6，822，417	9，645，136	Trace．	
Wallsend Eigin	8.6	6.360	$10 \cdot 454$	2.963	13.422	8，3888800	10，135．091	$1 \cdot 712$	6．6．7
Furdel Spliat	7.38	$6 \cdot 560$	10．983	$2 \cdot 884$	$13 \cdot 117$	3，709，141	10．434． 286	$1 \cdot 373$	5－327
Frangemouth	$7 \cdot 40$	7－292	10.970	2.722	$18 \cdot 6$	5，588，312	0，833， 888	1.639	$6 \cdot 844$
Broomhill	$7 \cdot 30$	$7 \cdot 711$	11.225	8－638	$14 \cdot 863$	5，512，798	11，224，201	$2 \cdot 234$	8－674
Park End，Lydney	$8 \cdot 52$	6．567	$10 \cdot 101$	9．156	13.257	6，434 111	10，011，385	1．477	$9 \cdot 617$
Sllerardegh（Irish）	9.85	$10 \cdot 895$	10.995	$1 \cdot 487$	$12 \cdot 482$	7，488，497	9.726 .124	0.279	1.034
Formose Istand			10.752	2－801	$13 \cdot 533$	1	10，234，919	0.777	$3 \cdot 017$
Borneo（Labran）	，		$8 \cdot 884$	1.388	$10 \cdot 252$		7742,078	0．977	3.771
－Sfeer senm	－	．	7＊461	$1 \cdot 295$	$8 \cdot 756$	6	6，612，323	$1 \cdot 132$	$4 \cdot 620$
V"yinm's Pt.	8.02		9.652 11.184	1.948 3.145	11.600 14.331		8760，057	0.813 2.040	$3 \cdot 158$ $7 \cdot 920$
Werlich＇a	10.36	$11-242$	12．868	3．596	15.96	7，823 6，97	12．055，652	Trace．	
Bod＊	8.53	$9 \cdot 168$	12．074	3．343	｜15－417	7，6，441，663	11，642，569	10.943	3．818

－Practical．＋Theoretical．© Calculated from heat obtained．

To ascertain how far our boiler was inferior to Cornish boilers， as principally from its size and less efficient coating it was likely to prove，we requested Mr．Phillips to make some experiments on ane of the best engines in Cornwall．It was found by these expe－ riments，that 11.42 lb ．of water were evaporated by every pound of Welsh coal corresponding in composition to that of Mynydd Newydd；or，in other words，that improved Cornish boilers on a large scale may be assumed to have a superiority of nearly 20 per cent．over that used in these experiments．As the results stated in this Report are only relative，the comparison is not affected by this difference．

We have anxiously looked to the application of these experi－ ments to the different varieties of patent fuel，but we have not been able to carry our observations in this direction to the extent we could have desired，from our inability to procure patent fuels in sufficient number，although our applications to the patentees have been numerous．Three varieties have been already examined， viz．，those manufactured under the patents of Messrs．Wylam， Warlich，and Bell，and the results are given in the tables．The varieties of patent fuel are generally made up in the shape of bricks，and are therefore well adapted for stowage；so that， though the specific gravity of patent fuels is lower than that of ordinary coals，from their shape and mechnnical structure there are very few coals which could be stowed in a smaller space per ton．While we look to the different varieties of patent fuel as of the highest importance，and，from their facility of stowage，as being peculiarly adapted for naval purposes，and perhaps even destined to supersede ordinary coal，at the same time，the greater part do not appear to be manufactured with a proper regard to the canditions required for war steamers．It is usual to mix bitumi－ nous or tarry matter with bituminous coal，and from this compound to make the fuel．An assimilation to the best steam coal would indicate，however，the very reverse process，and point to the mixture of a more anthracitic coal with the bituminous cement．As the greater part is at present made，it is almost impossible to prevent the emission of dense opaque smoke，a circumstance extremely in－ convenient to ships of war，as betraying their position at a dis－
tance at times when it is desirable to conceal it．Besides this and other inconveniences，the very bituminous varieties are not well suited to hot climates，and are as liable to spontaneous combustion as certain kinds of coal．To avoid these inconveniences，some kinds of patent fuels have been subjected to a sort of coking，and thus，in a great measure，obtain the desired conditions．There is little doubt，however，that notwithstanding the large number of patents in operation for the manufacture of fuel，its value for the purposes of war steamers might be much enhanced by its prepa－ ration being specially directed to this ohject．It will be seen，by reference to Table II．，that the three patent fuels examined rank among the highest results obtained．Should it be desirable to continue this inquiry，we conceive that it would be advantageous to pay special attention to this subject，by experimenting upon proper mixtures of different coals．Even anthracite may be in－ troduced into such mixtures with advantage．

It is of much importance in an economical inquiry on coals，to obtain exact information as to the effects likely to be produced upon them by stowage and continued exposure to high tempera－ ture，not only as regards their deterioration，but also as to the emission of dangerous gases by their progressive changes．

The retention of coal in iron bunkers，if these are likely to be influenced by moisture，and especially when by any accident wetted with sea－water，will cause a speedy corrosion of the iron， with a rapidity proportionate to its more or less efficient protection from corroding influences．This corrosion seems due to the action of carbon or coal forming with the iron a voltaic couple，and thus promoting oxidation．The action is similar to that of the tubercular concretions which appear on the inside of iron water－ pipes，when a piece of carbon，not chemically combined with the metal，and in contact with saline waters，produces a speedy corro－ sion．Where the＂make＂of iron shows it to be liable to be thins corroded，a mechanical protection is generally found sufficient． This is sometimes given by Roman cement，by a lining of wood，or by a drying oil driven into the pores of the iron under great pressure．

Recent researches on the gases evolved from coal，prove that carbonic acid and nitrogen are constantly mixed with the inflam－ mable portion，showing that the coal must still be uniting with the oxygen of the atmosphere，and entering into further decay．

Decay is merely a combustion proceeding without flame，and is always attended with the production of heat．The gas evolved during the progress of decay，in free air consists principally of carbonic acid，a gas very injurious to animal life．It is well known that this change in coal proceeds more rapidly at an elevated tem－ perature，and therefore is liable to take place in hot climates． Dryness is unfavourable to the change，while moisture causes it to proceed with rapidity．When sulphuroriron pyrites（a compound of sulphur and iron）is present in considerable quantity in a coal still changing under the action of the atmosphere，a second powerful heating cause is introduced，and both acting together， may produce what is termed spontaneous combustion．The latter cause is in itself sufficient，if there be an unusual proportion of sulphur or iron pyrites present．

The best method of prevention，in all such cases，is to ensure perfect dryness in the coals when they are stowed away，and to select a variety of fuel not liable to the progressive decomposition to which allusion has been made．This is，however，a subject of sis much importance to the stean navy，that it continues to receive our careful attention；and，beyond these general recommendation； it would be premature to offer any decided course for adoption， from the present limited series of observations．

Several varieties of coal were transmitted from Formosa and from Borneo，for analysis，the results of which are contained in the accompanying table．The quantity of each kind was so small， that no experiments conld be made on their evaporative value． We extract from the preceding table the following results ：－

Name．	Carbod．	Hydro． gen．	Nitro． gen．	Sulphur．	Oxygen．	4thes．	Sripcific Gravity．
Formota Island	78.26	5.70	064	$0 \cdot 49$	$10 \cdot 93$	3：！	124
Eurneo，Iatbuan kind	6452	4×7	$0 \cdot 80$	$1 \cdot 45$	20.75	$7 \cdot 74$	124
： 3 reet serm	54：31	$5 \cdot 63$	0.38	$1 \cdot 14$	$24 \cdot 32$	14×32	137
＂ 11 feet neam	－0．33	$5 \cdot 41$	067	$1 \cdot 17$	$15 \cdot 13$	3.23	1．\％1

THE HOUSES OF PARLIAMENT.

That so important an edifice and national work as the "Housen" should be a frequent subject of discussion, both in parliamentary debate and out-of-door criticism, is only natural, especially n opinion is divided, some speaking in terms of unquallied admiration, while others see much cause for dissatisfaction, and express it accordingly; and some of the rudent critics of all whom Mr. Barry and his building have had to enconnter, are among the members of the "House" itself-to wit, Messrs. Urquhart, Osborne, and Hame, and Sir D. Norreya, whose unfavourable opinions gain formidableness because theygo forth to every nook in the kingdom where a newspaper finds its way. Last month we spoke of an article on the "Houses of Parliament," which had just before appeared in the "Westminater Review,"-and which, by-the-by, is now known to proceed from the pen of Earl Lovelace; and in the interval another has appeared in the "Mechanic's Magaxine," of similar tendency. Whether this latter will call forth any remonstrance against it from the "Builder," remains to be seen; for at the present time of our writing, opportunity for reply to it has not arrived. The "Magazine" takes up the "Builder" pretty sharply upon two points. The first of them is the attempt on the part of the lastmentioned publication to set aside Lord Lovelace's objections to the position of the Victoria Tower at a corner, and the most remote corner, of the building, by remarking that such position for it was dictated by the plan adopted by Mr. Barry; whereupon the "Magasine" is somewhat sarcastic, and to say the truth, Mr. Barry has no cause to feel particularly grateful towards a defender who exculpates him, by removing the fanlt from him and throwing it upon-his design : as if defects of arrangement were to be attributed to the plan itself, and not to the architect. If the internal arrangement which first presented itself to the architect occasioned what is an incongruity in the exterior, the very natural question is: Why did he not, instead of adopting it, deviate from it so as to bring in the Royal entrance porch in some less objectionable situation ? -and objectionable it seems to be, for even his champion, as the "Mechanic"s Magazine" calls the "Builder," does not pretend to say that it is not so, but merely that it is to be excused by being attributed to-the plan!

The second point upon which the "Mechanic's Magazine" is rather strong and severe with the "Buidder," is the unguarded assertion that, although it is so now, it does not follow that the Victoria Tower will always be at the extreme corner of the edifice. The actual possibility of extending the buildings and carrying them on farther southward, by pulling down the houses on the east side of Abingdon-street as far as might be required, is not to be disputed. The probability is a very different matter, -more than can now be foreseen, and is, besides, what Mr. Barry himself neither does nor ever has contemplated; the Victoria Tower being the conclasion and finis of his plan, southwards. As the "Mechanic's Magazine" remarks, the south-west is now finished, at least in its lower part, co as to render it impossible to prolong the building, and thereby remove that Tower from its position as an extreme point in it. Done it could be, but only by undoing what is equally beautiful and costly-namely, the south side of the Royal porch, which would have to be blocked-up and built up against.

The Royal entrance is now fixed beyond the possibility of change for it. Yet, it is not even now too late to re-consider some other points in the design. For instance, although the position of that important entrance may be justified by necessities of internal arrangement, and although it is very properly made a striking feature in the design, the necessity for erecting over it a tower of very unusual magnitude, and thereby proclaiming afar off the "eccentricity", as the "Mechanic's Magazine" terms it, of that porch, is not at all apparent ; more especially, as that lofty superstructure will be more for sight than for any real service. We incline, therefore, to the opinion of the "Athencum" that it would be more adviseable now to abandon the idea of that ambitious Tower, and terminate the Porch a littlo above its present height. Either some curtailment, we fancy, of Mr. Barry's plans must take place, or the ultimate completion of them must not be looked for by the present generation.

Could the Tower in question have been introduced in the centre of the general plan, it would have given not only pyramidal grouping to the whole pile, but harmonious contrast in its lines to the composition. Marked verticality of lines in such an imposing feature, so placed, would have been opposed to horizontality of lines in the principal front. The lofty upright mass and the horizontallyextended fagade would have balanced each other, and mutually set each other off. Other towers there now will be, rising up behind the river-front; but how far they will agree with it, and with the
larger tower also, is doubtful. If we mistake not, they are intended to be tapering and spiry in outline-consequently of quite a different character from the compact solidity which marks the Victoria ome; therefore comewhat at variance with the character of the frons also. At least, there is reason for apprehending that the arrangement of the several towers will appear very irregular, if not confused, and occasion an unpleasant discord with the stadied regularity and uniformity of the principal front-principal at least in extent, though both its situation and its aspect render it in some degree a merely secondary one. If there must be a tower that shall, by its superior bulk, greatly predominate over all the others it surely ought to show itself in some central situation, central as regards one of the fronts, if not central as regards the entire plan; otherwise, it will appear to have been left to chance to determine and "dictate" the respective situations of those features, instead of their being arranged with mome regard to that symmetry which is observed in the main, as far as it was possible to do, and which at present atamps the whole of the east side of the edifice.

It will perhapa be said that the position of the Victoria Tower was known from the very first: it has been shown again and agals in the various engravings and cuts innumerable, copied or made up from the view of the future building given by the architect himself; its grandeur has been admired, without exception being taken at its situation. Yet, though no objection has been made all along, now comes Earl Lovelace with a very strong protest against that Tower. Wherefore was his Lordship so tardy with his remonstrances? or how happens it that no one else could perceive, or perceivlng, cared to object to what is now alleged to be a most serious defect in the general design? The position of the Tower could hardly havo been overlooked by, or indeed have failed to strike, the most careless observer who glanced at any of the published views. Very true; but merely seeing with the eyes, is quite a different matter from seeing with artistic vision. It is not every one who can men in the latter sense of the word, what is actually before their eyes Many, again, don't care to see, even if they can do so. Others, though they may be somewhat dim-sighted, have very convenient spectacles of criticism through which they gaze, and perceive eithes only all beauty or all deformity-either transcendant excellence, or ridiculous monstrosity.

The many, who have no opinion of their own, are overawed by this kind of dictatorial, one-sided stuff which calls itself criticism, and is presented to them in the imposing form of type and printed paper. While those who are capable of judging for themselves either do not care to raise a dissentient voice amidst the general hubbub of applause, or condemnation, as the case may be; or else have not the opportunity of doing so. With respect to the "Houses, both the "Westminster Review" and the "Mechanic's Magasine hare ventured to dissent from the acclamations of praise bestowed upon them in other quarters. It must be allowed that both those articles dwell almost exclusively upon defects, or what their writers consider such : yet surely there is nothing particularly strange in that, the object of both being to open people's eyes to many circumstances that have all along been kept out of sight. If to point out only faults and objections be invidious, by the same rule, to pass them entirely over, and point out only merits and beauties -would that all of them were where they could be seen!-may be called sycophantic: so that between the two we may arrive at a tolerably correct and sober judgment,

BOROUGH OF LIVERPOOL,

Roport to tho Health Committes of the Borough of Liverpool on the Sewerage and other works under the Sanilary Act, by the Borough Engineer, (Jambs Newlands.)

The facts detailed in the Report of the engineer of the Liverpol corporation afford a strong commentary on the claims of the military engineers. We have heard a great deal about the irresponsibility of the Associated Surveyors, and the superior responsibility and guarantee of the military engineers ; and Mr. Chadwick rests the defence of his job on this plea. We have always hald the contrary view, from our experience of the two classes, and this Liverpool affair comes in confirmation. The fact is, the military engineers are virtually irresponsible-they cannot be made to perform their work properly or punctually; while the civil engineer, at Liverpool for instance, is responsible in his professional charaoter and capacity, and liable to be dismissed by his employer if to
do not give eatisfaction. From the misconduct of the Ordnance functionaries, the corporation of Liverpool are put to the trouble, expense, and delay of a second survey-and, to make it worse, they have no remedy. Whether the metropolitan survey will turn out better we have our doubts: but it remains to be seen. At all events, the Treasury will have to make good any short-cominge of the Ordnance surveyors.

If the Ordnance have been unable to do their worl properly and in time at Liverpool, what security have we against delay in the general and metropolitan surveys? To the great disgrace of the government, engineers have long had to use the northern sheets of Mr. Cary's survey; and now this dilatory body, having proved itself incompetent in its past duties, is to have more thrust upon it. Why do not the Associated Surveyors get Mr. Wyld to move for a parliamentary committee of inquiry into the general management of the surveys carried on by the Ordnance?

This Report is a sufficient specimen to show that civil engineers are not incompetent for sanitary duties, and we hope it will not be forgotten, for doubtless Mr. Chadwick will next propose that military engineers should be chosen to lay down the lines of drainage, and carry out the details under the "Health of Towns" Act.

The Report may be divided into the following parts :-
8ewage and drainage, what are the neceasary conditions to produce a perfect system.

Description of the borough of Liverpool in relation to the river Mersey and the docks-the effects of discharging the sewage into the docks and river.

Schemes for constructing a new sewage.
Lists of all the existing sewers, showing their size and length-of new вewers required.

Estimates for forming the new system of sewage.
On the application of the sewage water for fertilizing the soil.
On the form and size of sewers and drains. From this part of the report we make the following extracts:-

Snoere and Drains.-The proper size and forms of cewern and draina is subject which of late bas excited much controrersy. In so far as the house drainage is concerned, the question lies within narrow limits; for if all the liquid refuse of a house passes through a soil-pipe of 2t or 3 incbes diameter, there in arely no need of the drain which receives it being made much larger. If more than one pipe eaters a drain, the queation is still a simple oae; and although, by calculation, the corresponding increase of capacity for every additional pipe which entera the drain could be readily determined, practice will hardly admit of the refnement which would so nicely adjust the incrementes and it is easy so to proportion the drain pipe in each case with the materiala in practice at our dispoal, that it ahall be no larger tban the quantity of water available under the particular circumatances of the case shall thoroughly fiash. Pipes of from three to six inches internal diameter, are amply anficient for service drains, as one of six inchet, with a fall at the rate of one in forty wrill, according to the ordinary formula, discharge, in half-a-minute, as much water as is doe to a family of six individuale for a whole day, even on the liberal scale of ive cubic feet per head.

[^34]The drains of streets should, in my opinion, be double in all the streets above twelve gards wide; and in such cases I would construct them in the
bottom of the side trevchea for tbe water and git pipes, an shown in the annexed eagraving. By this arrangement are inaured diminished eapacity and direct communleation, and the other advantages connected with the paving, elsewhere insisted on. The first cost of the double sewer is nearly balanced by the arving in the service drains ; and in regard to the paving, it in impoasible anficiently to eatimate the saving, if, in connection with these side trenches, the more dnrable manner of paving recommended be introduced. The semer proposed to be uted in this case consists of a semi-oval underpart, formed of stone ware, or some of the other materiali which will afterwards be noticed, and a semicircular cover, th shown in the above engraving. The joinings I propose to form with the pitch of conl-tar, in rather a soft state; and when any part of the drain reqnirea to be inopected, a hot iron or a little blazing atraw will soften the cement so much to to admit of the cover being removed. Service drains are connected Fith the side drains by means of sockets formed in the latter.

The report proceeds to denote the different forms of sewers and their connections, which are something similar to those described in the Journal for March last, p. 77. It then gives the area of land drained into each of the main sewers.

Prom observations mede while Beacon's Gutter sewer (6 ft . hy 4 ft .6 in .) whe opened at its outlet, for the adminsion of the new sewer in Great How-ard-street, it was found that the water was only 203 inches deep, after twelve hourt of hety rain.

The extent of drainage into that sewer is 983-3 acres; of which aboat one-fourth is bullt, and three-fourthe unbuilt. Now, by the formula moat approved, the diameter of mever mecesaary for this drainago, with the given fall, would be ten feet, while the actual diameter of the sewer at its lergest part is only 4 ft .6 in ., and the depth of water in it wan somewhat less than a third of its longeat aris, oven after the continuance of heavy rain for twelve hount, when it may be reasonably sppposed the whole earth would be anturated, and every drop of rain would flow into the sewer. All calculations for the capacity of sewers proceed on the asumption, that it is necesary to provide for the contingency of a rain flood, eatimated at the enormous fall of fire-eighths of an inch in half-ad-hour. Now, that sach a flood may occur is posaible; but it woald be easy to show, that if it did occur, it could not get into the sewer, and therefore there is no necesaity to make provision for it; and it requires merely a glance at the streets of a town bullt on aloping ground like Liverpool, daring even a moderately heavy rain, to be convinced, that a great part of the rain drains directly by the surfare of the atreet into the river, and never enters the sewers. As all formula then, are founded on imperfect experimente, and give results to far above what experience shows to be necessary, they are obvionaly ancertain guides, and it is better to trust to the observations of what actually takes place. This, in fact, is experimenting on the largest and most proper scale.
The Report afterwards makes some observations on surface drainage and paving. If the streets of a town be unevenly paved, patrid exhalations will constantly arise. A mmooth, non-absorbent, hard surface, without hollows or joints, is what health demands. Macadamised streets are the worst : the absorbent material soaks up the liquid filth, which, putrifying, sends its noxious exhalations into the atmosphere; and the road wears fast under great traffic-in wet weather it is covered with mud, and in dry weather the air is loaded with dust. It is the most expensive to keep in repair, and costs four times as much to cleanse as a paved road. Boulder paving is the next lowest in the scale of roads. Streets formed with stones dressed in regular courses are the best: where the road is steep the courses should be of stone 3 inches wide, with joints $1 \frac{1}{8}$ inch wide, filled up with cementitious substance, impervious to water. In streets less steep, the stones may be increased and the joints decreased. On a level, the stones may be increased to 5 inches in width.

To insure stability, the conrses should be made nearly wedge-form. They should be in contact at their base and for about onc-tbird of their height, and the width of the joint should be obtained by diminishing the width of the upper aurface of the courses. The joints should be rammed hard with macadam or clean shingle, and then filled with a coarse kind of asphalte, composed of the pitch of gas.tar and amall gravel. The joint should not be filled quite fash with the sarface of the stones, but left alightly hollow, as in the figure (a). If the expense of the anphalte be objected to, lime grout may be nsed to fill the joints. The lime should, for this purpose, be such as will set under water.

For the foot-pavement, Calthness stone, $1 \frac{1}{2}$ inch thick, with sawn joints, is recommended in preference to Yorkshire stone 3 inches thick.

A good foundation to road is no leas easential than a good surface; hardness in the latter cannot be insored without firmness in the former. Soffness or elasticity in a foundation will permit the surface to yield under the wheels of a carriage. The rise and fall forms a now obatacle to be overcome, and causea an increased amount of friction to be opposed to the moving power. Beaides, by the ainking of the paving material, the solt earth is forced op between the stones, and covera the road with mud. It is worth while, then, to be at little exira cost in the preparation of the
foundation, when so mech depends opon it ; and I think the following plat the beat adapted to secure perfect firmnest. A level bed is prepared for the materials, and on this a pavement of common soft rock is haid by hand. The deepent stones are ased for the centre, and the size is diminished towards the side, so as to bring the top line nearly to the intended transverse section of the road. The atones are all haid on their broadest odges lengthways across the road, and the thickness of the apper edge should not exceed four inches. When the setting is completed, the irregularities are broken off by hammers, and the interstices flled in with the chips. On the foundation 10 prepared, a three-inch stratum of small broken stones is to be laid, and on this, where the case will afford it, a coating of clesn gravel obould be apread, and the whole rolled with a heavy roller until consolidated, when it is in a condition to receive the envering of paring stones. The under pavement would be atill farther improved by running the joints with good lime gront before laying on the ballanting; and in the case of macadam roads, the previous ballesting is not required, the macadam being leid directly on the pavement.

The objection to a street formed and paved in a manner so permanent as that described, is, that it requires to be frequently broken up for laying or repairing water and gas pipes and making branch sewera, and cannot be reinatated in so perfect a manner. But water and gas pipes shonld not be laid in the carriage way, but in trenches formed along the sides of the streets, as shown in the foregoing engraving, and the sewers should be double and laid in the bottom of these trenches. The advantages of this mode of forming atreets 1 have before pointed ont, and shall now merely exbibit a otatement of the comparative cost of the two modes. The calculation is made for a street afteen yards wide, aod the actual cost of both modes is given :-

Estimaled cost of side-trenches for gas and water pipes, and sewers.

Estimated saving in the cort of laying down gas and water pipee, and excavating for sewers by wing side-irenches.
In the Linoal Yard.

The excess of the cost of the trenches is $£ 1$ per lineal yard of atreet; but to connterbalance that cost, there is the saving in keeping the street in repair and cleansing it-the convedience and the non-interruption of the trafficand to these it is imposaible, in the present atate of information, to assign a money value.

For cleansing streets, the Report recommends washing them with water, and carrying the slush off by the sewers, instead of carting the sweepings; by which means an enormous asving will be effected.

The water channels ought to be formed with smooth-faced stones 10 inches wide and 6 inches deep, and from 2 to 4 feet long, laid to the general curved line of the cross-section of the street, which can be laid at $68.6 d$. the superficial yard.-(See b in the engraving on previous page.)

Gully-Grates shonid all be trapped, and the grating-bars either be so close as not to admit stonea and other matter which might impede the fiow of water in the draina, or the longitudinal openinge may be crossed underneath hy small wires, forming, with the bars, a series of reticulations, which will prevent the pasaing of any large subatance. The kind of trap which experience proves to be efficient is alluded to in the next paragraph.

All traps which depend on the agency of water, are liable to get out of repair, and require care and attention to maintain their efficiency. For if the water be allowed to dry up, the gasea have free passage; and if it be allowed to remain long in the trap without being changed, it becomen im. pregnated with the gases, and yields them again to the air: conntant change cf the water is thus easential to the perfect action of auch traps. The forms of water traps are very namerous; but probably the most simple and efficient for houre drains, when the drain pipe is not too large, and the supply of water abandant, is the plamber's trap, which is a pipe bent to the sigmoid curve, as in fig. 5.

Where the quantity of water pasing throagh a pipe is very amall, and yet the pipe requires to be large enough for an occationally-increased diacharge, some trap, which can be opened to admit of any deposit boing cleaned out, is probably to be preferred, and I have hitherto used the one represented at g, fig. 4. This is merely a modification of the furmer, and answers well. It is made of earthenware. Where the fall of a sewer is not great, and the bouse drains are apt to be flled with back-water, the fiap valve is the moat effectual preventive which I have tried. It answers admirably for keeping out back-water, and fita $s 0$ tightly that no gat can escape. These valven can now be had made entiroly of earthenware. The gully

grates should have no water traps, bat in their place should have tap valves of the same kind an the house drains. Figs. 6 and 7 show the kind of gally grate and valve used. The grate, it will be ceen, is vertical, the face of it being in the same place as the face of the carb, and the top of it forming a portion of the curb; the fap hangs vertically, and acts so promptly, that the smallest quantity of water opens it. This form of vertical gully grate answers very well for streeta which have not a great fall; but where the fall is great, the water would shoot past them without entering. I have prepared drawinge for a gully grate, valved on the same principle, to suit steep streets where new gullies are required; but to existing gallies I propose to apply the valre, in the simple manaer explained by the drawings. Fig. 9 showa a proposed alteration in a gully grate, which is removed to a short diatance from its original site, and a length of pipe with a fap attached connect the new opening with the former cesspool, which is bricked up until its bottom forms a continuation of the drain; this 1 have used in a gully at the fever sbeds with perfect anccess. Fig. 8 shows the proposed new grates for aleep sireets.

For fiashing and washing the sewers it is proposed to lay a main along the summit of the town, kept continually full of water from a reservoir; and when a sewer requires flashing, a sluice is to be opened, and the water allowed to rush down in a flood, carrying all impurities along with it.

Besides flashing for the undergronad filth, it is necessary to provide the meant of washing all impurities from the surface of atreets and courts. For this parpose every court should have a branch, with a stand-pipe at its upper end for the washing of it daily. Every atreet abould also have atand-pipes, at anch distances apart that its whole surface may be wathed over with the aid of a short boso. From these atand-pipes also the streets should be watered. Ultimately fountains should be erected in every available titnation, parifying the atmosphere by the motion of their jets, and cleansing the water channela and sewers by their constant fashing effect.

In my former report I submitted the following method of arranging stand-pipes in the atreeta, by which their aituation might be to readily and diatinctly indicated that, in the event of a fire, no low of time would ensue from the difficulty of discovering them. At present, the water-pipes have three kiods of apparatus to wbich hose may be atteched-the common plag, the hydrant, and the Gavin-plug. The common plag consista of a conical socket fitted on the pipe, which, when not in nee, is closed by a mooden plag. When a hose is to be attached, the plag is withdrawn, and en apparafos, called a stand-pipe, inserted in ita place. This is copper pipe, tapered at its lower end, to fit into the socket, and furnished at ith opper end with one or more screwed nozzles, projecting borizontally, to which the hose is atteched; it has also a cock for regalating the discharge. These stadd-pipes are portable, and are carried by the firemen to the plag nearest the place where the water is required. The hydrant is a more simple apparatns; it consiats merely of a branch from tbe main pipe, with a stop-cock and an upturned end, with a screw coupling, to which the hose is directly atteched. The Gavin plag differs from the other two in being aleo a cock; a atand-pipe is required in using it. All these have their conveniences. The Gavin plug is a ready apparatns; but benides the disadrantage of acting too quickly for high pressares, it is lisble to the objections of expooing a large aurface of metai in the roadway, of being subject to be acted on by frost; and from ita cover belng attacbed to the pipes, the latter are apt to be injured by vibration and concursion. The atend-pipe is liable to derangement from a pebble or dirt getting into ita mocket ; and as these soekets are in boxes under the surface of the ground, there is sometimes not a Ittele dificulty experienced in finding their places. Parther, the eye which requires to be formed round tbe metal box seldom wears unlformly with the gemeral surface of the road (in the macadamised rosds especially), but projecte above the anface, and forms a very serious obatacle to the traffic.

My opinion is, that the apparatua, in any proper aystem of aupply, ahould be conspicuously placed, readily distinguishable, by night or by day, from everything else, and always ready for use, without any appliances, which may be mislaid or forgot at the very instant they tre wanted. With this riew, I beg to aubmit the apparatus exhibited in figa. 1, 2, and 3. I propose that ceveral lamp-ponts in each street should be made receptecles for the Faier apparatus, the pedestal being made of a aize aumeient to contain it. In each lamp pedestal I propose that an upright hydrant be fxed, with a coil of hose, anficient for wrashiug the atreets, or filling the watering carts, constantly atteched. The cock-box I would fix in the footway, alwaya on the ame aide of the lamp-posts, and at a constant distance from tbem. In the event of a fire, the firemen's hose would be instantly atteched to the hose of the stand-pipe by a coupling screw. The pedestals for the water upperatus being sqaare, and those for the common lampa being round, would point out at once the place of the water apparatun; and, if neossary, the ide panes of anch lampa might be of coloured glass, at a still greater distisctive mark by night. Every auperintendent of scavengers and every fireman would be provided with a key to the door of the pedeatal, and in the pedeatal the ley of the cock would constantly remin; thus there would be no delay in uning the water for any parpose. In places where lamp-posta are not required, the pedestale merels (ig. 3.) might be used, and theeo might aleo be used as gnard posts at the entrance to narrow streete.

Tho lamp-irons thus made prominent, might be readered atill more eeoful of the label attached to their tops, as ahown on the aketch. On these would W cast the aames of the stroet, and on the centre panel the diatance in
miles and forlongs from the Bxchange. Cosch and ear fares might be thas regalated. On the plinths too would be made the permanent bench-marks necessary ander the Act, with their height above the dock sill, expremed in feet and decimal parts. By theme means, the simple lamp-post may be made a very useful at well at a very ornamental object.
The Report contains some judicious advice on the best mode of cleansing streets, emptying cesspools, dust-bins, lay-stalls, \&c.; regulations for the width of streets and height of houses; limiting the population.

The limitation of population per scre being once establishod, is eanily convertible into a rule to determine the area that a house thould oceupy. The width of a street due to the clast of honses being fixed on the principle laid downabove, the remainder should be allotted to the housea, the passages before-mentioned, and the gardens or back-yards, the case may be. On examining the atatistice of health in Great Britain, we shall find that, in towns exhibiting the average rate of health, the stes allowed to every inhabitaut in about 25 square yards. If we assume $5 \cdot 38$ (the Liverpool average) to be the number of inhabitants to each house, and allow 25 yards to each inhabitant, we shall have 150 yards as the minimum area which health demands to be allowed to every honse. Now bouses of the class usually bailt in third-rate streets are 5 yards wide in front, and the width of the street due to these is 6.6 yards. Of the quantity allotted to each household we have thas $42 \frac{1}{8}$ yards due to the street and lane, and $117 \frac{1}{2}$ yards, or an ares of 231 yards deep by 5 gards wide, due to the hnuse and yard. Of this the house will probably occupy 10 gards, leaving 13 gards in depth, or 65 square yards for the garden or back-yard and its erections. Tbis, then, is what would be required to insure a state of health of the town districts of Britain, when houses are bailt in atreets without any other source of air and light than what the streets afford; if, however, open spaces are left, auch as courts, oquares, and the like, the problem being simply to allot a certain number of jarda to every inhabitant, a deduction commenanrate with that area may be made from the amount allotted to the yards or gardens, provided that, at before stated, the houses be so arranged in reapect of these open spaces as to receive the full benefit of them.

From the remarks on buildings we give the following extracts :
Every house should have a water closet; but the water closet should be adapted to the plece it is to occupy, and the habits of the users. Water closets at present in common use are essentially of two kinds, the valve and the pan closet. The former han been long held in high esteen and is expansive; the latter is the cheaper article, and I think nodeservedly undervalued. Both are open to the objections which I am about to point out. As these apparatus perform an important part in sanitary improvement, it is necessary to inquire how they can be made to fulgil their design in the best poasible manner, that is, to carry away the soil instantly, not only into bat through the drain and sewer. This will obvionsly depend on the quantlty of water that is discbarged along with the soil. Now, in the closets in une the quantity of water retained in the bain and discharged with the noil is $\mathbf{0}$ quall ta to be inadequate to carry the soil away, and reliance is generally placed on the roath or stream that is sent after it. This stream is generally diacharged by a 1 l inch pipe, while the soil pipe is 3 inchos in diameter, and conseqnently it can have little flashing power. This is the defoct in all exiating closeta, the attention of the makers belng directed invariably to the increape of the wash, and not to the maintaining a sufficient quantity of water in the basin. Wben, on the coutrary, the basin retaius a large quantity of water, and the opening for diacharge is made with the requisite suddenneas, the foll flashing effect of the water is obtained, and the atream acts, as in the other clowets, in rinsing the basin and refilling it. It is on this principle that the water closets shown in the figure are deaigned. Both have answered completely. They combine the advantager of cheapness and aim. plicity, and can hardly be put out of order.

Fige. 10 and 11 show the closet adapted for the interior of a homee, and fig. 4 that adapted for a Jard, a court, or pablic necosaary. In the figuret, a represents the basin, which, with ite aupports and the pipes behind, es, formed of glased eartbenware in one pieco. In the pipe at cit ined aby containing a collar of leathere, through which a braes or copper tabe b alidet $;$
this tube fapen at both ends. To the end of the pipe 8 the soil pipe is attached. When the sliding tube is in the position shown in dotted lines in fig. 11, water admitted into the basin will riee to the height of the top of the tube, and if more be added it will escape throagh the tuhe, which thus forms an overflow. When the tabe is depreased hy the closet handle to the level of the bottom of the basin, the whole of the water and eoil is instantly discharged. This simple and ingenious water closet, which may also serve a a sink for cottage dwellinga, is the invention of Mr. Kırkwood, plumber and mechanist, of Edinburgh. I have fitted ap several of them, and one which has been in constant use at the new offices in Cornwallis-street since their opening, has given perfect satisfaction.

I have proposed to use tubes of earthen ware or glass, gronnd, in place of the hrass tobes, for the anke of cheapness. I have alco proposed to modify it so far to convert the sliding tuhe into a turning one, so as in fact to form a stopcock, the tabe of earthenware being ground into a socket of the same material, thus dispensing with the atufigg-box. Other modifications Fill present themselves to those who give attention to the anbject, the principle being steadily kept in view of receiving the soil in a large quantity of water, which, when discharged, ahall be sufficient to carry it, not only into the drain, but through it.

The other water cleset is adapted for back yards, courts, and pablic necesasries. It is designed on the same principle. In fig. 4, a a, is a large tank, formed of stone, slate, iron, or other non-absorhent material. It bottom is made to slope to one end, where the mouth of the soil pipe b is inserted, and closed with a loaded plug valve c. To this ralve a chain is attached, and, being passed over a pulley, it has a bandle fixed to its other end. D is a supply pipe, from which the tank may be filled; e is the orerflow pipe; f the seat of the closet. The tank in the case of cottage dwellings way extend between two cottages; in coorts it may aerve for as many separate water closets as there are houses ; and, in like manner, for public necessaries, any number of seperate closets may be over it. The supplying of the water, and the discbarge of the contents of the tank are not under the control of the user, but in every cate, of the scavenger of the district. The cock of the anpply pipe and the handle of the discharge valve are contained in a mall lock-up copboard, accessible only hy him, and once a day, or oftener, as the case may be, he pulla the handle which lifts the valve, and allows the soil and water to be discharged in a torrent ; this being done, the valve is allowed to drop, and the water laid on by the sopply pipe until the tank is full, When it is again ready for use. The soil being received into so large a body of cold water as the tank contains, is not liable to docompose; from the time it is allowed to remain it becomes to a certain extent dissolved and diffused in the water, and when the contents of the tank are discharged, being nearly flaid, they puas off withont impediment. Such water closets tmit no bad odonr, they cannot go wrong, and, from being directly under superintendence, and their action being independent of the user, they cannot suffer from ignorance or neglect. A closet on this principle has been filted up at the public offices for the work people out of doors, and answers its purpose admirably.

To the advocates for employing the Ordnance for making the Surver of London, we beg to direct their particular attention to the following observations, which ought to have, if anything would, some weight with the government, in reference to sanctioning the employment of the Ordnance in doing that which can be much better done by civil surveyors and engineers.
With regard to the sorvey of the borough, I beg to state, that I havo been actively employed on it, with a large staff of sarveyors, siace June last (1847.) There is now completed the triangulation of the greater part of the whole area within the Parliamentary boundary, and the detailed sarvey of abont two-thirds of that area; about half of which is plotted to a seale of twenty feet to the inch. The reasons which led to the adoption of a scale so moch larger than that recommended by Government are known to the committee; but as the necessity for the large scale has been questioned, and, as in the investigation of the subject by the Melropolitan Sanitary Commissioners, evidence has been adduced involving grave charges against the Corporation of Liverpool, I shall take the liberty, briefly, to allude to the subject, and shall show by a simple statement of facts, how rash and gronadless these charges are.

I have first to remark, that in the evidence referred to, there is an obvious confounding of two thing-general sewerage schemes, and the sewerage of a tuwn. For the one a contoured, general, or block plan, on a small scale, so that the whole area may the comprehended in ove view, is what is reqnired; and for the other, the details of the structoral arrangements to a large acale-the larger the better, so that every minute pecnliarity may be seen and provided for. In designing improvements, therefore, botb plans are necessary, the small indes map for the ascertaining the draiaage aroas, the oulfalls, and the main lines of sewers and gas and water pipes; the large plan for the details. For the first purpose, for extensive areas, a scale aixty inches to the mile is totally useless, as being too large, and for the second, it is equally useless, as being too small, and its adoption would necessitate the re-surveying of every portion of the town in detail, as the works are carried or. Thus, oven for the sewering of the town alone, the sixty-inch scale would not be sufficient; but the Cpuncil of Liverpool, noder the Sanitary Act, have not only the control of the sewers, but are also surveyors of highways, guardians of public property and have the control of the waier supply. In adjustiag the levels
of streeta, plans and sections are required drawn to a scale so large as to exhibit, clearly and distinctly, the details of accesses and approaches to the huildings on each side. Such a plan admita also of the boundaries and divisions of property being minutely detailed, and allows of the details of sewrers, service drains, water and gas mains, and aervice pipes, and in short the whole structural peculiarities of the locality to be represented without confusion. It is in fact a working plan. 1 shall briedy recapitulate these reasons.
I. It obviates the necessity of separate detailed survegs for improvements.
II. It enables the perfect detail to be shown of parts which most require improvement in ltnes, levels, and sewerage, and also for the supply of gas and water.

1II. It admits of the perfect measurement of the boundaries and dirisions of property, enabling the authorities to guard against futere eacroachments.

1V. It shows the stractural arrangement of the strects, with the complicated lines of water and gas-pipes, sewers, and service drains.

Doubtless, all these might be ahown on a plan of 60 inches to the mile ; but such a plan, like many other efforts of ingenuity, would be more curions than useful.

I bere cite the portion of the evidence referred to,
Captain Yolland says-" At the present moment the Corporation of Liverpool, who are engaged in carrying out sanitary measures for the town of Liverpool, have abstracted a number of assistants from the Ordnance Survey that will answer the purpose of carrying on this very necessary work, at rates of pay varying from 500 to 700 per cent. over that which they received on the Ordnance Sorveys; and this, after having been furnished by the Ordnance Survey Department, almost at a nominal price, with a skeleton plan of the town of Liverpool on this scale, with some altitudes inserted at the corners of streets."
"How do you acconnt for the Corporation of Liverpool desiring to have an additional and accurate sorvey, they having already those outlines which are sufficient for all purposes of drainage?-I imagine it is to project their schemes.
"The Commissioners are anxious to ascertain what it woold cost to survey the metropolis sufficiently for the purpose of drainage and sewerage; therefure it was that the question was asked, why the people of Liverpool should be anxious to have a more complete survey than is necessary for those purposes t-All I stated, as having been given to the Liverpool Corporation, were skeleton plans, not embracing every alley and every court.
"The Liverpool Corporation own a great deal of property in Liverpeol, do they not ?-1 do not know."

First, as to the abstraction of surveyors :-the only surveyors employed in the sarvey of Liverpool, who were known to me to be on the Ordnance Survey, are two, and these applied for employment, recommended to the favourable consideration of the Committee by the officer under whom they were at the time. One other surveyor applied as a person out of employmeni, Whom I afterwards discovered to be engaged on the Ordnance Survey at the time of his application, and we have other men who at some period or other have been employed in the Ordnance sorveys of England and Irelaod, bat all of whom had been engaged in railway survey between leaving the Ordnance and being employed by me. All the surveyors, with the one exception stated above, were engaged on application in writing, accompanied by testimonials of their character and capability from persons in whowe employment they had previously been. So far then for the truth of the statement as to the "abstraction of a number of assistants."

With regard to the amount of salary paid the assistants, I may stale, that it is invariably commensurate with the work done, and ranges from $£ 48$ to $£ 150$ per annum. This highest amonnt is, I suppose, somewhere abont 200 per cent. above what is paid in the Ordnance Department to civilians. Capt. Yolland asserts that the salaries paid in Liverpool are 700 per cent. above those of the Ordnance staff; where he got his information as to the anount of these salaries I know not : he certainly did not apply for it either to the treasurer or to me-the only parties who coold have informed him rightly.

The whole of the evidence relating to the getting up of sarreys for sanitary purposes is an attempt to prove that it can be more correculy and more cheaply done by the Ordnance than by corporations or local surveyorso Bal, to verify calculations of this kiod, let the actwal and not the cotimated cost of Ordnance surveys be produced. Every one knows that to produce anything in extreme haste increases immensely the cost of production. The Council of Liverpool, finding that the detailed Ordnance survey of the town was oot conspleted, and being refused liberty to muke a trating of the portion alleged to be faished, urged by necessity, had no alternative but to proceed with a survey of their own, although perfectly amare that the necessary haste would moch increase the cost. Now, however, that the expense of what is done is known, and the cost of completing the whole can be correctly calculated, it wonld be unefal, as a teat of the comparative expense of what may be called private and public plans, to ascertain from the proper authorities in the Ordanace ofice what the country has already puid for the incomplete plan of Liverpool, and how much it will yet cost; how long it has been in hand, and when there tia reasonable prospect of its being finished.
In ten monthit the work. Which 1 buve already detailed bas been doae; and, in addition, a map of the town and aurronnding district, embracing an area of 27 square miles, bas been compiled on a seale of 10 finches to
the mile, and on this confour lines at four feet altitudes have been laid down. These contours involved the observation of a great many levels, and a laborions calculation. A copy of this bas been made for Mr. Hawkesly, for the purnoses of the water supply.

Besides this work, belonging especially to the survey required by the Act, a very great number of detached surveys and the sections, to meet the emergencies of the time, working drawings of sewers, and of the new offices in Cornwallis street, and many highly-finished drawings to illustrate the reports made by me, have been executed by the surveyors and draoghismen; and althongh these are, for the most part, valuabie documents, their executinn bas not a litule interfered wih the progress of the larger work. The street survejs and sections reqaired for the adjustment of the levels in laying out new streets alone amount to 150 .

The work being now so far advanced, and the completion of the contonr plan having enabled me to make the necessary eatimates of the cost of the merage, a reduction nay be made in the surveying staff, if it should be thought desirable. The list of the new staff i bave submitted in the estimale of the expenses of the Engineer's Department for the ensuing year.

PEOCRDDIEAS OF gOIENYIFIO BOOIETIEs.

INSTITUTION OF MECHANICAL ENGINEERS.

The following papers were read at the last monthly meeting beld at Birmingham :-

BONE CRUSHING MACHINE

Mr. BucxLe premised that, in selecting his present subject, he had had in view the desirability of imparting an agreeable variety to their proceed, ings. The object of this communication was to endeavour to direct thattention of agriculturists to the usefulness of a machine for preparine bone dust, which has been found to be a most efficacious manure, g machine which is alike available to renovate the nobleman's extate or tha peasant's cottage-garden. An ash plant, an iron bar, a pebble from the brooke and a hand sieve, furaish bim with a bone-mill for all he requires. The arrangement of this machine reduces bone to a state of meal, and thereby yrepares it for a rapid change into a state of solubility-the rapidity of the effects of phosphate of lime on the growth of plants depending upon its greater or less solubility. In all olher mills which he had examined, thelr cunstruction will merely crash the bones into lumps ; and when laid on the land in that state they remain many years undecomposed, with little benefit to the crops.

In the year 1833 his attention was directed to this sabject by the stew. ard of a large estate in Orfordshire requesting him to cunstruct a mill to grind bones as flae as possible; for he found, in practice, that the bones prepared in the usual manner were of little benefit: be also objected to the usual method of boiling the bones before they were crusbed by the rollers. For this gentleman he constructed a mill driven by two horses, which succeeded so well that he was requested to increase its powers, and to work it by a water-wheel of three-horse power. The first crop of taraips averaged 47 inches in circumference and 82ll weight, from seed of the red turnip, received from Messrs. Drummond and Son, Agricultural Museum, Stirling; sown in May, and producing as above in ()ctober. In the year 1639 he constructed a second bone-mill, which was prected on an estate in Surrey, driven by a water-wheel thirteen feet in tiameter and four feet wide, with additional conveniences to the former one. After a carefol conrse of experiments, he received a letter from the proprietor of the estate, of which the fullowing is an extract:-"I am moch obliged by all the attention you have given to my hune-mill, with the performance of which I am entirely satisfied. We produce thirteen Lashels of fine dast per hour, and seventeen bushels of fine dust appear to we the product of half a ton of raw bones. Thus we shall be able to prodace 136 bushels of dnst, the product of four tons of raw bones, per day of ten hoors." In the sketch of a mill or machine laid before the meeting, Mr. Buckle made several additions and improvements which were not introduced in the former ones. The positions of the stampers were altered in consequence of the result of experiments, and elevators were an addition of mach usefalarsa, as he thereby lessened the daties of the attendant, whose only care is to admit water on the wheel, and observe that the store of rough raw bones is ample, and the machine performing satisfactorily. The rongh bones are recommended to be heaped up in a shed adjoining the mill ; they are permitted to slide down the inclined platform, from whence they drop into the stamper-trough. The middle atamper is recommended to be heavier than the outside ones, to enable it to break the large bones in pieces; those pieces pass on in the trough from one stamper to the naxt, and when it has moved to the outside stamper it is redaced into meal. It then passes into the dressing cylinders, which are placed on a descent, and by their velocity force the fine duat through the wires, The coarse dust falls from the end of the cylinders iuto a box, where It is raised by the elevators, and descends into the stamper-trough, to be crushed fine enongh to pass through the wire meshes of the dresaing inachlne. Mr. Buckle also recommended the application of elevators for conducting the ground bone dust from the bins or store in the cellar into the wagons, to ba by them conveyed to the drill or sowing machlaes.

HIGH-PRESSURE BOILERS.

"On High-Pressure Boilers, and on Boiler Explosions." By Mr. Smith, -"At the last meeting I laid before you a tracing and description of the steam-boiler which recently exploded near Dudley, and though tine did not permit any discussion as to the merits or demerits of the construction of the said boiler, I think it very evident that boilers of similar construction, formation, and dimensions, cannol be safely used for high-pressure steam, say 40 lb . or 50 lb . per square inch. 1 make this assertion, because the great diameter of the outer shell renders it very liable to be torn asnoder by the internal pressure, and the internal vertical.flue being also of such dimensions that it may be forced out of form and suddenly collapsed by external pressure, and if that system of boiler were to be made safe by a large reduction of the diameter, it would make steam inaignificant in capacity, heating surface, and generating power, and consequently unfit for the purpose they are intended-namely, to use the great quantity of lost heat that escapes from the puddling furnaces.
"I have prepared the accompanying drawing of a boiler which I recommend in preference to those on the above principle, being much better adspted for generating and safely containiug high-pressare stean, and I think more convenient in every other respect for the above system of heating. The boiler is 32 feet long, and 4 ft .9 in. diameter, with two tubes or flue-pipes under it, each 36 feat long, and 1 ft .8 in. diameter, and attached to the boiler by vertical pipes 10 inches diameter. The flue-pipes are made in a bent form, so as to be highest in the midulle, and dropping at each end, to keep circulation in the water. The drawing will sufficiently explain every other particular connected with this boiler, so that further description is unnecessary; I shall therefore now only point out a few of the advantages it possesses over the system of builer before referred to :-
"Ist. The dianneter of this cylinder being small, they may be made of mnch thinner plates, and still be perfectly safe with a greater pressure of steam.-2nd. The heating surface is large, and concentrated without winding fues, so that much steam will be generated.-3rd. The area of water surface being much larger, there will be less difficulty in maintaining its proper level.-4th. The steam and water spaces and heating anrfaces larmonise in their proportious.-5th. The great facility for cleaning out, which is an object of the frat importance in the construction of all kinds of steam-bollers, as it is well known that where any difficulty exists in performing that operation, the chances are that it will either be imperfectly done or left undone altogether, which is one cause of many of the fatal explosions that so frequently bappen with land boilers:-1, Mal-formation for the working pressare and quantity of vapour roquired; 2, Want of proper care to fit every boiler with proper steam and water indicators; and 3, Neglect of cleaning out at proper times. It is a lamentable fact that many boilers are still in use, which are extremely liable to accident from either of the above-named causes; and I think the following reasons will to a great extent account for so bad a state of things existing in a country where so much engineering skill may always be procured to rectify such defects.
${ }^{4}$ I. Respecting mal-formation, I would state that parties about making erections for steam-power, generally make the Irst outlay of capital a leading consideration, and consequently cramp the dimensions of their engines so that they are just calculated to do the work required, and nuthing to apare. Shortly afterwards, however, some extra machinery is introduced into the establishment, and the engine being found defective in power with the original pressure, an extra load is immediately put upon the safety-valves of the boilers, and this practice is repeated from time to time, as each little additional machine may require the extra power. It follows that the boilers, which were prudently arranged to do the work in the first instance, are at last a mal-formation for the increased pressure, and working in a highly dangerous state, while the unsuspecting operatives may be seen crowding round to warm theaselves at meal times, when the danger is probably at the greatest pitch.
"II. Respecting defective steam and water indicators, I have always observed that land engine boilers are not so efficiently fitted with these instruments of safety as marine and locumotive builers, although 1 think it very necessary that they should be so, seeing that a numher of them are frequently left to the charge of one individual, with other duties besidea that require mach of his time and attention; whereas the indicators of marine and locomotive boilers are constantly under the eyes of one or more eagineers of well-proved character and ability for the duties required; and, moreover, eugineers of a higher class are always resident in the principal stations, invested with power to examine engineers, and inspect the whole machinery. I bave shown, on the present drawing, all the indicators which I conaider necessary for a high-pressure boller in ordinary circumstances, which are as fulluws:-One feed-cock or valve; one float-water gauge, with stand and wheel, and connterbalance weight; one glass water gauge; one steam-whistle, also for a water gange; and two safety-valves, one locked up. For low-pressure boilers, I think the open top feed-pipe, with open pipe also for the luat-wire to work througb, is a very perfect apparatas to prevent the steam from rising too high, or the water getting too low.

8rd. Respecting teeping of boilers clean, I have seen that process very Imperfectly performed, and often altogether aeglected in establishments where a sufficient number of spare boilers are not provided, and time not permitting to get the boller cooled down for men to remain in it to do the work properly. But I believe the greatest cause of neglect in this most
important matter is its being generally looked upon as a thankiens sort of jub, the engine-man always considering it an extra duty, for which he chaims extra allowance, and the master considering that he pays him suffciently to include that work with his other daties. The results consequent upon iattention to boiler cleaning, require no comment here; every practised engiofer being well acquainted with them, knows that if actual explosion does not bappen, the tear and wear upon those parts mont exposed to the fire must be greatly increased, and so keep up a heary expense in repairs, iodependent of the immense quantity of extra fuel that is required to keep op the steam.

- I trust thene remarks will suffice to draw the attention of the Institution to thie very important subject, and that the proprietors of steam-power may be convinced that the small extra ontlay required to make the boilers perfectly safe, will be more than ropaid by the economy in working."

ON THR FALLACIES OF THE ROTARY ENGINB.

Before ontering on this consideration of the subject, the President invited Mr. Onions, who is not a member of the Institution, to dearribe a diac engine, of which be is the inventor, and to state wherein it differed from other rotary engines. He claimed for bis engine a superiority over the crank principle in power and saving of fuel; the chief pecoliarity, however, being an improvement in the mode of packing, so (as was alleged) as to make its parts perfectly tight. Mr. Onions asserted, that the loss of power in the vae of the crank was estimated by some eminent men at toths. This, he stated, was saved by his engine. Therewas no friction, and yot by this mode of packing, all leakage was obviated.After a few remarks condemnatory of the principle, the President proceeded to read bis paper on this subject. As the explanations were accompanied by references to diagrams, we adopt so much of the paper as will give an idea of Mr. Stephenson's argoment. He remarked that, as all levers gave out their power at right angles to their fulcrums, it would be seen that a right-angle line from the counecting-rod to the centre of the beam would be the true measure of the length of the beam when the crank was at half-atroke-therefore, the $\frac{1}{3}$ th of balf the length of the heam would be grined by the piston-end of the beam. The crank being 3 feet long, the up and down struke of the piston woold be 12 feet; the crankpin would, of course, have passed through a space of nearly 19 feet. Now, weight hanging upon a drum nearly 4 feet diameter, woald balance the same weight on the pistonend of the beam; each would move at the same velocity, and pass through the same space in the same time. It would be observed, that from \mathbf{C} to D on the diagram was a little more than one-third longer than from G to D; it would, therefore, be seen that the weight at the piston-end of the beam had a little more than onethird advantage over the weight of the drum. And it would also be seen that from C to \mathbf{E} was balf-way from balf-stroke to the botiom ceatre; at this portion of the stroke the leverage of the crank would be nearly 2 feet. The increased power that existed io the crank from half-atroke to tbis puint would gradually be lost from \mathbf{E} to H ; it was, therefore, clearly proved that no power was lost by the crank-mosion. as the weights resolved themselves into a single lever. There would be a little loss of power when the engine was turuing the centres, which is compensated for at the connectingrod end of the beam by the segment of the rigbt-angle line. Now a rotary engine could only give out its power on the arm like any other lever; and If the piston passed through a apace of 19 feet, it would jost balance a weight equal to the same power passing through the same space. The President, in contination, said that no man could improve the lever; it was useless to talk at that time of day of the loss of power by the crank: there was no such lose. He asked, what had been the performance of Mr. Oaions' engine at Derby, where it was tried?

Mr. Onsons said. that in those experiments the saving was equivalent to 90 per cent. Woald the President believe the fact if he saw it t

The President, with good-hnmoured warmth, exclaimed, uNo, I wooldn ${ }^{2} t$, Sir. I would believe I was mad first, or that there was magic in the experimeat. ${ }^{*}$

Mr. MILLEE, of Blackwall, remarked that there was no lose of power by the crank; and be might also add that nobody, he believed, objected to the principle of the rotary-engine, except so far as regarded the difficulty, or rather the impossibility, of packing it perfectly tight. No donbt the rotary eogine had its advantages, such as its application to the screw in marine engineering, and wherever mall space and considerable power wis aecemsary; but the rock upon which inventors split, was the packiog. He would as soon think of inventing perpetual motion as of overcoming that dificulty.

BRITISH ASSOCIATION.

Notes from the Proceedings of the Meeting held at Shoanced, Angurt, 1848.
Application of Heatid GaEEs from Furnaces.-At the Yatalafera Iron-morks near Swansea, nader the management of Mr. Budd, a raluable application has been made of the heated gates tbat are usually permitted to escape from blast furaces. The heated gases are in the first instanee condocted through horizontal pasaget at the top into a stove, where they heat the compressed air in its pasage to the fornace to form the hot blats. The sir which is conveyed to the atove in a convolation of pipes is heated in this manner to about 700° or 800°. The beated gases after having done daty in
the atove, are condacted under the boilern of the engine employed for compreasing the air, and experlence has proved that the boiler can be heated ia this mander more effectively than by fuel, with the additional advantage that there in no corrosion of the iron. Only one of the boilert at the Yatalafera works in as yet fitted op in this manner, but the experiment has answered so well, that all the builert will shortly be heated in a gimilur manner ; and thus the power for compresaing the air and the means of heating it will be procured by uaing the mere waste heat of the fornaces. The "hot-blast" will by this means cont literally nothing, and it is estimeted that if tbe plan be carried out through all the iron-works in England and Wales, there will be an annual atving of $£ 1,200,000$, without takirg into account the aring ariang from the diminished wear of the iron in the boilen and the beating tabes. Even this anving might be increased, for as prewent the heated gases are permitted to escape onconsumed; and by a judicloms admistion of air to anpply the required oxygen for combution, the heated gases might be advantageously burned. In this manner some of the furnuces in Belginm were economically managed several yeara ago, the heat of the consumed gaves being employed in varion procosed.

A Der Condmase.-Mr. Joeeph Price made a commnnication in the Mechanlcal Section, of a plan that he has lately adopted ln the construction of marine enginet, and which he then made public for the firat time. The engines conatructed by Mr. Price combine the effects of bigh. preasore and of condenaing engioes. The oteam is worked at a pressure of about 20 lb . to the square inch, and it issues from the cylinder, after having done its work there, into a dry condenter. The condenser consists of a chamber containing several pipes, through which the water pasces as the vessel is propelled forward, and by this means the pipes are kept cool. The steam emitted from the cylinder meets, as Mr. Price expressed it, with a "cold reception" in the condenaing chamber, and the water of the condensed steam collects at the bottom, whence it is forced again into the boiler by a amall foree-pomp. In this manner the boiler is constantly supplied with fresh water, even at sea, and there is consequently no incruatation. This arrangement of the condenser would admit of the use of spirite of wine instead of water, if the waste by leakage could be avoided.

Low-Perbserge Atmogpareic Railwat.-A large model of a lowpresture atmospheric railway was exhibited in the Mechanical Section, hy its inventor, M. Struv6. In this plan the origioal mode of atmoapheric propolsion is adopted, the carriages and passengers being all inclosed witbin the atmospheric pipe. It is proposed, however, to construct theatmospheric celvert of brick-work, and it is to be illuminated by windows; 40 that the pacsengers, though inclosed, will not be excladed from dayligbt. A shield is fred to the carriagea, against which the preaure of the atmoaphere is to act; and as the requicite preasure need only be very low, there in no necesitity to be particular about the shield being air-tight at the edget-Indeed, it is intended that it ahould move without any friction against the sides. With an area large enough to admit the railw ay carriagen, It is calculated that a preasare of six-tenths of an inch would be suffleient for ordinary speeds, and it is proposed to obtain that amount of exhanation by large pamps formed comething like gasometern, which work up and down in water, and oxpel the air from the large pipe. The eatimate for comatructing a railway of thil kind is © 7,000 per mile.
Tei Inon Prodece of Pemnsmpania.-It fram atated by Profesor Rogera, of Pennaylvania, In the Geological Section, that the annusl quantity of iron produced in that state exceeds the Fhole annual prodsce of South Walea; the estimated quantity being 700,000 tons.

The Colodring Property of Maddem-Dr. Edward Schanck presented to the Chemical Section his third report on the colouring property of madder. The extractive matter of madder-root contains seven different substances, only oue of which, however-the alizarine-is of value for its colour : all the othert, indeed, tend to impair the colour yielded by alizarine; and the chief rae in adding 4 me to madder in dyeing it, that it combines with the other anbatances, and rendera them hermleas. Potans, or other altalies, would have a similar effect; but as lime is cheaper, there would be 90 advantage gained in anbetituting aikalies. It was anggested that a practical application might be made of the analyois, by extracting the alizerine in a separate state, freed from the injurious adjuncts, in which condition it wa hoped a hetter and more durable pigment might be obtained, especially in the madder lakes. The experiments have, however, been $t 0$ recenly minde, that no practical resulte can as yet be expected.

Teis Braget of Liozt in Protognapay,-M. Clandet and Mr, Hunt brougbt before the Chemical Section some cariona facte relative to the effect of light on photographlc pictures. In taking a Daguerreotype picture, it is well known that the plate, after being exposed for the proper time in the camera, presenta no image, and that it is not till after exposure to the vapour of mercary that the picture is developed. M. Claudet bas escertioned that the red, yellow, and orange rays have nearly the same effect as mereary vepoar ; and that od a plate exposed to those rays, after baving been is the camers, the picture in developed nearly as powerfully ws whero mercury in used. Not only have the red, orange, and yellow rays the property of bringing out tho invisible picture, but they act also as accelleratort, in the ame way as bromine; thun, if a prepared plate be exposed in the camera 100 short a time to produce a distinct picture by mercory vapour alone, the effect may be increased, and the picture be rendered distinct by expoance to yellow, orange, or red light. Red light alone, however, seeros to produce ao effect on a rencitive Daguerreotype plate, and some carious imagen of the
ann, reddened by a London fog. were exhibited by M. Clandet, which exemplifed that fact in a semarkable manner, for the mun appeared as a black spot in a lominous aky. In in image of the solar spectrum the red rays were black, the orange and yellow dark, and the brightent parts were those in the blue and violet bands of the spectram, and in a space considerably beyond the extent of lominoun raya. Mr. Hunt announced that the results of inveatigations in which be is atill engaged lead him to the conclusion that light has no part in the production of photographic pictures, and that in fact light obstructs the formation of such pictures instead of producing them. Ia confirmation of this oplaion, he stated that when attempting to eake the solar spectrum on photographic paper, all parts of the paper were bickened excepting that whereon the spectrum fell, the paper on that part bariog been protected from change by the action of light.

Einerar Guano.-As the sources of animal guano become exhausted, freeb auppliet of that manare are discovered in the nineral kingdom, which promise to last for ages. The diacovery of a large bed of phosphate of lime组 Spain wastwo years ago considered an important addition to agricultaral wealth, but aince that time beds of phosphate of lime have heen found moch mare availahle, and Captain Ibbetson in a recent examination of the green and formation of the Isle of Wight bas discovered a rich atratom of the mineral manure, containing about 30 per cent. of phosphate of lime. As this is very accessiblo, it promises to become of great value, and there is no douht that similar atores of the phosphate may be be found in other parts where the green cand formation in aituated.

EXPANSIVE ROTARY STEAM-ENGINE.

Bobzixt Wilson, M. A., of Greenock, for "Improvements in certain kinds of rotary steam-engines, part of which improvements are applicable to rotary engines worked by water or by the wind; also an improvement in safety-talves for steam-boilers."-Granted 'January 18; Enrolled July 13, 1848.

The chief object of this invention is to introduce the principle of working steam expansively into rotary engines. This is proposed to be effected by causing the steam which has first acted by impact in one direction against the vanes of a wheel, to operate again by reaction in opposite directions in issuing out of the intervals between the vanes. The figure represents a side elevation of an engine constructed according to this part of the invention, and

having one-half of the cover or side removed, in order to exhibit the internal construction. The circular case is rendered steamtight, and has an entrance-passage at I, for the steam. There is deo an eduction-passage at K, through which the steam in an expended state is allowed to pama away into the sir, or else into a candenser; and although the induction-passage k appears very near to the entrance-passage I, yet the steam does not pass directly to K, but passes nearly all round within the case, in order to impel the vanes $g g$, by acting over and over again with more and more expansive action at seversl different places around, within the edrcumference of the case, in succession, before the steam arrives in a very expanded state at the eduction-pasaage K. In addition
to the curved vanes $g g$, there are other curved vanes $r r$, fixed within chambers $n n$, which the patentee calls reversing-chambera, and which with the said fixed vanes are for giving to the current of steam the directions in which it is to act over and over again against and between the curved vanes $g g$, of the wheel. Some of the reversing-chambers are disposed in an outer circle $m m$, which are also furnished with stationary vanes $r \varphi$; the moving vanes $g g$, therefore revolve between two separate circles of fixed vanes. All these vanes being truly arranged in their several circular rows, with the edges of the vanes in conformity therewith, the interior edges of the fixed vanes in $m m$, and the exterior edges of the vanes $r r$, in the chambers $n n$, are close to the edges of the moving vanes $g g$: but at no part of its circumference is it allowed to touch or come in contact with the fixed vanes $r \boldsymbol{r}$. In order to give firmness to the vanes, which are made of thin metal plate, they are united by means of flat circular rings, which are as close as possible to the moving parts without actually touching. The effect of these rings is not only to strengthen the vanes, but also to subdivide the whole of the passages into narrow semicircular courses, in order to direct the currents of steam. The steam from the boiler enters the case at I, and is first directed into a curved course at m, which is divided into three spaces in order to compel the steam to proceed in three currents towards the axis of the wheel; but owing to the curvature of the vanes, the three currents of steam, when they are passing out from those spaces, are caused to assume nearly the direction of tangents to the semicircular curvature of the moving vanes $g g$, against which the steam will first make its impact by acting against the concave sides, which deflect or turn the course of the steam which now issues from the spaces between the vanes $g g$, at the interior circumference, and is received into the chamber n, when the direction again becomed reversed owing to the semicircular curvature of the boundary of that chamber, so that the steam will be turned towards the vanes $g g$, proceeding in a tangential direction to the wheel in order to act again on the vanes $g g$, by impact. The steam, permitted to expand whilst in the reversing chamber n^{2}, in its second impact will, therefore, be in an expanded state, and will enter into a greater number of spaces between the vanes $g g$, exerting a re-action in so issuing, when it is again received into another reversing-chamber m^{3}, wherein the steam is still further expanded, and becomes again reversed in its direction to the chamber m^{3}, from which it passes as before to chamber n^{4}, where it is still further expanded, reversed, and divided into numerous streams continuing a similar course through the different chambers $m^{s}, n^{\mathbf{b}}, m^{\top}, n^{\boldsymbol{B}}$, and so on throughout the circumference, being proportionately expanded in each chamber till at last it escapes through the eduction-passage K. By the continual impact and reaction of the steam, a rapid rotary motion is communicated to the wheel. Another part of this invention relates to improvements in rotary-engines of impact, the object of which being to combine together two revolving wheelg, having curved vanes affixed to the wheels, in circular rows in a very similar manner to the vanes $g g$, already described, but the circular row of vanes is larger than on the other wheel, so that one circular row is surrounded by the other. These two wheels are inclosed within a case, the vanes in the one being reversed to that of the other. The current of steam which has passed through the curved spaces between the vanes of one wheel, and has changed its direction in so doing, will enter into the curved spaces between the vanes of the other wheel; and the steam in so doing will act by impact and reaction to turu both wheels round, but in contrary directions of rotation. The fourth improvement relates to rotary-engines to be worked by water or wind, the mode of action being by impact and by re-action. They are arranged in a similar manner to the last described. The fifth and last part of these improvements relates to safety-valves for steam-boilers, which the patentee constructs with columns of mercury contained with a cluster of numerous tubes of iron or glaes disposed side by side, the passages through which tubes are kept effectually stopped by having the orifices at their lower ends immersed to different levels beneath the surface of mercury, contained in a cistern to which the steam has admission. The mercury will effectually prevent any escape of steam, so long as the pressure is no greater than intended. But if the pressure of the steam depress the level of the mercury below the lower end of one of the tubes, then the steam will force its way up that tube; and if the steam still increases in pressure, the surface is depressed still lower, so as to get below the level of the lower end of another tube, and so on; more of the tubes will become opened, one after another, as the pressure may require.

PROPELLING BLADES.

Gardiner Stow, late of King-street, Cheapside, now of New York, gentleman, for "Improcements in apparatus for propelling ships and other vessels." (A communication.)-Granted January 11; Enrolled July 11, 1848.

In this invention an attempt is made to combine the screw-propeller with the paddle-wheel. The propeller, though placed at the sides of the vessel, like the paddle-wheel, is formed on the screw principle. Its form consists of a series of curved blades, set at an angle of 45° with the propeller-shaft, which is placed parallel with the vessel's course, similar to the ordinary screw-propeller; but instead of being submerged, it is sustained by bearings projecting from the vessel's sides (there being one on each side of the vessel), at such a height from the line of flotation, that simply the curved blade, or about one-seventh of the whole diameter, will be immersed. These curved blades are severally portions of a screw, and are supported from the shaft by radial arms, being further strengthened by stays extending in the direction of the length of the shaft. These propeller-shafts are each furnished with bevelled wheels, which gear into corresponding wheels on the main or engine-shaft lying across the vessel, as the ordinary paddle-shaft. As these propellers are caused to rotate, the curved hlades will be successively brought into contact with the water, one end thereof entering first, the concurrent angle propelling the vessel onwards, and as it leaves the water, the next blade in succession will be immersed, maintaining a continuous and uninterrupted propelling power.

MARINE STEAM-BOILERS.

Thomas, Earl op Dendonald, Vice-Admiral in Her Majesty's Navy, for "Improvements in marine steam-boilers, and apparatus connectod therewith."-Granted February 11; Enrolled August 11, 1848;

The principal features of this invention are the application to marine-boilers of the principle adopted for consuming the smoke in other boiler-furnaces, by admitting a stream of hot air behind the bridge, to burn the gaseous products, and the removal of the steam-chest from the top of the boiler to the end of it, thereby lessening the height. His lordship claims seven separate parts, which may be thus briefly noticed. Firstly:-The more perfect combustion of the gaseous products at their entrance into a tube-chamber, constructed according to a former patent granted to him, by combining a stream of undecomposed hot air with such products. Secondly, the constructing boilers with the steam-reservoir placed below the level of the water in the boiler in lieu of the steam-chest as usually constructed above the boiler. Thirdly, the drying of the steam by its being exposed to a portion of the fire-place, or by passing the flue or chimney through it. He claims, Fourthly, a mode of preventing the priming of sieamboilers by mesns of a plate or separator placed within the boiler, the end being below the surface of the water in the boiler. Fifthly, the right of making and using a spiral or centrifugal separator; which, however, may be made square or other shape, and still retain the principle of the invention-namely, the sepuration of the water from the steam, and the mode of carrying off such separated water back to the boiler, without being obstructed by a contrary current of steam, by means of a pipe or channel from such spiral separator to the boiler. Sixthly, he claims a mode of working the propellers of steam-vessels by means of short pro-peller-shafts. And, lastly, a mode of constructing boat-boilers and apparatus.

Valves and plugs.

Jobn Frederici Bateman, of Manchester, for "certain improvements in valves or plugs for the passage of water or other fluids." -Granted January 18; Enrolled July 18, 1848.

The chief object of this invention is to make a valve suitable for the water-pipes, the valve being made of smaller specific gravity than water, and being opened by being forced down by a plug. The claims of the patentee will sufficiently explain the structure of the valve. He claims, first, the application for the passage of water and other liquids, of a globular valve, of a ighter specific gravity than water, constructed of a coating of vulcanised india-rubber, gutta percha, or other suitable elastic substance, so that the valve shall be closed by the pressure of the liquid. Secondly, the use and application of a globular valve of the same or a greater specific gravity than the fluid, constructed with a coating of vulcanised india-rubber or other elastic substance, so that the valve shall be closed without the aid of machinery, by
the pressure of the liquid. Thirdly, the opening of the valve against the pressure of the liquid by means of a plug or key, through which the liquid will flow from the valve, the plug or keg being attached to the fixed part, withont the aid of any screw or thread.

PREPARATION OF BAR-IRON.

Whlinam Rubsell, of Lydbrook, Gloucestershire, iron-master, for "an improvement in the preparation of such bar-iron as is used in the manufacture of certain kinds of rod-iron."-Granted January 29; Earolled July 29, 1848.

This invention may be very briefly described. The object is to remove from the surface of ordinary bar-iron the spill or scale, which is found to be very injurious in making the billets from which wire-rod-iron and horse-shoe-nail rod-iron are manufactured. The scale is removed by passing the bar-iron through a kind of draw-plate called a "cleanser," composed of grooves formed in the shape of the letter " v." In conducting the operation the iron is first made into lumps of about one hundredweight and a quarter. It is then removed to the hammer, where it is reduced by hammering to short bars of five or six inches square. It is next passed through the rolls in the usual manner, and reduced to bars of about one inch and a quarter square. In passing through the two last and finishing grooves in the rolls, opposite which the cleanser is placed, the lower half is slightly lowered in order to admit of the entiance of the bar to the rolls which draw the bar through. During this finishing operation, pressure is exerted to bring up the cleanser by means of the lever and shaft, thereby scraping the iron on all its four sides, and effectually removing all the spill and scale from the surface. The bar is then passed over the upper roll, and is introduced through a smaller groove in the colls, when the operation of scraping is repeated, as before.

THE GRESHAM PROFESSORSHIP.

We have seen with great regret the decision as to the Professorship of Geometry in Gresham College, because it is an indication of a return to the old system, which it was held forth should be abandoned, and the College restored to its former efficiency and rank in the scientific world. A decision more lamentable than that now made could hardly have been come to, for it is a total abnegation of scientific attainment and exertion as a qualification for the Professorship.

Among the candidates were Professor Moseley, the Rev. Morgan Cowie, Mr. Potts, the Rev. Pelham Dale, and Mr. Edkin.

Professor Moseley took high honours in mathematics at Cambridge, is the author of a work on the "Mechanical Principles of Engineering," and is a professor in King's College, London.

The Rev. Morgan Cowie took higher honours, and was the senior wrangler of his year. He was afterwards elected Fellow of St. John's College, and Moderator of the Examinations in the University of Cambridge. He now holds the appointment of Principal in the College for Civil Engineers.

Mr. Potts and the Rev. Pelham Dale have devoted themselves to mathematical studies, and have published papers on acientific subjects.

Mr. Edkin took a law degree at Cambridge, and has since been a teacher in the City of London School.

The Gresham Committee have appointed Mr. Edkin to the racant Professorship.

It is not attempted to be put forward that Mr. Edkin is entitled on the ground of his scientific superiority, but he is said to have given satisfaction as a master in the School. It may be added, that he is related to an influential member of the CommonCouncil

It may happen, albeit Mr. Edkin has as yet given no proof of his competency, that he may make as good a professor as Mr. Moseley or Mr. Cowie; but whether he do or not, the appointment is equally unjustifiable.

These professorships are not simply appointments of men conpetent to discharge the duties, but they are rewards for previons exertion; and when properly awarded, their beneficial influence is great, because, as all candidates must comply with the condition of having given practical and public proofs of competency and dib tinction, a powerful stimulus is given to the industry of theee who are enterprising, and there is a curb on the indolent.

In University' College, the way in which the appointmenta art
made is very simple. A committee is appointed, not of members of the Council, but of the professors of the faculty in question, who draw up a report, stating the education of the candidate, the honours he has taken, the appointments he has held, the works he has published and the character of them, and the unpublished mss., illustrative of his studies and researches, which he has submitted to them. Thus all the materials for coming to an impartial decision as to the merits of the candidates are laid before the Council, and their appointment is made in accordance with the report. There can, therefore, by this system, be no canvassing and no jobbery.

The Trustees of Gresham College have not adopted any such course, and they have not even the poor and usual plea of favouring a member of their own College, because their College has no alumni.

The appointment resolves itself into the gross breach of a public trust, and it is necessary that measures should be taken to prevent its recurrence. The University of London has no legal jurisdiction in this case, but it has a moral interest in seeing justice done; and we recommend that a memorial should be addressed to the senate, and another to the Committee of Council on Education, praying that they will take measures to obtain relief. These memorials should be signed numerously by literary, scientific, and professional men, and hy citizens of London, and they may result in some better system for the future. It will be easy for the University of London to provide for the examination of future candidates, leaving the appointments to the Trustees, who will thus be put under a moral and public responsibility, to which they are not now subjected.

If Gresham College were properly administered, how useful might it be to the younger professional men and mechanics of the metropolis. The Chair of Geometry, once held by Briggs and Wren, ought not to be without a competent successor; and by giving an evening course of proper lectures, great benefit. would be conferred, and the very serious want of mathematical instruction in some degree be supplied. Those who know the good that has been done by Lord Brougham's Evening Classes for Schoolmasters, at University College, would earnestly wish the system of cheap evening instruction to be extended. As a recent example of the way in which these classes work, we may mention that a school has been opened in the Mechanic's Institution, under the direction of one of these graduates, and in which the children of members are tsught at fourpence per week.

Those who advocate literary institutions for the working-classes have been serioasly impressed by the evident consequences of giving desultory instruction, which prevails in such places, and which has the tendency of unsettling rather than of strengthening the minds of young men; but no measures have been taken to establish colleges or institutions in which, for a guinea a-year, one or two lectures shall be given, in regular courses, on the higher branches of education in the faculties usually known as wits and philosophy. This can be done and ought to be done.

NOTES OF THE MONTH.

The Ordnance Maps are now andergoing the process of being electrotyped; they are to be sold at the low price of 2s. per sheet, or od. per quartershoet, and are to be issued as they are electrotyped, quarterly. The first weries has just been published, and comprises part of Middlesex, Kent Surrey, Sussex, Lancashire, and Cheshire.

The Betropolitan Seacers Act has passed the Hoase of Commons, and is now in the Lords. The parport of the Act is to embrace into one Commission all the Commissiona in Middlesex, Sarrey, and Keat, excepting the City and the Regent's-park Commission;-Why the latter is to be omitted, wo are at a loss to conceive. The measure, which we long ago adrocated, will be incomplete if that division be not iacladed, as the district runs right through and bisects the Westminster division. It has a sewer of ample capacity and depth to drain all the upper divisiou of the old Weatminster Cusmmission. It commences near Primrose-bill, passes through the vicinity of Regent's.park, Portland-place, Hegent.street, and Charing cross, and discharges its contents in the Thames near Whitehall and Scotland-yard. If transvarse newers be formed in the New. roand, Oxford-street, and Piccadilly, nearly the whoie of the Borough of Marylobone and Westminster may be drained jato it, withoat any great expense being incurred. We truat it is not too late to introduce that Commbesion into the Act. The district of the new Commission is to estend to the distance of 18 miles in a straight line from St. Paul's Cathedrai. We do not like the idea of the Commission being empowered to make their own bye-laws as to penaltien-this is very objectionable, to say the letat of it.

Payne's Process for rendering Wood Fireproof.-On Wednesday, August 2, an experiment was exhibited at Whiteball-wharf, Westminster, for testing Mr. Payne's patent process for readering wood fireproof, and for showing that his wood preserving process is as effectalal for tho preservation of wood from destruction by fire as from the ravages of insects, dry rot, kc. Two small houses were constructed, one of ordinary deals well dried, and the other of deals prepared by Mr. Fayne's process, and each filled with fire-wood and shavings. Both were kindled at the same time. The bouse composed of the unprotected wood canght fire very soon, and in about balf an hour was completels consumed; while the Pasneized bouse remained standing nearly as perfect as ever, -the fire in it having gone out of itself, and left only some slight marks of charring on the inside of the boards. The liquid employed by Mr. Payne (by preference) is sulphuret of bariam or calcium.

The Conversion of Diamond inio Coke.-Professor Faraday lately gave a lecture on this subject at the Royal Institation, in consequence of M . Jacquelain having, in the course of last year, succeeded in converting diamond into a substance possessing the appearance, physical character, and electrical properties of coke by the following process :Having attached a piece of hard gas-retort carbon to the positive wire of Bunsen's battery of 100 elements, he placed on it a small piece of diamond. He then armed the negative wire with a cone of the same carbon, and, by dexterous manipulation, enveloped the diamond with electric flame. After a short interval, the diamond underwent a sort of ebullition, became disintegrated, softened, and was actual coke. (Comptes Rendus, June 14, 1847; An. de Chimie, tom. xI., p. 459).-On this experiment Prof. Faraday made the following observations. 1. As to the property possensed by certain substances to assume totally different forms without undergoing any chemical change. The Professor adverted to the case of sulphur, which becomes brittlo when suddenly cooled from its frst state of fusion, but is soft and pliable when similarly cooled from its second state of fusion.-2. As to the soxrce of heat employed. Professon Faraday dwelt on the beanty and power of the voltaic arc as a furnace, showing by experiment that diamond could be burned into carbonie acid gas by means of a curreat of oxygen gas directed on it when highly beated. The Professor gated that neither this beat nor any short of that of the vollaic battery, except that of the solar lens, was sufficient to convert diamond into coke. The fasion of rock crystal by a current of oxygen sent through an ether flame was noticed ; and it was shown that this powerful heat was inferior in intensity to that of the battery.-3. The condition of the diamond when thus converted into coke. It becomes absolutely lighter. The spec. gr. of ordinary diamond is 3368 ;-when changed into coke its spec. gr. is $\mathbf{2 \cdot 6 7 9}$. It loses its insulatiog power. Professor Faraday here alluded to some experiments by M. Karaten Archives des Sciences, 1847), proving that certain compound bodies were conductors or not according to their preparation. He stated that this was the onily case annlogons to carbon.-4. As to the philosophy of the change of the dinmond's atructure. Referring to M. Gassiot's demonstration that the heat is greatest at the positive pole of the battery, Professor Faraday suggested the possibility that the particles of diamond might, under the infuence of the intense heat, tend to form vapour having a sensible and assisting expansive force, and that in their axial position as regarded the enveloping discharge they might assume a state having relation to a dia. magnetic coudition. He requested to be understoud, however, as offering this idea merely as a philosophical conjecture. Finally, be referred to Graham's supposition, that the difference between diamond and coke might depend on their known difference of specific heat.-In reference to the above experiments of M. Jacquelain, on the conversion of diamond into coke, Mr. Nasmyth states, in a communication to the Mining Journal, that he "had long since discovered that coke was diamond, in as far as that coke is possessed of oue of the most uceful and remarkable properties of diamond in respect to its power of cutting glass-owing, doubtless, to the extreme hardness of its ultimate particles, or minute crystals of which a masa of coke is formed. We are apt to consider coke as a soft substance, because we can crush it, and pulverise it with facility; but if we examine into the actual hardness of the minute, plate-formed crystals, which compose a mass of that substance, we sball find that they are possessed of a most remarkable degree of hardness, and can cut giass with that clean-looking cut which is so pecaliar to the diatoond." He feels certain, that when the extreme diamond-like hardness of coke is made known, that the fact will be laid bold of, and tarned to good account as a most cheap zaterial for all griading purposes, such as required for many processes in the arts-to say nothing of its useful application to the sharpening of a razor, as a very superior strop powder; for which parpose, however, the coke must be reduced by evigation to the most minute and impalpable powder.
Dover Refuge Harbour.-This great national work is progressing with much spirit, and begins to show what it will be. The first portion, 800 feet of a massive sea-wall, has been contracted for by Measrs. Lee of Loudon; and the works are carried on under the superiatendence of their agent, Mr. Scott. The plan is that of Mr. James Walker, the eminent engineer; and the execution of the engineering department also devolves on him and his partner, Mr. Bargess. The works now extend 130 feet into the sea, and the curve to the eastward has been commenced. One diving.bell was lately put into requisition in the process of levelling the rocks for the foundation, and another will be speedily brought into use. Of the immense quantity of stone (8,500 tons) which has been landed here within
a fow months，nearly onc－half has already been put down．The blocks are niformly of large dimensions，some execeding 10 tons woight．

Sumderland Docks．－The exteasive works now in progress for the for－ mation of the new docks at Sunderland are proceeding in the most rapid and successful manner．The sea has been most effectively banked out of the tidal basin，and nearly the whole length of the large doak；and there is the fullest confidence that this gigantic nodertaking will be brought to a successful completion within the time fixed；and，what is still more un－ usual，there is a well－grounded expectation that it will be fiaished considerably within the estimated cost．The works begin to have a noble appearance，and when finished will be magnificent undertaking．A dock of this magnitude，gained from the sea within the range of the tides， is an enterprise now prored to be practicable，and a safe undertaking．

Blasting Rocks．一The Plywouth Times observes：＂The rast improvement effected in the mode of blasting limestone rock in this port，within the last 87 years，is almost surpassing belief．Last week，with a charge of 1 cwt．of powder，placed in a bole in the rock， 18 feet deop，no less than 1,000 tons of limestone rock were blasted at one blast，and that，too， without any accident occurring to the man oagaged in fring the rock．He wras six hours engaged in the operation，and was seven times polled up from the side of the hole to the top of the quarries，before the fire took effect，and this hage blast was made．＂

Opening of Railways．－The Chester and Holyhead Railway was，with the exception of 31 miles adjoining the Menai Straits，opened on Tuesday， Angast 1st．，throughont，for goods and passenger traffic．－The Leeds， Dewsbury，and Manchester Railway，lessening the diatance between the former and latter town 10 miles，was opaned for public traffic on the 4th of A aguat．－The opening of the Rouen and Dieppe line took place on Satur－ day，July 29．－The Cadtecary branch of the Caledonian Railray was opened for public traffic on Monday，August 7，thas completing the direct line between London，Perth，Dundee，Arbroath，and Montrose．The express train from Doodee arrlved at the Easton－square terminus in 15 hours，and from Arbroath in $15 \frac{1}{4}$ hours．

4 New Tura－Table has been invented by Mr．Turiff，of the Vulcan Foundry，Paialey．An ongine and tender，woighing 86 tons，placed on one of the turn－tables，can be torned by two men by means of two wheel－ pollegs，with comparative case，in about a minute aud a half，without any jar．The great advantage of this invention of Mr．Turiff＇s is，that with former turn－tables there were two frictions，while with this tahle there is only one ；it is relieved by a pewerful weight resting on the centre，which contains four large bolts，that lift the table from the side rails beneath． The machinery is very simple，composed of massive beams of iron，and can be worked by circular rollers，in cases of ewergency．The turn－table itself is 86 feet is diameter，weigha 25 tonf，and sustains 51 tons revolving weight．

Indurated Gypsum．－It is known that calcined gypsom，after being moistened with a solution of alum and again burnt，acquires much greater hardness and solidity．M．Kreating recommends for the same purpose a colation of 1 lb ．of boray in 9 lb ．of water，which is poured over the cal－ cined fragments of gypsum．Thoy are then kept at a strong red heat for sir bours，pround to a powder and worked．The offect is said to be still better if a pound of tartar and twice the quantity of water are added to the solution．－Lielig＇s Anmalen．

Suspension－bridge at Niagara Falls．－The Albany Journal atates that the foot－bridge at the Falls was to be ready for crossing on the 4 th of July：－＂1t consists of 16 cables；the namber of strands in each cable， 600；ultimate tension， 8,600 tons；capaolty of the bridge， 500 tons； number of strands in the ferry cable， 87 ；diameter of the cable，音ths of an inch；height of stone tower， 68 ft .1 in ；height of wood tower for ferry， 60 feet；base of tower， 20 equare feet；size at the top， 11 square feet ；span of the bridge， 800 feet；whole weight of the bridge， 650 tous； height from the water， 230 feet；depth of water under the bridge， 250 feet．This suspension bridge is the most sublime work of art on the contizent．It makes the head dizzy to look at it，and yet it is traversed Fith as much security as any other bridge of the same width．We were present while the workmen were engaged in hanging the pianks over the fearful chasm．It looked like a work of peril，but it was prosecuted with eptire safety．Not an accident has happened since the first cord was car－ ried across the river at the tail of a kite．It is impossible to give the reader a clear ides of the grandenr of the work．Imagine a foot－bridge 800 feet in leagtb，haog in the air，at the height of 230 feet，over a vast body of water rushipg through a narrow gorge at the rate of 30 mlles an hour．If you are below it，it looks like a strip of paper suspended by a tobweb．＂
Nature＇s Gas Works．－＂An immense volume of natural gas，sufficient for the supply of a city，was discorered a few days since，bear Detroit， Michigen，by the Mesers．Granger，while boring a 4 －inch shaft for water． At a depth of 70 feet they atruck a vein or cavity，from which issued a violent current of air，which threw up stones as large as hens＇egge， 10 or 16 feet higb，accompanied by a volome of water，rising 10 or 12 feet．On applying a light to the air，it barat foriously，the flame rising 20 feet．It is proposed to conduct tbis gas in pipes to Detroit，and light that city with in＂－New York Sun．［Very much like a romance．］

LIBT OP NEW PAYM2TL．

GRAKTED in ENGLAND TROM JסLT 20，TO AJGUET 22， 1848.

Sis Mouthe allowed for Burolment，milew ofliervoice enypromels

Chovalier Alezandre Edoaard le Molt，of Condelt－stroet，Middieser，for certan © In－
 other epplicalions of electricty．＂－Sealed July 20.
David Napier，and James Murdock Napler，of York－rond，Lambeth，onfinenen，be
 auring lantruments．＂－July 20.
Whiliam Thomas，of Cheapalde，London，merchant，for＂Improverienta in the mana theture of atays，book，and ahoes，aleo in fastening and connecting fabrics and garment．＂ smeture of

- July 26.
John Klag，foreman to Mosors．Sheara and Saos，Bankalde，and Eenry Mecthern． operative engiveer to the said Meara．Sheart and Bona，for＂Improrements la ex maters．＂－July 20.
Charles Hencock，of Brompton，Middienex，sentieman，for＂Improvementa tn sppare

John Griat，of the New North．roed，Middlesex，englineer，for a Improvemense to sor－ paces and Are－placen．＂一Juls 29 ．
James Robertion，of Great Howard－atreet，Liverpool，Lancushire，cooper，for alm provementa in the manufecture of caske and other woodea remecis，and in machinery for outing wood for those purposes．＂－July 29 ．
George Waiter Pratt，of the city of Rochenter，state of New York，In the Ualted gever of Americh，gentleman，for＂Improvemente in the manafacture of printing－lak＂ 29.

Rychard Abbey，of Blough，Buchingham，brewer，for＂Improrementa is promertag fermented and other liquide and matters in vessels．＂－July 29.
Edwerd Gribben Wilson，of Bury，Lancashire，Un－place worker，for＂cortala Improw－ ments in the construetion of tan drums or rollens used to the machinery for dramion spiraing，dowliag，twisting，and throwing cotton，wool，dill，Anx，and other abcous enib otances．＂－Auguti 1 ．
Duncan Mackinnife，of Goodman＇s Fleld，manuftecturer，for＂certala Improveroenta ke Jucquard machinery for Aguring fabrica and lianuea generally，and apparalus for trob misalon of denigns to anid Jecquard machinerg，parts of which are sppiticable to ploptop muical instrumenta，comporiog prinung typeli，and ot her like parpoees．＂（A combani cation．）－August 5 ．
Darid Newton，of Meccleabeld，Chester，merchant，for＂certula Improvementin to the appilcustion of glam and glased aurfices to anatical，arcbltectoral，and other admilar pas－ appicen．＂－August 7.
Samoel Thornton，of Blrmingham，merchant，and Jamen Edmard m＂Coanoll，of Wot verton，Buckinghambire，engiaeer，tor＂Improvements in stanm－anginet，fod to the meane of retarding englaed and carriages on rall ways，and in counectiog rallway eartiagee or wagon together；aleo improvementi in effecting＂communicetion betwera one per of a railway trala and another，by signals or otherwise．＂一Aaguat 7.
John Kedcalfe，of Little Bolton，Lincanter，machline maker，and Robert Eambelh，of the same place，mechanic，for＂certaln machanery or apparatus for preparing and aplo－ alig cotton and other fbrous subitances．＂－Auguat 8.
Mones Poole，of London，gentieman，for＂Improvementa in the manufectore of emen
od other almilir veasels of wood．＂（A communicution．）－Auguit 8 ． and other almilar veasels of wood．＂（A communication．）－August 8.
Samuel Leea，of the frm of Hannuh Leen and Sons，of Park－brdge，Lancester，trop－ manuffeturer，for＂certaln Improvements to the manuficture of malleable troe＂－ Auguet 8.
＂Jowhon Conch，of Earleston，Northumptonahire，egricuitural lmpiaceent mites，tor ＂Improvementi in eackbolders．＂一Augtit！ 10.
Whilam Thotun Benley，of Clerkenwell，philosophlesl Instrament．muber，mad Darh George Foater，of Cirkenwell，aforemuld，metal merchant，for＂certaln Improvemesta telegraphic communication，and in apparatus cannected therewith，parts of which tm－
provementh ere aleo appicible to the moving of other machlow and mechiners．＂－ provementh
Augaft 10.
 ments in the construction of certain parts of rallmay．＂－Auguat il．
John Varley，of Bury，Lancater，engineer，for＂certals Improvereent in atane gines．＂Angust 14.
James Eenderson，of Surrey Canal Dock，millwight，for＂Improvemente In machtwer） for cleanding and poliahing rice，pearl barley，and other graln and seed．＂－Anguat is

Joeeph Stmpeos，of Manchenter，civilenginger，and James Alired 8Mplon，of the tame place，engineer，for＂certain lmprovements in steam－engives．＂－August 14 ．
Edinn Thomas Truman，of the Haymarket，London，dentist，for an＂Improwed methed
 In the mouth．＂－August 15 ．
James Werrea，of Montague－terrace，Mile－end－roed，Mddlesex，genitivan，wad Wh．
 tleman，for＂Improvementi In the conatruction of bridsea，aqueduct，and roofirgom Augunt 15 ．
 produciaf ornamental eurfaces to paper and otaer subatances．＂－Anguet if．
Willam Gallown and John Galloway，of KnottMuI Iron．Works，Bulme，in a borough of Mancheater，and county of Lagcauhire，eofineers，for＂certhin Imgronetate in stemm－engines．＂－August 17.
Mosea Baym Picclotio，of Finsbary－mquare，London，merchank，for＂${ }^{4}$ mathod er Ee thods of puritying and decolorising certang gume．＂－A wgatt 17.

 in closing spiris and other cana or vessets．＂一August 21.

Iame Taylor，of Stanford Rivers，Eseex，gentleman，for ω Improvementa in propety and engraviag surfaces，alto in the construction of cyladers adapted for engriming the also in machinery for printing and orommentag surbices＂－Auguit 21.
Blchard Shaw，of Gold＇a Green，Wut Bromwich，In the county of 8tafrod，niliwezter Anishar，for＂dmprovements in the manufacture of iron ink tyre－baris，roapi－iter， square bars，and salbart，T－Irom，angie－1ron，and trough－iron．＂
John Bethell，of Parliament－freet，Westmlester，genteman，for＂Impronamete it preserving animal and regetable aubstances，and aleo tona，chall，and platec，fols decey．＂－Auguet 21.
Alertader Angu：Croll，of the Gat works，Tottenbam，for ${ }^{4}$ Improverente tas

THE NEW YORK

 PUBLIC LIBRARY
AETER, LEMAK AMO

 THLDEN ROUMOATION: views of the steam-cylinder and driving-hammer. The apparatus and machinery consist of the following parts :Firstly, the steam-boiler, A, similar to a locomotive-boiler, with steam-chest on the top. This boiler stands upon a platform B, It may be proper to ohserve, that notwithstanding the energetic blows which this maehine showers down on the heads of the piles, in consequence of these blows being given by so massive a hammer as 35 cwt ., and at the moderate velocity acquired by a fall of only No. 133-Yol. XL.-Octobea, 1848.

Fig. 3

'STEAM PILE-DRIVER.

(With an Engraving, Plate XII.)

Patented by Mr. Janes Nasmyte, and Manufactured by Messrs. Nagurth, Gaserily, and Co, of the Bridgewater Foundry, Patricraft, near Manchester.
Public works are acquiring such magnitude even in their details, ad their several parts are so numerous, that they are constantly gaking greater requirements on the resources of mechanical enineering. It has been a matter of dispute frequently whether a articular class of works belonged to the architect or the civil tgineer; and Professor Hosking goes the length of claiming the hole domain of civil engineering as belonging to architecture. thers may now come forward and claim many of these works as - province of mechanical enginoering. Thus, a atill greater indency to the separation of the professions of the architect and gineer is created. The tubular bridges over the Conway and
5 Menai, the High Level Bridge at Newcastle, iron and screw pile pthouses, and suspension-bridges, are more the production of e mechanical engineer than of the architect. As a specimen, we we in our August number an account of the ingenions patent icquard machine, invented by Mr. Roberts, for punching the tes of the tubular bridge at Conway, for the purpose of saving me and labour; and in our present number we publish the enfavings of another powerful machine, invented by Mr. James asmyth, for driving piles by the aid of steam, and which has been ed with great success in the construction of the High Level Fidge at Newcastle, the Docks at Plymouth, and other works of lagnitude. It is gratifying to see this mutual aid of civil and echanical engineering, for it is this combination of talent which beat calculated to elevate the character of both branches of the fofession, and to extend their application. Whatever mechani1 processes diminish the cost of production, whether of a railway of a pin, contribute to increased use ; and we look forward to a reat reduction in railway expenditure from the progress of imrovement, and consequently to an extension of the system under ircumstances where, from considerations of economy, its applicaIon is not now contemplated.
Any consideration of the great works of civil engineering, even a such a case as the Eddystone Lighthouse, will show how much epends on overcoming the mechanical obstacles which stand in the ray. Time is money, and money again often saves time; and a Lue attention to these points enables an engineer to execute his works cheaply and well. At the present time, a great deal depends epon the rapid and economical prosecution of works, and it becomes doubly important to call in the aid of mechanical science wherever, as in the cases already named, it promises to do the work more efficiently and more economically.
The merits of the steam pile-driver now before ns consist, On the first place, in the direct manner in which the elastic force of steam is employed as the agent by which the "monkey" (or block of iron which strikes the head of the pile) is lifted to the height requisite for that purpose. Secondly, in the very peculiar and original manner in which the pile itself is made to act as the only support for the active or blow-giving portion of the apparatus; by which arrangement, the entire dead weight of the apparatus in question is turned to most important account as a "persuader," to assist the pile in sinking into the ground when in the act of being driven: this dead weight also acting very importantly as an anti-recoil agent, so far as its entire weight (three tons) can accomplish that object.-Thirdly, in the peculiar manner in which the pile-driving part of the ayparatus is permitted to sink down along with the pile, and guide it in its descent, so as to remove all chance of the pile twisting, or in any respect swerving from the true position given to it at the commencement of the operation of driving.-Fourthly, in the peculiar manner in which a vast increased degree of energy is given to the blows of the monkey beyond that which is due to the height through which it falls.

The engraving exhibits an arrangement of the "Patent Steam Pile-Driver," for driving two piles in two continuous lines, without the necessity of a previously-existing gangway, the machine making its own way as it is moved forward. Fig. 1 is a side elevation; fg. 2 , a section on $a b$; fig. 3, front elevation; fig, 4 a plan, showing the engine and platform; fig. 5 , a plan of the timbers which carry the platform and saws ; and figs. 6 and 7, enlarged views of the steam-cylinder and driving-hammer.

The apparatus and machinery consist of the following parts :-
Firstly, the steam-boiler, A, similar to a locomotive-boiler, with steam-chest on the top. This boiler stands upon a platform B,
supported on iron wheels b, running on iron rails b^{1}, placed on balks of timber b^{3}, fixed on to the top of the piles as they are driven; and vertical guide-posts $\mathbf{C} \mathbf{C}$, with pulleys, cc, $c^{1} c^{1}$, on the top.
Secondly, a small steam-engine D, placed horizontally in the centre of the platform, with connecting-rod d, driving a crank d, and pinion d^{2}, on the crank-shaft, that takes into a cog-wheel e fixed on one end of a shaft E, with pinion e^{2} on the other end that takes into another cog-wheel f, fixed on the long shaft F, upon which are fixed two pinion-wheels f^{2}, f^{2}, that take into cogwheels $f^{2} f^{2}$, fixed on the axles of two spiral-fluted barrels $f^{3} f^{3}$, upon which are coiled the chains $f^{4} f^{4}$, for lifting the steam-pile, driving-cylinder, and hammer. Upon the ends of the shaft D, are two smaller barrels G, for the ropes or chains g^{1} to lift the piles into their places.

Thirdly, the pile-driving apparatus, consisting of a cylinder H , with its piston-rod passing out at the bottom, and directly attached to a block of iron or monkey I (weighing about 35 cwt .), placed inside of a square wrought-iron case J, which acts as a guide to the hammer in its rising or falling, and rests upon the shoulder of the pile K at $j j$; and at the same time, grasps the neck and shoulders of the pile with great tightness, so that it cannot twist or swerve from the position which the vertical guide-posts C give to the case J, and which is clamped to the posts by the sliding-clamps $j^{1} j^{1}$. L, L, are steam-pipes from the top of the boiler A, to the pile-driving cylinder H , jointed together by swivel joints of cast-iron.
Fourthly, horizontal saws M, M, fixed on to the underside of the platform, for cutting off, to a level surface, the heads of the piles as they are driven. The saws are worked by the bevel gearing m, fixed on to the middle shaft, E.

With respect to the action of this machine, in order to describe it with clearness, we shall suppose that the pile-driving part of the apparatus seen in fig. 1 , and enlarged view figs. 6 and 7 , marked $\mathrm{H}, \mathrm{I}, \mathrm{J}$, has been wound up by the small engine D , and the gearing F, and let down upon the shoulders of the pile K, and the steam admitted under the piston in the cylinder H , by means of the jointed wrought-iron pipes L, L, L, which serve to convey the steam from the boiler A to the cylinder \mathbf{H}, at whatsoever height the cylinder may be at in respect to the boiler. The steam being let in under the piston, the steam-hammer action is commenced, and the 35-cwt. block I, is made to give 75 to 80 blows per minute with a fall of 3 feet, upon the head of the pile, with such earnest energy as to cause the pile to sink into the soil at an average rate of from 5 to 10 feet per minute (according to the nature of the soil). As each blow is given, the apparatus $\mathrm{H}, \mathrm{I}, \mathrm{J}$, follows down along with the pile, as the shoulders of the pile are the only means of support to H, I, J, and they are therefore free to slide down the face of the vertical pole C, the instant a blow is given to the pile-head and drives it down; and this action is so rapid, that the eye can scarcely appreciate the interval. The jointed steam-pipe at the same time accomodates itself to every new position which the sinking pile causes the driving-apparatus to assume. For the purpose of opening and closing the steam-valve, there is a small inclined plane on the hammer-block, inside the case, which coming in contact with the end of a small lever passing through an opening in the side of the case J, shown in figs. 6 and 7 , canses the valve in the valve-box (cast on the steam-cylinder H) to open and shut. When the steam has raised the piston to its proper height, the steam-valve, by the action of this lever, is closed, and an outlet-valve opened, which allows the steam to blow out into the air and the hammer-block to descend.

As soon as the pile is driven to the required depth, the apparatus is again wound up by the small engine \bar{D}; and the next following pile K^{\prime}, which may have been in the mean time hoisted by the engine D and gearing G , ready for driving (as seen in fig. 1), is then "pitched" or placed in its proper situation. The locomotive gear is then put in motion, and the apparatus lowered down on to the shoulders of the pile in question. The hoisting-chain f^{\prime}, is then let free, so that the apparatus may be free to rest on the shoulders of the pile, and follow down along with it as before. The steam is now again let into the cylinder \mathbf{H}, and the driving proceeded with as before. The ease and dispatch with which the entire process is proceed with requires to be seen to be duly appreciated. Piles have been driven by this machine into descriptions of soils and under circumstancen which would have put all the attempts of the ordinary pile-driving machines at utter defiance.

It may be proper to observe, that notwithstanding the energetic blows which this maehine showers down on the heads of the piles, in consequence of these blows being given by so massive a hammer as 35 cwt ., and at the moderate velocity acquired by a fall of only

3 feet, they do not the slightest damage to the pile-head: so much is this the case, that the pile-heads have actually a neater appearance afler being driven than before.

In respect to the means employed for giving to the blow of the monkey a greater degree of energy than such as would be due to its fall through 3 feet, this object is accomplished by having the top of the cylinder H made air-tight, and by having a set of openings at h. The instant the piston passes these openings in its upward action, all further motion in that direction is terminated by the compression of the air then confined in the space between the top of the piston and under-side of the cylinder cover; which compressed air, on recoiling, adds to the force of the blow all the energy it would have acquired by falling from the height to which the monkey would have been carried by the momentum given to it in the upward direction by the lifting action of the steam acting on the under-side of the piston.
We have much pleasure in appending to our description a copy of a certificate by Mr. Stephenson.
"Nasmyth's Steam Pile-Driving Machine has for some time past been employed in piling the foundations of the High Level Bridge at Newcastle-upon-Tyne, and at the Viaduct over the river Tweed, near Berwick. Its operation has been triumphantly successful. Piles have been driven with great economy and remarkable dispatch, where the ordinary methods would have entirely failed.
" I consider this machine to be one of the most valuable and important auxiliaries which have recently been invented for the construction of engineering works.

Robert Stephengon.

> 94, Great George-street, Westminster, May $2,1848 . "$

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXVI.

" I mast have liberty
Withal, an large a charter as the winds, To blow on whom I please."

I. The lately-opened Catholic Cathedral of St. George's does nut say very much for Mr. Pugin's artistic talent and taste. Satisfactory as are many of the separate parts and ornaments when considered merely by themselves, just as articles of furniture are looked at and examined in a show-room where they are exposed for sale,-they are there brought together without any regard to artistic keeping and effect. The consequence of which is, they do not serve to set each other off to advantage; but, on the contrary, there is much that is quite at variance with all the rest. We see a collection of studies of various ornamental details, and other mere matírial of design, but we miss a well-studied and consistent whole. The most opposite and conficting sorts of architectural character are brought into contact with each other. Barn and ball-room are strangely mixed-up together. In the chancel, and the two chapels at that end of the church, decoration is not only carried to such extent as to cause all the rest to look unusually cold and bare, but fails to produce the amount of richness aimed at. When added up, the total does not answer to the value of the several items as taken by themselves.
II. In architecture, incapacity for producing new ideas shelters itself under the plausible pretence of a reverential regard for old ones. Because excellent ideas have been produced before our time, we are told that we have no occasion for any of our own. Aught that partakes of innovation is set down as both unorthodox and dangerous; which is assuredly most comfortable doctrine-highly convenient, and therefore comfortable, because merely to copy is easy and safe; whereas, to attempt to emulate is a difficult as well as a doubtful matter. We do well, therefore, to protest against inno-vation-that is, for ourselves, since those whom we profess to look up to and admire, were in their day very gross innovators: by gross, I mean wholesale innovators. The history of the art shows a series of innovations from first to last ; that "last "-finale and conclusion of it as a creative art, seems to have been already reached; and all that is now left for us is merely to repeat, perchance to mimic, what has been done before. Whatever may be the case with the twentieth, the nineteenth century will not shine in the history of architecture ; or if it is to do so, it must now set about it in earnest, for half its time is already gone. Bad or good, the Elizabethan period had a distinct architectural character of its own; whereas,
the present Victorian one has none, but is "everything by turms" of most chamelion quality, but without any distinct, self-acquired, character. The present age is content with merely making use of those hoards of art which its more industrious predecessors wrought out and accumulated. Satiafied with being able to live upon the interest, we do not seek to improve the capital. In fact, to such a pass has architecture been brought, that further progress for it in any direction is impossible, so long as we persist in our present perverse views of it-of its nature and powers as an fine art. No matter what style we take up, we treat and are expected to treat it literally-to adhere to it servilely, instead of being allowed to infuse any freah ideas into it, or even, by varying its tournure, to adapt it to greatly-altered purposes and occasione. Provided the separate features and details be but correctly copied from those in former buildings, we are quite satisfied, though the structure so compounded be full of incongruities as whole, prosaic and unartistic.
III. One consequence of the present rage for the merest copyiam is, that we ourselves produce no structures that will deserve to be studied hereafter as original models and architectural records of the age in which they were erected. Even our most monumental edifices will not be monuments of our own time, - of our own ideas moulding and organising the fabrics we rear. Future antiquaries will be greatly puzzled some centuries hence, to determine dstes from the styles which buildings exhibit. At any rate, they will set down this nineteenth century as that in which architectural talent displayed itself chiefly in mimiory and masquerade. This is what is not particularly pleasant to contemplate, though it is what we have to thank the present race of antiquaries for, and others whose opinions and infuence as employers control the free-agency of architects, who, whatever they might have done by timely resistance to such domineering dictation, can hardly help themselves now. They have suffered their necks to be put into the yoke; so, however hard it may be to bear, they must now endure it with what pstience they can. All that we can look forward to, is to its being shaken off by some bold and independent spirit, gifted not with genius only, but with the opportunity of manifesting it decidedly, however it may run counter to the minikin theory and doctrine of established rules. But as miracles are not to be looked for and calculated upon like the return of cometa, we cannot with any sort of reason look forward to such event. Nay, instead of being looked forward to with anxious hope, even the possibility of its occurring is contemplated with real apprehension by many, who accordingly deprecate most earnestly what they are pleased to call "tampering" with existing styles. Incapable of forming a valid judgment, they take refuge in prejudice. By their croaking cry of "rash"_" absurd "-"extravagant"-"chimerical !"they endeavour to intimidate; and by denouncing before-hand all aim at originality, and every deviation from ordinary custom and rule, seek to insure the accomplishment of their ill-omened predictions. The merely aiming at it does not insure success in achieving originality; but if, instead of being aimed at, it is sedulously shunned, it will never be achieved by any one ; and were there no possibility of failing, there would be no particular honour gained by succeeding. Many act most discreetly in not attempting to signalise themselves and their works at all by any unborrowed ideso-by which are to be understood not mere fancies for which they can assign no sufficient reason even to themselves, much less to any one else, but ideas that have germinated, have been meditated upon and matured, in their own minds. In not attempting or affecting to do what they are conscious lies far beyond their power of reach, such persons manifest their prudence ; it is, on the contrary, only dogmatical presumption, when measuring the powers and abilities of others by their own, they pronounce that which is to themselves impossible to be equally impossible to every one and all. Rather ought they, if at all sincere in the regard they profess for the interests of architecture and its advancement, to welcome the doctrine of its being possible to enlarge the present boundaries of the art almost indefinitely. How far he as an individual can contribute to such progress and amplification, must be left to each individual to decide for himself. Those who feel no impulse from within, may be left to jog on as they can recundum artem-that is, ploddingly and mechanically : but they have no right to prescribe the same limits to others. As matters are managed at present, a prohibition is actually laid upon original genius, it being demanded of it that it should forego its very nature, and exercise itsolf only in the same track of ideas as has been previously trodden: in other words, it must conform to routine. A good deal has been argued about the Emancipation of Woman; I wish somebody besides myself, and of far greater authority and influence, would staud up boldly for the Emancipation of the Architect, who is at
preent fettered by prejudices-in reality the merest cobwebe, but twisted together till they become as bulky as cables. If my views and opinions are erroneous, let them be opposed; yet no one it seems cares either to oppose or to second me. Well! if I am not flattered, even by contradiction, neither am 1 discouraged. Happy are thowe who expect nothing, for they ahall not be disappointed; and that state of beatitude is mine.
II. As it is now too late to protest against the barbarism of etripping the Quadrant of its colonnades-and they have assuredly contributed not a little to the architectural character of Regentstreet, the Quadrant being by far the most scenic part of the whole line,--let us hope that the columns themselves will be preserved, that is, re-erected, so as to form some ornamental structure elsewhere, - on some spot where they will not give any umbrage to shops and shop-keepers-and the latter show themselves to be somewhat unreasonable, because it was they who came to the colonnades, and nos the colonnades to them. Their removal would be less matter of regret, were we but assured that the columns would now be so applied, that ample amends would be made to us for what we shall lose in Regent-street. If no better and more utilitarian purpose can be suggented for them, they might be employed to form an open screen of two lines of columna, inclosing, the conrt-yard in front of the British Museum. Sir Robert Smirke's building itself would gain materially thereby, inasmuch as it would be seen from the street very picturesquely through the range of Doric columns in front, which being, besides, on a lesser scale, would serve to give greater importance to the Ionic colonnades behind. To the very excellent suggestion here volunteered, it will be objected-and objections are always as cheap as suggeations themselves-that the Quadrant columns are only Roman-Doric, while the façade of the Museum is pure Greek-Ionic. That ultra-Grecianism is affected for it, is not to be denied; but there is even now a great deal in the general design that is anything but pure Greek in physiognomy. Feither the wings, with their homely and ordinary house look, nor the two little bits between them and the main building, would be able to reproach the Quadrant columns with being too undignified and unclassical to bear them company. Still, one thing may be confidently predicted: I therefore prophecy that my idea will not be adopted, nor even so much as taken into consideration. Happy the prophet whose predictions are sure to be verified, and such state of beatitude, I repeat, is mine.

THE NATIONAL GALLERY.

Whatever general truth there may be in the paragraph which appeared in last nonth's Art-Journal, informing us that the present National Gallery is to undergo extensive alteration by Mr. Barry, its correctness as to particulars may be questioned. What seems to vouch for such piece of intelligence being more than a mere vague, unauthorised report, is the express statement of the sum to be expended-viz. $£ 50,000$; to which the architect is to be limited. And for that the entire façade is to be altered, and another story added to the building. How the latter can be accomplished without destroying the lantern lights in all the rooms now constituting the upper-floor, puzzles both ourselves and others to conceive. There appears to be no other alternative or mode of alteration in that case, than that of lighting the present rooms from their sides, or rather their two ends, in the front and back of the building; which would hardly be any improvement as far as they are concerned, nor perhaps much, if any at all; to the exterior.

It has all along been the fashion-we can call it nothing else-to decry and abuse the National Gallery, more especially its facade, as if that were not merely the chief, but the sole disfigurement of Trafalgar-square,-as if St. Martin's Church, and the other buildings on the east and west sides of the "Square," were absolute paragons of architectural taste and excellence.' Even those who affect excessive admiration for the "Church"" affect to be scandalised at Wilkins's facade of the "Gallery." Ask them, why 9 and they soar upwards-fly into a towering passion,-and from that altitude, look down upon you with scorn most supreme. Even that lump of architectural cockneyism and dulness, the "College of Physicians and Union Club-house," if it does not obtain admiration, at least escapes censure, which is levelled exclusively against that scape-goat of Trafalgar-square, the National Gallery. However, the latter is to become a "Deformed Transformed; and poor st. Martin will need the whole of his cloak to spread over and shelter the insignificance of his Church.

As to one material point connected with the purposed alteration we are left in entire doubt, not being informed whether the whole of the additional story is to be appropriated to the "Gallery," or the portion of it at the east-end of the plan, bestowed upon the Royal Academy.

Whatever may be done to it, the building can never, in our opinion, be rendered adequate to the now greatly-increased, and henceforth likely to become still greater, requirements for the national collection of pictures, unless the whole of it be given up to the "Gallery," and the Academy turned out to provide for itself elsewhere. For exhibition rooms, the Academy needs only longitudinal extent of plan at the rear of a very moderate-sized front towards the street, for the walls being invariably covered from top to bottom with pictures, the rooms themselves might be of the very plainest description,-both in construction and appearance not at all superior to ordinary show-rooms, auctionrooms, and similar places. Therefore, if the space now required for the "Gallery" demands it, we should say, turn the Academy adrift to shift for itself. It does not throw open its doors gratuitously to the public: why then should it expect to be in any way supported by the public, - r, what is just the same thing, by government? At any rate, there is no necessity for the Academy's continuing to occupy so considerable a portion as it does of the building in Trafalgar-square, now that the whole of it is required for the national collection of pictures.

The paragraph in the Art-Journal does not speak at all doubtingly, as of rumour that requires confirmation; therefore, unless it should be contradicted, we may presume that there really exists a definite intention of enlarging and otherwise altering Wilkins's edifice; and that, consequently, government do not entertain any idea of erecting a new National Gallery, as has been talked of by many, and by some fully expected. There have been various rumours on the subject, one of them being that a structure for the pupose was to be built upon the inclosed area in Leicester-square. In what is now stated, there is far more of probability and likelihood, although the Art-Journal speaks only upon a "we understand." Let it be based upon what it may, that "understanding" assumes some degree of shape and colour, several particulars being distinctly touched upon. Mr. Barry's design has been "submitted to the proper authorities," and not only approved of, but, as it would seem, actually determined upon before the public were aware that anything of the kind was in contemplation. It is not, indeed, very easy to reconcile this with what is said in another page of the same publication, where we are told that Mr. Pennethorne being directed to examine the lower rooms of the present Gallery, with a view to the Vernon Collection being deposited there, reported their total unfitness for such purpose, and recommended that a plain temporary building, calculated to last about a dozen years, should be erected, and that in the interim parliament should make an annual grant of from $£ 15,000$ to $£ 80,000$ for a permanent edifice. One tale contradicts the other : either Mr. Barry's design, or Mr. Pennethorne's suggestion, is thrown out. If there is to be a new building in some other situation, the present Gallery will remain untouched; and vice versi, if the latter is to be greatly enlarged, and to have $£ 50,000$ expended upon it, another structure will not be erected. Between the two schemes lies doubt : error there is as to one of them, and error there may be as to both. Still, something appears to be in agitation or contemplation; therefore, it is not at all amiss that public attention should be directed to it at an early stage of proceedings.

Most may be of opinion, and some are or have been in full expectation, that let be done whatever might-whether a new National Gallery is to be built, or the present building enlarged, the work would, like the "Houses of Parliament," be made the subject of competition. The occasion itself is a public one, and of a kind to exercise talent in no ordinary degree; a structure for the purpose being something altogether sui generis. Of almust every other kind of buildings the examples and instances are so numerous, that general conventional ideas may be taken from them; but with respect to licture Galleries the case is quite different. For them there are no models; neither have any studies been provided, or aught of any moment on the subject been written and published. Some of the most celebrated public collections of pictures in Europe are in buildings which, besides being tasteless or in exceedingly bad taste themselves, are so badly arranged and devoid of all contrivance, that they do not seem to have ever been intended for the purpose to which they are applied. Besides accommodation with regard to actual apace, effective lighting the rooms, and other obvious matters of that kind, the providing for a judicious arrangement of the pictures is
what requires considerable study and foresight. In temporary exhibitions, pictures must be hung up as well as they can be. The disposing them on the walls is of necessity a work of such hurry, that it is little to be wondered at if it is frequently attended with awkward mistakes, such as putting a good painting nearly out of sight, and an inferior one just upon the line. Even if it be detected, there is no time for correcting the error, because to do so might render it necessary to alter the situations of a score of other pictures.
In a permanent gallery, on the contrary, more especially one claiming to be considered a public museum of art, where nothing it is to presumed, is admitted but what is worthy of being studied -at least, of being noticed as a work of art,-the utmost attention ought to be given before-hand to what is required by the collection itself. Should this last be already fully formed, to provide properly for it becomes a comparatively easy task; whereas, for one that is increasing, regard should be had to future growth. When Mr. Wilkine-or rather, perhaps, those who employed himtook measure of it, our national collection was merely in its infancy. Thanks to Mr. Vernon, the child has nearly all at once started up into a tall stripling,-has quite outgrown his former "fit," which suit suits him no longer; so Mr. Barry is now it seems to enlarge it, and convert it as well as he can into a becoming toga virilis. If he can do so without reclaiming from the Academy the piece of stuff they have got possession of, he must have far more talent in point of contrivance than most of his professional brethren.

After all, we may possibly have been put quite on a wrong scent. Should which turn out to be the case, all we can say is, that the mistake does not lie at our door. We leave those from whom we got it to trace out the author of it; nor should we be greatly surprised to find it traced home-if mistake it really beto that confounded, universal mischief-maker, Mr. Nobody!

COLLISION OF TRAINS.-No. II

In our last paper (p. 197), we considered the law and amount of collision in a train of carriages of equal weights, and provided with a single engine in front. We now propose to examine the effect of an engine behind, the other circumstances of the problem remaining the same.
As a first and introductory example, let us suppose a single carriage, weight 4 tons, having a pair of buffers in front, with a foot play to each, and each with an extreme strength of 4 tons (the law of resistance of the buffers being assumed to vary as their comprescion), to impinge on a fixed obstacle with a velocity of 60 feet per second. Let us now determine how much of this velocity will be destroyed by the time the buffers have ceased to act.

Let m be the mass of the carriage; p, the pressure on the head of either buffer when it is compressed to an extent x; v, the velocity, in seconds, of the carriage;-then, the mass of the huffer being neglected as small in comparison with the mass of the carriage,

$$
m v \frac{d v}{d x}=-2 p
$$

Now, 4 tons is the value of p when $x=1$; and since p has been assumed to vary as x

$$
p=4 x ; \quad \therefore m v \frac{d v}{d x}=-8 x ; \quad \therefore m v^{2}=c-8 x^{2} .
$$

If the accelerating force of gravity be taken at 32 feet per second,

$$
\begin{gathered}
m=\frac{4}{32}=\frac{1}{8} ; \quad v^{2}=c-8 x^{2} ; \quad v^{2}=8 c-64 x^{2} . \\
\text { When } x=0, v=60 ; \quad . \cdot 8 c=3600 .
\end{gathered}
$$

When $x=1$, the buffers cease to act, and $v^{2}=3600-64$; or, $v=59 \frac{1}{2}$ nearly; consequently, only half-a-foot of velocity is destroyed.
Let us next consider the case of a train of n carriages, each provided with a pair of buffers before and behind; and with an engine, weight r tons, attached to the last carriage; and let us suppose this train to impinge on a fixed obstacle at the rate of V feet per second; and from these data seek approximately the amount of velocity destroyed in the rearward engine by the time all the buffers are used up.
In order to make the problem general, we will assume the weight of the carriages each $=\omega$, and the extreme strength of the buffers μh tons; also their extreme play h feet. By the time
the engine behind has moved forward a space a, after collision has commenced, let $9 p$ be the preasure on the buffers of the rearward
engine. We shall now show that p is always lese than ${ }_{n^{\prime}}$, where
n^{\prime} is the number of pairs of buffers, and P the pressure on any buffer compressed to an extent x. For let $x_{1}, x_{g}, x_{j}, \& c_{0}$, be the extent to which the bufers are simultaneously compressed, reckoning from the carriage which first sustains the shock; $\mu S_{\text {, }}$, $\mu x_{\mathrm{g}}, \mu x_{s}, \& c_{\text {., }}$ the pressures of the buffer-heads corresponding to the compressions x_{1}, x_{2}, x_{3}, scc. Now we have shown in our last paper that the pressures of the buffers, and therefore x_{1}, x_{m}, x_{n}, \&c., decrease as we recede from the end of the train nearest collision.

$$
\therefore x_{1} \text { is }>x_{2} ; x_{3} \text { is }>x_{3} ; \quad \& c . \text { is }>\& \mathrm{cc} .
$$

$$
\begin{gathered}
p=\mu x_{n^{\prime}} ; p \text { is }<\mu x_{n^{\prime}-1} ; p \text { is }<\mu \alpha_{n^{\prime}-2} ; \& c . \text { is }<\& e c . \\
\therefore n^{\prime} p \text { is }<\mu\left(x_{n^{\prime}}+x_{n^{\prime}-1}+8 c .\right) \text { is }<\mu x \text { is }<P \text {; } \\
\therefore p \text { is }<\frac{P}{n^{\prime} .} \\
\therefore \int_{n^{\prime} h}^{0} p d x \text { is }<\int_{n^{\prime} h}^{0} P_{n^{\prime}} d x \text { is }<\int_{n^{\prime} h}^{0} \frac{\mu x d x}{n^{\prime}} \text { is }<\frac{\mu n^{\prime} h^{3}}{q} .
\end{gathered}
$$

Therefore, if v be the velocity of the rearward engine, by the time the buffers are all used up,

$$
\frac{r}{3 \Omega}\left(V^{2}-v^{2}\right) \text { is }<9 \mu n^{\prime} h^{2} .
$$

As an example, let $h=1$, as before; $n=19 ; \therefore n^{\prime}=\mathbf{4 0}$ (including buffers of engines before and behind) ; $r=20 ; \mathrm{V}=60$; $\mu=4$.

$$
\therefore \mathrm{V}^{2}-v^{2} \text { is }<\frac{92}{90} \times 380 \text { is }<32 \times 16 \quad \text { is }<612 .
$$

If $\mathrm{V}=60, \therefore \mathrm{n}^{2}$ is >3088; \therefore vis >55. Or, the velocity of the rearward engine has been diminished by leas than 5 feet a second.
If V had been put $=30$, which is equivalent to about 90 milew an hour, still v would have had a value of 90 feet a cecond, or twelve miles an hour. In either case, it is clear that the shock of the engine behind would have been most destructive-in the first case frightfully so.
To recapitulate the results of our investigation, it appears, first, that when a train with a single engine is violently checked, the first carriage will sustain the greatest damage, and the effect of the buffers will be to increase the number of blows on the first and succeeding carriages, but to diminish their intensity. Secondly that when an engine is attached behind ; the last carriage after all the buffers are used up-having first to sustain the shock of the rearward engine proceeding with a diminished but atill considerable velocity, if the original velocity of the train had been great, will probably be the most seriously injured of all the carriages. A double shock will in this case have passed along the train-st first, by the sudden stoppage of the first carriages before all the buffers are used up; and then from the blow from the rearward engine after all the buffers are used up.
Since writing the former paper on this subject, we have seen a model of a break, by Mr. Bishop, which by an ingenious and simple contrivance is capable of being applied to all the carriages simultaneously, and almost instantaneously. We earnestly recommend the adoption of some such method of suddenly occasioning a powerful retarding force, as a most efficient means of avoiding casualties and coroners' inquests.
J. H. R.

NOTES ON ENGINEERING.-No. XI.
By Homerbaay Cox, B.A.

The Strength of Hungerford Bridge.

The security of a Suspension Bridge erected in the very centre of the metropolis, and liable to sustain the weight of a very large number of persons, is a subject possessing a scientific interest commensurate with its practical importance. The moment of the question has been greatly increased by two independent circum-stances-first, that it has been the subject of serious doubt and scientific discussion; and secondly, that the traffic.of the bridge has recently received an important accession by the opening of a railway terminus in its immediate vicinity.
There are some parts of the theory of suspension bridges exceedingly complicated and difficult, and others perfectly nimple. Among
the latter is the estimation of the statical strain to which a chain is subfected when its weight and all its dimensions are known. This particular branch of the question may be set at rest without much difficulty. The object of the present paper is to do this by methods distinct from those which have been adopted in the previous discussions of the question.

Sir Huward Douglas, who first publicly moved the subject of the sufficiency of Hungerford Bridge, has ably calculated the strength of the chains, on the assumption that the form of them is the "common catenary :" this method, the most scientific and exact of any, involves however considerable mathematical skill in its application. The mode about to be employed may be readily used in general practice, as it does not require a knowledge of mathematics; and the agreement of its result with that obtained by the process referred to, tends to their mutual confirmation.
In suspension bridges, the central deflection is always small compared with the span between the points of suspension. It follows that the curvature of the chain is very small; and whether it be considered a catenary, a parabola, or even the arc of a circle, the deviation from the real form will not be considerable. It is very usual, for the sake of simplicity, to assume the curve to be a parabola, and that assumption will be here adopted after a few remarks tending to prove its accuracy.

If the horizontal distribution of the weight of the chain and its load were uniform, the curve would be exactly a parabola, as may be easily ascertained by reference to any standard treatise on mechanics which refers to the subject. Now, when the bridge is crowded, the load on the platform is uniformly distributed horizontally. This is also the case with the weights of the platform and the parapet, which are considerable. The only mass not so distributed is that of the chains themselves, of which the links are horizontal at the centre, and inclined more and more up to the points of suspension. But practically this inclination is never large; for instance, in Hungerford Bridge at the points of suspencion, as will be presently shown, the tangent of the angle of inclination is about $\frac{s}{4}$. This gives the cosine of the angle less than if; or 18 feet measured along the chain there, nearly corresponds with 17 feet measured horizontally. This shows that the hypothesis of horizontal distribution, even for the chain alone, does not involve any considerable error ; and when the additional effect of the mass of the load and platform, which is really so distributed, is taken with it the deviation from the truth must be inconsiderable.
On this assumption, then, the vertical line through the centre of gravity of half the chain and its load is situated midway between the centre of the chain and the extremity of the platform; or the horisontal distance of this centre of gravity from the abutment is equal to one-fourth the span. Therefore, the moment about the point of suspension of the weight of half the chain and load, is the product of that weight and one-fourth the span.

At the centre of the chain the tension is horizontal : its vertical distance below the point of suspension is equal to the deflection of the chain. Therefore, the moment of this tension about the point of suspension is the product of the tension and the deflection.

The moments just determined are equal, the total effect to turn the half-chain about the point of suspension being produced by the weight, and this effect being resisted by the effect of the horizontal tension. (The platform not being rigid, contributes nothing to the ultimate support of the load.) Also, in Hungerford Suspension Bridge, the deffection is 50 feet, and the quarter-span 169 feet. Cousequently,

Horizontal tension $\times 50=$ weight of half-span $\times 169$.
Hence the weight of the half-span is sot, or very nearly five-seventeenths of the tension at the centre of the chain.

On the authority of Mr. Cowper, who is believed to have obtained authentic and accurate information, it is stated, in Part 93 of this Journal (June, 1845), that the total sectional area of the chains at their centre is $\mathbf{2 9 6}$ square inches. The Bridge is supported by four chains, two on each side of the platform, and the above is the sum of the sectional area of all four together. The horizontal tension is supposed to be uniformly distributed over these 296 inches.

Wrought-iron bars become sensibly stretched and impaired when subject to a tension of 17 tons per square inch. They will not bear that strain permauently; and in practice it is not considered safe to subject them to a greater tensile force than 9 tons per square inch. Taking the latter measure, the greatest horizontal tension which thie four chains together can safely bear is $296 \times 9=$ 2664 tons; and the greatest weight of the half-span must, by what has already been said, be sif ths of this, or very nearly 788 tuns. Consequently, for the whole-span,

This is, in fact, nearly the load to which the bridge is actually liable to be subjected. The weight of the chains (715 tons) added to that of the platform, parapet, rods, 8 cc ., and a crowd covering the platform with a weight of 100 lb . to the square foot, given, according to Mr. Cowper, the maximum load at about fifteen hundred tons. We come to the conclusion, then, that when the bridge has its full load, the statical tension at its centre is nine tons to the square inch.
The following method was adopted to test the accuracy of the hypothesis on which this conclusion is founded. By a known principle which applies to catenaries of every form, the tangents at any two points of the curve meet in the vertical line through the centre of gravity of the intervening portion of the chain. Consequently, if the assumption be true that the vertical through the centre of gravity of the half-chain bisects the half-span, the tangent at the point of suspension ought, if produced, to meet the platform midway between its centre and extremity. The observation of this fact would be a crucial test of the above conalusions. This test was satisfactorily performed in the following manner. The inclination of the chain at its summit was observed with a telescope from various positions on the Bridge, and that position was noted in which the inclination of the chain at its highest point coincided with the axis of the telescope. That position of the observer's eye for which one end of the highest link covered the link, was of course in the line of that link produced. By these means (applied for the sake of mutual confirmation to the points of suspension at both towers), it was ascertained that the centre of gravity of each half-chain was about six feet nearer the end, than the centre, of the platform. The advantage of this method of observation was, that it did not require particular accuracy: an error of 10 or even 90 feet would not have made a considerable difference in the result, while the errors of observation were certainly far within those limits.

It is important to observe, that if the Bridge were loaded with its full weight, the actual position of the centre of gravity would coincide with that above assumed, even more closely than it did at the time of the observation.
To ascertain the tension at the pointe of suspension, we have the following rule, applicable to catenaries of every form. Add the squares of the horizontal tension and of the weight on the half-span: the square root of this sum is the tension at the summits of the chain-which, therefore, in the case before us, is

$$
=\sqrt{ }\left\{(9664)^{2}+(778)^{2}\right\} \text { tons. }
$$

After obtaining this square root, divide it by 9 , and the resalt is 308, for the number of square inches over which the tension at the summit must be distributed if the tension be 9 tons per square inch. The actual sectional area of the chain at the points in question is very near this-namely, 812 square inches.

In the above caculations, the structure has been supposed to be in a state of equilibrium. The vibrations of the several parts of the shain, arising from the rapid motion of traffic, or the action of the wind, would certainly increase the strains greatly, though no means of calculating that increase have been yet ascertained. The foregoing method shows, with all the precision requisite for practical purposes, that both at the centre and extremities of the chain the tension of the metal is 9 tons per square inch, when the bridge is fully loaded. The fairest way of stating the conclusion from these investigations appears to be this:-If the permanent tenacity of the metal be so great that it may be safely subjected to a greater strain than 9 tons per square inch, then the excess is a provision against accidental disturbances. If, however, 9 tons per square inch be the utmost strain which the metal will safely bear, no margin is left for security against the effecte of rapid motion.

THE WATER-GAS.

Some time has elapsed since a patent was obtained for a process of making illuminating gas from water; but the plan was not carried into practical effect, and dropped out of public notice. The invention has once more been brought before the public, and in a manner calculated to attract attention, by being made the subject of lectures delivered by Mr. Hyan at the Polytechnic Institution. The process itself is a very curious one; and though the expense may probably render it a less economical mode of supplying gas than coals, where they are to be purchased at a cheap rate, yet, in many parts of the country, it is probable that the water-gas may be the cheaper of the two ; and as its purity and ilhuminating power exceed thome of the carburetted hydrogen
obtained from coals, it is well that the mode of making it should be generally known.
To those who are unacquainted with the chemical composition of water, it may seem strange that water should be rendered the source of fire ; but to most of our readers it must be well known that water is composed of hydrogen, the most inflammable of bodies, and of oxygen, which, when in the form of gas, is the most active supporter of combustion. A plan of obtaining hydrogen gas from water, by passing steam through a hot tube containing iron has been long known. The rationale of that process is, that the steam when in contact with heated iron becomes decomposed, the oxygen uniting with the iron to form an oxide of that metal, and the hydrogen is liberated in the form of gas. This, indeed, is the best mode of obtaining hydrogen gas in a state of purity; but for the purpose of illumination, such gas is of no value. The flame, though emitting great heat, is scarcely visible. The illuminating power of coal-gas depends on the carbon it contains; and the more carbon is contained in carburetted hydrogem, the greater is its illuminating power. It is. owing to the great proportion of carbon in turpentine, that it affords such a brilliant light in the "camphine" lamps, the only difficulty in the burning of that subatance being to produce perfect combuation; otherwise the abundance of carbon causes volumes of dense smoke. To render the water-gas illuminating, it is necessary, therefore, to combine with it a portion of carbon ; and it is this part of the process in which the principal novelty of the invention consists. The apparatus employed in the manufacture of the gas is exhibited at work at the Polytechnic Institution. It consista of a furnace, in which are three long iron retorts placed perpendicularly. Two of these are nearly filled with coke and old iron chains, or pieces of iron. Water is admitted into the first of these, and being converted into steam, it is then decomposed by the iron, and the hydrogen gas which is liberated, absorbs at the same time some portion of carbon from the heated coke. The gas and residual steam are then passed into the second retort, where a similar process of decomposition and of further carbonization takes place; and it then issues into the third retort, where it is brought into contact with heated tar, and absorbs from it a large portion of carbon. The carburetted gas is then forced through some vertical tubes, to permit the deposition of superfuous tar, and is conducted into the gasometer ready for use. The illuminating power of this gas is estimated to exceed that of ordinary coal-gas, 25 per cent. ; and its freedom from sulphur and other impurities renders it far preferable to coal-gas. Respecting the economy of the process, Dr. Ryan says nothing; and we believe that it was on this point that the invention failed to be practically useful when first introduced. The cost of the fuel to heat the retorts, of the iron to decompose the steam, and of the tar to carbonise the gas would, we fear, amount to more than the cost of coal, in most parts of England, for making the ordinary kind of coal-gas. In many circumstances, however, we conceive this mode of generating illuminating gas may be advantageous, especially when the purity of the gas consumed is an object of importance.

ON ISOMETRICAL PERSPECTIVE.

By R. G. Clabi.

The object of this article is to communicate an easy method, by construction, for determining the transverse and conjugate diameters of an ellipse touching the sides of an oblique parallelogram, being the isometrical projection of a circle inscribed in a square.
Draw the isometrical parallelogram ABCD, and its two diagonals AC, and BD; bisect $O C$ in m, also bisect $A m$ in N, and then with the radius $A N$ and centre N, describe a semicircle cutting $O B$, produced in R. Again, with centre O, radius $O R$, describe a aemicircle a Recutting $A C$ in a and c; then will $a c$ be the transverse diameter required of the ellipse. In like manner, bisect $O D$ in ε, and $B s$ in r, and with the centre r, and radius r B, describe a semicircle cutting $O C$ in t; again, with centre O and radius $O t$, describe an arc cutting DB in b and d, then will $b d$ be the conjugate diameter required.
The above may be demonstrated thus:-Because the sides of the oblique parallelogram respectively touch the curve, they are tangents to it. By the properties of the Conic Sections (see Dr. Hymer's elegant treatise), we have, $\mathrm{AO} \times \mathrm{MO}=a \mathrm{O}^{3}$; but M $\Theta=m 0$, therefore $a 0^{3}=A 0 \times m 0$. Also, by the property of the Cinale, we have $a \mathrm{O}^{3}=0 \mathrm{~B}^{2}$. A similar mode of proof
applies to the conjugate diameter. After the diameters are thas determined, the curve can be easily trammelled in the usual wras. It would also be well to state an easy rule, by calculation, founded on the above construction.

Rule.-Multiply the diameter of the circle by 1 -2q4 for the transverse diameter, and by 707 for the conjugate diameter.

Ex.-Given the diameter of a circular turn-table $=14^{\prime} 5^{\prime \prime}$, to find the transverse and conjugate diameters of its isometrical representation.
Here, by the rule, $14.5 \times 1.224=17.748$ transverse diameter.
$14.5 \times \cdot 707=10 \% 25$ conjugate diameter.
The previous method of construction, however simple, I have not before met with in any work on isometrical perspective. The rule by calculation is easily deduced from the construction, making the isometrical diameter, or the given diameter, of the circle equal to unity: Thus, because the isometrical angle OAB $=\mathbf{3 0 ^ { \circ }}$, therefore $B O=\frac{1}{4} A C$. Hence $O A=N\left(1^{-25}\right)=866$; therefore, $a \mathrm{O}^{2}=\mathrm{AO} \times \mathrm{MO}=\cdot 866 \times \cdot 433=-3749$. By extracting the square root of each side, we have $a=912$; consequently, the transverse diameter ace $=1$. 284 . Also, $\mathrm{BO}=$直 $\mathrm{BC}=-5$; therefore, $\mathrm{BO} \times \frac{1}{6} \mathrm{BO}=6 \mathrm{O}^{2}$; hence $b \mathrm{O}=-9585$; consequently, the conjugate diameter $b d=\cdot \cdot 707$. These are the numbers as given in the rule. I have not seen this rule in Jopling's treatise, bnt there is a table given of diameters, with the same figures to the Diameter 1. It will be observed, that all the line that are in the figure are not required in the constraction, but only the two diagonals: the other lines are only drawn to assist in the demonstration. The method given by Professor Farish in his paper on Isometrical Perspective, in Gregory's "Mathematics for Practical Men," is very tedious, both by construction and calculation.

EXPERIMENTS ON CEMENT.

A good deal of attention has recently been directed to the merits of a cement called "Portland" cement, manufactured by Messrs. Aspden and Robins, of Northfleet; and on Monday, the 18th ult., a numerous body of architects, builders, \&c., assembled at the town premises of these gentlemen, in Great Scotland-yard, to witness a number of experiments with the cement, both alone and in combination with sand, in different proportions; the following are some of the trials made :-

Best Stock Bricks Cemented against the Wall.
Experiment 1.-17 stock bricks were cemented together with roman cement (all cement) and projected before the face of a wall, as fig. 1. They broke down with 7 lb . placed on the end.

Mg. 1.
Experiment 9.-11 stock bricks, cemented together with 1 sand and 1 roman cement, broke down with 7 lb . placed on the end.

Experiment 3.- 38 bricks, cemented with neat, patent portand cement, broke down with 14 lb . placed on the end.
Experiment 4.- 30 bricks, cemented together with 1 portland cement and 1 sand, broke down with 15 lb . at end.

Experiment 5.-28 bricks cemented together with 1 portland cement and $\{$ sand, broke down with 168 lb . at end.
Experiment 6.-25 bricks, with 1 portland cement and 4 sand, broke down with 56 lb . at end.

Exporiment 7.-26 bricks, with 1 portland cement and 5 sand, broke down with 74 lb . at end.

Experiment 8.-14 bricks, all portland cement, with a wheel of 9 ewt. in the centre, broke down with 17 lb . at end.

Experiment 9.-16 bricks, cemented together with 1 portland cement and 1 sand, and suspended at both ends, broke down with 15 cwt. placed in a scale suspended on the centre. (See fig. 2).

Fig. 2.
Experiment 10.-A block of portland stone, 2 ft. II in. long, and 9 by 9 inches, broke with a weight of 38 cwt . (See fig. 3.)

Nofe.-A block, cemented with roman cement, would not bear the weight of the stone, in a similar position.

FIg. 8.
Trials in a Hydraulic Press.
Experiment 11,-A block, all portland cement, 18 inches high and 9×9 inches, bore a pressure equal to $108 \frac{1}{2}$ tons on the square foot.

Expt. 12.-A mixture, 1 sand and 1 cement, ... 80 tons sq. foot.
Expt. 13.-A mixture, $4 \quad$ " $1 \quad$ "... 80 "
Expt. 14.-A mixture, $7 \quad " \quad 1 \quad \# \quad . .444 \frac{1}{8} \quad " \quad "$
Experimen 15.-A block, all roman cement, broke at "gzi tons.
Experiment 16.-A mixture, 4 parts sand and 1 roman cement, would not bear any pressure.
Experiment 17.-A block of portland stone, $1 \frac{1}{4}$ in. $X I$ in., broke upat 83 cwt .

Experiment 18,- A block of the portlend cement, the same dimensions, broke with 18 tons.

New Serew.Cutting Machine.-A plan of culting iron screws is stated to have been invented by Mr. P. H. Gutes, of Chicaro, Illinoin, by which the power of one man will cut per day, 700 half-inch, 500 three-quarter inch, 400 one inch, and 300 one-and-a-half inch bolts. The adrantages claimed for this plan over the common die are, its dispatch in doing work; its durability, having cut over 4,000 bolts with one die, without any repairs; instead of jambing or driving the thread inso thape it cuta it out, the same as in a lathe, leaving the thread of solid iron, which cannot be stripped off as is ngual with those cat by the common die, and it will do the work by once passing along the bolt, making the thread perfect. The die, it is said, can be made by ordinary workmen, with far less expense than the common die, and when made, in not at all liable to get out of repair.

BTVETV果。

The Palace of Westminster. Imperial quarto, Part I. London: Warrington and Son, 1848.

At present, we can hardly pretend to give an opinion as to the merits of a series of architectural illustrations from the three engravings in this first Part; nor are we sble even so much as to say to what extent it is intended to carry the publication, and what will be the entire number of plates, there being neither prospectus nor advertisement on the wrapper to afford that somewhat deairable information. What strikes at the very first as objectionable is, not that the plates are published miscellaneously while the work is coming out, but that it seems they are intended to be bound up 80 , instead of being duly arranged according to some sort of order and sequence. The subjects contained in this Part I. are: Plan of the Principal Floor, the Royal Court (a perspective view), and an Elevation of the lower part of the Victoria Tower, which are designated in the heading of the descriptive letter-press accompanying each of them, as Plate I., II., III., respectively. Wherefore, although the descriptive letter-press itself is not paged-which looks as if it had been intended to leave it to purchasers to arrange the subjects ultimately to their own fancy-auch accommodation is now frustrated by the plates being numbered in the letter-press, and in our opinion quite uselembly, there being no corresponding numbers on the plates themselves, $s 0$ that the binder can be guided only by their titles. We almost fancy that the "numbering" must have occurred thiough mere oversight; and if so, now that the very great inconvenience attending it is pointod out, it ought to be abandoned at once, \rightarrow hould which be done, cancels ought to be given of the descriptions already published.

As matters have been managed, Plate I. is a Plan of the Principal Floor; but surely that will not be the only illustration of the kind, or else the woris will be singularly defective and unsatisfactory. Hardly can we believe that it is not intended to give some other plans-at any rate that of the ground-floor, it being quite indispensable for properly understanding the structure. The floor immediately above the principal one ought also to be shown. Besides which, there are mauy portions of the Principal Floor itself which require to be exhibited upon a larger scale, and much more in detail; the scale of the general plan being no more than that of an inch to 180 feet, which is so small that it is imposible to measure from it with any sort of accuracy some of the lesser rooms; -wherefore it would not have been amiss had the respective dimensions, according to actusl measurement, been inserted in the "Key to the Plan." With regard to the plan itself, it does not extend beyond Westminster Hall; consequently, it does not show what is to be done on the west side of the Hall, along Margaretstreet and New Palace-yard. Nor is the plan quite so distinct as it might be, owing to all the parts that are under roof being shaded, and only the open courts and areas left plain or white. So far indeed distinction is made between the covered and uncovered parts of the plan, but there might just as well have been greater distinctness also produced by making the walls considerably darker than the rest. In our opinion, shading of the kind might have been dispensed with altogether in what is an upper-foor plan, it being quite sufficient to treat the ground-floor one in that manner. Or-for the disagreeable doubt now comes across us-is this plan to be the only illustration of the kind? We will not believe that it is until we can no longer disbelieve it. Even a ground-floor plan will not be quite satisfactory unless it be made to show-except that be done in a separate situation's-plan, on a lesser scale-the relative position of Westminster Bridge, Henry VII.'s Chapel, and other circumstances of the peculiar lucality. Else, how are those who are quite unacquainted with that locality, to form any notion of it? A publication like the present, more especially its subject being taken into account, is not likely to be confined to this country, but will be eagerly turned to abroad, wherever the fame of the Palace of Westminster and its architect has reached; and how are those who possess no other information than what they can derive from plans, to understand the difficulties imposed upon the architect by the site, and make due allowance for what must strike them as being defective and unsatisfactory in the disposition of the west or principal land-side of the editice? For our part we should say, that besides a general situation's-plan, thers ought also to be a plan of all the buildings as they existed before the tire. And undoubtedly a plan of the kind ought to be inserted in this publication, if only as a historical document.

Plate II. shows, in a perspective view, a part of what is called the Royal Court, it being that into which the state carriage and
other royal equipages drive and turn round when the sovereign goes to parliament. Here we see on the east side, the large bay window and range of upper windows of the Royal Gallery, and part of the sonth side of the court, where the windows on the principal floor belong to the office of the Lord Great Chamberlain. The archway through which the carriages pass from the porch beneath the Victoria Tower is quite in a corner, at the southweat angle of the court. The architecture of the court is good, but not at all remarkable, except on the west or gallery-side of it, where the two archways below (one of them leading into the Chancellor's Court) the small octagonal staircase turret, the oriel window with solid wall in the compartment between the buttresses on each side of it, broken only by arched and splayed panels, containing royal armonial bearings, form, together with the range of lofty windows ahove (those in the upper part of that side of the gallery), form a sufficiently picturesque and piquant combination, \rightarrow buch as can hardly fail to captivate the admirers of the olden time. What the other elevations of the court, which are not shown in the view, may be, the description does not inform us. To say the truth, the descriptive letter-press is exceedingly meagre, dry, and bald; and has, besides, the disadvantage of consisting only of detached scraps.

Plate III., the elevation of the royal portal or entrance-porch in the lower part of the Victoria Tower, exhibits, on a colerably adequate scale, the exceedingly rich details of that part of the structure ; in the character of whose open arch we fancy we recognise a resemblance to that of the beautiful Erpingham Gate at Norwich. Satisfactory as it is in other respects, the print hardly does justice to the structure itself; for it conveys no idea of the strikingly-fine effect produced by an open arch of such magnitude (50 feet high to its apex), on the erterior of a building. The plate being a mere outline one, the picturesque contrast of light and shade is quite lost ; therefore, although it is not likely that any one will actually make such a mistake as to suppose that the arch itself is filled-up by the lesser arch and gate seen on the further plane of the elevation, it would have been better had that plane been entirely, though slightly, shaded-because then the opening of the arch would have been distinctly defined. There will, we lope, be a section of this porch drawn to the same scale as the elevation; and we also desiderate a fully detailed plan, to show the groining of its vault.
However interesting and excellent the materials for it furnished by Mr. Barry may be, the publication does not seem to have been planned with much judgment or foresight. The separate "History" of the Palace of Westminster is by Mr. H. T. Ryde; but who is the general editor, or who writes the descriptive portion of the letter-press is not said,-it is certainly nothing to boast of. As to what calls itself "Introduction," that might, in our opinion, very well have been spared, for it strikes us as being in wretchedly bad taste-a tissue of vulgar bombastic commonplace, and puff.

Since the above was pat into the printer's hands, we have seen Part II., which came out only a very few days after Part I., and which gives us thee more plates. The first of them exhibits to ns in perspective a portion of the exterior-viz., the "SouthWing Towers" of the principal or east front; yet, although carefully done by a very competent architectural draughtsman (Mr. J. Johnson), and although we cannot but commend the diligence bestowed upon the drawing, the engraving is not altogether satisfactory. What has been alleged by some against the building itself, makes itself here felt; for the multiplicity of the details and enrichment spread over every part, is such as to occasion no small degree of confusion and indistinctness. This is especially the case with regard to the upper part-the towers and the roof, where the different forms and surfaces do not define themselves at all clearly. More decided general effect as to light and shade, and greater vigour of touch, are required. In fact, the ordinary mode of lithography-that here employed-is hardly capable of doing justice to such a subject, for it shows poor and fat in comparison with that improved method in which the whites, as they are technically termed, are printed; therefore, after being now accustomed to that more energetic and pictorial mode of lithography, we feel dissatisfied with the one here practised. With the next platethe Interior of the Royal Porch-we are made to feel very much so; for whether it be that the impression we have got is a defective one, it is particularly feeble and tame, and most of all so in those parts which require some of the deepest touches of shadow. While there is little or no truth as to the general effect of light in such a situation, the shafts and mouldings of the second or
omaller, immediately inclosing the third and malleat arch, are scarcely defined at all below, on the side which is in the shadow. It may also be objected that this subject shows us very little more than what is seen in Plate III. beyond the open arch in the elevation of the exterior of the porch, the view being confined merely to that east side, without showing anything of the vaulted roof, or of the flight of steps on the north side leading up to the royal entrance into the building; which is consequently not even so much as indicated, although it might very easily have been so by just reducing the scale a trifle, and bringing a little more of the interior into view. This plate moreover confirms, what we have said as to the injudiciousness of numbering the subjects according to the order in which they happen to be published, since this view is partly identical in subject with Plate Ill., accordingly ought to have immediately followed it; instead of which, Plate IV. is altogether different in subject-one, besides, which interrupts the natural sequence of the subjects, for all the respective view of the exterior ought to come together, and follow each other in some regular order; yet no such arrangement can now be adopted, except by disregarding the numerical order of the plates, and thereby giving the letter-press the appearance of being strangely shuffled-up. Plate VI., however, does really follow Plate V. with great propriety; it showing on a larger scale the statues of the three popular Saints, Andrew, George, and Patrick, in the niches over the gate leading to the royal court. Whether they are worthy of having a plate devoted to them is a different matter: as mere architectural accessories, they may be privileged to pass muster without criticism; but if they challenge admiration on their own account as works of art, they are not likely to obtain it-at least, not as here represented, which is but in a very so-so-ish manner.

A General Sheet Table for Facilitating the Calculation of Earthworks for Railways, Canals, \&c. By Fanncis Bashforth, M.A, Fellow of St. John's College, Cambridge.-Chain of 100 Feet.

Mr. Bashforth's previously-published table of earthworks was calculated to a chain of 66 feet. He has now extended the utility of his labours by calculating the present table for a chain of 100 feet: the method of applying the figures remaining the same as before. As we have already reviewed at length Mr. Bashforth's system, which is distinctly and peculiarly his own, and have had occasion to decry an attempt to rob him of his indefeisible right and property in his own labours, it is not necessary now to speak further, either in the way of explanation or commendation. In the present table the proportional parts, instead of being contained on a separate card, are printed beside the integral numbers. By this arrangement space and trouble are saved, and all the information which is usually requisite is condensed and presented at one view. We are afraid to say much in praise of the improvements which the author has effected in the calculation of earthworks, lest our observations should provoke the cupidity of some literary burglar : property in tables of earthworks is found to be so insecure, that the only safe way of retaining it seems to be by concealing it.

Incitements to Studies of Steam and the Steam-Engine; or, Practical Farts relative thereto Properly Appropriated. By W. Templeton, R.N. Woolwich. London: John Williams, $18+8$.

The object of this little book is to diffuse information on marine engineering, particularly to enable persons to prepare for the examinations for engineers in the navy. Of course, such a work will be equally useful for engineers in the commercial steam service. We think it likely to be very serviceable for those classes to whom it is addressed, and we therefore recommend it to our readers who feel an interest in the subjects to which it refers.

Mr. Templeton suggests as one of the uses of this little book. that although it is not professedly instructive for the higher branches of the profession, it may be found available as a ready prompter, for refreshing the inemory on points of practice. By keeping up the standard of attainments among working-men, we think Mr. Templeton will do some good.

GEORGE STEPHENSON.

On the death of a great man it is a good time to think of what he has done. We are struck by the loss: the thought comes gloomily that be who so lately stood among us, whose smile still Heams. upon us, whose sayings are fresh in our ears, and whose looks have not faded from our sight, has ended his days here and sought another world. We begin to tell over his words and deeds, the great and good things he has done, his strength and his failings, his sorrows and his joys;-we hasten to snatch a last look before the bright remembrance is dimmed.

George Stephenson was so lately amidst us, in atrength of body and mind unbroken, that it is hard to believe he lies in the cold grave; and the more so while his works speak so loudly. of him. In mind he is among us, if not in body-indeed, his remembrance cannot so soon leave. The last duties have been paid-the earth has been laid upon him, his name is written on his coffin, and the newspapers have told of his birth and his death : but his brethren have yet much to think over. He has given the engineers of England a European name; he has opened for them a new field of employment at home, a wider field of honour and of wealth abroad, and they owe him heartfelt thanks.

When we look to the man, our hearts are stirred within us. We begin with his lowly birth, we witness his great rise, his wonderful works, but still more his kindly feelings; we wonder how he did so much from small beginnings, and every young man burns to follow in the footsteps of one so truly great and good. We have thought, therefore, a few words may be in good time now, gathered from the several books and papers in which they lie soattered, and which may perhaps be a spur to those able to do something worthier of the man.

His life is none the less useful as being that of a working-man, who by his own straight-forwardness raised himself to the topmost height; and as he began without achool-learning, and in a private way, it opens many of those questions which have been much written upon of late years as to the teaching of engineers, and how far they should be under the sway of a government. Inasmuch, too, as, unlike many men of learning, he was most happy in earning wealth, and in keeping it, in a good name, and in the love of his houseliuld, it may be worth while to ask why he should have had a better lot than other men, and what share an upright and manly m ud had in helping on a quick and ready wit. Many, indeed, think t at a clever man may do as he likes, and that he need put no b idle on his wishes, nor trouble himself whether his deeds be right or wrong, but may he a good and successful engineer notwithstandang. Stephenson's life will tell us something on all these heads.

1. BoY Hood.

Geobee Steprexnson was born in 1060 , at a small and lone cottage between Close-House and Wylam, in Northumberland, and within nine miles of Newcastle, in the colliery district. He was one of several children, the son of poor people, who had long dwelt in the same neighbourhood, and who were very respectable. The elder Stephenson is said to have been a collier, but by other more likely accounts' an engine tenter at a colliery. That the farents were people of high character is best proved by the early l:e of the son, but most by his behaviour towards them.

Schooling they were ill able to give him, and it is not certain that he learned to read before he began to labour ; but he had that best kind of teaching which comes from the heart. An open and upright mind was the true groundwork on which his greatness was built, and he owed it to the humble home in which he was brought u?. We pride ourselves now-a-days that we have spread national schools over the land, and that we have taken care for the s:ght bringing up of youth; and we think it much better that all can now learn to read and write. It may however well be asked, how far this alone is good; for we have struck a blow at that homeschooling, under which for so many hundred years Englishmen have been bred. Formerly, the cotter had the whole care of his children; the father and the mother were held answerable for their oftspring, and if these ended ill, the shame was a by-word among the neighbours. Now, the child is handed over to the schoolmaster, without whose teaching life is held as nought, and whose reading and writing are to breathe worth into the boyish mind. It is no longer said learning is better than house or land, but that it stands i: the stead of everything, and is worth itself. The work of father and mother is now at an end; and if any ill befall, they answer they sent the child to school, and if any be in the wrong it must be the schoolmaster. This is telling more than is believed, and is one of those things which is sapping England. How often
must it be said that reading and writing are not to bring a child up, while its body and ite sonl are untaught? and better is it to have the homely English breeding of George Stephenson than the mock useful-knowled ge-schooling of Dr. Bell or the Prussians.

If not taught to write, George Stephenson was taught to be a good son, and an upright man; and thus in after-time to find in his own son a true helpmate, and one who fondly loved him. It is not likely that the lad felt any repining, but earnestly took upwhat should be the lot in life of all-to work for his bread by the sweat of his brow. He never looked tor anything else, -he had no yearning for idleness, and his mind never gave way under the burthen which was laid upon him in after-life. In common with his brothers he was early set to work to earn his share of the household foodso early, that his first earnings were only two-pence a day. He led the horse at the plough when almost too young to stride across the furrow ; ${ }^{*}$ riding him to his work betimes in the morning, when many children were still asleep, and had not begun their boyish play.
So lowly were his firat endeavours, that they were given to the ploughshare or the coal-heap. Sometimes he wrought at picking bats and dross from the coal; and he was so young, and so younglooking, that he had often to hide himself when the overseer went round, lest he should be thought too little to earn his small living." From twopence a day he rose to fourpence, and at length to sixpence a day, -as great a rise, and perhaps as fraught with brightest hopes and swelling pride, as when in after-years his locomotives moved from miles to scores, and when the maker of a short tramway became the undertaker of iron roads between London and the miliions of the north, and kings and statesmen smiled on the wonders he had wrought.

In his boyhood he was most marked among the playmates of the hamlet as foremost in their sports and pastimes, -and indeed we need not wish for more. His mind was not tasked beyond its strength, nor made to yield unripe fruit. The healthy growth of his body enabled him to work out whatever his powerful mind spurred him to do; and for twenty years of his life (from forty to sixty), he never flagged in tasks which the unbroken strength of youth cen seldom master.

It is said that he early showed a mechanical turn, and that he mended the clocks and watches of the pitmen, and even made their shoes, ${ }^{4}$ to eke out his boyish earnings; but it seems more likely that the watch and clock mending belonged to a later time of his life, for had he shown such a happy knowledge, it is hardly likely that his skill should have been so little thought of, as until his manhood it seems to have been.

Shortly after be had come into his teens, he worked as breaksman for Waterrow pit, on the tramway between Wylam and Newburn. By this time his father had moved from Wylam to Walbottle. The lad now set up his first servant, which was no other than a great dog, whom he taught to bring his dinner daily from Walbottle col:tary to the trammay. ${ }^{\text {s }}$

He is said even at this time to have helped in keeping his father and noather, ${ }^{\text {© }}$ - homely deed, but one of which he had a greater right to be proud than of any engineering undertaking. A right English fecling in his love of kindred was always lively in his mind, and it showed itself in his fondneas for his father, his son, and the children of his brothers, and in every deed of his life. While oarnest to make his own way, he was no less so that those about him should get forward-nay, if it might be, even before him; and while his mind was still unbroken, he left his son to carry out alone the great works in which they had begun together.

il. Eillinoworth.

The Stephensons went to Willington and Killingworth, at which latter is a colliery belonging to Lord Ravensworth and his partners. Young George was now put to be stoker to a colliery engine, at one shilling a-day, and as he himself told-"In my younger days I worked at an engine in a coal-pit. I had then to work early and late, often rising to my labour at one and two o'clock in the morning. ${ }^{\prime \prime}$ It was at Killingworth, however, that his lot in the world was settled, for there he made his beginning as an engineer.

As his strength grew so did his work, and he went on until he became an engineman at 12s. a-week. This was a great step, as he never forgot, for some months ago being at Newcastle, he sent for an old fellow-workman to dine with him at the Queen's-Head hotel, and talk over old times.-"Do you remember, George," asked his friend after dinner, "when you got your wages raised?" "Well," said Stephenson, "what about that?" "You came out

[^35]of the office all smiles, and told us you'd got your wages raised to 18e. a-week, and you were a man for life. Now, you would find it hard to tell what you have a-week." "Yes," answered he, laughing, "I dare say I should,"

It was, however, a great step, for it had a share in his teaching. He was at home with the steam-engine, and with his searching mind he was storing up that knowledge which was to be most useful to him. It was a food working-school for a great engineeras good as Brindley's in a mill, or Watt's in his workshop at Glasgow. His mind was awakened: he did not stand listlessly by to feed the fires, -but the engine lay before him as a book wherein to read its workings, to master its powers, to know its weaknesses, to task its cunning. There is something in the steam-engine which is a spell and a charm to the beholder, -omething more and something else than the love of the sailor for his ship ; such as the weaver feels not at his loom, nor the smith before his anvil. The mith or the weaver is the maker-the hammer or the shuttle works as his hand lists; but the steam-engine stands as with life and breath within it-working of itself, earnestly, steadily, and manfully; by day and by night, in its youth and in its elder years, when scores of men who wrought with it have sickened and breathed their last. To the working-man it is a thing of care and love, and its sight seems to give might to those who behold it, and to teach them the cunning which is in its own make. Thus, boys who watched strengthened it with cords and rods of iron;-thus, a toy in the hands of Watt, it claimed his life for its care, and grew to unwonted growth;-thus, time after time, have master and workman nursed its childhood, and helped it onwards to its mightiest strength-and Stephenson has not been among the least of these. The weaver does not better the loom; but day-by-day some lowly workman gives his small meed of help to the steam-engine.

The next step that we know of in Stephenson's onward path was his getting seventeen shillings a-week. ${ }^{\text {a }}$ Whether this was at Willington or Killingworth is not settled ; but soon afterwards he was at Killingworth, with a shilling a-week more, and sometimes putting to his slender earnings a little for his over-time or for piece-work.

He had now grown up to manhood, and to a good name among his neighbours, being, as those who now live remember, a hardworking and upright man, having the trust of his masters and of his fellow workmen.

One of the first deeds in which he is said to have shown his skill was at Killingworth. The sheaves over which the ropes work at the pit were much fretted as they were then made, and the ropes wore quickly away. Indeed, the ropes which elsewhere lasted three months, wore out at that pit in a month. This was a heavy outlay to the owners, and much trouble to the work people. Many ways were tried, but fruitlessly; and at length they gave up all hope of a cure. Seeing the evil was great, Stephenson gave his mind to find out whence it arose; and having done so, he set to work and put the sheaves to rights, so that a rope was saved in two or three months. ${ }^{\circ}$

By this time he began to feel his own worth, and to yearn after something better than his then way of living; but he thought that to better his means, no other way was so good as to learn more, and fit himself for higher tasks. He had it in hand moreover to go to New England, whither the stream of settlers did not flow so fast as it does now, and where therefore greater hopes were held out to the skilful workman who chose to leave the Old World so far behind. In the beginning of this age, it was a greater task to go to America than it now is to go to New Zealand; and it shows young Stephenson's boldness that he undertook it. Nevertheless, it is not likely that it was his own thought, but that of one of the two men who were to be his fellows in the undertaking. One of these, named Wood, gave Stephenson a knowledge of writing and of numbers, which it therefore seems he did not learn until his manhood. It was the wish of Wood and Stephenson to try their hands in the New World at mechanics and farming, for which latter he had at all times a love. ${ }^{1}$ If we remember that in those days the trip to America was costly, and that no one could go free, we may see that Stephenson must have had some thrift, when he was able from his slight earnings to save wealth enough for such a task. It shows, too, that he was not given to drinking or to waste, but had steered free of that shoal on which $t 00$ many working-men are wrecked-the pot-house, in which tbeir wages are swallowed up, their minds blasted, and their health worn out. We know, indeed, there were few evenings of George Stephenson's early life which were idly spent. First, he was kept late at his engine; afterwards his nights were spent in learning; by-and-by in earning the means
for his son's schooling, and afterwards in working and learning by his side.

Beyond the prompting of Wood or his other mate, there was much in the times to work upon the mind of any thonghtful man in the lower walks of life. In 1800, a fearful dearth apread throughout Europe, and the want of bread was sorely felt among us. The war, too, had full sway-wages were low, food dear, and what wea worse, the lot of the working-man was cast under the bitterest thraldom which ever befell Englishmen. George Stephenson, in common with every yoor and friendless man in every bamlet throughout the land, might have been torn from his home and kindred at any hour by a press-gang; hurried off to sea, and kept in bondage, as many good tradesmen now in London have been, for ten long years or more without setting foot on English ground. He was open to the lot of the militia and the local militia, and could only find some one in his stead at a very great outlay. In many townships, wages were made up by the parish-board, and the hard-working man was made a beggar against his will. Such was the lot of the working-man, were he even husband or father: his life was not his own; his freedom hung by a thread, at the breath and will of others. George Stephenson, too, might have been pressed, as others were. These were the good old timeo-gone, it is to be hoped, never to come again; now almost forgotten, snd even when read here it will hardly be believed that in boasting England such things were.

It could hardly be otherwise than that the manly English mind of George Stephenson should spurn the lot in which he seemed to be cast, and yearn for the freedom which was held out to him among our brethren on the other side of the great sea; and had he gone, we should have lost him an we have so many other men of great mind-lost to England, and gone to swell the wealth and fame of America, and keep up the race of life against us. Those who know our best working-men, are well aware how wistfully they look to those lands where they can share in the birthright of their fathers, and how often they give up a good livelihood at home for the love of that freedom which is withheld from them in England by the working of the laws. Irishmen go to Canada or New Brunswick; but the Englishman who leaves home, goes not to ons settlements, but to the United Stateo-for he seeks more han bread. If, too, a man of quick mind, he is not shut out by burthensome patent-laws from reaping the fruits of his skill; and the beat wealth he takes with him is often some bright thought, which ripens in the new land he has chosen. We may follow in onr mind's eye George Stephenson across the seas, and behold him building at Philadelphia the engines and railways of which he has here made us proud. These are things little thought of-but still worth thinking about, for they come home to the bosom of every free-minded working-man among us.

It was unwillingly, and with sorrow, Stephenson thought of leaving his kindred and his best beloved, his homestead and the land of his birth, of his boyish games and of his early manhood. It went against his heart; but he felt upon him the strong call to free himself from the thraldom which beset him round. Thus he told afterwards to one who knew him: he said, "You know the road from my house at Killingworth to such a spot.-When I left home and came down that road, I wept, for I knew not where my lot would be cast.": How bitter must have been the thought to one who felt so deeply.

It was not, however, to be so-we were not to lose him. While his lot hung by a thread, and day by day the time for leaving drew nearer, he had every morning as he went to his work to pass a newly-sunk pit, whence they were endeavouring to draw the water; and time after time did he see the pit overseers and engineers striving bootlessly to get through their work. In one of his walks he stopped to look, and could not help saying to some of those around, that if they would let him, he could, to use his own words, "set them to the bottom." He was at first laughed at, but at length they left him to have his way; and he went through with it so as fully to answer to what he had held forth. ${ }^{18}$

This gave him a name among the neighbours as a skilful man; and he was no less happy with an engine which had been put up to pump water at a pit, but would not do its work, for it could not be made to pump. As is said at all such times, the skill of the whole neighbourhood was overcome, and Stephenson came in as the last doctor, to make the cure, and make it more wonderful. He said he could make the engines pump in a few hours; and though not believed, he did 80 , to the delight of the overseers. ${ }^{4}$. Whether this was the same work as that already named we cannot say, for by some it is told as two things. One writer ${ }^{18}$ says it was a large

- Getesbead Obserrer. Derbyshire Courfer.
to Derby Inporter-Derbyshlie Coarter. 42 Derby Eeporior.
is Derbythire Courtef-Derby Reparter.
condensing-engine, made to draw water from the pit, and which had gone wrong. After several fruitless trials to mend it, Stephenson had the rashness to undertake the job, which he did fully -and moreover made some improvements in the engine. Stephenson himself said ${ }^{26}$ that he had made some improvements in engine work. This, however, is sure-that he had got the trust of the pitowners; and, having a better hope of livelihood, he gave up the thought of settlement abroad, and made Killingworth his home for some time.

When he was twenty-two years old, he wedded a young woman of the neighbourhood; and in 1803, his son Robert was born; but be had no other child. In the life of another man, the birth of a child would not be worth naming; but with his fatherly fondness, the child became the apple of his life, until he grew up to be his fellow-workman, to earn a great name, and to hold that standing among the mighty of the land which the father would not take. All went so happily with George Stephenson, that everything seemed to fit him. He was able to give his only son that breeding and that schooling, which, if he had had many children, would perhaps have been beyond his reach-though it is hard to spell what never happened. This, however, we may say-that Robert Stephenson owes his greatness to the unshared care of his father, who shaped his mind from earliest years to the full strength of manhood. Paintings have been drawn of the fondness felt by a mother in watching the growth of an only son; but there is something dearer in the father, like George Stephenson, who, in the son of his youth, not only sees, but shares, in the growth of a great and manly mind. The mother can but be as a looker-on, and cannot feel his deeds to the full; but the father, while watching with the eye of a master, takes share and part in the toil. To few men this happens; for, in the common way of things, a man weds late in life, and the son comes upon the world only as the father is leaving it and before the strength of manhood has ripened to its full.
The engineman had now become a stripling engineer, and began to look out for a wider field. He seems to have tried his hand on most kinds of colliery work. It is said that he laid down some tramways, or wagon-ways as they are named in the north, and made some improvements in them. ${ }^{19}$
He was now getting a good name among the neighbouring land and coal owners, and had got on the high-road to engineering. Instead of being pinned to the stake, as a workman by the day or week, it was open to him to rise as othere had done around him, and to make his way as a mining engineer. The colliery school was a better one for breeding great engineers than even that of Cornwall; for it had all that Cornwall had, and more too. The Cornishman could learn the steam-engine, pump-work, and mine survering; he saw enough of sinking, and driving, and draining. The Northumbrian, however, while he had all these to learn by, baving a greater bulk to move, had to look more to the roads and ways on which so many thousand chaldrons were borne to the ship-side. Hence, in Northumberland, many men had turned their skill towards the roads and wagon-ways, to the rails and sleepers, and to the works and bridges by which they were borne over the rivers and hollows. Both had the same school in the works of the millwright and the iron-founder, but the Northumbrian was better off; because, instead of the outaway, small towns of Truro, Redruth, and Camborne, he had near him Newcastle, on the high road from London to Scotland; and having its booksellers, schools, and men of learning. He was much nearer to the world than his Cornish brother, truly at the Land's-End. The north, therefore, has given us more civil engineers than the west, though the latter has its Trevithick and its Woolf.
By Lord Ravensworth, and others, Stephenson was employed in potting up steam-engines, and sloping planes under-ground; and in one pit, two or three engines were made to do the work of nearly 100 horses. ${ }^{14}$
We bave seen that Stephenson had a love of knowledge, by what be had learned with Wood; and we know that he must have schooled himself much at this time, from what he soon afterwards did. It is true, he was not fond of reading, but he always liked to know everything thoroughly; and he did not leave out anything Whereby what he undertook could be well done. It was always bis wish to go to the ground-work, and to build steadily up; and he had a great dislike for those engineers who undertake anything carelessly or rashly. As he himself said,' ${ }^{\circ}$ he had too "frequently noticed the miscalculations of hundreds of engineers, for want of studying the laws of mechanics, and knowing that a pound could only weigh a pound." It was on that sound knowledge that his trust in himself in after-life was built, and that he was able fearlessly to

[^36]if Gateshend Oberver.
is Trent Valley Opeatog.
stand up before the House of Commons and the people, in his great struggle for the locomotive against the lighte of the day.

III. THE LOOOMOTIVE.

Stephenson was now getting berond his thirtieth year, his mind strengthened by knowledge, and by the trust that what he might do would reap its full reward. His child was growing up to boyhood, while his earnings were still so slender that he could do but little for his schooling. He had at this time felt bitterly his own want of learning, and he made up his mind that he would put his son to a good school, and give him good breeding. "I was, however," said he afterwards at a meeting at Newcastle, "o "a poorman; and how do you think I did ?-I betook myself to mending my neighbours' clocks and watches at night, after my day's work was done ; and thus I got the means of bringing up my son." This he might well say with boasting, for it is one of the bright lights in his life.

The great draught of coal on the tramways, and the heavy trains which went forth from the pita, had set the minds of many at work to use steam instead of horges to draw the loads. The stationary engine worked well on the incline, but the steam-horse was called for to run throughout from the pit's-mouth to the ship's-side. In 1758 or 1759 , Dr. Robison, then a young man, had hinted to Watt to put steam to work wheel-carriages. ${ }^{2}$. Watt, however, had other things on his mind, though he named it in his patents of 1769 and 1784; but as Watt had a dislike for high-pressure steam, that may be one cause why he never made a locomotive. ${ }^{42}$

About 1763, John Theophilus Cugnot, a Lorrainer, showed a model of a steam-carriage to the Count de Saxe. He afterwards went to Paris, and got the help of the Duke de Choiseul. In 1769 he built an engine at the cost of the king, and it was tried in 1770. It moved with such strength, that it knocked down part of a wall which stood in its way; therefore some thought that the power was too strong to be kept within bounds, and not fit for common use. ${ }^{93}$ It is said the engine was given up and put in the Arsenal Museum, and is now kept in the Conservatoire des Arts et Métiers. It would be worth while for any engineer who may be in Paris to look after it.

In 1782 or 1792, Murdoch made a model of a steam-carriage at Redruth. This was perhaps the beginning of Trevithick's, who is said to have been brought up under Murdoch, and who knew him well.

In 1786, Oliver Evans laid a plan for steam-wagons before the commonwealths of Pennsylvania and Maryland, and the latter gave him a privilege for fourteen yearg-yet he was never able to get money enough to build a wagon. All that he did was in 1804 to put wheels on a steam dredging-machine he had made for cleansing docks, and which he made to move slowly, though in a cumbersome way. ${ }^{84}$

On March 24, 1802, Trevithick and Andrew Vivian took out a patent, ${ }^{\text {as }}$ which among other things was for the use of high-pressure steam for carriages, and by which the weight of the engine was brought very low. A carriage was made and run in Cornwall, and after wards in London. Another was made in 1804 in South Wales, which was worked on the Merthyr Tydvil Railway, and "drew after it as many carriages as carried ten tons of bar-iron, from a distance of nine miles, which it performed without any supply of water to that contained in the boiler at the time of setting out; travelling at the rate of five miles an hour." ${ }^{\text {se }}$. The engine had an eight-inch cylinder, and the piston a four-feet six-incbes stroke. ${ }^{7}$

These engines fell into dislike, from the one on the Merthyr Tydvil railway blowing up, ${ }^{4}$ having been made (against Trevit hick's orders) without a safety-valve, and likewise from the wrong belief which got about that the wheels had no bite on the rails, and could not work up a slope. ${ }^{80}$
One of Trevithick's engines was sent, singularly enough, to Geurge Stephenson's birth-place to Mr. Blackett, of Wylam; and thus it came within his sight. This happened most strangely, and most luckily, for the mind of Stephenson was now brought to bear on the great work of his life. The finding of Trevithick's model by Uville was strange, and most fruitful in the deeds it brought about ; but perhaps we owe more to the Wylam engine. On some ground or other, the engine does not seem to bave been put to work on the tramway, but was used to blow a cupola in an ironfoundry at Newcastle. ${ }^{31}$ This engine had one cylinder only, and a

fly-wheel to secure a rotatory motion in the crank at the end of each stroke. If Mr. Blackett did not however work this engine, he had another of the same kind made and set upon his tramway it Wylam; and in 1813 it worked by the adhesion of its wheels on the rails, thus upsetting the belief that the engine could not so work.
On the 30th December, 1812, William and Edward Chapman took out a patent for an engine, with additional wheels to work upon a chain stretched along the middle of the railway the whole length. This engine was tried on the Heaton tramway, near Newcastle, but given up.
On the zznd May, 1813, William Brunton, of Butterley, took out a patent for a locomotive with legs. This was tried and worked. In 1811, Mr. Bleukinsop had hit upon the plan of having a cogwheel and cog-rail to overcome the adhesion.

At this time, Mr. Blackett was fully at work experimenting on the Wylam railway with an ill-made engine of Trevithick's, which was found to be very troublesome, as the irregular action of the single cylinder made jerks in the machinery, so as to shake it in pieces. Still, the whole of the coals were taken down the tramway by this kind of engine. ${ }^{s z}$

By this time George Stephenson was likewise at work; and Lord Ravensworth and the Killingworth owners had such trust in him, that they gave him the money to make an engine in the opening of 1814, and on the 25th or 27th July, 1814, ${ }^{23}$ it was tried on the tramway. As Stephenson said Lord Ravensworth and his partners were the first to intrust him with money to make a locomotive engine, "We called it My Lord. I said to my friends, there is no bound to the speed of such an engine, if the works can be made to stand it." ${ }^{4}$
The engine had two cylinders, each eight inches diameter and two feet stroke; the boiler was cylindrical, eight feet long and thirty-four inches diameter; the tube twenty inches diameter, passing through the boiler. The cylinders worked two pairs of wheels by cranks placed at right angles, so that when the one was in full operation, the other was at its dead points,-by which means the propelling power was always in action. The cranks were held in this position by an endless chain, which passed round two cogged wheels placed under the engine, and which were fixed on the same axles on which the wheels were placed. The wheels in this case were fixed on the axles and turned with them."a
The trial was made on a piece of road laid with the edge-rail, rising about one in four hundred and forty, and was found to drag after it, besides its own weight, eight laden wagons, weighing altogether abont thirty tons, at the rate of four miles; and after that time it kept steadily at work. The application of the two cylinders made the working of the engine regular, and secured the steady progressive motion which was wanted in the Wylam engine, there being only the single cylinder and fly-wheel. ${ }^{s 6}$

It was not till the next year that Stephenson took out a patent for his locomotive, and here we find the bad working of the patent laws as bearing upon our poor workmen. Had it not been that his first engine was not perfect, he could have had no patent, and would have reaped no fruit from his days and nights of toil, as he could not raise the money to pay the heavy fees which are drawn from the patentee. Even for his first trial he wanted money, and for which he was beholden to the kindly feeling of Lord Ravensworth: much happier thau Oliver Evans, who fruitlessly sought in America and England for the means wherewith to start his steamwagon.
Here we may rest for a time, and think a little as to what led Stephenson on in the world. No man could be worse off for money or means: he had no powerful kinsmen, no wealth left him by a father ; his earnings were barely enough for the wants of himself and his son; his standing was lowly; be had no rich schoolfellows or friends who had known him from childhood. Within twenty years from this time he had, however, got together houses and land, and at his death left behind him wealth which he never durst have hoped for. Brindley was not so happy in the end, neither was Trevithick, nor Dodd. Watt began in a amall shop-but he belonged to the middle classes, and had not the hard task of working himself up from the lowest depths of life. If, however, he gathered riches, he owed it to the fostering care of Boulton, without whom he would have spent his income in undertakings which had not within them the seeds of wealth, whatever else cuuld be said for them. He would have made the finest machinery for copying

[^37]statuary; he would have tried to the utmost cures for illneases of the lungs by breathing gases,-but he would have died worth not one halfpenny.
Fulton wandered through the Old World and the New, begging kings and commonwealths to give him the means of building stearnships. We have seen that the utmost luck of Oliver Evans with his steam-wagon was to get rights which were of no use to him. and to turn the wheels of a ballast-engine. Dodd, after planning two of the greatest bridges on the Thames, and spending thousands in bringing steamboats into use, died unhappily.

Trevithick, after trying one thing after another, and finding friend after friend to help him, did, two years after Stephenson's beginning at Killingworth, leave England for the West Indies; whence he did not come back, and that penniless, until Stephenson had laid down the Stockton and Darlington Railway. Trevithick was taken up by Mr. Blackett, a bold and daring man, and sent a locomotive to Wylam, which, like most things in which he har a hand, was so wretchedly made that it was put to other uses. Mr. Blackett made another, and Stephenson had it as a model to shape something better. Trevithick began better than Stephenson: he had friends in Cornwall and in London; and he ought not to have left to Stephenson to work out the locomotive engine and the railway. Trevithick was always unhappy and always unlucky; always beginning something new, and never ending what he had in hand. The world ever went wrong with him, as be said,-but in truth, he always went wrong with the world. The world had done enough for him, had he known or had he chosen to make a right use of any one thing. He found a partner for his high-pressure engine, -he built a locomotive, -he had orders for others for Merthyr Tydvil and for Wylam, -he set his ballast-engiue to work, -and he drove his tunnel under the Thames for a thousand feet;-but no one thing did well: all were afraid, and at length no one would have snything to do with him. It was not that his mind was more fruitful than that of Stephenson, who in this short time had made improvements in pit-work and railways, built a locomotive, and found out the safety-lamp, and who throughout his life was ever working out something new. What it was, was this-Stephencon never lost a friend, and Trevithick never kept one. To the day of his death, Stephenson had among his friends those who had given him a helping hand in early life; and from year to year he went on strengthening the bonds of friendship with them and their sons, and the younger men who grew up around him. The Ravensworthg the Peases, the Brandreths, Matthew Bell, the Meynells, and others of his earlier friends, will be found with him throughout, standing by him as directors in his great railway undertakings, as they had befriended him in his small beginnings. This was a great strength to him, and though poor he had a mine of wealth in the purses of his friends. A manly and upright Englishman, open in speech, steady, straight-forward, and hard-working, he earned their friendohip and never lost their trust ; and if to others he was known as a great engineer, to them he was better known as an upright man. This made the poor working-man the rich manufacturer and great mine-owner. This gave him the means of doing what Trevithick and Evans could only talk of.

(To be continued.)

WROUGHT-IRON BOWSTRING GIRDERS FOR BRIDGES.

Some experiments have been lately made at the establishment of Messra. Fox, Henderson, and Co., at Smethwick, near Birminyham, on a wrought-iron Bowstring Tubular Girder Bridge, of a similar construction to the one designed by Mr. Harrison, and given in our Journal in January last.
The experiments were made on a wrought-iron rib or girder, 120 feet clear span, in the presence of the Government Inspectors of Railways, and Government Board of Commissioners for inquiring into the Strength of lron. The girder is constructed entirely of wrought-iron, and consiste of an arch of boiler-plates and angleiron, tied across at the ends by horizontal bars; and the tia-bars are connected with the arch by vertical standards, and by a double system of diagonala, which have the effect of distributing over the whole curve of the arch the action of weights placed on, or pasp-
ing over, any point of the bridge. The proof was applied by hading the bridge rib with 240 tons of rails, bars, \&c.; and it produced the following satisfactory results, as the weight was applied:-

Welges in tont of relle. Aken
placed on the crone-girders.

on the croas-girders.	
$34 \pm$	cons
697	$"$
1024	$"$
137	$"$
1714	$"$
204	$"$
240	$"$

Extreme monout of deffection
produced at centre of ertb

The proof weight was fixed at gio tons, as being double the greatest load which the bridge can by any possibility be ever required to hear. A heavy goods' train weighs less than half a ton per foot lineal ; a train, consisting entirely of locomotive engines (which would be heaviest of all possible trains) would only weigh one ton per foot lineal, and, consequently, would place a load of not more than 120 tons on a bridge of 180 feet span. The new bowstring bridge has, therefore, been proved to t wice the weight which ever can he placed upon it, and to four times the weight which it is ever likely to have to bear. It is scarcely necessary to add, that the trial gave great satisfaction to all parties. These ribs are adapted for large spans, in cases where either headway is of importance, or where sufficient abutment cannot be obtained without very heavy expense. Bridges constructed of these ribs may be employed with perfect safety for very large spans, in precisely the same manner as ordinary girders are used for small ones. The strength of the bridge depends upon the rib or arcb, and on the tie-bars by which the extremities are held together. The vertical standards are introduced, partly to suspend the load from the arch, and partly to obtaiu longitudinal and transverse firmness; they also support the tie-bars. The diagonals are employed for the purpose of preventing undue deflection in the rib, when the bridge is unequally loaded. The rib itself is constructed of boiler-plates and angle-iron, rivetted up in the form of a square hollow trunk; it is strongly tied together, so that the full section of the plates and angle-iron may be depended upon to resist the crushing strain. In order to give this trunk additional lateral stiffness, the sideplates, which form the top, overhang, and are strengthened on the edges by angle-iron, \&c. The tie-bars measure about 8 inches, by 1 inch each, and are introduced in sufficient number to take the whole strain. The ribs are supported at each end on cast-iron shoes, fixed at one end to the piers, and mounted at the other on sliding-frames and rollers. This arrangement provides, not only for expansion and contraction, but also for motion under a very heavy load. The action of these parts under proof has been found ti) be perfect. Cross-girders, constructed entirely of wroughtiron, are suspended between the ribs.
Besides the above experiments on the Blackwall Extension bridge, the two ribs for a bridge, 130 feet span, have been proved with a weight of 260 tons-that is, 2 tons per foot lineal each, put on in dead weight, by suspending cast-iron cross-girders underneath the points where the wrought-iron girders are intended to be attached, and by placing thereon 260 tons of rails, pigs, bars, Nc. In proving, the load was first put on two points at one end, then on the next two points, and so on, in order to produce as nearly as possible the same effect as the passage of a heavilyluaded train. In the case of one rih, the load was allowed to remain several days, and then removed. After the lapse of a few days, the same load was replaced, and again allowed to remain sume days. The results were satisfactory.

During the process of proving, observations were taken with a level, placed at a distance; and the sinking of the bearing-plates in the ground was observed and noted. The bridges being now constructed, are intended to carry a double line of rails; and the test applied is, therefore, equal to 2 tons to each foot lineal of single line of way. This test was fixed upon in the belief that the greatest powsible load which can in working be placed upon each line of rails is about 1 ton per foot lineal ; and that, to provide fur the additional strain caused by the rapid motion, \&ce., of the practical load of trains passing, the proof weight ought to be fixed at double the greatest possible load. In very large spans, (say 400 feet, and upwards), it would be necessary, on many accounts, to use four ribs, instead of two, and to brace all the four ribs together overhead, so as to obtain additional transverse stiffness.
We understand that several girder-briages of the above construction are to be erected on the Blackwall Extension Railway, under the superintendence of Joweph Locke, Esq.

DRAINING MARSHES BY STEAM.

The following paper, "On the application of Steam-power to the Drainage of Marshes and Fen Lands" was read at the recent meeting of the British Association, by Mr. Glyn.

The number of districts in which I have successfully applied the steam-engine to drainage is fifteen, and the quantity of land so drained amounts to more than 185,000 acres'; the engines employed being 17 in number, and their aggregate power 870 horses, the size of the engines varying from 20 to 80 horse-power. 1 was also engaged in draining the Hammerbruk District, close by the city of Hamburg; and in another district near to Rotterdam, an engine and machinery with the requisite buildings were erected from my plans by the Chevalier Conrad. In many of the swampy levels of Lincolnshire and Cambridgeshire much had been done to carry off the water by natural means; and many large cuts had been made and embankments formed -especially in the Bedfordlevel, which alone contains about 300,000 acres of fen land; and the great level of the Fens contains about 680,000 acres, now rich in corn and cattle. The Dutch engineers who had been engaged in these works had erected a number of windmills to throw off the water when the sluices could not carry it away. By the aid of these machines the land was so far reclaimed as to be brought into pasture and cultivation, producing occasional crops of wheat. The waters from the uplands and higher levels were intercepted by catch-water drains, which carried away as far as might be practicable the highiand waters, and prevented them from running down upon the fen; but as it often happened, when there was most rain there was least wind, and the wind-engines were useless when their help was most needed, and the crops were lost.

In this state was the fen country when the steam-engine was introduced; and by its aid the farmer may venture to sow wheat upon these rich levels with as much confidence and even more than upon higher ground; for not only can he throw off at pleasure the superfluous water, but in dry weather a supply can be admitted from the rivers-so that farming in such cases is rendered less precarious than in situations originally more favoured by nature. It is, however, to be remarked that the quantity of rain which falls in these levels on the eastern side of England being much below the general average of the kingdom, the porer required to throw off the superfluous water is small compared with the breadth of land to be drained; the proportion seldom being greater than $10-$ horse power to 1,000 acres, and in some cases considerably less.

The general plan is to carry away the water coming off the higher grounds, and as far as may be practicable prevent it from running down into the marsh by means of the catch-water drains before-mentioned, leaving the rain water alone to be dealt with by mechanical power. As the quantity of rain falling in the great level of the Fens seldom exceeds twenty-six inches, and about twothirds of this quantity is carried off by evaporation and absorption, or the growth of plants, it is only in extreme cases that two inches in depth require to be thrown off by the engines in any one month -which amounts to $1 \frac{1}{2}$ cubic foot upon every square yard of land, or 7,260 cubic feet to the acre. The standard and accepted measure of a horse's power is $33,000 \mathrm{lb}$. raised one foot in a minute, or $3,300 \mathrm{lb}$. raised ten feet in the same time; and as a cubic foot of water weighs $69 \frac{1}{d} \mathrm{lb}$. and a gallon of water 10 lb ., so a horse's power will raise and discharge at a height of ten feet 330 gallons , or 52.8 cubic feet of water in a minute. Consequently this assumed excess of 7,260 cubic feet of water fallen apon an acre of land will be raised and discharged at an elevation of 10 feet in about two hours and ten minutes.
If the quantity of land be 1,000 acres of fen or marsh, with the upland waters all banked out, the excess of rain, according to the above estimate, will amount to 7,620,000 cubic feet. A steam-engine of 10 -horse power will throw off this water in 232 hours, or in less than 20 days, working 12 hours a day; and I have found this calculation fully supported in practice.

Although the rain due to any given month may fall in a few days, yet in such a case the ground will absorb a good deal of it, and the drains must be made of a capacity large enough to receive and contain the rain as it falls;-besides, in cases of necessity, the engine may be made to work 20 hours a day instead of 12 , until the danger is past. I have generally caused the main drains to be cut $7 \frac{1}{2}$ feet deep, and of width sufficient to give them the required capacity to receive the rain water as it falls and bring it down to the engine. In some instances-where the districts are extensive and their length grest-it has been found requisite to make them somewhat deeper.

In all cases where I have found it necessary to use steam-power, I have applied scoop-wheels to raise the water. These scoop-
wheals somewhat resemble the undershot-wheel of a water-mill; but instead of being turned by the impulse of the water, they are used to lift it, and are kept in motion by steam-power. The foatboards or ladle-boards of the wheels are made of wood, and fitted to work in a trough or track of masonry; and they are generally made 5 feet in length-that is to say, they are immersed 5 feet in the water-and their width or horizontal dimension varies, with the power of the engine and the head of water to be overcome, from 90 inches to 5 feet. The wheel-track at the lower end communicates with the main drain, and the higher end with the river, the water in the river being kept out by a pair of pointing doors, like the lock gates of a canal, which close when the engine ceases to work. The wheels themselves are made of cast-iron, formed in parts, for convenience of transport. The float-boats are connected with the cast-iron part of the wheel by means of oak starts, which are stepped into sockets cast in the circumference of the wheel to receive them. There are cast-iron toothed segments fitted to the wheel, into which works a pinion upon the crank-shaft of the engine.

When the head of water in the river or delivering drain does not vary much, it is sufficient to have one speed for the wheel; but when the tide rises in the river, it is desirable to have two speeds or powers of wheel-work-the one to be used at low-water, and the other more powerful combination to act against the rising tide. But, in most cases, it is not requisite to raise the water more than three or four feet higher than the surface of the land intended to be drained-and even that is only necessary when the rivers are full between their banks, from a continuance of wet weather or from upland floods. In some instances, the height of the water in the river being affected by the tide, the drainage by natural outfall can take place only during the ebb; and here, in case of longcontinuing rains, the natural drainage requires the assistance of mechanical power.

I have stated that the main drains have generally been made $7 \frac{1}{6}$ feet deep, or more in larger districts-so that the water may never rise higher than within 18 inches or 2 feet of the surface of the ground, and the ladle or float-board dip 5 feet below the water, leaving a foot below the dip of the wheel, so that the water may run freely to it, and to allow for the casual obstruction of weeds in the main drain-which if it be sufficiently capacious and wellformed, will bring down the water to the engine with a descent of 3 inches in a mile. Suppose, then, that the wheel dip 5 feet below the surface of the water in the main drain, and that the water in the river into which this water must be raised and discharged has its level 5 feet above that in the drain, the wheel in such case will be said to have 10 feet head and dip, and ought to be made 29 or 30 feet in diameter. I have found it practicable to throw out the water against a head of 10 feet, with a dip of 5 feet,-that is to say, 15 feet head and dip with a wheel 35 feet in diameter; but in another engine more recently erected 1 have made the wheel 40 feet in diameter. The engine that drives that wheel is of 80 -horse power, and is situated on the ten-mile bank near Littleport, in the Isle of Ely.

The largest quantity of water delivered by one engine is from Deeping Fen, near Spalding. This fen contains 95,000 acres, and is drained by two steam-engines-one of 80 and one of 60 -horse power. The 80 -horse engine has a wheel of 28 feet in diameter, with float-boards or ladles measuring $5 \frac{1}{2}$ by 5 feet, and moving with a mean velocity of 6 feet per second. So that the section of the stream, when the engine has its full dip, is $27 \frac{1}{2}$ feet, and the quantity diacharged per second is 165 cubic feet-equal to more than $4 \frac{1}{2}$ tons of water in a second, or about 16,200 tons of water in an hour. It was in the year 1825 that these two engines were erected, and at that time the district was kept in a halfcultivated state by the help of 44 windmills-the land at times being wholly under water. It now grows excellent wheatproducing from 4 to 6 quarters to the acre. In many districts land has been purchased at from 10l. to 20l. an acre by persons who foresaw the consequences of these improvements, and which they could now sell at from 50l. to 70l. an acre. This increase in value has arisen not only from the land being cleared from the injurious effects of the water upon it, but from the improved system of cultivation which it has enabled the farmers to adopt.
The fen lands in Cambridgeshire and in part of the neighbouring counties are formed of a rich black earth, consisting of decomposed vegetable matter, generally from 6 to 10 feet thick, although in some places much thicker, resting upon a bed of blue gault, containing clay, lime, and sand. When steam-drainage was first introduced, it was the practice to pare the land and burn it; then to sow rape-seed, and to feed sheep upon the green crop; after which wheat was sown. The whest grown upon this land had a
long weak straw, easily bent and broken, carrying ears of corn of amall size, and having but a weak and uncertain hold by its root in the black soil. Latterly, however, chemistry having thrown greater light upon the operations of agriculture, it has been the practice to sink pits, at regular distances, through the black earth, and to bring up the blue gault, which is spread upon the surface as a manure. The straw-by this means taking up an' additional quantity of ailex-becomes firm, strong, and not so tall as formerly, carrying larger and heavier corn; and the mixture of clay gives a better hold to the roots, rendering the crops less liable to be laid by the wind and rain; whilst the produce is most luxuriant and abundant.

REGIUNER OF ITEW PATMATES.

THE STEAM HAMMER.

Jameb Nabyyth, and Holbrook Gabiell, of Manchester, eagineers, for "certain improvements in machinery or apparatus for forging, stamping, and cutting iron and other substances. -Granted February 83 ; Enrolled Augast $23,1848$.

This patent is for improvements in the steam-hammer, for which invention patents were granted to the same parties in 184s, 1843, and 1844. The principal object of these improvements is so regulate the action of the hammer with greater facility, by working the lifting-cylinder by means of an additional small steamcylinder. The general arrangement of the primary parts remain very similar to the hammers now in general use. As is wellunderstood, the hammer is lifted by admitting the steam below the piston in the cylinder, and, by allowing the steam to escape, the hammer, by its own gravity, falls and gives the required blow. In the present invention, the force of the blow is regulated more conveniently than before. For this purpose, there is a small steam-cylinder for working the main slide-valve. This cylinder is fitted with a piston, connected by means of a rod to the main slide, to which the steam is admitted from the boiler. The small cylinder is furnished with three steam-passages similar to ordinary high-pressure engines, admitting steam alternately above and below the piston, and regulated by the slide-valve. This valve is connected by a rod to the piston of another cylinder, which is subject to the pressure of the steam from the main cylinder on the under-side, and is depressed by steam entering from a tube communicating with the valve-jackets of the slides. Steam having been admitted to the working-cylinder, the piston is elevated, and to regulate the height of the fall, a cock or valve is opened, communicating with an opening in the cylinder. This permits a rush of steam to flow into a pipe, which conveys it thence below the piston, raising it by the pressure of the steam on the under surface. The effect of this movement is to produce the requisite change in the position of the valve, so as to suffer the steam which entered the small cylinder above the piston, to escape into the atmosphere; and by the entrance of steam below the piston, it elevates the valve, so as to cover the steam-passage to the cylinder and the eduction-port, thereby suffering the steam to escape from the main cylinder; consequently the hammer, by its own gravity, will fall from the height to which it has been raised. There are three passages, each furnished with a valve or stop-cock, the levers of which are connected by rods to hand-levers, by which they may be opened or shut at pleasure; therefore, if the hammer is not required to fall from a height greater than the first opening, the valve connected therewith must be closed and the one above it opened, when the same action will be produced whenever the piston is elevated above such opening by the escape of stenm. Two other methods of regulating the action of the hammer are shown in the specification, but the one we have noticed is sufficient to show the nature of the invention.

The patentees claim :-First, the application and use of an additional slide-valve, piston, and cylinders, or any of these parts separately, for the purpose of working the piston of the langer cylinder, and thereby actuating the main slide, so as to prodace the alternate admission and escape of steam to and from the main cylinder. - Secondly, the employment of apertures in the main cylinder, for the purpose of working the piston and main slide, thereby effecting the motion of the hammer and regulating the various heights to which is raised.-Thirdly, the use of a vessel, with its plug or cock, so as to regulate the interval of time required for the falling of the hammer from the various heights to which it is elevated.-Fourthly, the application of a valve, placed in the eduction-port of the main cylinder, for actuating the valve,

00 as to effect the required change of the piston, and with it the main alide-valve, thereby actuating the hammer, and also for the purpose of obtaining the lapse of the required interval of time for the fall of the hammer.-Fifthly, the application of a latchlever motion to the moving of the small slide-valve in one direc-tion.-Sixthly, the combination of the latch lever-motion with the arm, and other parts connected therewith, by which motion is also transmitted to the valve, in the reverse direction, instead of employing the small cylinder for that purpose.-Seventhly, the application of the screw, and parts connected therewith, for the purpose of regulating the height to which the hammer is elevated. -And, lastly, they claim the moving of the main slide-valve, direct from the piston, and also without the intervention of the main alide.

DECORATIVE ARTS.

Misa Elizabeth Wallace, of Laurel-lodge, Cheltenham, spingter, for "Improvements in facing, figuring, designating, decorating, planning, and otherwise fitting up houses and buildings, parts of which are applicable to articles of furniture."-Granted February 28; Enrolled August $88,1848$.

The improvements in the decorative arts patented by Miss Wallace are divided in the specification into ten kinds, though the distinguishing feature in the invention is the production of the effects of marble, malachite, \&cc., by casting tablets of plaster of Paris on to glass, the glass or plaster being coloured or decorated to give the required effect. These tablets are intended to be applied both externally and internally, the internal decorations being of course more ornamental than the tablets used to imitate marble, \&cc, on the exteriors, and they are to be fixed to the walls by cement and long copper nails. Among other parts of the invention is a mode of producing the appearance of gold without employing any metal, and it is thus described:-"To make a flat tablet of this description, I take a plate of figured yellow glass (the nearer the colour of gold the better); to the back of this I attach a plate of plain yellow glass silvered; and I unite the two plates of glass by cementing them at the edged with gutta percha, or any other saitable cement. The result of the combination is, that the figured parts of the upper glass exhibit the appearance of deadened or frosted gold, with a groundwork of burnished gold, or eice versd. Sometimes I substitute for the front plate of figured yellow glass, a plate of white glass, figured or ground (the whole of it, or parts only); and sometimes I also digpense with the second sheet of glass altogether, and apply the silvering at once to the back of the figured or ground front plate."

In another part of the specification is described the following proceas for giving additional brilliancy to painted glass:-"As regards stained, or painted, or other figured glass-l take a sheet of plain white glass, give it a costing of gum, then sprinkle over it a quantity of what are known in the glass trade by the name of 'frostings,' which are readily laid hold of by the gum; and the glass thus prepared I attach to the stained, or painted, or other figured glass on the inside, or that side which is next to the interior of the house or building, by means of gutta percha solution, or some other suitable cement, applied to the edges. The frostings have on the inside the effect of giving a beautiful lustre to all the lighter parts of the design on the stained, or painted, or other figured glass, without inspairing in the least the strength of tone of the darker or coloured portions; while they impart to the glass, when vewed from the outside, much the same effect as if a flood of light were streaming through from within."

In all the other different modes proposed for decorating houses by the patentee, the plan of giving a glass surface is adopted so as to produce the effect of a most brilliant polish, and at the same time to serve as a protection against damp and atmospheric corrocion.

ECONOMY OF FUEL IN STEAM-FURNACES.

Fearx Douche, of Rouen, France, merchant, for "certain means, processes, and apparatus used for suving and applying the lost heat in general, and sometimes direct heat, to many useful purposes." (A com-munication.)-Granted February 10; Enrolled August 10, 1848.

This invention relates, first, to an improvement in the feeding apparatus for supplying the feed-water to steam-boilers, and is constructed as follows. A number of tubes or pipes are placed in a vertical position within a cylindrical vessel, the ends of the tubes being secured to two chambers, one at each of the ends of the tubes, the
interior of the tubes forming a communication between the chambers, which have no communication with the exterior of the tubes; there are two communicating pipes from the cylindrical ressel, one at the top and the other at the bottom; there are also yipen of communication from the two chambers. The upper pipe of the cylindrical vessel communicates with the boiler, and the fower with the feed-pump; thus the supply of feed-water will pass through the cylindrical vessel amongst the tubes, and tase up the heat given off by the waste steam, which is passed through the tubes and chambers for that purpose. The second improvement consists of a slight modification of the above, for the purpose of heating air by passing steam or fire through the tubes, the air being in contact with the exterior of the tubes; the patentee gives this apparatus the name of arifor or caloridor. The third improvement relates to a stretching apparatus for stretching the tissues or fabrics as manufactured by machinery. The fourth improvement consists in allowing the waste steam to flow through a pipe into a large square receiver, where it is condensed. The fifth improvement consists in the application to external surfaces, for the purpose of retaining the heat therein, of envelopes or wrappers.

TURN-TABLES

Wicluy Thorold, of Norwich, engineer, for "Improvements in turn-tables."-Granted January 13; Enrolled July 13, 1848.

This specification is very voluminons, as the patentee claims eleven different improvements in the construction of turn-tables. The first relates to an improved centre-pin, which improvement consists in forming on it a projecting flange or collar, the upper gurface of which is an incline or snail plece on which the centre of the table rests. The upper part of the pin has a ratchet-wheel attached, which is level with the surface of the table, and fitted with a click or pall atteched to the table, which prevents it turning round without the table, while, at the same time, the ratchet and pin may be turned round by inserting a spanner in two holes in the upper side of the ratchet, the incline plane at the lower end raising the table when such elevation is required. Secondly, the patentee claims a mode of constructing the centre squares of the top frame, having the rails laid thereon, and independent of the other part of the frame-work. Thirdly, different modes of constructing and arranging the working rollers that form the support of the circumference of the turn-tables. Fourthly, a method of diverting the dust, rain, and all extraneous matters, and also for clearing away such extraneous matters from the circumference. Fifthly, mode of constructing turn-tables without centre-pins, and, consequently, without the usual parts connected with centre-pins and other bearings. For this purpose he employs beams or girders of a stronger description than usual, for supporting the rails and platforms of tables of a corresponding size. Phese girders being attached at each end to the upper bearing-surface of the circumference, which is supported on rollers as usual from the under surface. The axes of these rollers instesd of being attached to a separate frame revolving round the centre-pin, have their axes placed between two concentric belts or rings, which maintain the position of the rollers in a circle equal to the diameter of the bearingsurfaces. The under bearing-surface has its inner circumference rendered truly circular, and forms a surface on which horizontal guides or friction-rollers travel. These rollers are supported from ares pendent from the under-side of the table, and consequently maintain the position of the table concentric with the bearing-surfaces. The sixth improvement consists in a mode of constructing the top frame in several divisions or compartments, and of various kinds of material. The seventh claim is for the exclusive privilege of casting the bearings and all working parts of turn-tables on chills, the same never having been heretofore practised. Eighthly, the method of constructing single-line table in such a manner as to render them more economical than such tables have hitherto been. Ninthly, the constructing larger kinds of turn-tablea, with moveable joints in the beams or girders which support the rails; aloo for the more perfect mode of stopping such tablea at the proper point for effecting ${ }^{\text {a }}$ junction with the line of rails. Tenthly, a method of constructing the larger kinds of turn-tables, so that the power of a locomotive can be applied to the turning of such table when it is loaded with the engine and its tender, and when they require reversing on the line of rails. Lastly, the patentee claims a method of raising and locking the centre of turn-tables, when they require to be turned.

STEAM-BOILERS.

Hogamo Black, of Nottingham, lace-maker, for "impmements in evaporation."-Granted Feloruary 14; Enrolled August 14, 1848.

This invention relates to a mode of supplying water to steam and other boilers, by passing it through a succession of hollow fire-bars, of wrought-iron, brass, copper, or malleable cast-iron, previous to entering the boiler.

The annexed engraving is a plan of a set of fire-bars. a is the supply-pipe, through which the water is forced into the tubular fire-bars, $b b$: the water first enters the middle bars $b^{1} b^{1}$, and, after circulating through the whole series of bars, passes, in a highlyheated state, through the pipes $c c$, into the boiler. It is not essential that the water should be divided into two streams, as the whole supply may enter into one bar, and circulate through the series of bars in the same direction; or more than two divisions of bars may be used in large furnaces. d is a cock on the supply-pipe, to regulate the quantity of water admitted. e is a pipe, furnished with a cock f, which is to be opened when the supply of water to the boiler is not going on; as otherwise the heat of the fire would tend to force the water out of the tubular bars; but by the cock f being opened sufficiently to permit the escape of a small quantity of water, such a circulation will be kept up as will prevent the water being driven out of the bars $b b$, wheu the supply of water to the boiler is stopped.

The above arrangement is suitable either for high or low pressure boilers; but, generally, for low-pressure, a rising pipe is attached, with a small cistern at the upper part, to the supply-pipe a, near the force-pump; and a valve is placed over the upening through which the water enters the cistern;-"the valve preventing the water from flowing from the cistern to the boiler, by the valve being weighted, causes a pressure sufficient to force the water into the pipe a, and thence through the hollow bars $b b$, into the boiler; the quantity admitted to the boiler being regulated by the cock on the pipe a." By means of this arrangement, the water, forced into the pipe a, will flow into the boiler so long as it is required; but any excess will pass up the rising-pipe into the cistern, which is provided with an overflow-pipe: the boiler will thus work, at all times, subject to the pressure of the column of water in the rising-pipe and cistern. It should be stated that there is a valve in the pipe a, between the rising-pipe and the forcepump; which valve opens towards the boiler, and permits the water to flow in that direction, but closes against any flow of water from the boiler.

REVERBERATORY FURNACES.

James Tmonna Cbance, and Edfard Cbance, of Birmingham, for "Imprnements in furnaces, and in the manufacture of glass." Granted February 14 ; Enrolled August 14, 1848.

This invention, as the title imports, relates to improvements in two distinct departments of the manufactures. The first, which refers to reverberatory furnaces, has for its object the greater economy of fuel, by re-conducting the heated gases to the furnace. In the usual construction of such furnaces, the heat from the fire, after striking against the arch above the furnace, and being reverberated downwards, passes off to the chimney. The patentees, instead of thus passing the beat direct into the chimney, render it
further available to heating the furnace by returning the flue and carrying it back over the reverberating arch, and then downwards and to the chimney, whereby the heat in passing througit the return-flue is reverberated downwards upon the top of the reverberating arch of the furnace itself, and thus assists in beating that purtion of the furnace. The second part of the invention consists in a mode of passing sheets of glass into annealing furnaces or kilns. By the ordinary method the glass to be annealed is pushed into the kiln, and before this can be done the glass must lose a great portion of its heat, to enable it to possess sufficient firmness and solidity to bear the pushing strain to which it is subjected. The patentees make in the side wall of the furnace opposite to that where the entrance for the sheets of glass into the furnace is situated, a hole or opening through which the workman passes an instrument which, passing across the furnace and taking hold of the edge of the sheet of glass, pulls and draws it into the kiln; by this mode the temperature may not be so much redaced as when the old mode of pushing is adopted, inasmuch as the strain attending the pulling is considerably less than that of pushing.

RAILWAY-BREAKS.

Robirt Heatr, of Heathfield, Manchester, gentleman, for "certain improvements in the method of applying and working friction breaks to engines and carriages used upon railways."-Granted January 13 ; Eurolled July 13, 1848.

The object of this invention is to bring a heavy weight, attached to a lever, to bear against the friction break, so as to render the action more certain and regular than when manual furce alone is exerted. The lever is placed under the control of the guard, wha, by turning a winch placed in the ordinary manner, may bring the weight to hear upon the peripheriea of the wheels, or remuve it. with very little effort.

Samuel Cunliffe Lister, of Manningham-hall, Bradford, gentlenaan, for "improvements in stopping railway trains and" other carriages, and generally where a lifting power or pressure is required." Granted January 18; Enrolled July 18, 1848.

In this railway-break the resisting force is atmospheric pressure, or the pressure of compressed air, bearing against the break; which, as usual, act on the circumferences of the wheels. The apparatus consiats of an air-chamber, placed below the framing oi the carriage. It is provided with a piston or pistons, to the rods of which are attached the blocks, bearing against the wheels. The air is condensed into the air-chamber by air-punips, worked by the axles of the carriages; and, by means of the pistons and rods, the pressure is communicated to the wheels. The mode to be adopted when the breaks are required to be thrown into action, is for the guard, by means of suitable connecting apparatus, to open the valves, by which means the atmospheric air will be admitted to the pumps, a few strokes of which will then so compress the air within the receiver as to press the breaks against the wheels. Similar effects are produced hy making the pumpa act as exhausters, instead of compressers.

RAILWAY KEYS.

Wililam Hznry Bablow, of Derby, civil engineer, for "Improvements in the manufucture of raikway keys."-Granted January 27; Enrolled July 27, 1848.

In these improved wooden keys, the inconvenience arising from expansion and contraction is attempted to be obviated, by rendering the wood impervious to moisture. This is done hy introducing into the pores of the wood, fatty or other matters that are insoluble in water. The patentee first prepares the keys of the requisite proportions, after which they are subjected to heat for the purpore of expelling the moisture. This he effects by placing them in an oven for 24 hours, which is maintained at a temperature of 218°, after which they are immersed in a solution by preference composed of four gallons of creosote, one gallon of naphtha, $\mathbf{2 4} \mathrm{lb}$. of pitch. and half a gallon of boiled linseed oil. The proportion of this mixture used to impregnate the wood is about one gallon to the cubic foot, and the keys should be immersed therein about $2 \$$ hours. They are then ready for use, unless it be deemed necessary to subject them to the process of compression. Instead of simple immersion in these insoluble matters, the process may be greatly facilitated by exhausting the air from the wood in a close vessel, and afterwards forcing the fat composition in under pressure.

IMPROVEMENTS IN MARINE ENGINES AND PROPELLERS.

Jobipir Maddslay, of the firm of Maudslay, Sons, and Field, of Lambeth, engineers, for "Improvements in obtaining and applying motive power and in the machinery and apparatus employed therein."-Granted March 8; Enrolled September 8, 1848. [Reported in the Mechanicr' Magasine.]

Fig. 1.

Fig. 3.
Fig. 4.

Fig. 5.

1. The new steam propeller which forms the leading subject of Mr. Maudslay's present patent, obviates one of the greatest obstacles that have hitherto stood in the way of steam propelling, whether by means of screw blades or flat hlades, or blades of any other description; viz., the difficulty of shipping and unshipping the propeller. Mr. Maudslay affixes the blades of his propeller (which may, he says, be of "any approved or suitable form") in such a manner to the drivingshaft that the propeller assumes of itself, as it were, the proper angle for propulsion, the instant the driving-shaft is put in motion, and returns as instantly into a neutral or inoperative position when the driving-shaft ceases to rotate.

Fig. 1 represents part of the stern of a vessel fitted with this improved propeller; fig. 2 , a front view of the instrument detached from its place in the ressel; and fig. 3, a sectional plan of the propeller, and its connections on the line $a b$ of fig. 1.
" A ' A^{2} are the blades of the propeller, which are inserted at their inner or narrow ends into sockets $\mathrm{B}^{1} \mathrm{~B}^{2}$, in the end of the propeller-shaft S , in which sockets they are free to turn to the extent to be presently defined. To the shank of each propeller blade there are two toothed segments $\mathrm{C}^{2} \mathbf{C}^{1}, \mathrm{C}^{1} \mathrm{C}^{\perp}$, attached one at the top of each socket, and the other at the bottom of it ; and the two sets of segments work the one into the other within the limits determined by the stops $f f$, so that the propeller-blades must always move ia perfect unison, and can only turn round in their sockets to the extent allowed by the stops. E is a sliding clutch, affixed to the driving-shaft inside of the propeller-blades, which miay be moved sternwards, so as to lay hold of either of two sets of pins, $d d$ and $e e$, which project from the back of the wheels of the innermost propeller-blade A^{2}. F is a vertical rod, by means of which the clutch E, may be worked from the deck of the vessel; this rod terminating at bottom in a screw, which takes into a swivelled nut n, which is attached to one arm of a bell-crank \mathbf{G}, the other arm of which is forked so as to embrace the clutch E, when brought down upon it. The mode in which the propeller, as thus fitted, acts, is as follows :-Supposing the clutch to be disengaged, and the driving-shaft to be put in motion, the blades are immediately thrown out into the angular positions proper for propelling, and they will continue in these positions as long as the shaft continues to rotate. Should occasion arise for backing the vessel, the blades are then socured in their extended positions by interlocking the clutch with the pins $d d$, at the back of the wheels of the innermost blade A^{*}, as represented in fig. 3. When the engine is stopped, and the driving-shaft ceases to rotate, and the clutch is withdrawn, the propeller-blades will, by the action of the water upon them, be turned round in their sockets until they come into a line with the course of the vessel, and present their sharp edges only to the water, as exemplified in fig. 4 ; and, for greater security, they may be made fast in this position by interlocking the clutch E, with the pins $e e$, at the back of the wheels of the innermost blade."

From the instantaneousness with which this peculiarly fixed screw propeller can be turned to account, from its never being required to be raised out of the water, and never offering, when in the water and at rest, any material obstruction to the steering or progression of the vessel, it seems to possess so far a great superiority over
all the screv propellers hitherto in use; but it promises to be more especially advantageous in the case of vessels going long voyages, with emall store of fuel, and employing steam as an auxiliary power only, when the wind is not fair for the use of sails. With a propeller of this deacription, not a minute need be lost in changing from sailing to steaming, or from steaming to sailing, and consequently, not a pound more of fuel need be expended than is absolutely required.
2. The peculiar feature of Mr. Maudslay's new furnace consists in the employment of rotating tubular screw bars, and hence the the name ("Archimedian") by which we (not Mr. Maudslay) have ventured to distinguish it. Fig. 5 is a longitudinal section of the furnace; and fig. 6 a front view.

H H, are the fire-bars, which, instead of being as usual solid fixtures, consist of a series of tubes which are free to revolve in their bearings, are open from end to end, screw-threaded on the outside, and perforated with numerous air-holes. On the front end of each bar there is a broad flange or shoulder f, which projects beyond the general line of the furnace, and has a worm-wheel W, formed upon it. An endless screw-shaft K, which passes across the front of the furnace, and is worked from the engine through the medium of the bevil-wheels N, O, takes into the whole series of worm-wheels \dot{W}, and causes thereby the constant rotation of the fire-bars. L is a throttle-valve hopper by which the coals are supplied to the furnace. As the coals drop from the hopper they fall upon an inclined shoot M, which projects them upon the front end of the furnace bars, whence they are carried gradually forward to the back, by the rotation of the bars and the action of their screwed surfaces on the mass of fuel.

In consequence of the bars being in this constant state of rotation it is almost impossible that either clinkers or ashes should accumulate upon them.

LOCOMOTIVE ENGINES.

Cbables Riterie, of Aberdeen, Scotland, engineer, for "certain Improvements in locomotive engines."-Granted March 2 ; Enrolled September \%, 1848. [Reported in the Mining Journal.]

This invention consists in, and has reference to, certain improvements in locomotive and other engines, carried into practical effect by the means, or through the agency, of certain new or improved mechanical combinations and arrangements, having for their object the simplification of the construction, and the augmentation of the efficiency, of such engines.

The first part consists in the application of a cylinder, or cylinders, with two distinct and separate pistons in each cylinder, to which are affixed piston-rods, for imparting motion to the cranked-axles and driving-wheels fixed thereon, whereby the rocking, or oscillating, motion attending locomotive engines as hitherto constructed, is considerably diminished, and greater steadiness of motion obtained, as, by this arrangement, the momentum of one piston, together with its cranks, and other connections, is at all times exactly balanced, or nearly so, by that of the other, in consequence of the approaching or receding of the pistons to and from each other being always simultaneous. The second part relates to an improved mode of working the slide-valves of locomotive and other engines, by rendering the eccentric, which imparts motion thereto, available for the purpose of reversing the engine. The third part relates to an improved valve for regulating the admission of steam, or other motive power, to the working cylinders of locometive and other engines, and to improvements in safety-valves, to be applied to the boilers of engines, or other reservoirs of power. The fourth part relates to an improved anti-primer, or steam-collector, to be applied to the boilers of steamengiaes. The fifth part relates to an improved self-acting feeding apparatus, for supplying water to the boilers of steam-engines. And the sixth and last part consists in the application to the wheels of locomotive engines of an improved giard, or safetybreak.

The drawing exhibits a side elevation of a locomotive engine, constructed according to this invention. A marks the boiler of the engine ; \mathbf{B}, the driving-wheels fixed upon the crank-axles, C ; the boss, or nave, D, of each of such wheels serving as the crank,
to which one end of the connecting-rod E, is attached by a crankpin, or stud, a, secured to the said nave, and the opposite end of the rod E, is connected to the piston-rod F, in the usual way of forming such connections. G, G, two pistons, to which are attached the rods F, F-the said pistons working steam-tight in the cylinder H , by means of metallic, or other packing. The cylinders are fixed to each side of the boiler. Instead of having the fixed cylinder and connecting-rods, as above described, oscillatingcylinders may be used, with their piston-rods connected directly with the crank-axle; or where fixed cylinders are used, and space is an object, the connecting-rods \mathbf{E}, E, may be dispensed with, by attaching to the piston-rods a cross frame, in which there is a slot formed, into which a crank-pin, or stud, takes. The outer end of the frame works through a guide-hole, fixed to the side of the engine, and thus the rectilinear motion of the piston-rods imparts rotary motion to the crank-axle and driving-wheels fixed thereon. The steam may be admitted through the ports, into the cylinder, by a common slide, in the following manner:-Upon the hindermost driving-axle is fixed an eccentric, upon which is a cam, of the following peculiar construction :-Two rods are fixed to, or formed upon, the said cam; or it may be composed of one double-gabbed rod, one gab being employed for effecting the backward, and the other the forward, motion of the slide-valve, through the intervention of a double lever, which has its fnlcrum upon a stud, fixed to the side of the boiler, as shown by the drawing, and this lever is connected to the slide-valve by a rod c. The length of this lever, as also the angle of inclination of the parts 0,0 , should be in accordance with the lead of the valve-the one or other of the inclined parts O, being caused to act upon the lever by a hand lever, connected to the said cam in any convenient manner, so as to enable the engine-driver to start, reverse, and stop the engine readily, by the same eccentric which gives motion to the slidevalve. By making the end of the valve-rod moveable, as in a slat in the lever P, the steam may be worked expansively at pleasure. Improved spring safety-valves are exhibited by other drawings attached to this specification, from which it will appear there are two forms of construction, showing a valve with a conical-shaped seat, being a flat-valve, and constructed with a flange, which the inventor terms a compensation flange-such flange being let into the seat vertically, about one-sixth of the diameter of the steam-

way in the valve-seat. This valve is weighted by a helical spring, of sufficient power; according to the required pressure of the steam; and when it is intended to be used as a reserve safetyvalve, the spring is to be placed around that part of the stem below the valve-that is to say, within the boiler. The advantage of this form of construction of valve over the ordinary valve is as follows:-As soon as the pressure of the steam raises the valve from its seat, the \#lange, being exposed to the pressure of the steam, presents an increased surface, which compensates for the increasing resistance of the helical sping, until the valve has been raised to a height equal to the area of the steam-way, when it allows the steam, or vapour, to escape freely. When not intended as a reserve safety-valve, this valve may have the spring placed above it. Another valve, which is called an indicator safety-valve, is exhibited, consisting of a piston, which is fitted into a tube, having a spring attached to it-lateral openings being made in the tube, to allow the steam to escape when the piston becomes raised above such openings; and by making the said tube moveable within another one, the "blowing-off" point may be varied at pleasure. An index, like that of a barometer, may then be attached to the stem, or rod, of the piston, and will indicate very slight variations of pressure. A regulating-valve is attached, the construction and arrangement of which is as follows:-There is a short socket-pipe, having two conical valve-seats formed therein, into which the valves fit-such valves being connected together, or formed upon one stem, into which one end of a rod is screwed, or otherwise made fast, and the opposite end of the said rod attached to an eccentric spindle, working through a stuffing-box, to which a hand-lever is fixed-such lever and rod being for the purpose of opening, or closing, the regulator-valve at pleasure.

The anti-primer before-mentioned is formed in the following manner:-Two distinct and separate plates of sheet metal, the outer edges of which are securely fixed to the inside of the boiler. by rivetting, or otherwise, the said plates being inclined towards the centre of the boiler, care being taken to leave a space between the inner edges of the two plates, so as to reserve a channel lengthwise of the boiler, for the passage of steam into the steamchamber thus formed, and within, or in connection with which the regulating-valve, is situate the steam-pipes which lead to the cylinders being connected thereto. Instead of forming the anti-primer of two separate strips, or pieces, of metal, the same result may be obtained by forming it of one strip, or piece, of metal, of the shape shown-the said plate being pierced with an infinite number of small holes. The construction and arrangement of the feedingapparstus are as follows:-There is a metal cylinder, which should be bored perfectly true and cylindrical, fitted with a piston, the rod of such piston forming the plunger, or ram, of the cold water pump, the barrel of which serves as a compound gland for the stuffing-box of the cylinder and pump-barrel. The slide-valve, Which may be made to cover or uncover the ports, or passages, in the cylinder, by the opposite sides of the piston coming into contact with the levers, which are connected to the slide-valve by a rod or rods. There are spherical-valves (the seats of which are knife-edged), formed within the spherical flange pieces, which have openings for establishing a communication between the tender, the pomp-barrel, and the steam-boiler, as exhibited. The modus operandi of this feeding-apparatus is as follows:-Upon steam being admitted from the boiler into the cylinder, through the steam-port, or passage, the piston will be acted upon, and the ram, or plunger, be withdrawn, the water from the tenders will raise the valve, and enter the barrel, to supply the space previously occupied by the plunger, or ram; by this time the piston will have
acted upon the lever, so as to cause the slide-valve to uncover the port, or passage, and cover the port, or passage, P_{2}, thereby allowing the steam on the other side of the piston to escape through the exhaust-pipe; the piston will now be impelled in a contrary direction, and the plunger, or ram, entering the barrel, will cause the one valve to be closed, and the other to be opened by pressure of the water therein, which as the plunger, or ram, advances, will be forced into the boiler, to supply the deficiency of that water which has been converted into steam ; $\mathbf{R}_{1}, \mathbf{R}_{1}$, mark whoel-guards, or safety-breake, which are each composed of a atrong band, or strap, of iron, placed like a splasher over the wheel to be protected; the inner surface of the said guard, or break, is formed of the converse shape to that of the tyre, and fixed securely to the framing, or boiler, or both, as near to the top of the wheel as the play of the bearing-springs will admit of, and as near to the back of each wheel as possible, without touching it.

To each side of the engine a bar of iron is placed, and securely fixed in a longitudinal direction-such arrangement being intended to preserve such wheels in a vertical position, and thereby support the engine, in the event of the axles breaking, and to operate at the same time as a break, to retard the motion of the engine, in the event of any such accident. Another improvement in locomotive engines consists in arranging that part of the boiler known as the fire-box, in such manner that the height of the water in this part of the boiler shall at all times be at a proper level, which is effected by what is called an anti-fluctuator, which is a separate partition-plate across the water space, or an extension of the plate to which the tubes are fixed as shown; and, by causing the water to be fed to the boiler at that part which surrounds the fire, it will appear evident that the barrel of the boiler can only receive its supply of water from that which overflows the said partition-plate. Having described the nature of his invention, the patentee remarks, that be does not claim the exclusive use of any of the separate parts above-mentioned and referred to, when considered per se and apart from the purposes of the said invention, as hereinbefore set forth and described.

Improvements in Perforating Glass for Ventilation. Patented by Mr. J. Lockread, of Milton, Gravesend.-In forming plates, sheets, lenses, or other forms of glass, the glass, when in a semi-fluid state, is poured from the pot on to the casting-tablethe stream being followed by a pressure-roller, for the purpose of flattening it ; and, while the glass is in a plastic state, a metal mould, with teeth or projections on its under-side, according to the pattern required, is applied to the surface, forcibly pressed down, and left in that position until the glass has set; after which it is to be removed, and the glass will be found to be perforated, in corresponding shapes to the projections on the mould. To effect this in the most complete manner, a screw-press, made to the size of the casting-table, is used, very similar to a common copyingpress, and different pattern-moulds being fixed to the lower end of the screw, and worked by a cross handle.

Improvements in obtainino Oxide of Zinc from the Ore. Patented by M. C. A. F. Rochaz, of Paris.-By this process, the employment of retorts, as by the old method, is dispensed with, the fuel and labour economised, the operation completely independent of the skill of the workman, and the loss of metal, incidental to the old method, prevented. Ores of lead and zinc may
be operated on at once. The principal feature consists in the reduction of the native sulphuret of zinc (blende), and of the carbonates, oxides, and silicates of zinc, and sulphurets and oxides of lead, by the action of the reducing gases of a blast-furnace, by which the scoria, or slag, is fused, and the zinc volatilised; the vapours are then condensed, and conducted into a reservoir, situated over the mouth of the furnace, and heated by the gases therefrom. The furnace having been heated to the required temperature by the combustion of fuel alone, a charge of any kind of the above zinc ores, mixed with a suitable flux, is introduced into the charging aperture, and, by means of a cover above, and a aliding plate below, none of the gases are allowed to escape. The charge thus falls upon a layer of incandescent fuel; a layer of fuel is then poured upon the ore; then another charge of ore, until the furnace is full, and it is to be replenished as the charge ginks below a certain depth. The zinc is thus volatilised by the heat, and the scoria falls into the lower part of the furnace; the gases and volatilised zinc pass through proper openings through a hydraulic main, and there deposit any ainc carried with them.

BRITISH ASSOCIATION.

Roports read at the Merting held at Swansea, Amgut, 1848. Railfay Stattiticg.
"Paeta bearting on the Progreas of the Railway Systom." By Mr. W. Habding.

The modern railway system of Rurope may be said to date from 1830, When the constraction, by Mr. G. Stephenton, of the Liverpool and Man. chester Railway, with its locomotive eoginea, was completed. After that date we beard no more of anch prophecies as the following (from the Quarterly Revievo, in 1825), which it is not useless to record as a lesson of cantion to us fur the future:-"As to those perions who speculate on making rail. wass generally tbroughout the kingdom, and superieding all the canals, all the wagoni, mails, and atage-cosches, post-chainea, and, in abort, every other mode of conveyance by land and by water, we deem them and their visionary schemes unworthy of notice. What, for instance, can be more palpably abrurd and ridiculow than the following paragraph,"-in which a prospect is beld out of locomotives travelling twice at fat as atage-conches. "We should as soon," adds the reviewer, "expect the people of Wool wich to suffer themselves to be ared off $^{\text {appon one of Congreve's ricochet rocketa, as truat }}$ themselves to the mercy of such a machine, going at such a rate." The modern railway ayatem has, however, not only done this, but it has given rise to new habits in the present generation, and has proved to be the great mechanical invention of the nineteenth century, at the steam-engine wat of the eighteenth. As it is atill in its infancy, it is eapecially the province of statiatical inquirg to watch ita growth, so that on the one band timely remedies may be applied to its defects, and on the other free scope may be given to ite beneficinl tendencies. Valuzble papers have been contributed by Measrs. Laing, Porter, Grabam, and others, analysing the traffic on railway: daring the infancy of the aystem to the year 1843. Shortly before that period there had been a pauce in railways. During two yoara, only five milea had been sanctioned, but the period which has since elapued comprisen the memorable mania years of 1845 and 1846. Under this excitement intelligence and emulation have been atimulated among the managera of railwaya to the atmost, and the syatem hat rapidly adranced. The consolidation of lines under a few great companies, by the procens atyled amalgamation, has proceeded;--the atmospheric, an entirely new system of traction, has boen brought forward;-the electric telegraph, conveying intelligence at the rate of 280,000 miles a second, bas been widely introduced;-express trains, traveling at nearly the bighest attainable apeedi, bave been eutablished,and the length of railways in operation bas boen doubled. It therefore becomes a matter of interest to inquire to what the results of so active a period point. Have low faret answered?-Has the third-class traffic, the most important to the halk of the people, been encouraged, and has it been foand wise, not only for the usera but for the owners of railways, to encourage it or the reverse?-Hen the increase of apeed been succeaful, and are we likely to travel fanter or slower hereafter?-How have tbe receipto kept up while the length of railway has been donhled?-Did the first 2,000 miles get the cream of the traffic, as has often been thought, and bas the average roceipt per mile consequently fallen of ? - Shoald the experience of the peat, in short, give as confidence in argiog on the system at the extraordinary rate at which we are now doing it, or not? In the following inventigation and collection of fects it has been attempted to throw some light upon these points;-the recent publication of the official railway returns for 1846 and 1847 affording peculiar facilities for the purpose. The following paper refert to Eoglish, Scotch, and Welsh lines only,-the Iribh lines are excluded, the economical condition of Ireland being different from that of this conntry, and there being but few railwaye open in that country :-
Comparative Lengthe of Rainoay open in 1843 \& 1847 and Receipts thereon.

[^38]After making the necesury corrections in the above fgures, the average receipt per mile of railway in 1842 were 2,489 .; in $1847,2,5961$. We therefore arrive at the important fact that, although the mileage of our lines has been donbled, the receipts have been more than doabled. This mast be regarded as a favourable general feature in the state of railways. There was mach reason to fear that, at the firat railwaya ran between the great towns or traversed the manufacturing districta, the railwaya wbich were neat opened would show a great falling off in receipts. Hitherto, then, we Gnd that this is not so,-s fact which may give ut confidence as regarde the great length of railway which has been sanctioned by parliement but which is not yet open.

Lines sametioned but not open.-The length of railway sanctioned by parlisment at the commencement of 1848 , but not then open, was 7,150 miles. A considerable portion of this is in progress, more or leas rapid. On the Ist of May 1847, 5,209 miles were returned as in progrest, on which 218,792 persons ware employed, or 42 per mile.* These new railways are principally designed for the accommodation of the agricultural parte of the country. We will presently refer to the prospects of railway in such districts. When the railwaye now in contemplation are completed, and it is probsble that the greater portion will be 20 in the course of the next five yeurs, we shall have upwards of 10,000 miles of railway open, on which, judging from the nambers employed on lines now open, (viz., 14 per mile), 140,000 persons will be permanently employed, at good waget,-representing, at fre to a family, three quarters of a million of the gross population. The importance of this addition to our internal communications will be appreciated when it it remembered that there are only about 4,000 milen of inland navigation and 30,000 miles of turnpike road open for traffic in the country.

Analysit of Trafic.-General Features.-The gross traffic for the gear ending June 30, 1847, was, as we have seen, $8,366,000$. Tbere were conveyed during that year, from the returns of the Board of Trade, t in round numbera, $7,000,000$ tona of merchandise and gooda, $8,000,000$ tons of coal, 500,000 horned cattle, $1,500,000$ sheep, and 100,000 horses.

Of the gross grom, $8,366,0001$., the pasaenger recelpts were
The recelpts from all other moutces-goods, catte, cartiages, parcelis,
The recelpts from all other mources-8oods, cattle, cartiages, pareele,
malls, duc. ...
$25,024,000$
$0,842,000$
Total $\cdots \quad \in \overline{8,806,000}$
In every 1001. of receipta, the passenger trafic therefore forms 60 per cent, the traffic receipt from other sources 40 . In 1842 these proportions were as 64 to 36. The proportions of traffic receipts from other sourcea than pasaengera (being principally gooda and cattle traffic) have thus increased since 1842 as 10 to 36 , or 11 per cent. The total number of pasengers carried in the year (ending June 30) 1847 was $47,484,134$, as compared with, in 1842, 22,403,478. The average distance travelled by each pasenger was, in 1842,13 miles; in 1847 it was 16 miles. The numbers and proportions of clanges were

Firet-clare
Becond-cleas Third-clase

..
".

In 1847.	In 1842.
\cdots	142
$\#$	258.3
\cdots	47.6

Thns, the third-clese pasengers (which bave increased in number since 1842. from $6,000,000$ anoually to $21,000,000$, now form nearly half of the whole number travelling, whereat in 1842 they formed only about one-thind. Only one-third of the third-clast pasaengera have availed themselves of the parlismentary trains, arbitrarily (and, as it appeara to me, unfairly) imposed upon rallvay companies in 1844. The following table, comparing the fare of the metropolitan railways in the year ending June 1843, with those in the gear ending June 1847, thow the great reduction which has taken place in fares during the last four yeart. To make the comparison more appreciable, the farea are taken as for 100 milen in pence.

Name of Rallway.l	Fare for 100 Miles.					
	lat Chama.		2pd Clase.		8nd Clame	
	1848.	184.	1843 .	1847.	1848	180.
London and North-Western	834.8	$218 \cdot 1$	241.1	144.6	181.2	9\%8
Great Western	$203 \cdot 1$	$274 \cdot 4$	208.5	$187 \cdot 8$	$118 \cdot 8$	1000
Loudon and 8outh-Western	812.0	246.0	210.0	168.0	120.0	980
Rastern Counties ..	294.1	210.0	227.4	141.5	$164 \cdot 7$	923
Northern and Easters	2174	-	166*	-	110.9	\rightarrow
South-Eastern	227.0	2140	15t50	1620	87.5	90.
London and Brighton	850.0	263.0	2280	171.0	1500	1000
Average Difference per cen ${ }^{\text {t. }}$.	308.5	287.4 21.6	210.3	$160-8$ 28.8	1288	9*7

This reduction in farea, conpled with the increase in the number of traim, and the apeed of travelling, must be regarded as the principal canse of the great increase of the number of pansengern ince 1843 .

We heve already seen that the numbert in 1847 and 1843 are as $47,484,134$ to $22,403,478$. If we take into account the number of miles opened at thout dates respectively, the annul number per mile was, in 1842, 11,772, and in 1847, 14,806.

* In this retura the number of miles returned as in progreas are more theo thow reall in construction, the puaiber of men employed per mile ts lems than the tuath.
Theet returna are not complate, and wey reqnire some corraction, in respect of the
 uver more than once.

The proportion of third-class passengers has, we have seen, thus matibfectorily increased between 1842 and 1847. The third-class traffic has, howrerer, developed ithelf very differently on different lines; and it may be well to inquire into this. The atatement suhjoined abows the third-clans traffic of two metropolitan companies (the Bastern Counties and the Great Weatern)-iwo North of England companies (the Lanceshire and Yorkshire and the Newcastio and Berwick)-and two Scotch companies (the Bdin. hurgh and Glagen and the Glagow and Greenock).

Year ending June 30, 1847.

Neme of Rallwy.			$\begin{aligned} & \text { Length } \\ & \text { mot } \\ & \text { milet. } \end{aligned}$	Number of Third-clane Paskenger cooreyed.	Proportion in every Hundred of Third.claga Pascengers.
Olaggow, Palaley, and Greanock Newcastie sad Berwick Ridinburgh and Glangow Lamenahire and Yurkabire Midiand		\because	36	957.644 944,891	83.8 79.5
		\because	48	8486,025	$72 \cdot 8$
		.	109	2.0913,624	723
		.	285	2,366,892	65.4
Eantern Countien Greal Weatern	\cdots	\because	177 2409	$1,044.158$ 419,663	60.8 14.8
	-	-	2402	419,603	14.6

From this it appears that while the Great Wentern Company, on a line 241 milea long, have only carried 419,663 , the Edinburgh and Glangow Company, on a line 46 miles long, have carried 836,025 ; the Midland Company, 285 miles long, $2,366,802$; and that while on the Great Weatern only 15 out of every 100 paseengers conveyed are third-class, on the Rastern Counties 50 out of epery 100 , and on the Glasgow, Paisley, and Greenock, 83 out of every 100 are third-class passeagers. Athough it is true that the different character of the population and other circumatances will affect to some extent the relative number of third-clase pasengers on different lines, the disparity here is to great that we can come to no other conclusion than that The arragements of such a line as the Great Western at to third-clas pas. eengers must be such as to preclude hundrede of thousands of third-class pessengers yearly from using the railway who, with greater facilities, would be glad to ase it. I say this with confidence, because manager of the Glasgow and Greenock Railway, where the tbird-clam system has been more developed than on any line in tbe conntry (and where we carried passengera as a proft for one farthing a mile), I had an opportunity of obeerving the real advantage and comfort which very cheap travelling is to the working elas. As the results of the working of that line afforded a remarkable instance of the effects of low fares, I bave thought that it might not be unin. teresting to record tbem. The River Clyde runs beside the Glasgow, Paisley, and Greenock Railray, which is 23 miles long. The steamboats have long aforded an excellent mode of transport betweon Glangow and Greenock, the fares by boat before the railway opened being from ls to 2 s ., and the time occupied was about two hours. Glasgow, with a popnlation of 274,000 , was at one end of the line, Greenock, with a population of 36,000 , at the other end of the line, and varions summer watering places lie at the mouth of the Clyde, below Greenoct. On the line were Paisley (population. 60,000) and Port Glagow (population 7,000). Between Glagnw and Paialey was a canal on which there were pussenger-boate drawn by borses at a speed of 6 miles per hour. These facilities gave rise to a great traffic before the railway was opened,- the yearly number travelling along the course of the railway being $1,185,340$, and the average fare 1s. $4 d$. Notwithatending thit, after the railway was opened (in 1843) the numbers trarelling by all means of conveyance were found to exceed $2,000,000$, or to have increased 100 per cent., the average fare having in the mean time fallen to 10 d . Tbis was the grome result; but the fores of the railway (originally 28. 6d. firat-clase and 1s. 6d. second-class for 23 miles) were varied from time to time; and as I closely observed the effects of these variations, having caused an account to le talien of the number traveiling by ateamboat and canal at well as by rail. wey, it may be well to state the reaults of these variations of fares.

First alderation.-In 1842, uncovered, open, third-clase carriagea, at a fare of 64. for the 23 miles (or about $\frac{1 d}{}$. per mile), were introduced on the railway between Glangow and Greenock, whereapon the annual number of railway passengers between those placesincreased 224,000 , being an increase of 32 per cent. of the total number travelling (either by railway or steam. boat). The nutober of first and second-class fell off at the same time 30 per cent., the passengers baving transferred themselven from the higher clas. carriages into the open third-clast carriages, tempted by the difference of fares between $\frac{4}{d} d$. per wile and $\frac{1 d}{}$ per mile. The gross receipts, howeyer, incressed aimultaneoualy 15 per cent.; the working expenses on the other hand, did not appreciably increase, altbough the average number of paseengers per train increased from 72 to 117.-Second alleration. The thirdclaps fares were subsequently (in 1843) raised from 6d. to ls. with the hope of increasing the revenue. The whole number travelling by railway and ateamboat immediately fell ofr 18 per cent. The first and second clasi rail. way pasaengers incyessed by 10 per cent., but the gross receipts fell off more thas 10 per cent. The effect was also tried of making the third-clays carriages more comfortable by covering them in. This was found not to increase the uamber trapelling, but it did reduce the number of first and second ciass passengers by 16 per cent., and therefore caused considerable lose to the company. The same experiment wat repeated on the second-class carliages: they were made more comfortable by inverting glan windowa
instead of wooden shatters, and by carrying the interior partition higher. The number of first-class passengert ahortly fell off by 12 per cent., hut beyond this the second-clase pasengers did not appreciably increase; this experiment, therefore, elso resulted in loss. The results of these experiments were then-lat. That a ruduction of fares to $\mathbf{t d}$. per mile even from so low a rate as d d. per mile increased the number travelling by nearly a quarter of a million or by two-thirds of the whole population of the district. As these people were generally of the leas affiuent clases, it appears that they were actually drawn out of the noisome streets of Giagow to the North of the Clyde by the temptation of a very low fara, and immediately that the fare was raised they were driven back again into the city. 2nd. That under the circumstances of the line in question, cheap and rapid tra relling increased the number travelling; but improving the lower-priced carriaget did not, however, appear to act in the aame way, but merely tempted passengera from the higher clans carriages-those from the secondclasp into the third-clans carriages, and from the first 20 the second cless:of course it by zo means followe that similar resulte would easue on lines in other localities; each case must be determined by its peculiar conditions. 3rd. That no limit can be aagigned to the number of travellers which cheapening and quickeniog the means of conreyance will create. The introduction of the railway, even where steamboate already afforded a most pleanant, rapid, and cheap communication, increased, we see, the number travelling from 110,000 to $2,000,000-2,000,000$ being five times the whole population of the district. I doubt whether either at home or abroad to large a proportion of travellers to the whole population is to be found. The traftic between Glasgow and Paisley is probably the most remarkable instance on record of the increate of travelling cansed by increased facilities. In 1814 there was only one conch a week between Glaggow and Painley, cona veying about 2,000 persons per annum; if we multiply this by 5 to allow for the greater number of gige and private vehicles then in ase, we only get 10,000 passengern per annum conveyed between the two places. In 1842 the numbers travelling by public conveyance between Glangow and Paisley were upwards of 900,000 . Now as the popalation between 1814 and 1842 had only about doubled itelf, while the traffic, wa wee, had multiplied ittelf ninety-fold, it follows that the increased facilities of transport had increased the number travelling relatively to the population 45 times: thas is to any, that for every journey which an inhabitunt of Glasgow or Paisley took in 1814 be took 45 journeyt in 1843 . These reaulta, I conceive, place it heyond a doubt that we should spare no effort to make railway travelting cheap and within the reach of all classes.

Now, there is only one true way of enconraging cheap travelling, and that is by keeping down the original cost, and the annual expenses of railways. All the other contrivances which the publis are inclined to truat, such as legislative restriction on profits, and to on, are mere quackery. Even competition is inapplicable to railwaya, and is not to be relied on.* Mr. ${ }^{\circ}$. Stephenson, the engineer, put the whole case into one sentence when be said, to "hare combination is practicable-competition is imponible." The experience of all railway competition shows that this is true; when, taerefore, under the plea of competition unnecesaary outlay in being incurred, the public may reat asared that they will ultimately suffer for it in the chargea shey will have to pay.

Mr. Hill Williams, the actuary, has compiled some naeful tablen,t to show arithmetically "how far a remunerative charge for the conveyance of passengers and goods on railways is modified by the original cost" and other circumstances.

The following is an extract showing the effect of incrensed cont of con-straction.-

Total yearly trafic, number of pasengers or tons of goods, 90,000 .

	Original cost of Comatruction E 15,000 per mile.	Orginal cont of Construction © 20,000 per mile.	Orfginal cost of Construction c25,000 per mile.	Orfgiual cont of Construction <31,000 per mitie.
Fixed charge per mile on evert pamenger or ton of goods it quialte in order to glve common interent, s p. cent, on the onthy	$\frac{d}{100}$	$\frac{d}{1-83}$	$\underset{1 \cdot 66}{d}$	$\underset{200}{d .}$

We nee from this that the fixed charge on every ton of goods or pasenger must average $2 d$. per mile to return common interest on a railwiy costing 30,000 ., whereas if the railmay cost $20,000 \mathrm{~L}$ I $1 d$. per mile would be sufin. cient, and if it cont $15,000 \mathrm{~L}$ ld. per mile would be sufficient.
After a series of similar observations, the anthor conclades as follows:The result of the preceding inquiry is, it appears to me, on the whole satisfactory. The railway aystem bas doubled itself in the last three yeara. Fares have been greatly reduced. Third-class pasengers bave largely increased. The importance and value of the trafice in goods and cattle rela tively to the pastenger trafic bave become more apparent. The number of trains is greater and the apeed of some of the traina has been accelerated; and all this has been effected without any falling off in the average receipta on each mile of railway in working, but with an increase probably sufficien to meet the increase of the working expenset attendant on the increased accommodation now afforded by railways: whatever falling off in dividende

* Erdience Belect Committee on Rallway Act Fonctinents, 1846

.there may have been, is, therefore, to be attributed in a general view of the subject to the capitalization of loans and the creation of fictitions capital by the purchase of railways at preminme, and, therefore, at aums beyond what they actually cost, These being prafitable speculations when ohares were high, were pushed to such an extent as now to press severely on the ofiginal stare capital of railway companies. The great evil of the last three years is the extraragant outlay of money which has taken place; an outlay which, instead of being checked by the leginlatore, bas been encouraged to the atmost by the mode of inquiry adopted. This has inficted ou the railway syatem a burden which it will never be able to throw off, and which the public will always have to bear with them in a higher rate of charge for conveyance than would with common prudence have been necessary. It only remaias to stop the extravagance with atrong hand. The very existence of the railway companies depends on the economy they can pracsise in making and working their railways; and nothing which on the face of it involves incressed ontlay, be it diveraity of gang and its consequence the mixed gauge, or the more planaible plea of competition, should be countenanced either by railway companies or by the legislature, if we wish to secure for ourselves the full fruits of that admirable invention which England and English engineers who have followed in the ateps of George Stephenson have given to the world.

AnBmonetry.

"Report of further progress of Anemometrical Researches." By Profeanor Prillifs.

Referring to the report on this subject presented to the Southampton Meeting, the author recapitulated the steps of the inveatigation by which be had been conducted to propose the evaporation of water at a measure of the velocity of air-movement. In the former researches, the conclusion which may be drawn è priori from Dr. Apjohn's formula for the relation of the temperature of the dew point to that of an evaporating sarface was rerified; and the rate of cooling of a wet bulb in the open air was fond to be cat. par. simply proportional to $t-t^{\prime}$ (t being the temperature of the air, t that of an evaporating surface). The air-movement was fonnd to affect the rate of cooling nearly in proportion to the square root of the velocity; and thas by simply observing the rate of cooling of a wet hulb exposed to a current of air, and also the value of t - t, the velocity of the air current becomes easily calculable. But this instrament is only an anemoscope, of extreme delicacy and variona applicability indeed, but incapable of being converted to a self-registering anemometer.-It appeared to the anthor probable that the rate of evoporation followed nearly or exactly the same law as the rate of cooling,-the same reasoning in fact applying to each case. This was tested by experiment in a great variety of ways, with instruments of extremely various forms, and with velocities of air-movement from 400 yards to 27,000 yards in the hour. The velocities of the wind were measured by a very lightly-poised machine anemometer of Dr. Robinson's construction, but without any wheel-work, the revolutions being counted by the observer, -In the course of these experiments some apparently anomalous circumstances in the rate of evaporation occurred to the author; but thene he hopes to be able to interpret by further careful reearch, and finally to present in the compass of a few cubic inchea an anemometer specially suited to measure and record the low velocities of wind, and furnish a useful complement to the larger machises already esteemed to be so important in meteorology.

Heiget of Waveg.

"On the Velocily and Height of Woves," as obmerved by Capt. Stanley; being the reault of experiments made on board H.M.S. Rettlemake.

The method adopted for the determination of the length and speed of the sea was to veer a spar astern by the marked lead line, when the ship was going dead before the wind and aea, until the spar was on the creat of one wave, while the ship's stern was on the crest of the preceding one. After 2 few trials, it was found that when the sea was at all regular, this distance could be ohtained within two or three fathoms, when the length of wave was 50. In order to ascertain the apeed of the sea, the time was noted when the creat of the advancing wave passed the spar antern, and also the time when it reached the ahip; and by taking a number of observations, there is every reaton to believe renalta have beeu obtained not very far from the truth. The officer noting the time in all these observations baving only to register the indications of the watch when the observer called "Stop," had no bias to induce him to make the differences more regular. For measuring the beight of the waves, a plan recommended by Mra. Somerville was adopted-which Capt. Stanley has tried for ten jeara with great auccess. When the ship is in the trough of the ses, the person observing ascends the rigging ontil he can just see the crest of the coming wave on with the horizon, and the beight of his eye above the ship's water-line will give a very fair measure of the difference of level between the creat and hollow of a sea. Of course, in all these observations, the mean of a great many have been taken; for even when the sea is most regular, apparently there is a change in the height of the individoal waves. In order to show how closely the Afferent results came, observations on different deys are given from which hey were deduced,-

Experiment, No. 1.
Length of sea, 55 fathoms; speed of ship, $7 \cdot 2$ knots; height of wave, 22 feet; time the wave took in pasing from spar to atern, 10 secoads; speed of sees deduced, 27^{\prime} per hour.

Erperiment, No. 2.
Tines obeerved of wite pacelag frome aper to stern.
soc.
87
7.0

Experiment, No. 5.
Leagth of wave, 38 fathown
Speed of ohip, 6 knotr.
Speed of wave deduced, $22 \cdot 1$ nanticul miles per bour.
Experiment, No. 6.

Summary of Obsereations.

总 1847.								Remarks.
April		5	$\begin{aligned} \mathrm{K} \text { nots } \\ 7 \cdot 2 \end{aligned}$	Feet, 22	$\underset{55}{\mathrm{Fmm}_{51}}$	Seconds	$\begin{aligned} & K_{\text {notar }}^{27} \end{aligned}$	$\left\{\begin{array}{c}\text { Ship before the Wind, with a } \\ \text { beary following Sera. }\end{array}\right.$
23	8	5	8.0	20	43	8.0	24.5	Ditso.
24	6	4	6.0	20	50	10.0	24.0	Ditto.
24	8	4	$5 \cdot 0$		35 to40	$7 \cdot 8$	22.1	Sas irregular.
28		4	6.0		33	7.4	22.1	Heary followiog See.
$\stackrel{\mathrm{Mgy}}{2}$	6	(4.5)	7.0	22	67	$10 \cdot 4$	28.2	$\left\{\begin{array}{c}\text { Sea irregular-obnerrations mat } \\ \text { very good in consequence. }\end{array}\right.$
8	7	6	78	17	85	8.9	22.	FFind and sea m llttle on jort

Note.-The nambers denoting the strength of the wind are those aned by Admolral Beaufort.

Atmoaplinic Watal.
 "Report en Atmaspheric Waves." By Mr. Biat.

 The report consists of three parts:-The arrat denoting the information we now posecess relative to such waves as bave been determised: the secood treatiog of the berometric corves, which reanlt from the crossing of the porth-westerly and sonth-westerly waven, the two principal syalems common to Enrope-the most prominent subject being that particular curve known as the "great symmetrical wave of November:" and the third embodying the resulta that have been obtaioed dering the last year illuatrative of the aymmetry of the "great ware," more particularly the Locality of greatont symmetry and the departure from symmetry in certain directiona. Uader the second head, the anthor has thrown together the result of bis inquiries into the forms presented by the berometric carves at cortain stations, and has devoted attention to the symmetrical carre of November as it has been observed at the Obeervatory at Greenwich in the jears 1841 to 1845. In coonection with this sabject, the author remarked wit has been assumed that the symmetrical wave of November consists of fee subordinate waves giving rise to the five maxima which characterise it, the central maximum forming the apex of the symmetrical corre, the ramainder being subordinate thereto. ("Asnociation Roports," 1846, p. 125.) Upon a close inapection of the curves of the "great wave" as laid down from the Greenwich observations, sir subordinate maxima can be traced, three on each side the central apez, which in all the years is by fir the most prominent. The mean curve leads to the conclusion that Greenwich is not the point of greatest symmetry, its closing portion being depresued more than two inches below the commencement. The next featore is the decided rise of the mercurial column during a period of sisty-eight hours preceding the tranait of the creat : the value of this rise is 7 inch or about 010 inch per hour. The fall is not so precipitous; the barometer appears to be kept up in this locality by the first subordinate maximum succeeding the crent, so that at the epoch of sixty-eight hours a Ner trassit the ralue of the reading is more than $£$ inches higher than at sixty-eight hoors before transit. At eighty hourn after transit a precipitous fall commences, which continnes doring the next twenty-four hours, the mereary sinking 36 inch or about 015 per hour. The fall afterwards continues with two slight interroptions, anawering to the subordinate maxima, outil the close of the wave 148 hours after transit." The peculiar featores of the mean curve, especially the difference between the initial and terminal readings, 241 inch, combined with certain featnres exhibited by the "great ware" at its last retorn, hat suggested the possibility of expressing numerically the departure from symmetry for any station that may be welected. This departure from symmetry is strikingly manifested by the observations of 1846, ospecially as wo proceed from Brassels, the European vodal point, towards Ireland and the north-weat of Scotiand, and is well seen in the series of carves illnatrating the anthor's report in the last rolume of the "Association Reports." Three principal maxima, characterise these corres on the 31t, the 9ih, and the 1ath of November; and the differences of altitade botween those of the sth and 12th havo beeo omployed to indicate the deviation from symmetry in the direction already alloded to. The discnssion of theso differences and the results deduced from them form the third part of the report. The anthor has laid down on a map of the British leles theso differences, and from them constructed a chart of the lines of equal deviation from symmetry: these lines rage from $\cdot \mathbf{1 0 0}$ incb-Which passes north-west of the Chandel lelardh, proceeds towards the Isle of Wight, akirts the shores of Snseex and Kent, and plases through Ramegate-to 550 inch, which pasaes throogh Limerick, is slightly carred as it croases Ireland, and proceeds pearly in a straight line across the Seottish Ielands to the north-west of Great Britain. The valnes of these lines express the depression of the maximum of the 5th below that of the 12th. Among there lines the zuthor regards the direction of that representing $2 \mu 10$ inch as the beat delermined. It appears to have passed near and to the west of Helstone, this station exhibiting a deviation of 258 inch; it then proceeded along the const of Cornwall and Devonshire, crossed the Bristol Channel, entered Wales, and continued its course across Glamorganshire towards Brecon, Which it left to the nortb-west as it rather abroptly changed its direction and proceeded towards Gloncester, which it paseed through. It appeart to bave nadergone considerable inflection as it traversed the central parts of England, rising again towards Nottingham, which in removed 0.0 inch from it to the west: it finally left the shores of England at the sontheantern angle of Yorkshire and entered on the German Ocean. The author solicited attention to a featnre which characterises all these lines, mpeciully the one just traced, riz., the decided inflection they undergo as they pase over tha land. The chart exbibits two syetems of infection, one being pecaliar to Ireland and England; the general direction of the lises udergoing a change as the line of greatest aymmetry is approuched, the infection being governed apparently by the masses of land : and the other to Soollead, the inflection being very decided over the land northward of the Prith of Porth. From the single instance discussed by the author, the reanit appears to be that the aymmetry of the barometric corve is departed from in a greater degree at inland stations, a greater difference between the points selected being exhibited at such stationa than at the sea coast on either sido. The report closed with some remarks on the non-persistency of the direction of these lines of deviation from symmetry, and an the high probability that they revolve about the nodal point of the two priacipal syatems of atmospheric waves, Brussels.
Healy or Towal.

"Report on the A ir and Water of Towns," By Dr, Smitr.
In commencing his report the author says, it has long been belioved that the alr and the water have the most important inficence on our own healith, -and saperotitions have therefore constantly atiached themselves to receptacles of the one and emanations of the other. The town has always been fonnd to diffor from the country: this genoral feeling is a more deoiaive oxperiment than any that can be made in a laborntory. The anthor proceeds to examine all the wources from which the air or the water can be contaminated. The various manafactores of large towns, the necomary conditions to which the inhabitants are subjected, and the deteriorating infuences of man himself are oxplained. If alr be passed through water a certain amount of the organic matter poured of from the langs is to be dotected in it. By continuing this experiment for three months, Dr. Smith detected salphario acid, chlorine, and a sabotance resembling im: pure albumen. These substances are conatantly being condensed opon cold bodies, and in a warm atmosphere the albuminous matter vory 2000 patrifies and emits disagreenble oulours. The change which this substanco undergoes by oxidation, \&c., is dext examined,-and shown to give rise to carbonic acid, ammonia, anlphuretted hydrogen, and probably other gases.
The ammonia, generated fortunately from the sume sonrces as the salphoretted hydrogen, materially modifes its infleences. The consequences of the varying pressure of the atmosphere have been observed; and it is shown that the exhalations of eewers, \&cc., are poured out in abondance from every outlet when the barometric pressure is lowered. By collectlog the moisture of a crowded room by means of cold glasves and aleo dow in the open air, it was found that one was thick, oily, and smelling of perspiration, capable of decomposition and production of animalcules and conferrso,bnt the dew beautifully clear and limpid. Large quantities of rain-water bave frequentiy been collected and examined by $\mathbf{D r}$. 8mith; and he says, -1 am now satisfied that dust really comes down with the porest rain, and that it is simply coal ashes. No doubt this accounta for the quantity of sulphites and chlorides in the rain, and for the soot, which are the chief ingredients. The rain is also often alkaline,-arising probably from the ammonia of the burnt coal, which is no doubt a valnable agent for nentralising the solphnric acid to often found. The rain-water of Manchester is about $2 f^{8}$ of hardness, -harder, in fact, than the wator from the neigbbooring bills which the town inteods to use. This can only arise from the ingredients obtained in the town atmosphere. Bat the most curious point is the fact that organic matter is never absent, although the rain be continned for whole dayn. The state of the air is closely connected with that of the water: what the air contains the water may absorb-what the water has diesolved or absorbed, it may give out to the air.
The enormous quantity of impure matter filtering from all parts of a lerge town into its many natural and artificial ontlets, does at first view present as with a terrible pictare of our anderground sonrces of water. Bnt when wo examine the soil of a town we do not fod the state of matters to present that exaggerated character which we might suppose. The sand at the Chelsea Waterworks contains only $1 \cdot 43$ per cent. of organic matter after being nsed for weoks. In 1827 Liebig fonnd nitrates in twelve wells in Giessen, but none in wells two or three bundred yards from the town. Dr. Smith has examined thirty wells in Manchester, and be finds nitrates in them all. Many contained a saprising quantity and were very nanseous. The examination of various woils in the metropolis showed the constatt formation of nitric acid; and in many wells an enormous quantity was detected. It was diecorered that all organic matter, in filtrating through the soil, was very rapidly oxidized. Tbe presence of the nitrates in the London water prevents the formation of any vegetable matter, - no regetation can be detected, even by a microscope, after a long period. The Thames water has been examined from near its sonce to the metropolis, and an increasing amount of impority detected.
In the summary to this report, Dr. Smith states that the pollution of air is crowded rooms is really owing to organic matter and not merely carbonic acid,-that all the water of great towns contains organic matter,-that water purifies itself from organic matter in various ways, but particularly by converting it into nitrates,-that water can never stand long with advantage onless on a large scale, and shonld be used when collected or as soon as fillered.

Stray Navigation.
"On the Impronemente which have been made in Steem Naoigetion." By Mr. Scott Rubsell.
The first great improvement that had been made was in the boilers. For. merly, the builer-fiues were constructed of great length, so that the smoke was kept winding round and round in the flues and at last was allowed to escape with difficuily. Now, however, they had adopted the plan of getting as mach fre as possible in the shortest apace of time,-and thit had been accomplished by imitating as nearly as they could the locomotive engine boiler, by having tubes of thin metal which would eraporate a much greater quantity of water in the same time as flues of the usual thickness; now, also, instead of taking the smoke a long dance as in the old fashion, they nsed short flues of four to six feet in leagth, and by having a great many of as thin metal us possible they beated the greatest quantity of water, and had the additional advantage of keeping the metal cool,in consequence of which a boiler of smaller extent and surface was of
mach greator efifiency with less weight of metal. The pext point of improvement was in the engine; in the conetruction of which, however, there had been less change than in other matters. The former beam-engine had been changed for the direct-action engine, which was of various kinde; but the greatest change which had been made withio the last ten jeara conaiated in the employment of greater quantition of wroaght-iroa in the construction of the engines, instead of the mass of cantinon formerly nsed. This was the only great change,-for the newest Halifax stemmers were still fitted up with the old-fushioned or lever-engines. The sext improvement consisted io working steam expansively to a moch greater extent thas beretofore. It was only within the last ten years that they had adopted this principle: the effect of which was that instead of completely flling the cylinder with steam, they filled only to the extent of one-fourth -a volame of steam not of conrse of equal deacity, but by which they got two-thirds of the work done and at one-fourth of the cost. The next improvement had been made in the paddle; not 50 moch, perbaps, in the wheel itself-for he was still inclined in favour of the old paddle-wheei, althongh for short voyages be admitted the advantage of the feathering paddle-wheel which had been adpoomted by Mr. Price at their Meeting some years ago, and he had then opposed him:-but of this by and-by. A oother great improvement which had been made was the driving the paddle-wheels faster. They had an old maxim which was, whereas a good old horse going 21 miles an hour conld not draw advantageously at more than 220 feet per minute, and that as the steam-engine was only a substitute for horses, and reckoned as so much horse-power, it ought not to go faster than 21 miles per hour-and this one thing had kept them back for halfa ceatury. He did not mean that the resolt shoold not be facter than 21 miles per bour, but that the piaton ahould not rise up and down in the cyliuder faster than 21 miles an hour, which was only four feet in a second, while the motion of steam of 15 lb . was 1,100 feet in a second. Fortnately, however, this old maxim had been abandoned, and the piston now moved from $\mathbf{2 5 0}$ or $\mathbf{2 7 0}$ to $\mathbf{3 0 0}$ feet in aminnte. For this improvement they were indebted to no new principle, but fotheapplication of mathematical principles of sclence. He now came to another great Improvement, which was the change in the formation of steambonts, which bad boen radicalhe meant the entire alteration of the form of the ahips. A fow years ago steam-vessels which would go ton or twelve miles an hour were deemed fast ships; now, however, we had attained a mach higher rate of apeed. Veasels were then built on the old-fashioned priaciple that the wrater-line should be nearly straight, and that the run of the vessel should be a fine line, and that there should never be a bollow line, except a little in the ran of the ship, bat that there most certainly should not be any hollow line in the bow, for there the water-line should be atraight or a little convex. Researches and inquiries were, however, made by a Committee of the British Association as to the form which would enable the vessel to go fanteat through the water. These inquiries lastod for years, and they es. tablisbed, by a series of experiments, a set of very curious facts. Formerly, every builder of ships had his notion of proportion; some that the length should be four times the breadth-others that it should be 4t or 5 , -and some went as far as to say that the length should be six times the breadth, but these were deemed innovations; so that althougt the proportions of width as compared with breadth were said to bo fired ones, yet strangely enough every one differed as to those proportions. Another question was what part of the veasel should have the greateat width, and it was generally thought that the greateat width should be aearest the bow. Some daring persons had, however, put it back as far as the centre of the abip. This was, bowever, the excoption, and not the rule. Then there was another great principle, which was that the bow and stern shoold exactly balance eacb otber, - That is, that the vessel shoold be equally balanced; but the new rules whieb the British Association bad established were as follows:-Tbey began by upsetting the old rule with respect to the proportions which the length should bear to the breadth, finding that the greater the apeed required the greater should be the length, and that the vessel should be built merely of the breadth necessery to enable the engines to be patin, and to stow the requisite cargo. Then the second great improvement made by them was that the greateat width of waterline, instead of being befora the middle, abould be abaft the middle of the vessel, and in fact two-fifths from the stern, and three-fifus from the bow. The next great improvement was that, instead of beving the bow broad and bluff, or a cod's-hend bow, for the purpose of rising over the wave, you might bave bollow water-lines, or what were called wave linea from their particular form, and with that form the vessel would be propelled with loss power and greater relocity, -and also that instead of keepiag to the old fine run abaft and cutting it away you might with great adrantage have a fuller line abant, provided it was fine under the water. Thus by these improvements the form of the old vessel was pretty nearly reversed, to the great annoyance of the old achool, and the steaniers were given large and commodiogs cabins and after-bolds, instead of baving cabins s pinched in that you conld bardly stand in them. Another heresy introduced by the Britiab Association was, that of the principle as to the balance of the stern and the bow upon whicb they now rested; but which was founded in a most singular error, for they left out something which was very material. They concluded that the wave acted equally on both ends of the vessel in striking it; but they did not take into consideration the imporsibility of this when a vessel was moving, not having taken into calculation the velocity of the wave or of the vessel, and that from this circumatance the concussion from a waye striking the bow would be a inost powerful one, wbile it could not be 10 with regand to the stern, be-
cause if the velocity of the wave meeting it was fiteen miles, the dock would be as of thirty miles ; and, therefore, it becme most plain thal the bow would give the grealest resiatance to the wave. He had examined all the fantest stemmers which had accomplished from fifteen to seventeen miles an honm-and in smooth water eighteen miles an hoar; and he woald venture to atate that there was not one of them which eccomplisbed fiftee to soventeen milea an hour, which had not all these alterations in every particniar, and that the wave form and wave principle were now adopted by all the great steam-ship boilders, and that all the fast steamboats had what was called the wave-bow. Now, of the eight boats on the Hodshead and Dablic stations, if examined, it would be fuord that all of theto were boilt on these priociples, although in some of them there was will leff a little of the old priaciple, some of the boats being made a litule fuller and more atraight; and if any one would look at one of these boath, it would be perceived that the moment they moved the very wrave ited! rebelled againat them and bruke against their bowa,-and that coose quently these were slower than any of the class; and he gave the detailg of their conatraction,-for which we have not space. All of them were examples of the value of the form and the principles which the British Association had advocated and iutroduced at a very early period in is history.

Mr. J. Taylor stated, that as Treasurer of the Association, he coold bear witness to the value of the efforts of the Association in thim direetion; and he felt bound in justice io state that the credit Mr. Rusuell had given to the Association was chiefly due to himself, as the individoal wha with the late Sir J. Bobinon, had conducted the investigationg oa this subject.

"On Comenon Salt as a Poisom to Plante." By W. B. Randall.

The following notice is presented as being likely to afford a aseful practical caution to those interested in the cultivation of plants. In the moath of Seplember last, three or foar amall plants in pots were showa to the writer, nearly or quite dead; and he was, at the eame time, informed that their destruction was a complete mystery to the party to whom they belonged, and that Dr. Lindley had expressed his opinion, from the examination of a portion of one sent to him, that they were poisosed. Having searched in vain for any strong poison in the soil, and in the piants themselves, he inquired more minutely into the circamatances of the cete, and found that these were only apecimens of many handreds of pleats both in the open air and In green houses (but all in pots) which oxbibited, in a greater or less degree, the anme characteriatics. The roots were conpletely rotten, 40 as to be easily crumbled between the fingers; the stems, even in young plants, assumed the appearance of old wood; the leaves became brown, firat at the point, then round the edge, and aferwards all over; while the whole plant drooped aud died. At least, 2,000 cottinge in various stages of progress, and 1,000 strong, healthy plants had been reduced to this condition; including different varieties of the fir, cedar, geranium, fuchsia, rose, jaumiae, and heath. The sigbt of this wholesale destruction, coupled with the fact that the whole were daily watered from one particular mource, suggested the conclusion that the cause of the evil musi reside in the water tbus used; and this was accordingly examined. It yielded the following constituents, making in each iruperial pint of 20 flaid onnces, nearly 91 grains of solid matter entirely saline, without any organic admixtare :-

Carbonate of llma	-	-*	-*	-	0.008
Sulphate of lime	-	-	.	-	0.488
Cbloride of calcium	-	-	*	-	0.200
Chlorlde of magnealum	-	**	-	-	1-258
Chloride of sodium	-	-	-	-	4-903

The mould aronnd the plants and an effusion of the dead atema and leaves aleo afforded abondant evidence of the presence of much chloride af sodium. Further inquiry sbowed that the well from which the water was procured had an accidental communication, by means of a drain, with the aea; and bad thus become mized with the salt water from that source, and had been used in this state, for some weeks, probably from two to three moaths. From about that time the plante had been observed to droop; but it was not natil nearly the whole of a valuable stock had boee destroyed, that any extraordinary cause of the evil was suspected. To place it beyond doubt that the water was really the cause of the mischiof. twelve healthy fuchsias were procured from a distance and divided into two parts; ball. being watered morning and evening with the water ia question, and the otbers with rain water. In a week, the sir plants watered from the well had turned brown, and ultimately died, while all the rest remained perfectly flourishing. Assuming from these facte, that the common salt is this water was the chief cause of the results described, it is proved that water containing about seven grains of salt in each piat is, in its continued use, an effectual poison to the weaker forms of vegete tion; or that when a soil is continually watered with a weak solution of salt it gradually accumulates in it until the soil becomes sufficiently coss taminated to be unfit to support vegotabio life. In either case an interestiog sabject of ioquiry is suggested-Wbat is the weakest solotion of salt which can produce in any measure this poisonous effect?-or, in otber words, at what degree of dilution does the danger cease? For eale is an important natural conatituent of mucb spring water, quite independent of any infiltration from the sea, as in this instance. Thus:-the
water of the arteaian well, Trafalgar-square, London, contains in aach galion sbout 20 grains: that at Combe and Delafield's Brewery, 127 ; that at Woivertampton Railway Station 6; one lately sunk at Southamptoa, for supplying a private manufactory, 40. May it not be asked, whether the subject of the suitableness of waters in general for the various purposes to which they are applien - be it in manufactories or for stenm-engines, domestic purposet or drinking-is not worthy of a greater share of acientific attention than it has bitherto commanded?

Grology of Sottr Wales.

On the Geology of Portions of Sowth Wrales, Glomesatershire, and Somerretshire. By Sir H. T. De la Becte.
The rocks of this district have originated in several distinct ways: some have had a mechanical origin, and consiat of the detritus of older rocks broken into fragments or reduced to powder, and bronght down from the land by rivers, or worn by the breskers from the coast ; others have been deposited from a state of chemical solation, like some of the limestones; and some have been formed almont entirely from the aggregation of organic remains. The materisls obtajned from the destruction of the older rock: bave been employed over and over again in the formation of those of laver date.

1. The most ancient atrata of the district have been denominated Cam. brian and Silurian : the former may be seen in Pembrokenhire, towards St. David's. They contain the earliest fossil remains which have been discovered. Numerous rolcanoes appear to bave been active at this period, ejecting quantilies of asbes which, falling into the sea, ontombed the anlmals living on its bed. Even at this early perlod there may be discovered indications of portions of the sea's bed having been upheaved so as to form dry land or islands. Subsequently a depression took place, and an accumulation of cand was spread over the whole, conatituting what is called the Caradoc sandstone. After many thousands of feet of materials had thas been sceomulated and become consolidated, another contortion and folding of the strata took place, followed by a change in the nature of the materials deposited in the sea.
2. The second series of deposits constitute the Old Red Sandstone, which consiats mostly of detrital matter, but contains occasional beds of impore limentone (comstone), and in its lower part there is a great thickness of warl, also coloured red by per-oxide of iron, and occasionally streaked with blue and green where the iron has been reduced to a lower statn of oxidation by the presence of decomposing vegetahle matter. The upper beda consist of coarse sand and gravel cemented together and forming a hard conglomerste; the multitude of quartz pebbles, derived from oetrs, indicates an immense destruction of older rocks. No fomila are found in this forma. ion, hecause sands are always barren, and per-oxide of iron is fatal to animal life when it exists in excess; but in the cornofones a few remarkable fishes (Cephalespis, \&-c.) have been obtained. These rocks eppear to have been formed near a coast, whilst at a small diatance in Cornwall and Devon the sea was depositing fine sediment, was free from the injurious per-oxide, and abounded in organic life. The Old Red Sanderone is sometimes conformable to the underlying Silurian rocks,-at others unconformable; and in the Valley of the Towy it begias to overlap the Upper Silorian and reat upon the Lower Silurian rocks; further west, it is ituelf overlapped by the conl-measures which there reat on the Silurians.
3. After this another great change took place, and the iea depoited carbonate of lime, forming the carbonlferouil limetione, well shown on the coast of Pembrokeshire. The lower part of this series consists of anndmonet and stale, in which the remalns of fishes oceor in ahundance. Mollosea also appear; and soon the abundance of organic remaina becomea so great that whole otrata are formed of their remaina : indeed, the carbonste of lime seems to have been chiefy produced by the agency of animal life. This limetione, which is sometimes 2,000 feet thick, dwindles to 70 or 80 feet towards Haverfordwest, and does not appear to have extended far to the north. Here a change of mineral character takes place in the coalmemures, originally consisting of mud, sand, gravel, and secumalations of regetable matter. The lowest disision, millstone grit or farewell rock, is masly 2 white quartzose sand, hut sometimes a calcarcons mudatone with organic remains, the equivalent of the culm of Devon. Ahove this were formed beds of mod and aand, with occasional lveds of vegetable matter and carbonate of iron; these beds diminish in thickness from Merthyr Tydvil to Pont-5-pool; and are wanting in Dean Forent, but exist in the Bristol field. With reapect to the origin of the coal in this district, there it evidence that it originated in accumulations of vegetable matter which grew on the opot. The conditions under which the beds of coal vecur have been described minutely by Mr. Logan; nader each coal seam is a bed of candy clay, full of the fossil plants known as Stigmaria, and which Mr. Binney has shown w be the roots of another plant, the Sigillaria, equally abundant in the coal, which mast have grown in swampe near the sea. After each great accumulation of vegetahle matter, the land seems to have subsided, and the sea fowed in, bringing aand and mad and marine shells; again marshes were formed and fresh accumulation of peat and plants, to be in turn covered by ailt from the sea. Evidence of the local origin of the coal is also afforded by the frequent occurrence of fossil trees with their trunks erect and their rooth spreading ort in the cley below; several of these trees, each 14 or 15 leet high, were discovered at the bead of the Tan Valley; the outeide of
their tranka appears to have been originally hard and to have reaiated the action of water for some time, but their interior was soft and soon became hollow and flled with mud, which is regularly atratified; the andatone on the outside of the treet aloo beara traces of the rippling of the water around them. The iron ore of the district occun in the form of nodulen of argilleceous ironstone, lying in courses ; the cracks in these nodules being filled with carbonate of iron jost as those in the cement-stones (aeptaria) of the lias are filled with carbonate of lime. One of the phenomena of the coal district is the occarrence of cracks, attended with the dispiacement of the beds on either side; these faults are numerons, and amount in one instance to 2,400 feet; the cracks are sometimes wide, whilat at others the sidea are in close contact. Many of the fanlte appenr to have been formed before the deposit of the magnesian conglomerate; but others appear to have been formed at almost every subsequent period. In some instances beds of coal seem to have been partially washed away before the accumulation of the sacceeding bed, giving rise to sparious fanlts, such as that called the "Horse' in the Foreat of Dean.
4. At the conclusion of the coal period, all the existing rocks appear to have been squeezed and contorted not only in Britain, hut over a great part of Burope, a new deponit of detrits! matter began to be formed, similar to those before the coal period, and called by way of diatluction the New Red Sandstone. Wihere this formation approaches the older rocke it prots on the appearance of a shingle bed, in which the detritns of the older rocks is cemonted together by carbonate of lime and magnetia, hence termed the magnesian conglomeraic. These fossil beacbes are thickest on the south-west and weat flanks of the Mendip and other lills, indicating an open ocean and prevalent winds in that directron. In the red aandatone and marla formed at the same time, but further frum the coast, there are no traces of animal life; but as the red stain diappears from the rocks, towards the conclusion of the period, remains of fishes and shells appear.
5. Further subsidences took place; the sea, now freed from the peroxide of iron, awarmed with animals of extraordinary form and stracture. We still trace its boundaries in Glamorganahire and the Meadips by beds of rolled pebbles from the subjecent rocks, and close to these sheltering casste the remains of marine saurians abound in the consolidated mud and limestone (Lias), along with the bones of the fying Pterodactyle. Somewhat later, great beds of oolitic limestone were accumulated in the sea, which now constitute the Cotteswold Hills and their extension to Bath and Dorsetshire.
6. No farther history is afforded hy this district until comparatively moern timen, when we find evidence of subsidence benesth the sea and of agencies by which the present form of the surface was accomplished. The prenent land must have been at least 1,500 feet lower ; and, therefore, nearly all under the sea. There is also evidence that the climate became cold, that there were glaciert in the mountaing of North Wales and icebergs fioating round the shores, carrying blocks of atone and gravel and presenting all the phenomena of polar regions. The sea almo accumulated beds of clay, in which the few oxiatiog shells are of Aretic character. Still later, the land must have risen again above the sea to an elevation greater than it now has, for we find mbmarine forests fringing all the ahores of Europe from Spain to Norway. Of this, one of the best examples occurt in Swausea Bay, where the stumpe of onk and alder may be seen at low water, 20 or 30 feet lower than they could have grown.
"On the Relative Ponition of the parious Qualities of Coal in the South Wales Coal.jleld." By S. Benson, Esq.

The coal is of three kinds: 1. bituminous, the amall of which will coke; 2. free-buraing, the small of which will not coke, bat which burns with great rapidity and a considerable volume of fiame; 3. anthracite or stone coal. Thene three pass into one another imperceptibly; the same vein of coal changiag gradually from bituminous to free-burning, and from this to anthracite.

1. The coal bede which crop ont on the south side of the basin ere highly hituminous, becoming less so towards the north. The five-foot vein, extenaively worked near Swansea on the south rise, is highly bituminous,-on the north rise, within a distance of two miles, it becomes freo-borning. The various beds also differ considerably in their bitaminous qualities and commercial value.
2. The free-burning coals ocenpy a tract running north-esst and southwest throngh the centre of the coal-field. Those which are intermediate between the froe-burniag and bituminous are perhaps better adapted tban any for smelting purposes,-and in the neighbourbood of Merthyr form the chief supply for the blast furasice, being either uned raw or the large only being coked in the open air. The pare free-burning coals are leas adapted for smelting, but are preferred for steamers from their readiness of combnstion and tbe absence of cliakert in the grate. Pree-burning coals are admitted to government contracts from the following places: Llangennech, Camerons, Graigola, Brindowey, Resolven, and Aberdare.
3. The northern side of the basin is occupied by the anthracite, which graduates through the various "culms" into the free-burning coal. In Pembrokeahire the coal is all anthracite. Taking the ares of the Glamorganshire conl-field at 750 square miles, it is eatimated abat H_{s} tha of this area is occupied by bituminous and free-baraing coale, and the remainder by calm and anthracite. It appear that the beds of coal on the sonth crop lose their bituminous qualities gradually as they dip to the north; so that if oo a section lines are drawn to show the boandaries of the qualities of conl
they will not be vertienl bat inclined to the north. If the change in the quality of the coal is attributed to the infinence of subterraneas heat, then the inclination of these lines will sarveto point out the direction from whlch that beat acted, namely, from the north-west of the coal.feld.

Mr. Booryn, being called on by the Preaident for some statistical informs. cion, stated that there were 159 blast furases in the district employed in amelting iron, and that 550,000 tons of iron ware annually manufactured. The coal raised in the diatrict was employed as follows :-
$1,500,000$ tons anonally in the minnfacture of iron.
200,000
150,000
70

At thia rate, and supposing the coal to exiat only over 100 square miles, there was sufficient for 1,400 years to come. The value of the exports from the district. consisting of iron, \&ec., in a state of rough manofacture, amonated to $4,000,000 \mathrm{~L}$ a year.
"On the Submergence of Ancient Land in Wralet; the Accurnmation of newer Strala arownd and above it; and the Re-appearance of the same Land by Elevetion and Denmedion." By Professor A. C. Raysay.

This communication wat illustrated by a section, on a true scale, of the rocke near Builh, in Radoorshire, where the Wenlock shales reat onconformably on the Llandeilo fiaga. The lower rncks must have been elevated previously to the formation of the upper, and their upturned edget nuat have been worn away by the sea when the upper rocks were deposited or previously. No power in known to exist far below the level of the sea, by which this process could have been effected; it must have taken place at the sea's level. Throughout Wales the Lower Silurian rocks appear to have been diaturbed at one particular period, to have heen beaved above water and formed a coast, around which the succeeding rocks were accomulated. Near Bishop's Cantle the upheaval of the Llandeilo flaga was followed by the deposition of the Caradoc sandutone, which in full of peobles of the older rocka. After this a subsidence appears to have taken place, the area of the sea was incressed, and the Wenlock shale was deponited not only over the Caradoc sandstone, but heyond it, at at Builth, upon the Llandeilo flaga; and in come places the shale resta on greenstone rucks and certain pebblea from it, heing in fact a gravelly sea bottom. This depression of the bed of the sea continued alao durlag the deposition of the Lodiow rocks, which are conformable to the Wenlock shale; and there is no marked alteration in the organic remains of the two rocks. The Wenlock shale is 1,500 feet thick, and the Ludlow rocks 3,500 feet; and an it is certain that their organic remains could not have existed at the depth of 5,000 feet, we mat auppose a gradual subsidence of the area, such as is believed to be now taking place amongst some of the coral islands, ontil 5,000 feet of rocks was accomulated over what had been dry land. The old red sandetone, which has a maximum thickness of 8,000 feet, appears also to have extended over this country, jodging by the outliern, at a considerable diatance to the north and west. Subsequently, tbe whole of this serien, from the Caradoc sandstone upwards, was removed, and the ancient Silurian atrata became the sarface of dry land as they bed been to long before. It now became a question, what mount of alteration may the Silurian rocks have undergone during the time they vere so covered up? If the name laws regulated the ascent of the interaal temperature as at present, namely, 1° for every 54 feet, then the addition of 3,000 feet of rock would have raised the teniperature by 92°, whilst 9,000 feet would bave added 160°, and with 11,000 of superincumbent atrata the Lower Sllarian rocks must have endured an increased temperature of 212°. To influencea of this kind may, perhapa, be attribnted the crystalline or metamorphic condition of some of the more ancient rocks, -as suggested by Sir J. Herschel, in a paper communicated yeara ago to the Geological Society of London.

The Dean of Westminstrea referred to the Portland rock, in which a bed of vegetable soil occura, full of trunks of trees, and cycadites; this bed rests on limestone containing ammonites, and is covered by similar marine deposits. Again in the Weald, fosill forests and beds of freshwater shella are found above marine accumulations, and followed ty the greenasad and chalk. At the present time we find peats, and antlers of the red deer, in the bed of the Channel, several miles off Swansea. On the Norfolk coast, and in the English Channel, are found the bones of the elephant, and fonsil wood, disivterred from former cliffs by the action of the sea. These, with many other circumstances, were quoted as showing that whilat the ses-level Was fixed, the land had suffered deprestions and elevations at many periods of time.

Professor Paillipa pointed out the extent of some of these subsidences of the land; for example, the old red sandatone, 8,000 feet thick, all formed in sballow water, and the coal measures 11,000 feet thick, and anded under similar circuratances : and jaquired what condition of the interior of the earih can bave admitted of the gradual subsidence of such great masses of strata? According to Mr. Hopkins's statement, it wes improbable that the interior would now admit of it. With respect to the augmentation of temperature which would follow on the addition of several thousand feet of strata, it should be remembered that the commonication of heat from below, through such rocks, was remarkably slow; and the law of the distribution of internal temperature, could not be annmed the same in ancient as in
modern times. As to the laval of the sea remaining onchanged, this ma only ansumed for security in geological reasoning; there was eridedee is the Malverns of a sen-level 600 feet above the preseut, but it was imposaible to ray whether that ancient level was nearer tbe centre of the eefil when formed than now.

Coant Levels.-Lieut.Col. Portloce communicated some observations on apparent changes in the level of the conat near Portsmonth, and contended that, ss these evidences of subsidence could be traced back to the mont ancient tispes, so they had continued up to the present day, and expreased bis conviction that a parallel might be found in existing oatare to all the phenomena of ancient times. It appears that Port Comberland, near Porsmouth, atands on a bank of gravel and sand, and that owing to some nev wall made to protect it from the sea, a fresh direction was given to the tide, and a portion of the bank undermiped and washed away, in the conrse of which a thick plank with a bolt was discovered, showing that the banis of the fort had no great antiquity. An artesian well has also been made to supply Blockhouse Port, which showi, for the firat 60 feet nothing bat clean shingle, and then a layer of sandy clay, full of common oyater-abelle.

"On the Chemical Character \&f Steel." By Mr. Nasmrta.

Were we to assome, as our standard of the importance of any inveatiga. tion, the relation which the subject of it bears to the progress of civilization, there is no one which would resch bigher than that which refers to the subject of steel : seeing that it is to our possession of the art of prodnciag that inestimable material that we owe nearly the whole of the arto. 1 am desirous of contributing a few ideas on the subject, with a view to our arriving at more distinct knowledge as to what (in a chemical sense) ateel ia, and so lay the trae hasis for improvement in the process of its manafectare. It may be proper to name that steel is formed by surrounding bars of wrooght iron with charcoal placed in fire-brick troughs, from which air is excloded, and keeping the iron bars and charcoal in contect, and at a fall red heat for aeveral days; at the ond of which time the iron bars are fonnd to be cos. verted into steel. What is the nature of the change which the iron has undergone we have no certain knowledge; the ordinary explanation is, thes the iron hat absorbed and combined with a portion of the charcoal ar carbon, and has in consequence been converted into a carburet of iron. But it has ever been a myatery that on analysia, so very minuse and questionable e portion of carbon is exbibited. It appears that the grand error in the above view of the sulject consisto in uur not doly understanding the mature of the change which carbon ondergoes in its comhination with iron in the formation of ateel. Those who are familiar with the procese of the conversion of iron into ateel, mast have obwerved the renarkable change is the outward aspect of the bars of iron, after their converaion-namely, that they are covered with blisters. These blisters indicate the evolution of a very elastic gas, which is set free from the carbon in the act of ita conabiantion with the iron. I have the strongest reasons to think that these blisters are the result of the decomposition of the carbon; whose metallic bese eaters into union with iroy, and forme with it, an alloy, while the other component element of the carbon is given forth, and so prodaces in its escape the blisters in queation. On this assomption we come to a very iutereting question \rightarrow What is the nature of thia gas? In order to examine thim, all that is requisite is to fill a wrought-iron retort with a mixture of pure carbo and iron filings, ubject it to a long-continued red heat, and receive the evolved gas over mercury. Having obtained the gas in question in this masner, then permit a piece of polished ateel to come in contact with this gas, and in all probability we thall then bave reproduced on the sarfnce of the steel a cont of carbon reaulting from the re-naion of its two elements, namely, that of the metallic base of the carbon then existing in the sted, with the, as yet, unknown gas; thue synthetically, as weil as by analyic process, eliminating the true nature of steel, and that of the elementa or coom ponents of carbon.

"On Hydraulic Pressure Engines." By Mr. J. Glyn.

This paper described the mode of employing the power of waterfalls in a most useful and important manner-too long neglected in this coantry, considering the advantages it affords in hilly districts for the drainage of mines. Mr. Glyn brought under their notice the means of employiog hig falls of water to produce a reciprocating motion by meana of a "f pressureengine." The pressure-eugine acted by the power of a descending column of water upon the piaton of a cylinder to give motion to pumpe for raising water to a different level, or to produce a reciprocating motion for other purposes. The pressore-engine was calculated to give great mecbanical effect in cases where waterfalis may be found of much too great a height and too small a quantity to be practically hrought to bear in a aufticient degree on water-wheels within the ordinary limits of diameter. Tbe author produced instances of the desired pressure-engine, one of which was constructed about forty years ago in Derbyshire-and wbict he believed was still at work in Alport Mines, to which it was removed from its original situation. The cylinder was, he believed, $\mathbf{3 0}$ inches in diameter. In 1841 Mr . John Taylor advised the application of enother aud more powerful engine at the Alport Mides, which was made onder his (Mr. Glyn's) direction at the Buiterley Irouworks in Derbyshire. This was the most powerful engine that had been made. The cylinder was 50 inches in diameter, and the stroke 10 feet. It was worked by a columa of Fater of 139 feet in height, so that the proportion of power to act 00 it was as the area of a piston to that of the plunger-namely, 1,968 to 1,385 ,
of folly 70 per cent. The superiatendent of the machinery assured bim that the engine had aever cost them tilz h-yenr since it was erected. Its usual speed was abuit 5 strokes per minute; but it was capable of working at 7 strokes per minute without any concussion in the descebding colnmn, the duty actually done heing equal to 163 borse-power:-Area of plunger 9.681 feet $\times 10$ feet $\times 7$ strokes $=673.41$. 673.41 $\times 62.5 \times 182=$
 in this case as in all others when water acts by ite gravity or pressore, those machines do the best work when the water eaters the machine without shock of impulse and quits it without velocity. They thereby obtain all the arailable power that the water will yield with the least loss of effect ; and this result is best accomplished by matiog the pipes and passages of suffient and ample size to prevent acceleration of the hydrostatic colvonn.
"Analysis of Wrought-Iron produced by Cementation from Cast-Iron." By Professor Miller.
It is to be noticed that considerable change in the specific gravity occurred in the iron after cementation: it was forged, and then fonnd to have increased in density; the britule iron had a specife gravity of $7 \cdot 684$, the malleahle 7.718. The results of analysis were briefly these:-The quantity both of carbon and allicon are materially diminished by the cementation, though atill the proportion of both is muterially greater than in good bar-iron. It also apprars that the portion of carbon which is insoluble iv acids is partly the alame both before and after the iron has been rendered malleable, the diminution being confined almost to that portion of carbon which was chemically combined with the metal, and which, therefore, would be in a state for propagation through the mass more readily by cemeatation.
"On the Drainate of \& Portion of Chat-Moss." By G. W. Oamerod.
The surface of the moss varies from 80 feet to 100 feet above the sea tevel; its bottom at the deepest part is 100 feet below the sea line. Part of this moss is now being laid dry by means of open draina, under the directions of Mr. Ormerod. After cutting the drains, the level of the peat falls rapidy; gear the main leader it sank perpendiculerly 5 ft. 8 in. in vine months, and in one part 2 ft .6 in . in a single week.
"Extraction of Silver from some of its Ores by the Wet Way, with a Nolice of a Process as a Substilute for that of Liquation." Communicated by Dr. Percy.
This oommonication proposes to treat silver ores with hyposulphate of lime and chloride of lime; and from experiments detailed by Dr. Percy there appears overy reason to believe ihat these substances may be employed economically, and both gold and silver extracted by an pasy and effective melhod. A process as a substitute for that of liquation was also suggested. Mr. Huat proposed, from the importance in a practical point of this communication, that it be printed eatire in the volume of Transactions. Col. Yorke seconded this proposition; and it was adopted.
"A mevo Hydrographic Map of the British Isles," by Herz Petermann, was exhibited.
On this map about 1,550 rivers are distinguished by names, 480 lakes and pouds, and 40 waterfalls; the canals with their altitude. us well as that of the rivers and lakes, and the great drains in the fen districts. It was stated that there were 20 rivers in Eugland, 10 in Scotland, and 10 in lreland, each draining 500 square miles and upwards. Of these-

These last eight are-The

The river Amazon drains a tract of $2,275,000$ square miles.
"On a Neso Element of Mechaniam." By Mr. R. Roblets.
The writer explained the construction of a contrivance by which he effected in a rery simple manner movements for which more complicated nechanism was frequently employed. The model consisterd of a steel tock-ishaft, on which were fitted two brass disce in such a way as to be kept steady. One of the discs had eleven leeth rounded at the top and bottom in its circumference, and was placed on the body of the ahaft. The other dise, which was rather the larger, was in the eccentric position of the shaf, with its face to that of the toothed disc. The plain disc bad fourstuds rivetted into it at eqnal datances from each other and at such distances as to adinit of their being brougbt successively, by the revolution of the eccentric, to the bottom of the hollows in the toothed disc. The followiog movements may be effected by this model:-viz., if the shaft be held stationary and the discs be made to revulve upon it, one of the dises will make tweive revolutions whilst the otber only makes eleveu. Again, if the toothed disc be beld whilst the shaft be made to revolve twelve times, the plain disc will revolve, in the same direction, one revolu. tion only; and if the plain disc be held, the toothed disc will perform one
revolution in the contrary direction, for eleven revolutions of the shaft. It would be evident that almost any other number of revolutions may be produced by empluying a smaller number of atuds, not fewer than three, wbich will not divide the number of teath in that diac. The idea of this novel element in mechadics was suggested to Mr. Roberts by a dial movement in an American cluck.

MINTS.*

The subject of mints is one on which there is little printed, but Major Smith, of Madras, has brought out a considerable book. This work is mostly directed to the subject of mint accounts, but with this object a close investigation is necessary into the processes affecting the condition of the precious metals in the operation of coining, and this may be found of interèst. Major Smith's great purpose is to establish that no loss of value of gold or silver can or does take place in coining, and that there is therefore no difficulty, under a proper system of management, of providing an adequate check. He says-

We consider it beyoud doabt, jadging from the results of actual experience, that there ought to be no lose whatever by the process of converion, in any of the Indian Minta; on the contrary, as we have elsewhere ex. plained, there ougbt to be a small surplas in the out-turn. In the discuraion, therefore, of the duties and responsibilities of the different officess of the outahlisbment, we shall oonsider this as being adeoitted, becanse our object is to determine what the requisite checks are to insure the business being properly executed; not what may suffice if it be imperfectly done, or slarred over.

Before proceeding, however, it may be adviable that we should first notice and obviate a misconcaption which has been suggested to us in reference to the above ascertion, as it strikes at the very root of all the benefit of the important principle involved in it. It bas been eaid, that it may be very true there ought to be no waste, or even a alight aurplus in the re-delivery of the precions metal entrusted to a Mint, provided it were possible to extract all the particles from the mass of refuse wherein they are buried; that by pusbing the recoveries to an extreme length, in dofiance of all real economy, it may be in fact possible to exhibit a trifing over-plus, though the cost of the extraction of the last particles may have far exceeded the value of the metal; but that anleas this reckless contempt of true economy be systematicully persevered in, as it is clear that a certain anount of bullion must, of necessity, be allowed to remain untouched, on accoant of the expense of extraction, a waste must be unavoidable; so that however true in theory, it mast be a fallacy in practice to asy, that there onght to be a nett surplas of delivery, and an actual bond fide excess. This argument is, however, based upon a mixapprebension of the truth it is intended to oppose, for the assertion is not, that there sbould be no metal not recovered, but that there should be no metallost whose existence could not be proved, and its value recovered, if necessary. Further, that as a matter of actual practice, there ought to be a nett surplus of delivery, including the particles in the drosses, whether they be recovered therefron' or whether they be not, which is totally immaterial to the question; to which it may be added, that this excess ought to bo so mach larger than the value of all the particles which are not extracted from the refuse, that even taking the matter in the sense in which it is viewed in the objection, the assertion still remains practically true.

The principle and the practice we contend for ia, that the out-turn of a Mint in coins, bullion, and drosses, ougbt to be exactly estimated, end compared with its receipts; and we affrm that if this be correctly done, and the duties of the Mint have been strictly and faithfally performed throughout, the former ought to exceed the latter, whenever the ballion is debited at the "trade Assay." Which beiog the case, we are of opinion that, as a matter of syatem, the comparison ought to be made, and the check thereby established, in prefereuce to the more lax proceoding of omitting the comparison, and writing off sll deficiencies to profit and loss as "unavoidable waste in the operations of coinage." The extent to which the extraction of the bullion out of the drosses ought to be carried, is another and a very simple question; the anawer to which obviously is, that it should be carried so far, and no farther, than it would be attended by a clear profit to doso. In this way it is that the business is carried on in Madrus, the refuse, when no longer capable of being "recovered" on account of Government with profit, being mold, and the proceeds carried to account; and it is according to this scheme of practice, that the actunl results which bave been referred to have produced a nett aurplus amounting to $\frac{7}{19}$ per mille.

If, however, there ought to be no deficiency of the precious metals, it does sometimes happen: it seems that coins are sent out of the mints too good. Thus it is said-

We have been informed, thut in the year 1845, the coins issued by the

[^39]Bombay Mint were so much above Standard, that if they may be assomed as being fairly represented by 80 pyi amays made of them at the Royal Mint, and the ralue of the out-tura calculated thereby, they most have contained very neariy 86,000 rapees worth more pare ailver than they onght to have done; a case in poist showing the impossibility of the Mint officers guarding against loes, because if it be assumed that the merchants were fully paid for their bullion, the Mint must bave suffered the lose of the above sum.

With regard to the probability of loss of metal, the author examines whether it could take place in the melting, and he men-tions-

There is a greater probability in this procest, that a real loss, an actual diminution of valoe should occur, thas in any other. I hare above atated that a change of value cannot possibly be effected, except by a literal abstraction of the precious metal, and we can easily understand why sucb is the case. If a ponnd of pure silver, for instance, were melted a thoosand times, and if copper were added to and subtracted fron it by saccessive portions : at every step of these processes, provided none of the particles of pore metal had been allowed to escape, the result of every true assay of the metal, whether in its coarse or fine condition, ought to be such as to make its value equal to that of a pound of pure silver. There is nothing in mere manipnlation to alter value, unless some of the precious particles are disaipated; bat we might be inclined to suspect that this might occur doring fusion. It is oot impossible, one woold think, that silver might be volatilizer, and thus the precious metal be diminished in quantity. It is certain that if any alloy be melted, its wright after fasion is considerably reduced; but it is also eqally certain that, practically, not a particle of silver escapea from the furnace.

This being the ouly point on which the smalleat doubt could reasonably be entertained, I have given it the most attentive examination. When I was in Calcatte in January, 1842, and visited the Mint there, I made particular inquiries as to the volatilization of ailver. The very idea of such a thing sepmed to be considered absord, and I was assored that no such thing as volatilization of silver had ever been experienced. It was not the custom to swerp out the chimneys, because the volatilization of eilver was out of the question, but I was told that when that metal was adulterated with mercury there was a loss, and particles of the mercnry mipht be evaporated. This is trne also in regard to lead, fumes of which escape from silver very frequently. Bat neither of theso would at all change the value of the mass in fusion.

The same question bas also been practically tested at Madras-and though no such thing as aweeping the chimneys for the purpose of recovering volatilized silver had ever been heard of previously, I detarmined upon having it done, in order to obtain decisive evidence upon a point of so mach importance. The result was, that in the chimney of a fornace which had been in constant daily nge for about 15 years, and in which many crores of rapees worth of bullion must bave been melted, there were collected particles of silver which altogether weighed about 70 grains. This experiment taken in comnaction with the experience of the Calculta Mint, seems to my mind to be quite conclasive as to the fact that there is no real loss in melting, by any dissipation of the precions metal.

The following is a practical explanation of one of the causes of apparent loss:-
$1 t$ is notorious, however, that when silver is melted for coinage, the weight after fusion is considerably less than before, even after makiog this recovery and every allowance. It is admitted also that the metal undergoes refiuement, and consequently that it has become purer in quality than it was. All that I wish to add is, that its value after fusion ought to be precisely equal to what it was origioally, and that there is no necessary cause for wastage or loss; and this, because it is simply copper, and nothing besides but copper, or hase metal, which is injured by the heat, so as to be separated from the alloy and lost in the refnse, whence it is not worth while to recover it. It is owing to the absence of any means of recognising the minute changes of fineness in the silver alloy, and the consequent adoption of a system of account independent of them, that it has been im. practicable to exhibit this truth, or to take advantage of it, in the manaer jadispensable to avoid waste; and the atteution being therefore exclusively paid to that change in the metal which alone is palpable, viz., in its weight, is one of the great causes of the real loss which I inquired into. I propose hereafter to detail the means by which this evil has been rectified; in the mean time I must invite attention to another,

When the Mint receives bullion, it is supposed to receive nothing hat solid metal, which is charged to it according to its weight and actual fineeess, but I found that these supposed conditious did not alweys exist, and that the ballion was not always made over to the Mint in the solid state. In some cases coins were received, which were always more or less dirly, and these were calculated in the accounts by multiplying the gross weigbt of dirtand silver by the average fineness of a sample melted fur assuy. The consequence amanifestly was an unavoidable loss, corresponding with the unouat of dirt which bad been reckoned as silver, and the remedy was plain, viz., taking care to melt the coins always in future. In this way one of the principal causes of the previous loss was got rid of.

Another case was more serious to the parties.
We may also cite a case which occurred in Bumbay, where there was a deficiency between the produce and valuation of a particular parcel of bullion receired into the Mint, to the amount of aboul 1,200 rupees, A
commiltee being sppointed to inquire into the deficieney, stated, thet the discrepancy was apparent, but as it woald never do to doubt the estanga, they mast conclude the fruud bad been practised by the melters. The head melter was accordingly ordered to pay the money, and did m: bos it was afterwurds plainly shown that the valuation had been alade without proper precantions aganat miatake, and that in ao far as the ovidence wond, there was not the least reaton to believe that the quantity of bollion for which the melter had been held accountable bad ever beea received by bim.

In annealing, an apparent increase of weight takes place, which is thus explained. -

The process of annealing is for the purpose of softening the blanks and making them more ft to receive the impression of the die. It also assiats the operation of the acid in cleaning. The blanks are placed in a reverberalory furnace and brougbt to a red heat, after which they are cooled, either by immersion in water, or by exposure to the air. The effect of this process is a slight increase of weight, owing to the combination of oxygen with the alloy in the metal; and as it is entirely gaperficial, it varies in its proportion according to the form and auperficial ares of the pieces exposed to its action. We bave not made any experiments with minute accuracy on this point, as the pieces after leaviog the fanonating and adjusting department are counted on transfer, and thus pased from hand to hand by tale, so that trifing variations in the grose weight cease to be of any importance; but from the experiments which we bave made, the diference of weight in rupees has been showo to be abous 3 snnas 7 t pie per mille, or $4 \frac{1}{3}$ pie per cent. An this increase of weight is occasioned merely by the adduion of a foreign sabstance (orygen) to the metal, it cannot of course, by any possibility, be the cause of any lose of value.

In blanching, s alight difference in the apparent weight takes place, because in some mints grease and oil are used in laminates, which adheres to the metal and is removed by the acid.

Difference of weight may take place, but difference of male cannot; and it is by adopting this latter test that a proper system of accounts can alone be adopted. We may remark, in conelnsion, that the author has laboured very hard and conscientiously in establishing the correctness of his views; and, which excites the more admiration, as having been done under the hot sun of Hindostan and in a state of ill-health.

THE PLATE-GLASS TRADE.

The statistics of the manufacture of plate-glass in England, just pablished in a tabular form, with a few remarks appended, on a folio sheet, by Mr. Henry Howard, of Plaistow, in Essex, are very instructive.

In 1819 the excise duty on plate-glasa wat 98s. per cwt.; none wes made in England larger than 120 inches by 72, the quality was indifferent; the price when 12 inches aquare was 13 s . 1 d . per foot, when 120 inchee by 32 . it was 160s. per foot.

In 1827 the excise duty was 60s. per cwrt.; plate-glans 144 inches by 75 , was manafactured; the quality was considerably improved; the price of plate-glase, when 12 inches square, was 6s. 8d. per foot, when 114 inches by 75, it was 50s. per foot.

In 1847 there was no excise duty on plate-glasa; plates 144 inches by 76 were manufactured; the quality was very much improved: the price of plates 12 inches square wai 3 s . 4 d . per foot ; plates 144 inches by 76 , cost 35s. 6d. per foot.

In 1819, when the excise daty wis 98s. per ewt., the quality of the glass was indifferent, the average price per foot 20s. to 25 s., the quantity sold per week abont 3,000 feet, and the supply apparently equal to the demand.

In 1827, when the duty was 60 s. per cwt., the quality was improved, the average price per foot 10 s . to 12 s ., the quantity sold per week aboat 5,000 feet, and the supply inadequate to the demand.

In 1847, when the excise duty had been taken off, the quality was very much improved, the arerage price per foot 4s. to $5 s$., the quantity sold per Week about 70,000 feet, and the aupply very inadequate to the demand.
In 1836, when the excise duty was 60s. per cwh, the estimated number of hands directly and indirectly employed in the manufactare, was aboat 2,500 , the capital invested in it about $250,000 l$.
In 1847, when the duty had been taken off, the number of bands wes about 12,000 , the capital about $1,000,000$.

No comment is required on the tendency of these facts to show how moch the manufacture wes benefitted by the reduction of excise datien; how touch more it has been benefitted by entire emancipation from the trammels of the excise.

Since 1845 foreign plate-glass had been allowed to be imported free of duty. In July 1847, Lord George Bentinck undertook to prove (in Par. liament) that the removal of the glass duties had been a failure. He stated that the declared value of glase exported in the firgt five montha of 1845 wain 215,6301.; in the firat fipe months of 1846, only 131,7396 Bat
bia lordahip omitted to state an important explanatory fact pointed out by Mr. Howard:-" It was in the first five monthe of 1845 that the duty was remitted, and daring that particular period the makers and dealera exported enormous quantitien of every description, not on account of increased demand from abroad, but for the express parpose of obtaining the large drawbacks (amounting to bounties) which were then, for the last time, allowed by the excise."

The fact is, that an official retura, dated May 5,1848 , printed by order of the House of Commons, shows the total amount of foreign plateoglass, entered for consumption in Englapd, to have been 99,841 feet. This is at the rate of 1,920 feet per week. The number of feet of English make sold per week daring that time being $\mathbf{7 0 , 0 0 0}$, while in 1845 it was only 23,000 . The importation, instead of causing a displacement of English labour, has, by stimulating competition, improved quality and lowered price, and by thos increasing conrumption, caused more English labour to be employed.

The atate of the exports, as shown by the return already referred to, is equally aatisfactory. The exports of English glass in 1847 exceeded those of 1846, in tint-glass, by 20 per cent. ; in common window-glass, by 42 ; in bnttles, by 5 ; in looking-glasses, by 49 ; and in plate-glass, by 110 per cent. Well may Mr. Howard remark, "Looking at the unexampled commercial difficalties of 1847 , this increase is almost incredihle."

Two facts relative to the trade in plate-glass, stated by Mr. Howard, bave a bearing upon these general results too important to be omitted. Of tro ageacies established here, exclusively for the sale of foreign plate-glass, one has been compelled to relinquish the sale of it, simply from inahility to withstand British competition. There wan no Baglish plate-gless exported to the United States in 1846; while, in 1847, it equalled in amount the exports to all the world in 1846.

How, then, are we to account for complaints made both in and ont of Parliament that British interests have suffered from the remision of the glass duties ? Mr. Howard throws some light on this question :-"In 1845, when the excise duty was remitted, the English makera reduced the price of small plates (which foreigners could not afford to send here at all) to a fair and equitable scale, bat the large plates (which, paradozical as it may appear, cost less per foot than the mall ones) were kept ap at the unreasonable ratea quoted above. Our neighbours, the French and Belgians, attracted and encouraged by the simplicity which thus invited them bere, under cover of our exceasive pricer, accordingly brought over and sold their larger fabrics at enormous profits, whilst our manufacturers, realising still greater advantagea, and supported by au imnense demand, refused to modify this extraordinary tariff, although its manifest injustice to the public, and direct tendency to injure the very interest it was intended to promote, bave been almost univerally condemaed at the climax of absurdity."

Labour forms directly andindirectly rearly 80 per cent. of the cost of plateglasn. The raw material is nearly all English produce. In short, it is a matural manufacture. As sach it wat depressed by heavy excise duties, and not relieved by protection from fureign competition. Since it has been emancipated both from the opprestive and the protective infuences of fiscal regulations, it has daily grown in atrength and prosperity, in defiance of competition. It is only under anch a system that branches of industry, na. aral to a country, can lourish, and auch branches of industry only are really advantageous to a nation.

THE GREAT VIADUCT ACROSS THE DEE, IN THE VALE OF LLANGOLLEN.

While the speed to be attained by mechanical ingenuity is being intensely considered, the architecture of our railways in not forgotton, and we feel pleased to have it in our power to notice one of the most daring and stupendous efforts of skill and art to which the railway has given rise. We refer to the great viaduct now in conree of completion across the valley of the Dee, in the Vale of Llangollen-the dimensions of which urpass any thing of the kind in the world. While the tubular bridges across the Menai Straits and Conway River are, from their novelty, attracting much attention, the nodertaking referred to has proceeded nearly to completion, without any considerable notice being taken of it. Its vastness of proportions may be better conceived, when it is atated that, in magnitude it far exceeds what is considered the greatest effort of buman skill in connection with railway commanication -the Stockport viaduct. The Dee viaduct (for this is the term giren to the one at Llaugollen) is apwards of 150 feet above the level of the river-being 30 feet bigher than the Stockport vieduct, and 34 feet higher than Measi Bridge. It is supported by 19 arches of 90 feat span, and its length is upwards of 1530 feet, or nearly one-third of a mile. The outline of the structure is, perhaps, one of the handsomest that could have been conceived, both as regards its chante style and attractive finish; and its general appearance is considerably enhanced by the roundnest of the arches, which are enriched by massive quoins, and the carvilinear batter of the piers: shis style of architecture imparta a grace and beanty to the atructure without impairing its strength. The greateat attention seems to bave beon paid to the abutments-the only part of the erection, in reality, where any decorative diaplay could be made. In the middle of both, on each side, there are
benutifully executed nichea in the Corinthian order, in addition to come bighly-finiahed masonry. The piers are neatly wrought at the anglea, and at the hase of nearly each there is a bedding of opwarda of 400 square feet of masonry. With the exception of the entradoes of the arches, which are composed of a blue sort of brick, the whole structure is built of beautiful stone-if not as durable, equal in richness and brilliance to Dariydale. The viaduct has an joclination from end to end of 40 feet, and connecta that part of the Shrewabury and Chester Railway between Rhos-y-Medre and Chirt Viewed from beneath, the vast structure prenenta a noble and truly grand appearance, and its bold proportions, with itt height, cannot fail to call forth admiration from the most indifierent beholder. While the view betaw developes what art can accomplish, that from the summit surpasses in richness and luxariance of the picturesque any landscape in the kingdom. Sitasted in the middle of the far-famed Vale of Llangollen, there is all that nature and art can bestow to make the viow charming and beautiful. On one side are bold and swelling hills, on the other a plain teeming with luxariance far and wide. Within view are Castell Dinas Bran, or, as it is commonly called, "Crow Castle," which is situste on the crown of a conical hill-the glaciated rocka, Wyunstay, and Pont-y-Cyssyllte, or the Dee Aqueduct. This last atructure, which conveys the Ellesmere Canal, is within a short diatance from the viaduct, and, from its heanty and extent, imparts additional interest to the locality.

The viaduct has been erected by Measrs. Makin, Mackenzie, and Brasay, contractors, at a cost of upwards of $100,000 \mathrm{l}$., being upwarde of $30,000 \mathrm{~L}$. more than the Stockport visduct. The cont of the timber required to form the scaffolding, \&rc., for its erection was $\mathbf{1 5 , 0 0 0}$, and between 300 or 400 masons alone were employed during the whole time of construction. Within a few miles distance there in another viaduct in conrse of building across the valley of Ceiriog. This structure will be upwards of 120 feet high, and will have 10 archet, of 45 feet span, and one of 120 feet. The ontire length will be at least 850 feet, and will cost, when completed, a large aum of money.

NOTES OF THE MONTH.

The Copying Electric Telegraph.-We mentioned in a former number (p. 191 ante) tbat an electric telegraph had been invented by Mr. Bakewell, by means of which a written commanication could be copied at a diatant town, so as to easble correspondents to recogaise the handwriting of each other. This telegraph has, during the patt month, had eeveral trials hetween London and Slough, that line of wire being the only one that can be spared by the Blectric Telegraph Company for experiments. The results of theae trials have proved that the powor transmitted along the wires is quite aufficient for the copying procesa, as only the same batteries were employed ta are neceasary to work the needle telegraph. We have seen eeveral specimens of the writing copied along 40 miles of wire, which prove that when the instrumenta are accurately constructed, copiea of any writing may be taken by means of this telegraph. With the model instruments and a single wire, the copying was, we understand, done twice as quickly at communications can be made by the needle with a single wire, and Mr. Bakewell expects to be able to increase the apeed ten-fold with larger instraments. Independently of the gain of speed by this means, there would be greater confidence given to telegraphic communications, if the intelligence received were written in the handwriting of correspondents, fince by the present mode of communicating there is no proof that the information received it anthentic; and at the mensagen transmitted by the copying process are traced from the original writing, there can be no erron committed by the misundertanding of signals.

The New Brazilian War-Steamer "Affomso."-The first pair of marine steam-engines built in Boiton, were constructed by Mesars. Benjamiu Hick and Son, for the Affonso, Brazilian war-steamer, which has obtained such honourable notoriety by the servicea it rendered to the passengers and crew of the Ocean Monarch. These engines are made on the direct-acting principle, are 300 -horse power, and several improvements bave been introduced in their construction. The framing for sapporting the paddles and intermediate shafts is made of forge or wrought-iron, and some idea may be formed of the value of this improvement, hy comparing it with the ordinary cast-iroo framing generally adopted. One of these pedestal blocks, of which there are four, when shaped and finished, weighed 28 cwt .; but if made of cast-iron, and equally strong, the weight would have bern 80 cwt , a ad even then the liability to fracture would be more than trebly basardous. There is, also, in the construction of these engines, a simple and improved arrangement of the eccentric and reversing mution, which enables the ralves to be reversed for going alead or astern with the greutest ease, and by which the labour of three men to each engine is saved when reversing. The mode of introducing the injection water is also new, simple, and effective. The Afforso was built for navigating the shallow rivers of the Brazils, and she is well armed for the protection of their trade, having a 64-pounder fore and aft, which swivel on carriages, and also four 34 -pounders in her side ports. The vessel and engines were built under the orders and inspection of Admiral Grenfell, the Brazilian consul at Liverpool, and though from her construction slie was nol expected to sail more than 9 knots per bour, she accomplished lis on her trial trip.-Liverpool Mercury

The Britamnia and Conoony Bridges.-The report of Mr. Stephenson, presented to the meeting of the Chester and Holyhead Railpay, on the gith ult., stated that the constraction of the secood tube of the Conway. bridge is far advanced, und there is no donbt it will be ready for removal by the middle of October. The pontoons have been atrengthened, the capatans re-erected, and every other arrangement in a forward atate for its erection. About three-fourths of the masonry of the Britannia-bridge have been completed; sud, taking the progress now making as a guide, it is calculated that the first tube will be ready for lifting to its place in the course of next March or April. The iron-work at the Britannia-hridge has progressed even more rapidly than was expected, and the four large tubes are just approaching completion. The whole of the central portion of the taben is finished, and the castlogs at the ends are now being inserted. The scaffolding for the end tubes on the Anglesea side is complete, and a large proportion of the iron is already panched for their immediate commencement. The acaffolding necessary for the tubes on the Carnarvon side will be erected immodiately, to opeo the line throughout as rapidly as possible. Every arrangement is being made for fiosting the tubes as soon as the masonry is ready. The works throughont the whole of the line are stand. ing in the mast satiafuctory manner. The daily passage of heavy trains through the Conway tube for four months, together with a series of careful observations as to the effects produced, have completely established the correctness of the views upod which the designs for this and the Britannia were based. The cost of these structures has very much exceeded what was origioally calculated upon; on re-considering, however, the whole sobject, Mr. Stephenson is satisfied that the method which has been adopted is certainly the most eligible, if not the only practicable one.

Mode of Extinguishing Fires at Sea.-The following letter has heen addressed hy Dr. Reid to a daily morning paper :-" As the danger from fire at sea is attended with so many appalling circumstances (of which we have had a recent instance in the melancholy catastrophe of the Ocean Monarch), I beg to submit for the public consideration, and especially underwriters, the following plan, a a cheap, simple, and efficient method of preventing the occurrence of such accidents. Plame or combustion cannot go on where there is carbonic acid gas. This is one of the elementary principles of chemistry. It may be shown in varions ways. A lighted taper plunged into a jar of carbonic acid gas in instantaneonsly oxtioguished; or, if we take the glass of a common argand burner, and close the upper end of it by a flat plate of glass, or even by a piece of card or pastebourd, firmly, 80 completely as to prevent any carrent of air throagh the tube, on introducing for about an inch or so the flame of a candle at the other extremity (the glasa of the argand burner being held upright) it will, nsually in the space of little more than a minute, be extinguiahed, merely by the accumulation of the carbonic acid gas produced by its own combustion. The production of carbonic acid gas is completely at our command, for on adding dilute sulpharic acid to cbalk, we can set at liberty, in the space of two or three minntea, enormous volumes of this so-called fixed air. The cost of material for a ship of 1,000 tons would not exceed 15l. or 20l. sterling By means of tubes proceeding from the upper deck in connection with a eistern containing the dilute sulpharic acid, to the quarters below where there ia most likelihood of danger from fire, or moveable hose (mado of gutta percha), which can be introduced into any part of the vessel-the oil of vitriol, previoualy dilated with water, can be at once poured over the chalk (wbich is to be thrown down in the place where the fire rages), and immediately, the carbonic scid being set at liberty, tbe fre is extinguished; for combustion cannot go on in an atmosphere of carbonic acid gas. I have been much occupied experimenting on this subject, and find that from five tons of chalk, as much carbonic acid gas may be obtained as will be sufficient to completely fill a vessel of 1,000 tont burden. The expense of laying the tubes will not exceed 30L or 401 . and, once laid, there is no further trouble or expense. I may observe also (bat experiments are at variance on this subject) tbat it is not requisite to have an atmosphere absolutely consisting of carbonic acid gas to extinguish flame, for some experiments showr that a taper does not born in an atmosphere of three parts atmospheric air and one part carbonic acid gas. Lightning-conductors are provided for ohips -surgeons also to take care of the health of the crew-assuredly no expense (and it is but a trife) would be grudged to secure a ship and ita passengers from the contingency of such a melancholy mishap as that of fire. If this method will do-and there seems to he everything in its favour-all our emigrant ships, indeed every ship, ougbt to be secured againat a calamity which really must be beld as the most dreadful that can occur to a vessel at sea."

South-Eastern Railway.-The works at London Bridge for enlarging the station and widening the Greenwich Railway viaduct, saspended during the monetary panic of 1847, have been resumed. The bridge to cross Bermondses-street is rapidly progressing. 'The Gravesend branch is also in a very forward state. It is expected to be opened for poblic trafic edrly in the spring.

Railway Signals.-Another of the many contrivances suggested for enabling passengers in railway trains to communicate with the engine-driver or guard, bas been recently patented, though it differs little from several others of the same kind. The patentee is Mr. Richard Baird, of Dandee, and he claims the application of tubes to railway arriages, and the combination of cords, wires, or chains with the tubes, in such manner that either the passengers or guard may sound the steam-wbistle. It is proposed to connect the cords pasing tbrough the tubea under each carriage by apring hooks.

Great Western Docke, Plymouth.-These dicks are being proreetiod with rapidly, and, when completed according to the design, will furoid accommodation superior to that affurded by any docks of similar esteal. The inner basin, or floating dock, will be cepable of containing and affurching ample wharfage for 12 steamers of the largest size, a number, we believe, equal to that accommodated by the great basio at Portamouth, recently opened. There will be two eatrances to this basin; ove will admit merchantmen of the largest size, and steambonts of ordinary dimesaions, for two or three hours before and after high water-through the other the largest screw.ateamer can pass at high water. The area of the ooter basia will be nearly 90 ucres. If this basin should be deepened to the extent proposed, vessels can enter and be afiuat in it at all times of the tide without the delay of pasing through a lock. This is an adrantage aot possessed by Liverpool, and many other ports. The entire extent of whart age will excoed a mile, and the arpa of ground for atores is adequate to the greatest postible trade.-Dedonport Chronicle.

Birkenhead Docks.-It appears by the Lirerpool Times, that the most active preparations are going on in the engineer's deparment of these works, in the preparation of working drawings, \&c., for the recommencement of the conatruction of the docks forthwith. Arrangements, it is and, have been madefor raising the requisite capital, and no doubt remsios at to the successful accomplishment of the object of the new trust. An important trade is opening up in the exportation of coal from the Welsh mines, which can be brought, it is said, to Birkenhead docks, and put on board vessels at very considerably less cost, and with far greater facility, thea from the Lancaahire coal-field.
The Grimsby Docks.-Tbese are mighty works, and are proceeding with most satiafactory rapidity, alike creditable to all conceroed. The chief engineer, Mr. Rendell, is expected ahortly; bat the engineer. Mr. Adam Smith, who is very properly called the resident engineer, is always on the works. There is a defect, or rather a sinking, in one portion of the piles from the "blow sands"-a name upon which tradition has exhaunted its ingenuity, and has sammed up all by ascribing to demoniac agency the "fathomless plt." Shakspeare was right in putting into Hasilet's solikoquising thougbte, "Oh, what a mighty piere of work is man!" and bad he lived to see the mighty pieces of work which man achieves, some other as appropriate exclamation would by him have been furnished. One hundred and Gfty acres taken from the sea, and defences raised to prevent the mighty ocean claining back "its own," and such defences ars will resist its foaming rage, let jts battering waves lash it as they may-borrowing from some of its sister land chalk as the means of delence, of which no less a gaantity than $\mathbf{1 0 , 0 0 0}$ tons are every week conveged ona road of iron. By October, it is expected all will be ready to receire bie Royal Highness Prince Albert, to lay the firat stone of the intended Royal Albert Grimsby Docks; and, within three years, a dock of $\mathbf{3 7}$ acres will be ready to receive vessels laden with foreign stores. So much progrest could not have been made but for the perseverance of Mr. Adam Sarith, and those under his directions.- Nottinghamshire Journal.

Cliflon Suepension Bridge.-Upwards of $£ 40,000$ have already been expended upun this undertaking, and no mure money being forthcoming the works are now at a stand-still.

Improvements in Bridge Building.-A fine wooden bridge bas recently been erected by the Cumbuslang-road trustees, across the river peer Dalmarnock, to supply the place of the old one, which is now 30 yeart old, and very much decayed. The new bridge was commeaced only five months ago, and was huilt from a design by Mr. Robson, C.E. The whote length of the bridge is 355 feet, and the width within the side-rails is 28 feet. There is a footpath on each side, covered with asphalte pavement, and the road-way is composed of a mixture of asplalie and where stone netal, broken, t incles deep, and laid on the top of the planktog, which had been previnosly well canlked with oakum, and coated with pitch and sand, for the purpose of makiug it water-tight.

Circular Sawing.-An experiment has been lately made at the Saw-mills, Woolwich-dockyard, with the view of testing the efficiency of circular mats in catting through the centre of rough timber of a diameter nearly equal to that of the saw itself. An elm tree-one end of which was of the foll diameter of the amm - was placed upon one of the circular sawing machints having a sat 4 feet diameter, and a self-feeding motion, in the usual may. By this motion the tree was brought towards the anw, and passed over it; and by a reverse motion, it mas turaed back. The cut mado in the iree, pasing over the saw, was in desd wood all the way, and fully 20 inebea deep. Aftor the tree wat run back, it was turued over, and adjushed for a seoond cut, to line with the firnt; and in thin position it wes broagbt forward, as before, and coraplotely divided in two.

Method of Welding Iron, Steel, and Sheet-Iron.-In an eartbera veacl melt borax, and add to it one-tenth of eal-ammonis. When these imgredients are properly fused and mixed, pour them out upon an iron plate, and let them cool. There in thus obtained a glasay matter, to which is 10 be added an equal quastity of quicklime. The iron and steel which are to be soldered, are firar heated to redinem, then this compound, first reduced to powder, is laid upon them; the composition melta and ruas like sealinewax. The pieces are then replaced in the fire, taking care to heat them at a temperature far below that usually employed in welding; they are then withdrawn and bammered, and the surfices will be found to be then perfectly onited. The author asserts that this procean, which may be applied so welding sheet-iron tubes, mever faibs,-Mechanics' Magartine.

The South-Forcland Lighthouses.-These edifices are now completed, and their mppearance reflects credit oo all parties coucerned in their erection. There are two-she one called the Upper, and the otber the Lower EouthoForeland Lighthouse. I he headland on which they gtand is the mearest point in England to the coast of France, the distance being barely 21 miles across the Channel. The apper lighthouse consists of a massive tower (externally octagon, internally circular), the lanthorn of which is about 875 feet above high-water mark, leaving a perpeodicular height of the cliff on which it is situated of about 290 feet. The lanthorn is constructed on 2 novel principle. It is furnisbed with 264 mirrors, which are iacloned on the side opposite the sea by sir lenses. These mirrors, casting a multitudinous reflection on each other, afford a atong and brilliant light, being clearly visible on the opposite coast, throughout the Downs, Ramwgate, and esen Margate, and the greatest portion of the Isle of Thanet. The lamp, which is in the centre of the lavthorn, consists of one large socket, condaining four burners; and it supplies itwelf with oil by means of a kind of alock-work machinery, ahich , while it pumps up the oil to the wick, also returns the surplus quantity to the reservoir; and in case of any defects, or want of supply, by a small hydraulic balance, strikes a sharp tiokling bell, as a waroing to the keeper. The machinery is very simple, and at the same time curious. The lanthorn consists of a cupola, the roof and sides of which are composed of neatly wrought-iron fraines, apparently light, but aufficiently strong to stand against the tempest. It is enclosed by 48 oblong panes of plateglass, from yit to 4 feet long. Around the copula, on the exterior, is a baicony, rendered safe by a castellated parapri, from which, in clear weather, a splendid view is obtained. Passing from the upper lighthonse, about a quarter of a mile easterly, is the lower cor, standiog on the verge of the cliff. Tbe tower is not so bigh as the furmer, neither is it lighted on the same principle. Within the lanthorn are suspended from copper brunches 15 Argand lamps, each having a barner of rather large dimensions with a cuncave reflectur of the greatest brilliancy, and about 20 inches in diameter. It appears that it is yet a matter of doubt which system of lighting is preferable, but the Corporation of Trinity are giving each a fair trial.

The "New Star," Steamboat.-Some experiments were tried on this vessel, on the river Thamet, on the 27th ult., preparatory to the building of a new iron steamer. The trials were highly catisfactory, an arerage speed being attained, after several trials at the mile distance at Nortbleet, of 13 miles per hour in dead water. The engines and vessel were manufactured hy Mears. Miller and Ravenhill. Tonnage, 265 ; oscillating engines of 68horse power ; diameter of cylinders, 34 inches ; length of stroke, $2 \cdot 9$; number of revolutions per minute, 48.

Launch of a Steam-ressel in the Thames for Sarvice in Scotland.-A very hundsume-boilt iron bout was launched, on Satorday, the 161b alt., from the building-gard of Miller, Ravenbill, and Co., Orehard-wharf, Blackwall. This is the third veasel turned out by the above firm for the Ediaburgh and Northern Railway Company; the two formpr vessels being koown as the Auld Reekie, and Thame of Fife. The new craft is expressly adapted for the passage across the Frith of Forth, and will have a speed wuperior to the iormer equadron. She was christened the Express, and will be forniahed with a pair of oscillating engines of 120 -horse power, a pair of feathering wheels, tubuiar boilers, \&c., which are now ereoting oo board. Her length is 150 feet between her perpendicalars; breadth, 148 feet at load line; depth, 11 feet; draught of water, 6 feet.

Alleged Propulsion of a Vessel by Sleam in the Year 1543.-M. Gonzales, director of the Ruyal Archives of Simancas in Spain, published in 1826 an account of an inreation by Biasco de Garay, a aaval captaia, who, it is stated, exhibited in Spain, in 1543. an engine, by which ships of the largest size coold be propelled in a calm without the aid of aars or sails. He made an experiment before commissioners, appointed for the purpose of examining his invention at Barcelona, on the 17 th of June, 1543 -the vessel used being a ship of 200 tons. Garay, we are informed, wished to keep his mechanism a secret; but it was observed to consist partly of a large cauldron, or vessel of boiling water, and of two moveable wheels, one on each side of the ship. The experiment succeeded so far, that the vessel was propelled at the rate of two leagues in three houre; and the inventor was rewarded by receiving a sum of 200,000 maravedis, lesides having his expenses defraged from the public treasury. It is udded, that the invention would have been further encouraged had not Siate ex peditions of great consequence clamed the immediate attention of the emperor. Aud it is important to mention, that the authenticity of the entire history of Garsy's invention, as published by Gonzales, has been called into question, and that no practical iesults of any atility followed. Prazer's Magazine.

Gutta Percha Boats.-At Sescombe, a No. 1 pilot boat, built of gutte percha has been teated. It is $17 \ddagger$ feet long, and though nearly filled with water, and having four men on its gunwale, kept ita buuyancy. It weighs 190 lb . and sustains a pressure of 15 cwt . It not ooly anawers the purpose of a pilot-boat, but is also convertible into a life-boat. This substance most make an excellent life-boat; and before we saw the above account, we bud thougbt of calling attention to the feasibility of this appli. eation. The toughoess, elasticity, and lightness of this material, for the purpose of boat-building, is nuquestiunaule. Tbe price is one dollar per puond, and 80 pounds must nuke a bout of a moderate size. The old gutta percha can be sold at a reduced priee.-Scimblfic American.

Indian Waterfall.-Among the eliffis of the Eastern Ghants, about mid. way between Bombay and Cape Comorin, rises the river Sbirawati, which falls into the Arabian Sea. The bad of the river is ode-fourth of a mile in direet breadth; but the edge of the fall is elliptical, with a sweep of balf a mile. This body of water rushes at firat, for $\mathbf{3 0 0}$ feet, over a slope at an angle of 45°, in a sheet of white foam, and is then precipitated to the depth of 850 feet more into a black abyas, with a thondering noise. It has, therefore, the depth of 1,150 feet! In the rainy season the river appears to be about 50 feet in depth at the fall; in the dry seamon it is lower, and is divided into three cascades of varied beanty and astonishing grandeur. Join our fall of Genesee to that of the St. Lawrence, and then treble the two naited, and we bave the distance of the Shirawati cataract. While we allow to Niagara a vast superiority in bulk, yet in respect to distance of descent it is but a monntain rill compared with its Indian rival. - Rochester Democrat.

The American Lakes.-Professor Drake, of Cincinnati has been making some observations upon these inland seas, and gives the resulta to the public. The chain of lakes extends over nearly eight and a half degrees of longitude in length. The extent of their surface is eatimated at $\mathbf{9 5 , 0 0 0}$ square miles; and the area of country drained by them is computed at $\mathbf{4 0 0 , 0 0 0}$ square miles. Their relative sizes are as follows:-" Ontario, 5,300 square miles ; Erie, 9,600; St. Clair, 360 ; Hurud, 30,400; Superior, 22,000 . The average depth of water in the different lakes is a queytion npon which there is no certain information. Authorities differ. Dr. Drake gives it as follows:-St. Clair, 20 feet; Erie, 84 ; Ontario, 500 ; Superior, 900 ; Huron, and Michigan, 1,000. In standard works, Lake Erie is usually stated to have a depth of 120 feet. The depest soundings have been made in Lake Huron. Off Saginaw Bay, 1,800 feet of line have been sent down without finding the bottom. The altitude of these lakes varies step by step from Ontario to Superior. Lake Ontario is 232 feet above the tide-water of the St. Lawrence. Erie is 338 feat above Ontario, and 565 feet above the tide-water at Albany. St. Clair is 6 feet bigher than Erie; Huron and Michigan are 13 feet above St. Clair, and Superior lies 44 feet above them. This shows the curious fact that while the surface of Huron is 684 feet above the level of the ocean, its bottom, at Baginaw Bay, is more than 1,100 below the same level. The waters of these lakes, with the exception of Erie and St. Clair, are remarkable for their transparency and delicious favour. Of Lake Huron, Professor Drake ascertained that the water at the sarface, and 200 feet below the same place, indicated precisely the same temperature,-namely, 56°. His explanation of this fact is: the waters are 80 pure that the rays of the sun meet with no solid matter in suspension to arrest and retain the heat."

New Cement.-Tho Buffalo Journal describes a valuable oement, which was first discovered in Sharon, Medina county, Ohio, and, after undergoing the most thorough test, bas been pronounced of great value for cementing roofs of buildings, steamboat decks, \&ic. The mine itself (says the Cleveland Herald) is one of the most singular depositories to be found. It seems as if poured into a large sand-atune basin, covering some four acres, is fonnd at the depih of 20 feet, presenta an even level surface, is about 5 feet thick, and when dag out is no harder than tallow, and is entirely free from dirt and other impurities. An exposure of two weeks to the air changes the cement to atune, so hard, that it is difficult to grind. In preparing it, the cement is first ground when grepn, and after it has been hardened, it is ground again, and remains in a powdered state natil mized with oil for use. When applied to roofs, it becomes bard and durable as slate, and is a certain fire-proof, and is iu no way alfected by the weather. Wo have been shown a specimen of the cement that bas been on wood nine months, which adieres closely, is as hard as the slates used in schools, shows pencil marks equally as well, and has the grit of a fine hone. The cost is small, being $\$$ dollars per cwt., which, with the same anduunt of oil, is sufficient to cover $\mathbf{1 , 2 0 0}$ square feet.

A Portrait of Mr. T. Cubitt, by Pickersgill, has been sobscribed for by the Builder's Society.

Salt.-A spring of brine has just been "tapped," by Mr. B. Smith, at Droitwich, Cbeshire, at the depth of 217 feet-being a greater depth than ans before discovered; the usual depth being 170 or 180 feet.

On the Occurrence of Vanadium in the Refinery Slag of Staffordshire.Mr. Deck, in a communication to the Chemical Gazette, suys- ${ }^{-1}$ Being commissioned by an eminent English railway engineer, who has directed mach attention towards the qualities of iron employed in bridges, \&c., to examine some refinery slag, which, without any assigaahle reason, had the property of imparting extraodinary ductility to the iron with which it was mixed, 1 have succeeded in discovering a large quantity of vanadinm, existiog as silicate of vanadic acid, combined with small portions of molybdena, chrome, and the nsual quantities of phosphoric acid and silicates. The first netal being confined to fow localities, has bad its propertiea but litule atudied by English chemists, and has hitherto been found in no other siag than that from the Taberg mine in Sweden, the iron of which is remarkable for its ductility; and no mention is made of it in Dr. Percy's elaborate analyses of slags for the British Association. The quantity of slag at my command operated upon was very small; but the vanadium existed in a much larger proportion than in the Swedish slag, which I have since examined; and it is, donbtless, the cause of the superior ductility of both."

A Now Wethod of Cutfing Trencles for Drain Thies has been invented by Mr．White，of Kennington－road；it is for the porpose of slicing－out the earth，of just sufficient width for the admission of the pipes，instead of the unnecessary and expeasive plan at present（from necessity）io use，of digging a trench large enough for the men to work in，perhaps， 2 feet broad，when it may require only a 4 inch，or，at most，a 6 －inch drain． The machine consists of two large wrought－iron wheels，of any required diameter， 11 jach thick at the centre for 12 inches diameter，then tapering to a knife－edge，which is In be hardened steel．These are fitted in a frame，inmediately behind each other，but aideways，sucb a distance apart $4 s$ to suit the diameter of the pipe intended to be employed．They turn， however，rather closer at boltom than at the top，in order to render the cut of a tapering form smallest at bottom，for the more ready removal of the earth．The implement is drawn by horse－power back wards and forwards， in the direction of the cotting，until the necessary depth is required．As these knifo－wheels woold cut much better，by having a jet of water drip－ ping upon the earth to be cot，a cistern is proposed to be carried upon the frame．To give increased－indeed，doable－power to the borses，when the friction would be very great，a small anchor is to be fixed in the ground， at any distance，for a single piece of cutting－a rope from which would pass througb a pulley on the machine，and the horses pull from that end of the rope；the earth is afterwards removed by a peculiar plough．Suppos－ ing the implement to travel at the rate of $1 \frac{1}{2}$ mile per hour，and that it had to pass over the ground three times to produce the required depth，and that the distance between the drains is 30 f．，in 10 hours it woold cut 18 acres．

Smelting Copper，－A correspondent of the Mining Journal gives the following process as adopted at Torass，in Norway：－The ore，which is the common copper pyrites，containing a large propurtion of sulphar， when brought from the mine，is apalled to about the size of a walnot．A round kiln，built of dry stones，about 8 feet bigh，with apertures at short intervals，is constructed；two cubic fathoms of wood are laid in the bot－ tom；on this the ore is placed；this quantity of wood，in general，is sup－ posed to be sufficient for the calcination of 100 tons of ore．When lit， the mass generally burns for three weeks ；towards the close of the opera－ tion，smalls are thrown on the pile，to prevent the too rapid calcination of the ore．Ass soon as the fire has ceased，the kiln is upened，and the ore is then wheeled to the smelting－works ；if properly calcined，it has a dark red appearance，and is exceedingly friahle；great care is required in this operation，as too much heat will cause the ore to melt，and a regulos will be formed．The ore is，in general，allowed to remain three or four dajs， previous to its being forwarded to the ulterior operations．It is then melted iu a common blast－furuace，similar to those used in the Hariz，and other parts of Germany；it requires there about 70 cabic feet of charcoal to smelt 8 cubic feet of copper．The regulus produced from this operation is from 15 to 20 per cent．produce，bas a coarse opengrain，and，in general， a deep porple appearance．This is subsequently calcined six times；a semicircular kiln，about 6 feet long by 2 feet broad，with an aperture at the end，is built； 4 fms．of wood is in general required to the produce of 100 tons of ore ；each calcination sakes about 24 hours．After undergo－ ing these calcinations，the regulns assumes，when broken，a white ap－ pearance，with a close grain，somewhat similar to while metal．From thence it is taken to the copper furnace，and after remaining there 12 hours，is tapped out in the form of rose copper（gahn kobber）．The pro－ duce of this is about 94 per cent．

Hood Carbonised by High．Pretswre Steam．－M．Violette，commisuary of the government gunpowder works at Esqueros，has communicated to the Paris Academy of Sciences a process he had adopted for making charcoal suitable to the manufacture of the best kinds of ganpowde．He finds that at a temperature of 200° centigrade $=$ to 392° Pah．，wood does not car－ bonise ；that at 250° centigrade $=$ to $482^{\circ} \mathrm{Fah}$ ．，au imperfect charcoal alone is obtained，formerly called brallots，or burnt wood；that at 300° centigrade －to 572° Pah．，the red charcoal it produced；and that，at 350° centigrade $=$ to 662° Fah．，and above，the operation in variably furnithes the black or complete charconl．The time neceasery for carbonization，he found to vary from three hours to half an hour，and the products passed from red charcoal to black progressively．He also took accouns of the produce of the char－ coal，and found it to diminish in quantity in proportion as tbe carbonization was carried to a more advanced atage．The quantity of wood usually ope－ rated upon by M．Violette was 25 kilog．$=1 \mathrm{cwt}$ ．，and the wood employed， the blackthorn（rhamnus frangula）．

Fossil Tree．－A few days since，the workmen emploged in the railway－ culting near the Coalbourn Brook，Staffordshire，discovered a fossil Iree， in a perpendicular position，in the lime and iron－stone formation called clunch．It was 20 inches in diameter，and the top as flat as if regularly sawn off，while，in weight and hardness，it resembled iron－stoue．A piece， of 4 feet in length，has been sent to Enville．hall，to enrich the Earl of Stamford＇s museum；the lower part still remains，but its length bas not yet bet ascertained．

A Coal Bed on Fire，－Under the village of Lower Hangh，near Rother－ bam，Yorksbire，an extensive bed of coal has been burning for twenty years， and threatens to deatroy the village by undermining the foundations of the houses．The heat is very sensibly perceptible at the sarface，and the in－ habitants take advantage of it as a natural bot－bed for raiaing early vege－ tables．The sulphurous amell and smoke，howerer，form a great drawback to this privilege，and indeed render some of the houses sarcely habitable． The coal was ignited at a part where it＂bassets out，＂by making a large Bre there for the purpose of burning atones intended for road materials．

The＂Greal Brifatn＂Sleam－Ship．－This celebrated vemel，with her ma－ chlaery，ealis，enchors，cables，te，wat put up for cale by anction，at Luverpool，co too day，the 18 th alt．，at which port ithe has been ance September last．The＂Great Briexte＂ Whit ballt at Bristol，in 1844，by the Great Wentern 8team．Stip Company，tor itre Nic York trade：she was $\mathbf{3 , 4 4 2}$ tont， fore．rake， 226 feet；ditto over all， 319 tt .3 in．；beam， 50 K .4 in ；depth $\$ 2$ feet． 810 was propelled by eagtioes of pearly 1,040 horbes＇－power，and Attred with Fiooscrofts patent acrew propetler；and bas accommodation for 250 cabla parbengers，Filh otowne room for 800 tona carpo（menanrement），and 1 on
 northern coant of I reland thropehout a whole whitest wiaded in Dundram asy，a the altering her llaet．Thad，throughout a whole winter，wiabout in the alightes drave entimated， snm ，the whole shlp and mechlnery might，it is atated，be reatorent to the orfginul condi． tion．With a manlier palr of engines，capable of propelling her at a alighuy roducet speet，by which her coal stowage wonld be reduced one haif，the would wcecommodite over 1,000 enlgrantu for a diatapt royage．The spacious anle－－rooms of Mescra．Tooge and Curry，were dencely crowded with mercbanta from all parta of the Etordoon－ane
 up at a certaln price，for the partien by whom he whit employed，bat he bbosid prefer is offer from the company present．Sonie time having elapsed，the auctioneer informed the company that 20,0001 ．were offered for her．A nother pange then ensued，Wbea he mid kr shonid take her in，on accoan of the ownen，it w， 80,001 and been bid for the vewit alle，It was atated in the room，that If from 30.0001 ．to 85,000 ．had been bid for the vemer she woald have been mold．She originally cont 125,0001 ．

The New Park at Battersea．－The new park at Battenea，which hat been for nome time in abeyance，will be commonced withont delay，notices heviag been 000 ． veyed on the 16 th alt．To all the reaidenti on the ppot，that they must quit posenemion，the Intention belog at once to remore the houses．The witer worke will remadn．The pat will extend the whole diatance between Batternea Bridge and Nine Elmes，and fore the bank of the river to the public road acrons Bathersen Fields，making the learth of the park about two milest and a quarter，and ity width a litile more than a mile．A curriar．
 Towards the construction of this bridge the Merquis of Weatminater has coatibrited the sum of 60,0001 ．At the soath．western boundary of the part an elegant charch the wee erected，and alll be retay for contecration In the conrse of the present mutama．

LIBT OF ITE PATEMTE．

Gmanted in gngland from Augugt 22，to Septraber 21， 1848. Sis Monthe allowed for Ehrolment，waleas othervise espreased．

Hugb Lee Pattinnon，of Waphlogton－house，Gateshesd，Darbam，chemical matione． tarer，tor＂Improvementu in manufacturing a certala compound or certale compondo of lead，and the appilication of thls and certale other componade of lead to vation uneful purpores．＂－Sealed August 22.
Alfred Vincent Newton，of Chancery－lane．Middleser，mechanical draughtaman， 5 ＂certala Improvementa in dressing or cleaning grata，and in exparatiog extraneons mantr theretrou．＂（A communlealion．）－Angust 22 ．
Edward Deuch，of Euratperpoint，yuesex，hot house bullder，for＂Istprovements in the roofag conservatorien，hothoubet，and other Hke structuree．＂
Whllam Young，plumber，and Heary Bargens Yoank，endipeer，both of Beapaphe， Devon，for＂improvementa in smelung and resning lead ores．＂一Auguat 28 ．
Charlee Rowley，of Birmingham，Warwick，bation－manufactarer，for＂Improvemeste in the manufacture of buttona．＂一Augast 28
Elizabeth Cbreea，of Homerton Castle．Homerton，Middieser，fur＂Improvement it the manafacture of mealing was．＂－Angat 29.
Peter Wright of Dadiey，Worcester，vice and anvil manafheturer，for＂certain ic provements in the masufactare of vice－boxes，and in the machivery for effeeting in came．＂－August 31.
George Nasmyth，of Ebury－street．Pimlico，Niddiener，elvil engineer，for＂emtio Is． provementa in the conatruction of Are－proof fooring and roofigg，whteh Improvecoate an aloo applicible to the constructlon of visducte，aqueducta，and culverts．＂－September 4
Willam Wheldos，eagineer to Mears．Join Warner and Soon，of Jewia－conawh． London，brasa－founders and engineers，for＂Improvementa in pumpa or mechioery te raislag or forcing tuids．＂－september 4
John Lewle Ricardo，of Lowndet－qquare，Middesex，Keq；M．P．，for a 1 mprownem in elecuric telegrephs，ind to apparatus connected tberewith．＂一september 4.
Whllam Edxard Hollande，of 73，Regeot－qnadrant，Middlesex，dentlen，and Elchaieo， Whitaker Green，of 15，Walton－place，Chelaea，gentieman，for＂a mew manufarwere at artiticial fuel in blocks or lumpa．＂－September 4；four montha．
Wilitam Losh，of Newcaile－npon．Tyne，for＂Improvements in ateam－engiaes．＂－ September 4.
Henry Smith，of Valcan－workn，Weat Rromwhi，for＂Improvemente In shem fucture of rallway wheels．＂－September 5 ．
Willam Dlckinson，of Bleckburo，Lencaster，machme－maker，for＂certide Leporn－ mpnts in，and applicable to，looms for wearing．＂－September 11 ．
Robert Walter Wlafeld，of Birmingham，merchant and manutacturer，and Joha Wurd of Blrmingban，aforatid，a workman in the employ of the rald Robert Walter Whatc， for＂certala Improvements in the mannffecture of mbines and is the manatactart of ct taln articies made In part of tubes．＂－September 14.
Willam Sager，of Rachdale，Lancuster，wool－dealer，for＂criling lmproved meane at
 by land or water，and for other such purpines，part or parts of which means and appanstas
 plicable to
temb．r 15.
Willam Brown Roof，of Stanbope－street，Regent＇b－park，chemist，for＂certale la provementu is the construction of reapiratoris＂－September 21 ．
Heary Wilson，foreman to Mesars．William Greaves and Sor，of the smed－woth 8hemeld，for＂Improvemente in the menufacture of chlais and govgen．＂－September il
Joseph Lallie，of Manchanter，engineer，for＂certain machlaery or apparatwan apphabliz
 Sepiember 21.
John Fraarion，of Birmingbam，machinlat，for＂1mprovements in bending or shapiay Iron or ateel，and other metala．＂－September 21.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXXVII.

"I must have itherty Whthal, es large a charter acthe wisde, To blow on whom I please."

I. I lately called attention to a very feasible improvement, or rather, highly desirable completion, of an important public edifice -namely, Somerset-place; and my remarks appear to have been not entirely thrown away, since they have been noticed by others. I will now mention another building-a public one, of considerable importance, and admirably situated in many respects, it having among other advantages that of being placed directly at the extremity of a vista from one of the most frequented thoroughfares in the whole metropolis. Notwithstanding all which, it is in itself a moat flagitious architectural monstrosity. Can any one, after this, be at a loss to guess what is the building which I allude to ? I myself know of no other so situated, precisely at the end of a vista whoee sides enclose it. After this, and my calling it a perfect monstrosity, can you possibly be any longer in doubt? Those who still are so, ought to be left sticking fast in it, and left to help themselves out of it as well as they can. Don't be in a hurry, good folks; take your time, or take a map of London, and examine it, and thenOh! you have found it out, have you? you guess that I allude, after my own rigmarole fashion, to the front of Guildhall. Well ! since there is no denying it, I confess it : it is the front of Guildhall that I mean,-snd both mean and unmeaning enough it is in itself. Civic taste runs more in favour of turtle soup than architecture, or the citizens would abridge the number of their annual tureenfuls of that luxurious fare, in order to accumulate funds for a worthy exterior to their banqueting-hall. As far as it goes, their taste is unexceptionable, but it does not go far enough; it is very palatable, but not at all palatial,-at least, not externally, the exterior of their Hall of Guild being as tasteless as can well be conceived. Instead of turtle, venison, and champagne, it announces water-gruel and cag-mag; it being the most veritable architectural cag-mag ever prodnced. Some of the city folks must, I think, have longed to carry off the Victoria porch from the Palace of Westminster, and plant it as a portal before their Guildhall, with such addition as might be found requisite for filling up the entire frontage. What that last may be, I cannot undertake to say,-there being no published plan from which measurements can be ascertained. However, that we should there have a fac simile or duplicate of the Victoria porch at Weasminster, is not at all to be desired. We might be very well content with something of similar character in regard to nobleness of idea and grandeur of design. Yet, so long as there is no absolute occasion for doing anything to the building, nothing is likely to be done; wherefore, one is almost tempted to regret that it was not burnt down by the fire that broke out close by it some time ago, and threatened to lay hold of it ; but was, unfortunately, laid hold of itself, and arrested before it could perform the good office of ridding us of that scandal to City taste. Pity that that taste is more Ápician than Vitruvian,-that it patronises turtle soup so much, as to have no patronage left for architecture.
1I. There are buildings which seem to have been intended to exemplify errors and defecta, and thereby deter from anything similar being attempted. Among such monitory and wellintentioned works, we may place the front of the Royal Institution, in Albemarle-street, which looks like a huge lodging-house, with as many eyes as Argus, peeping out from between the columns of a Corinthian temple,--perhaps that of Argus himself. Instructive it may fairly be called, inasmuch as it makes manifest at a glance the utter preposterousness of attempting to unite together, as is there done, two such irreconcileable systems of composition as are those of Columniation and Fenestration. Now, I am not quite so straight-laced in my opinions as to object to an order being employed as decoration, but then it should in every case accommodate itself to the structure which is so ornamented, instead of affecting to produce the same expression as a simple open colonnade, where the columns and their entablature alone constitate the exterior of the fabric. When first seen in such a foreshortened view of it that the windows within the intercolumns are concealed, the front of the Royal Institution suggests the idea of an open colonnade upon a noble scale; but the very next minute we are undeceived, disappointed,-even disgusted. Instead of finding anything like nobleness or grandeur, we are shocked at the positive littleness and meanness which prevail in everything but
the columns themselves. Not only is there a most violent and offensive contradiction occasioned by the adoption of conflicting modes and ideas, but there is no sort of keeping whatever as to style. After the columns, there is nothing whatever of Corinthianism in the other features and details. We find the most florid order applied as decoration to what is itself kept must penuriously bare; so that richness and poverty of style-or, I might say, style and no-style-are coupled together. With such absence of all artistic feeling is that pretentious facade treated, that what is meant for ite decoration, causes the building itself to appear most insignificant, or even worse. Although both the columns themselves and the front are large enough, the whole is a mass of littleness and prosaic sameness; for, as if there were rather a paucity than superabundance of windows, the very doors are made to resemble the windows as much as possible : therefore, so far, the design may be said to be all of a piece throughout-yet after so unlucky a fashion, that instead of being a merit, that circumstance becomes a defect.
III. Taste is subject, nut only to wholesale revolutions, but to strange fluctuations and relapses. One day we are disposed to think that taste has taken a better direction than before, and is likely to advance in it if allowed to have its free course; when, the very next, perhaps, we are startled and shocked, puzzled and perplexed, by some architectural monstrosity which runs quite counter to, and upsets our calculations. Although such is the fact, it seems hardly credible that two structures which are almost within sight of each other, and erected in the very same year, should exhibit such diametrically opposite tastes as do Bridgewaterhouse and Mr. Hope's new mansion in Piccadilly. The latter is such a vile compound of uncouthness and deformity, as to be nothing less than marvellous. That precious sample of design is said to be by some foreign architect,-which is the only thing to console us; yet, let whoever may be rezponsible for the design itself, the discredit of adopting it falls upon no other than Mr. Hope himself. Had an ignorant employer-one compelled to trust entirely to the taste and judgment of others, been prevailed upon to make choice of such a piece of studied ugliness, he would have been to be pitied, and our astonishment would have been greatly diminished. But Mr. Hope is not the man to be so imposed upon; he has the reputation-the hereditary reputation at least, of being an authority in matters of art and taste, wherefore he is almost the very last person from whom so public a display of bad taste was to be apprehended. Besides marvelling much, there is also room for fearing that, through the infuence of his name, his example may become contagious, and encourage others to perpetrate similar architectural enormities. One comfort is, the building seems to be universally disliked and condemned; while the evil else to be apprehended from such example will now be greatly counteracted by the very opposite one of Bridgewaterhouse. What is to be regretted is, that instead of occupying as public a situation as the other, the latter mansion is comparatively secluded from notice. Even its Park-front cannot be seen very satisfactorily, all the lower part being completely screened by the garden, with its fence and shrubbery; and of as much of it as is visible, the rich and delicate detail becomes almost lost, owing to the impossibility of approaching sufficiently close to inspect it as it deserves. And the other, or south-front, which is somewhat the longer of the two is where it is almost concealed from public ob-servation,-Cleveland-row being no thoroughfare into the Greenpark, but a mere cul-de-ouc.
IV. Bridgewater-house puts its neighbour, "Sutherland," quite out of countenance. The two buildings contrast very strikingly with each other, and afford a very good lesson, and make manifest that decided improvement upon the whole has taken place within the last five-and-twenty years. In point of architectural quality, Sutherland-house is a very ordinary production (by two of the Wyatts) ; mesquin in its ensemble, and insipid and favourless at the best. There is nothing about it that can really be called style: it has none of the stamina of style, but merely feeble, usi mannerism, without a single touch of genuine artistic feeling or taste, or of con amore diligence. Undoubtedly there are many things quite as poor, or even very much worse; therefore, if it be any praise to say that of it, to such praise Sutherland-house is unequivacally entitled. Such praise, however, is only condemnation in a milder shape; and if the structure in question is not to be called a failure, it is only because nothing more than dull routinier mediocrity seems to have been aimed at-and it has been produced. Apsley-house is another piece of Wyattism, and is such as to make us hope that that ism is now departed from among us for ever. In those days, Sansovino seems to have been quite unknown here, or else must have been put into an Indax Expurgatorius.
V. In the subjects generally proposed to arehitectural students in competition for acndemical medals or other premiums, no very great judgment is shown, they being almost invariably of a class altogether out of the sphere of usual practice. Such subjects as royn palaces, senate-houses, cuthedrals, and others of a similarly ambitious kind, do not exercise those faculties and abilities which are most of all necessary, becnuse the opportunities for exerting them are comparatively of every-day occurrence. He who can display talent, ingenuity, and taste, on occasions which seem to afford hardly any room for displaying them, will be at no loss for ideas on more important occasions that may require him to put forth his strength, at the same time that they afford great scope for his imagination. The converse does not hold good : the production of an extravagant chimerical projet as an academical theme, is no pledge for the sort of talent which is really wanted, any more than the obtaining a Gold Medal is ally pledge for afterdistinction. Subjects so rare and exceptional that they may be ranked among the phenomena of the art, are hardly the very best preparatory themes and exercises. Even granting that they tend to develope and confirm artistic talent of a higher grade, if the talent itself be of a kind that requires extraordinary emergencies and illimitable resources for exerting and displaying it, it becomes, in a manner, a superfluous one. Unless he at the same time has powers more generally available, the possessor of it is likely to prove in the condition of Hercules employed in spinning with a distaff, at which labour his gigantic thews and sinews could have been of little service to him. Of Hercules' handiwork of that sort, no "long yarns" have been preserved as relics; but no doubt they were rather clumsy ones-as clumsy as this fantastic comparison will perhaps be considered by many. So I drop it, and resume with a fresh paragraph.
VI. Such ambitious efforts in architectural design as those above alluded to, do not at all serve to call into play what is a most valuable species of ability, that which can accommodate itself to untoward circumstances, and overcome difficulties. Where a carte blanche is offered, all those thwarting and fettering conditions which the architect must expect to meet and contend with, are got rid of at once. Comparatively little exertion of thought is required where what may be called dreaming will suffice. Were carte blanche matter of course on all occasions, imagination might be left to run riot at will. Though as to imagination, it may be doubted whether even that is much exercised and disciplined by the kind of subjects proposed for Grands Prix and Gold Medals. They generally show more of high-flown but empty architectural bombast, than of fertile invention. When examined, they may be found to be made up out of the usual stock ideas-some of them rather worn out, or at least the worse for the wear. It requires no great exertion of imagination, or power of fancy, to draw out upon paper mile-long colonnades, or spires that shall pierce the clouds. Between such mere extravagance and the artistic and poetical, there is a wide difference. Moreover, it is very pussible to be exceedingly extravagant and exceedingly dull at the same time. Some of Soane's architectural "visions," as it pleased him to call them, partook of that double quality. There was enough of them as to measure and quantity, but the stuff itself of which they were formed was very ordinary and homespun-far more prosaic than poetical in texture. Schemes of such magnitude have ere now been produced upon paper, that Barry's "Palace of Westminster" would shrink into insignificance in comparison with them; yet, though the things themselves have been of monster size, they have oftener than not been made up of rather dwarfish ideas. Even empty common-place may be inflated to such bulk, as to look not only large, but solid too. But as a monster projet proposed by an Academy is required for producing the inflation, the bladder empties itmelf, and falls to the ground again. Were colossal monumental edifices reared by us every day, there would be some reason in proposing them as subjects to students; although even then they ought to be accompanied by sone sort of conditions, which would have to be observed; but as such is not the case, it would surely be better to direct study with more regard to the application of it on ordinary occasions. And the talent which can dieplay itself upon such occasions,-which is capable of elevating what seems to be a common-place subject into the sphere of art, by happiness of treatment and skilful touches,-is, though it may seem a comparatively humble, an exceedingly rare one. It is one that demands artistic feeling, and a thorough knowledge of artistic character and effect. It works out, as it were intuitively, rules for itself, which unlike ordinary technical ones, do not admit of being formally and clearly expressed in words.
VII. Ordinary rules have, no doubt, their serviceableness, but it is rather of a negative sort : the observance of them will prevent
faults, hut will not ensure positive beauties, or other merits than those which partake of mere routine, and are therefore equally at every one's command-of the novice as well as of the master. Rules are indispensable, since they constitute the very grammar of the art ; but from its grammar to its poetry the distance is prodi-gious-at least, so great that ninety-nine out of a hundred never advance beyond the former so as to reach the latter. What is done by mere rules and routine, can be accomplished by one man just as well as hy another. It is the something more-the undefinable and individual non soche, which lying beyond the reach of rules, is not to be overtaken and caught by them. As far as this finer quality of art can be studied and learnt at all, it is what every one must study for himself; for it is not to be learnt from general precepts and rules, but from a careful and diligent examination of examples marked by such felicitous quality. Rules teach much, but they do not teach all. Yet, instead of being frankly acknowledged, this is a truth which is thrust aside and kept out of sight; whereas it is one that ought to be strongly impressed upon every student. Rules and the observance of precedent will suffice for mere mechanical copying, but if architecture need not, or cannot now advance beyond that, it ought to forfeit all pretension to the character and title of Fine Art. And why should it or its followers for it be ambitious of such title, if it cannot support it by acting up to it? If we are content with it in its present condition as a mechanical art, wherefore not confese as much by calling it so, instead of claiming for it an empty title, which only reminds us of what it no longer is? As a Fine Art, all its privileges seem to be gone; therefore, they and its power being gone, it would lose nothing by being deprived of its nominal rank. This will, no doubt, be considered very harsh and unwelcome advice. Well, then, if its rank must not be given up, let us endeavour to render it worthy of such rank, and to re-instate it in its quality of Fine Art, endowed with all those prerogatives and privileges of which in these latter days it has been despoiled and stripped, and forced to subsist upon the remnants of its former treasures.
VIII. Many, it might be supposed, would be really glad, were the idea of architecture being a Fine Art to be altogether renounced, sinceart does not seem to be at all their element. They are safer on $d r y$ land-on the honest terra firma of practical routine. Art is a treacherous element to those unprepared for and inexperienced in it. If, according to the opinion which, though not formally expressed, is to be gathered from the remarks of certain writers, we have no further occasion for artistic invention, or any actually ope rating and creative principle in architecture, but may get all the art that is required for it at second-hand, and would therefore do woll to confine ourselves exclusively to traditional forms and ideas,-if such be the case, and we can now dispense with art itself, we can surely dispense with the name of it. Or, if we must call it art, let us call architecture the art of making new buildings by copying or hashing-up old ones. But to affect to consider and style it a fine art, when we make it in practice just the reverse, partakes too much of quackery. Architects are now such a nume rous class, that it would be strange if there were not some among them who might fairly aspire to the honourable name of artiste; but the majority have very questionable claim to it, and some none at all; nor even so much as any genuine relish for their "sat": and the want of earnest affection for it, is of itself a proof of the want of the talent requisite for i it.
IX. Those who admire one style of architecture, are apt to be not merely indifferent to, but intolerant of every other. The lover of pure Greek architecture sees only the corraption of it in the Roman style; and of this latter, the degradation in the Italian. His standard of excellence is the Parthenon; and by that standard he tries everything else, no matter how different may be the principles upon which it is constituted. He would have Greek-Doric temples spring up everywhere throughout the length and breadth of Europe, and of America also. He is willing to extend some degree of favour to Ionic, that being at all events Grecian ; but Corinthian is Roman, and shows a sad falling-off from the manly simplicity of the earlier style. On the other hand, the lover of Roman and Italian design is equally strong both in his liking and his antipathy, holding Greek architecture to be frigidly severe and monotonous, exceedingly bornè withal; and Gothic, together with all other medieval styles, to exhibit only the barbarous conceits of the dark ages, - to be utterly devoid of "proportions," lawless, extravagant, and irreducible to "rulea" Such at least used to be the case, for at the present day, such sweeping condemnation and insolent contempt of medizval architecture cannot be expressed with impunity. Tempora mutantur: Gothic may be said to have now the ascendancy, and its admirers and devotees repay with compound interest the insults and indig
nities which it formerly received from the Italian school and its followers. Opposite as they are in their tastes, all these parties are alike in one respect, they being all alike one-sided, prejudiced, and intolerant in their antipathies, and cheating themselves out of much varied enjoyment by limiting the sphere of it to the compass of a single style of the art ; instead of sympathising with the beautiful and intrinsically asthetic in architecture, whatever may be the particular form under which it presents itself, or the name to which it answers.

STUDY OF MECHANICS.

Mechanical science is certainly the most ancient branch of natural philosophy. The very commencement of existence is the exercise of force; and of all his physical powers, the first which man puts into operation is his strength : the whole business of his animal life consists in the exercise of it, and from the beginning of the world until now, every human being, from his cradle to his grave, has been making repeated experiments in that knowledge which only modern philosophers profess to teach with perfect accuracy.

Why has a study, of which the study has been universal and uninterrupted, advanced with such slow and uncertain steps? This tardy development is not the history of all other sciences. Geometry-the exact knowledge of forms and dimensions-though its applications to the purposes of life are much fewer, and much later required, became a methodic science, while mechanics still remained a crude collection of facts. So late as the end of the sixteenth century, the very simplest phenomena of falling bodies vere in doubt. A heavy body falls to the ground more rapidly than a light body, said the opponents of Galileo.-The weight of the bodies makes no difference in their motion, was his counter-assertion. Now, here was a question which the world might be presumed to have settled for itself before it was five thousand six hundred years old. If there be any operation of nature more frequently observed than another, it is this very one of the descent to the ground of unsupported bodies. Yet, notwithstanding the incalculable number of previous observations, it was necessary that Galileo should appeal to direct experiment to support his viows. He ascended to the top of tbe leaning tower of Pisa, with two balls differing very much in weight, yet both of such a density as not to be much affected by the action of the air. The balls were simultaneously dismissed from his hands, and reached the ground at the same moment, or at least without perceptible interval.

This was conclusive? -On the contrary, the discussion gained in vehemence what it lost in argumentative reasoning. Galileo's opponents were not convinced, but merely irritated. From time immemorial, it had been believed that the greater the mass of a body, the greater was the acceleration of gravity. W as it to be supposed-they asked-that they and all preceding philosophers, from the time of Aristotle, had been mistaken on this fundamental point? Rather than concede that, they chose to disbelieve the evidence of their own senses.

The momentum of mind operates as manifestly as that of matter. The difficulty which Galileo had to combat, arose not from the nature of his subject, but from the necessity of overcoming the previous tendency of men's minds, and moving them in a contrary direction. This difficulty has existed throughout the hist ory of mechanical science : now, also, it is the greatest obstacle to the student's progress.

If there were no previous errors and prejudices to be overcome, no previous misconceptions to be unlearned, mechanics would be one of the most easily-acquired branches of human knowledge. If the brain were as an unwritten, unsullied scroll, ready to receive those fair characters which have been traced and perfected by the co-operation of the most stupendous efforts of human intellectthe liability to error and confusion would almost cease to exist. But this can never be the case. The student has been learning mechanics long before he commenced the study of its systematic laws. He has, as was before said, been experimenting on the subject from his infancy; and his experiments have been so crude and irregular, that almost every conclusion derived from them involves a certain amount of error.

Not until a very considerable progress be made in the study of

[^40]mechanics, is the full extent of this disadvantage parceived. The science may be approached with a perfect willingness to acquiesce in its doctrines, but the perversion of undigested experience creates difficulties and prejudices which not the will merely, but great mental strength and long-continued mental habit also, are required to overcome. It becomes, then, a matter of great importance to the student to ascertain before-hand the precise nature of these prejudices and difficulties. They are manifold : and before they can be fully understood, some idea must be acquired of the character of the evidence on which the conclusions of the theory of mechanics are founded.

This evidence is of several kinds : that which will most influence the tyro-that which will always be most valid in popular estima-tion-is the weight of authorities. The testimony, however, of great names, high as it is in itself, is by far the lowest kind of evidence of the truths of mechanics. A sciolist will stop the mouths of those who know as little or less than himself, by quoting the authority of Newton, Leibnitz, Euler, the Bernouillis, Lagrange Laplace, or Poisson. The man of science cannot be so answered. To him-to no one else so much-the ideas of these master-minds are of the highest importance; but they do not work conviction. Between the effect of Newton's dictum, and of the greater part of Newton's recsoning, there exists that immeasurable difference which intervenes between a very high probability and absolute certainty In the absence of more exact information, the mere knowledge that a certain conclusion is supported by the opinion of one or more of the great founders of the science, will and ought of itself be a strong argument, but not an insuperable one. To assert that the authorities were fallible, is merely to assert that they were human, and that science is progressive.

Another, and a higher, though not the highest, evidence, is that derived from comparing the remote predictions of theory with actual observations. Let us cite an instance. Mathematicians infer from the law of gravitation, that the earth moves round the sun in an elliptic orbit, if the very small perturbations arising from the influence of other celestial bodies be neglected. This prediction as to the earth's course is so remote a consequence of theory, that it could not have been immediately foreseen-the theory could not have been shaped morely to meet this particular case. Now, the knowledge of the earth's actual course depends on the evidence of mere eye-sight, and may be ascertained, independently of all theory, by purely practical observations. How far, then, do these observed results verify the theorotical anticipations? "If we trace on paper," says Sir J. Herschel, "an ellipse, ten feet in diameter, to represent the orbit in which the earth is moving about the sun, and if we trace by its side the path actually described in its revolution around the sun, the difference between he original ellipse and the curve actually described is so excessively tminute, that the nicest aramination with microscopes continued along the outlines of the two curves, would hardly detect any perceptible interval between them."

Again, it is known that the solar orbit slowly changes from age to age. The effect of this variation, Laplace showed to be that the moon moves more rapidly around the earth now than it did in remote times. This result of theory is exactly verified by observation. It has been ascertained, from the records of ancient lunar eclipses observed by the Chaldean astronomers, and subsequently by the Arabian astronomers in the eighth and ninth centuries, that the moon's mean motion is increasing by about eleven seconds in a century.

The action of pendulums, the most delicate and refined instruments used for scientific purposes, exemplifies, in a wonderful manner, the predictive power of mechanical philosophy. The earth's rotation causes bodies at the equator to be acted upon by a centrifugal force, in the contrary direction to their weight; it is clear, therefore, that their tendency towards the earth is diminished. The value of this diminution, as also of its effects on the vibration of pendulums, is determined by theoretical calculations, which take into account a large number of indepindent considerations-the earth's radius, spheroidal attraction, the inertia of the pendulum, the effects of thermometric expansion, the barometrical pressure, the resistance of the air; \&c.. $\mathrm{B}_{\mathbf{y}}$ most elaborate processes, then, it is determined that the same pendulum which beats seconds in London (that is, vibrates 86,400 times in the twenty-four hours), ought to make fever vibrations by about 140 at the equator. Also, the number of vibrations which this pendulum ought to make in various other latitudea, north and south of England, have been computed; and the results have been confirmed by observation, in a remarkable manner. Pendulums, constructed with the greatest care, haye been carried from London to many places on the
earth's surface, and their performances observed with extreme caution. The discrepancies observed between these results and those of theory are so minute, that no one but a mathematician would regard them; and he successfully ascertains that they arise from incidental circumstances, wholly independent of theoretical computations.
Such results are magnificent exhibitions of the powers of the mechanical sciences. The tests of their accuracy are immeasurably more varied, more numerous, and more minute, severer, longer continued, and executed on a grander scale, than those to which any other natural science is subjected. But the accuracy of a system is not absolutely proved by the circumstance that in any finite number of instances it leads to right conclusions. It is possible-though excessively improbable- that this accuracy is, in every case, merely the result of fortunate guesses. And this view of the subject is not so very unnatural, when it is remembered that such fortuitous anticipations, though very remarkable, are by no means uncommon, and that some of the most important laws of mechanics were wonderfully felicitous conjectures long before they were demonstrated truths.
The absolute certainty, then, of mechanical science must rest on yet higher grounds. Its supreme authority consists in thisthat all its conclusions are rigorously logical inferences from indisputable elementary laws. The philosopher has a right to demand unreserved credence so far, and only so far, as he can establish such inferences. The demonstrative truth of his results depends on the answers to these two questions-Are the elementary laws indisputable?-Are the deductions from them rigorously logical? These are the two bases of the whole evipence. Let them be considered in their respective order, for the right comprehension of them will greatly facilitate the object proposed in the present inquiry-namely, to explain the preliminary difficulties of the study of mechanics.

First, as to the elementary laws: their peculiar characteristics constitute the very perfection of the science. In number they are so few, that a priori it seems impossible to build upon them any system of great extent: in nature they are so simple and apparent, that the mere enunciation of them necessarily carries with it immediate assent. These fundamental principles, regulating the minutest and the grandest phenomena of the material world, are yet detected at once on the most imperfect and careless observation of the operations of nature. They are inductions, either from the rudest, or from the most refined, experiments. Indeed, it is sometimes difficult to perceive that our knowledge of them is experimental at all, and not intuitive; -at this very moment, there are controversialists who believe them to be mere axioms or self-obvious truths, innately perceived in the mind, and not acquired from sources external to it.
And here it is necessary to establish a distinction between these fundamental laws and their ultimate causes. With the latter, the mechanical philosopher has no concern : he seeks only to ascertain and trace the effects of the rules by which material bodies are observed to operate on each other ; but causation or speculation as to the madus operandi, forms no part of his inquiry. That heavy bodies are drawn towards the earth when unsupported, is a fact, of which, notwithstanding its constant occurrence, no explanation has ever yet been given. Were we not so familiar with this phenomenon, it would appear very wonderful, that one body should approach another without any communication between the two, or any visible cause of the motion. To say that it is due to the earth's attraction or gravity, is merely to give a name to, not an explanation of, the mystery. Again, who can tell what mighty, unseen chain binds this earth to move for ever in a certain orbit round a body ninety-five millions of miles distant? Planets and satellites, apparently isolated in space, separated from all other bodies by distances which the mind is utterly incapable of recognising, move on from age to age in their predestined courses; yet, so silently, that no mortal ear ever yet heard the sound of their mighty mechanism. Man indeed, discerns its minutest operations, and from their regular recurrence learns to predict them with unfailing accuracy; but the secret agency which pervades and guides the whole system, remains an unsearched, an unsearchable, mystery for ever.

The harmonious concord of nature, however-her consistency and never-failing regularity-these are questions within the province of mathematical reasoning, and these are the questions upon which the evidences of mecharical science rest. Let it be ascertained that the laws of matter are unchangeable and universal, and a syatem may be founded on those laws, which can never be shaken by speculations as to their ultimate oausea

Such, then, are the premises from which the mechanical philosopher reasons. The only remaining question as to evidence is this -are the inferences from them rigorously logical?
The premises are obtained by induction, the inferences by deduction. The premises, as has just been said, are arrived at by comparing a great number of natural phenomena, and extracting the simple principles common to them all. This is the proces of induction, which reasons by analugy from examples. All the physical sciences derive their origin from this source; for how are we to contrive a physical science-that is, how are we to reduce any class of natural phenomena to a regular systemunless by ascertaining, from nature herself, the primary laws by which she acts? It is clear, that if a man did not look out of himself, into the external world, for this elementary knowledge, his system would be nothing more than an ingenious fig-
ment of his own brain.

But the application of the primary laws depends on snother kind of logic than that of induction. Now, we no longer reason by analogy-no longer refer to examples-no longer, indeed, draw knowledge from the external world. Nature has furnished the premises; the mind of man depends on itself alone for the inferences. These are deductive from that application of logical apllogisms to abstract propositions, which is no other than the process of comman-sense-the very highest kind of reasoning of which the human mind is capable. It is not within our present scope to discuss the principle on which deductive reasoning depends, further than by explaining, that it may always be immediately referred, or ultimately reduced, to the Aristotelian dictum, de omni et nullo-what is universally true of a class of things, is true of anything in that class. It is not necessary, however, to examine minutely here this logical, or rather metaphysical, question: it is enough for our purpose that there are certain primary truths which the mind universally recognises, certain elementary methods of combining them, the validity of which is as certain to every man as his own consciousness,-and that on these primary truths and these elementary methods the inferences of mechanical science exclusively depend.
Of course, the full effect of these considerations can be perceived only in the actual study of the science itself. But we are now in position to explain the difficulties which originally retarded its progress, and which, even now, constitute the greatest obstacles to the student's progress. Geometry, it was mentioned, became a systematic science, while mechanics remained obscure and confused. If the preceding attempt to explain the foundations on which the latter science depends, have been at all successful, the reason of the earlier development of geometry will readily suggest itself. One of the elements of mechanical investigation-experimental induction-was wholly wanting in geometry. It is needless here to inquire whether any of the primary ideas of this science also be derived from experience: we may well be anxious to avoid a discussion of those essential affinities and distinctions between the objective sciences, respecting which such men as Bacon, D'Alembert, Diderot, Locke, Adam Smith, Dugald Stewart, Turgot, \&c, have been unable to agree. But this is readily seen, and is of itself quite sufficient to explain the comparatively rapid development of geometry-that its progress was not impeded by difficulties incident to the advancement of mechanics-the necessity of making experiments, and of selecting, from an overwhelming abundance of results, those which, from their universality and precision, might be made the foundations of the new science.
The same difficulties occur to the student now. He approaches the study of geometry with an unprejudiced mind: whatever previous ideas of space, form, and distance he has acquired, may be confused and imperfect, but they cannot be positively erroneous. Geometry contains no secret principles, detected only by their effects; all its subjects are so obvious and palpable, that any direct mistake respecting them would be certain to soon detect itself. But of mechanics, almost every doctrine is unconsciously prejudicated before the commencement of its systematic study : here is a secret principle, undetected, except by its effects-an invisible agent, roacr of which the existence is ascertained only by experience of its operations, and of which the ultimate nature is altogether unknown.
The great task, then, which the student of mechanics must perform, is to refor every problem to first principles: to ro frain from appealing to his own physical notions, acquired accidentally and without method. Not that he is required to give up the right of private judgment, or subject it, uncon-
vinced, to a fixed standard. Thus far only is be called upon to yield to the experience of his predecessors in the same pursuit-to give credence to their assertion that all the knowledge which he requires may be derived from the elementary principles which they lay down. The accuracy of those principles, and the legitimacy of the inferences from them, he must determine for himself by the effort of his own mind, independently of-if he please, in defiance of-the influence of standard authorities.

By adopting the method, here insisted upon as all-important, of referring every question to a few first principles, his science becomes a connected chain of reasoning, and acquires the two great advantages of method, certainty and facility-certainty of the accuracy of his knowledge, facility in applying it. This power, however, of tracing the mutual connection of the several parts of mechanics, and the ultimate dependence of each part upon elements common to them all, is to be acquired only by long-continued habit. There are certain practical difficulties however in the exercise of it, of which the student ought to be forewarned, and which act as snares upon his judgment; oftentimes inducing him to believe that he traces a logical consequence where none in reality exists.

Of these sources of error in the pursuit of mechanical science, the most important are included among Bacon's idola fori-idols or fallacies, of which the power arises in the forum or common intercourse of mankind-the defects of words-the names of non-eristencies, or confused names of existencies. Language can never be so perfectly refined as to avoid entirely this disadvantage, for while the subtlety of nature is infinite, the subtlety of words is finite, and, in general, serves only to nominate general ideas, and not their minutest distinctions. In erecting the lofty edifice of science on so narrow a basis as a ferr elementary definitions and axioms, extreme exactness in the use of words is therefore requisite; and beautifully is it said, that when we attempt to rear a temple to heaven, we must not be unmindful of the confusion of languages.
Of no science have the principles been subject to more vehement and learned debate than mechanics; yet most of these debates have been ultimately discovered to be mere logomachies-disputes about words-which, it is therefore reasonable to suppose, would never have arisen had it been possible originally to give strict definitions of the terms involved. Perhaps the most instructive example of a learned controversy turning out to be a mere strife of words, is that respecting Vis Viva-a term retained in modern science as a mere technicality, of which the interpretation does not depend on any mechanical knowledge, but is purely conventional and arbitrary. The following account of the controversy is taken from Walton's "Mechanical Problems," a work, the value of which to the English student of the physical applications of mathematics, it would be difficult to over-estimate :-
"Leibnitz contended, in opposition to the received doctrines of the Cartesians, that the proper measure of the Vis Viva, or Moving Force of a body, is the product of the mass into the square of the velocity; the measure adopted by the disciples of Descartes having been the same as that of the Quantity of Motion-namely, the product of the mass and the first power of the velocity. This contrariety of opinion in respect to the estimation of Moving Force, gave rise to one of the most memorable controversies in the annals of philosophy; almost all the mathematicians of Europe ultimately arranging themselves as partissns, either of the Cartesian or Leibnitzian doctrine. Among the adherents of Leibnitz may be mentioned John and Daniel Bernouilli, Poleni, 'sGravesande, Camus, Muschenbroek, Papin, Hermann, Bulfinger, Kannig, and eventually Madame du Chatelet ; while in the opposite ranks may be named Maclaurin, Clarke, Stirling, Desaguliers, Catalan, Robins, Mairan and Voltaire. * " *The memorable coutroversy of Vis Viva, after raging for the space of about thirty years, was finally set at rest by the luminous observations of D'Alembert, in the preface to his 'Dynamique,' who declared the Whole dispute to be a mere question of terms, and as having no possible connection with the fundamental principles of mechanics. Since the publication of D'Alembert's work, the term Vis Viva has been used to signify merely the algebraical product of the mass of a moving body and the square of its velocity; while the words Moving Force have been universally employed, agreeably to the definition given by Newton in the 'Principia, in the signification of the product of the mass of a body and the accelerating force to which it is conceived to be subject: no physical theory whatever, in regard to the absolute nature of the force, being supposed to be involved in these definitions."
Technicalities expressing the elementary ideas of mechenics are
idola fori belonging to the commencement of the science : other and different dificulties of language occur in its ultimate conclusions. Among the remote results of elaborate investigation are certain general theorems, exceedingly extensive and useful in their application; but which, if inaccurately enunciated, may be made to include cases which do not belong to them, and exclude others legitimately within their province. These difficulties may be termed questions of jurisdictions. When the language of a general theorem does not indicate with precision its jurisdiction over any particular case, or its proper mode of application to it, the only legitimate mode of arriving at a decision is by tracing the processes by which the theorem itself has been arrived at, and considering whether the particular case in question was contemplated in them. The general mechanical theorems have so vast and varied applications, that the bare enunciation of them, however carefully expressed, is utterly insufficient to convey to the otudent's mind an idea of all their consequences. Their actual operation, and the boundaries which define their power, quas utra citraque nequit consistere rectum, can be fully learned only by actual practice. In this respect, the science of jurisprudence presents a striking analogy. We are accustomed to reverence the common law of England as the accumulated wisdom of rges-the combination of the most subtle sagacity and the most extensive experience. But who does not know that a bare acquaintance with the general principles of law is practically insufficient for the solution of particular cases-that amidst the infinite variety of combinations to which the business of life gives rise, the abstract rule cannot be successfully applied without a cer tain intellectual dexterity, which long experience and constant practice alone confer?

The importance to the mechanical student of expertness similarly acquired, can scarcely be over-rated. His efforts should be incessantly exerted in the application of mechanical principles to the direct solution of problems; and it is scarcely too much to assert, that his knowledge of the science will be proportional to the number of problems which he solves. The most trivial incidents of his every-day life-every weight which he moves, every action of his muscles, suggest cases fruitful with instruction respecting the laws of force. There is not a single spot in the material world, free from the influence of force; and he has but to look around him, to discern innumerable instances in which the rationale of their action may be investigated, and the consequences of them predicted. This unintermitted habit of ransacking the stores of nature, of tracing the most trivial and the grandest of her operations to first principles, strengthens and confirms the power of investigation, and reduces those effects of the material laws which on a superficial view appear confused and disconnected, to one harmonious and simple system.

Another class of errors peculiarly incident to our science, is that arising from incorrectness of data-the neglect of operating causes, either from absolute oversight or from an impression that their effect is inconsiderable. The first of these mistakes will seldom be made, except by an inexperienced student; and may be altogether avoided by practice and care in conceiving the exact nature of the question before him. As a useful precaution against this difficulty, he should habituate himself to test the accuracy of his conclusions by particular instances, and by varying this test within the widest legitimate limits. If, in any one instance, his general investigations lead to an absurd consequence, they are themselves erroneous; and it will be necessary to re-examine them, and ascertain at what step the error arose.
There are more difficult cases, however, where the neglect of data arises, not from oversight, but from necessity-where the complexities of the question are such, as to render its solution impracticable without hypothetical simplifications. In all such instances, the investigator must remember that he is solving, not a question of real existence, but an artificial casemaking the nearest approach to it which his powers of investigation permit. In practical mechanics, this consideration is especially important ; and, as a general rule, no such hypothetical simplification should be admitted-or at least acted uponwithout some estimate of the limits of the error which it may possibly induce.
Complicated mathematical formulm are wholly unsuited for the practical application of mechanics, on account of the refinement and exactness of both workmanship and computation which they require. The only formulm which the practical artisan or mechanic will trust, are those which he can readily apply, and which afford a margin for all the diversified circumstances of practice, unavaidable and unknown imperfections of materials,
and other irregularities of detail. The method of determining results between certain limits, has the advantage of leaving such a margin, and will therefore be frequently employed in the following pages. Among it incidental recommendations is this,-that it generall gives great simplicity to formula which otherwise would be exceedingly complicated.

It is not within the compass of the present work, restricted in the use of mathematical language, to give a systematic development of the whole science of mechanics: its principal aim is to explain those parts of the science which are of the most direct economical importance, and to assume as little previous knowledge as possible on the part of the reader. He must be forewarned, however, that in solving mechanical problems, the difficulty does not wholly consist in determining the nature of the forces supposed to act-but, in a great degree, in ascertaining the position of the several parts of the system at which they are applied. This latter difficulty is, of course, only to be overcome by a competent knowledge of pure geometry. Galileo, the father of modern mechanical philosopty, has explained this point with like accuracy and eloquence. La fllosofia-mays he, in his Sagglatore-i scritta in questo grandissinvo libro, che continuamente ci sta aperto innanxi agli occhi, ma non si pud intendere, se prima non simpara a intender la lingua e conoscer i caratteri, né quali è scritto. Egli è scritto in lingua matematica, e i caratteri son triangoli, cerchi, ed altre figure geometriche: senza questo d un aggirarsi vanamente per un ofcuro labirinto."

The Elements of Euclid are, and it may be safely assumed always will be, the best foundation of the stndy of geometry. Unrivaled simplicity and perspicuity recommend this work as an elementary treatise; its method and precision claim for it the highest position among works devoted to the exact sciences. The first four and the sixth books should be thoroughly mastered; and, above all, the intelligent student will endeavour to imbue himself with the spirit of Euclid,-to trace the uninterrupted current of his reasoning, from the fountain-head (the axioms and definition) to the final conclusions. It is the distinct dependence of inferences on their premises, which renders Euclid invaluable in disciplining the mind into a habit of logical and consecutive reasoning. The beginner will sometimes meet with propositions so simple and obvious, that it appears an ide waste of time to prove them-let those propositions be his especial study: when he has mastered their demonstrations, he will see that Euclid's intention was-not to explain trivial truths, but to show how they might be deduced as necessary consequences of his principles. The familiar study of this ancient work-it has stood its ground against all attempts at improvment for two thousand years-will gradually induce a mathematical habit of mind, and a right appreciation of the real nature of proor-of that which not merely does, but ought to, produce conviction.

As preliminary to the study of mechanics, some knowledge of the elements of trigonometry is requisite. The history of mechanical science will also affords important facilities for mastering its principles. The full value of a scientific theorem is not appreciated without some knowledge of the hard struggle by which-80 to speak-it has been wrung from nature. The wanderings of the earlier mathematicians, their fruitless labours and controversies, their slow and gradual approximations to right results, reveal the subtle nature of physical truth, the narrow boundaries which separate it from error, and the necessity of maintaining those boundaries inviolate.

Dispute respecting the laws of mechanics is no longer possible. They are demonstrated; and to attempt to make them matters of controversy, is to exhibit ignorance of the processes by which they have been ascertained. "We have, therefore," it has well been said, "no sects nor parties in mathematics; but they abound in e ery other department of human opinion." And apain, "In mathematical questions, where relations of quantity alone are concerned, a dispute can be completely terminated; because, from wrong premises, or false reasoning, s contradiction can be at least shown to result."

If, then, the labours which perfected the science of mechanics -for it is now perfect-have been great, if its study now task severely the highest efforts of the student's mind, are not the results commensurate? The revelations of pure truth in its most

[^41]attractive forms-its manifestations in the grandest phenomens of nature, and the proudest achievements of art-these are the wages of philosophic toil. So vast are the domains of this science, that every year brings tidings of new and rich discoveries within it: while its applications to the practical wants of men are ever receiving fresh and more important develop-ments-ever creating revolutions more extensive, more lasting, and more noble than those of politica or war.

ARE WE TO HAVE AN ARCHITECTURAL EXHIBITION?

Something of the kind seems to be dawning upon us: there is what just at present looks like the prospect of such exhibition, though it may after all turn out to have been a mere unsubstantial and deceitful mirage. In proportion as we are anxious that the vision should be realised, we feel apprehensive of its fading away into nothing. We learn from a contemporary, that the "Architectural Association" purpose to "get up an annual architectural exhibition." Between purposing and firmly determiuing upon a scheme, there is a good deal of difference, more especially when the purposed "getting up" is likely to prove very up-hill work. This remark is meant not to discourage so much as to stimulate. In order to overcome difficulties, it is necessary to look them boldly in the face at once, and be prepared to encounter them.
The "Architectural Association" is a junior society, which as yet hardly stands before the public at all,-certainly notin any imposing attitude. It has no royal standard to hoist in the form of a charter-the chief privilege conferred by which seems to be that of indulging in indolence and doing nothing. Yet, if it have no charter, a junior and youthful society has, or ought to have, something greatly in its favour; for it may be presumed that it poesesses zeal and energy, of both which much will be required, in order to carry properly into effect the scheme they are said to meditate. One question for consideration is, how is it likely to be looked upon by the Institute? As to the Royal Academy, that body would, no doubt, be exceedingly well pleased at a separate exhibition for architectural drawings and models being established since they would thereby be almost entirely relieved from works of that kind, which it is evident enough thep take in very reluctantly, and treat very slightingly. That the Institute would not take umbrage at that being done by a junior society which they have left undone (although their means for effecting it are as great, or much greater), is not quite so certain. Apathetical as it is, the Institute might yet feel something like awkward companction and shame, were others to bestir themselves diligently, and venture upon an experiment which, should it succeed, would place them before the public more prominently than the Institute itself can boast of being.
The success of the experiment, however, will depend very much upon the manner in which it shall be made. If it be made at all, it is to be hoped that it will not be timidly and feebly.-And it here strikes us that we have possibly fallen into a misoonception, since what the "Architectural Association" contemplates may be something very far short of the kind of exhibition that is needed. If it is to be one confined to that society's own members, instead of being open to contributors generally, and be also upon such a footing as to admit architectural subjects without distinction as to the nature and mode of them-auch technical illustrations as plans, sections, and details, as well as those more pictorial representations which are the only ones received by the Royal Acs-demy-if, we say, it is not to do this, it will fall far short of supplying a main desideratum. Resting entirely upon the abilities of the members themselves, without aid from other quarters, the proposed exhibition could hardly have sufficient stamina and substance to come properly before the public, and so as to attract notice and claim support. Neither would anything at all be done towards affording the opportunity of exhibiting their productions to the many who are excluded from the Academy on account of the exceedingly limited accommodation there for architectural designs and models. At present, there is only Hobson's choice for architectural exhibitors,-either the Royal Academy or nowhere. And the accommodation at the Academy for works of the kind is totally inadequate; for while only a comparatively small number of them can be huny up, not above a third of them can be hung no that they can really be looked at. Therefore, what with the chance of being turned away for want of room, or else of being
thrust out of sight, it is not greatly to be wondered at if many are deterred from sending anything at all. To such, other opportunity of exhibiting would be welcome; and their contributions would, it may be presumed, be equally weicome and serviceable to the "Association." Without support of the kind from others, and the extended interest 80 created for the success of the undertaking, there might not be attraction sufficient to produce extraction-to wit, of shillings from the pockets of the lieges. We speak merely upon our own conjecture, but take for granted that the exhibition in question would require the usual shilling passport for admission to it; because otherwise, the public would be excluded, and the exhibition be merely a private one, open only to the members and their friends, so that any good result as to diffusing a taste for architecture as a branch of design would be frustrated.

What renders it so highly desirable that a special exhibition of architectural drawings and models of every class should be established is, that productions of the kind have no chance of obtaining any attention so long as paintings are to be seen at the same place. It would be almost unreasonable to expect that they should, especially at the Academy, where the pictures are so numerous that they alone afford quite occupation enough for several visits. There, the architectural subjects are scarcely looked at at all, except just by those who make them their chief object. Let it then be fairly tried, whether, when withdrawn from its eclipse at the Academy, and allowed to display itself in a different orbit, it has really no power of attraction for the many-we do not mean the mob, but those (and they are many) who, if they possess not, affect at least to have a taste for art generally.

Supposing that the "Association" now intend to bestir themselves in good earnest, one thing which they ought especially to consider beforehand is, that architectural drawings require proportionably a much greater space for exhibiting them than pictures of the usual kind do,-because they require to be inspected as closely as miniaturea or engravings; consequently, little more than the direct line of wall on the level of the eye can be made available for the purpose. It is of no use-rather a mere mockery-to profess, as the Academy does, to exhibit productions of the, kind, and then hang the majority of them where it is only by great effort that their subjects can be made out, and all detail is completely lost. Mr. Billing-who, by-the-by, at the opening meeting of the present season, signified the Association's intention to get up the exhibition in question,-observed that he himself had no right perhaps to grumble at the Academy, because, of eight drawings which he sent in this year, seven were hung up-but four near the ceiling, and three near the floor. Considering how many subjects of his were admitted, he had reason to look upon himself as highly favoured-if it be any favour or compliment at all to have drawings received merely because their frames happen to be just the size to fit in "very nicely" with others on the same part of the wall. Such must ever be the consequence of the abominable dove-tailing system in hanging pictures and drawings, which frequently renders it necessary to put a good subject or production in an unfavourable situation, or else an inferior one in a good situation, merely because no other places where they would so well fit in can be found for them. Possibly, however, our advice may be altogether superfluous, since it is possible that the purposed exhibition will turn out to have been a mere flash in the pan.

ON A READY METHOD OF DETERMINING THE WIDTHS OF LAND REQUIRED FOR THE FORMATION OF A RAILWAY.

We will suppose the centre line to be staked out, and the distance from the top of the peg to the intersection of the slopes to be given. Let A be a centre-stake, at which the half-widths are to be determined; B, the intersection of the slopes produced; and r to 1 , their ratio. The level must be placed at some point D, and the line of collimation adjusted no as to describe a horizontal plane at a distance a B above the point B (fig. 1), for a cutting. BA $=$ $\mathrm{K} ; \mathbf{A} a=h ; e c^{\prime}=a c=h^{\prime}$, the reading of the staff when stationed at d^{\prime}. Then we have,
$\mathbf{B} c=\mathbf{B} a-a c=\mathbf{B A}+\mathbf{A} a-a c=\mathbf{K}+h-h^{\prime}$, and the length of the horizontal line through $d^{\prime}=c c^{\prime}=\boldsymbol{x}=r \times B c=$ $\boldsymbol{r}\left(\mathbf{K}+h-h^{\prime}\right)=r(\mathbf{K}+h)-r h^{\prime}=a a^{\prime}-r h^{\prime}$.
The horizontal distance of a^{\prime} from $a \mathbf{B}$, must also be measured with the chain, and this we will suppose to be y. It is evident, that at the point c^{\prime}, where the slope $\mathbf{B} a^{\prime}$ meets the surface of the ground,
the condition $y=x$ must be satisfied; and for no other point can it be satisfied. This point c^{\prime} must be found by repeated trials.

Fig. 1,一Cutiang.
In the case of an embankment (fig. 8),

$$
\begin{align*}
\boldsymbol{c}= & r \times \mathrm{B} c=r\left(\mathrm{~K}-h+h^{\prime}\right)=r(\mathrm{~K}-h)+r h^{\prime}= \\
& r \mathrm{~B} a+r h^{\prime}=a a^{\prime}+r h^{\prime} \ldots \ldots \ldots \ldots . .(\mathrm{z}) \tag{z}
\end{align*}
$$

Hence, whether there be cutting or embankment, we must determine the half-width (a a) at the level of the line of collimation; and in making repeated trials, we have nothing more to do than multiply the reading of the level-staff (h^{\prime}) for the slope by r, and add the product to $a a^{\prime}$ for embankments, or subtract it for cuttings, to obtain the value of x, which must be compared with the horizontal distance (y), found by measurement with the chain. Repeated trisls must be made until a point is discovered which satisfies the condition $y=\boldsymbol{x}$.

Mg. 2.-Embankment.
Take, as an example, fig. 1 , which is a cutting.
$\mathrm{BA}=\mathrm{K}=26-2 \mathrm{ft} . ; h=8 \cdot 13 ; r=1 \frac{1}{2} ;$

$$
a a^{\prime}=r \times B a=r(K+h)=1 \frac{1}{2}(26 \cdot \varepsilon+213)=42 \cdot 5 ;
$$

let the staff be held at f^{\prime}, and suppose the reading to be $6.5=h^{\prime}$; then $r h^{\prime}=9 \cdot 75$; and $x=f f^{\prime \prime}=a a^{\prime}-r h^{\prime}=42 \cdot 5-9 \cdot 75=32 \cdot 75$.

By measurement with the chain, y is found $=22.00$; $\therefore y$ is not equal to x.
Again, suppose the reading $c^{\prime} e$ of the staff at c^{\prime} to be $10 \cdot 7=h^{\prime}$;
then $r h^{\prime}=16.05$; and $x=42.5-r h^{\prime}$

$$
=42.5-16.05=96.45\}
$$

and y is found by measurement to he 26.45$\}$ $\therefore y=x$; and c^{\prime} is the point sought.
Example of an Embankment.-Slopes $1 \frac{1}{4}$ to 1. Let $K=42.36$; $h=\mathbf{2 . 4 3}$. Then $(\mathrm{K}-h)=\mathrm{Ba}=42 \cdot 36-2 \cdot 43=39.93$; and $a a^{\prime}=r \times \mathrm{B} a=1 \frac{1}{2} \times 30.93=59 \cdot 9$.
Suppose the reading of e of the staff at α^{\prime} to be $10.05=h^{\prime}$,

$$
\text { then } r h^{\prime}=15.07 \text {; }
$$

$$
\left.a=a a^{\prime}+r h^{\prime}=59 \cdot 9+r h^{\prime}=59 \cdot 9+15 \cdot 07=74 \cdot 97\right\}
$$

and suppose that y, found hy measurement, is $=74.97\}$ then c^{\prime} will be the required point.
These necessary calculations are very simple, but they are also very numerous, and I have found it advisable to substitute a kind of sliding rule, which at once performs the multiplication of r and h^{\prime}, and adds the product to, or subtracts it from, $a a^{\prime}$. (Sier
figs. 3 and 4.) figs. 3 and 4.)

A long ecale of equal parts (H) is formed at the edge of a Eroove, and nnother (V) slides in contact with this, as shown in thin figuron. H represents the horizontal measurements commonly taken with the chnin, and ahould extend from 0 to about 160 feet.

Fig. 3. Sllde arranged for determining
the Width of Cuting.

Flg. 4.
Blide arranged for determining the Width of an Embankment.

If the instrument be made of box, H may contain 10 feet to the inch, and each foot may be divided into s equal parts. The slide V corresponds to, and must at least contain as many feet as are marked on the levelling-staff. The scale on V, as shown in the figures, is for a slope of $1 \frac{1}{4}$ to 1 ; for $1 \frac{1}{\frac{1}{2}}$ foot on H is equal to 1 foot on V. Other slides will be required for other slopes.
In the example of a cutting previously calculated, we found that $a a^{\prime}=42 \cdot 5$ feet. Bring o, on slide V , opposite $42^{\cdot} \cdot 5$ on H (fig. 3). The staff is set up at f^{\prime}, and the reading is found to be $6 \cdot 5$. Refer to V with 6.5 , and opposite this point we find $x=38.8$ on H, without any calculation.

But the measured distance y is 22.00 ; $\therefore y$ is not $=x$.
Again, the staff is set up at other points, and the trial repeated till we come to the point c^{\prime}, where the reading of the staff $\left(h^{\prime}\right)$ is 10.7 feet. Refer to V with 10.7 , and opposite it we find 96.5 on H , which differs only by the $\frac{1}{80}$ th of a foot from the result previously given by calculation.
As $r \bar{h}^{\prime}$ has to be subtracted from a a^{\prime} in cuttinga, it is necessary for the scales V and H to be numbered in opposite directions, as in fig. 3. But in embankments, $r h$ must be added to $a a^{\prime}$, and the scales V and H must increase in the same direction, as in fig. 4. This is the reason why the slide has two scales, differently numbered. Fig. 4 corresponds to the numerical example given above for an embankment : 0 on V being placed opposite 69.9 on H ; and 10.05 on V falls opposite 75 on H .

We have hitherto supposed that zero on the scale \mathbf{V} is placed opposite $a a^{\prime}$, the horizontal width at the level of the line of colopposite $a a^{\prime}$, the horizontal width at
limation. Now, the value of $a a^{\prime}$ is dependent on the accidental position of the level, and must be calculated in the field. Suppose, however, that the half-widths at the levels of the centrepegs have been determined, and registered previously to commencing operations. In the example of a cutting (fig. 1), we supposed

B A to be $=K=\mathbf{2 6 - 2}$; \therefore the half-width, supposing the ground to be level, $=r K=1 \frac{4}{} \times 26-2=39 \cdot 3$; and h was taken $=813$. And the result is the same,
whether we place $2 \cdot 13$ (or h) on V opposite $39 \cdot 3$ on H,
or 0 on V opposite $48 \cdot 5$ on H .
The first method will be found the best, because all the halfwidths at the levels of the stakes may have been previously determined in the office. The same may be said of fig. 4.

It will be found convenient to have an index capable of sliding along H_{T}, independently of V , and capable of being fixed at pleasure. This may be formed partly of a piece of horn, or other transparent substance, having a line ruled parallel to the divisions of the scales. This will be of great service where the ground is very sloping, and it becomes inconvenient to hold the levelingstaff on every peg.

If, in figg. 1 , and 9 , the ground had been so low that the top of the staff a^{\prime} e fell below the line of collimation, it would have been necessary to have shifted the level, and a a^{\prime} would have taken a new position and value. It will, however, be found an easy master to determine Ba, and therefore also $a a^{\prime}$, in all cases; and 0 on V must then be placed opposite this value of a a^{\prime} on H.

Or, calculation may be avoided even in this case. Fig. 1. Suppose the first reading at a to be $2 \cdot 15$, and the half-width at the level of A, $30 \cdot 3$ feet. Bring $9 \cdot 15$ on V opposite $39 \cdot 3$ on H. Let the staff be held at any point, and take the reading 9-55, suppose. Slide the inder along H to point to $9^{\circ} 55$ on V .

Remove the level to a new position D^{\prime}, and adjust it, and suppose the back sight taken in the ordinary way to be 3%. Move the scale V, so thrat the index points to 392 on V; and the instrument is adjusted for the crose-section at A, so long as the level is not disturbed.
The index will be found very serviceable where it is not conrenient to commence levelling from every centre-stake. Suppose the centre-pegs to be one chain apart, and that the gradient risea δ in every chain.

We have seen that the distance Ba of the horizontal plane through $a a^{\prime}$ from B is $=\overline{H+h}$ (fig. 1), as the gradient is supposed to rise δ feet in a chain, at a point corresponding to B; but a chain from it, the new value of $a \mathbf{B}$ becomes $(\overline{K+h}-8)$;
and the new half-width a a^{\prime} becomes $r(K+h)-r \&$
If we take an embankment (fig. 2), the new value of $a B$ becomes ($\overline{\mathrm{K}-h}+8$) at the distance of one chain ;
and the new value of the half-width $a a^{\prime}=r(K-h)+r 8$.
Thus, in a rising gradient, δ for every chain, we must move the slide by the scale H , a distance $r \delta$ upwards for cuttings
and a distance $r 8$ downwards for embankments $\}$ But $r \delta$ on the scale H is the same in magnitude as 8 on the scale V , and therefore it will be most convenient to employ the index in moving the slide V upwards or downwards, through a space 8 for every chain.

It may be useful to remark that for a rising gradient the alide V has to be moved in that direction in which the numbers of the feet on V increase, as denoted by the arrows, whether the case be one of cutting or embankment. If there be a falling gradient, the slide V must be moved in the opposite direction.

It will be found convenient to be provided with the height of each stake above some common datum; the half-width, supposing the ground to ba level; the numbers and distances of the stakes, with particulars respecting the gradients, slopes, \&c. Also, vacant oolumns must be prepared to receive the half-widths on each side, as they are determined, and the corresponding reading of the level. The point on H to which the zero on V is opposite, ought also to be registered. This last is very useful where a number of consecutive side-stakes are determined without starting from the centre; and doubts might otherwise arise as to whether the proper correction had been made for the gradient in every case.
As this slide-rule has been used where the ground was remarkably uneven, both for determining the widths of cuttings and embankments, and the limits of embankments at the ends of viaducts, I can strongly recommend it to the attention of those practically engaged on such work, as it avoids much trouble and uncertainty, and the result is as accurate as can be desired by the most fastidious. An addition to the widths above fuund must be made to allow for the ditches and fences.

St. John's College, Cambridge,
Franois Babrporth.
Oct. 21, 1848.

GKORGE STEPHENSON.
(Continued from page 300.)

[The above engravifg ls after a Portralt by Mr. Brigtt, R.A.].

IV. THE BAFETY LAMP.

Fire-damp is one of the greatest evils happening to coal-mines, and one which is too well known to all having anything to do with them. Thirty or forty years ago, this was so strongly felt that many mines had reached their furthest workings, because the men had no good means of going on, for the least flame was enough to set the fire-damp burning, and the steel mill gave little light, and was unsafe.

In 1763, the Academy of Sciences were drawn to look into this matter, several cosl-mines at Brianc̣on, in Dauphiny, having fired. All that the Academy did was to recommend a better way of airing the mines.
Above a hundred years ago, Sir James Lowther had seen that common fire-damp does not catch fire from sparks of flint and steel; and one of his overmen, said to be Mr. Spedding, made a mill for giving light by striking fint and steel.a This was worked by a boy, and was used in the English collieries. It is, however, knowf, that with the steel mill some mines have been set on fire.

In Hainault, amadou, or fungus tinder, was sometimes used ; but it gives so little light, that the men could not work by it, and all that they could do was to find their way by it sometimes from one side of the pit to another, where fire-damp was blowing.

In 1796, Humboldt made a lamp ${ }^{3}$ for giving light in mines where a common candle would not burn, or would set fire to the mine. It was founded on the plan of keeping the light away from the air, and could only burn a short time-that is, so long as the air within it lasted.
In 1813, Dr. Clanny made a lamp, to which he gave air from the mine, through water, by bellows. This lamp went out of itself in explosive mixtures. It was to be worked by hand or by machinery, but was too heavy to be moved ahout readily.
From what Dr. Clanny had done, and from a fearful loss of life in the Felling Colliery, whereby 101 men, women, and children died, the minds of many were turned to some way of lessening the fearful evil of fire-damp. At Sunderland a meeting was held, wherein Mr. Buddle, Mr. Dunn, Mr. Cuthbert Ellison, M.P., Biahop Gray, Dr. Clanny, and others, had a share, and who called upon Sir Humphrey Davy to search into the whole matter.4

[^42]Sir Humphrey looked at Dr. Clanny's lamp, bat he was told it was too heavy and too costly to be useful. He tried phosphorus and the electrical light; but at length he found out that a lamp could be made air-tight, and to which the air could be sent in through very small pipes or tubes, or from small openings in wire gauze put below the flame, and having a chimney at top of the same kind, for carrying of the foul air. This he afterwards brought to bear in the shape now so well known as the Davy Lamp, or Davy, in which he was greatly helped by Dr. Faraday.

Meanwhile, others were no less busy : Mr. R. W. Brandling, Dr. Murray, and Mr. John Murray made lamps, and so did George Stephenson; and at length there was very great strife between the friends of Davy and Stephenson, as to who was the first. We have here a small book, written by George Stephenson, in his own behalf, and which is the only work of his which is printed, other than reports. Here it is well to say, that it would be worth while to print the reports of George Stephenson, to bind with those of Smeaton, for they are written in a very clear, thoughtful, and business way; and are of great worth for the history of engineering, as Stephenson was called upon to fight for the locomotive engine and the railway in their childhood, against the world, having few to back him or help him in his hard struggle.

Stephenson's book is called "A Description of the Safety Lamp, invented by George Stephenson, and now in use in Killingworth Culliery ; to which is added, an account of the Lamp constructed by Sir Humphrey Davy, with Engravings. London: Baldwin, Cradock, and Joy ; Archibald Constable and Co., Edinburgh; and E. Charnley, Newcastle, 1817." It is only about sixteen sides, and was printed by S. Hodgson, of Newcastle, and has four engravings.

Another very interesting book is the "Report upon the Claims of Mr. George Stephenson relative to the Invention of his Safety Lamp. By the Committee appointed at a meeting holden in Newcastle on the 1 st Nov., 1817, with an appendix containing the evidence." This was printed at Newcastle, and has three plates, which are the same as in Stephenson's book.
Stephenson says: "Several of my friends having expressed a wish that I would lay an engraved plan of my Safety Lamp before the public, with as correct an account of the dates of the invention as I am able, I have resolved to do so. I was, at the same time, advised to publish the steps by which I was led to this discovery, and the theory I had formed in my own mind upon the subject, which, with the facts from which I drew my conclusions, were freely communicated to several persons during the time I was engaged in the pursuit. With this I cannot persuade myself to comply; my habits, as a practical mechanic, make me afraid of publishing theories; and I am hy no means satisfied that my own reasons, or any of those I have seen published, why hydrogen gas will not explode through small apertures, are the true ones. It is sufficient, for our present purpose, that that fact has been discovered, and that it has been successfully applied in the construction of a lamp that may be carried with perfect safety into the most explosive atmosphere."
"During the four years," Stephenson goes on to say, "that I have been employed to superintend the engines at Killingworth Colliery, one of the most extensive mines in Northumberland, where there is a considerable quantity of machinery underground, I have had frequent opportunities of employing my leisure hours in making experiments upon hydrogen gas. The result of those experiments has been the discovery of the fact above stated, and the consequent formation of a Safety Lamp, which has been, and is still used, in that concern, and which my friends consider (with what justice the public must decide) as precisely the same in principle with that subsequently presented to their notice by Sir Humphrey Davy."
The first thought of the safety lamp had been long in Stephenson's mind ; and in August, 1815, ${ }^{3}$ he made a drawing of it, Which was shown to several people on the works-among others, to Mr. Nicholas Wood, ${ }^{\text {b }}$ whose name is now, for the first time, seen along with that of Stephenson. He was then a viewer at Killingworth, and seems to have taken a great share and delight in all that Stephenson did, as is shown by the works of both. Stephenson told Wood that he thought a lamp might be made which would burn the fire-damp without blowing-up. The way was this, to make a tube in the bot tom of the lamp, and he thought the attraction of the flame upwards would be greater than the force downwards. Wood drew out the plan under Stephenson's eye, and in October, 1815, they went to Mr. Hogg, a tinman, at Newcastle, and had a lamp made, which a fortnight after was put into Ste. phenson's hands. When Stephenson first spoke about it, he asked
that the tube might be made a quarter of an inch in diameter, but Mr. Hogg having suggested that it probably would not burn, it was made half an inch in diameter, and a slide attached to it in order to lessen it if need were.

This first lamp had an open top and conical shape, and was given to Stephenson on the q1st of October, 1815. This was on a Saturday, and in the dusk, Stephenson, Wood, and Mr. John Moodie, an under-viewer, went down to the A pit to try it. Stephenson lighted the lamp and went to a blower of fire-damp in the roof, going to it from the windward, and keeping the candle about twenty yards off. By some deals, they made a part of the mine foul, for the purpose of having a trial with the lamp ${ }^{7}$. About an hour afterwards, Moodie went into the part so made foul, and found by the smell, \&cc. (of which, from knowledge, be was a sound judge) that the air was in such a state, that if a candle had heen taken in, the place would have caught fire, which would have been very fearful. Moodie told Stephenson it was foul, and hinted at the danger; nevertheless, Stephenson would try the lamp, trusting in its safety.

Stephenson took the lamp and went with it to the spot in which Moodie had been, and Nicholas Wood and Moodie, fearful, went further off. Stephenson tried the lamp, and it went ont without making any explosion-on which, Stephenson again held forth the safety of his lamp. It has been said, before now, that there is as much bravery in the engineer as in the seaman or the warrioraye, and as much call for it, too; and often in the common workman will there be as stout and bold a heart in the greatest straits, and in the utmost fear of life and limb, as there is in the leader who storms a breach, or heads the bloodiest fight. Stephenson was as fond a husband as a father, but he did not want daring when he thought the call was on him; and although death loomed before him, lie did not turn back from what he felt to be his duty. Here we have the witness of those who were with him, and we may stand by him in this time of trial, and watch his every step.
"Stephenson," says Moodie, " again lighted the lamp, and Wood, who had now more trust in it, went with him to the former spot, and even held the lamp-they tried it again, and with the same end. When the lamp was put lighted in the gas, there was a great flame, the lamp was almost full of fire, and then it smothered out. Stephenson then eaid that he could so shift it, that he could make it burn better."

This first lamp was made with a slide, to regulate the opening of the pipe through which sir was sent into the lamp. The slide was partly shut before the lamp was brought near the blast of the blower-indeed, it was so far shut, that the lamp burned but weakly in good air; and when the lamp was brought to the blower, the flame grew bigger, as already said, and then went out.s An explosion, indeed, took place within, but it did not pass outwards. The slide was several times shifted, and trials made afterwards with bladders filled with air from the blowers. The first trial was with the pipe quite open, and the explosion passed downwards. Trials were thereafter made with the slide so shifted, that at length the opening was so small, the explosion no longer passed downwards, and the lamp kept alight ; but it was so weak, that it easily went out by being moved. It was therefore thought, that by making more pipes of this smallness, air enough for burning and for keeping up the light might be let in; and yet the holes or openings be so small, as still to stop the explosion from going downwards. ${ }^{\text {. }}$
The lamp was now sent to Matthews, a tinman, in Newcastle, and the three pipes put to it, but outside the burner. On Saturday, the 4th of November, this was tried in the pit, and found to burn better than the other, but still not well. Nevertheless, the explosion did not go downwards. A spot in the mine had been again made foul by Moodie, and Stephenson, Nicholas Wood, John Moodie, his son of the same name, an overman, and George Wailes an overman, went down and made further trials, which, as they all thought, turned out better than the first. Moodie here says, ${ }^{\circ}$ that three menths before the first lamp was tried, Stephenson was often making trials with a candle near the blowers, for which Moodie, who was fearful, reproved him. Stephenson then told Moodie that he thought a lanthorn could be made so as to be taken in safely amongst the foul air; but Moodie did not think it could कe done. ${ }^{2}$

After this, two lamps of the second pattern were made and given to the waistmen in Killingworth pit. A few days afternamely, on the 9th of November, a boy was killed in the A pit, at Killingworth, on the spot where the trials were made with the

[^43]first lamp. Stephenson said, on that day, if the boy had had his lamp, he would not have been burned. 18
John M'Crie, a sinker, tells the same tale. He says, that in the summer of 1818 , Stephenson was setting up sloping planes underground, and often as he was coming out, he set the blower on fire, and by lighted candles put to windward, put the blower out. Stephenson said that he could make it useful to save men's lives. This he said, when M'Crie spoke against what he was doing as hurtful.

Up to this time, Stephenson knew nothing of what Sir Humphrey Davy had found out or done, or of what he had written to the coal trade thereupon. He now made his third lamp, which had more pipes, so as to get a better draught of air. He afterwards thought, ${ }^{1 s}$ that if he cut off the middle of the pipes, or made holes in metal plates, set some way from each other, as far as the pipes, that the air would get in better, and that there would be the same safety against explosion. Another lamp was therefore made and tried.

This third lamp did so well, that it was long used in Killingworth pits, and workmen were bound to it under a fine of half-a-crown for using a candle. This lamp was tried alongside with Davg's, and found to do as well.

The first trimmer was a wire down the chimney of the lamp; but afterwards, Sir Humphrey Davy's trimmer was used. Nicholas Wood wrote on this in the Tyne Mercury.

On the 24th of November, 1815, Stephenson showed his lamp to Mr. Robert William Brandling, and to Mr. Murray of Sunderland, both well able to give a judgment upon it.
On Tuesday, the sth of December, 1815, Stephenson's lamp was brought before the meeting of the Literary and Philosophical Society of Newcastle, the same evening that Dr. John Murray's paper about his own lamp was read. Trials were made of Stephenson's lamp with bladders, holding the fire-damp, put below, and the fire-damp let into the lamp. ${ }^{24}$.
The difference between Stephenson's lamp and Sir Humphreg Davy's was, that Stephenson used a plate in which holes were cut, and Davy hit upon the happy thought of using a wire gauze screen; but Stephenson seems to have been the first who found that the explosion would not pass outwards, and upon this all depended, for wire gauze instead of a metal plate was a mere change of shape, though for the better.

Whether Stephenson's lamp is still used, we do not know; but, as shown above, it was kept in use till 1818, and very likely till long after, for Stephenson's friends were so steadfast they would not give In to what they said was a copy of their lamp.

\%. tes gift.

In 1816, those who had called in Sir Humphrey Davy, thought it time to give him some reward, and therefore called a meeting of coalowners, at Newcastle, on the 31 st of October, when Mr. Nathaniel Clayton took the chair. The meeting was to reward Sir Humphrey Davy, "for the Invention of the Safety Lamp." ${ }^{2}$ (B_{y} this time, a paper war had arisen, and while Bishop Gray and Mr. Buddle felt called upon to atand by Sir Humphrey Davy, a great number held to George Stephenson, and much bitterness of feeling was shown. Neither were there wanting those who upheld Dr. Clanny, Dr. Murray of Edinburgh, Mr. John Murray of Hulh, and Mr. Robert William Brandling. Dr. Clanny was the first-Sir Humphrey Davy and Stephenson acknowledged this; but the lamps of the two latter had been brought into work, and the struggle lay between them. Dr. Clanny helped Sir Humphrey Davy, and Mr. Brandlingis sided with Stephenson. Davy was so much the stronger than Stephenson, that he was better known, asd had all the men of learning on his side; while Stephenson was backed by the Killingworth men, and all those who thought bighly of what the self-taught workman had done with the locomotive and the safety lamp. Sir Humphrey's friends were angry that one su lowly should be set ap against him-Stephenson's, that one so lowly should be put down, and kept out of his fair share of the work, to bolster up a great name. Both sides went great lengths, both went too far, and now it is easy to do right by all.
Perhaps Watt took a part, for he was an early patron of Dav5, who was employed in the Pneumatic Institution, at Bristol, under Dr. Beddoes, in which Watt took a great share.
So much was said and done by George Stephenson's friende, ther fought so hard for him, and against Davy, that the meeting on the

$$
1 \text { I Report p. } 21 . \quad \text { R Repost, p. } 16 .
$$

31st of August tas held over till the 11th of October, when John George Lambton, the late Earl of Durham, took the chair. Mr. Brandling then moved that the meeting should be again put off, that inquiry might be made, whether "the merit of the invention of the Safety Lamp was due to Sir Humphrey Davy, or George Stephenson.' Mr. Arthur Mowbray likewise stood up for this, but it was set aside by a great number of hands. A purse of one hundred guineas was however given to Stephenson.

Stephenson's friends were very wroth at being thus beaten, and Stephenson himself thought that the meeting had dealt very unfairly with him in awarding the meed to Davy. "Whether or not," aays Stephenson, in a letter afterwards printed, "Mr. Brandling is justified in the opinion he has expressed [that Stophenson was the inventor], it appears to me may be easily decided; and I shall only add, that if it can be proved that 1 took advantage, in the formation of the safety lamp, of any suggestions, except the printed opinions of scientific men, I deserve to lose the confidence of my honourable employers, and the good opinion of my fellow-men, which 1 feel an honest pride in, and which even in my humble situation in life is of more value in my estimation than any reward that generous, but indiscriminating affluence can bestow."

Day's friends thought they did not do enough in upholding him, but they must further pull down Stephenson; and instead of choosing the likely path, that both might have gone on without knowing each other, they openly said that Stephenson had taken or stolen the thought from Davy. ${ }^{19}$ Here was the sting-and hence the manly and earnest speech of Stephenson, given above, which fully shows what his feelings were-his love of standing well with his fellow-men-his earnestness to be worthy of the trust bestowed upon him. From the time he first set foot in the great world, to the day of his death, these were his strong feelings; and as has been before shown, they give the key to his life, and lay open to us the springs of his well-doing.

He was quite right in thinking that the good-will of his neighbours, and the trust of his fellow-men, were worth more than any money which could be bestowed; for they were to him as the land which yields a yearly harvest, while the latter is but a crop which is once gathered in, and there is no more of it. The harvest may fall short sometimes, but there is the land to give a better crop in other years, and to give a good income for whatever is laid out upon it: so is it with a good name-it is a lasting mine of wealth to the owner, the yield of which is the greater the longer it is wrought.

The friends of Davy were none the less angry that a common workman was set up against one of his great name, as if it were likely that one of Davy's standing should be beholdened for anything to a lowly pitman. They were maddened at the thought of one of the greatest men of his day being so set down. How little did they think or dream that the drudge they then looked down upon was to shine upon the world as one no less great than Davyas one of the brightest lights of his day-as one of whom even they now feel proud. Such is the worth of a name, such is it to weigh with an untrue beam, and to set down wrong weights. The great man of to-day soon sinks into the dust,-the lowly of yesterday is the mighty of the morrow; but let each be weighed by his deeds, and not by his name; by his own works, and not by the witness of his friends.

The writings which were put forth in Stephenson's name are by one hand; but though they breathe his thoughts, it does not seem likely that they are his. In that last given, the earnestness of thought is his, but it is not his speech. There is too much Latin -there are too many of the chosen words of the schoolman, and too much of his craft, to let us believe that they cone from a freespoken Englishman. In talking, Stepbenson always had the homely speech of an Englishman, as indeed it now too often hapjens that among common mien our mother tongue is best spoken. With them, the well of English is bright and strong; whereas bookmen, instead of speaking better English for their greater knowledge, only learn Latin and Greek to bring them into English, as if our English were a worse speech, and the others better; or, as if a word were the better understood by being swaddled in outlandish clothes. Stephenson most often had the pen of another, else we might have had from his hand something worthy of our best writers; for it has been often seen, that those have written the freest who have risen as he did, from among those tho know no other tongue but their own. The cot is a better school for speech than the college-there is a greater freshness in its sayings: a strength and earnestness and heartiness which
come home to our bosoms; something which breathes sweetly of our childhood, and takes us back beyond our school years. Whether in the Bible, in Shakspeare, our best-loved books and writers, those sayings always delight us most which are most homely; and yet, more care is given to eke out a book with big words, borrowed from every land but our own, than to write such things as every one may readily understand.
If Davy's friends spared nothing for him, Stephenson's were as steadfast ; the war went on, and the Newcastle papers were full of writings, for and against. The Rev. John Hodgson, Mr. Buddle, Mr. Brandling, and the full number of "Friends to Justice," strove together; but neither side would give in, or own that it was in aught wrong: they were too busy in saddling things on each other to take off one bit from themselves. If Davy had the meeting of coalowners on his side, Stephenson was not to be left barren, and therefore his friends made up their minds that he should have a meeting of his own, and that plate should be given to him as a set-off against what had been done for Sir Humphrey Davy.
It should, however, be said that, having been beaten in getting an inquiry from the meeting of coalowners, they had a meeting of their own, to look into what Stephenson had done, and which ended in the Report, which has been already named. Stephenson, Nicholas Wood, and the others who had a hand in the business, were called together, and gave witness as to what they had seen or done. This was written down and printed at the end of the Report, and it showed the faith the meeting had in the goodness and rightfulness of the side they had taken up. The members were, the Earl of Strathmore, C. J. Brandling, Esq., C. W. Bigg, Esq., Matthew Bell, Esq., R. W. Grey, Esq. Arthur Mowbray, Esq., James Losh, Esq., ${ }^{2 s}$ T. H. Bigg, Esq., Dr. Headlam, ${ }^{19}$ C. N. Wawn, Esq., Anthony Clapham, Esq., and G. Charnley, Esq. Richard Lambert, Esq., was the 'Treasurer, and Robert William Brandling, Esq., the Secretary.
On the 1st of November, 1817, the further step was taken, and a meeting was held in the Assembly-rooms, Newcastle; at which C. J. Brandling, Esq. took the chair, "for the purpose of remunerating Mr. George Stephenson, for the valuable service he had rendered to mankind by the invention of his Safety Lamp." The first resolution held forth, "that Mr. George Stephenson, having discovered the fact that explosion of hydrogen gas would not pass through tubes and apertures of small dimensions, and having been the first to apply that principle in the construction of a Safety Lamp, was entitled to a public reward." A committee, headed by the Earl of Strathmore, was named to carry this out.
Davy's friends were anew stirred up, and they sent to the newspapers a writing, signed by Sir Joseph Banks, President of the Royal Society, William Thomas Brande, Charles Hatchett, H. W. Wollaston, and Thomas Young, setting forth their conviction, "that Mr. Stephenson was not the author of the discovery of the fact in question, and was not the first to apply that principle in the construction of the Safety Lamp."
The other committee printed their report in answer, setting forth the whole truth, and ended by aaying, "After a careful inquiry into the merits of the case, conducted, as they trusted, in a spirit of fairness and moderation, they could perceive no satisfactory reason for changing their opinion." The dead set made by the men of learning who stond by their friend, Davy, did not frighten the others, and did not put a stop to their work. Their minds were made up, and the subscriptions set afoot by them went on steadily. Lord Kavensworth (then Sir Thomas Henry Liddell, Bart.) and partners, gave one hundred guineas; C.J. Brandling, and partners, gave the like, ${ }^{20}$ Matthew Bell, ${ }^{2}$: and partners, gave fifty guineas; and John Brandling, and partners, gave the like. Thus, a goodly purse was filled; and the great gifts of the Liddells, and the other coalowners, are a very good earnest of how Stephenson was looked upon in his own neighbourhood, and the path which lay open before him. It was not hard to tell what he would do with his inborn skill.

In January, 1818, a dinner was given to George Stephenson, at

[^44]the Assembly-rooms, Newcastle, when a silver tankard was put into his hands, together with one thousand guineas.
"I shall ever reflect with pride and gratitude," said he, "that my labours have been hunoured with the approbation of such a distinguished meeting s and you may rest assured that my time, and any talent I may possess, shall hereafter be employed in such a manner as not to give you, gentlemen, any cause to regret the countenance and support you have so generously afforded me.*

This płedge, as is well known, Stephenson fulfilled.
Of the feelings of the committee, the best earnest is the following words, given in their Report :-""When the friends of $\mathbf{M r}$. Stephenson remember the humble and laborious station in which he has been born and lived; when they consider the scanty means and opportunity which he has had for pursuing the researches of science ; and look to the improvements and discoveries which, notwithstanding so many disadvantages, he has been enabled to make, by the judicious and unremitting exercise of the energy and acuteness of his natural understanding, they cannot perauade themselves that they have said anything more than every liberal and feeling mind will most willingly admit."
Thirty years afterwards, a third piece of plate was given to the "Inventor of the Safety Lamp," which this time was Dr. Clanny," who has been already named.
Although so much noise was made at the time, and each said that the other had stolen the thought from him, it is not hard, now that angry feelings have softened down, to see the truth. It was held by them that one must be the first finder: but there is no need to believe anything of the kind, for two or three might as readily busy themselves with a safety lamp as one. Why, indeed, was Sir Humphrey Davy called in? Why did Stephenson give his mind to it but from the want of such a thing, the fearful loss of life which had followed from taking candles into fire-damp, and the little good of the steel mill? Many, therefore, set their wits to work to find out a safety lamp. We have named five, and it was in no way odd that two should hit upon the same thing.

Throughout the field of learning we have found this happen. Was there not the very same thing with Newton and Leibnitz about fluxions? Did not Watt, Cavendish, and Lavvisier each take a share in finding out the composition of water? At the same time, Fulton and Bell were at work on the steamboat,-Trevithick and Oliver Evans on the steam-wagon, and in our days, there has been a struggle between Le Verrier and Adams, by which the learned world has been torn, as to who found out Neptune. There are several put forward as the first lighters of gas. Young and Champollion fight uver the Rosetta stone; we have not yet awarded the meed to the man who first set railways going: James and Gray (though dead) are still in the field, with many more who strive to wrench from them the name of "Father of Railways." This will ever be, for where there is a want, the ready wit of many men will be ever ready to find out the right way. Is there anything new brought furward, straight every one rushes into that path. There is not much mistake in saying, that there were a thousand clever inventors who found cut atmospheric railways. The heads of railways unhappily know how many makers there are of new buffers, breaks, links, wheels, rails, and chairs-ench good, and each the best. The Gutta Percha Company have before them a list of two hundred hints for making everything of gutta percha, from car-trumpets to horse-shoes. It is good that it should be so, rather than that we should lag behind, waiting for the slow work of a few minds, when we may bring to bear the fruitfulness of many.

Stephenson seems to have been the first to try a lamp with holes so small that explosion of fire-damp did not pass downwards ; but Davy had nothing to do with him, and was not far behind, and he made a much better lamp by taking wire gauze instead of pipes or boles.

The following, from the 9th page of the Report of the Committee, shows what each did :-

Aug. 10 Oct.

Brginning of Uet.
1815. Ma. STEPHENBON

MR. GTEPHENSON
usy with those e
Busy with those experiments upon bluwers in Killingwnrth Colliery, which led to the construction of his lamps.
Ordered his firat lamp, which was tried in the colliety on the 2lat of that moath.
gir ROMPAREY DAFT.
The suliject occupied bis attention, as an oliject of speculation.

Commenced his experiments on fire-damp, and befire the 18th of that month had discovered certain facts [the facts in question] respecting that inflammable

Berianiog of
Oet.

End of Oct. Ordered his second lemp.

Nov. 4.
Tried his second lamp in Killingworth Colliorg.

Nov. 9.

Nov. 19 or 20. Ordered bis third lamp.
Nov. 30. Tried his tbird lamp in the
Dec. 5.
Exhibited his third lamp to the Literary and Philosophical Society in Nowcaptle.
Dec. 5

ATE BUMPREET DAVF. substance, and atales, in a letter dated Oct. 19, that if a lamp or lanthorn be made air. tight on the nides, aod furnished with apertures to ed. mit the air, it will not con. munjeate flame to the out. Fard atmotphere.

In a letter, dated Oct. 30, descibes to Mr. Hodgron a lamp, in which he edopred tubea and curalo above and below.

Mr. Butler noticed Bir Humphrey Daty's discoveria in an oration.

Read to the Royal Socieny - paper giving a detailed account of his experimenta, and the various splications be bad made of his discuseries, but without menkioning dates. phical Bocials in Nawcatlo.

Before this period "had presented to the miner the wire gauze lamp." ${ }^{2}$
What made the struggle was, that the meeting of coalowners had called in Sir Humphrey Davy, and while he was busy, George Stephenson, a common workman, of his own free will, stepped in between the meeting and Davy. The coslowners did not deal fairly with Stephenson, for after calling a meeting to thank Sir Humphrey Davy for "the Invention of his Eafety Lamp," and throwing off Steplenson, on the ground that the meeting was tiv thank Davy only for what he had done, free from what any oue else had done, they made it to thank Davy "for his invention of the Safety Lamp"-which was another thing altogether. Having done this, they gave, as a sop, the hundred guineas to Stephensou; but he and his friends would not stand still under this slight. They could have nothing to say as to what might be given to Davy, but they had when Stephenson was set aside.

VI. ENGINEEDING.

In 1813, when he was thirty-three, Stephensor had been set, as we have seen, to overlook the engines at Killingworth, in which higher berth he brought out his locomotive enyine and his safety lamp; so that Killingworth had its own works, as well as Wylam or any other colliery. His son was being brought up at Newcastle, and afterwards he sent him to Edinburgh, that he might be at its University-then at its height, and one of the greatest schools of its day.

In 1814 he brought out his first locomotive, and in 1815 he was busy with the safety lamp, and the second locomotive. He bad likewise some work in laying down slopes and railways.
He had not been able, as we have seen, to take out a patent when he made his first engine, but he soon after becnme known to Mr. R. Dodd, and with him took out a patent on the g8th Febraary, 1815, for a method of communicating power to the engine without the cog-wheels used in the first engine. ${ }^{4} 4$
The plan proposed was the application of a pin upon one of the spokes of the engine-wheels; the connecting-rod fixed to the cross-beam of the engine, and moving with the piston, being attached at the lower end to the spoke of the wheels, and working in a ball-and-socket joint. Thus the reciprocating motion of the piston was converted, by the pin acting as a crank, into a rotatory motion. To keep the cranks at right angles with each uther, Stephenson used an endless chain of one broad and two narrow links, which lay upon a toothed wheel fixed to each axle. The teeth stood out about an inch from the wheel, and went in between the two narrow links, leaving a broad link between every two cogs and resting on the rim of the wheel. Thus the chain moved round with the wheel, and one wheel could not be moved round withous the other. This chain he afterwards gave up.

[^45]This engine was put to work on the Killingworth Rallway.
In 1816, Trevithick left England for the West Indies, leaving the lucomotive to look after itself, for what he knew. Stephenson, however, looked after it. In this year he took out a patent with Mr. William Losh, a great engineer of Wallsend and Newcastle. Among other improvements was that of "sustaining the weight, or a proportion of the weight of the engine upon pistons, moveable within the cylinders, into which the steam or water of the boiler is allowed to enter, in order to press upon such pistons, and which pistons are, by the inter vention of certnin levers and connectingrods, or by any other effective contrivance, made to bear upon the axles of the wheels of the carriage upon which the engine rests."
The cylinders were open at the bottom and screwed upon the frame of the engine. The piston, which was solid and packed in the common way, was furnished with an inverted rod, the lower end of which passed through a hole in the frame, and supported the engine, and pressed upon the chair, which rested on the axes of the wheels upon which the carriaje moved. This chair had motion up and down the piston-rod. The pressure of the steam upon the piston transmitted the weight to the axle, and the reaction took an equal weight from the engine, and the steam served the purpose of an elastic spring. ${ }^{* s}$
Mr. Kitchie objects to this invention, that it aimed at too much, was too complicated, and not precise enough to be of much use.

Messrs. Stephenson and Losh had their patent likewise for a cast-iron rail, which was held to be an improvement on the rails then used.:- As railways were then laid, the wagon-wheels met with a hindrance at tbe joints, and a shock was given, and the rails put out and broken. Stephenson therefore wished to fix the rails fast in the chairs. His rails were made with a half-lap joint having a pin or bolt, which fixed them, so that the end of one rail should not rise above the end of the next one, and so that the rails should not yield if the block sank.
We have seen that in 1817 , Stephenson was busy in his struggle with Davy about the safety lamp. In the next year, the dinner was given to him, and he was laying down railway works and making engines.
In that year (1818), and in the next, he gave his time, as Nicholas Wood acknowledges, ${ }^{27}$ to experiments with Wood on railways, which have been printed.
His son had now become an under-viewer, and was a helper to his father.
Perhaps about this time he first came up to London for the patents.

We have followed Stephenson so far until he is upon the eve of starting in a new path, and we find him in a new walk of life, and much better off. We have seen his beginning from his father's cot, his struggles as a workman, his care as a father, and the spreading of his name after making the locomotive and the safety lamp. He had begun to reap some reward from his toil, and instead of being poor and penniless, he had had eleven hundred guineas given to him beyond what he had earned. From being the man, he had become the master; from being the learner, he was to be henceforth a teacher. He had a share in two patents, and there was a call for his work, for besides his old masters at Killingworth, the neighbouring coalowners were now among his friends.

As his rise had been quick, and he was brought at once into the fellowship of the northern gentry, his honours came blushing thick upon him. He did not so fully feel his own weight, but having been kept down so long, he hailed willingly the hands which were stretched forth towards him; taking everything as a kindness held out to him, instead of looking upon it as a right. His greatness had not grown gradually upon bim, -he did not settle slowly in his seat: he was marked as a new man, and always through life he had a quick foeling of his lowly beginning. It was better, perhaps, that it was so, for he kept up a kindly feeling with all around; whereas, had he taken on him the bearing of a great man, as many do, he might have lorded it over the world. but he would have missed what was dearer to him than this-the love of his fellow-men. He was thankful for everything, and therefore kindly to every one. As he did not look for much, or stand upon his rights, he was seldom wronged and always happy.

24 RI chle on Ralwayt, p. 2:6. $\quad 20$ Ritchle on Rallway, p. 31.37. 97 Wioud on Rallways.

CONTRIBUTIONS TO RAILWAY STATISTICS,
 In 1846, 1847, and 1848.-By Hyde Clasee, Beq.

(Continwed from paye 272.)
No. IX.-SAND TRAFPIC.
Sand is a large article of traffic. The amount detailed in each year ending June 30, stands thus-

Some of the returns mix up gravel, ballast, and sand.
The sand on the Bodmin and Wadebridge, and Hayle Railways (15,264 tons in 1847), is sea-sand used as manure. Sand is used for building, agricultural, and domestic purposes. That carried on the Croydon is partly for sanding floors.
The rates are as follows :-

London and Croydon	3.75d. per ton per mile		
Bodmin and Wadebridge,	$3 \cdot 00$	"	
Leicenter and Swanaington,	2.75	"	"
Wishaw and Coltnesa,	220	"	"
Arbroath and Po		"	
Lanceshire and Yo			

On the Durham and Sunderland Railway, ballast is carried for shipping parposes. The return stands thug-
1845.
30,356 tons

1846.	1845
36,567 tons.	506

1846.

No. X-Slate traffic.
There is little information as to the quantity of slate carried. In the year ending 1846 , there were carried on the Wishaw and Coltness Railway 1,880 tons, for which £41 was received.

The retes for carrying slates per ton per mile are as follows:-

B	3.0d.
Newcautle and Carlisle,	2.0d.
Wishaw and Coltneas,	$1 \cdot 3 \mathrm{~d}$

No. XI.-BRICES AND TILES.
That railways cause a large saving in many places in the carriage of bricks is shown by the quantities carried. Many new brickfields and tile-works have been opened to take advantage of these facilities, as well as of the cheap coal,-in the same manner as they are opened near canals.
The quantities detailed in each year ending June 30, are as follows:-

The rates of carriage per mile per ton are as follows:-

Dormin and Wadebridge,	4.00d.
Ballochney,	3.00
Leicester and Swannington,	3.00
Lonion and Croydon,	3.00
Lundon and South Wentern,	2.09
Marsport and Carlisle,	2.09
Wishar and Collness,	1.95
Whiteliaren,	1.80

The only return of tiles carried for building or agricult ural purposes is that of the Wishaw and Coltness Railway for the year ending June 30, 1846, 502 tons. Receipts $£ 80$.

The only return of clay carried for brick-making, pottery, or other purposes, is that of the Wishaw and Coltness Railway, 1846, 346 tons; and 1847 , 475 tons. Receipts, $1846 £ 6$, and $1847 £ 8$.

The rates for the carriage of bricks are generally too high, and are exclusive of loading. Twopence per ton per mile would be enough.

The above returns give no means of calculating the quantity of bricks and tiles carried on the whole length of railway.

> No. XII.-MISCELLANEOUS MINERAL TRAPFIC.

Besides the articles already enumerated are many others, as lead ores, copper, brass, lead and tin manufactured, salt, sulphur, roman cement, glass, pottery, fullers'earth, \&c., but as to which no information is to be got.

The rates for carrying salt are as follows, per ton per mile :-

$$
\begin{array}{ll}
\text { Bodmin and Wadebridge, } & \mathbf{4 . 0 0 d} \\
\text { Newcastle and Carlible, } & 2.30 \\
\text { London and Brigbion, } & 2.24 \\
\text { Lancashire and Yorkshire, } & 1.32
\end{array}
$$

The rate for carrying fullers'-earth on the London and Brighton Railway is $\mathbf{2 . 2 4 d}$. per ton per mile.

No. YIII.-MINERAL TRAFFIC.
The whole mineral traffic shows the following results in tons:-

	1845.	1846.	1847.
Coal and Coke,	$7,000,000$	$8,900,000$	$8,900,000$
Iron-atone,	$\mathbf{4 0 0 , 0 0 0}$	500,000	600,000
Iron,	230,000	230,000	300,000
Dross,	23,00	110,000	110,000
Copper and Tin,	23,000	23,000	23,000
Limestone and Lime,	200,000	250.000	300,000
Building Stones,	200,000	100000	600,000
Sand,	30,000	30,000	37,000
Ballast,	30,000	36,000	36,000
Bricks and Tiles,	2,000	5,000	5,000
Miscellaneous,		280,000	300,000

All these amounts, except for coal, are far below the mark; but they establish a total mineral traffic in 1847 of not less than $11,200,000$ tons, besides unenumerated articles.

Besides the returns already given are the following miscellaneous returns, of Minerals and Stones (1); Stones and Timber (8); Stone and Coal (3) ; Stone and Bricks (4).

		$\begin{aligned} & \text { Tons. } \\ & 1846 . \end{aligned}$	Tons. 1847.
	Brigbton,		95,315
	Lancashire and Yorkshire,	-10,660	33,177
	Norfolk, ..	-5,800	11,659
	St. Helen's, ..		25,060
(2)	Dublin and Drogheda.	9,686	3,745
(2)	Great North of England,	8,298	
(2)	London and South Western,	*4,984	
(2)	Eastern Union, ..		*5,931
(3)	London and Brighton,	55.747	
	West Cornwall (Hayle),	42,795	

The amounts received were as follows:-

	Company.	1846.	1847.
) Brighton,		£9,095
	Lancashire snd Yorkshire,	-2,024	3,532
	Norfolk,	-716	1,184
	Saint llelen's,		1,002
	Dublin and Droghede,	726	549
	Great North of England,	$\bullet 2,720$	
	London and South Western,	-4,984	
(2)	Eastern Union, .-		305
(3)	London and Brighton,	4,287	
) Weat Cornwall (Hayle)	6,304	

No. XIV.-TIMBER TRAPFIC.

- The quantity of timber carried in each year ending June 30, as detailed in the returns, is as follows :-

	Tons. 1845.	Tods. $1846 .$	Tons. $1847 .$
Great North of England,	1,000		
Lancashire and Yorkshire,		*667	4,837
Maryport and Carlisle,	\square	2,434	1,774
Whitby and Pickering,	911		
Whitehaven,		*303	*198
Wishav and Coltness,	148	1,435	* 2,451

The amounts received are as follows:-

Great North of England,	£160	\boldsymbol{x}	£
Lancashire and Yorkshire,		*667	1,453
Maryport and Carlisle,		539	331
Whituy and Pickering,	506	* 37	
Whitebaven, ..		20	13
Wishaw and Coltness,	130	117	${ }^{81}$

The rates for the carriage of timber are as follows :-

Whitby and Pickering,	$5 \cdot 00 d$.	per ton per mile.	
Rallochney,	3.00	$"$	$"$
Whitehaven,	300	$"$	$"$
Bodmin and Wadebridge,	2.50	$"$	$"$
London and South Western,	$2 \cdot 30$	$"$	$"$
Wishaw and Coltness,	2.35	$"$	$"$
Maryport and Carlisle,	$2 \cdot 33$	$"$	$"$
Lancashire and Yorkshire,	2.24	$"$	$"$

Timber is in some returns mixed up with stone traffic, as seen in No. XIII.
On the Cornish and Northern lines, timber is carried for mining purposes; in the agricultural districts, for hop-poles and fences; on all lines for building. Bark is carried on the Southern railways.

In 1845, I estimated the quantity of timber carried st 40,000 tons, and there seems no reason for doubting that this is a safe estimate.

No. XV.-BUILDING TRAPPIC.

On the whole, railways afford great accommodation to the bailding interests, though not to that extent which they may and will do when the traffic is more developed.
The following is an estimate of the traffic carried on for bailding purposes under each head:-

	Tons.	Tina.	Tons.
	1845.		1817.
Stone,	200,000	400,000	600,000
Bricks and Tiles,	2,000	5,000	5.000
Timber,	40,000	40,000	50,000
Lime,	50,000	30,000	30.000
Saud,	10,000	10,000	10,000
Total,	300,000	400,000	715,000

The rates for the carriage of each of these articles, though below those on roads and canals, are still too high for the development of the traffic. It is a great disadvantage that most of these articlesstone, timber, and bricks-give much trouble in loading and unloading.

No. XVI.-PISH TRAPFIC.

This traffic is of the greater importance, as it gives a positive addition to the supply of food in the country, and is therefore of great national benefit. Railways stimulate the production, or economise the cost of production, of grain, meat, and other article of food; but all fish that can be carried inland, is so much added to the resources of the country. In this respect, railways have done much and can do more, both for the supply of food to the country, and the promotion of the fisheries.

In the beginning of last year, I laid hefore Mr. Hudson a suggestion for extending the carriage of fish, as a means of relieving the famine, and to which he gave his approval. In the last session, Mr. Wyld, M.P., called the attention of the House of Commons to my plan for increasing the consumption of fish, by adopting it as an article of occasional diet in workhouses and prisons. This would cause an increased consumption of at least 20,000 tons of fish. Sir George Grey said there was no objection to the adoption of this plan, provided enough fish were given.

In consequence of the progress of the railway traffic, there has been a great increase in the consumption of fish inland. A very strong proof of this is given in the case of Birmingham, where they find it necessary greatly to enlarge the fish market.

On the South-W estern, Eastern Counties, and other metropolitan railways, great numbers of fish hawkers go down by the early trains.

It is very much to be regretted that there is a great dearth of information on this very important subject; and it is very desirable, in consequence of the absence of definite information, that a parlizmentary return should be obtained of the quantities of fish carried by railway. This, however, can only be obtained by approximation, as all the fish is not carried in bulk, but very much is carried as parcel traffic, and some by passengers as luggage.

The rates are high. The following are the rates per ton per mile.

London and Brighton,	$5 \cdot 69 \mathrm{~d}$.
Great North of England,	$5 \cdot 55$
Whitby and Pickering,	$5 \cdot 00$
Preston and Wyre,	$4 \cdot 00$
London and South Western,	$3 \cdot$
Norfolk,	..
$2 \cdot 3$	

The Great Western are known to carry a great quantity of fish over the South Devon line. The receipts are said to be £250 per week.

The trafic of the lines given above may be estimated ms follows:

Eastern Counties (Cambridge)	5,100	
Great North of England,	1,000	"
Norfulk,	12,000	"
WLitby and Pickering,	1,100	"
Total,	19,200	

This is nearly 80,000 tons on four lines of railway, and not including the Eastern Counties (Colchester), Brighton, SouthWestern, Great Western, South-Eastern, Hull and Selby, Liverpool and Manchester, and Preston and Wyre.

In 1845, I estimated the railway traffic in fish at 13,000 tons, which must have been much below the mark.

The following is an estimate of the amount now conveyed :-

Distrit	Tons.
Scotland,	2,000
Northern,	4,000
Midiand,	2,000
Westerd,	2,000
South W'estern,	4,000
Southern,	4.000
Eastera,	25,000
Total,	43,000

This traffic is very remunerative, and does not bring less than 10a. per ton. If parcels were taken into the account, the gross tonnage of fish carried may be reckoned as 70,000 tons; or, on the lowest computation, the food of as many individuals.

No. XVII.-GRAIN TRAFPIC.

The conveyance of grain and flour is irregular ; for though there is a fixed quantity carried to the local markets, the import of foreign corn is fluctuating.

The returaf for the years ending June 30, are as follows :-

The amounts received in each of the fears are as follows :-

Company.	1845.	1846.	1847.
Great North of England,	11,281	£	
Lancashire and Yorksbire,		*13,176	$\bullet 36,260$
London and Croydon,	5		
Mapchester and Bolton,			${ }^{415}$
Maryport and Carlisle,	81	97	13
Norfolk,		$\bullet 1,091$	*2,082
Slamannan -			282
Whitby and Pickering,	142	4	
Khitehaven, ..		2	4
Hishaw and Collnest, - Retura for the b	$--$	48	

The rates are as follows, per ton per mile :-

Bodmia,	4.00d.
Marsport and Cariale,	4.00
Whitby and Pickering,	4.00
Whitehaven,	$3 \cdot 10$
Ballochney, ..	3.00
Wishaw and Coltness,	$2 \cdot 32$
Lancashire and Yorkshire,	$2 \cdot 29$
Arbroath and Porfar,	$2 \cdot 12$
Noriolk,	1.25

The amount of grain and meal carried by railway is certainly not under a quarter of a million of tons, and most probably exceeds three hundred thousand tons.
Through the kindness of Mr. Waddington, I have been favoured with the following return of grain, flour, and seed, carried for the London markets by the Eastern Counties Railway.

Half-year ending	Plour. Sacka.	Malt. Qra.	Wheat. Qrs.	Barleg. Qra.	Oate. Qra.	Beans. Qra.	Pras. Qre.	seed. Sacke.
$\begin{aligned} & \text { June 26, } \\ & 1847, \end{aligned}$	128,269	99.114	20,850	4,409	11,324	3,542	1,079	15,099
Dec. 25, ${ }_{\text {1847 }}$ \}	113,365	81,688	24,287	14,888	2,934	8,239	1,909	9,904
$\left.\begin{array}{c}\text { June 24, } \\ 1848,{ }^{\text {2 }}\end{array}\right\}$	149,957	139,078	26,649	9,990	16,426	1,858	931	11,445
$\left.\begin{array}{c}\text { Aug. } 12, \\ 1848 .\end{array}\right\}$	45,360	28,300	14,847	789	2,132	407	140	2,971

Not knowing the average weights of the above, they cannot be reduced into tons.

No. XVIII.-PROVISION TRAFPIC.

There are no means of estimating the provision traffic on railways; but such returns as there are, show that it is very great.
The following are returns of the number of tons of provisions carried in each of the years ending June 30. The Lancashire and Yorkshire, and Norfolk returns, already given, include corn; the Eastern Counties return is from Mr. Moseley, through Mr. Waddington, and includes fish.

Company.		Tons. 1845.	Tons. 1846.	Tons. 1847
Bastern Counties,		-		30,000
Lencashire and Yorkshire,			+3,968	117.312
Luncashire and Yorksbire (Pr	'reston \& WYre),	8,521	8,412	5,220
London and Brighton,		$\xrightarrow{-}$	3.632	-
Jrondun and South Western,		\square	40,655	
Norfolk,	.		+8,796	+17,771
Boath Eastern,	-	0,000		

* Frult, mest, and regetables, balf year, 8,585 tons, beides Aah, bacon, hams, \&c. + Half-gear.
The amounts received are as follows:-
18, 1845. 1846. 1847,
London (Preaton \& Wyre), £2,591 $\mathbf{~ £ 2 , 8 1 5 ~} \mathbf{1 8 1 . 7 4 0}$
The rates charged are as follows per ton per mile:-

London and Brigbton,	$5 \cdot 69 \mathrm{~d}$.
Preaton and Wyre,	$\mathbf{4 . 0 0}$
Loudon and Soutb Western,	2.57

Ale and beer are carried largely on the South Western, Newcastle and Carlisle, and other lines The rates on the London and South Western are g.09d. per ton per mile, and on the Durham and Sunderland, $8 d$.
To the tonnage of provisions must be added that of fish and grain, which gives the following returns for 1847 :-

Fioh.-Great North of England,		
Norfolk, ..	12,000	
Whitby and Pickering,	1,100	"
Grain.-Great North of England,	6,000	"
Slamannan, ..	2,600	"
Wishaw and Coltness,	1,300	"
Prowisions,-Eastern Counties,	30,000	"
Lancashire and Yorkshire,	117,312	"
"h Preaton and Wyre,	, 5,220	"
London and Brighton,	3,632	\cdots
London and South Western,	, 40,655	"
Norfolk, ..	25,000	"
South Eastern, ..	10,000	"

In 1845, I estimated the supply of provisions to the London markets by railway as follows, to which I subjois a new estimate. This does not include cattle.

	Tons. 1845.	Tons. 1848.
South Eastern,	7,000	10.000
Brighton,	6,000	80000
South Western,	20,000	20,000
Great Westero,	80,000	40,000
Loudon and North Western,	30000	30000
Eastern Counties,	15,000	100.000

Among these articles are fresh fish, meat, milk, butter, fruit, \&c., which cannot be brought from great distances except by rail way. Milk is now largely carried on the Eastern Counties and other railways, under arrangements by which the companies take back the empty caus.
The metropolis is now the seat of a considerable trade in provisions, supplying to the country towns, fish, prime beef, poultry, fruits, and articles of foreign provision.
The whole provision traffic of each district, including fish and grain, may be estimated as under.

Dlatict.	Tons.
Northern,	$\mathbf{1 0 0 , 0 0 0}$
North Western,	$\mathbf{2 0 0 , 0 0 0}$
Midlabd,	$\mathbf{5 0 , 0 0 0}$
Western,	$\mathbf{5 0 , 0 0 0}$
Soulh Western,	$\mathbf{3 0 , 0 0 0}$
Soutlern,	50,000
Eastern,	200,000

This estimate does not include Scotland. It is very vague and much under the mark.

> No. xix.-manure trapfic.

This traffic is of great value to the agricultural interests, but there is a want of adequate information respecting it.
The following are returns of manures carried for the years ending June 30 .

Compayy.
Leicester and Swanningtoa, Wishaw and Coliness, York and North Midland, Half-year.

Tons.	Tons.	Tone.
1845.	1846.	1847.
496	221	
1,056	2,516	1,727
	5,943	-

The tonnage on the two former lines is chiefly guano. On the Wishaw and Coltness, 1,043 tons were carried in 1846.
The amounts received are trifing. They are as follows :-

Company.	1845.	1846.	1847.
Leicester and Swannington,	£ 49	£10	£
Wishaw and Coltness,	27	149	${ }^{\bullet} 95$
York and North Midland,		${ }^{445}$	

The rates are as under, per ton per mile.

Newcastle and Carlisle (guano)	$2 \cdot 5 \mathrm{~d}$,
Londun and Brixbton,	2.24
Arbruath and Forfar,	212
Leicester and Swannington,	$2 \cdot 00$
Lancashire and Yorkshire,	1.33
Wishaw and Coltness,	$\mathbf{J} 10$
York and North Midland,	1.00

Lime and sand are likewise carried as manures.
It is much to be regretted that no adequate measures are taken for applying the manure of towns. In the metropolis alone, the waste cannot be less than what would be equivalent to raising food for a million of people.
The following is an estimate of the whole amount of manures carried.

Lime,	$\mathbf{2 1 0 , 0 0 0}$ tons.
Smad,	$\mathbf{3 0 , 0 0 0} "$
Manure,	$\mathbf{4 0 , 0 0 0 ~}$

The whole quantity is perhaps about three hundred thousand tons, and it may be safely taken that there is a production of food for a hundred thousand individuals effected by means of railway transit.

Bones form a regular article of transit on some of the railways. The charge on the Arbroath and Forfar Railway is \&d. per ton per mile.

> No. XX.-MISCELLANROUS agricultural Trafpic.

Many small articles are included under the head of agricultural traffic, as to which there are a few scattered details in the returns.

Un the South-Eastern Railway hops are carried. This is a season traffic, carried on one-half yenr only. The number of tons in 1847 was 7,248 , and the receipts $£ 7,741$.
The rute of charge on the London and Brighton is $2 \cdot 5 d$. per ton per mile.

Malt is not carried so much by railway as might be expeeted, because the malt gets shaken up, and then measures less on delivery, because it cannot be so well heaped up. As the quality of the malt is not affected, this is only a temporary prejudice on the part of the dealers.
The charges for carrying malt are on the London and Soath Western Railway 3d. per ton per mile, and on the London and Brighton $\mathbf{9} \cdot 68 \mathrm{~d}$.
Bark is carried on most of the Southern lines. The rates are on the London and Brighton, $2 \cdot 68 d$., and on the London and South Western, 2,57d.
Brooms are manufactured near the London and South Western Railway, and are carried at the rate of 2009 . per ton per mile.
Hay is reckoned hazardous from its liability to catch fire from the engine sparks. The quantities carried and amounts received on the Newcastle and Carlisle Railway are-

$$
\begin{array}{clll}
1846 . & 1847 . & 1846 . & 1847 . \\
068 \text { tons. } & 1,003 \text { tons. } & £ 892 & £ 879
\end{array}
$$

The rate of carriage on the above railway is $5 d$. per ton per mile.
There are no details as to wool traffic, though wool of home and foreign growth is carried. The rate is $3 d$. per ton per mile.
There is a return of potatoes carried in 1846 on the Wishaw and Coltness Railway, 43 tons at $2 \cdot 35 \mathrm{~d}$. per ton per mile, the receipts being $£ 2$ only.
The rates for hides are, on the London and South Western q-3d per ton per mile, and on the London and Brighton, 3-5d.
The following are mixed returns of agricultural produce for the years ending June 30 .

Company.	Tons. $1846 .$	Tons. 1817.
Dublin and Drogheda,	5,324	0.054
Great North of Eogland,	63323	6,064
West Cornwall (Hayle),	1,309	
London and Brighton,	26,804	
ipts were as follows:-		
Dublio and Droghedn,	£1,867	£1,823
Great North of Eingland,	4,718	
West Cornwall (Hasle),	288	
London and Brighton,	11,204	

No. XXI.-AGRICULTURAL TRAFFIC.

The preceding sections show the services rendered to agriculture by railways. The accommodation may be classed under the following heads :-

Brought to the Farm.

The whole weight carried by railway to the farms cannot be less than $6,000,000$ tons, on which a very great saving has been effected.

Produce carried to Market.

Othar produce, hides, bams, wool, bops, malt, ale, beer, cyder, perty, hay and animal foud, timber, bark.

No. XXII,-PARCELS TRAFFIC.

This is a well-paying branch of revenue, connected with the passenger traffic, and has been latterly much improved. The subjoined accounts do not, however, show the full extent of the parcel traffic, as a great portion of it is still included in the general account for goods, the carriers making up parcels as goods. The results are therefore minimum results.

The following shows the number of parcels carried in each year ending June 30, so far as they are detailed in the returns:-

The numbers for 1847 may be made out thus :-

East-Lanceshire,	40,000
Eastern Counties : Colchestor,	180,000
${ }^{\prime \prime}$ Cambridge,	300,000
Eastern Union,	60,000
" Ipswrich and Bury,	20,000
East Anglian, \quad.	2,783
Kendal and Windermero,	8,976
Lancaater and Proston,	30,000
Lancaster and Carlinle, ..	24,728
Lladelly,	6,000
Londonderry, ..	4,000
Lancashire and Yorkshire,	400,000
Newcastle and Carlisle,	38,817
Manchester and Sheffield,	40,000
South Devon,	26,855

The amounts received for the carriage of parcels in each year stand thus; the amounts for 1845 being obtained by doubling the half-year ending June 30, 1845 :-

Slamanuan,	-	-	${ }^{14}$
Stockton and Darlington,	860	479	693
Stockton and Hartlepool,	172	- 40	82
. Clarence,		${ }^{71}$	158
St. Helea's, ${ }^{\text {, }}$,	70	${ }^{*} 5$	110
Shrewsbury and Chester,			*312
South Devon, ..		41	1,066
Whitebaven,		*26	40
Wisbaw and Coltnesa,			-30
West Cornwall (Hayle)	29	63	65
York and North Midland,		10,618	13,476
" Hull and Selby,	2,800		
York and Newcastle,	2,800	-	8,256
Middlesborough,			114
North Sbields, ..	1,346	1,495	${ }^{-354}$
Durham and Sunderland,	220	186	

The total receipts in each year are as follows :-

Detailed returos,	$\begin{gathered} 1845 . \\ \mathbf{£ 1 5 6 , 9 1 0} \end{gathered}$	$\begin{gathered} 1846 . \\ £ 208,952 \end{gathered}$	$\begin{gathered} 1847 . \\ £ 266,043 \end{gathered}$
Add for haif-years omitted,	\square	16,500	1,100
Add for companios omitted,	40,000	8,000	2,400
Total,	£196,910	(238,452	£269,543

The returns of parcel traffic are the only returns which show any improvement; the others afford less information in each year.
From the above amounts a correction has to be made for passengers' luggage charged in excess, included in the parcels returns. This is usually about 6 per cent. of the gross returns; but as it is deducted in some cases, 5 per cent. is a sufficient compensation. It must be observed that in some cases parcels are included in the goods return.
The South Devon return includes receipts for telegraphic messages,
Making the above correction, the net receipts for parcels will te
1815.
£186,000
1846.
1847.
£255,000
It is not necessary to give the detailed charges for parcels, as they include sometimes charges of booking and delivery.
In 1844-5 the number of parcels enumerated was 368,208, and the receipts $\mathfrak{E 1 4}^{2} \mathbf{0 3 4}$, which gives an average rate of $9 \cdot 29 d$., or a little more than $9 \frac{1}{4} d$. per parcel, or rather more than 88 parcels per pound. Taking this as the average, the total number of parcels carried in 1844-5 would be about 4,500,000.

In 1845-6 the number of parcels enumerated was 384,353, and the receipts $£ 11,559$, which gives an average rate of 7 . $2 d$., or nearly $7 \frac{1}{d} d$. per parcel, or more than 33 per pound. Taking this as the average, the total number of parcels carried in 1845-6 would be about $7,400,000$.

In 1846-7 the number of parcels enumerated was 530,641 , and the receipts $£ 8,685$, which gives an average of $\mathbf{3 \cdot 9 d}$., or nearly $4 d$. per parcel.
It is questionable, however, whether the average is so low in any of the years, as the London and North Western, which has so large an amount of the parcels traffic, is not taken to form part of the average. It is, however, certain that the average rates for the conveyance of parcels have been much reduced. A fair average will be 18 parcels per pound for 1844-5, 19 for 1845-6, and 20 for 1846-7. This will give the whole number of parcels carried by railray in each year as under.

1845,	$3,950,000$.
1846,	$4,200,000$.
1847.	$5,000,000$.

The number of parcels carried both ways to each town may be reckoned thus:-

London,	$1,500,000$
Manchester,	$\mathbf{3 0 0 , 0 0 0}$
Liverpool,	200,000
Leeds,	200,000
Birmingham,	200,000
Glasgow,	100000
Bristol,	100,000
York,	100,000
Bath,	100,000
Cambridge,	100,000
Southampton,	100,000
Dover,	80,000
Brighton,	60,000
Sheffield,	60,000
Preston,	50,000
Edinburgh,	$\mathbf{4 0 , 0 0 0}$

Hull,	$\mathbf{3 0 , 0 0 0}$
Exeter,	20,000
Newcastle,	20.000
Carlisle,	20,000
Chester,	10,000
Dunder,	10,000
Ipawich,	10.000

In consequence of new arrangements made by the companies, a great increase of business has taken place in the carriage of booksellers' parcels. There is a great tendency in the parcels traffic to increase in consequence of the extension of the supply of the local grocers, linen-drapers, \&ec. from London and the great towns, for it is well known that instead of taking stock a few times yearly, they now receive frequent supphes.
The chief parcels traffic is on the following lines :-

London and North Western,	No. of Parcels. 8,000.000	$\begin{aligned} & \text { Recelpts. } \\ & \mathbf{\& 1 0 4 , 7 3 S} \end{aligned}$
Great Western,	700,000	84,155
Midland,	600,000	24,986
Eatern Comaties,	480,000	16,669
Lancushire and Yorkshire,	400,000	5,225
York and North Midiand,	800,000	18,476
Tork and Newcastie,	800,000	8,724
Londoo and South Western,	200,000	10,029
London and Brighton,	200,000	9,596
Soath Eastern,	200,000	8,793

No. XXIII.-MAILS.

The receipts for mails in each of the years ending June 30, is as follows; the amount for 1845 being made up by doubling the return for the half-year ending June $30,1845:-$

The total receipt detailed in 1845 was $£ \mathbf{£ 7}, 000$, to which has to be added for omissions £'2s, 000 , making a gross total of $£ 100,000$.

The total receipt detailed in 1847 was $£ 105,878$, to which has to be added for omissions $£ 25,000$, making a gross total of $£ 130,000$.

THEORY OF STEAM-ENGINES.

Account of the experiments to determine the principal laves and numerical data which enter into the calculation of Steam-Enginet. By M. V. Reonauly.

(Continued from page 268.)

Foubth Memorr.-on the yeagurement of temperatures.

We do not as yet possess any direct means of measuring the quantities of heat absorbed by a body under given circumstances and we recognise this absorption of heat only by the changes which occur in the state of the body, or by its dilatation. The name thermometer is given to the instrument whose object is to indicate the variations in the quantities of heat in any medium. These instruments are generally founded upon the dilatation which bodies undergo by the action of heat, or upon the changes in elastic force which the same bulk of a gas experiences under the circumstances to which the medium is submitted.

A perfect thermometer would be one whose indications were always proportional to the quantity of heat which it had absorbed, or, in other words, one in which the addition of equal quantities of heat produced always equal dilatations. To fulfil this condition it is necessary, either that the capacity for heat, and the dilatation of the thermometric substance, should remain invariable during the experiment, or that these two elements should vary strictly inversely as each other.

Nor would the perfect thermometer yet indicate the quantity of heat absorbed by the medium under given circumstances, unless this medium presented the same advantages as the thermometric substance-that is, unless it absorbed equal quantities of heat for equal variations of temperature as noted by the thermometer.

But a comparative study of the dilatations of different substances under the same circumstances, quickly shows that they are far from fullowing the same law; and if we compare together the quantities of heat absorbed by these different bodies when brought successively to different temperatures, measured by the dilatations of one of them, we see that these quantities are variable, and unequally variable in each one of them, without our having been able heretofore to show the relations which exist between these variations of capacity and the changes of bulk.
The great precision which can be obtained in the constraction of the mercurial thermometer, the facility with which the thermometric liquid may be obtained of the same degree of parity, and the great extent of temperature through which this liquid preserves the same state, have given to the mercurial thermometer the preference over all other instruments of the same kind, and have caused its adoption almost exclusively for all precise experiments.

But there is an essential condition which every apparatus for measurement ought to satisfy; it is, that it should not only remain rigorously comparable with itself-that is, that it should always mark the same degree under the same circumstances, -but it is moreover necessary that we should be able to reproduce it at will, and obtain always instruments rigorously comparable.

Physical philosophers have thought that they had completely attained this end, by making the scales of the mercurial thermometers agree at certain normal temperatures which are easily reproduced and always perfectly identical; for this purpose, they have adopted the constant temperature at which ice melts, and that not less constant which saturated steam presents when it exerts an elastic furce of 76 millimetres. But 1 have shown (Annales de Chimie et de Physique, 3rd Sirie, tome v., pages 100 et seq.y) that two mercurial thermometers, adjusted for the same fixed points of melting ice and boiling water under a pressure of 76 mm , may show very considerable diferences in their movements beyond these fixed points, if they are not made of glass of the same nature. Even when the glasses of the reservoirs present the same chemical composition, there may still be very sensible differences in their indications according to the way in which the reservoirs have been worked in the glase-blower's lamp, the molecular state of the glass undergoing very notable alterations during this working.

The merourial thermometer, then, as it has been constructed ap to the present time, is defective in one of the most essential canditions which ought to be required of an apparatus for messare-ment-it cannot be always reproduced in the same state; and the different instruments of the same kind are rarely comparable with each other beyond the fixed points of their acales.

Phynical philosophers thought that they had observed that al
they are carried from the temperature 0° to that of $100^{\circ}\left(32^{\circ}\right.$ to 819° Fahrenheit). This law, so remarkable for its simplicity, naturally led them to think that the dilatation of the gases ought to be in a more simple ratio to the quantities of heat than that of solids or liquids. Some, more bold, even concluded that the dilatation of gases must be rigorously proportioned to the quantity of heat, and that the gas thermometer was the true normal thermometer to which all the phenomena of heat ought to be referred.

We now know that this great simplicity in the law of the dilatation of the gases is far from existing. I have shown in the memoir upon the dilatation of gases that not only the different gases have not the same coefficient of dilatation, but that even for the same gas this coefficient varies with its density. The indications of gas thermometers then, can only be considered, like those of other thermometers, as functions more or less complicated of the quantities of heat.

But the gas thermometers present an advantage over the mercurial; and in general over all liquid or solid thermometers, an advantage which arises from the greatness of the dilatation of the thermometric substance. In any thermometer formed by a liquid or gaseous substance, the indications of the instrument depend upon the dilatation of this substance, and of that of the substance in which it is inclosed. Now, the dilatation of mercury is only about seven times greater than that of the glass which holds it; and the variations which we remark in the law of the dilatation of the different glasses, form very appreciable fractions of the apparent dilatation of the mercury, and consequently influence in 8 notable manner the indications of the instrument. In the gas thermometer, on the contrary, the dilatation of the gas heing one hundred and sixty times greater than that of the glass, the variations of the law of dilatation of the different glasses no longer sensibly influence the indications of the apparatus, and do not prevent the instruments from being comparable.

If, then, we wish to profit by this important property, and adopt the gas thermometer as a standard, we must study several important questions, so as to fix the conditions under which the instrument will remain comparable.

The present memoir has for its object the study of the different methods which have been imagined for measuring temperatures in experiments which require great precision. I will divide it into three parts: in the first part, I will treat of the gas thermometer; in the second, of the mercurial thermometer; and in the third, of the measurement of temperatures by means of thermo-electric currente.

Part I.-Of Gas Thermomelers.

When a gas enclosed in a mathematically-elastic envelope is submitted to an elevation of temperature, its volume increases, and the gas retains the same elastic force. But if we prevent this dilatation of the gas, by exerting a proper degree of pressure over the whole surface of the envelope, the gas retains the same volume, but its alastic force increases.

There are then two modes of employing a gas as a thermometric substance. The gas may be placed under circumstances such, that the pressure which retains it remains constant, and its increase of bulk be observed; or the gas may be compelled to keep the same bulk, and its increase of elastic force be examined.

First Method.-In order that a gas should realise the conditions prescribed by this method, which are very nearly those found in the mercurial thermometer, it would be requisite that the gas gubmitted always to the same pressure, should expand freely in a gauged reservoir, kept throughout at the same temperature. But these indications cannot be fulfilled in practice-at least, if the apparatus is to be submitted to high temperatures.

The thermometer must therefore be composed of a reservoir Which is to be exposed to the temperature which it is desired to measure, and a gauged tube, united to the reservoir by a capillary tube, which removes the other from the place where the temperature is to be measured. This gauge tube fulfils the purpose of the graduated stem of the mercurial thermometer, and serves to collect the gas which the rising of the temperature drives out of the reservoir. This tube may also be kept at a constant temperature differing but little from that of the surrounding air. At any moment during the experiment, the gas is composed of two parts : the first, contained in the reservoir, is at the temperature to be found, the other in the tube is at the surrounding temperature. These tro portions are at the same pressure, which may be brought as nearly as is desired of that of the atmosphere. The equations derived from these conditions permit us to calculate the required temperature.

This arrangement is the one adopted by M. Ponillet, in his air pyrometer, and M. Regnault himself employed it in his fifth geries of experiments made to determine the dilatation of gases. It presents a very serious inconvenience when the apparatus is to be used for the measurement of high temperatures. In fact, it will easily be seen that in this case the far greater part of the air will already be in the gauged tube, and but little will remain in the reservoir, so that a further elevation of the temperature will cause but a very small portion to pass over into the tube, and this will with difficulty be measured with the proper degree of accuracy.

In fact it can be easily shown that, calling the temperature x, and the coefficient of dilatation of the gas a, the sensibility of the apparatus will vary very nearly inversely as $(1+a x)^{2}$. This circumstance led M. Regnault to reject this arrangement for a gas thermometer.

Second Method.-In the second method the gas is kept constantly of the same volume, and the elastic force which it presents under different circumstances is measured; then from these, by the law of Marriotte, we may calculate the dilatations which the gas would have undergone if the pressure had been kept constant.

The apparatus founded upon this second method are much more easily managed, and give greater precision than those constructed according to the first method: they have moreover the advantage of presenting the same sensibility at high as at low temperatures. By placing in these apparatus air of atmospheric pressure when the reservoir is surrounded by melting ice, we are sure to have instruments rigorously comparable. Nevertheless, if we desire to measure very high temperatures-if for instance the instrument is to be used as an sir pyrometer-it is to be feared that the elastic force of the gas within, becoming very considerable, the envelope may experience a permanent change of form under the great interior pressures. This inconvenience may be avoided by introducing into the apparatus, air under an initial pressure less than that of the atmosphere, when the reservoir is at 0°. In this way the elastic force may be kept within limits as low as may be desired, but it is evident that the apparatus becomes less sensitive in proportion as the elastic force of the gas at 0° is feebler; still, as the measurement of the elastic force may be made with extreme precision, the indications of the apparatus will be in the greater number of cases sufficiently exact, even though the initial pressure of the gas at 0° was but one-fourth of that of the atmosphere.

But here a very important question presents itself: are air thermometors filled with air at very different densities comparable with each other 9 That is, will such instruments agree at all temperatures when their scales have been made to accord at 0° and 100° ? We have before seen (p .240) that the absolute value of the coefficient of dilatation of a gas changes very notably with its density ; it is required to know whether the changes of density will not produce besides, sensible differences in the law of dilatation. It is absolutely indispensable to decide this question in order to fix the conditions under which air thermometers shall be established in order to be comparable with each other. M. Regnault also proposed for himself a second question, which he thinks not leys important than the first-viz., do gas thermometers, filled with gases of different kinds accord with each other when they hate been adjusted at 0° and $100^{\circ} 9$

The apparatus used in these investigations consisted essentially of two gas thermometers placed side by side in the same boiler.

Each of these thermometers was composed of a globe of flint glass (crystal), of from 700 to 800 cubic centimetres content, terminated by a re-curved capillary tube, and a manometric apparatus. The two globes were kept, by copper wires, side by side on a metallic support, consisting of two metallic plates of lozenge form placed, one below, the other above the globes, and united by iron rods which were permanently fixed to the cover of the boiler; the upper plate was pierced with two holes through which passed the stems of the air thermometers, and with two other holes, situated in a line at right angles to that joining the first, through which passed the stems of two mercurial thermometers.

The boiler-cover was permanently fired to a solid partition, and the copper boiler was attached to it by screw bolts, so that it could be removed or replaced without disturbing the thermometers.
The manometric apparatus was composed of two glass tubes of 12 or 14 mm . interior diameter, cemented into an end piece of cast-iron provided with a stop-cock, 80 arranged, that by properly turning it, you could at pleasure either cause the two tubes to communicate together, or dicharge the mercury from either of them, or intercept the communication of the tubes with each other and with the open air. The manometers were fixed to the side of the partition opposite to the boiler.
The capillary tubes of the air reservoir were conneded with the capillary tubes of the manometers, by bringing these tubes
into exact contact at their ends, and cementing over them a brass tubulure, grooved to fit them outside. This brass tubulure had a rectangular tube opening into it, into which was cemented a capillary tube, by means of which communication was made with an air-pump, so as to dry the apparatus and introduce the gases to be operated on.
The boiler contained oil, which was constantly agitated so as to maintain an uniform temperature throughout the whole bath.

The method of operating is as follows :-
In the first place, to dry the apparatus, a little mercury is put into the inner manometer tube, and the stop-cock so placed as to cut off this tube from communication with the other and with the opening. The lateral tube of the tubulure is then put into communication with an air-pump furnished with several tubes filled with pumice soaked in concentrated sulphuric acid, which are intended to absorb the moisture. A vacuum is made a great number of times, and each time the air is allowed to enter very slowly. To be sure that the drying is complete, the globes are heated to 50° or 60° (182° to 140° Fahrenheit). The pump is then removed, bat the tubes are left open in communication with the drying tubes. Suppose now that it is desired to compare the movement of a thermometer containing air whose elastic force at 0° is 76 mm ., with that of another containing air of a less elastic force.

The two globes are surrounded with melting ice, and the stopcock of the first manometer being so placed as to make a communication between the two manometer tubes, mercury is poured in so as to raise its level to a mark placed near the top of the inner tube (that is, the one communicating with the reservoir). The two mercurial columns will be necessarily at the same level, because the apparatus communicates freely with the air by the tubulure.

On the other hand, a partial vacuum is made in the second globe, and the rarefaction of the air in it is determined by the difference of height of its manometric columns; when a proper rarefaction has been attained, the apparatus is closed by hermetically sealing the lateral capillary tube of the tubulure, and mercury is then poured into the manometer until its surface stands at a mark made near the top of the inner manometer tube.

The elastic forces are measured by four properly-placed cathetometers, each one being so placed as to be able to follow the meniscus in one of the tubes.

The necessary observations of the height of the barometer, and the position of the meniscus of each of the manometer tubes being made, the lateral tube of the first reservoir is then hermetically closed, the ice removed and replaced by oil which is heated by a furnace placed under it. The oil bath is heated until the temperature at which the two instruments are to be compared is attained, the air-holes of the furnace are then more or less closed and the oil kept in constant agitation; and the thermometers are adjusted for observation by pouring mercury into the manometer tubes, so as to bring back the level of the columns in the inner tubes to the marks made upon them. The temperature then rising only very slowly, the movements of the four columns of mercury are simultaneously watched, and when they are perfectiy stationary, at a signal given by one of the observers the barometer is read, and the temperatures of the air in the vicinity of the manometer tubes, and of the lateral tubes attached to the reservoirs, noted.

As it is essential in this mode of experimenting to keep the temperatures stationary as long as possible, they should be raised very slowly when approaching the maximum at which the observations are to be made, and by a little practice a series of observations may be got at temperatures not differing more than 1° from each other, and the observer be assured that one instrument is not behind the other in its indications. This precaution is above all indispensable when the air thermometer is compared with the numerical.
It is not necessary, and would be very difficult, to bring the mercury in the manometers exactly to the marks. It is sufficient to bring them nearly there, and as the observations give exactly their differences of level, the volumes can easily be calculated when the tubes have been gauged in the vicinity of the marks. The experiments upon thermometers filled with different gases are conducted exactly in the same way.

These globes were too thin to permit the experiments upon thermometers filled with air at a much higher pressure than 76 mm . to be tried with them; recourse was had to others similar, but having their walls 3 or 4 mm . thick. These globes were of rather less capacity than the former, holding only about 600 cubic centimetres.

A great number of experiments were made by M. Regnanlt with the apparatus in which air of ordinary density was compared with that of much less, and with that of much greater density, as well as with hydrogen gas, carbonic and sulphurous acid, and the principal conclusions which he draws from them are as follows:-

1. The atmospheric air follows the same law of dilatation from 0° to 350° (32° to 662° Fahrenheit) of temperature, even when its initial elastic force at 0° varies from $0^{\circ} \cdot \mathrm{m} 4$ to $1 \cdot \mathrm{mS}$, ($1 \cdot 33$ to 4.25 ft .). So that in the construction of an air thermometer, no attention need be paid to the density of the air introduced,-the instruments will be comparable whatever may be the density.
2. Atmospheric air, hydrogen gas, and carbonic acid, follow between 0° and 350°, sensibly the same law of dilatation, although their coefficients of dilatation are sensibly different. So that the thermometers made with these different gases will accord, provided the temperatures are calculated from their proper coefficients. From this it follows that the coefficients of dilatation of these gases present sensibly the same ratio at every temperature.
3. Sulphurous acid gas departs notably from the law of dilatstion which the preceding gases present. The coefficient of dilatstion of sulphurous acid diminishes with the temperature as marked by an air thermometer.
It is important to remark that in these experiments the relative dilatations of the gases were not measured directly, but were deduced by calculation from the observation of the elastic forces which these gases present at the same temperatures, their volume remaining constant. It appears very probable that similar conclusions would be arrived at by measuring directly the increase in bulk of the different gases for the same temperatures, their elastic force remaining constant, by a method analagous to that of the fifth meries of experiments upon the dilatation of gases; but these experiments would not be susceptible of equal precision in the measurements, for reasons already given at the commencement of this memoir.
(To be continued.)

COPPER SMELTING FURNACE.

A correapondent of the Mining Journal givea the following entimate for the construction of a reverberatory farnace for smelting copper on the Swansea plan. The stack of the furnace was single, 40 feet high, and the furnaces 13 feet by 8 . The following are the details:-

To thia must be added, about 142 . for the masons' labour, and $2 l$. for that of the smiths', which, added to the cost of the furnace, 1071.6 s .8 d , will make a total cost of 1231.6 s .8 d . The prices given are those of the period whea the furnace was constructed; -of course, at different times they will rary cos. siderably; any one, however, will be able from them to calculate what the present outlay would amount to. By building two furnaces, with a double stack to serve botb, and using clay in the sidea, instead of bricke, a leas consumption of materials wonld take place, which would necessarily be fol. lowed by a commenaurate redaction in the expenditare, tbereby enabling the contractor to construct his furnacet on a more economical principle than above detailed.

ATMOSPHERIC PILE-DRIVING MACHINE.

Patented by Clabke and Varley.

Blde Eleration of Etogle Machlne.
This apparatus has been lately used for driving the piles of the cofferdam for Irongate, St. Katherine's Docks. The inventors state that by this machine, piles may be driven at half the expense of driving them by the ordinary machine worked by hand, and in about one-sixth of the time. Mr. Crate, the clerk of the works at the above docks, states that he drove forty-two piles, 18 feet deep, into a bed of very hard compact gravel, at the rate of three piles each tide of about 31 hours; and to drive one pile only, by the ordinary hand-engine, occupied five tides before it could be finished, and even then was left $\&$ feet above the height required to be driven. Mr. Harrison, the engineer, also certifies that the Atmospheric Pile-Driver gave him entire satisfaction.

This machine consists of a vacuum cylinder of wrought-iron (A), closed at the bottom and open at the top, having an air-tight piston, and self-acting slide-gear, fixed to any convenient part of the frame of a common pile-engine. The piston-rod is connected to a chain which passes over a fixed pulley (B) on the top of the engine ; to the end of this chain is suspended a pulley (C); over this passes a second chain, one end of which is attached to the ram, and the other, passing down under the bottom of the frame, is brought up and affixed to the head of the pile. The power is derived from a small steam-engine, fixed at any convenient spot, which works an air-pump for producing the exhaustion. Communication is made between the air-pump and the Pile-driving Machine by small wrought-iron tubes, connected together by flexible joints of rulcanised india-rubber. Thus the machine pospesses

the incalculable advantage of being worked at any required distance from the steam-engine, and moved about with as much facility as a common crab-engine. The mode of action is as follows: the ram being supposed down on the pile-head, and the piston consequently at the top of the vacuum cylinder, communication is opened by the valve gear with the air-pump, exhaustion then takes place in the cylinder, the piston descends by the external pressure of the atmosphere, and raises the ram; when the piston arrives at the bottom of the cylinder, the valves reverse themselves, communication with the air-pump is then shut off, and the external air admitted ander the piston; equilibrium being now restored, the ram falls with the full effect of gravity on the pile; the valves are again reversed, and the same operation is repeated. Thus a succession of short heavy blows is given, rapid of course in proportion to the power of the steam-engine; and, as by the arrangement of the pulleys, the distance between the pile-head and the face of the ram is always the same, a regularity of action is obtained, quite unknown to the old pile-driver, the injurious effect on the head of the pile, and rebound of the ram, consequent upon great height of fall, avoided; and the ram being permanently fastened to the chain, the whole time lost by the re-attachment after every blow is saved. The machine is so constructed, that it may be fired in a few hours to the frame of a common pite-engine.

Fig. 2 shows an arrangement by which one vacuum cylinder can be made to work two yams, and, consequently, drive two piles at the same time. A pulley $\left(A^{2}\right)$ is attached to the piston-rod of the
vacuum cylinder; round this passes a chain which goes over the two pulleys ($\mathrm{B}^{\prime} \mathrm{B}^{1}$), having the ends fastened to the two suspended pulleys ($\mathrm{C}^{2} \mathrm{C}^{2}$). The arrangement of the second chain is gimilar to that of the single machine. The two rams, being exactly the same weight, will, of course, rise and fall at the same time with each stroke of the piston. If it should be found that one pile is driving faster than the other, and for this or any other reason it should be desirable to give a shorter blow to one pile than to the other, it can be done in the following simple manner: a small chain or rope is attached to each ram, hanging freely; the man in attendance can at any time, without stopping the machine, fasten the end of this chain or rope so as to check the rise of one ram to any extent-a very small force will do this, as the two rams exactly counterbalance one another; the other ram will, of course, then make a stroke longer in proportion to the shortening of this one. Or the working of one ram may, by the same means, be entirely stopped, the other then making a blow twice the length that it did when both were working equally.
A working model of the machine may be geen at 31, Parliamentstreet, Westminster.

SELF-ACTING GAS APPARATUS.

John Watson, merchant, and Enwarn Cart, gentleman, both of Hull, for "improvements in the manufaoture of gas."-Granted February 14; Enrolled August 14, 1848.
The patentees describe the object of this invention to be the combination of apparatus with an ordinary hot-air stove, for generating gas in proportion to the supply required, and so to arrange the parts that the supply of material to the retort will be cut off by the filling of the gas-holder, so that if the supply of gas from the retort be not consumed, the further feed to the retort will be cut off. The figure represents a section of the apparatus.

a is an ordinary hot-air stove, with the retort set therein, or the retort may be eet in brick-work or masonry, in lieu of the iron stove; F, feed-pipe, to conduct the liquid for gas manufacture from the holder g, to the retort $i ; k$, tap opened and shut at the commencement and conclusion of the process; b, self-acting tap connected with the gas-holder by means of the two rods, m and n, and which are moved together at the joint o. The volume of gas required for combustion being supported by a quantity of the liquid flowing into the retort, the proportion is regulated by the tap l, in exact ratio with the current consumption, and whatever decrease or increase is made in the number of lights during the apparatus being in operation, causes the gas-holder to ascend or descend, until the self-acting tap l, admits only the quantity of liquid to the retort commensurate with the flames burning; p, washer or purifier; q, worm-pipe fired in a cylindrical vessel containing cold water for condensation. The worm-pipe conveys the gas from the washer or purifier, and terminates with a bend which
dips into the water contained in the cylindrical vessel ; the gea having forced itself through the surface of this water, rises into the gas-holder, whose sides dip into water contained in the tank surrounding the cylindrical vessel wherein the worm-pipe is fixed; thus it will be perceived there are two cylindrical vessels, one the longer as a tank for the gas-holder, and another the smallest to contain water for condensation only.

The heat used in generating gas may be employed to the ordinary purpose of heating air, in addition to generating gas, or it may be applied to other uses.

STEAM-BOILERS AND ENGINES.

Williay Exall, of Reading, engineer, for "certain improesments in thrashing machines, and in steam-boilers, engines, and ocher apparatus for driving the same, which apparatus is applicable to driving other machinery."-Granted March 8; Enrolled September 8,1848 .

This is a very comprehensive specification, and includes nine claims, the enumeration of which will sufficiently explain the nature of the improvements patented.-The first and second claims refer to thrashing machines, and to a mode of regulating the distance of the concave from the drum that carries the thrashers. In the third, the patentee claims the employment of two pistonrods to each piston in what are known as the Brunell engine, with a cranked cross-head, and the forming a recess in the top of the cylinders and pistons, thereby obtaining a greater deacent of the cross-heads and their connecting-rods. Fourthly, the mode of adjusting the eccentrics which work the valves or slides (without stopping the engines) by means of a rack, acted upon by a pinion contained within the shaft, this giving motion to another pinion that gears into the toothed ring or arc on the side of the'eccentric. Fifthly, in respect to "Hero's engine," he claims the introduction of the steam into the arms through a hollow neck of prepared india-rubber, with metal washers, employed to make the revolving joint steam-tight, together with the partial or total closing of the emission apertures, and the reversal of the motion of the engine, by means of valves or slides receiving motion through the hollow axle of the engine. Sixthly, the combining of a vertical cylindrical boiler and fire-box, having radiated horizontal flues, with a flue surrounding the boiler, which is bounded by the external casing of the boiler, and also the placing the surface of the fire-bars somewhat below the bottom of the boiler, for the admission of air on all sides of the fire. The seventh claim refers to an improved horse-gearing for driving machinery. Eighth, the application of compressed wood to the manufacture of the teeth of wheels, so that when the teeth are driven into the recesses or cavities of the periphery of the wheel, the subsequent expansion will retain them securely therein. Ninth, the forming of dove-tailed or other suitable shaped grooves extending across the face to receive teeth of a suitable shape formed of wood which has been previously compressed.

HIGH-PRESSURE AND EXPANSIVE STEAM-ENGINES.

Jobn Lawes Cole, of Lucas-street, Middlesex, engineer, for "certain improvements in steam-engines."-Granted March 28 ; Enrolled September 22, 1848.

This invention has for its object a better arrangement of parts in the combination of high-pressure and expansive steam-engines, wherein two cylinders are used. In the first proposed arrangement, the two cylinders are placed above one another, and the two pistons are fixed to the same piston-rod, the high-pressure cylinder being above, and the larger cylinder for the expanded ateam being below. The piston-rod passes through a stuffing-box between the two cylinders which separates them from each other. This stuffingbox is packed by means of two horizontal openings in the plate forming the stuffing-box, opposite to each other, by which packing is introduced, the packiug being forced into contact with the rod by blucks pressing behind by means of screws. In another arrangement, two piston-rods are employed to the piston in the expansive cylinder, unconnected with the piston-rod of the high-pressure cylinder. These two piston-rods pass up through the cover of the expansion-cylinder and on each gide of the high-pressure cylinder to the cross-head or beam above, to which they as well as the piston-rod of the high-premsure cylinder are secured. The other parts of the engine are constructed in the usual manner, or so modified as to be suitable to the present arrangement of the cylinders. Another improvement
is the adaptation to direct-acting steam-engines of high-pressure and expansion cylinders, which are placed side by side upon the sole plate, the two piston-rods of these being attached above to a cross-head, common to both; from the centre of the cross-head a connecting-rod passes down between the two cylinders to a crank placed upon the shaft below. To preserve the parallelism of the piston-rods, a system of levers is placed above, in connection with the cross-head. These levers and rods have also the effect of equalising the strain of the two pistons. Another part of the invention consists in the adaptation to double-acting airpumps of slide-valves instead of the clack-valves, the slide-valves being worked by an eccentric or crank in the manner of the usual slide-valve of steam-cylinders. Expansive slide-valves are formed by placing on the cylinder-face loose blocks, which are connected to the valve itself by means of two rods, one on each side, upon which are placed nuts for the purpose of adjusting the distance of the blocks from the valve; and thus, by increasing or diminishing that distance, to vary the expansion of the steam in the cylinder. A further improvement consists in the construction of afaty-valves for steam-boilers, by combining with the ordinary conical safety-valve, a piston within a cylinder 80 arranged that Whenever, from its ceasing to act, the pressure of steam in the boiler increases beyond the required amount, the rise of the piston will open the valve and thus relieve the pressure.

FURNACES AND BLOWING MACHINES.

Geogos Lloyd, of Stepney, Middlesex, iron-founder, for "centain improcements in furnaces and blowing machines, and in engines and machinery for driving the same; which improtements are aboo epplicable to other purposes where motive power is required."Granted March 8 ; Enrolled September 8, 1848.
This is a maltifarious specification, comprising so many separate "improvernents," that it is difficult, without occupying more space than we are willing to bestow, to give any description of the whole; we must therefore confine our notice to a few of the leading points. The principal part of the invention relates to furnaces for heating steam-boilers. The furnace chamber does not pass ander the boiler, but is at the extreme end. The fire-bars are placed in a vertical position, about the same situation as usually occupied by the fire-doors; while the fuel is inserted at a hoppermouth at the end of the boiler, which, in this case, is represented as being fiat, with the fuel chamber extending partly up the end. This chamber is about the usual width of furnaces; but in its length, it is confined to about the usual depth of fuel by means of a number of fire-brick lumps, extending from the hearth to the bottom of the boiler, and placed so as to present their edges to the fuel in the manner of bars. The fuel being ignited, is piled within the chamber till quite full, the only covering being the anconsumed fuel which extends in the hopper-mouth above the bars. The products of combustion pass between the fire-lumps, in contact with the bottom of the boiler, and break into a chamber immediately in front of the bridge, where a series of pipes are placed for the admission of air. The great heat attained by the firelumpe, imparts a sufficient degree of heat to the gaseous products to cause them to flash into flame on being mixed with a due proportion of atmospheric air. This flame is conducted over the bridge and through the flues in the ordinary manner. In the construction of the blowing machines, the blades are tapered towards the points, and are placed at angles of 60 degrees backwards, by which means the inventor proposes to overcome the disadvantage which blowing machines usually possess of waste of power, by the fans striking the air within the case that is not erpelled. The blades are confined at the sides by discs of metal excending to the point of the blade, and having an opening in the centre, of the same area as the openings in the sides of the case. The air driven off at the periphery is limited by the entire area between the blades being equal to the area of the side inleta, and at the same time sttainss superior blast withless power, without that disagreeable beating noise, consequent on a rapid motion being given to the ordinary fanner. Another blowing machine, described in the specification, consists of a series of bellows placed within an octagonal case, each of the eight sides forming a base for one bellows. The uther boards of the bellows are placed in a radial line, each of the upper or moving boards being attached to a crank in the centre of the case by a suitable connecting-rod; this crank being actuated by a shaft passing ont at the sides of the case, which is closed quite air-tight. On motion being given to the shaft, the bellows will be successively acted upon, as the crank performs its rewobution. The air entering from the outside
by inlet valves, when the bellows are expanded and discharged inside the case, when collapsed by the motion of the crank, a uniform pressare of air is thus kept up, which may be conducted by suitable pipes or channels from the casing to the point required.

The following claims of the patentee set forth the various inventions included in this specification :-First, the construction of a steam-boiler furnace, in so far as regards the combination of vertical fire-bars made in two pieces, together with vertical fire-clay lumps behind the fuel-chamber, and vertical air-tubes behind the fire-lumps. Secondly, the employment in furnaces of every description of fire-bars made in two pieces. Thirdly, the mode of applying the vapours arising from the chimneys of cupolas for the heating of boilers. Fourthly, the construction and arrangement of the fan blowing-machine, in so far as regards the employment of an inner casing with openings of small area in its periphery. Fifthly, the general arrangement and combination of parts constituting the bellows blowing-machine. Sixthly, improvements in rotary steam-engines, in so far as regards the employment of two or more chambers, and two or more sets of arms and steam-jets or apertures in such arms of successively increasing area. Beventhly, an improved spindle or shaft-bearing in which the end or journal of the shaft works in a collar or socket of plumbago. Lastly, the construction of strap-riggers of a combination of iron and gutta percha.

ZINC ORES.

Charles Andét Eelix Roohaz, of Paris, France, merchant for "certain improvements in treating sinc ores, and in manufucturing oxide of sinc."-Granted December 29,1847 ; Enrolled June 29, 1848. [Reported in Newton's London Journal.]

This invention consists, firstly, in improvements in the treatment of zinc ores; and, secondly, in improvements in manufacturing oxide of zinc.

First, as regards the treatment of the ores of zinc:-This process has usually been effected by first converting them into the state of oxide, by roasting or calcination, and afterwards reduciny and distilling the oxides by mixing them with conl, and submitting them to great heat, in close vessels or retorts. This mode of operation is attended with great dinadvantages, for, besides occasioning great consumption of fuel, and rapid destruction of the retorts, the product obtained is by no means proportionste to the richness of the ore.

By this improved process the employment of retorts is entirely dispensed with, and the fuel and labour are greatly economised; the operation is also completely independent of the skill of the workman or attendant; and, lastly, the loss of metal incidental to the ordinary method is prevented. Besides these advantages, the patentee observes, that ores of lead and zinc may both be operated upon at once by his improved method.

Fis. 1.
The principal feature of the invention consists in the reduction of rossted blend-ore (aative sulphuret of zinc), and of the carbonates, oxides, or silicates of zinc, and also of the sulphurets and oxides of lead, by the action of the reducing gases of a blast fur-
nace; by which the scoria or slag is fused, the reduced sinc volatilised, and the vapours condensed, and conducted into a receiver of a peculiar form, situated over the mouth of the furnace, and heated by the gases therefrom.

Fig. 1 represents a vertical section of the furnace, taken in a line with the tuyere holes; fig. 2 is an elevation of the same, on that side where the aperture for charging is situated, the condensers being shown in section; and fig. 3 is an elevation of the furnace, on the side where the tuyère pipes are situated. a, is the aperture or channel for charging; a^{*}, is a sliding partition; b, the outer door or cover for closing the charging channel ; c, c, c, are spertures, through which the scoria runs; d, is an opening bet ween the body of the furnace and the receiver e, the lower part of which is formed by the cover or partition f, at the top of the furnace; and the upper part by another cover f^{1}, larger than the lower one, forming a kind of channel, in which the zinc is condensed. g, g, (fig. 2) are openings for the escape of the gases; h, is an hydraulic main; s , is the tuyère or blast-pipe; and k, k, are openings for extracting the zinc and any extraneous matters; these openings are luted every time the metal, \&c., is run off.

Pig. 2

HIg. 8.

The mode of operation is as follows:-The furnace having been heated to the required temperature by the combustion of fuel alone, a charge of zinc ore, either in the state of oxide, carbonate, or silicate, mixed with any suitable flux, according to the nature of the ore, is introduced into the charging aperture a, between the sliding-plate a^{*}, and the door b; so that by drawing out the slide a^{*}, the charge will descend by its own gravity into the body of the furnace, without allowing the gases to escape through the charging aperture b. The charge thus falls upon a layer of incandescent fue, rising to a certain height above the tuyere b. A layer of fuel' is then poured upon the ore, then another charge of ore, and so on alternately until the furnace is full; and it is to be

Fig. 5.
Fig. 6.
replenished in the same manner, when the charge sinks below a certain depth, which can be easily ascertained by experience,

The zinc is volatilised by the heat, and the sooria falls into the lower part of the furnace, and is run out at the apertures c, c, c. The volatilised zinc is carried off with the gases arising from combustion, and passes through the opening d, into the receiver e, above. The gases from the fire-place escape through the openings g; and as these latter might carry off particles of zinc with them, they are passed through an hydraulic main h, before being allowed to escape into the atmosphere. By this means all solid matters are retained, and the zinc, togather with any dust or extraneous particles, is extracted through the openings k. When the ore to be operated upon is in a comminuted state, it is advisable to make it up into a paste, together with the flux, by the addition of water, so that it may be charged in pieces of such size as not to pass through the fuel. Zinc ore is often mixed with sulphuret of lead, and by this mode of operation the zinc is obtained by volatilization, and the lead by fusion (this latter running to the bottom of the furnace below the scoria), if, by previous rossting, a portion of the sulphur has been driven off from the ore.

The second part of the invention consists in a novel construction of apparatus for the manufacture of oxide of zinc. Fig. 4 is a vertical section of the furnace, and of the chamber for the reception of the oxide of zinc; fig. 5 is a horizontal section of the furnace, taken in the line c, d, of fig. ${ }^{\text {; }}$, and fig. 6 is a rertical section, taken in the line a, b, of fig. 4. A, A, are the retorts or subliming-pots (of which there may be any convenient number), placed in the sole of the furnace; \mathbf{n}, , are the covers of the retorts, which are perforated; 0 , is the door of the oxidisingchamber; F, upper flue, through which the gases and other products of combustion pass from the fire-place to the chimney; \mathbf{x}, \mathbf{x}, are vessels for receiving the zinc, in case of rupture of the retorts or pots, in which case the liquid metal would run down on the floor a, a, and from thence into these vessels; $L_{\text {, }}$ is the flue or chimney of the furnace; m, m, fig. 6 , are vertical flues in the wall, for the passage of the waste gases of combustion; N, is a top partition, dividing the oxidising-chamber E , from the horizontal flue F ;m, m, is a chamber for receiving the oxide of zinc; \mathbf{o}, a chimney for creating a draught, and thus drawing the oxide of zinc, together with air and gases, through the chamber m, and alternately over and under the upper and lower partitions P, and Q. There may be any number of these partitions, according to the sixe of the apparatus, and the quantity of oxide to be manufactured. q^{\prime}, is a wire-cloth, or other suitable sifting partition, at the end of the chamber m, for retaining the oxide of zing, and, at the same time, allowing the air and gases to pase through to the chimney o. It will be seen that the furnace is divided into three separate chambers or compartments; the lower one, which may properly be called the furnace or heating-flue, contains the retorts A, which are charged with the zinc to be operated upon. The volatilised zinc escapes through the orifices in the covers $\mathrm{m}_{\text {, of }}$ of the retorts, and enters the middle or oxidising-chamber c . The rinc vapour is oxidised and forced through the chamber y, either by means of a blower or by the draught created by the chimney o, at the end of the chamber m. The upper compartment r, is nothing more than a narrow channel or flue, for the passage of the smoke and gases from the fire-place to the chimney L . These gases heat the dome N , and thus keep the oxidising-chamber at a sufficiently high temperature to burn the zinc vapours with facility and rapidity. The partitions P, and ρ, in the chamber M, are for the purpose of checking the power of the current and facilitating the deposit of the oxide in the chamber \mathbf{x}, from whence it is withdrawn by means of openings at the sides.
The patentee, in conclusion, states that he is aware of oxide of zinc having been heretofore obtained by distillation, and bringing the volatilised metal into contact with atmospheric oxygen in an oxidising-chamber; he does not, therefore, intend to claim, generally, producing oxide of zinc in this manner; but he claims, firstly-obtaining metallic zinc in the manner and by means of the apparatus above set forth and described, or any mere modification thereof. And, secondly-producing oxide of zinc by distilling the metal, or matters containing metal, in subliming-pots or vessels furnished with perforated covers, through which the volatilised metal may issue into an oxidising-chamber, where it is met or brought into contact with the oxygen of the atmosphere, and becomes converted into oxide of zinc.

COUNCIL OF HEALTE OF PARIS.

The mont perfectly organised Municipal Board of Health hitherto eatablished is that of the city of Paris. The comprehensive syatem of the Cunseil de Salubrité of Paris, the scientific ability and enargy of its members, and their fearlesaness and devotion in invadiag the most dangerous and offensive hiding-places of disease, render invaluable the copious atores of annitary knowledge contained in the long series of Roports of their researches.

Before the revolution, the administrative and judicial police of French towns was under the control of several nuthoritiea, and had not that unity of action so necesasary in large cities. The Minister of the Interior, the Prefet of Police, and the Prévott des Marchands had, each according to his jurisdiction, part of the surveillance required for the public health of the metropolis. Hence, the impossibility of instituting a complete system of regular jurisprudence, such as that which the Conseil de Salubrité established some years later. With the growth of the population, the multiplication of manufactures, and the general increase of commerce, the duties of sanitary surveillance became more and more important, at the same time that they became more and more difficult.

At the olose of the last century, these duties were delegated by the Lieutenant of Police to two able physicians, M. Pia and M. Cadet a Vaux, to the lattor of whom is due the merit of suppressing the Petit Châtelet, the amelioration of pricon discipline, the sappresion of cemeteries in the interior of Paris, and of sopultare in churches, in addition to many other salutary reforms.

The year 1802 was the epoch of the creation of the Conseil de Salubrité. Before that time, the Prefect, whenever he had to give a decision on a subject connected with the public health, took the advice of a physician, gurgeon, agriculturist, chemist, or veterinary surgeon, according to the nature of the object which engaged his attention. The inconveniences of this method were such, that in July of the year above-mentioned, the Prefect Duboix instituted the Conseil, which he composed of four members, who were to examine the adulteration of liquids, diseases of animals, and noxions manufactures. In 1807, the powers of the Conseil were extended, and the number of members was increased to eeven, who were required to meet regularly twice a month. To them was assigned the investigations respecting epidemics, the regulation of markets, rivera, cemeteries, slaughter-houses, sewerage, public baths, \&c., medical statistics, and the tables of mortality, the cleansing of public places, the prevention and reparation of the effects of inundations, therepression of charlatanism, and the lighting of streets. The necessity of particlar attention to epidemics, induced the Prefect to add two physicians to the number of the members of the Council; other additions have been made from time to time. In order to add to the authority and importance of this body, it has from its origin had the nomination of its own president and secretary, and the privilege of recommending to the Prefect persons qualified to supply any vacancies which may occur in the Council.

Some idea of the importance and number of the investigations undertaken by the Conseil de Salubrité during the first quarter of a century after its establishment, may be obtained from the fact that the number of reports made from 1815 to 1829, was upwards of four thousand three hundred and thirty. The number of these reports averaged, annually, two hundred and twenty-five; and in the years 1818, 1819, and 1899, respectively, exceeded 340 , 350 , and 480 . The beneficial effects which have resulted from the establighment of this institution, have led to the establishment of similar boards, under different names, in foreign countries; and in France, the Prefects of several departments have created provincial Councils of Health, which, but for the distraction of political events, would now probably exist in every important town in that country.
The functions of the Council are consultative, not administrative ; but it assumes the responsibility of measures of government founded on its reports. It was re-organised in 1833, by an ordonnance of the Prefect, which directs the reduction of its number to 12 titulary members receiving stipends, and 6 additional non-etipendiary members. The Prefect of Police is president of the Council, and to him the Council addresses annual reports, which are printed.
The number of reporte addreased to the government, from the year 1829 to 1889, was four thousand four hundred and thirtyone. During the succeeding six years, the number rose to there thousand and eighty-revem. The augmentation of the annual average is accounted for by the growth of the population, which in 1846 was $1,034,906$, showing an increase of 100,000 on the return of the consua five years previously. Another consideration, which indicates the importance and dificulty of the
dutien of the Council of Health of Paris, is, that the metropolis affords facilities for commencing many new manufaoturee long before they can be successfully introduced into the provinces. Paris is the centre of soientific associations and enterprise ; and in directing the development of mechanical and chemical arts in the capita, the Council of Health does, in fact, solve problems which affect the health of the whole country.

In the present rapid survey of the recent reports of the amociation, their number and diversity render it necessary to confine the selection to a few of the more important subjeots. The principal reports relate to the udulteration of food, the analysis of bread, the filtrage of water, the escape of waste liquids of manufactories, baths, and wash-houses, the refuse of claughter-houses, tallowmelting, glue-making, \&ro., the amoke of kilns and cement-works, tanneries, and foundries, the cleansing of cesspools, methods of heating and ventilation, the regulation of baths, the purification of street gas, precautions in the manufacture and conveyance of chemical matches, fusees, and fulminatink powders, steam-engines, the sale of arsenic, metal-gilding, distilleries, remedies agaiast drowning and suffocation, epidemics, and a large number of questions respecting the medical police.

Sal.-In a single yeur the Council analysed nearly 5,000 samples of salt, which had been taken from different dealers by the police, and found 2,561 samples to be adulterated, the prinoipal ingredients for the purpose being plaster aud potash. After examining other samples taken directly from the alt-pits, the Council reported, that when white salt contains potash, calcareous matter, or sand, it is artificially adulterated; that grey ealt appears to contain naturally a little potash or calcareous sulphate; but that the foreign substances always exist naturally in very minute quantities.

Watr.- In 1841, the Council reported on the different systems of purifying the waters of the Seine; a matter of vast importance in Paris, where a large part of the population use water obtained from public conduits and fountains supplied from that river. Two public companies employed Smith's process, with filters of sand and charcoal in open vescels, and under a small pressure. The layer of charcoal is between two layers of sand, which again are between two beds of flints. A third oompany ueed the filterm bearing the name of Fonvielle, which concist of several alternate layers of sponge, sand, and charcoal, contained in a closed vessal, subject to a pressure of one atmosphere, for the purpose of increasing the rapidity of filtration. Another process, most extensively used, is that of Souchon's, which consists in filtering the water through a number of layers of a woollen tissue, formed of wool clippings placed on the frames forming the bottom of the filter, and spread, by the action of the water itself, in a compact unifurm layer. The water passes through five such layers, ot which the two lowest are the thickest and remain inchanged for five or six days; the others are changed two or three times a-day. The public conduit of Notre Dame is supplied by five of the above described filters.

On a microscopic examination of water filtered by the three different processes, the Council of Health found the water containing the least impurity to be that filtered by the Fonvielle process; next to which came that of the Souchon filters. The purity of water depends, however, not entirely on the absence of matters held in suspension, but also of dissolved organic substances ${ }^{\text {b }}$ which after a time give a disagreeable taste to the best filtered water. In this respect, the water filtered by the process first doscribed was found to be by far the best, as it remained a much longer time without alterations. This result is attributed to the use of charcoal, which is frequently renewed, washed, and dried. The quantity of water filtered daily by Souchon's process is stated at about 169,800 gallons; by Fonvielle's process at 88,000 to 110,500 gallons. The relative rapidity of the other methods is far slower.

Steam-Engines.-Numerous memorials have been addressed to the Council respecting the smoke, discharge of waste water, noise, and danger of explosions of steam-engines. With respect to the smoke, the Council have principally confined themselves to proscribing the use of fuel giving comparatively little smoke, such as semi-bituminous coal; the improved construction and regulation of furnaces, so as to insure as complete combustion as possible; and, lastly, increased elevation of the furnace chimneys.
Gilding on Metal.-In 1816, the munificent prize of 3,000 . (£120) was offered by a private individual, and awarded by the Academy of Sciences to M. D'Arcet, for a most succeasful method of removing the injuries to health produced by the operation of gilding with mercury. The principal sources of these injuries are the volatilisation of the mercury, the disengagement of hyponitric acid, and the contact of nitric, sulphuric, and hydrochloric acids, mercury, and nitrate of mercury, with the hands of the werivion

The Council provide against the effect of pernicious rapours, by requiring (according to M. D'Arcet's system) the construction, for all the operations in which vapour is disengaged, of a flue having a strong upward draught, and an opening only just large enough to admit the execution of the work. Air-valves are to be used to prevent down-draught in the chimneys, which are coated with a mercurial soot, and often filled with acid or mercurial vapour ; and the height of the chimney is required to be sufficient to prevent the deleterious effects of the vapours upon the inhabitants of the neighbourhood of the manufactory.

Street Gas.-The disagreeable odour of street gas is due to hydrosulphuric acid, free or combined with ammonia or pyrogeneous products. When the sulphuretted hydrogen and hydro-sulphuret of ammonis reach the burner, the combustion converts the sulphur into sulphuric acid, which exercises a deleterious influence on health.

It is curious, that in this respect, the provincial towns of France exhibit an advantage over the capital. In many of the former, gas is delivered to the consumer free from sulphuretted hydrogen and ammoniacal gas. By proper management, the process of purification may be rendered complete, and will give, in place of a residue of valueless lime, a product valuable for chemical and agricultural purposes. A commission appointed to examine the process of M. Mallet, which has been successfully employed at Boulogne, Abbeville, and other towns, reports, that his method consists in passing the gas, before it resches the lime, through chloride of manganese, or sulphate of iron, which rob it of the ammoniacal salts by a double decomposition; precipitating certain products, and leaving others in solution in the liquor in which the gas is washed. The separation of the sulphuric and free carbonic acids is subsequently effected by lime, of which a much smaller quantity is required than by the old method. M. Mallet's process has the advantage of utilising a substance otherwise valueless; for the salts of manganese which he requires are the refuse of numerous kinds of manufactures, where it has been hitherto a useless incumbrance. In localities however, where it cannot be procured, sulphate of iron, the product of alum-works, may be substituted. Moreover, either substance, after being used at the gas-works, furnishes a valuable chemical product-muriate of ammonia, or sulphate of ammonia.

Sanitary Police.-At the instance of the Minister of Agriculture and Commerce, the Prefect of Police submitted to the Council the important question whether the bodies of persons deceased in the colonies, of such diseases as plague, typhus, yellow fever, or cholera, could be conveyed to France with safety. The Council replied unanimously in the affirmative; pointing out, at the same time, certain measures of precaution, founded on a singular experiment made by some of its members who had been sent to Egypt upon a commission for the purpose of examining the nature of the plague. All the persons on this commission wore next their skin, for a whole day, without inconvenience, clothes infected by the plague, and impregnated with pus,-the only precaution taken being to soak (not wash) the clothes for a certain time in chloride of soda.

A Report on the effects of the Cholera Morbus in Paris was made by special commission, consisting principally of members of the Council of Health. From this document, published in 1834, and returns made to the commission, the following particulars are deduced :-The cholera appeared nearly simultaneously in Paris and the departments, and its duration was the same in both (March to August, 1832.) The mortality was greater among women than men. The ages which suffered least were those from 6 to 20 years. The total mortality in Paris due to cholera was 18,402 persons,* or 23.42 in a thousand; and the malady was most fatal during the month of July, and in localities where the population was poor and the air confined. The excesses to which the working popuIation of Paris give themselves up on Sunday, appear to have produced an angmentation of 178 in the number of admissions into the hospitals on Monday. The military throughout the country suffered in the proportion $25 \cdot 66$ to a thousand, which exceeds the corresponding proportion (21-83) of the civil population. In some districts infected by putrid emanations, the disease was not more destructive than where the air was purer. Up to the Ist of August, the number of deaths was 17,076 , or 1 in 46 . In the Cite and the vicinity of the Hotel de Ville the mortality was truly frightful, and may be readily traced to the filthy condition of those parts of Paris. In many of the houses, the walls were blackened by the damp exhalations of unclosed cesspools; the pipes from these were in other cases choked, and discharged their contents on the ruined staircases. In some cases these pollutions escaped into the living-

[^46] cholers, leaving 25,717 artalog from other ceuser:
rooms, and, in many, the only access of air and light was from a court, 3 feet in diameter, the bottom of which was used as a common receptacle. Added to this, a large part of the population of these quarters constitutes the very dregs of society, and subsists on the fruits of dishonesty or debauchery. The retribution which in the case of these persons followed the violation of the laws of society, may be estimated by the fact, that in the lodginghouses of the 7th, 9 th, and 18th Arrondissements (the worst parta of Paris), the number of cases of cholera was 1 in 9, and the deaths 1 in 19.

The annual mortality for 10 years previously was 85,300 ; so that the mortality in 1832, exclusive of cases of cholera, exceeded the annual average. The total duration of the disease was 27 weeks, from the 26 th of March to the 30th of September (from one equinox to the other).

The report from. Which the above particulars are taken, concludes with an earnest appeal on the part of the commission for those sanitary reforms of which their inquiries have revealed the necessity. The statical returns furnished them with appalling details respecting the filth, indigence, and neglect of a large part of the population. Among the measures specifically recommended are, that no new street should be built less than 40 feet wide (the present average is 25 feet); that the height of the houses should be limited; that public conveniences should be constructed; for open gutters, under-ground pipes communicating with the sewers should be substituted; that there should be an increased supply of water, which it stated to be supplied to the inhabitants of Paris at the rate of 7 litres for each person, the corresponding rate in London being 68 litres; and finally, that as far as possible the centre of Paris should be rendered more open, by new streets and public promenades, sufficiently spacious to be planted with trees.

The following summary of the proceedings of the Conseil in one particular class of their duties, will give come idea of the extent of their whole labours:-

Year.	Manufnctoriea Mcensed.		Includiug ateam engines.	Leramen refaced.
1840	199	9	64	28
1841	194	"	68	28
1842	361	"	97	29
1843	402	"	95	17
1844	407	"	105	23
1845	397	"	90	20
1846	462	\because	130	24

RAILWAY RESCUE.*

It is a gratifying proof of railway progress, that attention is now more strongly directed to the means of running light traing. It is true that in the beginning, in the Liverpool and Manchester Railway contest, lightness of the engine was considered the great essential; but for a long time, there was an exigency which demanded all the energies of engineers, and that was-increase of speed. When we recollect how very moderate were the expectations of most parties, as to the rate to be run by a locomotive; when we recollect that ten miles an hour was treated as an extravagance, and that superiority over good coaches was doubtful. When railways were started, twelve miles an hour was got by good coaches, and for posting a higlier speed ; and the locomotire engineer had to get such a velocity for the railway, as should give it a decided superiority over all rivals, and overcome by force the prejudices which were entertained against railway travelling altogether. The engineers put their strength in getting a higher speed, and it must be borne in mind that they were the more pressed to do so, as propositions were then put forward and experiments made, showing that a high speed for passenger travelling could be got on canals, and there were several plans for putting locomotives on the tow-paths of the canals. The steam-carriage was then on the road, and in better favour; and it was neceasary to get on the railway a speed beyond that at which steam-carringea could safely be run on the turnpike roads.

Provided speed was got, whether by an increase of weight or expense, it matterod not : and it was got, and every year has added to the weight; but we are prepared thereby for a new era. By these great exertions, not merely the weight has beon increased, but the working power, and the economy of working bas been graatly promoted.

If the locomotive ongineer had his attention absorbed and
drawn in one direction, so it was with the railway manager. He had to provide for the traffic which first came in his way, and for the demands of the wealthy and commercial classes, far greater accommodation. As yet, this is all that has been done; and although some saving has been made, yet one of the original objects of the railway system-cheap transit-has not yet been accomplished.

A comparatively low speed is the most economical for passengers and goods, but railways have not yet been able to give the accommodation implied by this condition. To suit their general traffic, and to work with safety, they have been obliged to work at a nearly uniform speed-which has, of course, been a high one; but vith the resources afforded by the electric telegraph, it now appears possible to introduce slow and cheap trains. We long since pointed out in this Journal, the plan of running trains at various speeds, which was some years after advocated by the Ruilvay Chronicle; and we are glad to see that the principle of it has now been more fully acknowledged.
The pamphlet now before us advocates lighter engines, lighter stock, and lighter works; but it seems that this is to be accompanied by getting rid altogether of the present high speed. There can be no doubt that express trains damage the rails, points, and switches, most seriously; but we cannot now turn back.
The present pamphlet, although it is crude and short-sighted in some of its views, contains a great deal of valuable matter, and in the main point of lighter stock and cheaper trains, is calculated to do very much good. We, therefore, particularly recommend it to our engineering readers,
The following are the author's opinions as to the discrepancy between rolling stock and rails:-

If there be any doubt expressed as to the discrepancy of strength between the rolling stock and the rails, a very plain answer may be found in the fact of the general renewal of rails now required. If this be not enough, let the proportions of the periphery of a locomotive driving- wheel be compared with the rail beneath it. The former weighs upwards of 200 lb . per yard; the latter from 70 lb . to 80 lb . Yet the former is of an arch form, supported by the apokes at intervals of nine inches, white the latter is a simple straight beam, supported at intervals of fifteen feet, which inveriably deflect beneath the passing load and destroy the continuity of support. To make a perfect railway, the rail-bar should be of sufficient pertical depth to resist all deflection, with the beaviest load passing over it. More than thin, it should be sufficiently hard to prevent lamination. And the joints of the rails abould be $s 0$ re-inforced as to be equally inflexible with the solid part of the rail. None of these conditions are yet attained as regards the modern class of engines, and it is a problem whether they can be attained at all. Even as there is a limit to the beight of architectural atructures relatively to their base, by reason of the friability of the material, so there is a limit to the weight of engines, by reason of the compressibility of iron and the impossibility of increasing aurface-bearing; for whether a driving-wheel he of three feet or eight feet in diameter, the contact with the rail can only be a point or that which geometers call a "flowing point," viz., a line. Iron, according. to its density, will bear a giren weight without compressing, the point of contact being a line. When iron has done its utmost, steel may be resorted to ; and, posaibly, a rail of 200 lb . per yard, of deep vertical section, with a aurface of hard steel three inches in width and three quarters of an inch in depth, supported by cross sleepers at intervala of eighteen inches, might be arailable to construct a real "permanent way,"一for the modern engines. "Permanent way" is at present a lucus a non lucendo. "Permanent mainteanance of way" is a practical fact, as sharebolders pockets' can testify.

You, gentlemen, will doubtleas be atartled at the contemplation of the outlay of capital involred in the real permanent way before described. If you will not agree to this proposition, you mast "try back." If you cannot suit the road to the wheel, you must suit the wheel to the road. Having the fear of " no dividends" before your eyes, you inust tarn to the practical maxim of the Manchester and Liverpool directora of old, gathered from the oxperience of the road, and keep down your weights. Liglit horses for the high speeds : brewers' horses for the drays. Small trains and frequent, with small atation room, few police and porters, and fewer clerks, a slight increase of drivers and stokers, and a huge decrease of plate-layers, and a reduction in iron invoices, would do more for your dividends and the public accommodation than the present syatem of elephantine traction, with a yield. ing foothold-a power developed and wasted. For it must be obvious that If, after expending millions to secure "good gradlents," a defecting rail bo laid down, it is equivalent to converting them into bad gradients. In watertransit a ateamboat drives a greater or lesser wave of water before her bowa. In rail-transit, a locomotive drives a wave of rail before her driving-wheels equivalent to ascending a constant incline, and demanding a far greater expenditure of ateam-power to surmonnt it. The difference in the two cases is, that it is impostible wholly to surmount, though we modify, the difficulty, With the steamboat, wheress in the case of the rail it is practical to aurmount the difficulty altogether by proportioning tbe load on the wheel to the trength of the rail.

The wave line of the rails might fairly be adopted as a standard in eatimating the ralue of a railway; for in proportion to the depth of the wave
will be, caferis paribus, the power of ateam and the cost of coke. Yod must be aware that, to ascend a constant hill, requires more horse-power than to travel along a level. Your horse-power is steam, and the railway oat is coke. If your drivers and ostlers and road trnstees increase tbe con. sumption of oats, the coach will soon be run off the road.

But even wave lines vary. For example, rails laid on longitudinal timbers, as the Great Western, yield an equable wave line. Kails laid on chairs and transverse alcepers make unequal waves at their mid-length and at their joints. The result is concussion as well as sinking, and the loss of power is greater. Mechanical men having their living to get by the prevention of waste, and the economy of steam-power, readily apprehend all this, for they carry the safety-valve in their own breeclues' pockets ; but it does not so readily occur to railway directors. Let then maintain a standard gaugethe ware of the rails. Perhaps as an additional stimulant you will take into your thoughts the somewhat startling fact that a pair of the largest railway locomotives would furnish power enough to supply the largest pumping waterworks in London. Another pair might achiere the tasks of delivering it into their attics instead of the ground-floors of the Jondon dwellings. Another pair might pump up all the sewage water south of the Thsmes, as Mr. Chadwick will inform you.

SMELTING COPPER ORES.

Description of the process of M.M. Rivot and Phillips, for amelling copper ores. (From a paper read hefore the Society for the Bncouragement of Arts end Manufactures; Pa ris.)

In a risit to England in 18:5, one of us became acquainted with the experiments made in an English copper-works, to extract the metallic copper by means of the action of voltaic electricity, from previously roasted sulphur ores of copper. The information we obtained was the same as was laid before the Society as descriptive of the process employed by M Napier.

The aulplur ores were first well roasted, then smelted in a reverberatory furnace, and the copper brought to a metallic state by passing through the fused metallic silicute a very powerful voltaic corrent; the grafbite bearth of the furnace, and a plate of cast-iron kept at the upper part of the melted mass, forming the remaining part of the voltaic current.

Starting from these given points, we first tried to reduce by a voltaic current, not the silicate of copper, but the pure sulphuret of copper.

After several ineffectalattempta, we succeeded in passing during more than two hours, a constant current through a crucible containing sulphuret of copper at a red heat.

In a common Hessian crucible, we placed two small pieces of compact coke, kept at a little distance by well compressed luting; and in these we plunged two platinum wires communicating with the two poles of the battery. The platinum wires were preserved from the action of the sul. phur by the pieces of coke and tbe luting. We found in these direct experiments, that coke is a good conductor at a red heat, and that the luting conducts but a very little at that temperalure.

Tubes, fixed in two notches of the crucible, had for their object the prevention of contact between the charcoal and the platicum wires, a point of essential importance on two accounts:-First, the burning charcoal would have established a communication between the two poles of the battery outside the crucible, and consequently, a large portion, if not the whole of the current would have been deviated, and not have traversed the fused mass.-Secondly, the alkaline ashes of the wood charcoal would bave rapidly attacked the platinum wires, and the current thus have been interrapted. The copper wires closing the circuit commanicated with a galvanometer, the needle of which indicated by its deviation the energy of the current. We employed constant batteries with copper and zino elements, and solutions of sulphate of copper and common salt, of six to twenty-four couples, and sometimea only one Bunsen battery of thirty elements. We always simultaneously made two comparative experiments, by placing in the furuace two crucibles exactly similar, the one traversed, and the other not traversed, by the current.

We found, after several experiments, that the sulphuret of copper not decomposed by the coke, is but very slightly decomposed by a constant current of twenty-four couples of the voltaic battery, producing a deviation of the needle of the galvanometer of $\mathbf{3 5}$ to $\mathbf{4 0}$ degrees.

By employing a Bunsen battery of thirty elements, producing a deviation of the needle of the galvanometer of 45 to 50 degrees, we lave reduced a notable quantity of copper in a state of fusion; bot the largest proportion of the sulplsuret remained undecomposed.

These results convinced us that the action of the battery is feeble as regaris sulplisuret of copper, and that the very powerfal voltaic current requisite for effecting the decomposition, as well as the difficulty of conveniently disposing the apparatas, would prevent the employment of this process for the treatment of sulphuret of copper, and a portion for that of pyritic copper, which is the most common ore of copper.

Experiments analogous to the preceding, in the which wo replaced the two poles of coke by rods of iron, have indicated to us that the action of the battery renders more rapid, but not complete, the reduction of sulpharet of copper by the iron. It always forms a mass, rich in copper.

The action of the battery, aided by that of the iron, separntes from the solpharet of copper but a very small proportion of copper.

In analagous experiments mado on galeos (sulphuret of lead), this miaeral presented the same characters as the sulphuret of copper. We also found always a great lose in the crucible traversed by the voltaic corrent, due to the volatilisation of the metal. These experiments clearly demonsirated to os that the action of the battery, aided even by that of iron, could not serve as a process for the direct treatment of the sulphurous ores of lead of of conpper.

We thes repeated the experiments of M. Napier, and endeavoured to reduce the fased silicate of copper and iron, by a carrent brought by two peles, the ove of iron, the other of plambego, in inmediate contact with the fused mase. But wo very soon convinced onrselves, that of the three agenta employed for the reduction of the oxide of copper (the plumbego, the iron, and the current), the first two, especially the iron, were quite sufficient; and numerous experiments proved to ng, that by the action of iron alone, a silicate of cupper, containing besides oxides of copper, other basen, such as sodn, lime, oxide of iron, \&c., gave up in less than one hour's action of the fire, the whole of ita copper united in a batton of complete purity.

It is thus that we have been led to search in the action of iron, the principle of the reduction of oxide of copper. We first made several experiments in crucibles, in order to determinc the circumstances most favourable to the action of iron. The following are the principal results which we obtained. In our crucible werearranged two or more iron rods. dipping almost to the bottom, and kept at the upper part by a bed of loting. The material employed was either roasted pyritous copper, or a molxture of oxide of copper, oxide of iron and sand; to these ne added as Auxes, soda, or lime, or even chalk only. By employing soda as the flux, the reduction of the oxide of copper was complete in a very short time. At a quarter of an hour's fusion, the copper obtained was cheruically pure. With chalk, the complete reduction required one hour's fusion. The copper produced contained much iron (often 16 per cent.) when the iron-rods dipped down to the boltom of the crucible; and, on the contrary, was always very pure when the rods reached but a little way above the bottom. The time necessary for the complete reduction of the oxide of copper, was more or leas great in proportion to the number of iron rods employed.

Sasistied with these results, we conatructed a reverberatory farasce capable of containing about 250 kilogrammes (5 cwt .) of fused metallic silicates, and presenting no abher peculiarity of construction than having aix grooves or vertical hollowed-out places in the wall opposite to the door of the furnace. Their use was to maintaio in the fused mass six bars of iron of 6 to 8 centimetres (24 to $3 \frac{4}{4}$ inches) wide, and 70 centimetres (28 iacbes) long. These bars thus acted on a large portion of the melted mass, were not in contact with the copper, were readily put in and removed, and wo were able to stir the melted mass between the bars, in such a way as to render it homogeneous, and renew the parts in contact with the iron. We have treated in this fnraace, more than three tons of the pyritic ores of Cornwall, Germany, and Spain, all previously carefully rousted. This complete rousting is easy edough when the ore is ground with fioe sand; it is done with ordinary precaution, but should be finished witha brisk beat. In the frst experiment, we commenced by fusiog the roasted ore with lime and poor slag; and when the fusion was complete, we applied six bars of irou, which were allowed to remain during four hours. After this time, we removed the bars and ran out the metal. In operating thus, we alweys found the consumption of iron to be much greater than theory, pointed out as sufficient for the reduction of the oxide of copper. The slag retained from 2 to 3 per cent. of copper. We attempted to smelt thia slag by itself, and acted upon it with bare of iron for four hours: the result was that we obtained new slag, equally rich in copper with the former; and this, notwithatanding that the bars lost several kilogrammes of weight. This oxidation of the bars of iron could not be attributed to the air of the furnace which bad not served for combustion, since the bars were constandly and entirely planged into the fused material, but was evidently due to the peroxide of iron contained in the metalic silicate, and which would be brought by the iron to the state of protoxide before the oxide of copper could be completely reduced by the iron. We then endeavoured to reduce the consumption of iron, and recover the copper lust in the slag, by addiug to the action of the iron that of charcual or coal. The carbonaceous material might be employed in two ways. First, mixed with the wasted ore; secondly, added after complete fusion, to the compound formed of the fused silicates. In operating in this last manner, we were soon convinced that the charcoal acted but slowly and feebly in the fused silicates, because it floated on the surface of the mass, and could not be kept within it. Nevertheless, its action is of some account; for, when we threw on the melted mass in the furnace a certain quantity of poor coal, we always observed a rapid augmentation of its fuidity, explained only by the reduction to the state of protuside of iron, of a considerahle quantity of the peroxide. The consumption of iron being still very great, we next procerded to examine the action of the carbonacevus matter, when mixed with the roasted ore before charging the farnace. After several trials, we have adopted as the most conveuient proportion of charcoal dust, or sasall poor coal, that which is required to produce one-lualf carbonic acid, and one-half carbonic oxide, in combining with the oxygen of the oxide of copper, and that combined with the protoxide of iron in the roasted ore. This proportion gave us, without employing the actiun of iron, a slag containing $2 \frac{1}{2}$ per cent. of copper. We
bave proved by several trials (1.) that this proportion of dearceal aesd not be rigoroosly adbered to ; and that it may be either iscreaned or 0 . minishrd to some extent, without the ang belode elther poorer or riower in copper, or the quality of the copper altered. (3.) Thet in increndety med. the proportion of charconl aised wilh the ore, and in raining the tempmenture of the furnace to a bright white heat, we could alwage bring the lat slag (without the action of iron) to such a point, that it should not eomete more than $\frac{7}{3}$ d of copper: but then the copper contained 8 to 10 per cante of iron, By operating at a lower temperature to that strictly necesaery fer. fusion, we obtained a slag rich euough in copper, and still oentaining $\$$ to 6 per cent. of iron. (3.) That the action of the bars of iron on the fased silacate, containing 2 tu 3 per cent. of copper, is powerful and rapid; ant that three houra are sufficient to bring the slag to such a atate that it shall coetain only Tuto to rofor of copper, the copper oblained being at the same time free from iron. The following is the mode of operation, we were detrytively led 10 adopt :- We charge the beated furnace whib a mistare of romed ore (3 to 91 cwt) and lime or sand, and the slag of a precedian opeation, in quantity convenient for daterminimg the fusion of the sumberial, charcoal or small cual in the proportion previenely indicated. In rechoange only as bases in the charges, the protoxide of ifon and the lizes, we endeavenr to prodace a bicilicate, containiag 12 to 15 per cent. of lima Experience has pointed ous, that a bisilicate of protoxide of iron, one bean only, melts very quickly and acquires a great fluidity, but readily gives a copper containing much iroo.
After charging the furnace, we throw on the anrface of the mass oee or iwo shovelsful of small conl, for the purpose of preserving the material from oxidation by the flames of the furnace. We stir the masa from time to time, in order to enable it to beat more uniformily, and melt quieker. We sometimes succeed in melting completely in four bours. As zoot se the mass commences to agglomerate, the parts which attach thematioee to the rakes contmin a errtain quantity of copper scales: when the fosion is complete, the rods plunged into the mofted mase indicate the resaime of the copper at the lowest point of the hearth of the furasce sear the discharge hole.

We have always examined the slag swimming on the sopper at this moment of the operation, after having carefully stirred the mass so ato produce slag of a homogeneous quality, and found it to contain 2 to 3 per cent. of copper. When the whole is well melted, we pluce six hars of iron, weighiug altogether from 36 to 45 kilogrammea (84 to 105 lb .) fixing their eods in the grooves in the aide of the furnace opposite to the door, taking care to plunge them entirely into the melted mass. We then again throw on the surface of the slag a small quantity of coal, to preveat the peroxidation of the protoxide of iron of the slag by the fames; thes, from half-hour to half-hour, we stir with a two-pronged rake (very convenient to clean) the surface of the iron-bars immersed in the slag. We also employ as a powerful means of pruducing the mizture, a wooded pole, which, plunged into the slag, gives a considerable disengagemeat of ges, and produces a strong frothing op. The appearance of the slag fomishes but little indication of the progress of the reduction of the metal; we have bowever, proved that trials made with a cold rake, plonged for a moment into the fused mass, always presents on contact with the iron, a reddish metallic tint, strongly marked where the olag was rather rich; a tiot which, on the contrary, was scarcely discernable when the slag contaioed not more than robe to 1800 of copper.

We have always found that three to four bourt are sufficient to remore the copper from the slag up to $\frac{10}{1000}$ to $\frac{0}{1000}$. After this interral of time we draw out the bars, and run off the metal. The duration of one entire operation is thus about eight hours, and three operations may be readily condacted in one day. The loss in weight of the iron bars varies in our experiments to from 1 to 6 kilogrammes (24 to 13 lb .), for quantities of copper of 12 to 42 kilogrammes (27 to 94 lb .) obtained from ores of various quabities. This loss is independent of the richness of the ore, and the consusmption of the iron is proportionally less for the rich than the poor ores. Por the pyritic ore: of Spain, containing 21 per cent. of copper, we have coasumed 11 parts of iron for 100 of copper obtained. The English ores Which we have melted contained 7 per cent. of copper, 4 to 6 per cent. of arsenic, a small portion of antimony, and some traces of tin; from tbese we have obtained an impure black copper, containing 3 to 5 per cent. of arsenic, 2 to 3 per cent. of tin, and only a few thousandths of anlphur and iros This result has not surprised us; the arsenic can only be completely drivea away by a great number of successive operations and alterations of rosesting and reduction. Thus, we do not propose the application of our process for the treatment of ores containing moch arsenic or antimony-as, for example, the grey copper ores. With the pyritic ores not containing arsenic we have always obtained a very pure black copper, containing only from riot to $\frac{8}{1800}$ of sulphur and iron.

The roasting has a certain influence on the quality of the copper, and on the consumption of iron. With well roasted ores we never had a deposis underneath the copper, which was the case with ores imperfertly roasted. The copper contained not the least iron, and less than $\frac{8}{1000}$ of sulphor. The consumption of iron was much less with well roasted ores, and the final slag less rich in copper. The temperature which we have adopted as the most convenient, is that which is strictly necessary for the fusion of the copper and the slag. Too bigh a temperature renders the action of theiron on the silicate of copper more rapid and energetic; bnt the coal redoces more easily a part of the oxide of iron combined with the sillca. In operating in the same manoer, on the mame mineral, at a well-regolated temper
rature, and at a bright red hent, mrintained from tive commencement of the operation, we have obtained, in the former case, a copper of soffleient parity; in the latter case, a copper contamianted with 3 per cent. of iron.

The consumption of coal employed in our furnace will not givea greatindication as to the quantity which would be required in a large reverberatory furance kept in constant operation. We can, bowever, give calculation of anficient approximation from the consumption of the large copper furnacea in Walem.

The ores to which our process may be applied with the greatest adrantage are the oxides or pyritic ores with a gangue of pyrites or oxide of iron; they repder, by our made of treatment, copper of excellent quality. These orea, E a present treated, yield a bleck copper containing much iron. Our proceat is also readily applicable to all the ores of copper which do not contain too much arsenic or antimony. The process which we have described offers serveral raarked advantages over the methode ordinerily employed. It is rapid and economical, since by one aingle fosion we obtain a alag sufferently poor to be rejected, and all the copper in a atate of sufficient purity to be cold after ono smelting; or at the moat a short refining It requires no afmeult manipulation, and the workmen can readily onderstand the way of condacting the operations. The complete roasting of the ore is not a new eperation in metallurgy; it is easily accompliahed when the ore is ground with sand of sufficient fineness; it requires tact and attention on the part of the workmen, and should be finished by a good atroke of the tire, in order to decompose the sulphates formed at a lower temperature. We have previoasly pointed out that the principal inconvenience of an incomptete rosting is, in the smelting, a greater consumption of iron, and a less complete removal of the copper from the slag in a given time. A good roasting furnace should contain about $1 \frac{1}{1}$ ton of ground ore: the operation should be continued from 15 to 24 hoars. For the anelting, the farnaces abould be similar to the large reverberatory furmaces of Wales, and contain for a charge 24 ewt. of ore. There should bo three smelting furnacet for four roatiat farmaces, supposing that three operations may be condueted in ewch smetting farnace daily. The refining of copper of the firat amelting maty be done in a fornace containing four tons; an operation which does not require more them 12 hours. To give an ides of the principal matériel neceosary for the production of a certain quantity of copper, we will suppose that we have te treat a pyritic ore of copper with a gangue of pyrites or quartz, contajuing the moat 15 per cent. of copper. To prodnce per annum 100 tont of eopper, there will be required two pair of stamping mills, twelve roasting tarnaces, eight smelting furnaces, and one copper refining furnace.

It will also be very advantageous to annex to the copper-worke an inonwork, which would produce at a low prlee the iron necetaary for the tools and implements employed, the bars, \&c., and to use up the old bars which will no longer serve in the smelting furnaces. We have also applied the cotion of iron on the metallic silicates in fusion to the treatment of sulphate of lead, but lese successfully than in the case of copper ores. These trials have been made on a large scate in a reverberatory furnace capable of con. taining 24 cwt . of materials.

To the dry sulphate of lead, we added sand, a little chalk, the slag of a preceding operation, and about three per cent. of charcoal. A larger proportion of charcoal alwaya geve a little sulphuret of lesd with the metallic lead. We charge the furnace, and heat it io as to effect an entire fusion for the space of five hours. We then throw into the fluid mass, at tbree or four rimet, iron turnings, which replace to great advantage the bars of iron. The proportion of cast-iron turnings necestary is about one-eighth of the weight of the dry sulpbate of lead. We atir the mass very frequently, and after four or five hours' action of the iron, run off the metal. We have obtained, ia this manner, 45 to 48 parts of lead from 100 of sulphate of lead. The loss, therefore, of metal was considerabie, which was due in great part to the volatilization of the lead, the fumes of which were evident at the top of the chimney; this volstilization principally took place during the stirring and the charging. We notice thia applicstion of our process to the reduction of sulphate of lead, becsuse that it proves that iron acts very rapidly on the ailicate of lead, and that this action might be employed under certain circamatancea.

To complete the description of the process for the metallurgical treatment which we propose, we now proceed to give an eatimate of the probablo cost of the treatment of copper ores. We base this estimate ou the durathon of the operations in the reverberatory furnaces in which we have treated the ores of copper and the sulphate of lead; on the consumption of coal in the large smelting fornaces in Wales; and on the consumption indicated from our own experiments.

To compare our process with that adopted in the greater number of cop-per-worta in England, we have adopted the figures given by MM. Dufrenoy, Elie de Beaumont, Costa, and Perdunuet, in their "Voyage Mélalurngique en Angleterre." We will reckon the cost for 1 ton of pyritic ore having a sangue of quartz and iron pyrites. For the refining, we calculate the expense for one ton of copper.

RIVOT AND PHILlips' PROCESE.

First Operation.-Grinding of the ore.
For one ton, $. . \quad . \quad 1 f r .50 \mathrm{c} .=1 \mathrm{c} .3 \mathrm{~d}$.
Second Operalion.-Roasting of the ore in furnaces containing 36 owt. Duration of roasting process, 18 hours. (We may remark that for the roasting, the lost beat from the smelting furnaces mas be very well employed, as is done in some Eoglish works.)

$$
\begin{aligned}
& \begin{array}{l}
\text { Laboar, } 1 \text { 1 day @ } 2 \text { fruncs } \\
\text { Coal, } 6 \mathrm{cwt.@} 1 \text { fr. } 2 \text { cwt. } \\
\text { © }
\end{array} \\
& \text { Total } 6 \text { Ah }=5 \mathrm{c}
\end{aligned}
$$

Third Operation-Smeling of the roated ore. Foraseen containing 1 훈 ton of ore (weight of crude oro). Duntion of operation, cight hours. Consumption of coal per hour, on an average, 120 kilo. $=2 \mathrm{cFt} .1 \mathrm{qr} .16 \mathrm{lt}$ The iron is put at 25 fr . the 100 kilo. $=20 \mathrm{~s}$. the 2 cm .

This operation gives all the copper contained in the ore in the state of blaek copper, containing bot a very little iron and sulphar.

The special expenses of the treatment of one ton of copper ore of ordi. nary qaality, 6 to 30 per cent. according to our proceas,

Fometh Operation-Refning of the black copper obtained by ameturge In a furnace containing 4 tons of copper. Daration of the operation, 18 hours. Mean consumption of coal per boar, 2 ewt.
For one ton of copper:-

Por an ore rendering 8 to 10 per cent. of copper, the refining will add abous 30 per cent to the expensen.

In adding to theae expensea 3 frames (28.6 d .) for repairs of implementr, ace., we arrive at a sum of 27 fr .94 c . for the expenses of the treatment of one ton of ore, comprising the refining-atay in round nombers, 28 france (22s. 6d.) For a return of 8 to 10 per cent., the special expenses for 1 tun of refimed copper will be 350 france ($14 l$.); for a return of 25 per cenk., 112 francs (4i. 108.)

WELSE PROCRES.
The special expense of the treatment of one tom of ore, containing or rendering 8 per cent. of copper, is as follows :-

Difference in favour of our process, 14 francs (11e. Bd.)
For one ton of copper and for the ores ordinarily treated in Wales, the difference in the special expenses of the treatment is 175 france (71)
The Society for the Encouragement of the Arts and Manufacturea, and the Academy of Sciences, have both reported favourably on the process of MM. Rivot and Phillip!.

FALL OF RAIN,

An Account of some Obserpations made on the Depth of Rain which fallo in the same localities, at different altitwdes, in the hilly districts of Lancashire, Cheshire, and Derdyshire. By S. C. Homemsana, C.E.-(Read before the Royal Society of London, May 25, 1848).

Having been present at a meeting of the Roybl Society of London on the evening of the loth of May last, when a valuable and interesting paper was read, "On the Meteorology of the Lake Dlstricts of Westmoreland and Cumberland," by J. F. Miller, Esq., of Wbitebaven, in which paper the following remark occarred:-"It would be prematore, from the scanty data before me, to draw any conclnsion as to the gradation in the quantity of rain, at these great elovations above the eeas But it seems probable that, in mombainous dietricts, the amowat of rain increases from the calley upwards, to an altitude of abont 2,000 fcet, whrre it reaches a maximx ${ }^{\text {m }}$; and that above this elevation the quantity rapidly decreases. The table for 1846 exhibits the rain fall of the anomer months only; but the additional returns of 1847, obtained in every variety of season, confirm the above deductions in every esseutial particular, so that we may fairly assume the combined results to be indicative of a physical law, so far at least as relates to the particular locality in question."

Iam desirous of laying before the Royal Boojely certain observations made ander my own direction, which lead ne to differ from the author of that paper in the copclusion he has deduced from his facte.
Mr. Miller kindly furnished me some time since with many, if not the whole, of the results of his experiments in these districts up to the beginming of March last. I have been carefol to ascertain whether Mr. Miller's own experiments fully bear out the conclusions suggested in the quotation bove made, because this conclusion is in direct opposition to the recorded observations of the Honourable Daines Barriogton, I..R.S., Dr. Dalton, Profescor Daniell, SamuelMarshall, Esq., of Kendal, aud John Flemiug, Esq., of Manchester; and also to observations made in 1841 by Captain Lefroy, then Director of the Observatory at St. Helena; the results of which ob. servations were pablished in 1847, by order of Her Majesty's Government, under the superintendence of Lieut. Col. Sabine, F.S.R.S., in a volume entilled "Observations made at the Magnetical and Meteorological Ob. servatory of St. Helena."
The Honourable Daines Barrington, F.R.S., states in the "Philosophical Transactions" for 1771, page 294, that in 1770 be caused two rain ganges to be placed, one on Mount Rening, in Wales, 1,350 feet above the level of the sea, and the other apon the plain below. From Jaly 6th inthis year to October 29th, the gange on the top of the mountain caught $8 \cdot 165$ inches of rain; the one at the bottom 8.700 inches, showing half an inch more rain to have fallen at the boltom than on thel top of the mountaip.

Dr. Dalton, in the "Memoirs of the Literary and Philosophical Society of Manchester," vol. v., New Series, p. 236, gays:-"From the obeervations made in Great Britain, it appears to be an estublished fact, that more rain falls in the hilly part of the country than in the plain ; but it aleo appears that the quautity of rain in a low sitwation is greater than in an elecaled siluation in the vicinily."

Professor Daniell, in his "Elements of Meteorology," vol. i., p. 236, states, "It has been ascertained more rain falls at the bottom of a mounthin than the top. Samuel Marshall, Esq., of Kendal, also states, in a communication published in 1839 ; in the Transactions of the Meteorological Society," vol. i., p. 115, that, "It ls a fact sufficiently well estab. lished, that more rain falls in low situations than in more elevated ones, oven when contiguous.

And more recently, John Fleming, Esq., states, in the "Memoirs of the Literary and Philosophical Society of Manchester," vol. V., Second Series, p. 252, that, "On the descent of the bill, and probably about the foot of it, the heaviest rain will fall." In the "Observations made at the Magnetical and Meteorological Observatory of St. Helena," before alluded to, it is atated at p. 102 of the index :-"In 1841, Captain Lefroy, then director of the observatory at St. Helena, established rain gauges at three other points of the island, for the purpose of ascertaining a comparative estimate of the quantity of rain. The station were-l. Near the highest pinnacle of the island, on a very narrow ridge or rock; 2. lower down on the same ridge of hilla; 3. Longmood observatory; 4. James Valley. The three first stations might be eomprehended in acircle of one mile radius, and the fourth is but little more distant. The quantities of rain received at these stations, during nine months of.1841, weie as follows:-

1. At 2044	feet of elevation,	$22 \cdot 03$	inches.
2. At 1991.	"	$27 \cdot 11$	$"$
8. At 1782	$"$	43.42	$"$
4. At 414	$"$	7.63	$"$

This table shows that at 1782 feet elevation, much more rain fell in a given time than at the higher elevation of 1991 feet. The reason why so small a quantity as $7 \cdot 63$ inches only was recorded in the same time at 414 feet elevation, is not very apparent; but it would probably be found, upon examination, tbat this result is due to some local circumstance in the position of the gange, and not to ils elevation-a conclosion to which I am led by an eramination of the localities, compared with the quantities of rain colacted in Mr. Miller's experinents.

In a Report whicb I bave recently published, "On the Supply of Surplus Water to Mancheater, Salford, and Stockport," p. 70, I have shown that, during the past year of 1847, I had four raingauges fixed, one at the bottom of Todd's Brook Valley, situated in Cheshire, near Whaley, 620 feet above the level of the sea; anotber at Brioks, the top of the hill hordering this valley, 1,500 feet above the level of the sea, and that $38 \cdot 39$ inches in depth was received at the bottom of the bill, and only $20 \cdot 5$ inches at the top of the bill. A third gauge was fixed at the bottom of the Comb's Brook Valley, situated in Derbyshire, near Chapel-en-le. Frith, 720 feet above the level of the sea, and that 51.30 inches in dopth was caught at the bottom of the hill, and only $\mathbf{8 5} \mathbf{8 5}$ inches at the top of the hill.

Since the report just referred to was published, I have been favoured by Thomas Hawksley, Esq., C. E., with the results bf some important unpublished experiments made by him for the Corporation of Liverpool, ou the amount of the fall of rain at Rivington, and in the Valley of Roddlesworth, near Preston, in Lancashire. Six rain gauges, placed near the ground, were fixed in these localities at the beginning of Janagy, 1847, three at Rivington, and three in the Valley of Roddlesworth.

The quantities falling per month are shown in the following table, and alao the monthly fall for Janaary, February, and Marcb, 1848, all of which results prove the same geaeral fact, that more rain fulla at the botom than the to of the hill in the same localities.

Tabls.-Showing the quantitiee of ram fallen per mouth in three rain gauges, fired near the ground, in the district of Rivington, and in the Roddlenvorth Valley, Lancashire, during the year 1847 and tAree monla of 1848, wilh their reapective heighta above the letel of the sea.
 received 48.83 inches of rain doring the year 1847 ; the gauge at 710 feed eleration $46 \cdot 48$ inches during the same time; and the gauge at 750 feet, the highest elevation, only 45.96 inches.

The gauge at the lowest elevation in the Roddlesworth locality (550 feas) received 50.22 inches of rain during the year 1847 ; the gauge at 700 feet olevation $57 \cdot 10$ inches during the same time; and the gagge at 900 foet, the highest elevation, 52.53 inches. Here it will be observed, that the gange at 900 feet elevation received, as before, a considerable less amount of rain than the gauge at the lower olevation of 700 feet, but that the gauge at the lowest elevation of 550 feet forms an exception, as thit gange received abou 24 inches less in depth during the same time than the gauge at 900 feet elet vation, and nearly 7 inches less than the gauge at 700 feet elevation.
A personal knowledge of this locality, or a glance at the map, may aerre to explain this departare from the general rule observed, for this geage is placed at the bottom of a steep valley, bordered to the west by very precipitous and high land, and it is in this manner sheltered, to a considerabis extent, from the prevailing raing winds.

Two rain gauges which I have caused to be fixed, one in the neighboushood of the Bosley Reservoir, situated near Congleton, Cheshire, 590 feet above the level of the sea, and the other at Bosles Minns, 1,265 feet above the level of the sea, in the same locality, show that, during the firat four months, January, February, March and April of the present year, 11.75 inches fell on the bottom of the bill, and only 11.65 inches on the top of the hill.
The amount of rain received in the rain gauge placed near the bottom of a hill at Tood's Brook, (before referred to, during this period, was 13.03 inches in depth, and at Brinhs, the top of the same hill, only 11.51 inches

The amount received in this time at Conb's gauge at the bottom of the hill, wan $19 \cdot 70$ inches, and in the gauge at the top of the bill only $10-45$ inches, as shown in the monthly report of the observations made with all these gauges which are given in the following table:-
Table showing the quantities of rain fallen per month in certain funsel rain gauges, 9 inches dianneter, and placed 2 feet 6 inches above the surface of the ground, at Todd's Brook, near Whaley, Cheshire; at Comb's Broal, near Chapel-en-le-Frith, Derbyshire; and Bosley, near Congleton, Chahire, with their respective heights above the level of the sea.
Situation and height above the level of the sea.
Todd's Brook, Brinks, top of hill; 1,500 feel
Tedd's Brook 'heservoir bottom of hill, 620 feet
Comb's Rudge, top of hill, 1,670 fees.
Comb's Reservoir, bottom of hill, 720 feet* * Boskep Milons, top ot hill, 1,265 feet,
Bonley Remervoir, bottom of hill, 590 feet, ..
lnomledge of the facts before Miller's experiments soon after receiving them, with a view to ascertain hon far they confirmed or were in opposition to the recorded observatioas and facta stated by the meny eminent meteorological authoritiee before qooted. for which parpose I procured the best map of the lake district I could obtain, and marked upon it the situation of Mr. Miller's rain gauges, and thous compared together the results obtained by the rein gaugea pleced in the valleyt or the bottom of the billa with the rain gauges placed apon the tops of the same hill or bordering the some valleys. $\overline{B y}$ proceedivg with reforence to locality in this manner, it soon becama apparent that the valagble and interesting facts collected aud recorded by Mr. Miller, with very few exceptions, which it appears to me may be easily accounted for, agreed with the observations of other meteorologicel writers. Indced, this could not fril to be the case, unlest the generally received and admitted theory of the formation and distribution of rain, as laid down by Dr. Dalton, ease ate diuproved.

[^47]Upon examining Mr. Miller's facts, it will be fonnd, from April to December, 1846, both inclosive, that at Whitebaven, 90 feet above the level of the sen, 38.063 inches fell; while at Round Close, 480 feet above the ses, and not far distant, only $36 \cdot 195$ inches fell in the same time; and during 1847, that 42.92 inches are recorded to have fallen at Whitebaven, and only $42 \cdot 823$ at Round Close.
On examining with reference to locality in a timilar manner the rain ganges placed in the Valley of Borrowdale, or Derwent Water, in which vale the quantity of water received by four rain gauges at different altitudes are recorded by Mr. Miller, namely, one at Seathwaite, 242 feet above the sea one at Sty Head, 1,290 feet bigh; one at Seatoller, 1,334 feet high; and one at Sparkling Tarn, 1,006 , feet higb; it will be found, as shown in the following table, which I have drawn up from a careful analysia of Mr. Miller's experiments as communicated to me by himself, faking the longest period during which he has regiatered experiments at each of the localities, that from June 1846, to November 1847 inclusive, 193.69 inches fell at a level of 242 feet above the sea; at the greater elevation of 1,290 feet a less quantity, or $164 \cdot 12$ iaches, fell; at the greater elevation still of 1,334 feet, zet smaller quantity, or $155 \cdot 75$ inches. The last example, however, at an elevation of 1,906 feet, shows that 183.47 inches fell in the same time, being, in this instance, less by 10 inches than the quantity which fell at the elevation of 242 feet, but much more than the quantities which fell at the elevations of 1,290 and 1,334 feet. This last fact I think may be accounted for by reference to the peculiar position of Sparkling Tarn (the mountain on Which this last gauge ia fixed). This mountain is ouly 1,906 feet higb, but is in the immediate vicinity, that is, within a mile and a quarter to a mile and a half of the mountains Scawfell Pike and Bowfell to the south, and within a mile and a quarter of Great Gavel to the north. These mountains vary from 2,900 to 3,166 feet in height, the lowest of them being upwards of 1,000 feet higber than Sparkling Tarn, while Sparkling Tarn is fully exposed to the westerly winds; and tbe clouds being carried inland by this wind, between the gorge formed by these high mountains, it may be easily conceived that a large portion of rain in the transit of the clonds would be deposited on the top of Sparkling Tarn; so that the large amount of rain falling at this altitude in this locality would appear to be tbe exception and not the rale.

Table.-Borrowdale, of Demeent Water.

Month. 1346,		Senthwaste, 242 feet. Int.	$\begin{aligned} & \text { Sty Head } \\ & 1,290 \text { feet. } \end{aligned}$	Seatolker, 1,334 feet. Ing.	Sparkling Tarn, 1,406 feet. Ine.
June,		6-42	626	${ }_{\text {b } 70}$	7.5.5
July,	.	$20 \cdot 80$	$17 \cdot 76$	18.85	22.72
Augrist,	\cdots	10.58	11.03	$8 \cdot 15$	12.03
September,	,	$4 \cdot 60$	$4 \cdot 22$	8.75	$5 \cdot 06$
October, Norember,		$25 \cdot 43$	$16 \cdot 36$	17-42	$20 \cdot 35$
Nocember, 184.	$\because \cdot$				
January,		41.06	$32 \cdot 52$	27*51	31-82
Mebrary,	.				
March, Apri,	\because.				
May,	\cdots	8.08	$7 \cdot 56$	$7 \cdot 13$	7.59
Jape,	-	$7 \cdot 27$	$7 \cdot 13$	6.71	$8 \cdot 13$
Jaiy.	\because	$8 \cdot 32$	$8 \cdot 66$	$2 \cdot 50$	$4 \cdot 15$
Augurt,	..	$10 \cdot 48$	10.22	10.38	12-00
Beptember,	.	13.28	$10 \cdot 92$	12.08	$12 \cdot 48$
October,	.	20.52	17.50	19802	18.0
November,	*	21.85	$20 \cdot 00$	1807	$22 \cdot 64$
Tocale	\because	193.69	164-12	156.75	183.47

In the valley of Wat Water, the amount of rain falling at Wantidale, 166 feet above the level of the sea, from March 1846, to November 1847, both inclusive, is shown to be $\mathbf{1 7 0 . 5 5}$ jaches; and at Scawfell Pike, which borders this valley to the east, 3,166 feet high, only $128 \cdot 15$ inches fell in the same time. In the valley of Ennerdale, at Gillerthwaite, 286 feet above the sea, 133. 86 inches fell; while at Great Gavel, 2,925 feet high, during the same time, only $124 \cdot 68$ inches fell.

All the valuable facts here alluded to, snpplied by Mr. Miller with one exception only, prore that the greatest amount of rain falls in the same localitien at or near the base of a hill, and not at so great an alcitude as 2,000 feet above the sea; and the one exception, namely, that at Sparkling Taro, 1,906 feet high, shows that from June 1846, to November 1847 (both inclunive), $183-47$ inches fell; while at Seathwaite, the bottom of the valley, bounded by Sparkling Tarn, during the same time, as much as $193 \cdot 69$ inches fell, or 10 inches more at the lower than at the higher locality, thas confroning the conclusion arrived at by my observations, which also fully accord with the meteorological authorities I have quoted.

As the amonnt or depth of rain falling in a given time in Great Britain, In different localities and under different circumstances, is a matter of very great practical importance to ciril engineers generally, and especially to thowe engaged in detigning works to supply large towns with water, to regulate the their importance in a philosophical point of view, I have been unvilling to allow the valuable facts collected by Mr. Miller, with anch perseverance and induatry, to pass without a few comments, which, as it appears to me, may tead to make them more generally usefal, by explaining their supposed diserepancy with the generally received riews, of such sceurate observers at

Dr. Dalton, Professor Daniell, Captain Lefroy, and the other authoritios quoted in this paper, confirmed as the observations and recorded experiments of these last-named geatlemen are shown to be by the more recent experiments herein detailed.

NOTES OF THE MONTH.

New Steam or Hydraulic Wheel.-At a meeting of the Royal Cornwall Polytechnic Society, an invention by Mr. James Sims, of Redrath, was explained, the object of which was to carry out simpllicity and portability to a greater extent than had bitherto been effected in such engines. It was intended to be worked either by steam or water-power. As a stearn-wheel or rotary engine, he conceived it surpansed all former attempts at this principle, as the motive porrer is in the pinton and cylinder of the ordinary construction of Boulton and Watt's engines, and the expansive principle of cutting off the steam is carried to a greater extent than in those enginesthe motion of the piston being independent of the motion of the wheel, and almost instantancous. In all the rotary or steam-wheels hitherto before the public, he was not aware that any of the inventors had availed themselven of the beneft of working with the ordinary cylinder and piston; they have, therefore, failed to carry out the expansive principle, and also to prevent the leakage of steam. In sorne, packing has been attempted, but here the friction is so great, and the wear so rapid, that not one on this plan har succeeded well. In this engine, on the revolution of the wheel, when the cylinder comes to a perpendicular position, the steam is admitted onderneath the piston, at the sarne time it escapes from the top side, thereby shifting the weight to the top of the wheel, and causing it to revolve by ite preponderance, the power of the engine being the amount of weight moved a certain number of feet in a given time. Regularity of motion being easen. tial, it migbt be accomplished by a good governor. The blow against the buffers is in proportion to the extra quantity of steam admitted, and is on the same principle as the ordinary reciprocating or pumping engine. As an hydraulic engine, it is well adapted for situations where a good height of water can be obtained, but not snfficient for the ordinary water-wheels, The water might be conveyed in pipet, when a very amall atream could be made available to an extent in proportion to its height and quantity. It would be admitted into the cylinder in the ame way as ateam, thereby shifting the weights, and making a very effective and economical water-wheel, as every pound of water would be used. The velocity of the wbeel would be much superior to the ordinary water-wheel, being in proportion to the beight and consequent preasure, and the quantity of water to be obtained. So also its velority as a steam-wheel would depend on the pressure of steam, admitting the shifting of weights, however quick the passing of the aperture for the admistion of the steam. The engine was at present in its infancy, and although it worked well, there was, no donht, room for further im. provement. The principle being good, as regards the application of atean and water.power, and its economy and portability being conspicuous, it should not be lost sight of ; be should, therefore, proceed with his experiments, and hoped at the next meeting to report vore fully of its advantegen. Its application may be general, and he thonght more advantageous than almost any other engine, t in the absence of the crank, each end of the shaft is at liberty for any attachment. The small amount of friction, consequent on its simplicity, is seen at once, afin also the small smount of liability to derangement.

The Conway Tubular Bridge. -The second great tabe of the bridge over the Conway Straits was floated on the pontoons to the piers, on the 12 th olt. The operation, combined with the stupendous machinery employed in the process, attracted large crowds from Conway and other parts of the principality. Everything favonred the lifting of the leviathan structure. At precisely 9 o'clock, or 50 minutes before high water, Captain Clazton. R.N., gave the signal to pipe all hands, and almost immediately the tremendous freight was seen creeping atealthily to its deatination. Next him was Mr. R. Stephenson, M.P., the celebrated engineer, and denigner of this new feature in engineering art; Mr. E. Clarke, C. E., his head assistant; Mr. A. M. Rosa, C. E.; Mr. W. Evans, the contractor; Mr. F. Porster, C. E.; and Mr. Amos, of the firm of Banton and Amos, who constructed the lifting machinery; and near it Sir C. Smith, Bart.; Bishop of Bangor, Rev. Mr. Morgan, Mr. J. O. Burger, and a number of the gentry. The tube was lifted the beight of 2 feet in abont 60 minuten, and with its weight of 1,300 Lons was got safely home at a few minutes part 10 , amidet enthusiastic burats from the byitandera, and a salvo of artillery from the cantle walls. The entire operation was effected without the slightest accident.

Opening of the Shrewsbury and Chester Railway.-This line of railway, which is 41 miles in extent, was opened throughout on Thursday, 12th alt. The present line is an amalgamation of the North Walea Mineral, and the Shrewsbary, Osweatry, and Chester Junction Railways; 15 miles of the linenamely, from Chestet to Ruabon, have been opened for nearly two jeary, and the receipts during that time have been about $£ 40$ per mile per week. The cost of the entire line has been about $£ 17,000$ per mile, and the working stock will be about $\mathbf{£ 4 , 0 0 0}$ per mile more. The trafic on the line is chiefly mineral. In hononr of the opening, the occasion was observed as a general holiday along the line, and several traina ran both ways, conveying the inhabitauts gratif.

Jce.-The intripsic value of iee, like that of metale, depends on the inrestigation of an asasyer. That is to asay, a cobic foot of Lower Canuda ice, is infinitely more cold than a cubic foot of Upper Canada ice, which cuntains more cold than a cubic foot of Wenham ice, wbich contains infinitely more cold than a cubic foot of English ice; and thus, although each of those four cubic feet of ice has precisely the same shape, they each, as summer approaches, diminish in value-that is to say, they each gradually lose a portion of their cold, until, long before the Lower Canada ice has melted, the English ice bas been converted into lukewarm whter.-Chambers' Edinburgh Journal.
An Eapsrimental Vessel.-There is now loading in the North Dooks, Sunderland, an experimental vessel, named the Mary Caroline, built by Mr. Siddon, of Rochester, who is also the owner. She has no keel, but is Lat bottoned, and buill in the barge stgle. Neither is she caulked-the seanss are lined with fell. She is 224 tons register, and carries 4,000 yards of canvas when in full sail; and when full laden with 20 keels of coald, she draws only $0 \frac{1}{y}$ feet of water. She is intended for the Prench trade. On the run down, with a N.N.W. wied, she outstripped 40 colliers.Dwrham Adrertiser.

Railsay in Spain.-An experimental trip was made on the 8th of October, on the railway from Barcelona to Mataro, by the directors and their friends. The journey from Barcelona to Mataro was made in an hour, exclusive of stoppages, and the journey back in 50 minutes-the distance is five leagues. The Barcelones are very proud of Catalonia being the first in Spain to possess a railway. The line was to be opened to the pablic on the 1 sth.

The Railucay Interest.-As there appears to be a good deal of misap. prehension and misstatement afioat with reference to the object of the meetings of the three great railway companies, and their consequent negociations, we have endeavoured to ascertain the real facts, and we have reason to belirve that they are as follows:-The distinct object of the conference is not to increase fares or arrange trains, but it is for effecting a complete union of capital of the three great companies-the NorthWestern, the Bouth Western, and the Great Weatern, and the conversion of the three into one great company, under one controlling body, leaving the working details with the respective boards. The delegates consist of five directore from eacb company, headed by their respective chairmen. They have generally met twice a week at Mr. Glyo's house, adjoining the bank. We understand that some general principles of anion bave been afirmed. and the details left to the consideration of the solicitors of the respective companies, who will have to consider of the proper notices to Purlimnent; for, of course, nothing can be doae without the consent of the proprietors of all the companias and legislative sanction. We have heard that some obatacles have arisen from the discussion introduced by that vesed question-the broad gauge and narrow gauge interestabut more particularly from the diffeculty of ascertaining the relative values of the great intereats which it is proposed should be united. We have, however good reason to hope that thene difioulties will be surmonated.Morning Clironicle.
Galvanised Wire and Hemp Ropes.-An experiment was lately tried in Woolwich Dockyurd, to ascertais the comparative atrengh of wire and bemp rapps. A wire rope, 8 inches round, and a hensp rope of three prands. buwser land, common make, 7 inches round, were epliced together, and placed in the testing machine, and on the hydraulic power being applied, the hemp rope broke in the middie on the atruin reaching $11 \frac{1}{t}$ tons, the wire rope remaioing apparently as atrong as when the experiment commenced. A wire rope, $3 \frac{1}{3}$ inches rouud, was then spliced with an 8 -inch hemp shroud rope, and on the power being applied the hemp rope broke in the uiddle, with a strain of 101 tons, the wire rope continuing apparently uninjured.
Steam Power of France.-According to a late statistical report, made to the goverument, the number of locomotive engines constructed in France, and euployed by the country in 1842, equalled the number imported from abruad; in 1843, there were two more French than foreign eusines; in 1844, the surplus was 44 ; in 1945, 76; in 1846, beyond which year the report did not go, this excess was l6t. In 1846, there were 294 steanboats, belonging to private individuals and companies, Daviguting the rivers and seas. The numbers and force of the engines in use on land, and acting as locomotives in the steamers, were, in 1846, as follows-viz.: 4,395 engines at work on land, equalling 163,402-horse power; 461 locomotives, of 60 horse power each, upon the average amounting to 27,000 horse-power; 338 engines used in steam-ships and boats. amounting to 108,513 -hofse power. These, togethers give a force of 299,515-hurse power. Comparing the strecg in ot mac tc hnrse-power; it will be found that the steam-engines emploged in France in 1840 were substitute: for $2,097,625$ men.

Vegetable Wax.-M. Jules Rossignon submilted to the Academy of Sciences a upecimen of vegetable wax, extracted from tbe berries of a common laurel grown on the moantains of Vera.Paz, in the Republic of Guatimaln. The malysis of this wax gave, Carbon, 78.29 ; Hydrogen, 15.08 ; Oxygen, 8.63. It is of a green colour, and exhales a slightly sromatic odour when rubbed or melted. The candlen which have been made with this wax give a beautifally clear light, and diffuse a pleasant aromatic odour. The laurel whose berries fornish ibis wax, has the character and leafage of Lourus nubide; it furma numeroas thick forests in the mountains of VeraPaz, that is, throughnut the whole of that part of the Guatimalian tersitory whioh commences at Rio Polochis, and spreada to the limits of Yuctan.

Geolegical Discovery.-A correspondent of the Fife Herald utalest that "a section of limestone rock has been lately laid open by the eatuing of the Edinburgh and Northern Railway, at the Newburgh statioa, which belungs to the corostone of the old red seodstone formation. The face exposed is about 100 feet in length, by upwards of 20 feet in thickness, and very distinctly stratibed. The heds are broken near the centre, which canses their edges to slip down and dip in opposite directions, inclining on one side at an angle of 28° towards the north-east, and on the othes approaching to nearly a vertical position towards the north-west. What adds to the geologicul importance of the discovery, is the fact that the grey sandstone, or Curuylie fossilliferous pavement stoue, is found in the immediate vicinity of the calcareons deposit. The representative of the Cornstone in England, it is well known, is extremely rich in fossils, particularly of the genas cephalaspin, while not a fragment has as yet been detected in any of its aumerous localities in Scotland. The colour of the Limestone is that of a dark finty grey, with innumerable white threadlike veins of carbonate of lime, boih vertical and longitudinal, and which cause the rock to aplit op into thin bands of larger and amaller rhonboidal masses. The deposit is subcrystalline, of an extremely hard and cherty texture ; it is not nodular or compound. as in mo many other places, but of a close, uniform, homageneous structure."

LIET OR NEW PATESNTE.

ganted in mealand from Septimber 28, to Octomez 26, 1848.
Six Monthe allowed for Enrolment, wriess othervise expressed.

Bebert Strilng Nemall, Gatesbead, Durbam, for "Improvements la locks and epring and In the meank of fastening and eetung up the rigging of ships."-Sealed Sept. 24 Andrew Paton Rallday, Manchenter, manufactinting chemict, for "certain Ingrovements io the mennfacture of pyroligneous scid."-Sept. $\%$.
Fendell Allman, of Charles-btreet, Saint Jamea's-equare, Westminater, for "cherth Improvements in apparatus for the production of lishi from cleetricity."-8ept. 83.
William Wilmineon Nicholeon, of Acton-street, Gray's Innurond, civil egginem, fiop "Improvements in machinury for compresting wood, and other matariaid mequiting the a proceas."-Sept. 28.
Joseph Gillot and John Mortson, Birminghem, for "Improvements in ornamenting cyltadrical and other aurfaces of wood and other matertai."-Sept. 28.
Thomas Metcalf, Hith-street, Compien Town, Midilesex, septleman, for " Imptove mepts in the construction of
rectining on."-October 5.

Edward John Massey, Liverpool, for "Improvements in apparatus for meanuripg the apeed of veasela and streams, and for ascertainigg the depthe of water."-Oetobir 6.
Joseph Sharp Bailey, Bradford, York, spinner, for "certaln Improvemants in prepar. ing, comblag, and drawing wool, alpace, mohalr, and other abrous materiala."-Oct. 5. John Wright, Camberwell, Surrey, enginear, for "Improrements in generation shata and evaporating fluide."-Oct. 12.
Charles de Bergue, of Arthar-street, Weat, London, edgineer, for "Imprevemertan in bridges, girders, sad beanas."-Oct. 12.
Arthur Dunn, of Dilaton, chemiat, for "Improvements In ascertaining and fodication the temperature and pressart of uids."-Ont. 12.
John Davie Morries Stirling, of Black Grange, N.B., Esq., for "Improvemeate in the manufacture of fron and metallic componuds."一Oct.; i2.
Elise Robinson Handcuck; of 16, Regent-street, London, and Rathmoyle-Hoare, Queen's Connty, Ireland, Eeq., for "certain Improvements in mechanisa applicable to impelling and faclitialing the propulaion of vesees in the water, which improvemente art applicabie to locomotive engloen for railwayt, and other stmilar parpoees."-Oet. 12.
John Achby, of Carshalion, Surrey, milier, for "certain Improvements in anchiany applicable to cleaning grain and dreating meal."-Oct. 12.

Daniel Watney, of Wandeworth, Surrey, Uistiler, and James John Wentworth, of the same place, for "Improvements in machinery for driling metal and other mbatarees" Oct. 12

Samuel Cuniffe Lister, of Manningham, Yoik, gentieman, for "Improvementa in pre paring, hactling, and combing wool, and otter tibrous aubainceas, "-Oct. 19.
Frank Clarke Hills, of Deptford, Keat, manufucturing chemist, for " Improve.ngete th treating certaln ealts and gasees, or vapours."-Oct. 19.
Robert Angu Smith, of Mauchester, for "Improvements in the epplication and peoparation of coal tar."-Oct. 19.
Robert William Sievier, of Upper Hollonay, Middiesex, gentloman, for "Impreme ments in the meane of warplog aud wesving plain and figured falsics."-Oct. 19.
Joseph Engene Asaert, of Lille, In the repub Hc of Frapee, machinitet, for 4 If peoved mesus of obtainiog motive power."-Och. 18.
Whllem Brown, of Cambridge Heath, Middlesex, weaver, for "Impromments b menufacturing elatic storkings and other elatic bandages and fabrics,"-Oct. 25,

Boren Bjorth, of Jewry-atreth, Aldgate, for ${ }^{51}$ certsin Improvements in the nee of electro magnetiom, and its application an motive powet, and also other toprovernat in ite application generaily, to eagiact, ahipa, and rallwaya."一Oct. 26.

Jame Clark, of Glestonburg, somerat, menufactarer, for *Improvemente in ite menufacture of boots, shoes, and clogn."

William Church, civll englneer, and Thamas Lewis, woollen-draper, both of Birnifer ham, for "a certaln Improvement or certain improvemente in mechinery, to be employed in making playtaf and other cards, nand also other erticles made wholly, or in pert, of
 paper or pasteboard, part or parte of which
poest where pressure is required."-Oet. 26.

 Gbruat eubstapen."OCl. 26.
Jamea Burrown, of Baich, near Whgan, Lanceshire, eagineer and draphtaman, and George Holcrof, of Manchester, contulting englneer, for "4 certain Itoprovemente, to and applicable to steam engibes in the macbinery or apparatus belonglot thereto, th the over struction ead srangementa of boileps, for the generation of stean, and is the genter and fues used in consection thertwith; parts of which lmprovements are alno agoliontin to other similer purposes."-Oct. 27 .

THE CENTRAL RAILWAY STATION, NEWCASTLE-UPON-TYNE.

Joun Dobson, Esq., Architect.

(With an Engraving, Plate XIII.)

Railway buildings ought to do much for architecture: being quite a new class of structures, erected for purposes unknown until the present age, or, we may say, the present generation, they suggest, or ought to suggest, a character of their own, and fresh combinations in design; and being generally upon an extensive scale. they afford opportunities that have hitherto been of rare occurrence. They are, moreover, especially public works-structures constantly seen by thousands and tens of thousands of persons; and might, therefure, do much towards improving the taste of the public. That they have done so, or have been calculated to do so, cannot, we fear, be asserted of them generally. In more than one instance, expression has been falsified or forfeited by the adoption of some style intended to be reminiscent of mediavalismof times whose spirit and whose institutions contrast very strongly with the present railway age, in which it is either our good luck or our misfortune to live. All the various modes of Gothic are very ill adapted to buildings totally different in purpose, and, therefore requiring to be differently constituted from those in which such modes are exemplified. Either violence-or what is likely to be thought such-must be done to the style itself, by deviatiug greatly from its traditional physiognomy, or mediæval physiognomy will be in contradiction to modern purpose. The character aimed at may be well kept up; but in proportion that it is so, it will be foreign from the express occasion-for what class of mediæval structures are there that have aught in common with railway stations and termini? Is it the castellated with its feudal fortresses ?-or the ecclesiastical with its churches and conventual buildings, its priories and abbeys?-or the palatial, or the collegiate, or the domestic? Is there any one of those styles or classes which supplies what is required for railway structures as a specific class, that ought to carry with them a distinct and appropriate character of their own? The Gothic style does not readily provide open external halls or ambulatories, which, if not indiapensably demanded, are highly desirable adjuncts to every principal railway station where there is a great confuence of passengers. It is only in the form of the cloister that Gothic examples supply any accommodation of that kind; and, besides that the cloister or arcade was hardly ever made an external feature, it is one that carries with it associations that, unless it were to be greatly modified, rather unfit than at all recommend it.

The accompanying engraving (Plate XIII.) is a plan of the magnificent Station that has lately been constructed at Newcastle-upon-Tyne (under the direction of Mr. John Dobson, architect of Newcastle), for the York, Nowcastle, and Berwick Railway Company.

It will be in the recollection of our readers, that at Newcastle the great eastern trunk line of railway from London to Edinburgh is intersected by a main line of railway extending across the island, from sea to sea; that is to say, from Maryport, on the Irish Channel, to Tynemouth, on the German Ocean. The traffic of this cross line has lately been added to that of the original line from York to Berwick, by the leasing of the Newcastle and CarLisle, and Carlisle and Maryport Railways, to the York, Newcastle, and Berwick Company ; and the local traffic of the great northern mining district gives employment to branches from Newcastle to North Shields and Tynemouth, to South Shields and to Sunderland. Thus, with the despatch of the through trains, at least 140 arrivals and departures of passenger trains will take place daily at the central station; and it is to provide for this immense eccumulation of traffic that the present building is required. It will readily be imagined, therefore, that the sheds and erections must necessarily be upon a scale of no ordinary magnitude. In the infancy of the railway system, no one could have ventured to predict the extent to which the inland traffic has increased; and we have therefore, seen the great expense which has been incurred by the London and North Western and other ilway companies to obtain additional room for their principal sta. and the great sacrifice of valuable property which has in constquence taken place. The York, Newcastle, and Berwick Railway Company, however, having had the benefit of the experience of later years, have taken great pains to select a site where the necessary extent of ground can be obtained, with the most ready access to the centre of the town ; and they have been fortunate enough to find a spot which, at a very ressonable cost, and with the destruction of very
few buildinge, combines both these advantages. The manner in which the junction of the northern and southern with the eastern and western lines has been effected,-and the great works required to complete the union of the whole, by means of the high level bridge over the Tyne viaduct, through Newcastle and Gateshead, from the designs of Mr. Robert Stephenson, and under the able management of Mr. Thomas Harrison,-form too extensive a subject to be treated of here, and will probably be the object of a separate notice.

The identity of the central points of the great railway system of this period with the central points of the military occupation of the country by the Normans, has been, in many instances, strikingly exemplified; and in none more so than at York, Newcastle, and Berwick, in each of which towns the railway station closely adjoins the Castle. The station at Newcastle extends from West-moreland-place, the ancient town-house of the illustrious family of the Nevilles, Earls of Westmoreland, situate in Westgate-street; takes in the site of the convent and garden of the Carmelites or White Friars, known as the Spital, for many years occupied as the Royal Free Grammar School, the alma mater of Lord Stowell, Lord Eldon, and Lord Collingwood; crosses the town-wall and ditch at West Spital Tower, and terminates at the Forth, an open piece of ground formerly in the outskirts of the town, and which was bequeathed by sonle worthy of former days to the burgesses of Newcastle, "to walk abroad and recreate themselves," a circumstance which has hitherto prevented its being built upon.
The facade or principal front, exclusive of the hotel, is 600 feet in length. The style of the building is Roman, and the most striking feature in the design is the portico in the centre, 800 feet in length by 70 feet in width, flanked on each side by an arcade the same length, by 35 feet in width, allowing sufficient roon for carriages to drive in at the end of each arcade, to turn, and go out at each end of the projecting part of the portico. The convenience of this plan in such a climate as ours, allowing passengers and luggage to be loaded and unloaded under cover, will at once be apparent : and the grandeur of the effect produced by an arcade and portico of this length will readily be comprehended, even by the general reader, although no drawing will convey an adequate idea of that effect.
The exterior front of the portico is composed of seven arches, each 14 feet in width by 32 feet in height, divided by coupled insulated Doric columns, 89 feet in height, elevated on a basement of $7 \frac{1}{8}$ feet, and supporting a broken entablature and attic of the same style. The arcades on each side are formed of arches, of the same width as the portico, divided by coupled inserted columns. These columns, with the key-stones of the arches, support a continued unbroken entablature, without an attic. The ends of the arcades terminate in front in a niche, having coupled insulated columns on each side, supporting an entablature and low attic. The entrance to the end of each arcade is by an arch 25 feet in width; and the arcades will be covered with groined ceilings of stone, with a circular light at each intersection.
The front of the station-house facing the platform is concave, forming the segment of a circle of 800 feet radius. This form was rendered necessary by the junction of the various lines of railway at this point ; and the elevation is of rubble stone, from Prudham Quarry, of a plain and bold Roman character, the doors and windows having arched heads, with moulded imposts and archivolts; and the long-continued line of these circular arches, with their deep reveals, produces a striking effect.

The shed is 236 yards long, and 61 yards wide, covering an area of 14,426 yards, or about three acres. The roof is composed of iron, divided into three compartments, and supported by columns 33 feet apart, and 23 feet high from the platform to the springing of the roof. The various offices, waiting-rooms, and refreshmentrooms front the platform, with the exception of the bookingoffice and parcels-offices, which extend the full width of the building.

The entrance to the shed is, from the centre of the portico, 40 feet wide, with a stone vaulted ceiling, supported by two rows of columns, which leads direct to the centre of the platform, about 120 feet square. On the right hand is the booking-office, 70 feet long by 36 feet wide; adjoining which are the two parcels-offices, the telegraph-office, lamp-room, and other rooms and offices extending westward, for the engineers, guards, porters, and other officers of the company. A house for the station-master conclude the front range of buildings to the west.
On the left of the entrance is the station-master's office, first, second, and third class waiting-rooms, (containing separate apartments for ladies and gentlemen), washing-rooms, attendants' rooms, and other requisites. Adjoining this suite of rooms is the first-
class refreshment-room, 66 feet long by 33 feet wide. At one end is a distinct refreshment-room for ladies, and at the other end a corresponding room for the bar, each is feet by 23 feet, divided from the large refreshment-room by columns only, and forming with it one large apartment, 96 feet in length. Adjoining the bar is the second-claks refreshment-room, which terminates on the east the range of building facing the platform. The kitchens form the eastern end of the front building, immediately behind the refreshment-rooms, and adjoining the hotel; and are provided with larders, store-rooms, and servants' rooms, on the same floor, with sleeping apartments above.

In addition to the above extensive range of building, it is proposed to erect an hotel, communicating with the station, forming a separate range 190 feet in length by 66 feet in depth; to contain 70 bed-rooms, with a proportionate number of other apartments; and in the basement story, tap-rooms and refreshment-rooms for servants and other persons.

The construction of this building entirely of stone, would, in any other locality, be attended with enormnus expense; but the county of Northumberland affords such an abundant supply of the finest freestone, that this material becomes there not only by far the most durable, but really the least expensive.

Refarences to Plan, Plate XIII.

EAST OF ENTRANCE.
B Station Matert 0 五
I.ont-Lugrage Store.

Waterclosets and Urinaly. 2ne Clast Gentlemen s Wating Room. 2nd Class Ladies' dtto at Chasa Gentlemen's lot Clase Ladies' Refreahment Room lat Class General Kefreshment Room. Ber.
2nd Clase Refreshment Room.
Kitchen and Sculiery.
Pastry and Store Hoom.
Bar Sitting Room.
Store Room.
Wakers', Sluing Room.
Wniters' Bud hioom
Ledien' Altendanzs' Room.
Wahhing Room for lat Class Lediea.
Waterclosets and Washing Room for
2nd Ciass Ladies, - Part of
2nd Class Ladles.-Part of U is
Watercloseta for lat Clasa Ladies.
We had Intended to have given a Perapective View of the balling, but the Engraving, which was entruat d to an engraver nt Newcastly, has turned out so very defective, that we have been obliged to portpone giviug it for a nother opportuaty, that we may do juatice to the tulenta of the architect.-EE.C.E. \& A. Journal.]

CANDIDUS'S NOTE-BOOK,

 FASCICULUS LXXXVIII." 1 muat bave liberty
Wilial, as large a charter a- the wianto To blow on whow I pleace."

J. The organ of D_{e-}, as well as that of Con-structiveness, appears to be possessed by Barry and some other architects. After being taken down and pulled to pieces by critics while living, Nash and Soane are now literally taken down and pulled to pieces by their successors,-by " literally," however, is not to be understood "personally." The "Board of Trade" of the one, and the Georgian palace of the other, have equally disappeared, although the latter is merely blurred or blored out. But then, poor Nash has been dismantled of his Quadrant colonnades, which served as a mantle that cloaked a good many of his architectural sins; besides which, his Brightonian Pavilion is now a wreck, -whether it is to grow interesting by growing into a ruin, remains to be seen. Nor does the work of destruction stop here, for we are now told by the newspapers that Dover-house is to be taken down, in order to make way for a new Colonial-office, to be erected on its site by Mr. Barry; so we must prepare to bid adieu to its charming screen façde-an architectural gem-not indeed of the first magnitude, but of the first "water,"-picturesque, classic, and elegant, although ignored by those who luvish their stale and second-hand extasies ou St. Martin's Church. Most unfortunate Holland! thy Drury-lane Theatre expired, like Semele, in flames; thy splendid Carlton-house portico is demolished, and now thy exquisite little composition at Whitehall is doomed to destruction! Were
there no other site to be had in the neighbourhood, necessity might excuse the act of Vandalism; but excuse for it there is none, while there is a "hoarded-up" gap just by, between Downing and Fludyer streets,-which gap is apparently not only hoarded-up, but treasured-up, as something infinitely too precious to be parted with. Therefore the gap is likely to remain, and Dover-house to be sacrificed to it,-which is only an exemplification of the feeling and nous bestowed by us upon architecture.
II. I am no bigotted admirer of Holland; if I think that be showed himself a classic and un artist in the portico of Carltonhouse, the façade of the ci-devant York, now Dover-house, I freely admit that be showed himself to be no better than an arrant Pecksniff in what he did at the Pavilion at Brighton, before Nash took it in hand; as is shown in the design preserved, most unfortunately for his credit in the "New Vitruvius Britannicus." We look on it with a fit of shuddering, and shudder at the "princely" taste which could adopt anything so vulgar and plebeian,-一and not only so vulgar, but so atrociously vile. But George was then "the Prince;" and had he taken a fancy to have columns turned upsidedown, his taste would have been cried up by his flunky flatterers. That such a truly miserable design-if design it can be calledshould have proceeded from the architect who, in the two other works here mentioned, gave evidence of more than ordinary gusto, is hardly credible,-at all events, quite unaccountable. It ought, however, to teach us something,-namely, to judge of woris of art (be they buildings, pictures, or anything else) by their intrinsic merits,-according to what they are in themselves, and not according to extrinsic circumstances. The opinion that is influenced by the prestige of a name is cowardly and worthless. Even Homer sometimes nods, but we are not therefore to nod again when he does so, in affected approbation and delight. Eren Raffaelle sometimes daubed-at least, what would else be called daubs, have been passed off under his name, and have, in consequence, been admired and extolled for excellences freely imputed to them by the imagination or else by the earsof spectators; whereas, daubs they would have been pronounced to be, had it been known that they proceeded from the atelier (i.e. garret) of some Jack Smith, who lives by manufacturing genuine specimens of the Old Masters. A hungry belly-that great artis mugister, as we are assured by most classical authority it is, may be that same Jack's excuse for the deception. But what excuse is there for those who suffer themselves to be deceived, to be imposed upon and humbugged by names, and who affect transports which they do not feel? Give me the honest critic, him who is not at all biassed by names, but who would as freely condemn either Jones or Wren where they have shown themselves Pecksnifian in taste, as he would Pecksnif himself. "What a strange man you are, Mr. Candidus! And so you really think that both Jones and Wren were sometimes Pecksniffian in their taste." Even so: nothing would induce me to praise, or rather, not to condemn and turn away in diggust from some of their doings. Few will confess as much, because very few have the moral courage of Candidus, who is in that respect libertiue in the extreme, -who is not only nullius addictus jarare in verba magistri, but would animadvert just as freely on a Palladio a Jones, or a Wren, as on some poor devil of a "Jack Smith !" Let others affect milk-and-water modesty: I am content to be sincere in opinion, and fearless in the expression of it.
JII. A most curious accident, and one recorded with singular naivet;, is that which happened to a certain architect in a book of designs published by him; it being expressly stated in the letterpress, that, in one of the elevations, the offices which ought to have been shown, were "omitted by accident." Very much nearer the mark would it have been to say, that the omission was occasioned by gross stupidity and uupardonable blundering. "By accident," forsooth! Would "accident" be received as an excuse for a painter sending home your portrait without a nose to your face, he having through sheer forgetfulness omitted that interesting, or at any rate indispensable, feature? Certain it is that, with regard to the unlucky elevation here alluded to, the omission was discovered before the plate was published, since otherwise, it would not have been apologised for; which being the case, why was not the error itself corrected? One, and indeed the only valid reason may have been, that the design looked all the better for the accident. If that was not the real reason, the only other imaginable one is, that the expense of altering the plate could not be afforded by the poor devil who published his designs. The reader will agree with this last hypothesis, when informed that the work here referred to was by Suane! That poor man seems to have been not merely the sport, but the very victim of "saccidents;" for, on the very next page of that book, we read, "the arched recesses were semicircular in the drawing, but by a
mistake of the engraver, are made considerably more !" Nor is that the finis with regard to mistakes, for the printer-or else Soane himself, committed many more, by "omitting by accident" the explanations of the letters of reference in some of the plans. And in their plans, or in what is dependent on and arises out of plans, the chief, or, to speak more correctly, the sole merit of that collection of Soanean designs consists; many of the elevations being little short of the downright ugly and hideous. Soane should have confined himself to plan and contrivance: they were his forte. His ground work was often truly admirable; his superstructure generally quite the reverse. 'The work of Soane's here referred to is remarkable of its kind; for, professing to show only "cottages, villas, and other useful' buildings," it includes a design for what is neither a very cottage-like nor very utilitarian edifice, to wit, a National Mausoleum. Soane seems to have had a pious penchant for burying people : for the matter of that, he would not have scrupled to bury the whole nation alive, so that he had the erecting its mausoleum, or mouseoleum, as - terms it; which last, I suppose, means nothing more nor less than a mouse-trap.
IV. Pugin does not at all shine in the parliamentary "blne book" which shows his design for Maynooth College, and those by different architects of some other public buildings that are now in progress in Ireland. "Maynooth" would furnish an illustration for Mr. P.'s own work entitled "Contrasts," it being a sufficiently striking sample of pseudo-Gothic, alias modern Gothicising. It is only Pugin's professed admirers-those who make it a point of honour to admire whatever proceeds from him, who can look with complacency on such a dowdy and prosaic design, which possesses neither style, nor quality that atones for the dereliction of style. Still it may, on that very account, prove not a little satisfactory to some,-those, to wit, among his professional brethren who may have taken offence at Welby Pugin's supercilious tone towards them in his "Contrasts" and other writings. Perhaps they will retort upon him, and ask if Maynooth is to be regarded as an example of what can be achieved by those who boast of being inapired by "the faith of our forefathers."
V. Place aux dames! A lady-writer on architecture is so great a phenomenon-such a veritable black soan (applied to one of the fuir sex the simile sounds somewhat antithetical), that Mrs. Tuthill deserves to have a separate article, or at least an entire Fasciculus devoted to her, more especially as she shows herself to be a reader of Candidus, and has paid him the compliment of transferring to her own pages one or two of his pithy paragraphs. Still I am not so much indebted to her for the compliment, as she is to me for those little bits of architectural philosophy which sparkle like gems amid the dulness of her book, since she has not had the grace to acknowledge to whom they belong. Inverted commas mark them for quotations, and that is all; except it be that they are jumbled up with extracts from other writers, without the difference of proprietorship being hinted at. Suum cuique, my good lady, is an honest maxim, and the best policy; for your own unscrupulonsness now relieves me from all scruples and qualms of gallantry, and emboldens me to speak out somewhat freely. Privilege of sex cannot be allowed you : you are of the feminine gender,-and so are "man-of-war" ships ; so also are amazons, but their sheship did not shield those belligerent ladies from wounds in the brunt of battle. I do not deny you the right of wielding that feminine implement the scissors; but I do disapprove of your making use of the paste-pot at the same time; and your book is a notable sample of that species of literary manufacture which goes by the name of "scissors-and-paste work." Perhaps you will say that it is genuine patch-work, and, as such, is a very suitable occupation for your sex. That a good deal has been ere now written apon architecture by women I do not dispute ; but then, till now they have invariably been old women, and of the man-kind, whereas you are neither the one nor the other. "What then," you will say, " may not ladies, who are not old ones, turn their attention to architecture? Why should they be interdicted from cultivatingataste for that branch of fine art which has so much to do with taste generally ?" Why, indeed, should they? Architecture has, as you observe, been strongly recommended in a paper in the "Foreign Quarterly," as a study particularly udapted to enter into the list of female accomplishments ; and you might also have brought forward Wightwick's opinion to the same effect. Nor do I dissent from them: there certainly is nothing to hinder a woman from understanding architecture-that is, the msthetics of building, just as well as a man, or indeed a great deal better than many men, since some of them mistake mere building for architecture. Proficiency in the study is quite irrespective of sex : it depends upon the intelligence, the application, and the relish brought to it. Bin-
cerity of study, diligence of reflection, are the sine qua non: whereas you seem to have overlouked some of the most indispensable qualifications for the proper execution of the task which you undertook; and which, in the vastness of your ambition, you extended to every known style of the art, including some that no one knows anything about at all. You appear to have set up for a teacher, while you yourself were only a learner, and not very perfect in your lessons. You show that you have spoken by book and by rote, feeling secure in, and trusting to, the greater ignorance of your readers. Come, cheer up, my good Mrs. Tuthill: though you get no fiattery from me, you may still get plenty of puff from other critics; therefore the acidity of my remarks may be useful to you, by correcting the fulsomeness of theirs. Considering-you must excuse the ungraciousness of that qualifying expression,-considering, I say, that it is the production of a female pen on a mas culine subject, your book is not so very poor a book after all. At all events, it is something in the bodily shape of a book-a goodlysized uctavo volume, with your name on the title-page; which is far more than Candidus can boast of having ever sent forth to the public. Yours is, besides, a funny book-funnier perhaps than you intended it to be. One of its drolleries is that of omitting in the list of those who have distinguished themselves in architeoture, such recent celebrities as Cagnola, Schinkel, Gärtner, and several others, and immortalising such obscurities as Joel Johnson, and John Linnell Bond. Oh! Mrs. Tuthill, Mrs. Tuthill, you are a very roguish creature! To think of your immortalising-and immortal they now will be in your book-such poor devils in all their littleness, is no doubt very laughable, but partakes too much of a mauvaise plaisanterie.
VI. Loudon's "Architectural Magazine," and others of his publications, have been very freely laid under contribution by Mrs. Tuthill, who has copied several woodcuts from them, but without any acknowledgnent of their being copies, and without even mentioning the names of those by whom they were designed. At p. 307, for instance, she has re-produced from the Supplement to Loudon's "Encyclopedia," what she very justly calls "a beautiful English villa in the Elizabethan style," and recommends as a model for residences of that class in "the northern, middle, and western states ;" but very ungraciously withholds from Mr. E. B. Lamb the credit of having designed it, although his name is attached to it in the publication from which she pirated-or, to speak more pret-tily-borrowed it. The suppression of its author's name is perhaps less unjust than it otherwise would be, because she exhibits a fac-simile of the original cut, with all the vexatious blunders which Mr. L. complained of and pointed out in the letterpress accompanying his design, observing, that owing to the ignorance of the engraver, "the parapet appears like a Grecian guilloche instead of Gothic perforated panelling; the arches do not present the easy curve of the Gothic four-centred arch; and the scroll label over the projecting bays assumes also a different character." Yet, notwithstanding that these provoking infidelities of delineation were plainly enough pointed out by the author of the design, they are not corrected, neither is there a syllable of caution against them; so that the serious solecisms and errors in the cut may unwittingly be copied together with the real merits of the design. Call you that honesty, Mrs. Tuthill, 一or can gou fairly call yourself an honest woman?
VII. "Simplicity of style in architecture," saya Mrs. TuthillMrs. Tuthill again!-"is in itself a beauty." The dictum requires, however, to be qualified by adding, provided the simplicity itself be masthetic, and accompanied by other wathetic qualities. "A Doric temple," she observes, "is perfectly simple; yet what object of art is more imposing and beautiful ?" No doubt : the Greek Doric temple was worked by refined and truly artistic simplicity, and by perfect consistency and completeness of expression. The dificulty is to intuse an equivalent degree of similarlo-refined simplicity into structures very differently constituted, and which, therefore, ought to be stamped by appropriate character of their own. Hardly can Mri. T. mean to recommend the antique Doric temple as a model at the present day, it being one which it is utterly impossible to adhere to. In fact, Greek temples are the stumblingblock against which many American architects-of English ones I say nothing-have tripped themselves up. A mere portico has generally been made by them their Alpha and Omega of design. They have accordingly showed their classical taste and utter lack of invention by applying that convenient ready-made feature, the portico, and tacking it on to most Pecksniffian buildings, without the least suspicion that they were thereby out-Pecksniffizing Pecksniff himself. Mrs. T.'s own book gives us a sample of the kind at page 300, assuring us that "the beautiful portico is copied from the Erech-
theum." All the more pity then that it should be stuck on to a little smug sash-windowed house. It seems, however, that "the front is of white marble." All the more pity again, that white marble should have been wasted upon a design for which lath and plaster would have been quite good enough. The turning Erechtheums and Parthenons into prose is a notable achievement, truly!
VIII. Although she indulges in a good deal of young-lady-like writing and feminine sentimentality, much ready-made enthusiasm (but of a rather threadbare sort) included, Mrs. T. is a very matter -of-fact sort of lady,-a mere materialist in criticism. Artistic ides and design, or the absence of them, are to her as nothing in comparison with the merit derived from such materials as white marble or granite. The adverting to the mere circumstance of material, when every other is passed over, does not bespeak much competency to the task in one who professes to instruct others in architecture, and direct their taste. Mrs. T.'s criticism never ventures beyond a poor, wolitary, mateless, forlorn-old-bachelor, celibatarian epithet; and even that is not only exceedingly loose and vague, but sometinses quite misapplied aloo. If we may believe what she says, Yale College Library is a "beautiful edifice;" but if we are to believe what she shows, and to trust to our own eyes rather than to her words, it must be truly execrable in every respect. That building and Hart ford Athenmum (of which a print is also given) are both by the same architect (H. Austin), and are both meant to be in the Gothic style-of the Strawberry Hill period, it may be presumed. Which is the most hideous of the two-to which of them the "Detur Turpior"" ought to be assigned, it would be difficult, perhaps impossible, to decide. Their similarity of nerit-or demerit, is so great, that Mrs. T. herself has been forced to employ precisely the same terms for their characterization, calling the one and the other "a symmetrical and effective building," -a proof that her ctock of expressions is but a very scanty one. "Effective" enough they both are, no doubt, and so is-an emetic: and just like an emetic, it is, that they operate; at least, if they resemble the repreeentations of them in the book. Some time ago, an American journal made mention of a fish without eyes; and it would seem that the Americans themselves are altogether without eyes (or eye) for Gothic architecture.
IX. It was to be supposed that Mrs. T. would avail herself largely of the opportunity of chronicling for fame some of her own countrymen, in her "Chronological Trable of the Principal Architects; instead of which, she does not there insert the name of a single one, assigning for the omission the following not very logical reason :-" It would be very desirable to add here a list of eminent American architects; but so many of the most distinguished are still living, that we must deny ourselves the pleasure? ${ }^{*}$ Oh, Mrs. T.! Mrs. 'T.! What a woman's reason! You are woman all over!
" In reasoning weak, in captivatinn strong."
Dead worthies, it seems, are not to be spoken of, because the race is not extinct, and other worthies are still ulive. Very easily might you have helped yourself to some notices of American architects, quite sufficient for your purpose, from Dunlop's "History of the Arts of Design in the United States"; but you scorn to borrow or pilfer from anybody.
X. At any rate, it cannot be said that Mrs. Tuthill has failed to enrich her volume with a glossary; and a particularly rich treat it is to the lovers of fun and laughter. I, for one, was certainly guilty of man's-laughter, when I read her definition of "vertical." I would take a thousand bets that no one would ever puess it. She does not indeed actually say that "vertical" means" horizontal;" but she says-never would you find it out of yourself-that it means "opposite;" which being the case, I am quite rertical-in opinion I mean, and in opinion only-to Mrs. T. How fortunate, or else how unfortunate, it is that the Atlantic is between us!
XI. Among those with whom Mrs. T. bas got into debt by her literary borronings from them, is Mrs. Jameson ; of whose description of the Königsbau, at Munich, she has availed herself, without having the grace to acknowledge its authorship, or the policy to quote it in evidence of the competency of a female pen. However, if she has defrauded some of her literary creditors, she has paid off one of the smallest of them with usurious interest; oamely, the gentleman to whom she has thought proper to apply the epithet "learned," as the most charncteristic one which she could select, -or it was the one perhaps which was just then at the point of her pen, otyling him emphatically "the learned Briton"! Possibly, such epithet maj; as a general one, be well
merited by the what-shall-1-call-him to whom it is applied; yet hardly appropriate to the actual occasion, since the worda she quotes are only a sample of what Sam Slick calls "soft samder." Go to, Mrs. T.,-where you deserve to go to, I don't say; but go to, for a very quizzical and roguish woman.

OCCASIONAL NOTES UPON ART.

By Faedericx Losh.

I. We admire true art, on account of its ennobling tendency. This has its origin in principles which, founded in the constitution of our nature, are the foundation of excellence. It would not be a difficult, though a very interesting task, from the varied and honoured labours of the ariist, to show that success demands, upon his part, the exercise of the highest mental faculties. Real art is an evidence of these-a manifestation of ekill and manly energy. It proclaims with eloquence its intrinsic dignity. How often, for instance, do the stately monuments which her genius has reared force themselves on our regard, rivelting our attention, and commanding our admiration, even when men are intently occupied in the bustling transactions and exciting pursuits of life! When the appeals of art are so powerful, it would be idle to say anything in vindication of its character, were it not that there are creatores upon whose minds they seem to make no impression, and who rudely pass them by, or only cast upon them a look of cold indifference. To write, however, on subjects of pure and sublime art is to eulogise them, and at the same time, to give to the world a history of the good they have effected; but this has been felt and acknowledged, from time immemorial, by all persons who have claims to our respect for their quick sensibility to beauty and lofty elevation of intellect: for, to the poet they have ever afforded a congenial and favourite theme; to the wealthy an opportunity of gratifying their own taste in a judicious encouragement of talent ; nor has posterity ever forgotten those artists whose services and beautiful emanations have thrown such a glory over their vocation, but have recorded their names on the roll of fame, as benefactors to their race. There is no reader of those remarkable poems, the Iliad and Odyssey, but must remember the frequent allusions which Homer makes to the works of the skilled Sidonian artists and cunning artificers; with what warm sympathy, but, at the same time, with what propriety he introduces descriptions of various instruments and accoutrements of war-royal and sacerdotal vestments curiously woven-the shield of the hero Achilles-with works of larger construction-architectural fabrics-such as in after ages were conceived by a Palladio, or by a Sir Christopher Wren. He considers all these as growing under the superintending eye and inspiration of personified Divinity-be it Pallas or other goddess, the beauty of their contrivance and the transcendancy of their invention being referred to a superior power, who atrengthened the artists' energies. Moreover, he reminds us ho the workmanship added imneasurably to the value of the material, by the superiority of mind over matter. Yet, whether it was the architect who built the lofty pile, or the potter who fashioned utensils of domestic use into forms of beauty, each, by the selection of the most durable materials, insured to his work the greatest permanence possible. The lower departments of art receired a high degree of artistical effect from the refined feeling and knowledge of harmonious composition applied to them; it being an important aim in those decorative and ornamental arts which adorned the palace or the temple to cultivate beauty of design in the fullest extent; so Mineria is represented as watching over and herself occupied in the "illustrious labours of the loom;" but it was not the stuff of the tapestry, nor the precious stones that composed the floor of rich inlay, but the design that graced it, which was admired and commended. In works of fictile manufacture, where the finer and most delicate skill of the hands was visible, the splendid vase is praised, not because its material was costly, but because it was "figured with art that dignified the gold," and reflected the image of a master-mind. We witness, in all this, a most consummate taste and judgment. So Ovid, in the opening of his glowing description of Phreton:-

* Regia Soli erat sublimibus alla colummip,
Clara micante auro, flammasgue imilante pyr opo i
Cujus ebur nilidum jastigia tsmma regelaf:
Aryenti bifore radiabant tumince valta,
Materiem superabut opus."

The bard of the Iliad says, the inventor of these elcgant arts was
a wise man and that he must have acted from preoepts delivered to him by Minerva :-

$$
\begin{aligned}
& \text { "Twas a wise artist fram'd, his wisdom taught } \\
& \text { By precepts from Minerva." }
\end{aligned}
$$

11. Lord Bacon's definition of art-namely, "a proper disposition of the things of nature, by human thought and experience, so as to answer the several purposes of mankind," clearly expresses that the success with which the mind achieves that desirable end, and the means it adopts for the production of the beautiful, depends upon such high attainments as can be expected only after a long course of observation and experience. Art will exert a beneficial influence upon society, and be a realisation of beauty, according to the wise and "proper disposition of the things of nature." Herein is pointed out the necessity of a knowledge of first principles, which, when systematised by reasoning and taste, form a sure foundation whereon the artist may securely rest in all his operations. The amassing together a variety of perceptions requires the perfection and activity of the organ of vision, and the power of combining and representing figures in their most natural and appropriate forms,-is acquired only after a repetition of mamual efforts, aided by the co-operation of the mind, and added to much practical wisdom. Such representation of sensible objectsnot, however, strictly copied as they are, but improved to what they should be-portrayed truly, yet poetically, demands a system of varions and well-approved precepts, for instruction in which man must look with the cautious and careful eye of observation into the lars which have governed the works of the Divine artist. The words of Paley, when arguing the existence and attributes of God from his works, -"Contrivance proves design, and the predominant tendency of the contrivance indicates the disposition of the designer," apply equally to human productions; and we correctly infer from their elegant beauty or imposing grandeur, the artist's endowments.

1II. The well-understanding of the sound principles of art (by which only it can be learnt and appreciated) prevents the commigsion of solecisms and barbarisms. Pursued on principles contrary to nature and just reasoning, its results are generally absurdities, and sometimes those one-sided, partial, and imperfect views, which are nothing less than proofs of insanity. Witness Borromini in architecture ; or, who was worse, Father Guarini, the specimens of whose architectural achievements in Turin look more like the sugar-and-plaster compositions of a pastry-cook and confectioner ; or Bernini, who in sculpture, imitated the style of Rubens; and surely nothing could be so bad in taste as to make the drapery of his sculpture resemble that of painting, or anything it in reality is not; for in the imitative arts, as in morality, the advice esto quod exse videris, should be recollected. These are examples of an individual caprice, of a love of extravagance, and of a spirit so opposed to all truth, that they deserve censure; and the more so, because they are apt to captivate the ignorant and unrefecting. So necessary is it that all should be under the guidance of reason and intention, that he who does not attend to what these governing faculties prescribe as binding and imperative, but acts only from impulse or chance, forfeits all right to the title of artist. But worthy of all admiration is he who exhibits a control over himself and his, perhaps, too ardent imagination; who regulates his enthusiasm by reason; who makes his genius conform to the rules of art; and rising above every particular and partial, repreeents only the universsil truth. For in this, as most other pursuits, it.will be best to preserve a medium. Extremes on either side are to be shunned.
"Alliùs egresarus, caleatia tecta cremabis; diferime, terras ; medio tutistimas ibis."

Ovib.

ON THE STABILITY OF FLOATING BODIES.

The doctrine of stability is of much greater importance in the constructive arts than is commonly imagined; it is, moreover, a difficult subject, and when considered in all its generality, it requires a much more extensive knowledge of mathematical investigations, than is possegsed by the greater part of that class of individuals engaged in mechanical pursuits; hence the reason Why the subject, notwithstanding its importance, is so little understood. But although the general investigation of the theory is attended with considerable difficulty, yet there are cases of a highly interesting and practical character, in which the difficulties
are but slight, and which may consequently be nuderatood by every person moderately acquainted with the elementary departments of science; and it is to those cases which, in the present instance, we intend the more especially to direct the attention of our readers. The following ure the conditions on which the equilibrium of flotation depends. A solid body, floating on a fluid which is specifically heavier than itself, will remain in a state of equilibrium or balanced rest, when it has sunk so far below the surface, that the weight of the fluid displaced by the immersed portion of the body, is exactly equal to its whole weight, and when the centre of gravity of the whole floating mass, and that of the immersed portion of it, are situated in the same vertical line.

If the floating body be inclined from the position of equilibrium through a very small angle, by the action of some external force any how applied, the question of stability consists in determining whether the body, when left to itself under such conditions, will continually recede farther and farther from its position of equilibrium until it finally oversets, or whether it will librate about some axis, until it ultimately restores itself to the position which it occupied previously to the action of the disturbing force.

In the following inquiry we shall confine ourselves to that particular case of the problem, in which the first condition of equilibrium is supposed to be satisfied, in whatever position the floating body may be placed; that is, when the weight of the whole floating mass is exactly equal to the weight of the fluid displaced by the immersed portion of it.

Every solid which is generated by the revolution of some plane about a fixed axis, and in general, every solid body having an axis about which the opposite parts are symmetrically arranged, if it be specifically lighter than the fluid on which it floats, and if it be placed in the fluid with its axis perpendicular to the horizon, may sink to a position in the fluid, where it will remain in a state of quiescence or balanced rest. In all such bodies, there are troo opposite positions in which the equilibrium obtains; but there is only one position in which a permanency of flotation can take place.

If the floating body be homogeneous, or uniform in density throughout the whole of the mass, the centre of gravity of the entire body will be situated above that of the part immersed, or, which is the same thing, that of the displaced fluid; but if the density of that part of the body which is below the plane of flotation* be greater than that of the part above it, the centre of gravity of the whole floating mass may be lower than that of the immersed part, or of the displaced fluid. Indeed, the centre of gravity of the whole floating mass may always be placed below that of the immersed portion of it, by increasing the density of the lowen, and diminishing that of the upper portions; and in this way may the stability be augmented in any ratio at pleasure.

If a floating body be any how cut by a plane, in respect of which the opposite parts are symmetrical, or similarly placed; then, any portion of the body cut off by a plane perpendicular to the former, will also be symmetrical in regard to the same plane; hence, we infer, that if a body, symmetrical with respect to a certain plane passing through it, be partially immersed in a fluid with the said plane vertical, the immersed portion of the body will also be symmetrical as regards that plane; and the centre of gravity of the whole floating body, and that of the part below the surface of the fluid will lie in that plane; consequently, for every such plane as that here specified, which can be taken in a floating body, there will be at least one position of equilibrium. These things being premised, we are now in a condition to investigate some of the simpler cases of the stability of flotation.

Problem.-If a uniform prismatic body, whose transverse section is a triangle, be made to float upon a fluid specifically heavier than itself in a given ratio, with one of its angles downwards, it is required to determine the different positions in which it will float in a state of quiescence.

Let A B V, in the annexed engraving, be a transverse gection of the prismatic body, floating on the fluid with the angle AVB downwards, and let the straight line $C D$ be the line of common intersection of the plane of the triangle with the surface of the fluid, or that which, by the writers on mechanics, has been called the water-line.
Then, since the specific gravity of the fluid, as well as that of the floating body is known, the area of the trianyle CDV is known, being to that of the triangle A BV, as the specific gravity of the floating body is to that of the fluid on which it floate.

Let the floating body be a prism of fir, of which the specifie

[^48]gravity, as compared with that of water is, as 11 to 80 ; and let the sides of the transverse triangular section be respectively as follows:-viz., A B = 36.5 inches; $A V=44.2$ inches; and $B V=53 \cdot 1$ inches.

Then, since the prism is uniform throughout the whole length, the weights and solidities of the floating body and the immersed part of it, will be truly represented by the areas of the triangles ABV and CDV. Now, by the rules of mensuration and by logarithms, the area of the triangle $A B V$ is found as follows.

 and, consequently, the area of the immersed triangle CD V, being to the whole area as 11 to 20 , is

20: $11:: 798 \cdot 183: 439 \cdot 00065$ square inches.
Bisect the sides of the triangles $A B$ and $C D$, in the points at F and P; draw VF and V P, and from the vertex V, set off $V G$ and V g respectively equal to two-thirds of $V F$ and $V P$; then, by mechanics, G is the position of the centre of gravity of the triangle ABV, and g, that of the triangle CDV ; join the centres G and g by the straight line $G g$; then, according to the second condition of equilibrium, $G g$ is a vertical line.
Since the area of the triangle CDV is known, the horizontal line $C D$ touches a given hyperbola described with the asymptoles $A V$ and $B V$; and $C D$ is bisected by that curve in P, the point of contact. Join PF, then PF is parallel to $G g$, and because $G g$ is vertical, P F is also vertical, and consequently perpendicular to CD, which is horizontal ; it is likewise perpendicular to the hyperbola Q PR which CD touches in P. Therefore, since the position of the point F is known, the position of the straight line $P F$ can be found; and for each perpendicular that can be drawn to the curve of the hyperbola from the point F, there will be a position in which the prism, whose transverse section is the triangle A BV, can float in equilibrio with the vertex downwards; and the different positions of PF which satisfy the conditions of equilibrium, may be determined, either by the solution of an algebraic equation of the fourth degree; or geometrically, by the intersection of two hyperbolas, of which the elements of construction are known.
When a body, floating permanently on the surface of a fluid specifically heavier than itself, has its equilibrium of fotation disturbed by the action of sone extraneous force-that is, when the centres of gravity of the whole floating mass, and of the immersed part, are not in the same vertical line; if a vertical plane be made to pass through those centres, the body will revolve upon an axis perpendicular to that plane, and passing through its centre of gravity; for when the impulse communicated to a body is in a line passing through its centre of gravity, all the parts of the
body move forward with the same velocity, and in lines parallel to the direction of the impulse communicated. But when the direction of the impulse does not pass through the centre of gravity, as is the case in the present instance, the body acquires a rotation on an axis, and also a progressive motion, by which the centre of gravity is carried forward in the same straight line, and with the same velocity, as if the direction of the impulse communicated had actually passed through the centre of gravity; and it is a curious mechanical fact, that the rotatory and progressive motiona thus communicated, are wholly independent of one another, each being the same in itself as if the other did not take place.
This follows from the general mechanical principle or law, that the quantity of motion in bodies estimated in a given direction, is not affected or changed by the action of the bodies on one another. The revolution of a body on its axis is produced by an action of this kind, and therefore it can neither increase nor diminish the progressive motion of the whole mass moved. When a single impulse only is communicated to the body, the axis on which it begins to revolve is a line drawn through its centre of gravity, and perpendicular to the plane which passes through that centre and the direction in which the impulse is communicated.
It is the nature of some floating bodies, when their equilibriam of flotation has been disturbed, to return to their original position, after making a few oscillations backwards and forwards, upon an axis similar to that above alluded to. But others, again, when their equilibrium of flotation is ever so little disturbed, do not resume their original position, but continue to revolve on an axis passing through their centres of gravity, until they attain another position, when they are again in equilibrio. In the former case, the equilibrium is s said to be stable, and in the latter it is unstable, and the body oversets.
When the floating body is made to revolve from the position of equilibrium, by the action of some external force; if the line of support* move, so as to be on the same side of the line of pressure, \dagger as that part of the body, which becomes depressed below the surface of the fluid in consequence of the inclination from the state of equilibrium ; then, the equilibrium is stable, and the body will restore itself; that is, it will resume the position which it occupied before it was subnitted to the action of the deflecting force. But if the line of buoyancy, or the line of support, be on the same side of the line of pressure, as the emersed or elevated part of the floating body, then the equilibrium is unstable, and the body will recede farther and farther from its original position, until it finally oversets.

When a body floats upon the surface of a fluid specifically heavier than itself, the force which tends to make the body revolve about its centre of gravity, is equal to the weight of the body, acting on a lever, the length of which is equal to the horizontal distance between the line of pressure and the line of buoyancy; and when this distance vanishes, that is, when the centres of gravity of the whole body and the imnersed part of it are in the same vertical line, the force tending to cause the body to revolve is equal to nothing.
When the floating body is any how inclined or deflected from the position of equilibrium, and when the line of buoyancy falls on the same side of the centre of gravity of the whole floating mass, as that part of the body which becomes depressed below the surface of the fluid in consequence of the deflection, the lever by which the force acts is said to be affirmative, and the force tends to establish the equilibrium, or to restore the body to its original position. But on the other hand, when the line of buoyancy is on the same side of the centre of gravity of the whole body, as that part of it which becomes elevated above the surface of the fluid in consequence of the deflection, the lever by which the force acts, is said to be negative, and the force tends to overset the body.

These are the chief principles necessary to be known in taking a cursory view of the subject; and we shall now proceed to show in what manner the momentum of stability is to be calculated.
Let the vertical transverse section of the floating body be uniform, or the same from end to end; then put-
a = area of the transverse section of the inmersed part of the body;
$d=$ distance between centre of gravity of the whole aud immersed part ;
$l=$ length of the water-line, or the base of the immersed sectiou;
$\Phi=$ sunall angle of inclination or dellection;
$\boldsymbol{v}=$ whole weight of the flouting mass;
$m_{n}=$ momenium of stability.

[^49]Then, on the supposition that the angle of deflection is very small, as it must be in all practical cases, the momentum of the force tending to restore the equilibrium of flotation is, by the principles of mechanics,-

$$
m=\left(\frac{l^{3}}{12 a}-d\right) w \sin \varphi .
$$

This equation is general, whatever may be the form of the floating body; but the subsidiary calculations are more intricate in some cases than in others, and in consequence, the formula in those cases will be more difficult in its application, and the labour will be much more tedious and irksome.

By attentively examining the constitution of the above equation, there are certain inferences that offer themselves, which it may be useful to specify. They are as under :-

1. If the first term of the parenthetical expression $\frac{l^{3}}{12 a}$ be greater then the second, d, the leverage is affirmative, and the force tends to restore the body to its original state.
2. When the two parenthetical terms are equal, there is no force teuding eitber to restore or destroy the equilibrium; for, in that case, the momentum is nothing.
3. When the first of the parenthetical terms is less than the second, the leverage is negative, and the force tends to destroy the equilibrium and overset the body.
4. When the weight of the body remains constant, the stability is proportional to the expression $\left(\frac{l^{3}}{12 a}-d\right) \sin \phi$.
5. When the centre of gravity of the whole floating mass is lower than the centre of buoyancy, or that of the part immersed, the term d, or the distance between the centres of gravity, is negative, and the whole parenthetical quantity $\left(\frac{l^{3}}{12 a}-d\right)$ becomes affirmative; a circumstance which greatly increases the stability of flotation, as we have already intimated.

If, in the vertical line passing through the centre of gravity of the whole body and that of the immersed portion, there be taken a point distant from the centre of buoyancy, by a quantity equal to $\frac{b}{18 a}$, that point is called the metacentre by naval architects, because it must always be situated above the centre of gravity of the mass, in order that the body may float with stability. These things being premised, we shall now give an example of the method of calculating the momentum of stability, according to the above formula ; and if the process be well considered in this particular case, there can be little difficulty in applying the same principles to similar cases, even when the section of the body is of a very different form.

Example.-In the prismatic body of fir formerly mentioned, and of which we have given a transverse section, the length of the water-line C D is $25 \cdot 8$ inches; the vertical distance $G g, 8 \cdot 5$ inches, and the whole weight of the floating body $5,200 \mathrm{lb}$.; what is the momentum of stability, or with what force does the body endeavour to restore itself, when deflected from the equilibrium through an angle of 5 degrees.

By a previous calculation, we have found the area of the immersed triangular section to be 439 square inches, omitting the fraction ; hence, by the formula, we have-

$$
\text { Momentum }=\left(\frac{25.8^{3}}{12 \times 439}-8.5\right) \times 5800 \times \sin 5^{\circ}
$$

The length of the water-line is $25.3 \mathrm{in}$.
log. $1 \cdot 4116197$
$95 \cdot 8^{3}=17173.508$
log. 4"2348591 Area of the immersed section $=439 \mathrm{sq} . \mathrm{in}$. ar. co. log. 7.3575355 Constant number, 12 ar. co. log. 8.9808188

Natural number, 3•8599
log. $0 \cdot 5132134$
Consequently, we have $\frac{b^{3}}{12 \times a}=\frac{258^{3}}{12 \times 439}=3.2599$; which, being less than the term $d=8.5$ inches, the third inference shows that the leverage at which the weight of the body acts is negative, and the furce tends to overset it, the momentum of instability being $(-8.5+3.2599) \times 5200 \times 0.08716=-8974.981$ pounds.

FIRE-PROOF BUILDINGS.

The advantages of building our dwellings fire-proof is so generally acknowledged, that it is needless to say a word in its favour; but the great difficulty in the way has been the expense in constructing the floors and ceilings. To Dr. Fox, of Bristol, are we indebted.for the erection of buildings that are fire-proof, and at the same time quite as economical as the ordinary timber-built floors. About 15 years since, Dr. Fox built a private asylum at Northwoods, near Bristol, on a large scale, containing no less than 120 rooms. Externally, it is built in the ordinary way with brickwork, but the floors are constructed as shown in the annexed engraving; and in order to make our description practical, we shall describe the weight and size of the bearers as adapted to one of the rooms at Northwoods. The floor is 18 feet by 13 feet; the joists, which are placed lengthwise, are of cast-iron, of the 1shape, and are 3 inches deep at the bearings, and $5 d$ inches deep in the middle; $\frac{3}{4}$ ths of an inch thick at the bottom, and $\frac{8}{8}$ inch at the top. The depth includes the flange at the buttom, which is $2 \frac{1}{2}$ inches wide, and $\frac{7}{8}$ ths of an inch thick, on the underside. Each joist weighs $15 \frac{1}{2} \mathrm{lb}$. per foot, and they are placed 18 inches apart.

Upon the flanges are laid stout fillets of wood, about 1 inch square, clove out of short ends of deals, with a space of about half an inch between each slip. Upon these fillets is laid a thickness of coarse mortar, portions of which pass through the spaces, and form a key for the ceiling. Upon the coarse mortar is placed a laver of pugging or concrete, and finally a composition composed of lime, ashes, and sand, well beaten down, and trowelled on the face. After the whole has become tolerably dry, linseed oil is rubbed over the surface, which renders the floor perfectly non-absorbent of moisture. The ceiling is then put on below-first a coating of lime and hair, then a floating coat, and at the conclusion the setting coat. When the whole has stood for a few days, the floor forms a solid mass, and is very stiff and strong.
Models, showing the form of construction, may be seen at Messis. Fox and Barrett's offices, 46, Leicester-square.

References to Engrating.

a, Plaster Criling, formed in the ordinary way.-b,b,b, Cast-iron Joists. c, Strips of Wood, Slate, or other material, with narrow apares between each.-d, a coat of coarse Mortar, forming a bed for the concrete above, and a key for the reiling below.-e, Layer of concrete or pugging.- f, a facing layer of composition, forming a floor of great hardness, toughness, and durailitity, and perfectly fiee from absorption.

Blast.Furneces.-Remarkable Accident.-At one of our blast.farnaces, blown with heated air, while the blast was shut off for a few minutes, as is usual after casting, an explosion touk place inside the pipes, which, from its effects, we consider extraordinary. In the pipes immediately outside one of the stoves for heating the blast, and at the end noat the furnace, is astop-valve- circular dise of cast-iron, $1 \frac{1}{2}$ ioch thick, and 12 inches diameter, cutting off the connection between a line of cold-blast pipes and the hot-air pipes. This valve, by the force of the explosion, was literally shattered. Several of the joints in the line of cold-blast pipes, with wbich the breaking of this valve opened a connection, were blown out, and another atop-valre, in the large main, at a distance of 20 yards, was also bruken in pieces; there the explosive mixture eacaped in flame at the waste. The furnace, at the same time, belched out a great quantity of the materials in front. Will any of your scientific correspondents have the kindness to explain the nature of the explosive compound likely to be formed in the hot-air pipes? It appears to have generated in the furnace, and fired by the pipes of the atove being red-hot, which they very soon become (if the Gireman is at all careless) When the blast is not passing through them.-An Old Sugeriber: Merthyr Tydutl, Oct. 31.-Mechanics' Magaztre.

HIGH-PRESSURE STEAM GENERATOR.

Invented by J. A. Leon, C.E.

In the beginning of this century the tubular boilers of Woolf and Rumford were used for generating steam. Soon after Trevithick's flued-boilers were introduced, it was found that motallic tues surrounded with water were more effectunl than tubes filled with water, and surrounded by the prodncts of combustion. Since, the number of flues in a boiler increased successively until they formed the multiflux locomotive boiler.

Flued boilers ought to be used only where they cannot be avoided, as on railwaya or for navigation. The space occupied by the flues reduces the size of the stenm-chamber. The water at its maximum height covering these flues only a few inches, does not permit the use of the float-stone, the best water indicator on stationary boilers. The metallic flues are sometimes left dry, and burst. Boilers of that description are not easily cleaned, free access to the inside being almost impossible; the result of such neglect, if it causes no explosion, it increases greatly the tear and wear, and the expense of extra fuel is very considerable.

The common cylindrical horizontal boiler, being the simplest, the anfest, and the most easily cleaned, ought to be preferred as a stationary generator. The only objection against its use was its small area of heating surface ; but the greatest part of the wasted hot air leaving the boiler can be absorbed before reaching the chimney by an appendix vessel, containing water for feeding the boiler.

To obviate the defective method of cooling the cylinder by injecting cold water in it, Watt condensed the steam in a separate vessel. Here, in place of injecting cold water, mud and all, into the boiler, this componnd is primitively received into the heater, where the water, before reaching the boiler, deposits its insoluble matter, and acquires an elevated temperature. The generator receiving by this process a constant supply of hot water, keeping the steam steady, no perturbation is felt, as when injecting cold water.

This heater requires no extra room: its place is below the boiler, and behind the fire-grate bridge, a space commonly filled with rubbish. A great advantage of this heater is, to keep the supply of water in almost a quiescent state, which gives the effectual means of obviating the evil of bad water. The sediment accumulates, in one or more heaps, in the front of the heater, where the water happens to be the least agitated. Those deposits are received in some recipients placed near the man-hole. The generator, fed with water almost clean, is no more liable to burn.

Fig. 2.
The heater is comparatively of a small size. In the engraving the generator's axis has 96 feet, its diameter 4 feet, while the length of its heater is only 14 feet, its diameter 4 ft .6 in ., and, notwithstanding this, its heating surface is twice as much as the heating surface of the boiler itself, which is here 150 square feet. In reducing the 300 square feet of the inner and outer surface of the heater to 180 square feet of effective heating surface, the whole apparatus has 150 and 120 , or 270 square feet of heating surface. This divided by one square yard, or 9 square feet, per horse power, will prove a $\mathbf{3 0}$-horse power for the capability of the steam gene-
rator. The grate, 5 by 6 feet, or 30 square feet, harmonises perfectly with a 30 -horse high-pressure boiler.

The upper and lower brick flues are very large, and answer for burning all kinds of combustible-vegetable, as well as mineral fuel.

The boiler and its heater are screwed and cemented together, when set on the furnace. If rivetted together, their transport by land and sea would not be so easy.

Fig. 1, Longitudinal section.-Fig. 2, Top view of Furnace and Boiler.Fig. 3, Vertical section through line 1-2, fig. 1. - Fig. 4, Vertical nection through line 3-4, fig. 1 .
A A', Cylindrical boiler, with hemispherical ends, containing only the steanchamber, and the water to generate steam.
B B' Horizontal retervoir, enmposed of two concentrical eylinders, leaving an annular space filled with water, supplying the generator AA', by means of the short vertical pipes of b^{\prime}, set into the sockets $a a^{\prime}$.
C^{\prime} ', Joint bolts fastenling A to B with curved cramp-irons. The anaular apace between $b b^{\prime}$ and $a a^{\prime}$ is filled on the spot with iron cement.
d, Damper, with pulley a^{2} and weight $d^{\text {th}}$.
e, Stop-valve betwirt the feed-pipe e^{\prime} and the plunger-pipe e^{*}.
$\boldsymbol{f f}^{\prime}$, Two erect castiron segments, resting upon cast-iron platen Y, on the top of the furnace. On those curved girders the boiler $A A^{\prime}$ is saspended by its brackets g, with bolts, pega, and nuts, $g^{\prime}, g^{\prime \prime}, g^{\text {mor }}$.
$h h^{\prime}$, Main steam-pipe and stop-valve.
i, Whistle regulated by the float i^{\prime}, to give the alarm when the water fall below its minimum level.
$k \mathcal{L}$, Man-holes to boiler A and to beater B.
l. Safety-valve.
$m m^{\prime}$, Gauge-cock and pipe.indicator of maximum of steam.
$n n^{\prime}$, Ditto, ditto, of minimum of water.
$00^{\prime \prime}$, Discharge-cock and pipe for emptying the water from both reasela, a and B, and for filling them by means of a perpendicular pipo connecting o^{\prime} with an elevated water-tank.
p, Pasage from the furnace-door to the fire-grate q.
p^{\prime}, Moveable fire-moutb, in the shape of an arched-top bayed window. placed in the fire doorway, its narrow part inside the furnace, for burning bundles of bagase, or dried squeezed sugar-cane; each bundle is pressed into the fire-month, and acts liy turna as a furnace-door. This sort of hopper is removed when wood or conl is used.
g, Fire-grate.
r, Moveable plate, shifted when necessary to clean the fues.
s, Fire-bricks surrounding the sockets $a a^{\prime}$, not shown in the engraving-
t, Two fire-brick lumps, on which resta the heater B.
w, Two retura brick flues, joining before reaching the damper d.
\boldsymbol{v}, Interverted arched bridge.
${ }^{20}$, Partition between upper leading flue x, and lower return fues m.
y, Cast-iron plates, ou which are placed the girdert $f f^{\prime}$.
a, Ash-pit.

[^50]
GEORGE STEPHENSON.

(Continued from page 333.)

vil. stephengon, GRAy, and jameg.

The share which Stephenson had in bringing railways to the height at which they now are has been much fought about. He has been named the "Father of Railways" by many of his friends; but there are others who are put forward. By what he did with the locomotive he had made a step onwards, and this he followed up by the Stockton and Darlington Railway. These were great works; but no one who fairly looks at it can believe that to George Stephenson only is owing our wide net-work of railways. At forty, Stephenson was hardly more than a working man, with little weight even among his own friends; and he had no means, had he had the wish of moving the world to the great step, whereby the bounds of neighbourhood were to be widened, the furthest shires of England and Scotland brought within a few hours reach, and the householders of London and of Paris, sundered from the beginning of the world, made to know each other as friends and as brothers. He had his share, and a great share, but no more, in this mighty stride towards the fellowship and brotherhood of all mankind, which the wise of old have sighed for and dreamed of, but which they durst never hope should be so nearly brought about.

The earth has this year taken to itself Thomas Gray, as well as Stephenson, so that each can be as fairly brought to doom. Had not the former come forward while living, perhaps his name would have never been heard, nor would he have heen called the "Railway Pioneer." It seemed hard, however, that a grey-headed old man, who, in his youth, had seen so far beyond his fellows, should be left to starve in the sight of the wonders which he had foretold. There is always a feeling for the seer who is happy in his bodings; more, perhaps, than for the workman who has slowly wrought out the task with which he set forth. There is a feeling of kindness, too, for one who has wished to do well, and on whom good luck has not smiled. There was a forbearance, therefore, in searching into what Thomas Gray had done, and meting it out narrowly by the wand of truth, yet the utmost of what could be said of him was, that he was one of those who, like Sir Richard Phillips ${ }^{1}$ and others, but later, had laid down what was within the bounds of skill to do. What Thomas Gray wrote and spoke in 1820, hundreds had said when Trevithick run his first steam-engine on the Merthyr Railway : to have seen his engine and the Croydon tramway was enough; any man of common daring would foretell the greater speed and might of the iron horse, which would grow with bis growth. To map out the railways as Thomas Gray did needed no siill, for they must be made where the trade already flowed, and not over the highlands of Scotland, the wastes of Dartmoor, or the heights of Snowdon. That Gray did good in writing his book no one will gainsay, for it awakened others to the worth of railways, so far as it went; but others did the same work, and others did still more. Trevithick, Blenkinsop, Wm. Chapman, Blackett of Wylam, and George Stephenson, set the iron horse going, others laid down tramways: in 1818, R. Stevenson, of Edinburgh, wrote for a great railway from Edinburgh; and later, Wm. James brought forward his great railway undertakings.

On February 11, 1800, Mr. Thomas, of Denton, read before the Literary and Philosophical Society of Newcastle a paper, styled "Observations on the Propriety of introducing Roads on the Principle of the Coal Wagon-ways, for the General Carriage of Goods, \&c." This is the first proposition that we know of for a general railway system, and nearly twenty years before Gray's.

In 1814, George Stephenson had in his mind's eye a better road, and a greater speed, and he soon brought them to bear; the others, each in their way, did something ; but Thomas Gray only wrote, ${ }^{\text {as }}$ Sir Richard Phillips had done. By writing, Gray might have done much, had he, without doing anything, only shown to others something new, which might be done: but this cannot be said for him ; and he stands as a writer and talker, while the others were doers.

Not so, however, with William James, of Warwick. He not only saw what railways could do, but he set to work to make them. It is now almost forgotten that the busy time of 1825 teemed with railway undertakings, as much as 1835 or 1845 . Then were laid down all the great works, which have since been made, and these, in a great way, through the earnestness of James. The Liverpool and Manchester Railway, and the London and Birmingham Kail-

[^51] Sir Richard was an upholder of Bleakinaop's enitue.
way, must be looked upon as his offspring; and had it not been for his unwearied earnestness, they might have been longer put off. As it is, we are now only doing in 1845 what might have been done in 1825 ; and in the outcry against railway calls and works, many railways, the want of which was seen in 1845 , will not be made until 1855 or 1865. We hear a great talk about mad-brained undertakings; but the cool looker-on must weep to see how, by blindness, the works most needful for the good of Eugland are hindered and kept back. How much better should we be now if the works laid down in 1895 had then been begun and set out! All that good to which we now own in better husbandry, cheaper coal, and guicker trade, would now have reached a greater height. Had Brindley or Stephenson been listened to when they first spoke of canale and railways, England would have been much more forward than she is, and still more a-head of other lands. We may still learn from what has gone by, but it does not seem as if we were willing to do so.

We are not called upon to search why James did not fully follow up his great railway undertakings, nor why he did not reap a better or greater reward. Too little is known about him; his life has yet to be written; and, until then, we cannot coolly settle whether he were the loser by the carelessness and unthankfulness of the world, or, like Trevithick, by his own want of steadiness. That to him very much is owing ought to be acknowledged; and now, that death does not hinder us from speaking freely, the works of James are likely to be set in a higher light. By George Stephenson and his son they were acknowledged; and the latter took the lead when a call was made on railway shareholders and engineers for the widow and children of James, who are left behind to witness his works, but without sharing in the wealth which they have yielded to others. The Stephensong, however, afterwards withdrew, and the subscription fell to the ground.

William James laid down the first railway of any length in England, the Stratford and Moreton Railway, ${ }^{9}$ finished in 1821; the London and Brighton Railway, which he surveyed in 1812.* the Liverpool and Manchester Railway; ${ }^{4}$ the London and Birmingham Railway; ${ }^{s}$ and the Canterbury and Whitstable Railway.*

We may, without any very great wrong, believe that two such men as Ralph Dodd and William James must have done much in strengthening the mind, and awakening the hopes of George Stephenson. The former had a share in fostering the steam-boat, as well as the locomotive; his engineering works were daring. James drew the outlines of our great iron roads. The former was untimely in his end; both unhappy in their lives, and ever beset by ill-luck. With these two Stephenson was in fellowship; but happier in his lot, and happier than Trevithick, in whose path he followed, and carried out what the other had left undone. It is not need ful now to say anything of the others' ill-luck ; it is enough to say again, that the root of Stephenson's happiness lay within himself. He, too, had a struggle with the world. He had been in want of work and bread: he could not get a patent for his first engine; and for his next, he had no good partner in Dodd; and with his safety lamp he was overshadowed by the greater name of Davy, and reaped but a slender reward. He was laughed at by the mighty, and set down as a quack and a cheat; but he looked more to himself than the world, and he overcame it.

It must be borne in mind, that before James and he set about the Liverpool and Manchester Railway, Stephenson had set the locomotive going, and was busy on the Stockton and Darlington Railway. Stephenson was ready for his task; but the strong hand of a man who knew the world well must have been a great help to him, and the time was most smiling. It was when Prosperity Robinson had fanned the flame of greediness; and when the fulness of wealth sent a stream of English gold to the mines of Brazil, Mexico, and Peru. Ten years before, had there been such an opening, Stephenson would have been found unready for it : he had not got his engine in full work; he knew little of railways; and he had not put off his workman's apron. He had neither the strength nor trust within him; and though he and Dodd may have talked over what was to be thereafter, yet the mind of Dodd, daring as it was, does not seem to have been awakened fully to what was to do greater wonders, and bring greater wealth than even the steamboat. In taking a share with Stephenson in the patent for the locomotive, Dodd must have seen its worth, and may have looked forward to its becoming the iron horse, which it has been fondly named; but he did not feel the time come to ask for railways all over the land, as James did, who

[^52]was a busy railway engineer before he knew Stephenson, when he helped him to the partnership with Losh, and for which James had a fourth share of the patent.' In 1894, the fulness of time had come; there was the time, and there were the men, and the start was made. It is true, that all which might then have been done was not done-but there was a beginning: and in 1835 Stephenson had shown his skill, and had greater weight and name in the world, so that he could push railways onor rather hinder them from being lost sight of, as they might have been even then; for there was no want of croakers-the backers of canals were loud and strong, and the fear of railways beaet all the old women and womanish men throughout the land.

Of the two men who have been named with Stephengon-Trevithick and Dodd-it has never been shown what a strange likeness there was between them in many things. This went so far, that each had his tunnel under the Thames, Trevithick at Rotherhithe, Dodd at Gravesend ; each had a patent for the locomotive engine; each left Stephenson to reap what good was to be got from it. Dodd well knew Trevithick's works; and, when Stephenson and he met in 1815, they must have talked about them; but Dodd did not feal strong enough to set up as a great railway-maker.

TIII. ETOCKTON AND DARLINOTON RAILWAY.

The Stockton and Darlington railway was one of our first great railway works, but it is that as to which the least has been written. Very little can therefore be said as to George Stephenson's share in it; though it is much to be wished we knew more about it, that we might see the working of his mind in his early undertaking. Whatever Stephenson undertook was, so far as he could, thoroughly done; and he was always seeking for the best way. He therefore, in making the Stockton and Darlington Railway, brought into use many things which were quite new.
Nicholas Wood, who could best have done it, says nothing of the Stockton and Darlington Railway in his book.: Tredgold does not seem to have seen it, though he names it." Francis Whishaw, in the "Analysis of Railways," ${ }^{\circ}$ of of names the Stockton and Darlington Raflway, and speaks about it at length in his "Railways of Great Britain." : This, however, does not show it as it first was; and an eye-witness like Nicholas Wood, could have done much for us.

We have sought in the British Museum. Without finding them, Thomas Gray's "Observations on a General Iron Railway;' T. C. Cummings' "Account of Railways;" Charles Silvester's "Report;" and Juseph Sandars's "Report." Must of what was written between 1820 and 1830, on the Stockton and Darlington, and Liverpool and Manchester Railways, is not to be found in the British Museum, as such things were not thought of any worth: had they been a few sheets about a Greek play, they would have had a happier lot.

In this day we know nothing of the men to whom, less than thirty years ago, we were beholden for bringing forward our great railway works. Some, as Joseph Sandars, Robert William Brandling, and Heary Booth, still live; but many have sunk to the grave, unknown and unthanked. Two books are wanted before it is too late to learn all the truth,-the History of Railways, and the Lives of Engineers. There are lives of poets, painters, doctors, and lawyers, but not of engineers, beyond Smeaton, Brindley, Watt, and Telford. Stuart has done the most in his "Anecdotes of the Steam-engine." The Institution of Civil Engineers gives medals for the lives of Trevithick, and others; but no one asks for them. George Stephenson will not be forgotten by them; and, before the Institution of Mechanical Engineers, a life of him was read by Juhn Scott Russell.

Stephenson was about forty when he was first called on to be engineer to the Stockton and Darlington Railway. This could hardly be named as more than a tramway; and, although travellers were carried by coach, it was only a coal line, made to draw the coals from the pits in South Durham. Some of these pits belonged to Messrs. Pease and Backhouse, members of the Society of Friends, and powerful bankers.

The Messrs. Pease were partners as bankers with the Liddells, the owners of Killingworth Pit; and this, perhaps, led to George Stephenson being named as ongineer, so far away from his own neighbourhood. The Messrs. Pease thought so highly of Stephenson, that they afterwards found the money for a locomotive workchop, now known as that of Robert Stephemson and Co., of Newcastle. The brothers and their children henceforth took a great share in railways, not only in the north, but likewise in the mid-

[^53]land, and they are still great holders in the northern linew. Joseph Pease was a very great holder in the London and Birmingham, in the Manchester and Leeds, and others of Stephenson's railways. Joseph Pease, his nephew, formerly M.P. for. South Durham, is now treasurer and deputy-chairman of the Stockton and Darlington Railway, and treasurer of the Great North of England, the Wear Valley, and the Middlesborough and Redcar Railways. ${ }^{19}$ Joseph Robinson Pease is deputy chairman of the Hull and Selby Railway. John Pease and Henry Pease are directors of the Stockton and Darlington and other neighbouring railways.
The Backhouses are no longer on the Board of the Stockton and Darlington Railway, but Edward Backhouse is a director of, the Durham and Sunderland Railway; and John Church Backbouse of the Great North of England Railway. ${ }^{13}$

The Meynells, of Yarm, took likewise a busy chare in the Stockton and Darlington Railway, as did the Hobsts of Eitherly Pit. Both are still directors.
The main line was only twenty-two miles long, and was to ship coals from the dale of the Tees, between Darlington and Stockton. The money to be raised was only about a hundred thoasand pounds, and the Act was got in 1891. The works most likely began in the next year. The first line was from from Witton-part colliery, to Stockton-on-Tees, and the money to be raised by shares was 82,000 l., and by loan, 20,0001 . This was then thought a great deal to be raised by the Peases, Liddells, and Backhousen, who had it mostly on their own hands. In 1848, ${ }^{4}$ the shares were 275,0001 ., and the loans 170,0001 .; and the shareholders leased at 6 per cent. the Wear Valley Railway, which cost 140,0001 ; and the Middlesborough and Redcar, which cost 70,0001.. The earliest dividend on the shares of the Stockton and Darlington Raikway was 4 per cent.; this rose to 11 per cent., and afterwarda to 16 per cent. ; but it was lowered to 10 per cent., and 4 per cent. put by as a sinking fund. These shares do not come into the market now, but have been sold for more than 260l. for a hundred ponad share. They are now in a few hands; and Mr. Tuck says, "The directors refuse to publish any accounts whatever."

The gauge of this railway was 4 ft . $8 \frac{1}{\mathrm{i}} \mathrm{in}$., what is now named the narrow or national gauge, which had been taken op as the common width of wagen-wheels. The rails were at first 28 lb . to the yard. ${ }^{15}$ These were afterwards made 35 lb ., and at length, 641 lb . They were fish-bellied, ${ }^{16}$ on Jessop's plan, which was then held better than parallel rails. Stephenson was in favour of wrought-iron rails, and of Mr. Birkenshaw's system, as is shown by a well-written report given in Wood on Railroade, ${ }^{\prime}$, and one of his earliest writings, priated after that on the safety lamp, heretofore named. In this, ${ }^{\text {T}}$, he speaks of the non-rusting of wroughtiron rails when kept in work, and of the rusting of unased wrought-iron rails laid alongside ; but he gives no good reason for this. He thinks that there is a change in the chemical condition of the surface of the rail. The rails were laid under the patent taken out with Mr. Losh, in $1816 ;^{18}$ but Nicholas Wood thought that the chair might be mo made as to get rid of the jolting where the chairs were pinned together. This was, in 1899, done under a patent of Messrs. Losh, Wilson, and Bell.
Part of the rails were laid down on square blocks of wood, ${ }^{\circ}$ and part on stone blocks. Nicholas Wood ${ }^{3}$ wrote recommending the latter. Stephenson, perhaps, wished to get a smoother road for the sake of his engines, which had been one of his ends in his patent with Losh. The old way of setting the blocks was by mallets and shovels, beating the blocks till they came to the right level; but Stephenson set up another way, which is that now followed. He had a portable lever, about twenty feet long, which lifted up the block by the short end, abont a foot high; and by letting it fall several times upon the coating of the road in the intended seat, throwing at the same time gravel or fine sand under it, made a solid bed for it. It is then get to its right level, both lengthwise and crosswise, by squares and sights. ${ }^{9}$
The line was fenced with hedge-rows over a greater part, which was then rather a new kind of fencing. ${ }^{*}$

[^54]The engines are said, by Francis Whishaw, who had seen many of the old ones, to be "ponderous and clumsy, but still powerful." ${ }^{4} 4$ Many of the old ones were on the line in 1837. The Lord Brougham was 16 feet long, with six wheels; each three being connected by cranks. The engine-driver rang a bell on coming near a station. About 1836, the steam-whistle came into use for the passenger-engines; but the bell was used for the cosl-engines. ${ }^{\circ}$ Whishaw thought that it was better to have several kinds of siguals, rather than the steam-whistle only.

Level road-crossings were then thought to be without any harm; and therefore there were fifteen on the Stockton and Darlington line. ${ }^{90}$ This kind of crossing was, as is known, afterwards put a stop to by law, but is now sometimes allowed. In 1839 there were no grates on the line, but merely signal-posts, with the word "Signal."

In 1893 and 1894, further acts of parliament were got; and the Company were allowed to run locomotives and carry passengers. On the 17 th of September, 1885, the line was opened. ${ }^{\prime}$ Stephenson now tried on a large scale, on the Hagger Leases branch of the Stockton and Darlington Railway, his locomotives, which were thought to be very successful. By this time, the Wylam, Killingworth, and Hetton tramways were worked by steam-power.

The gradients on the Stockton and Darlington Railway are mostly steep, 1 in 128, 204,233 , and 427. The line rises from Stockton; and was worked by stationary engines at the inclines, which are 1 in $30,38,33$, and $104 . .^{23}$ The length of the main line is 25 miles, but the whole length is now 55 miles 5 furlongs; 29 and there are eight passenger and goods stations. The whole cost per mile is now 9,000l. 1,064 persons are employed on the line.

Passengers were first carried in stage coaches, drawn by horses; and it was some time before the locomotive was brought into play, while the speed was low. In 1837, Whishaw found the speed of the passenger-trains only 12 miles per hour."0 As this was mostly a coal line, it will be seen that the speed of the locomotive would never have been brought out here, although its power was fully tried by Stephenson and Nicholas Wood.

Whishaw does not think that the earthworks are heavy, nor does he name any great work. Some of the curves on the main line are sharp, being much under a radius of a quarter of a mile. There are thirteen bridges under, and eleven bridges over, the main line. The slopes of some of the embankments towards the top of the line are planted with firs.s: The line is ballasted with small coal.

This is named as the first line on which houses for the workmen were built on the side of the railway, ${ }^{32}$ and Whishaw foresaw that it would be followed elsewhere. The end for which these cots were built was to keep the waymen and other workmen near their work, and away from the ale-house.

In 1839, there were 5,000 coal-wagons at work on the line. ${ }^{33}$ At that time, there were thirty engines, very few of which were by the Stephensons, some were by Timothy Hackworth, of Shildon, by the Kitchens of Darlington, now directors of the lina, and the Hawthorns. The works of Timothy Hackworth are at Shildon, an the line; and thus he was stimulated to the Liverpool and Manchester struggle by seeing the engines of Stephenson running on the line before him. At Shildon are likewiee the engine workshops of the Stockton and Darlington Railway.

The tenders were two waterbutts set on a wagon frame, and holding together 1,200 gallons of water. Beside them was the coke or coal for the engines. The whole mounted on four wheels. ${ }^{4}$ This was the rough beginning of the tender. Coal was burned in the coal-engines, and coal and coka, mixed, in the passenger-engines. The coke was made at St. Helen's pit, on the fine, and was coked for eight-and-forty hours. The cost was 108. per ton.

In the year ending the 30 th of June, 1847 , the grose receipts were 118,9921. for the Stockton and Darlington, and Bishop Auckland and Weardsle Railways.* Of this, 16,115l. was for passengers, $71,842 l$. for coals, 21,4391 . for goods, and $3,030 l$. for lime and stone. The number of travellers was 498,514 . Of these, it is said, 93,982 were by hurse-coaches (showing that some still ran on the line), and 1,840 by coal-trains. Each passenger travels avout $6 \frac{1}{2}$ miles, and pays about tenpence as a fare. 911,635 tons, or nearly a million of tons of coals are carried, showing how great is the yield of the coal field. The number of tons of goods is

[^55]195,883. It may safely be said, that no such number was carried before the railway was opened. The number of tons of lime and stone is 89,540 , which likewise shows a great trade, and which is much beyond what it formerly was. The cattle carried are few; 1,878 beasts, 2,121 sheep, and 258 swine. 557l. is paid for parcels.

While the works were going on, Stephenson was beset in the "Newcastle Magazine,"s b by Mr. B. Thompson, of Ayton Banks, who wished to show that locomotive-engines would never pay, and that Stephenson had reckoned wrongly. Thompson said that locomotives were not equal to horses.

He further said, that the breaking of rails at Killingworth was very great, and that horses were used to help the engines on. If steam were to be used, he thought stationary engines better than locomotives.

Mr. B. Thompson was the maker of a new kind of rail, " which was tried on the Brunton and Shields Railway, but was not found to answer. It was something like Stephenson's, but the rail was fastened to the chair by a screw bolt.

Nicholas Wood took the side of Stephenson,-said that Thompson's tale about the rails and horses was untrue, and gave other reckonings to show that Thompson had made the cost of the locomotives too much.

This Thompson answered; and a paper war went on, in which Thompson laid against Nicholas Wood, that he had made many mistakes as to horse-power and so forth. Wood seems to have had the better of the fight.

These were among the early writings of Nicholas Wood, and in all likelihood led to the work on railways, written by him in 1825, and in which, as is well known, he held forth that it was wrong to look for a speed of ten miles an hour. Wood does not seem to have had at first a very ready belief in Stephenson, either in this or in the Safety Lamp; but he has lived long enough to find Stephenson in the right, and to be himself the maker of the Brandling Junction Kailway, which was mastly done by the means of Robert William Brandling, already named as an old friend of Stephenson, and likewise as the maker of a Safety Lamp. Another great work done by a single hand in the north, is Sunderland-bridge, built in 1790 by Rowland Burdon. This, and the Brandling Junction Railway, show the boldness of the Northumbrians.

Stephenson may be looked upon as one of the makers of Nicholas Wood's book on railways, for he made all that belongs to locomotive-engines, and on the Stockton and Darlington Railway, he had set forth the best way of making railways. This is the first great book on railways, and which set Tredgold writing. Wood gives a report by Stephenson, and acknowledges his help in the experiments to discover the precise amount of resistance opposed to the motion of carriages on railways, and the resistance to different forms of carriages. a These, undertaken seven years before, show how careful Wood had been in getting his book up. The book is worth the more, from George Stephenson's share in it.

Wood must have been of great help to Stephenson many other times besides this; and his reading and mathematical knowledge must have stood Stephenson in good stead. It is said ${ }^{39}$ that the Rev. William Turner, of Newcastle, was a great helper of Stephenson with books, with instruments, and advice.

As an end to this long tale about the Stockton and Darlington Railway, it may be said that the manager is now Mr. George Stephenson, nephew of the engineer, so that the name is still kept up. It is hoped, however, that some more lasting remembrance of the great man will be set up on this first of his railway works. Mr. Meynell, of Yarm, ${ }^{00}$ who laid the first rail at Stock ton-on-Tees, is still a director, and should not let his old friend be forgotten.

1x. LOOOMOTIVE FACTORT.

Before 1895 Stephenson laid down the Stockton and Darlington, Hetton and Springwell Railways, and set the locomotive at work on them. He had now two learners under him, his son Robert, born in 1803, and brought up at Newcastle and Edinburgh; and Joseph Locke, born in 1805, at Attercliffe, near Sheffield, and brought up at Barnsley Grammar School. The latter laid out the Springwell tramway, from Springwell to Jarrow, ${ }^{41}$ which is said to be a good work.

Both Robert Stephenson and Locke are now members of the House of Commons; the former a Knight of Leopold, and the latter of the Legion of Honour. These were the first offspring of what has since been found a great school of engineering. By

[^56]George Stephenson were made the railways of the north-east, by Robert Stephenson those of the south-east, and by Locke those of the west, from Southampton to Glasgow, leaving only one great share for Brunel. Therefore, to the three named do we owe most of our railways. At Birmingham their works meet ; and here, some day, will be a fitting seat for some remembrance of the three.

Locke was of great help to George Stephenson, and most in the answer to the report of Walker and Rastrick. After the Liverpool and Manchester was done, Locke undertook works of his own, which was not taken well by Stephenson.

In 1884 there were two great things in George Stephenson's life-the setting up of the Locomotive Factory, and his being named as engineer of the Liverpool and Manchester llailway.

It has been already seen how he became known to the Messrs. Pease, of Darlington; and they set up the factory at Newcastle, for the building of locomotive engines, of which there was now some want. Messrs. Murray, Fenton, and Wond, seem to have been builders of engines then. ${ }^{29}$ Mr. Michael Longridge had a share in the new factory; and afterwards Robert Stephenson. ${ }^{43}$ It was first known as the factory of George Stephenson and Co., and afterwards of Robert Stephenson and Co. It still flourishes, under the care of Mr. Mutchinson.
The first locomotive used on the Stockton and Darlington Railway was built by George Stephenson, and, we believe, at the Newcastle factory. This was the first locomotive used for drawing passengers on a railway, which it did in 1825, and is said to be still in being. In 1846 it was decked out, and brought forth to head the train at the opening of the Middlesborough and Redcar Railway, so that it has had a busy life for a locomotive. It is a shame to us that there is no English museum for such things, or it night be as proudly kept as we are told that of Cugnot is, in the Conservatoire des Arts et Mitiers, at Paris.

From the Newcastle factory have been sent forth engines for the old world and the new; and there is hardly a land on the railways of which Stephenson's locomotives will not be found. From his great name, these locomotives were much sought for on the opening of railways abroad, and from them the French, Flemings, and Hiph Dutch learned to make locomotives.

Up to 1840 , above two hundred and fifty of these engines had been sent forth, and as the price was then high, it will be seen how much money must have come into the hands of the makers. Whether in railways or in the factory, the Messrs. Pease had no need to sorrow for anything they did with Stephenson; whereas few had anything to do with the other great lights of engineering without making up their minds never to see them again. The lovers of knowledge may overlook the wanderings of great men,they may look to their heads, and not to their hearts; but when the trust of men of business has been once broken it can never be made whole. The earnings of a good undertaking are a fair ground for doing something greater,-they are looked upon as an earnest ; even where there is a loss, it is fairly looked upon; but a breach of trust is never thought of but with sorrow.

The Rocket, the winner of the 500l. on the Liverpool and Manchester, was built at Newcastle, and gave a great name to the factory, so that orders poured in from abroad.

Stephenson most prided himself that Brunel had had to make use of his engines. If in anything Stephenson showed a littleness of feeling, it was about Brunel. He was too much given to do as others did about bim, to look upon railways and engines as belonging to himself alone, and that no one else had a right to meddle with them. He had so often had to fight for his railways and engines, that he might well have a fondness for them, and think he was made up with them; having, from 1820 to 1830 , to meet the utmost opposition, not only from such men as Mr. B. Thompson and Mr. Francis Giles, ${ }^{\text {H }}$ but likewise of such as Mr. James Walker, and Mr. J. U. Rastrick. Forgetting that he himself was the follower of Trevithick, Jessop, and Chapman,-the helpmate of James, Birkenshaw, Booth, and others, he could not bear coolly anything which was not of his school. He never forgave Brunel for taking another gauge, although the narrow gauge was not set up by himself, but found by him already set up. In the speech at Tamworth this soreness breaks out strongly, and he gives way to very coarse words. He said of the atmospheric railway, that he had never been to look on it, "because I consider it humbug from beginning to end......But it is not the only humbug. The broad gauge is another misconception, as erroneous as the system of the atmospheric railway, only they have got my engines to carry them through." If we wished to draw George Stephenson as anything but what he was in truth, we should be very glad to leave

[^57] 44 Whithew's Ilallweyl of Greet Brtaln.
out all this, for it shows an atter want of right feeling, and an utter forgetfulness of his own early life. The atmospheric railway or the broad gauge were as well worth trying as the twocylinder locomotive or tubular boiler; they held forth something which might be done, and it is yet to be seen whether they are so far behind as Stephenson says. The locomotive was twenty yeara old before Stephenson got it to draw passengers on the Stockton and Darlington; and it has not yet received its full might, after four-and-forty years since it was first set going by Trevithick.

At the Trent Valley opening there was no call for this show of ill-feeling on the behalf of Stephenson, which makes it the worse. He goes on to say, "The Great Western Railway began with engines differing as mucli as possible from mine. They put the boiler on one carriage and the engine on another; they had the wheels ten feet in diameter, and were determined to go one hundred miles an hour; but what became of these engines? They required porters to help them out of the station, and they were obliged to call the North Star, which I had sent them from Newcastle, to carry on the train, and though it wanted rest, it was obliged to go out again, and do the duty for which Mr. Brunel's large engine was incapable."

George Stephenson had in all likelihood stood by the Wylam tramway when Trevithick's locomotive was helped on by men; and he might have owned, that if Brunel made up his mind to have a speed of one hundred miles an hour, he got it in the end. Whatever Stephenson might choose to say, England owes much to Brunel for spurring on Stephenson; for had it not been for the Great Western we should never have got the great speed which we now have. Brunel fought against the Stephensons, and they against him; and in the end, we have higher speed and cheaper working.
In "Whishaw's Railways of Great Britain" will be found a list of all the locomotives in 1839, and in it are many of Stephenson's, some as old as 1830 , which were still at work. There was one on the Bolton and Leigh, and two on the Liverpool and Manchester. Of the year 1831, there was one on the Liverpool and Manchester, and some on American railwaye. Of 1832 , three on the Liverpool and Manchester.
(To be continued.)

THE STRENGTH OF HUNGERFORD BRIDGE.

The paper, by Mr. Homersham Cox, on the "Strength of Hungerford Bridge," which appeared in the part of the Civil Engineer and Architect's Journal for October (p. 292), has no doubt been read with interest and with pleasure. The neat application which he makes of the doctrine of moments to the statical conditions of the bridge, cannot fail to gratify every profesaional reader. He gives sound reasons, too, why the subject is at this moment of the highest practical importance. His calculations exhibit the power in the chains of the bridge to support a certain weight, with all necessary accuracy, it may be admitted;* but, as one part of the question-namely, the load which it is probable will ever be brought upon the structure-claims a wider consideration than he has given to it, and affects the conclusion he has drawn-that "if 9 tons per square inch be the utmost strain which the metal will safely bear, no margin is left for security against the effects of rapid motion"-it is hoped that some further inquiry into that part may result in advantage.

Mr. Cox computes the greatest gross load which the suspension chains can support, without exceeding a strain of 9 tons per square inch of iron, as equivalent to a weight of 1,576 tons uniformly distributed, and exerting a tension of 2,664 tons. He adds, that "this is in fact the load to which the bridge is actually liable to be subjected The weight of the chains (715 tons), added to that of the platform, parapet, rods, \&c., and a crowd covering the platform with a weight of 100 lb . per square foot, gives, according to Mr. Cowper, the maximum load at about 1,500 tons."

The sentence quoted embraces the point which needs examination.

[^58]Heferring to the Journal for June, 1845 (vol. viil., p. 165), there would appear to be an accidental error, in calling the weight of the chains 715 tons: the links of those suspended between the piers, which alone enter into the calculation, are stated by Mr. Cooper to weigh only 352 tons. It is to be regretted, that in the extract given from that gentleman's paper, read before the Royal Institution, all mention of the remaining weights which constitute the permanent load, as well as the particulars which would facilitate an approximation, are omitted.

Mr. Cowper appears to exhibit the figures, $296 \times 5=1480$ tons; and these are cited by Mr. Cox, in round numbers, as "about 1,500 tons." But there is this very serions difference between what it seems probable the former meant to convey by them, and the interpretation given to them by the latter-that Mr. Cowper would appear to have calculated upon a tension of 5 tons per square inch as the greatest that could be thrown upon the chains by the heaviest possible accidental load of 100 lb . per square foot of platform, added to the permanent load of chains, rods, \&c., which tension would amount in all to 1,480 tons; -Whereas Mr. Cox has called this the value of the load itself from which the tension arises.

If Mr. Cox has misinterpreted Mr. Cowper, his conclusion as to the present critical state of Hungerford Bridge fails instantaneously. If Mr. Cowper's meaning has been mistaken here, what remains to be said will be less forcibly applicable to that great structure as maintaining its sufficiency of strength, but will remain to invite some notice as a general question.

No explanation is given in the Journal to show why Mr. Cowper adopted a tension of 5 tons per square inch, as the greatest that would probably arise; and it is desirable to analyse his process of calculation, as far as the imperfect data which are on the instant accessible will permit.

Such an amount of tension would be the effect of a gross load of 875 tons, uniformly distributed, and supported by the chains between the piers. It would be made up of

There may be inaccuracy in the estimate of the two last items: it cannot, however, be very material, and the meagre means at command admit of no more certain result.

The principal question now for investigation is, whether it be possible that the bridge is liable to a load of 100 lb . per square foot from the assembly of a crowd of persons on the platform.

This will be answered when we ascertain how many persons can be crowded into a given space, and what the aggregate weight of that number of persons may amount to.

It is well known to military men, that, taking the average of large bodies of infantry when close packed, each man covers with his own person a space of $20 \times 15=300$ square inches. We should therefore find 0.48 men in a square foot.

Mr. James Walker, who, by direction of government, investigated the circumstances connected with the fall of the suspension bridge at Yarmouth, in May, 1845, stated in evidence before the coroner, that he calculated the weight of people, "packed en masse upon the bridge," at six persons per square yard, consisting chiefly of women, and children under 14 years of age, each person being of the fair average weight of 7 stone; which, he adds, might be a large average, but one adopted by him, partly because it has been frequently employed before. This would give of an individual belonging to such a description of persons, as chiefly women, and children under 14 years of age, for each square foot; and, following Mr. Walker's average of weight, it would amount to 65 lb . per square foot.

Herr Von Mitis, who constructed the steel suspension bridge across the Danube at Vienna, computed its probable load as arising from the occupation of a square fathom (of Vienna) by 15 men, each weighing 115 Vienna pounds. Hence, per unit of one square foot English, we should have 0.39 men, and 54.9 lb .

Drury, in his work on Suspension Bridges, lays down an arbitrary standard of 2 square feet per man weighing 10 stone. This, per square foot, is equivalent to 0.5 men , and a weight of 70 lb .

It is familiar information, that in France the conditions imposed by government on the constructors of suspension bridges, require that, before the public is admitted to the use of any such bridge, the chains shall undergo the proof of carrying for 24 hours, an imposed lond of 200 kilogranmes per square metre of platform in addition to the weight of chains, rods, platform, \&c. This is equal
to 41 lb . per square foot. The rigour of this condition is modified, too, in practice, by permitting the use of the bridge, subject to special police regulation, for six months after its completion, if proof to the extent of one-half this weight has been satisfactorily made; but at the end of that time, proof to the full weight of 800° kilogrammes per square metre must take place.

The concessionnaire is required also to maintain the bridge in good order, which shall be done by the authorities, at his expense, in case of neglect. Annual surveys of the works take place; and the Prefect may order a fresh proof to be made whenever any ground for fear arises, as to the stability of the bridge, or as to the safety of using it.

With respect to the average weight of a number of persons assembled accidentally, we may form some precise judgment, with assistance from the researches of Quetelet, published in his "Treatise on Man," in which he gives a table of the average weights and sizes of men and women at different periods of life, -sufficient for our purpose being found in the following extract.

Age. Yenra.	$\begin{gathered} \text { Males. } \\ \mathrm{K} \end{gathered}$	Fenales. mines				
5	$15 \cdot 77$	14-36)	$\zeta_{\text {means }}$	$\{$ Male,	61.53 lb , avoird.	
10	24.58	$23.52\}$				
15	43.63	40.37		Female,	57:50	"
20	$60 \cdot 06$	$52.28\}$		\{ Male,	135-59	"
25	62.93	53.28 $\}$	"	\{Female,	116.33	"
30	$63 \cdot 65$	54.33)				
40	$63 \cdot 67$	55.23	"	$\left\{\begin{array}{l}\text { Male, } \\ \text { Female, }\end{array}\right.$		"
50	63.46	56.16)	\%	(remale,		$"$

To apply this table,-
From military experience, and assuming the age of soldiers to range between 20 and 50 , we should get a weight per square foot, arising from a packed crowd, thus-

$$
0.48 \times 137.9=66.19 \mathrm{lb}
$$

According to Mr. Walker's estimate of the number of persons on the Yarmouth Bridge, there would be a Feight per square foot of $\frac{8}{3} \times 89.89=59.53 \mathrm{lb}$.

Taking the estimate of Herr Vun Mitis, as to numbers, the weight per square foot would be $0.39 \times 137.9=53.78 \mathrm{lb}$.
And, upon the arbitrary standard of Mr. Drury, that weight would be $0.5 \times 137.9=68.9 \mathrm{lb}$.
By bringing all our results together, the conclusion to be derived from them will be more obvious:-

Mr. Walker's estimate of weight per square foot is 65 lb .

But suppose we adopt that number which is derived from facts apparently the best ascertained-viz., 66 lb . per square foot-does it not seem to be inadmissible that an increase of 50 per cent. should be made to it when we are about to calculate what margin may be left for contingencies, in the strength of a material member of a suspension bridge? If this be so, let us revise the estimate of strain when shorn of so considerable an excess.

The distance between centre and centre of piers being taken at 676d feet, the length of platform supported by the chains would appear (from the application of a scale to the plates given in the Journal for June, 1845,) to be.

$$
676 \frac{1}{2}-89 \frac{l}{d}-13=634 \text { feet. }
$$

> Hence, straining-weight of platform would be

Equivalent to a tension of $4-2$ tons per square inch on the lowest part of the suspension chains.

Before pronouncing any judgment on the sufficiency of the Hungerford Bridge, it would be requisite to know what weights the suspension rods, the timbers, and the planking of the platform are capable of sustaining. Indeed, it it not impossible that in the latter we might find a limit which would act as a safety-valve for other parts of the structure. At all events, we should not forget that dense crowds of persons generate a lateral pressure, such as the parapet railing of a suspension bridge is usually unequal to
resiat. And the inference might be fairly drawn, that indications of danger would be testified by less-important members of this bridge than its suspension chains, before fears need be entertained of their being unequal to their purpose.

The conclusions we arrive at are these:-
1st. That when the bridge is fully loaded, the strain on the sus pension chains is $4 \frac{1}{4}$ tons per square inch, or in the most extreme case 5 tons per square inch,-一heing one-half the strain under which iron is considered to be perfectly safe, and reserving one-half its power to meet contingencies.
2nd. That 66 lb . per square foot of platform is sufficient allowance in estimating the weight of an accidental crowd of persons upon suspension bridges.

October 30th, 1848.

J. H.
[The above letter having been referred to the writer of the "Notes on Engineering," he appends the following note:-

The researches of "J. H." seem to prove satisfactorily that the weight of Hungerford Bridge has been over-estimated in the paper (ante p. 292, Oct. 1848) on the strength of that structure. In collecting the data of that paper, considerable pains were taken to reconcile the apparently contradictory accounts of the weight of the bridge, given in the extract (vol. vili, p. 165.) from Mr. Cowper's paper, which contains the following words:- "We have therefore, for the weight the bridge will actually bear, 296×171 tons $=$ 5,180 tons, while 296×5 tons $=1,480$ tons is the greatest load that can be actually put upon it."-Was it not natural to infer from this, that Mr. Cowper had ascertained that the weight which the main chains would have to sustain was 1,480 tons?

However, the above letter shows that the words just quoted are not the statement of an ascertained fact, but probably the inference from tome theoretical computations not given. The main chains of the central span consist of 1,280 links, of which each weighs $5 \frac{1}{4} \mathrm{cwt}$., and therefore the whole together 359 tons. This item, however, does not include the weight of the coupling-bolts, pins, and suspension plates : with respect to these, and the weight of the platform and parapet, which are massive and strengthened by iron stays, we have no data. There are certainly no authentio grounds for objection to the estimate of "J. H." but in the absence of more certain information, the following seems a legitimate mode of estimating the total weight of the structure. Mr. Cowper remarks, that "the entire weight of the chain, platform, and full load upon it would make a load of about 1,000 tons on each pier." This gives 2,000 tons total weight of the whole bridge; and as the centre span is one-half the total length of the structure, it appears safe to assume that the whole weight of the centre span, platform, and load is 1,000 tons. This would make the horizontal tension per square inch at the centre of the main chain $=6$ tons.

It must be remarked, that the words, "the present critical state of Hungerford Bridge," are used by "J. H." on his own authority, and are not to be found in the "Notes of Engineering." It was not said, nor suggested in them, that Hungerford Bridge was in a "critical condition;" all that was asserted was that which admits of strict proof-that, assuming certain apparantly accurate data for the weight and dimensions of the structure, the metal was subject to a tension of 9 tons par square inch. It now, however, appears that the data themselves were incorrect, and that the tension is consequently less; but even the greater amount would by some practical men be deemed within the limits of security. The error in question, which, respecting a point of fact, is not, however, to be regretted, as it has occasioned an inquiry and revision, of which the results are by their near agreement recommended to general confidence. Another benefit of the discussion has been, that it has elicited on one side a display of interesting and extensive research which, it is to be hoped, will be renered in other investigations of that important class of which the above letter indicates the familiar study. 7

The "Taman."-0n Monday, the 13th ult., this irou steamer was lanached from the works of Messrc. Robinson and Russell, at Millwall. She is 175 feet long, 26 feet beam, and is to have engiaes of 180 -horse power. Her lines are by Mr. Ditchburn, and the hull is very amoothly finished. The Taman is built for the Rusaian government, to be employed on the Black Sea. She is to be handeomely fitced by Meass. Paul. On the next alip is an iron steamer for the Nabob Nasim, one of the mediatized princes of India. She ia to go fourteen miles an hour on the Ganges, and in to be ased by the naboh in his hunting trips. This shows the progress of European luxary in the East, as the Taman proves that English skill is not yet surpassed on the freezing shores of the Black Sea. The nabob's steamer will make the seventh built by Messrs. Robiason for the Gangen. Aa iron slomboast for the Humber is to be laid down on the alip of the Taman.

CONTRIBUTIONS TO RAILWAY STATISTICS,

In 1846, 1847, AND 1848,-By HYd: Charis, Beq.
(Conchuded from paye 338.)

No. XXIV, MISCELLANEOUS COODS.

Among other articled enumerated in the returns, are furniture and vitriol.
In the year ending soth June, 1846, there was carried on the Manchester and Boiton, 256 tons of furniture; on the SouthWestern, 325 tons (half-year); and on the Brighton, 2,923 tons. The receipts were, Manchester and Bolton 1281; and Brighton 4,6871.
In the year ending soth June, 1847, there was carried on the Brighton Railway 4,669 tons, the receipts for which were 6,6604
The carriage of furniture is now considerable, the railway being preferred to the canal for long distances. The rates per ton per mile are high. On the Manchester and Bolton the rate is 12d.; on the London and South-Weatern, 7.26d. ; and on the Londoo and Brighton, 7 -49d.
Vitriol is carried on the Newcastle and Carlisle Railway. In the year ending 30th June, 1846, 17 tons, bringing 11l.; and in 1847, 62 tons, bringing 391. Vitriol is classed as danferous, and the rate for carrying it is 6 d. d. per ton per mile.

No. XXV.-GOODS.

The gross tonnage of goods in the years ending soth June, 1844 1845, 1846 , and 1847, is as follows, including every description of traffic:-

Whiteharen	$\begin{gathered} 1844 \\ \text { Toen. } \end{gathered}$	$\begin{array}{r} 1845 \\ \text { Toen } \end{array}$	1848 Tons. -3.811	1847 Tont. 18,618
Wishaw and Coltneas	428,777	610,188	697,472	924,424
York and North Midtand	187,867	851,029	878,414	446,181
* \quad (Hall and Selby)	162,938	227.869	226,101	
\cdots (Whitby and Pickering)	25,188	86,101	09,378	
Yortr and Newcastle				1,847,689
n n (Gt. North of England)	180,106	234,198	433,887	
* \quad (Newrsstle \& Darlington)		268,040	787,347	
* m (Newcastle \& N. Shlelds)	$21,1034$	26,986 412573		46,600
\cdots ($\%$ (Purban \& Sunderland)	$668,849$ $625,651$	$\begin{aligned} & 412,523 \\ & 7107 \end{aligned}$	818,378	
$\cdots \quad$ n (Pontop \& S. Shielda)	$\begin{gathered} 626,651 \\ 662,637 \end{gathered}$	$\begin{aligned} & 719733 \\ & 824,824 \end{aligned}$	$\begin{aligned} & 818,378 \\ & 922,822 \end{aligned}$	812,304
* Half-year.		trmated	ount.	

The total tonnage in each year was as follows:-

The following shows the distribution of the traffic in 1847, in tons:-

To show how amall this traffic is relatively to the total carried, the following items in the consumption of the people of this island, in tons, may be noted :-

This enumeration of $41,720,000$ tons is under the mark, and only gives the total consumption of this island, reckoning the articles as only carried one way, and not including many articles of agricultural produce,-manures, leather (60,000), fish, stone, lead, copper, earthenware, oil (60,000), fruits, \&c. ; bark, 50,000 ; dyestuffs, 70,000 ; hemp, 50,000 ; cabinet woods, $\mathbf{3 0 , 0 0 0 ; ~ r i c e , ~ 2 0 , 0 0 0 ; ~}$ tar, 20,000 ; turpentine, 20,$000 ; \& \mathrm{c}$. The railways at present do not carry more than a fourth of the traffic of the country, if so much.

The largest tonnages in 1847 were the following :-

York and Newcentl	-.	2,706,595
Ballochney	.	1,746,339
Midland	.	1,449,215
London and North.Wedtern	.	1,411,080
8tockton and Darlington	-	1,127,058
Withaw and Coltness	"	924,424
Lancashire and Yorkshire	..	763,016
Leeds and Tbirsk		610,235
North Union		548,813

The total receipts for minerals and goods in 1847 were $8,600,0001$., of which for minerals 750,000 l.

No. XXVI.-AVBragB kate and mileacb.

It is of some importance for engineers to know the average diatance that each class of produce is carried, and the average receipt, which are far below what is believed.

Passengers.-The average mileage of all the pascengers in 1817 was 16 miles, ${ }^{*}$ and the average receipt 2 s . The average receipt on the London and North.Western is 48. ; Great Wentern, 4s. 9d.; Midland, 2s. 7d.; SouthEastern, 1s. 6d. ; Brighton, 2s. 4d. ; Eastern Counties, 3s.; South-Weatern, 3 s ; and Lancashire and Yorksbire, 1 s .4 d.
Beaste.-The average receipt for beasts on the London and North. Western is $42 d$. , miles 57 ; Batern Counties, 68d., miles 75; Great Western, $34 d$., milea 45.
Sheep.-London and North-Western, 10d. 70 miles; Eastern Counties, 9d. 75 miles; Groat Weatern, 10d. 66 miles.
Swine.-London and North.FTestern, 18d. 120 miles; Eantern Connties, 6 d .58 miles ; Great Western, $12 d .75$ miles.
Coals.-York and Nowcastle, 16d.; Stockton and Darlington, 18d.; MidLand, 27d.; London and North-Weatern, 20d.
Ironetome.-Ballochney, 9d.; Taff Vale, 28d., 25 miles.
Limeatone and Lime.-Midland, 22d.; Neweatlo and Carlisle, 20d. 16 miles ; York and North Midland, $14 d .9$ miles.
Building Stone.-York and North HidHand, 24d. 24 miles; Midland, 20d.; Neweantle and Carlisle, 22d.

Sand.-Bodmin and Wadebridge, 24 d .8 miles.
Fish.-York and Nowcastie, 214. 50 miles; Norfolk, 13. 68 mile Whitby and Pickering, 98.25 miles.
Parcels.-Average of enumerated lines, 3.9d.
Horses.-Average of all lines, 16e.-Corriages, ditto, 25 .

No. XXVII.-HORSE TRAPRIC.

The total number of horses carried in 1847 was 99,405 , and the total receipts 80,2162
The greatest horse traffes are the following :-

		Horge	
London and North.Weatern		Horsea	22,890
Great Weatern	\because	11,785	12,788
Midland	12,373	11,794
Eastern Conntien ..	.	8,155	6,084
Brighton	.	6,538	4,901
York and Nortb Midiand	..	5,813	2,613
Sonth-Western ..	.	5,447	4,335
Soath-Eastern	-	3,782	3,576
York and Newe		3,456	

The charge for horses per mile is, London and North-Western, 3d.; Great Weatern, 5•4d.; Midland, 4•25d.; Eastern Counties, 3.6d.

Many day-tickets are taken out for horses on the London and North-Western and other lines, by persons going out hunting.

No. EXVIII.-CARRIAGE TRAPRIC.
The total number of carriages in 1847 was 41,135 , and the total receipts 51,733 . The greatest traffics are as follows :-

		Can lager.	¢.
London and North-Weatern		8,790	12,785
Great Western	-	5,842	9,452
Midland ..	.	4,775	6,892
Eatern Countiea. .	..	3,266	3,747
Brighton	.	3,040	3,220
South. Weatern	..	2,904	3,285
South-Eastern	.	2,458	4,520

The average charge per mile is, on the London and NorthWestern, 4d.; on the Great Western and Midland, $6 d$.

No. XXIX.-DOG TRAPFIC.

Dogs are enumerated only in a few returns. The average rate per mile is d. The number carried in 1847 on the South Devon line was $1,086,541$.; on the Maryport and Carlisle 336, 511. ; and on the Whitehaven, ${ }^{230}$.

No. XXX.-CARRYING-sTOCK.

The following is an enumeration of the carrying-stock of the London and North-Western Railway in 1848, suitable for special traffic:-Horse boxes, 210 (horses carried, 27,715); carriage trucks, 217 (carried 8,790); builion vans, 9 ; post offices, 8 ; ditto tenders, 13; milk trucks (north division), 2 ; convict van, 1 ; cattle wagons, 495 (cattle, 161,171); sheep wagons, 117 (sheep carried, 399,998) ; coal wagons, 659 (440,000 tons); timber trucks, 18; powder magazines, 4 ; iron trolleys, 4.

No. XXXI.-MANCHESTER AND SHBPFIRLD.

The following, communicated by the kindness of Mr. Meadows, seoretary of the company, gives some particulars as to the traffic of the Mancheater, Bheffield, and Lincolnshire Railway :-

ESee a valuable paper by Mr. Wyodham Hardiog, read before the Brianh Asociation. at Brameke, and atice re-published.

Analysis of Merchandioe Traffic.

Date.	Conl.	Btone.	Sheffield Goods.	Flour and Graln.	General Good.	Total.
1848. March	$\begin{array}{r} \text { Tone. } \\ 12,334 \end{array}$	'rans. 6,176	Tons. 1,791	Tous.	Tons. 5,550	$\begin{aligned} & \text { Tons. } \\ & \mathbf{2 7 , 0 1 0} \end{aligned}$
April	9.689	7.530	1,884	1,618	4,698	25,419
May	8,673	8,561	2,262	2,663	3,443	27,602
Total	30,696	22,267	3,937	5,440	15,691	80,031

REGISTER OF NEW PATMNTB.

GAS-METERS.

Samurl Clega, of 24, Regent-square, London, civil engineer, for "certain improvements in gas-nueters."-Granted April 20; Enrolled October $20,1848$.

The patentee claims, in this invention, the dividing of the gas which passes through a meter into two or more portions, and ascertaining the whole quantity by measuring a part when under pressure, instead of measuring all the gas which passes through the meter. Another portion of the invention claimed as new, is the making of the inner circle of the drum of a water-meter water-tight, that being in water it may be buoyant, and prevent the weight of the drum from pressing upon the axis. The principle on which the first part of this invention depends, is the well known law, that the discharges of the same fluid through different openings at the same pressure are proportional to the areas of the openings. The arrangement of the apparatus is as follows:-The measuring-drum. of a wet meter consists of a hollow eoncentric ring and cover.

The drum, revolving upon an axis in water, is divided into compartments so arranged that, as the gas enters, it shall in succession fill all the chambers, and be discharged measured. The inner circle c, c, of the drum is made water-tight, so that when the meter is filled to a certain level with water, the drum is buoyed up, and would nearly float if otherwise unsupported; consequently, there is little or no friction upon the axis. The gas from the service enters the meter-case through the pipe x , and after passing a $v a l v e,-w h i c h$, when the meter is sufficiently filled with water, is opened by a float in the usual way,-is divided into two streams, and flows through the pipes c and B^{\prime}, the latter stream being the one measured, and is discharged so measured from the drum-cover by the pipe P, through the opening N. Now this discharge being known, the quantity of gas that passes through the other opening m, is known also, and the sum of the two discharges is marised on the face of an index arranged in the usual way.

To equalise the pressure, the following apparatus is used: z and n, are two hollow vessels connected with one another at their lower parts, open at the bottom, sealed by water, and free to vibrate about a common centre x; v is a alide, covering the two
openings m and N, attached to the hood A, in guch a manner that, as it rises or falls, it shall move the slide v, and open or close these openings. The pipes a and B, lead into these vessels or hoods, and the gas discharged into them is of the same pressure as that which flows into the meter; so that, if the regulating-hoods were of the same weight, and at equal distances on each side of the centre x, they would balance each other. Over the hood E is fixed immoveably another and larger vessel a, open at the bottom and sealed by water, having communication with the drum of the meter, or rather with the drum-cover at F. The openings m and N, adjusted by the movement of the hood H, are by its descent partially closed, and the pressure of the gas flowing through them is reduced by so much as exists between the gai flowing into the meter-drum through the pipe B^{\prime}, or the initial pressure, -or that between the interior or exterior surfaces of the hood e, viz., one-tenth; so that the gas now flows through both openings, m and N, with the same relative velocities, the discharges being in proportion to their areas.

Supposing that the measuring-drum required a pressure of twotenths head of water to work it, and that the initial pressure was fuur-tenths, the pressure in the cover of the drum and in the fired hood o, will then be two-tenths. The gas will issue from the opening N , with a pressure also of two-tenths; and the differences of pressure between the interior of the hoods E and H, and the exterior of the hood E , being two-tenths, the hood H , will have a descending power of two-tenths, and thus the velocities with which the gas issues through m and N, will be equalised ; and so for any other pressure, The same principle of measurement may be applied to dry meters.

TUBULAR FLUES.

Thomas Potts, of Birmingham, brass tube maker, for "improvements in the manufacture of tubular fues of locomotive and other steam-boilers."-Granted April 10; Enrolled October 10, 1848.

The object of this invention is to protect the flues of boilers, by lining them with a composition resembling that used for brazing. In forming this material, ten ounces of refined tin are added to a hundredweight of "bath metal," which is composed of two parts of foreign zinc and three parts of good copper. This compound metal is rolled and formed into a tubular shape of the size required; after which, the tubes are annealed and stretched, 50 as to straighten them and bring the edges correctly together. On each of these tubes is placed a tube formed of copper or an alloy of copper; and the compound tube is put on to a steel mandrif, made with a taper of about one-sixteenth of an inch into its whole length, which not only facilitates the withdrawal of the mandril, but also gives additional thickness to that end of the tubular flue which is to be fixed to the fire-box of the steam-boiler. The compound tubes, each having a mandril within them, are then drawn through draw-plates. It is not necessary to solder together the edges of the inner tube, as it will be sufficiently strong without. The lining should be made twice as thick as the outer tube.

The patentee claims the use of a lining of such a preparation of metal, for lining tubular flues of copper and of copper alloyed; the object being to obtain a lining of metal which shall be lees prejudicially acted on by the passage of sharp grit from the fire, than if the whole tube were made of copper or of copper alloyed.

AXLE-BOXES AND JOURNALS.

William Jorn Norganville, of Park Village, Middlesex, gentleman, fur "certain improvements in railway or other carriages, partly consisting of new modes of constructing the axle-baxes and journals of ioheels; also an improved method of lubricating the said journals or other portions of machinery, by the introduction of aqueous, alkaline, oleaginous, or saponaceons solutions."-Granted May 2 ; Enrolled November 2, 1848.

The claims of the patentee do not correspond in length with that of the title of the invention, as they are simply for a peculiar combination of various elastic and other materials with the axlebox and journal, for the purpose of rendering the lubrication of the journals of railway-wheels and other moving parts of machinery more perfect ; and, secondly, for arrangements for enclosing the lubricator within a vessel, which shall contain it and exclude the dirt. In carrying into effect the first part of the invention, as regards the axle-boxes of railway-carriages, a shield or collar of vulcanised india-rubber, or other suitable elastic substance, is made of the form shown in the engraving, marked A, A, and attached to the axle-box at its outer edge. This shield is perforated in its centre; such perforntion being cut to a perfectly smooth surface, to allow the passage of the journal through it. The perforation is made of less diameter than the diameter of the journal, and by the tendency of the material of which the shield is made to collapse, it presses so closely to the journal, that an air-tight joint is maintained.

The diameter of the perforation in the shield for a four-inch axle should be three inches and five-eighths, the outer diameter of the shield should be one-eighth of an inch less than the disc of the axle-box into which it is to fit, and it will then be found to completely fill it. After having been stretched over the axle, the shield tapers from its centre to its outer edge. For the protection of the elastic shield, and behind it, is placed a thin cast-iron or other metal shield B (secured to the axle-box by four bolts) which being more or less tightened, presses upon the outer periphery of the elastic shield and occasions pressure as required to maintain the joint upon the axle. In adjusting this box upon the journal, no more compression should be put upon the outer diameter of the elastic shield than is necessary to make an air-tight joint, otherwise there would be considerable risk of the shield firing, before it could become properly lubricated. When by continued wear the air-tight joint can be no longer maintained, a loose ring of india-rubber, of the same diameter as the axle, and about a quarter of an inch in thickness, may be placed upon the axle. The original shield, whose orifice has become enlarged by wear, is then stretched upon this ring, and by its contractile force clasps it so tightly, that a perfect joint is maintained between the two surfaces of the india-rubber, while the axle revolves within the inner or loose ring; and the operation of tightening by the means of the four bolts is repeated as required. Or by another modification of this arrangement, a metal ring is introduced in contact with the axle, using the contractile force of the india-rubber shield to keep the ring in close contact with the polished axle. These axle-boxes should be filled with a saponaceous grease in a semi-fllid state, so that it may flow towards the shield, and lubricate it without delay. The top of the axle is of a circular form, with a lid furnished with a small air-hole screwed thereon, and effectually clusing the box. The grease is introduced through the aperture whenever required.

MANUFACTURE OF WHEELS.

John Abbibury, of Openshaw, near Manchester, for "cortain improvements in the construction and manufacture of wheels for use upon railuags and common roads, and in the methods of preparing and constructing the tyres used thereon."-Granted March, 11 ; Enrolled September 11, 1818.

Fig. 1 , in the annexed woodcuts is a side elevation and a longitudinal section, showing the first part of the patentee's invention.

The nave a is made of cast-iron, and presents the same appearance on each side of the wheel, having six projecting-arms a^{\prime}, a^{\prime}, with sufficient space between them transversely to admit of the insertion of the wooden pieces b, b. They are also divided in the same direction by the radial plates a^{3}, a^{2}, while the circumferential portions a^{3}, a^{3}, are of equal breadth and extend transversely between them in the recess thus formed. On each side of the radial plates a^{4}, a^{2}, are placed one of the wooden pieces b, b, one side of each of which is prepared so as to abut upon the radial plates $a^{2}, a^{ \pm}$, and being furnished with a notch, by which the projections of the circumferential plates a^{3}, a^{3}, are cleared, they impinge apon each other radially, till they reach the periphery of the wheel; all lateral action being prevented by dowels, inserted between them. The opposite sides of the pieces b, b, diverge alightly from the radial line; and between them the wooden wedges d, d, which are prepared to a corresponding angle, are inserted, and driven on towards the nave. The pieces b, b, are brought firmly into contact with the radial plates a^{2}, a^{3}, their escape outwardly being prevented by the plates a^{3}, a^{3}. When these wedges are driven up, they are secured to the nave by the bolts d^{1}, d^{1}, passing through them transversely, any lateral motion between them and the pieces b, b, being prevented by metal tongues. The wheel then appears like a disc of wood with an iron nave; and in this state it is placed in a lathe, and the periphery trimmed and turned to the required diameter. A wheel thus constructed, although without a tyre, could suffer no dismemberment until the removal of the bolts. The methods which the patentee employs for securing the tyres to the wheel, form the third and fourth series of improvements. The tyre f upon this wheel is slightly convex upon its inner circumference, and when it has been put upon the wheel in a heated state, and allowed to contract in cooling, this convexity enables it to assume and retain a more effectual hold upon the wooden portion of the periphery, than if its inner circumference were a flat surface of the ordinary kind. The tyre is secured to the nave a by means of the bolts g, g.

Fig. \mathcal{L}, is a front elevation and longitudinal section, illustrating the method of constructing the wheel according to another improvement. p is the tyre, furnished with two inner flanges p^{1}, p^{2}, the space between which is equal to the thickness of the spokes r, r, transversely : this tyre, it must be understood, is laid down cold, and the spokes are then arranged in order within it, their motion laterally being prevented by flanges at a short distance from the point of abutment of the spokee. Upon the naves they converge on each side in lines radiating to the centre of the wheel, or to some centre determined by practice as the most suitable, but in either case sufficiently to admit of the insertion of the wedges t, t, between them. These wedges are driven up by a tapering mandril and by other mandrils of increasing diameter successively until the effectual contact of the spokes with the inner circumference of the tyre and with the wedges is effected. The wheel is then placed in a lathe, and the ends of the spokes and wedges prepared for the reception of the nave, which may be of cast or wrought-iron. The nave is made in two equal parts, consisting of as many arms s^{1}, s^{1}, as there are wooden spokes tu
the wheel; while the boes, or that part of each which is inserted in the wheel transversely, is made slightly tapering towards the other : the lugs or projections $8^{4}, s^{3}$, which correspond with the number of wedges t, t, are made equally tapering, the heads of the wedges being cut away to receive them, and the recesses thus formed in the boss impinging upon the ends of the spokes. Whenever the bolts which secure the two portions of the nave with each other and to the spokes, are screwed up by the nuts, their action upon the surfaces of the boss of each portion of the nave causes the wedges to be driven up further between the spokes r, r, which are also brought into more effectual contact with the inner circumference of the tyre, as a small space is left between the two portions of the nave in the middle of the wheel. In this wheel the tyre is shown attached by jagged spikes, one of which is driven into each spoke.

The next improvement consists of a cast-iron wheel; the nave from which the arms radiate, and the inner or cast-iron tyre, is formed in the usual manner, the outer tyre being made of wroughtiron. The arms of the wheel have a hollow opening or slot, extending from the inner tyre to the nave; down this opening the bolts which secure the outer tyre to the wheel, pass, and are held by cotters driven transversely through the nave, under the first series of improvements. One great advantage of this method is, that as the outer tyre becomes loose by continual wear, it can be tightened and held fast to the wheel by merely driving up the cotters, without involving the necessity of re-tyring the wheel; and this applies equally to wooden as to iron wheels. The fifth part of the improvements refers to a method of preparing, dressing, and finishing the outer surface of tyres for railway wheels, by grinding them with hard stone, instead of dressing them in the lathe in the ordinary manner.

HEATING AND VENTILATION.

Jobn Brittern, of Birmingham, machinist, for "certain improvements in heating, lighting, ventilating, and closing and screwing the doors of apartments; also in lighting and ventilating carriages; parts of which improvernents are applicuble to other like purposes."Granted April 20; Enrolled October 20, 1848.

This specification is so comprehensive, that we can only notice the principal objects which the invention is intended to accomplish. In the first place, the patentee claims a mode of closing fireplaces or stoves with ground glass, introduced like panels into the iron frame. The door is placed in front of the fire, and is not hinged to the frame of the stove in the usual manner, but rests upon a sliding damper below the bottom of the fire; thus by withdrawing the damper, the door is also withdrawn at the same time for the admission of air to the fire. The door is kept close to the frame at the top by means of a weighted latch. The second part of the invention relates to the ventilating of apartments. This the patentee proposes to do by closing up the fire-place by a door, and supplying the fire with air by means of a pipe from the top of the room. The pipe conveying the air is divided into two branches, one of which delivers the air above the fire directly into the chimney, and the other delivers it below the fire to aid the combustion of the fuel: it is provided with a valve or damper, by which the intensity of the fire can be regulated as required. Another part of the invention consists of a candle-guard to prevent candles from guttering. It is formed by a cap, which is piaced upon the top of the candle, the upper part of the cap forming a ring round the melted part of the tallow, and, as the candle burns away, the cap descends with it by its own weight. Improvements in the windows of carriages are comprised in this specification: the improvements proposed consisting in having the windows to open outwards with hinges, like French Findows of houses; and a projecting roof to the carriage is proposed, for the purpose of avoiding drafts. The hinges and locks of doors come next within the scope of the patentees improvements. Among other alterations, he proposes to place the common arm-spring on the opposite side of the door to that on which it is usually placed. The two last parts of the invention relate to the latches and locks of doors. The patentee describes a variety of methods of effecting the lifting of the lutch or other fastenings of doors, by simply pulling the doorknob on one side of the door, or by pushing in on the other. The pin or rod connecting the two knobs is so connected by levers or other apparatus to the latch or boit, that any motion given to it will lift the latch. The last part consists in a mode of locking locks without the aid of the opening key. It consists in forming
the pins upon the tumblers bevelled on one side, so that by simply pushing forward the bolt, by means of a small lever attached to a handle, the pins will be raised from their respective notches by their peculiar shape, and thus allow the bolt to pass; but the vertical faces of the pins fully lock the bolt, and prevent its being forced back without the key.

ROTARY STEAM-ENGINE.

Isalat Dafies, of Birmingham, engineer, for "improvements in steam-engines and locomotive-carriages; parts of which are also applicable to other machinery."-Grunted May 9; Enrolled Nuvember \& 1848.

The improvements in steam-engines comprised in this specificstion have chiefly reference to rotary-engines, and to a new kind of stuffing-box adapted to the shafts of such engines, for the purpose of keeping them steam-tight, where the shafts pass through the curves, with little friction. The patentee uses a metallic packing, which consists of several segments, the larger set of which are adapted to the size of the box, and are furnished with a flange piece projecting inwards so as to fit the shaft; while the inner set of segments are placed within, so as to rest on this flange piece: the whole are prevented turning by two fixed ribs running parallel with the shaft. These segments are cut so as to leare about one-eighth of an inch between the ends, and are placed so as to " break joint," as it is technically termed. The whole are forced up by spiral springs, placed in recesses cast in the box: the steam has access to the back, and also acts as a spring thereto. Meral discs are placed above and below this packing, and the whole is secured in the usual manner. Another improvement consists in fitting the piston of rotary-engines to the shaft, by means of three feathers let into the shaft, instead of keying it fast. This is to prevent the piston turning on the shaft, and at the same time to admit of any slight end-movement consequent on its application as a motive-power, without giving rise to a great amount of friction, which would otherwise be produced in the cylinder. Another part of the invention consists in working the expanaivevalves of steam-engines by a double-acting cam, so that by moving a lever, which changes the position of the different connections, the steam is cut off at a different point of the stroke.

The mode of connecting the engine in locomotive-carriages to the driving-wheels forms another part of the patentee's claima The engine is placed midway between the wheels, within the framing. The axle projecting through has a suitable crank effixed at each end; these being connected by the rods to similar cranks on the driving-axle, describing a circle of the proper radius from the centre. According to the ordinary method of constructing these carriages, (the engine being a fixture to the framing, and the driving-axle moving vertically in the axle-puards or gabs), the distance of the centres must be increased or diminished, as the points are nearer or farther from a straight line: to prevent which, the patentee constructs the axle-guards in portions of circles, struck from the centres of the engine-shaft and crankpin; consequently the axle-boxes are kept at the same distance, whatever may be the rise and fall of the framing on the drivingaxles.

LAYING-DOWN OF RAILS.

Lewis Dunbar Brodie Gordon, of Abingdon-street, Westminster, for "an improvement or improvements in railways."Granted May 9 ; Enrolled November 9, 1848.

The patentee puts in five claims for improvements in the construction of railways. The first is for forming the ends of rails in such manner that the end of one shall rest upon the end of the next. Second, the adaptation of thin malleable plate-iron to form the sleepers for supporting the rails, combined with a mode of fastening the chairs to the sleepers. Third, a mode of supporting the ends of adjoining rails by a trough or girder. Fourth, a mode of fastening the rails in the chairs. And lastly, a mode of preparing the keys of railway-chairs.

The first of these improvements consists in forming the ends of the abutting rails in such manner, that the end of one of them shall rest upon the other; the end of one rail being cut so that when laid in the chair, it shall rest as well upon the ead of the rail as upon the chair. In the second improvement, the patentee
states his mode of forming the sleeper as follows. The chair is cast upon the sleeper. A plate of iron of about 15 or 16 inches in width, and of from one-sixth to one-fourth of an inch in thickness, is then to be bent in the direction of its breadth into a circular curve, having a radius of from about 30 to 36 inches as most deairable. The moulds for the chairs are placed in the fonndry in the exact relative position to each other that they should occupy when permanently laid, and upon them is placed the bent plate, with the convex side downwards to the moulds. The cast-iron is then ran into the moulds, and in such manner as to imbed in the metal of the chair itself a portion of the curved plate; the cast metal being of about the thickness of half an inch upon the upper side of the plate. Thus will the chair be securely cast upon the curved plate, and firmly fixed without any bolts or pins. In carrying into effect the third improvement, upon the sides of the chairs are projecting pieces or ledges, upon which the girder is placed. The one shown by the patentee in his drawings, is of a trough-shape, that is, it passes along beneath the rail to be supported, and slso along the sides, so as effectually to support the rail. The mode of fastening the rails to the chair is effected by means of a screwed bolt passing through one of the cheeks of the chairs, and through a nut; it is screwed through the nut, and not through the chair, the nut fitting into a recess on the inside of the cheek to receive it, and prevent it from turning when the pin is screwed up. In the fifth improvement, for the mode of preparing the wood keys, the patentee proceeds thus. He makes a varnish by combining with any of the drying oils red lead, in the proportion of about $\frac{1}{18}$ to $\frac{1}{80}$ of the latter: these are to be subjected to heat for several hours, and while at the temperature of about 450° Fahrenheit, the wood keys are immersed therein, and the wood becomes thoroughly impregnated, so as to withstand the tendency of the dryness or moisture of the atmosphere to effect its bulk.

MEASURING WATER.

Edward Haioa, of Wakefield, plumber, and manager of the Wakefield Waterworks Company, for "an invention for measuring eoater or any other fiuid."-Granted May 9 ; Enrolled November 9, 1848.

This invention for measuring water or other liquids, consists of a wheel or drum, divided vertically by a partition, which contains on each side three measuring chambers. Above the drum is a "preparatory cistern," into which the liquid flows from two feedpipes, and which is divided into four parts. The water flows from this cistern in two streams into one of the measuring chambers on either side of the partition alternately; so that while one chamber is filling, the liquid flows through the machine: but the gaugecocks and other parts of the machine being so nicely adjusted, and its being made to register twice as much as is actually measured, no error it is stated can occur. This drum is mounted on a horizontal spindle, and carries at one end a toothed wheel which gears into a toothed pinion, and communicates its revolving motion to an ordinary indicating apparatus as usual. On the periphery of the vertical partition are six projecting pins (equal to the number of measuring chambers), which catch against and rest upon the extremity of a tumbling lever, which is weighted at the other end by a ball; so that when the weight of the water in the measuring chamber exceeds that of the regulator, it gives ray, allows the pin to fall, the chamber to turn, and the water consequently to flow out. The patentee claims-"An apparatus or machine consisting of a 'preparatory cistern' in connection with a drum or wheel containing two sets of measuring chambers, into which the water flows alternately from openings in the 'preparatory cistern,' and made to revolve by the liquid; and also the employment of the tumblinglever, or regulator, as before described.

MANUFACTURE OF IRON

Charles Attwood, of Wolsingham, Durham, Esq., for a "certain improvement or improvements in the manufacture of iron."Granted April 18 ; Enrolled October 18, 1848.

The object of this invention is to obtain a better reduction of small pieces of the ore which at present run through the coke, \&c. to the bottom of the furnace, without having come sufficiently in contact with the limestone and other substances usually mixed
with the ore in blast-furnaces. The small pieces of ore to be operated on are mixed with a bituminous coal, which will agglutinate in the process of coking, in the proportion of about one-fourth of the weight of the coal. - The mass so mixed is afterwards coked in the ordinary way of coking coal for smelting purposes, and the ore becomes involved in the body of the coke, by which it is retained, till freed, by the subsequent process of smelting. Ore so combined cannot fall through the blast furnace faster than the coke with which it is combined; it will therefore have abundance of time to combine with carbon to the required extent, before it reaches the bottom of the furnace. With regard to the size of the particles of ore that will be benefited by such treatment, anything from the size of a hen's egg or large walnut, down to the smalleut particles of dust, it will be proper to subject to such combination with coal previous to coking; but anything materially larger, it would be nnnecessary to subject to such treatment, as it becomes properly reduced in the ordinary method of smelting iron.

The patentee finds that coke formed of the kind of coal found in Durham and Northumberland will, after having been coked and combined with one quarter of its weight of ore, bear a burden of ore, in the ordinary manner of charging the blast furnace, equal to the same weight of coke without such combination of iron ore; it therefore becomes improved to a very considerable degree, independently of the advantage derived from a proper reduction of the smaller particles of ore effected by this process.

SELF-ACTING SAFETY-VALVE.

Edward Walmsley, of Heaton Norris, Lancashire, cotton spinner, for "certain improved apparatus for preventing the explosion of steam-boilers."-Granted April 27 ; Enrolled October 27, 1848.

This invention is chiefly applicable to low-pressure boilers, the safety-valves of which are lifted, when the pressure becomes too great, by a weight of water forced out of the boiler and acting at the end of a lever.

This apparatus consists of a vertical tube, containing a column of water, which may be the ordinary feed-head. In this the water is sustained at a certain height, according to the pressure of the ateam. A little higher than the surface of the water is placed a horizontal branch-pipe, leading to a descending-tube, down which the water flows when forced over by any undue pressure in the soiler. Immediately under the descending pipe is placed a small circular pan with a bottom slightly conical, suspended on the end of a long lever. This lever forms a continuation of the safetyvalve lever from the fulcrum in an opposite direction to the weighted end, and is so adjusted, that when the pressure of the steam is at the proper height, it will be nearly in equilibrium, the preponderance being slightly in favour of the weighted end of the lever. When the pressure becomes too high, the water column will be elevated so as to run down the pipe, and will be caught in the pan. This additional weight of water causes that end of the lever to preponderate, which will immediately descend, thereby raising the safety-valve. The pan is furnished with a small valve in the bottom, having a short stem projecting through, so that on completing its descent this pin comes in contact with the bottom of a receiver, thus raising the valve and allowing the water to flow out. The steam in the mean time having been reduced to its ordinary pressure, the whole assumes its original position.

A second improvement consists of an apparatus for opening a valve in a channel leading into the fire-place, directly above the dead plate. The cover of this channel is connected with the opposite end of a lever from which the float is suspended. In the event of the water falling below the proper level in the boiler, the float will consequently sink, thereby causing the opposite end of the lever to remove the cover from the air-channel, and allow a current of cold air to pass through the fire. The same principle is scarcely applicable to high-pressure boilers, because the column of water would require to be inconveniently high. To obviate this difficulty, the patentee employs only a short length of vertical tube, through which however the water does not rise until the safety-valve has been raised by the pressure of the steam ; the weight of water being in this case only a supplemental assistant in opening the valve farther after it has been raised by the steam-pressure.

COUPLING IRONS.

Daniel Rice Pratt, of Worcester, United States of America, for "machinery for connecting railway carriages."-Granted April 27 ; Enrolled October 27, 1848.

This specification describes a mode of constructing what the patentee calls a self-acting coupling, for connecting together railway carriages. The object to be effected by the use of it is, that when two carriages to which it is applied are brought together, end to end, the coupling connects and secures itself. It is formed of a moveable and peculiarly-shaped hook, to which the draw-link attaches itself. It is represented in the annexed figure,

A, A^{\prime}, being the two ends of the draw-bars of two separate carriages. The ends of the draw-bars are provided with the concave bu㢈的-plate $\mathbf{B}, \mathbf{B}^{\prime}$; a bole passes through the centre of each buffing-plate and into the ends of the draw-bars, through which passes the coupling-link C. Hooks D, D^{\prime}, are jointed to the drawhars by fulcrum-pins, upon which the hooks are at liberty to move. They are of the peculiar shape shown, and the ends so formed, that when the end of the coupling-link passes through the bole into the interior of the draw-bar, it comes against the end hook $\mathrm{I}^{\boldsymbol{r}}$, and thereby raises it sufficiently to allow the end of the coupling-link to pass under the end of it; so soon, however, as the end of the link has thus passed, it comes in contact with the other end $D^{\prime \prime}$ of the hook, and depresses it, and also the other end $\mathrm{I}^{\prime \prime}$ takes hold of the link and retains it fast. The hook may be released by means of a cord or chain attached to the upper part of it being pulled, and thereby raised. The patentee states, his improvement may be attached to all descriptions of railway carriages, whether with or without spring-buffers and draw-rods; and he claims the hook, in conjunction with the coupling-link described.-Patent Journal.

THE BLAST OF ENGINE-FURNACES.

Eugene Ablon, of Panton-street, Haymarket, for "improvements in increasing the draft in chimneys of locomotive and other engines." Granted April 8 ; Enrolled October 8, 1848.

The object of this invention is to produce a steady draft or blast in the furnaces of locomotive engines more particularly, by cansing a quantity of atmospheric air to be drawn into the chimney by the action of the escape-steam. In the annexed woodcut,

c c, c, represents the form of the pipe by which the air is admitted into the chimney, the mouth d being enlarged for the entrance of the air. The following are the proportions of the pipe, to which considerable importance is attached by the patentee :-The open-
ing of the eacape-pipe being circular, to ascertain its sarface and its diameter it is necessary to measure the size of one of the cylinders of the engines of the locomotive in cubic inches, and by deducting the cube of the piston (measured in the same way) the number of cubical inches remaining being divided by three hundred and ninety-four, the quotient of that division will indicate the number of square inches that the opening of the excape-pipe should have. The diameter of the opening of the escape-pipe is to the diameter of the cylindrical part as four is to five. The height b^{\prime}, b^{n}, of that cylindrical part is equal to five times the diameter $b^{\prime}, d^{\prime \prime}$. The diameter b^{\prime}, d^{\prime}, of the part s^{8}, is to the diameter of the part $e, 8$, as five is to seven, and its height b, d^{1}, is equal to the diameter b, b, of the opening of the escapepipe I. The locomotive-engine being put into motion, the steam from the builer passes through the escape-pipe a, and produces in ${ }^{*}$ it a powerful suction of air, which flows into that pipe through its mouth d; and its acquired speed, it is stated, remains in it constant on account of its inertia, and although the action of the escape of steam be intermittent. Then a powerful current of air mixed with steam escapes in the chimney, and produces a powerful uninterrupted draft. The pipe through which the air passes may be arranged in any other form around the chimney, and may enter into the smoke-box by one of its lateral sides instead of entering by the front. The patentee claims the mode of arranging apptratus whereby currents of steam and air are brought to act together in the chimneys of locomotive and other engines, 90 as to accelerate the draft therein.

IMPROVEMENTS IN SEWERS.

Design for a Diaphragm Double Sewer, for separating or combining House-drainage and Surface-drainage.-Registered by W. B. Morfatt, Esq., of Spring-gardens.

The annexed engraving represents a design for a main sewer, the novelty of which consists in forming it in two separate chambers, the upper or larger portion A forming a subway for means of access to the lower sewer B, and house-drains E, E, and also for the passage of surface-water from inlets D, D. It may also be used for electric telegraph, gas, or water pipes, so as to prevent the breaking up of the pavement. A tube may also be inserted above the level of the inlet D , for placing service-water or gat pipes to houses, \&c.

The engraving represents a transverse vertical section of a sewer constructed on the principle described, showing the diaphragm and trap.

A, the subway. B, the main sewer, which is separated by the diaphragm C. This diaphragm is continued throughout the entire length of the sewer, but has inserted at intervals a moveable trap F, which may be raised for cleaning the house-drains and main sewer, if required, and may be used for flushing with surface water. E , E , inlet for house-drainage. D, D, inlet for surfacedrainage.

Protection has been obtained for the diaphragm C, and trap F, Which, together with the separate passages A, B, are new, an applied in the manner herein shown.-Patent Journal.

JOINTING CLAMP.

Jointing and Compreasing Screw Cramp.-Patented by Mr. James Kingerley, of Inge-street, Birmingham.

The accompanying engraving fully explains the nature of an ingenious clamp, to be applied for jointing of floors, \&c. Its construction is extremely simple, and its power great, and it can be easily fixed and removed. It is applicable in all cases where two bodies require a fixity and perfect union, and in the laying of floors it compresses the boards very gradually and truly together. It does not require the workman to rise off his knees when using it (as in all former ones) to effect a leverage, one progressive and uninterrupted motion only being wanted; moreover, it can be left, with its full pressure upon its work when necessary, unattended, and with perfect safety. Amongst builders, shipwrights, coachmakers, and others, a cramp to improve upon the ponderous and tedious action of the present kinds in use, has been an object long looked for, and the one described appears to be an invention which will prove a great auxiliary to the working department of every one engaged in the above pursuits,-as multiplying power, reducing labour, and increasing dispatch. It is contrived in but few parts, and breakage or derangement appears impossible. The cost of the instrument is two guineas.

NEW LEVER VICE.

The accompanying cut and description will explain the principle of a new lever vice, patented by Mesars. J. Peck and L. Pardee, of the United States. The following qualities, it is claimed, give it a decided superiority over all over vices:-

Greater atrength than any other vice of equal weight possesses. Greater power, and so applied as to save, in work requiring frequent changes, at least one hour in ten, as it is worked entirely by the foot, without the necessity of laying down a file, or other tool, or without any use of the hand, whatever. It can be changed to receive work from one-sixteenth of an inch, to eight or ten inches in width, as easily and as quickly as any other vice can be moved one-founth of an inch. And heavy work, requiring both hands to
lift, can be easily placed in the vice, without calling the assistance of a second man; it will soon pay for itself in saving of time. It is much easier for the labourer, the atrain upon the breast in turning up a screw is entirely avoided, and the vice can be closely approached without being obliged to bend the body over the end of the screw, as in other vices. When the vice is forced up, it becomes more firmly attached to the bench than any other vice can be, rendering the whole much more solid, which in chipping, and other heavy work, is very desirable.
a, sliding jaw. b, jointed, or swinging jaw. c, rail on which the sliding jaw moves. d, click which catches in ratchet on rail c, and holds the sliding jaw firmly where placed. e, jointed lever (elbow joint), which turns on pins ee, and is attached to prong of rail c, and the lower end of the swinging jaw. g, foot-lever with joint attached to leg of bench, and connected by rod i with jointed lever. h, click which catches in ratchet at the foot of the forward bench leg, and holds the jaws firmly as forced up by the combined levers; it is easily tripped with the foot. f is a spiral spring which lifts the foot-lever, and throws open the jaw.

THE GREAT AMALGAMATION.

The great amalgamation of the three companies, the London and North-Western Railway, the Great Western Railway, and the South-Western Railway, is attracting the attention not only of railway men, but of the public at large. Considered as an amalgamation of fifty millions of capital, it is certainly the largest financial operation of the kind yet effected. The capital of the Bank of England is not a third part of that of the Great Amalgamation; the union of the two East India Companies, which resulted in that which now exists, was not equal in importance; the South Sea Company did not propose to touch so large an amount of capital. Abroad no example is to be found of a private enterprise so great. Yet, considered in its individual features, the measure does not bear that unprecedented character. The annexation of the Great Western to the London and NorthWestern, is not greater than the annexation of the Grand Junction to the London and Birmingham ; and the annexation of the SouthWestern is of still less importance. It is therefore the aggregate to be constituted which gives character to the measure.
To hold forth any certain views with regard to the course likely to be followed by the managers of this system of policy is in so far futile, as it is by no means sure that they have a design of ultimately carrying it out in good faith. When we consider what temporary objects the proposition of such a plan is calculated to serve, regardless of its execution, it is prudent to hesitate before we assume too hastily how it will be carried out. If we recollect that there is no compulsion on one of the chief members of the Ieague (namely, the Great Western,) to amalgamate; if we recollect that a purposed contest has been long carried on, and has ended in the achievement of the objects by the party last-named; when we consider the ambition of their views, and the indisposition of the London and North-Western shareholders towards them, we must feel how uncertain is it, so far as the parties themselves are concerned, whether they will persevere, -and still more uncertain, whether they will be allowed by the legislature, in opposition to the public voice and interests, to carry out the measure in the form in which the several boards may settle it with each other.
It happens (not unexpectedly to those who know anything of the parties) that the avowed object of this league is to raise fares, and constitute a monopoly; and no time could be more unluckily chosen for the promotion of such desigus. Three years ago, the high-fare party were beaten by the conclusive evidence of facts, and forced to give way to a policy which gained neither their conviction nor their sympathies. And as they have ever since been on the look-out for the opportunity of reverting to their old course, the moment a decline took place in railway dividends, it was instantly asserted that it was owing to the lower fares and increased accommodation : and the directors, seconded by the sympathies of shareholders of their own school, have lost no time in doing away with the day-tickete, raising the fares, and diminishing the number of trains, -and this is but the beginning.
It has not been asked, what were the reasons which led to the adoption of the low-fare system,-it is quite forgotten that it was the experience of its success which was the cause of its adoption; and some inquiry it would be thought might be made, before its abandonment was determined on. At any rate, while the country was in ita
ordinary state, the low-fare system was fully competent to give good dividends; and it is therefore quite groundless to assert that it has ceased to be able to do so, or that it is the cause of lower dividends. No one ever supposed or asserted that that system was competent to give a maximum dividend, irrespective of all other causes; and still less that the low-fare system, or the high-fare system, or any system, could give the same amount of dividend, in defiance of the depression resulting from the greatest financial and political crisis which the world has yet seen, -and (if we take into account the Gilure of the grain, potato, cotton, sugar, and other crops, and the prevalence of cholera, influenza) and the greatest physical crisis.

If we were to sit down and estimate before-hand what would be the results of such a crisis, we surely could not be surprised at a falling off of dividends from ten to seven per cent. ; and if we had a fore-knowledge of such a crisis, we should be able to decide that there must be a falling-off in the business of the country, such as after-knowledge proves. This is a truism : and it is perfectly idle to charge the diminution of revenue on the fare system. That there has been a diminution consequent on the opening of a great number of branches, we believe; but that is to a great extent a necessary evil, and is temporary in its operation; at all events, the public are not to suffer. Those gentlemen who were very anxious for "calves" and new shares in 1845, and who pocketed the premiums upon them, are not to turn round in 1848, and make the public pay, because their branches are not yet yielding the full ten per cent. At the same time we believe, as said in some letters in the Morning Herald on "Railway Legislation and Railway Administration," that the uniform fares have pressed heavily on some of the branch lines; for with a new and undeveloped traffic, an absolutely low-fare is of nogood; because it has no effect in diverting the old traffic on to the line of railway, and which time is the chief agent in effecting. A reduction in fares will stimulate a traffic already existing, but has not such great effect in diverting traffic from accustomed routes, and in overcoming the prejudices of old women and obstinate men. The remedy proposed for this is a practical one; and that is, to give the Railway Board the power of allowing alterations in the tariffs of fares beneficial to the companies and to the public. The writer just named has pointed out that, so far from fares being raised, they might, if the companies had the power, be beneficially lowered to many of the great towns and places of chief resort; whereby the revenues of the companies would be much increased. A Railvay Board, to be good for anything, should have the power of mitigating those regulations which press harshly on the publicand the companies : and, as the writer in question has shown, there is great room for the exercise of such discretionary functions in the case of amalgamations, loans, new stations, fares, preference shares, and many minor arrangements for which the expense and delay of an act of parliament is now needlessly required.

If, every time there is a commercial panic, the business and energies of the country are to be still further depressed by the railways putting the screw on to the means of conveyance, the public will find the need of ridding themselves of such an oppression; and an additional argument will be furnished for taking railways into the hands of the government.

Altogether, the policy of abridging the public accommodation is as odious as it is unprofitable, but it is held by a certain school who are amongst the worst enemies the railway system has ever had. Mr. Glyn has always advocated monopoly, high fares, and government meddling; and his brother chairmen have much the same views. They have already met severe rebuffs in the narrow policy to which they are attached; but in the present instance failure is sure to attend them, whether successful or unsuccessful in carrying a bill through parliament. The public are fully aware of the motives on which it is founded; and either a bill will be granted, accompanied by such stipulations as permanently to reduce the income of the companies, or free competition in railways will be allowed, the result of which will be, at an early date, a cheap line betweeu London and Birmingham. One railway man already talks of a line at $\mathfrak{d} 5,000$ per mile; and it is practicable. In either case the expectations of the shareholders will be greviously deceived; and therefore we say, failure must result.

Mr. Glyn is himself one of the authors of the present difficulties, for it was he who advocated the limitation of dividends to ten per cent., and its enactment by the legislature; a measure uncalled for and injudicious, for while it did not propitiate those who objected to railway profits, it trammelled the companies. While there are famines and panics, traffic must fluctuate,-and therefore profits must fluctuate. While the object is to declare a maximum divi-
dend of ten per cent., there are no means of forming a reserve to equalize the dividends; but, were there no restriction, profits abore ten per cent. Would be reserved to keep up the dividends in unfavourable years. This is now rendered impossible, whereby very great hardships are inflicted on railway shareholders. The least that should have been given is an average ten per cent. from the time of opening.

The railway system is yet in its infancy; and nothing can be more unwise than the constant efforts to shackle it and to cramp it; and the more directors attempt to do so, the more they peril the existence of the undertakings to which they belong. Interested and prejudiced parties may choose to assert that nothing more can be done; but whoever looks at the history of the last twenty years will never dare to tie himself down to any such conditions. It is the very result of improvement, that it allows further improvements to be made. It would never answer to make a machine for half a dozen pins; but when thousands are wanted machines are set up. A great traffic makes expensive engines cheap; a high speed authorises those means which were before unthought of. After all, dare any one say that eagines cannot be made lighter, rails cheaper, bridges and viaducts of readier construction, and gradients of greater inclination? The claimants to effect these things-nay, who are now doing them,-are already at the doors; the minds of thousands of ingenious men are at worl in inventing new and cheaper modes of traction; the resources of science ared aily becoming greater; and, since light and electricity have been enlisted among the servants of man, a new impulse has been given to the applications of art.

The demand for a monopoly forcibly recalls all the evils of our present system of legislation on public works. The Morisonian and Doctrinaire calls out for a government system of railways, and relies on the Amalgamationists to prove his case : those who advocate freedom in public works equally profit by the same circumstances. Conviction is gaining ground, even among the railway press, who have hitherto been staunch advocates of the old companies, and opposed the introduction of new ones. Herrapath; Journal* very well points out, that in the district of the Great Amalgamation there is room for thrice or four-fold the number of railways. And urges that the monopolists will neither make them themselves nor allow others to make them. It should be sdded, neither will the government make them, should it get hold of the ruilways; and thus the progress of the country in its struggle with manufacturing and commercial rivals may be irretrievably impeded; for if we stand still, other countries will not; and as it is, we are already too much fettered. Nothing short of freedom in the construction of public works can secure us against high charges or inadequate accommodation; and let us have but that freedom, and the Great Amalgamation may be allowed to charge whatever fares they like. It is not true that competition in railways cannot exist : the question has never been carefully discussed; for the railway parties who have discussed it have thought themselves bound to monopoly. Till the poorer classes of this country can be conveyed on suitable terms, we shall not have reached the limits of fair accommodetion; and we want thousands of niles of railway to do this. In another part of this journal it is shown that the traffic of the existing railways is but a fraction of the whole traffic of the country: indeed, the exteasion of the means of economical convegance is most urgent.

When the Amalgamation Bill comes to be discussed in parliament, it is very likely its supporters may be little inclined to go on with it. Their strength in the House of Commons is great ; but the exposure of the discussion will of itself be a severe shock, while the possible political operations are menacing. To a large party in the house a tempting opportunity is offered, of gratifying the people at the expence of the shareholders: cheap travelling will save the members from putting taxation on a fair basis, or giving the people a share in the government. The Cheap Travelling Bill will be the measure of the session; members may look their constituents in the face, and say they have done something; and the character of the Do-nothing Parliament will be retrieved. The temptation to the government is very sore : financial reforms deprive them of patronage in the customs, dockyards, and excise; and taking possession of the Great Railway Amalgamation will give them compensation, without alarming the opponents of patronage and prerogative, and to the gratification of those who think that the government should have legitimate means of securing a majority. Neither Whigs nor Tories can withstand such a chapce, in which both have an interest,-one contingent, the other immediate.

The catastrophe of a government-purchase Mr. Glyn may antioipate, and may have laid this trap to effect, for he has always been a consistent supporter of such a course; but these are rather dangerous times in which to try such strokes of policy. If a sop must be given to the people, railways will be sacrificed here, as in France the provisional government proposed they should be under the amiable desire to gratify the people at the expense of anybody. And English capitalists have already much suffered, although the whole measure has not been carried out.

The position of the Great Western Railway under its shrewd leader, Mr. Saunders, is the great element in the problem. He has succeeded in getting the means of coercing the London and North-Western after hard fighting; and he is not likely now to rate peace so highly as to give up for it the fruits of victory, which offer themselves to his hands. What, too, is to be done with the broad gauge? After all the service it has done to the public, is it to be set aside? What compensation are the Great Western to get for their varied claims? These are all questions to be colved, and to be solved satisfactorily in a pecuniary sense, or it is very certain amalgamation will not go on. Mr. Saunders has fought to get something, and he will have it.
Mr. Glyn's motives in bringing about the amalgamation are appreciable. He effected that with the Grand Junction--he stayed the dissension: and to carry out a further amalgamation, and to appease a most dangerous competition are still greater measures. Can he pay the price? His shareholders have for years been plied with the most rancorous insinuations by the narrow-gauge advocates; and will they in this day accede to those terms, without which the Great Western will not give up their vantage-ground. The South-W estern directors and shareholders are glad to snap at anything ; but the Old Grand Junction shareholders, and the shareholders in the Liverpool and Manchester Railways, (who have had their dividends cut down), are notlikely to hear calmly any propo sition for giving high terms to a company which they have been taught to believe is overcharged with liabilities, paying dividends out of capital, and pursuing a ruinous system of management. These falsehoods have been widely propagated, and have been countenanced by those who ought to have known better. Now they will reap the fruits of falsehood. The narrow-gauge partisans, editors, and pamphleteers, will find it hard to make the shareholders believe a new tale, after what they have heard for years.

It seems to have been left out of account by most parties, that the amalgamation will result in an increase of income and economy of expenditure; affording a surplus fund which under a-liberal system would go partly to extend public accommodation, but which in the present case will be divided between the three parties to the amalgamation. This is the point for negotiation. The Great Western may say, "Without us this amalgamation cannot be carried out, and therefore it is fair we should have the larger share;" and as this is true, they are not obliged to accede to a division in proportion to capital, and the greediness of the others must give way.

So far as we regard the public interests, we are most heartily glad that this measure has been proposed; for we are convinced that the ultimate result must be for the public benefit, notwithstanding what directors may believe. The latter may plume themselves that they have secured dear fares; but we do not fear that we shall have not only cheap fares, but cheaper fares and greater accommodation. Discussion must do good; and discussion will now take place on a wider and more liberal basis than it has heretofore done.

What the end of the bill will be no one can say; but meanwhile the shareholders will have something to think of, and something to talk of at the meetings; and the directors will have time to look about them. The Times and Punch have got a good cause; the public will get excited; and the bill may be postponed till another session,-or may get into parliament, and the whole basis of railway legivlation be upset.

Ships without Keels.-Captain Jean Napoleon Zerman, of the Prench nary, has recently taken out a patent in this country for the construction of ships without keelis. His ships are to be fat-botomed; and tbrough the vessel, from atem to uterb, there is to be an opening or trough; the size being abont the width of one-tbird the greatest breadth of beam of the vessel, and the height so much at just to be above the low-water line. The patentee statea his ohject to be, in adopting this mode of construction, enabling the vessel to draw leas water, and take a greater hold of the water. The ressels are so constructed as to go each wiy, and are to have a rudder at each end.

REVIEWGA

Thooretical and Practioal Mechanics, designed principally for Practical Men. By James Hann, A.I.C.E., Mathematical Master of King's College School, London. Weale, 1848, 8vo.; pp. 384.

We are scarcely in the position to review a book written by Mr. Hann as impartial critics. A pre-disposition in favour of his new work, arising from a strong impression of the merits of those which preceded it, will be admitted by the reader to be, within certain limits, a fair ground of criticism. But we have other motives for a partial verdict, besides those patent to all who have read Mr. Hann's former publications. The extraordinary zeal which prompted him to the study of mechanical and mathematical science-the sacrifices which he has offered to his favourite science -these are considerations, derived from personal knowledge, which cause admiration, mingled with something like surprise. We are too much accustomed to think that academic discipline is almost indispensable for the attainment of that severe precision of thought and language which is pre-eminently required in mathematical studies. Here, however, those studies have been pursued in far other scenes than the seclusion of a college, and with far other means than the appliances of the professor's lecture, the tutor's private instruction, the discussion with contemporary students, and the powerful stimulus of a university examination.

In Mr. Hann's work we occasionally meet with defnitions and expressions which seem to lack the precision of our accuetomed class-books. Our author in these cases, is not always, as it appears to us, uninfluenced by impressions derived from the works of inferior writers, -men who address themselves to practical engineers, and have been too long deemed mathematicians because they use mathematical symbols. But if Mr. Hann and ourselves be at issue respecting the value of the class of authors referred to, this, at least, we concede-that if he sometimes boarow from such books their unscientific phrases, he dues not horrow their blunders in the conception and application of principles. In turning over English books on engineering and analogous subjects, we usuully adopt a rule, derived from vexatious experience, never to trust to the result of a single investigation till after having worked it over again for ourselves. In looking over the pages of this book we do nothing of the kind ; we do not expect to find at every turn an error of principle. On the contrary, we have not yet found but one result which we are disposed to dispute: this occurs at page 205.
"Suppose, by measurement, it be fornd that a man-of.war, with its nrdnance, rigging, and appointments, sink so deep as to displace 1,300 tons of sea-rater,--what is the whole weight of the ahip, supposing a cubic inch of sea-water to weigh -5949 of an ounce avoirdupoia?
"The weight of the water displaced is equal to the weight of the ship. 216 gallons $=1$ ton. $1300 \times 216=280,800$ gallons; and if we take $277 \cdot 2738$ cubic inches to the gallon, then $280,800 \times 277 \cdot 2738=$ 778,584; 83.04 cubic inches; and this maltiplied by -5949 gives $463,180,11 \cdot 5367$ ounces $=1292 \cdot 35$ tons, the weight of the ship."

Surely there is an error in this passage. If the displacement of the ship be 1,300 tons, it will weigh 1,300 tons-not an ounce, not the millionth-part of a grain, more or less. Here, however, without any apparent reason, the displacement is reduced from tons to cubic inches, and then brought back again to tons; and the several multiplications with decimals account for the eight tons lost in this unnecessary process. The error is, however, evidently accidental.

About one-third of Mr. Hann's work is devoted to the theory of statics; and considering the class of readers for whom his work is intended, he has acted judiciously in avoiding, as far as possible, complicated mathematical operations. We wish that it could have been found practicable to substitute arithmetical methods for the somewhat difficult analysis which occurs in the subsequent pages. The chapter upon Revetements (p. 209-2s3), for example, consists almost entirely of mathematical symbols, and is not, therefore, likely to have much practical utility. Besides, we have strong doubts whether any system of theoretical computation will express even approximately the pressure of earth upon sustaining walls. Coulomb's idea of the wedge of maximum pressure is, in a scientific view, extremely beautiful; but in practice many things concur to vitiate all deductions from the theory. In railway cuttings, stratified formations which dip to the horizon will be liable to slide forward where the inclination is towards the face of the cutting; and when the inclination is in the reverse direction, the strata may sustain each other by their mutual action. In this way it will happen that, in a railway cutting through inclined strata, the
right-hand bank may require the support of a strong revetement wall, while the left-hand bank is able to support itself. Again, the effects of ramming or binding the earth of an embankment, and of imperfect drainage, \&c., altogether vitiate mathematical formule.

We do not insist upon this point to the disadvantage of $\mathbf{M r}$. Hann's book, but as a general truth. It might be extended to another important subject-the theory of the Arch. There also we are satisfied that practice and modern theory are widely at variance. Petit and Garidel's tables (p. 244-6) may be correct abstractedly; but we imagine that it would be difficult to point out one actually existing structure for which they would indicate even approximately correct results. There do not axist any of those "arches with parallel extrados," and "arches with horizontal extrados," for which the tables are computed. Real bridges and arches are not the homogeneous uniform structures here supposed : on the contrary, they are composed of materials of very variable specific gravities; the voussoirs may be of granite or Portland stone, the apandrils may be either filled in with solid rubble, or partly occupied by abutting or inverted arches, and the roadway and parapet may be composed of materials still more heterogenous. No general formula will meet such cases. If there be any instances where Petit and Garidel's tables (founded on the assumption that all the materials of the arch are homogeneaus, and uniformly distributed) apply with anything like accuracy, we at least are not aware of their existence.

In the present treatios, the mathematical theories of the Arch and Revetements are presented with as much simplicity and analytical elegance as the subjects probably permit, but engineers never can, and never will, trust to long mathematical formulw. In abstruse theoretical calculations, the errors arising from negleet of practical contingencies increase and multiply at every step of the investigation; so that the adoption in practice of remote results of theory is generally inadmissable, and always hazardous. The more value, therefore, attaches to the numtrous aimplifications effected in the present work. The mathematical science of engineering is daily becoming more simple and exact; and to Mr. Hanu belongs a large share of the merit of these important improvements.

On the Importance of Studying Abstract Science, with a View to its Future Practical Applications-An Introductory Lecture, given at Putney College, Sept. 1848. By Lyon Playfair, F.R.S., F.G.S.[Printed for private circulation.]

This lecture of Dr. Playfair's is of more extensive use than it would appear to be from its title. There is a general disinclinstion on the part of practical men who have not been educated scientifically, to allow that such investigations as those which take place in the laboratory of the chemist, or the experimental philowopher, are practically useful. It may take more or less time to bring their discoveries into use for the benefit of man, but Dr. Pluyfair has shown that some of the least-promising discoveries have eventually been made extremelv useful-polarization of light, for example, and galvanism. His text is the idea on which Boyle wrote:-"There is no one thing in nature the uses of which are thoroughly understood." Nothing about or around us but what may eventually be found to be of service to man in many ways, of which at present he is ignorsant.

The certainty of this truth is undoubtedly a great incentive to all to persevere in acquiring a knowledge of the intimate constitution of bodies, and the developments of their known qualities. Dr. Playfair also gave excellent advice to the students he was addressing, on the necessity of intense application, and constant perseverance in studious and industrious habits. In the present day, the examples of fortunes rapidly made by men eminent in their profession, and sometimes even by less competent persons, have an injurious effect on the rising generation-making them expect to advance more rapidly than is either good for them or their employers. However well qualified to enter on the practice of their profession, no young men ought to look to securing, at starting in life, positions or emoluments which are the legitimate prize of lengthened services, and years of laborious assiduity.

To return to Dr. Playfair's lecture, which will be read with pleasure by all who take an interest in the practical applications of science, we would only further hint, that a little more care should be taken in correcting the press, even though the lecture is printed for "privale circulation only." Sume sentences are ungrammatical, and some unintelligible; but we again must express our opinion, that the main idea of the lecture is excellent, and the advice given well deserving the careful attention of the studeuts.

A very good illustration of the progreas, from the discorery of an abstract philosophical theory to its practical application, is given in the following extracts:-
"It is but the overfonings of science which thas enter into and aminate induatry. In its study you are never sure that the morrow may not gladden the world with an application of a principle which to-day was abstract and appeared remote from practice. This is a truth that I wish mont perticu. larly to imprem upon you who are to devote your lives to ite practical appl.cations. In your atadies you will constantly meet with abstract truthe which you might thinik it was unnecessary to acquire, because you did not see their practical tendency. This feeling in itself is wrong, education being a course of mental diacipliae fitted to frame the mind to habits of induction and inveatigation; and therefore, if it were thought neceasary to teacn you truths, which from their nature never could be practically applied, their use woold still be great in expanding and tutoring your intellecta, and enabling them to grasp difficulties when they present themselves."
"An officer of artillery, directing an optical instrument to the windowe of Versailles, which were illumined by the sun, was atruck with the fact that in one position they disappeared from bis view. This was the first dawn of the discovery of polarised light, - of light whlch had suffered a change, similar to that which it experiences when it has pased through doubly refracting Iceland spar. When a ray of this light wat passed through flat plates of certain crystalised aubstances, the most brilliant coloars were observed. These phenomena were remarkable, and were well wortby of the attention of scientific observers. Nothing, however, could appear more remote from practice than the atudy of an altered beam of light. It was moat interesting, indeed, that, as in the case of sound, where two sounds reaching the ear either exalt or deatroy the effect, so in light, two rays interfering with each other may produce darkneas. But who from this abstract observation would have dreamt that out of it would come nseful applications? It was found that the light which reached reflecting ourfaces at a particular angle wat polarined in coming from them; that, for example, mach of the light reflected from water is in this condition. Thus, suppose, you look with a Nichol's prism, the common polariser, at the shadow of a man on a amooth lake; by turaing round the prism in a certain direction the shadow will disappesr, because much of the light is polarised, while the man seen by common light will remain vinible; thus realizing the German fable of the man without ashadow. This property of the polariaing prism wat after a time applied to the important purpose of detecting shoals and rocks at sen. It had been long the practice for mariners, when they snspected the existence of shoals, to send a man to the head of the mant to detect them; for the outlook viewing the water from a vertical position shut out mach of the reflected light, which dazzled and obatructed his view. Now, as a great part of this reflected light is polerized, it was obvious that by looking through a polarizing priam from the deck, the depths of the ocean could be acanned without the interruption of the glare, which had formerly rendered this to difficult; and thus this abstract truth of tbe alteration of light by refiection became practically applied to the preservation of mariners from the hazards of the sea. Another useful application was now made to salmon fisberies, to enable the spearamen to see the fish st considerable depths, where detection was before impossible. The singular insight which polarized light gave into the inner constitution of bodies, wet usefully employed to discover the haws of tension in beams, thus showing that it might be made to aid in the promotion of mechanics. Under the hands of a Biot, a ray of polarited light performed with magical quicikneas the most refined but tedious operations of the anslytical chemist, by enabling him to atcertain the amount of sugar in various-sterbarine substances. He was enabled to follow the incretsing richness of sugar in the juices of rarious plants at different stages of therr growth, 40 at to indicate when they are mont fitted to be gathered in for the purposes of the sugar manufactures; and by the same ray silently performing its quick anslysis, he was able to make improvements in the economy of labour. Thus, when beet is ready to be gathered, labour is in demand for the harvesting of other ciops, and consequently is expensive. It would not do then to take snother crop, such an parsnips, inferior in its amount of sugar, as the cost of production would outweigh the returns. But precisely at the time that hornes and carts are disengaged, and labour it cheap, partnips contein mont of their saccharine ingredienta, so that it is then useful to employ the idle mills in the production of sugar from this plant. Than a ray of light has produced good also to the farmer, as well as to the seafaring man and the engineer. Or to take a case of the use of polarised lightw science, who could have dreamt that the colours it exhibite in transparent subatances would reader it possible, by means of a mineral, to determilue auch questions as to whether the light of the san proceeded from a solid mass or from a gaseous canopy, or whether the comets enjoyed light of their own, or only reflected the light from other bodies (Humboldt)?

There are other applications of polerised light to the telescope for measuring the size of distant objects; but to these I will nol at present draw your attention, mentioning only one other instance, the recent beantiful dis. covery of Wheatatone, who has invented a simple means, far more accurate and uneful than the sun-dial, of determining the apparent solar time by the diuraal changea of the plane of polariastion at the north pole of the aky. By availing himself of the fact that the planes of polariation in the nurin pole of the siky cbange exactly as the position of the hour circle alters, Wheatstone has adapted a simple and ingenious apparatus, by which the true time may be told within three minutes. This elegant application of the
lawn of polarization io only one of others which we may expect from the same philnsopher."

The following interests others besides students of the College for Civil Engineers, and in the present dearth of employment at home will meet with attention from many of our readers; and the more so, as it comes from one who has a practical knowledge of what he says:-
"It is scarcely decessary to urge on you the desirableness of a practical edncation, anch as you wlll receive at this College. I have said euough to show you that it is indispensable in this country, if you wish to outstrip the competition which now, happily for the world, prevails in all departments of industry. If it be requisite here, it is far more necessary to the aspiring colonist abroad. The feld open for well-educated men in the colonies is so great, that I doubt not there will be many of you who will try their fortunes in foreign lands. I myself, having been born in a colony, and all my relations baving apent their lives and acquired their fortnnes in colonies, I naturally know somewhat of the life and of the prospects of intelligent emigranta. This I can assure you, that I have never known an inatance of failure, where a man went out with a well-grounded scientific knowledge, and with a power of applying it in a apecial direction. I bave many friends in the colonies, who have gone out with no other recommendation than that-a very high one certainly-of being proficient in some one of the eciences. I recall to my miad at the present moment names of men who I am prond to call my friends-men who are now all in the enjoyment of lucrative posta abroad, from having gone out, zome with a knowledge of geology, others of chemintry, and others of natural history. It is true that acientifte men are rare in our colonies; and it is because practical scientific education is rare,-the more tbe chance for you who avail yourtelves of your youth and your advantages. Look at the treasures opened in Australia hy the discovery of coal and of valuable mineral oren. Wbat a grand field for the mineralogist, the metallurgist, the geologist, chemist, and practical engineer! When we hear of men who have lately made large fortunes in the course of three yeara, by a happy development of formerly-neglected mineral wealth, is there not here oncouragement to those who have a sound knowledge of the applied sciencen to devote their lives to the development of our colonial industry? But in attempts to do so, there will be, of course, difficulties to orercome, such as caneot occor in this land, where all kinds of professional talent is available. It is for this that we give a general practical education such as we do. Are yon to be a farmer in the colonies ? Then learn before you go to understand the principles of macbioery, so as to make and repair your implements ; learn bow to survey; how by geology and chernistry to choose your land; bow to cultivate it when pro-cured-learn to think how the rasources of the country are to be economised. Recollect, that in boiling down whole flocks of sheep for their fallow only, in imitation of your brother farmers, you minht at the same time make the most admirable and nutritions portable meat and soups for armies and navies-a procese, if carried out, which is, I am sure, destiped to become one of the most valuable, thougb yet untried manufactores of Anstralia-and why untried? Because there is no science to guide them in a manufactory involving a knowledge of animal chemistry, as well as of a wise adaptation of machivery, ad an acquaintance with what has been done in the same way in other conntries. And if yon go out as a surveyor, how invaluable to pain the geological knowledge whicb you may also here acquire; bow indescribably useful your chemleal power of detectirg and assaying valuable ores and minerals I Are yon destined for the army abroad? The best way of getting staff-appointments or lucrative employment, is to heve the power of making yourself useful with your acientific knowledge. I again say, that in this service in our colonies I have never known an instance where a really deserving gcientifio man failed io being speedily advanced to a useful and honourable poaition.

But do not think that in these days fortunes or hooours are easily acquired. It is not mediocrily io your pursuits that will enable you to outrun the masses struggling to push forward. The age is an age of action; and if you are to succeed in future life, you must now brace and prepare yourself for the stroggle. If you fall asleep now while you are young. in vigour, and able to prepare yourself for foture life, the world will not know when you awake, and it will be a long and a sad struggle for you to overtake those who were active when yod were passive. Recollect, that it is onis by atudy, downright hard study, that you can acquire that mental atrength and vigour that will enable you to overcome the increasing difficulties of progress in life."

History of Architecture from the Earliest Times ; its Present Condition in Europe and the United States. By Mrs. L. C. Tuthill. Philadelphia: Lindsay and Blakiston, 1848.

As there are some remarks on this work in the Fasciculus of "Candidus," we shall not trouble our readers much further as to its critical merits. It was intended for a popular work in the United States, but, unhappily, it gives little definite information as to the buildings there, and is ten years behind hand as to those of Europe, the "Architectural Magazine" having been the chief authority.

It seems from the remarks of the anthoress that Gothic and Elizabethan are now the fashion, instead of Greek, but there are few favourable American examples of any style given by the authoress, though there are many American buildings of great merit. We shall try and glean what we can as to buildings in the United States of which any particulars are given by the writer.

At Boston among the novelties are named-
"Trinity Chureh, in Summer-atreet, a Gothic edifice, of granite, built in 1829.

The Tremont Howe in a large and beantiful building, of granite, with a fine Doric portico in front. J. Rogera, arehitect.

Two beautiful Gothic churchen, of freestone, were built in 1847. Billings, archliect."

At New York-
"The Church in Washingtom-square, belonging to congregation of the Dutch Reformed denomination, is said to be one of the most perfect Gothic structores in the United States. Ls Perre, architect.

Trinity Church was commonced in 1841, on the site of the old church in Broadway, and completed in 1846. It is bailt of a beautiful tine-grained freestone, in the Perpendicular Gothic styla. It is 192 feet long, and 84 wide. Its graceful, symmetrical spire is 264 feet high. It is by many considered the finest specimen of eccleasastical architecture in this country. Mr. Upjohn, architect.

Grace Church, on Brosdway, is built in the form of a cross, in the Gothic style, and in of white marble. The windows are of stained glass, and the edifice cont 145,000 dollars ($£ 30,000$). It was completed in 1845 . Mr. Renwick, arcbitect.

The Custom Houso, in Wall-street, is a beautiful Doric building, 177 feet long, and 59 feet wide. The architect wore Ithiel Town and Alezander J. Davia.
The Episcopal Church of the Holy Trinity, at Brooklyn, New York, is one of the finest apecimens of Gotbic arcbitecture in this country. A citizen of Brooklyn, with a monificence above commendation, has erected thia noble edifice, at a cost of abuut 150,000 dollars ($£ 30,000$). Lefovre, architect."

At Philadelphia-

The United Slates Bonk, now the United States Cnatom House for the port of Philedelphia, is oue of the most beautiful buildings in this country. It is closely copied from a perfect model, the Parthenon. Its length is 161 feet; ita breadth 87 feet. The fine massive Doric colamas of the portico atand upon a platform of white marble, the ascent to which is by a high light of marble steps. Thus lifted up away from the street it has a very imposing appearance. The banking-room is 81 feet long and 48 feet wide.

The new Bank of Pennaylvania is copied from the lonic Teraple of the Muses, apon the Ilisus ; it is built of marble, and is a large and handsome edifice.

The Girard College.-The main building, which is the subject of this description, is composed in the Corinthisn order of Grecian architecture : it covera \& apace of 181 feet by 2391 feet, and consists of an octastyle peripteral superstructure, resting upon a basement of 8 feet in height, composed entirely of steps extending around the whole edifice; by which a pyramidical appearance is given to the substruction, and a means of approach afforded to the porticoes from every side. The dimensions of the atylobate (or platform on which the columns stand) are 159 feet on the fronts, by 217 fett on the fiank: and the cell, or body of the building, measures 111 feet, by 169 feet. The whole height, from the ground to the apex of the roof, is 100 feet.

The columns are 34 ln number; the diameter of the shaft at the top of the base is 6 feet, and at the hottom of the capital, 5 feet; the height of the capitals, including the abscus, is 9 feet, and the width, from the extreme corners of the abacus, 10 feet; the whole height of the column, including capital and base, is 35 feet. The entahlature is 16 feet 3 inches high, and the greatest projection of the cornice, from the face of the frieze, is 4 ft . 9 in .; the elevation of the pediment is 20 ft .3 in ., being one-ninth of the span. The capitala of the columos are proportioned from those of the monument of Lysicrates at Atbens : they are of American marble, and were wrought upon the grounds of the college.

The huilding is three stories in height, each of which is 25 feet from floor to fioor: there are four rooms of 50 feet square in each atory. Those of the first and second story are vaulted with groin arches, and those of the third story with domes supported on pendentives, which spring from the cornera of the rooms at the fioor, and arsume the form of a circle on the horizontal section, at the height of 19 feet. These rooms are lighted by means of skylights of 16 feet in diameter. All the domes are terminated below the plane of the roof, and the skylights project but one foot above it, so as not to interfere with the character of the architecture.

The roof is covered with marble tiles, to nicely overlapping each other as to defy the mont beating storms.

Benide the main edifice, there are four other buildinga belonging to the institution, each 52 feet wide, 125 feet long, and four stories high. Thomas U. Walter, architect."

At Washington, among other buildings, are-
"The President's Howse, of Potomac freestone. It has two fronta with porticoes, and is 180 feet in length by 85 feet in width.

7 he Patent Office is still unfinibhed; it it designed, when completed, to
surronnd the square on which it stands. It is of the dark frecstone of the Potomac. The building already completed has a superh portico of the Doric order.

The General Post Office, of white marble, is a magnificent building, ornamented with pilastera, and an entablature of the Corinthian order. The edifice already occupies the front and part of two other sides of a aquare. It is unfinithed, but when completed will be one of the most apleudid buildings in the United States.

The Capitol is finely aituated, commanding a view of the city, with the anrounding country, and the river Potomac. It is 352 feet long in front, and its greateat height 145 feet. The Hall of the Representatives is of a half-circular form. The dome rises above an entablature, supported by 24 Corinthian columns of variegated a.arble (sometimes called pudding stone), from the banks of the Potomac."

At Baltimore we find-

"The Roman Cutholic Cathedral, planned by Latrobe. It in of the Ionic order; 190 feet in length, 117 feet wide, and 127 feet high, to the top of the dome."

For want of something better we shall extract what is said of the public squares and walks of the United States, to which more attention is now paid, a gratifying proof of the progress of taste.
"The citizena of New York have at length becomeaware of the beauty and salubrity of public squares. St. Joln's-park, Washington-square, Union. square, and several others in recently-built parts of the city, are tastefully ornamented with trees and shrubbery, affording sweet green spota for the eye to reat upon, as a relief from the glare of brick walla and dirty pavements.

Every city should make ample proviaion for apacinus public squares. Trees of every variety, shrubs, flowers, and evergreens, should decorate these gronnds, and fountains throw up their aparkling waters, contrasting tbeir pure white marble with the deep green foliage. Here, beneath the shaded walks, the inhabitants might enjoy the sweet air, the children sport upon the fresh grass, and all be refreshed and cheered by the sight of beautiful natural objects. Here the young and old might meet to 'drive dull care away.' and lose for a few hrief momenta the calculating money-making plans that almost constantly usurp American tbought and feeling.

The Boston Common is the most spacious pleasure ground in the United States. Seventy five acres were appropriated by the early 'fathers of the town' for thit purpose, on the condition that it should ever remain devoted in this way to p ublic convenience and comfort. The same venerable elms which shaded the patriots of the revolution, still wave over the beade of their succeasors, and fresh young trees are planted from year to year by the side of the new gravelled walks, rendered necessary by the rapinly increasing population of the city. The undulating ground of the common gives it a plasing diversity of hill and vale, and the little lake or pond near the centre adda to its pictoresque beauty.

The New York Battery, though mach smaller, is very delightfal, affordlog a view of the maguificent barbour, germmed with its beautiful ialands. Convenient seats are placed about the battery, that ite oumerous visitors may quietly enjoy the cooling breezes from the ocean, beneath the grateful shade of the trees. It is one of the loveliest spote in the world.

The public squares of Philadelpbia are incalculably important to the health of the city. Beneath the dense foliage of Washington-square, crowds of merry children enjoy, unmolested, their healthfal sports. Within the inclosure of Independence-square mas firat promulgated tha Declaration of Independence. Franklin-square has in the centre a fountain, falling into a bandsome white marble basin. Penn, Logan, and Rittenhouse-bquares are also ornamental to the city.

The New Haven-green has been justly celebrated as one of the most beautiful public squares in this country. Its elmsare remarkably fine; it has recently been eaclosed with a light and teateful iron railing, wbith adds much to its beauly.

Many of our large cities are entirely destitute of auch green retreatn. Gardens and squares are so necessary to the bealth, as well as the enjoyment of those who are shut up in the close streets of a city, that it should be considered an imperative duty to provide them for all classea of the inha. bilants."

The following shows the resources svailable to the architect in the United States:-
"Granite, a primary rock, miy be called the foundation-stome of the parth. Its constutuent parts are quartz, feldnpar, and mica. It is a hard and brittle stune, but with much labour may be worked into capitals and other orammental parts of a building. It abounds in the New Englaud Siates, espucially in New Hampshire and Massachusetts. A beautiful white granite ia there quarried, and employed in builuing at home, and aent to distant parts of the Union. The United States Bank is of this white granite; the market house at Boston, some fine dwelling-houses in New York, and many other editices there and elsewhere.
Sienite is often called granite, from its resemblance to it; feldspar and hornbleade predomionte in its compusition. It is even more difficult than uranite to chisel into ornamental work. The fine quarry of this stone at Quincy, near Boston, has given it the uame of Quincy stone, by which it is extensively known. The Astor H, uge in New York is built eatirely of
sienite, ad in Boston there are many structures which have now been standing for some years; showing that it bears expusure to the air, without injury to its appearanco. The Bunker.hill Monument is of this stoue.

Marble is one of the most durable of stones. The beautifal Pentelic marble of the Parthenon has stood the storms of more than 2,000 jears, withont injury. Happily for us, thin fine material abuunds in almost every part of the country. The black, gray, and white marble of Vermont are exteasively known. Massachusetts furnishes specimens of various kiuds. The splendid columas of the Girard College were brought from Shefield, in Berkwhire county, in that State. New Hampshire has severul querries. In Connecticut, near New Huven, gieen marble abounds, reaembling the verde antique. Many apecimens of this marble have been sent to Europe, and been auch admired in the cabinets of the curious and scientific. Near the same place another quarry is found, in which yellow predominates. White marble abounds in Penosylvania. In short, marble is so abundantly supplied, that taste and durability may he combined by the use of this material in elegant edifices.
The United States Mint, Custom-house, and Pennsylvania Bank in Philadelphia, are all of Pennsylvanian martle; the Washington Monument, Baltimore, is aiso of white narble.

Sandstone, asually called freestone, is found of variegated colonrs, from gray to red, and dark brown. It is easily wrought, and much used in building. Extenaive quarries of red freestone are worked at Chatham, in Connecticut. The Potomac freestone is extensively used; the President's House, the Capitol at Washington, and BL Paul's Church, Boston, are built of it. Somotimes it is employed without smoothing, and is thus a durable and economical material for cottages, stables, \&c. It is in geaeral use for the basement, winduw-sills, and caps of brick buildings.
Gneiss, a stone containing a large proportion of mica, splits with ease, and affords a beautiful paving-stone.

Slate is found in great abundance in this country; it is used for coverioz roofs, and should be universally substituted in cilies for ahingles or other combuatible materials.

No country in the world is more abundantly supplied with wood of every Pariety than the United Statea.
The white oak grows to a great height in the Middle States and in Virginia. It is strong and durable, and although sometimes employed in domestic architecture, is more generally noed for ship building. The black oak rises to a still greater height, but is not so large in circumference. Several other kinds of oak abound, all of them durable, and some of them oxcellent for timber.
The black walnut is a beautiful wood for the interior, being susceptible of a fine polish, and not liable to warp, nor to aplit. In Obio and Ken. tucky this wood is used for the shingling of houses, and occasionally fur timbers. It is admirably adapted for doors and window-frames.

Maple, of several varieties, is also susceptible of a Gue polish. The curled and bird'seye maple are very bandsome for interior finishing. Maples grow in almost every part of the Uniun; thes are numerone and luxuriavt in the Western States.

Pine is a soft wood, easily worked, and has for this reason been hitherto quite too much used for building. It is, bowover, a valuable wood, and will long continue to be used for the interior, after wore durable materials are substituted for the exterior of buildings. From Maine to Florida pines of various kinds abound, and are exported in large quantities to Europe and the Weat Indies.

The while ash is a strong and durable wood, which sometimes grows to the height of 80 feet. it splits straight, and is not apt to shrink. It abounds nust in the Northera States.

Birch is not much used in building, although it abounds in Nev England und the Alidule States.

The llack birch furaishes a hard, lark-coloured wood, that receives a foe polish, aud is very Landsunue for iuterior finishing.
The cyprese gruws to a great size in the Southern States, and is froquently used for buildiug.
The uhile cedar grows abondanaly in the Middle and Southern States, and being a soft light wood is used for shingles and interior finiahiag. The red cedar is a durable wood, used for posts and feaces."

It will be seen from the extracts we have given that some very respectable works have been lately executed, or are in progress, but there is no great architectural monument on hand.

Syllabus of Lecturcs on Civil Engineering, for the use of the Stodents at Putney College. By W. Ranoer, C.E., lecturer on Civil Engineering and Architecture at Putney College, and on Civil Engineering to the H.E.I.C. Officers at the Royal Engineering Establishment, Chatham. London: Taylor, 1848.

This is nothing but what it purports to be-the syllabus of lectures; yet it may be very usefully referred to by the professional man. It seems very easy to put down the heads of lectures; hut Mr. Ranger has shown in the arrangement the resources of n logical mind, and his intimate acquaintance with the subject
which he teaches. It is in these qualities that consists the use for the professional man, who is able practically to supply the detailed information, and may refresh his memory by reading, under each head, the enumeration of the various resources applicable to the work intended.

HYDROGEN GAS AS A MOTIVE POWER.

Among the patents for new inventions in this country specified within the last month, is one (obtained by the widow of a French engineer, at the request of her late husband,) for employing the explosive furce of hydrogen gas as a motive power. In the arrangements fur effecting this object there is nothing deserving of special notice, the explosive force being made to act ugainst pistons working in two cylinders, wherein the explosions of the gas mixed with atmospheric air take place alternately, either by the agency of electricity or by the flame of a gre-light. To what extent however such an explosive force would be available, supposing it could be regrlated to act with uniform pressure, is a question deserving consideration, as the attempt has been previously made, and may be again and again repested.

There is a peculiarity in the power generated by all explosions, which renders it almost impossible to employ it usefully in working machinery; inasmuch as the greatest part of the force exerted depends on the instantaneous or percussive action, which enables it to overcome resistances that would not yield to the same amount of force steadily spplied. In the explosion of hydrogen gas there is the further peculiarity, that the resulting product occupies so much less space than the original gases as to result in a partial vacuum; and we have heard a popular lecturer when noticing this result assert, that in such explosions the force is directed altogether invoards, and that there is no external force whatever: this assertion, too, was made in defiance of the common experiment of the electrical pistol, with which he must have been familiar. The external force is indeed only momentary, and depends upon the instantaneous expansion of the gases by the heat caused by their ignition ; consequently, the difficulty of regulating such a power is greatly increased; but that there is power exerted there can be no doubt, though the amount of it we believe to be too small to be ever practically available.

With a view to ascertain the amount of force generated by the explosion of hydrogen gas, we some years since made several experiments, which, if not strictly accurate, were sufficiently so to enable us to conclude that the force generated is much too small to be of use, and amounts only to the expansion of the gases employed into about eight times their original volume; or to the exertion of a momentary pressure of eight atmospheres. The experiments were arranged in two different ways, but the results nearly coincided. The first method adopted wan, to ascertain the quantity of water displaced by the explosion of a given volume of hydrogen gas mixed with atmospheric air. A square tin vessel, open at the bottom, was made; to the top of which there was soldered a smaller tin vessel that held one cubic inch. This smaller vessel for holding the gas, was open entirely at the bottom, so as to form in fact only a projection from the top of the larger one. Insulated wires were introduced into the small gas-holder, for the purpose of causing explosion by means of an electric spark. The vessel having been filled with and inverted in water, a cubic inch of an explosive mixture of hydrogen gas and atmospheric air was passed up into the small reservoir. A small trough, into which the tin vessel was inverted, was then filled exactly to the brim; and the tin was held frmly on supports, which raised it several inches above the buttom of the trough. The electric spark was passed through the gas, and the explosion forced over a quantity of water into a receiver. By messuring the water thus displaced, the expansion of the gas by heat during the explosion was ascertained. This experiment was several times repeated with nearly corresponding results: the amount of water displaced being about eight times the volume of the mixed gas.

In the second method the experiments were made in the dry way. Under the impression that the explosive force was very great, a gun barrel was procured; and a piston, attached to a small rod, was loosely fitted into the barrel. The mixed gases were introduced from a bladder through a hole at the breach; the space occupied by the gases being measured by the height to which the piston was drawn up. The explosion of the gases was effected by an electric spark: and the space in the gun-barrel through which the piston was forced was ascertained by a narrow ribbon attached to the piston rod ; the ribbon being drawn out with the rod during the ex-
plosion, and left loose afterwards. The loose part of the ribbon indicated the extent to which the piston had been forced from its first position, and by measuring and comparing it with tbe space occupied by the gas, the expansive force of the explosion was determined, and it nearly agreed with the results of the first set of experiments. In the course of these experiments the operator had, unexpectedly, personal experience of the force exerted by the explosion. The bladder containing the mixed gases, whilst held under his arm, was inadvertently brought near the flame of a candle, and the contents exploded with a loud report and concussion, that blew out the candles and left him in the dark, somewhat stunned, indeed, by the force, but without inflicting any injury.

Though these modes of experimenting were certainly not calculated to afford very accurate results, yet they proved that the expansive force of hydrogen gas is very much less than we had anticipated, and that consequently it was useless to pursue our attempts to render it available as a motive power. It is very probable that, by using other proportions of hydrogen gas and atmospheric air than we employed, greater force may be obtained; but it cannot, we feel convinced, be under any circumstances at all comparable to the explosive force of gunpowder. The terrific effects so frequently produced in coal mines by explosions of carburetted hydrogen gas, may probably lead to the supposition that the explosive force is immense; but if the large volumes of gas exploded in producing such disastrous results be taken into consideration, it will he found that the power exerted is insignificant, compared with the explosive force of other agents.

NEW ELECTRIC LIGHT.

An experiment was made on the Great Weatern Railway, on the 18th ult., to test the power of a new species of light produced by electricity, particularly with a vien to its being used by railway trains. The light is produced by an apparatus invented by M. Le Mott, a French gentleman, who has been for several years employed in electrical experiments in Russia, and whose discoveries in that department are well known to the scientific world. At hulfpast six o'clock a truck, containing a square wooden box, about the size, though not the shape, of a sentry-box, and having a galvanic battery of some 60 or 70 small jars disposed around it, was attached to the last carriage of the train then about to proceed from Paddington. The light wes produced inside the box, and the rays, condensed and heightened by a powerful reflector, were emitted by an aperture contrived for the purpose. The light was produced before the train left Paddington, when a dazzling blaze filled the whole of the spacious station, casting the numerous gas lamps there completely into the shade. As the train proceeded on its way, the reflection left a long track of clear bright light for the distance of a mile and more behind it, in such a manner as to render it utterly impossible that any train coming up behind should run into it, except as the effect of deliberate intention. The reflection, as seen from the carriage, was very beautiful, the prismatic colours being distinctly and vividly delineated along the outer edge of the circle of radiation; and as these fell upon the dense column of smoke ascending from the engine, the effect was singular and striking. The night was dark, but clear, and so far favourable to the experiment; and objects, such as a bridge, were rendered distinctly visible at the distance of about two miles. The experiment was made as far as Slough, on arriving at which station the truck was detached from the train, and continued there for about half-an-hour, till the up-train arrived, with which it returned to town. While at Slough, the light was turned in the direction of Windsor Castle, as it was the expectation of M. Le Mott, who accompanied the experiment, that it would be seen from thence. While there a gentleman stationed himself at the distance of 200 yards or so from the apparatus, and read a newspaper by the light produced, which he found he could do with perfect ease. The apparatus then returned to town in the same manner, the light being continuously intense during the whole of the journey and return; and we were informed by the ingenious inventor that there could be no difficulty in keeping it up for the whole night. The experiment afforded great satisfaction to all who witnessed it, the only drawback being, that the apparatus, having been in the first instance adapted for stationary experiments, suffered considerably from the jolting inseparable from railway mo-tion-a defect which the inventor considered might be with ease overcome in any future experiment.

ROYAL INSTITUTE OF BRITISH ARCHITECTS.

Nov. 20.-Eabl De Grey, President, in the Chair.
This was the opening meeting. The President, in presenting the Royal Medal which had been awarded to Mr. Corkerell hy the Institute, in February last,-but whicb, in consequence of the time required to prepare the dies, made expressly for thin purpose, had not been presented at the closing meeting of the last sesaion-complimented that gentleman on his being the first individual selected by his professional brethren to recrive the bonour which the Sovereign bad placed at the disposal of the Institute.

Prof. Donaldson then gave a deacription of the Cathedral Church of St. Iealac, Peteraburgh.

SOCIETY OF ARTS, LONDON.

Nov. 29.-J. Waleer, Esq., C.E., in the Chair.
A letter from the Royal Society of Edinburgh was read. It was accom. panied by a medal bearing the effigy of Napier of Merchiston, and was offered as a mark of respect for the Society of Arts.

The Secretary read an address from the Council, which concluded as follows:-"It is proper, however, that the Council should direct special attention to a new feature in the exbibitions of the present session. It bas been complained, that for a couple of years the Sociaty bas directed attention too exclusively to the Fine Arts, to the neglect of the Mechanical Arts and Mannfactures. This may, perbaps, he in part true. But in reforming the operations of the Soniety, it was necessary to do one thing at a time. The Council have postponed the mechanics-not lost sight of them; and bave availed themseiven of the past vacation to prepare the Inrge room on the ground floor for the reception at Christmas of an exhibition of the models of large inventions of recent date and of a mechanical nature. This they hope will afford the public the gratification of baving laid syatema. tically before them all that is most important in the records of modern in. vention."
"On a plan for comstructing a Malleable Iron Lever Bridge." By Mr. T. M. Gladstong. - The advantages wbich the author considera it to possess over other plans, are that of enabling hridges of any apan to be built without a centering, whereby a saving is effected; also enabling a flatter roadway to be obtained while a higher waterway is insured than can be got by any plan in which the arch springing from the pier is made ane of. The paper concluded with a detailed account of the comparative cost of construciing hridges on the various plans bitherto used, and also of the weights of metal omployed.

INSTITUTION OF MECHANICAL ENGINEERS.

At the last quarterly meeting of the members of this inatitution, held at Birmingham, the recent death of George Stephenson, the lamented Presi. dent of the Society, and the intimation that a paper relating to his character and life would he read at this meeting, invested the proceedings with an anusual degree of intereat.
After the minutea bad been read and confirmed, Mr. M'Connsli, who occupied the chair, said that in consequence of the absence, from illnesa, of Mr. Scott Rotsell, the duty devolved upon him (the cheirman) of reading the paper on the character of their late wortby and much-lamented President. They had met for the first time since the death of the great man who had lately prenided over them-an event which tbe society greatly deplored, and their grief was thared by all who could appreciate honesty and genius. In his death the world had lost one of its brightest orgaments. He had risen by the force of hie own talente from a humble rank in life. He was a kind friend, and not lese distinguished as a man than at a great mechanioal genius. As long as railways existed, the name of Stephenson would live with them.

The Chairman then proceeded to read Mr. Russell's memoir, the length of which precludes the posaibility of insertion here.

At the conclution of the paper, Mr. Geace then said he rose under feelings of no ordinary kind to propose that the society should, at this the earliest possible moment, place on their minutes an expression of their deep regret at the loss of their much esteemed friend and President, Mr. Georgo Stephenson. Really when they remembered his last appearance amongst them at their last meeting, in high spirits, good health, and indomitable strength and activity of mind, it was not easy to realise the full extent of the cala. mity that had befallen them, nor to speak of the bereavement without feelinge of strong emotion. He (Mr. Geach) had not known their late President so long as many present; hut the peculiarity of Mr. Stephenson's cbaracter was, that one did not require that time should elapse before be was known and loved. It was impossible for any one younger than him to regard bim withany other feelings than those of deep affection. There was something in bis manner, in the very, tone of his voice, which endeared him to
all. He wa open, honeat, manly, ad straightforward in all his dealings; sometimes rough, bat that pecaliarity never could hide the inhereat kiadness of his disposition, Peculiarities he had, undoubtedly, but in his long battle with the world he had so often found bimself right, that he was, at It were, privileged to apeak authoritatively; and, moreover, what in other men would have been unpardonable, if, in bim, noticed at all, only made him the better liked. There was mother peculiarity that wae remarkabte: be was never ahamed-nay, he was proud of his early life. He never attempted to gloze over his atruggles with an unfavourable position; and while be wat the assoclate of peers of the realm, be looked back on his early associations with pleasure and pride. And this was almost tbe only pride he had, for his greatest delight was in meeting with the son of nome early friend who had laboured alongaide of him, and gladly acknowledgiag the claim such a man had upon his kindly aid. He (Mr. Geach) could not refrain from giving these feelings expression; and, in conclanion, he would propose the following resolution :-" That the members of tbis institution desire to exprest their deep regret at the decease of their late Preaident, George Stephenson, whose early support of this institution has greatly costributed to bring it to its present state of success."

Mr. Fotazranla briefly soconded the motion, which was carried manimously.

Mr. M'Connzle romarked, that imwediately after the death of Mr. Senpheason, the Council of the institation met at Mancheater, and drew ep and forwarded a letter of condolence to bis widow for the great low she had experienced. They at the ame time thought that the beat tribute they could pay to his memory, and the beat service they could render the sociedy, would bs the selection of Mr. Robert Stephenson as a successor to bis father. Accordingly, Mr. Pothergill and Mr. Buckle had put themselven into communication with that gentleman, and the reault was, that be had consented to accept the office of President. The announcement was received with loud applanse.

Mr. Fotargaill detailed the steps they had taken to bring about this de. sirable consummation.
Mr. M'Connzll then formally proponed the election of Mr. Robert Ste. phenson. A better choice could not have been made, and the active conaertion of that gentleman with their mociety would give their proceedinga edditional lustre.
The motion was seconded by Mr. Potreacill, and pessed by ecelamation.
"On the Adaptation of the Cambrian Engine to Locomotive Purpanes."A paper on this aubject, accompanied by drawings, contributed by Mr. Joba Jones, of Bristol, was then read by the Secretary. The adrantagea claimed for an engine constructed on this principle are the ohtaining a long atrake in the crank, witbout the diadvantages of a long-atroked cylinder, where high velocitiea are required, the arrangement of the levers which balance the engine, the entire disappearance of any occillating motion of the engine, and doing away with all centre pressure.- A somewhat lengthy and interesting discuasion followed the reading of this paper, in which the Chairman, Mr. Cowper, Mr. Slate, Mr. Peacoch, Mr. Crampton, Mr. Hamphries, Mr. Bejer, and others, took part. Considerable difference of opinion existed at to the value of the engine described. The weight of the argament, which we have not apace to follow, was against the preanmption that the adaptation would be advantageous; but at the auggention of the chairman it was proposed to reserve any deciaion on its merits antil there was more information before the meeting.-Tbis suggention was adopted, and the discustion terminated.
"On a Railuay Elevator."-Mr. Potherelll read a paper contribatad by Mr. W. L. Kinmond, of Glaggow, on an elevator erected for the Glaspow and Ayr Railway Company. Several membert stated that they had seen the me chine at work, and it wat an admirable piece of mechanism. It had boes erected in 1840, and had never required repair, except in one instance some few years 8 go.
"Brockedon's Patent India Rubber Joints."-Mr. Cowper brought this subject before the meeting in a brief explanation of the application of valcanised India rubber to pipe jointa, and their economy compared with thow of lead, the cost being about half.-Mr. Forameoill apprehended that the practical objection to the adoption of the joints would be the dificulty of repairing them.-Mr. RrceasDs, of Worceater, said he had had more than twelve months' experience of the joints, and he conld speak in confident termas of the great value of the invention. They had withstood the infteences of ammonia and other gases, and did not seem to be at all affected by tbe changes of temperature. He considered that the repsirs could be dose even more easily with joints such as those than with lead, for there was no use for the shoulders with which the spigot in the drawing before them what encumbered. He intended to adopt the jointa extenaively.-Mr. Potaraorle said that Mr. Richards's explanation had removed the objection tated. -After a few other commendatory remarks, in which the value of thetoption of India rubber was unanimously acknowledged, the Caramanmmarked that they seemed to be agreed at to the usefulneas of these joint their durability being the only point on which the society could not give. opinion.

NOTES OF THE MONTH.

Brameh Passagger Locomolives.-Several trips were made on Wednesday, 15th ult., on the West London Railway, with : little passenger-carriage engine, the Fairfeld, which has been constructed for one of the branches of the Bristol and Exeter line. The engine, "tender," and carriage, which have been constracted by Mr. Adams, of Fairfield Works, Bow, are counected together upon one frame, and weigh, with coke and water, about 10 tons. The object songht is to economise the working expanses of branch lines, and to introdnce light rails and light engines into various districts of the country, the passenger and goods sraffic of which are not calculated to pay a dividend upon the ordinary outlay for laying down the present character of permanent way, and supplying the present locomotivo and carriage stock. The engine and carriage run upon six wheels. The ongiae has brt two wheels-viz.: the driving-wheels, which are in front. She is fatened to tho carriage by longitudinal sido-plates, which are acrewed together, and also by bolts and screws through a transverse frame, so that when in working order the whole may be said to run apon one frame. The ongine bat an opright boiler similar to the little 22 cwt. express ongine belonging to Mr. Samuel, the resident engineer of the Eastern Counties Railway. The boiler has 150 tuber of $1 \frac{1}{d}$ inch diameter outside, and 4 feet long. The firebox is 2 feet 6 inches, by 2 feet. The diameter of the driving wheels, which have about 3 tons opon them, is 4 feet 6 inches; the cylinder 8 inchea, and the stroke 12 inches. Tho engine is to be worked at about 100 lbs . pressure, and the consumption of coke is calcalated at 10 lbs . per mile. In front of the driving wheels is the tank, which holds 220 gallons of water. The coke is carried in an iron box attached to the carriage. The carriage is a composite one, and will afford sitting-room for 16 first-class and 32 secondclass passengers ; but by a slight alteration the same compartments might be made to accommodate 60 pertons. The cylindera of the engine communicate with the axle throngh an intermediate crank shaft. This is connected with the axle by side-rods. The trailing and centro-wheela run loose on their axlea; the axles also run loose in their jourals. The trips were run under great diandrantages. Being a new engine, her boiler is necessarily dirty, and she rans atiff. It was not till three or four journeys had been made that the priwing could be kept down sufficiently to get anything like en effective working pressure in the cylinders. But, with these disadvan. tagea, the little engine and carriage maintained a speed of 24 miles an hour up 1 in 100, and 41 miles per hour down the samo incline. About 30 persons were in the carriage and upon the engine daring these trips. Another of these carriage engines is in the course of construction for the Eastern Counties lines. The boiler is to be the common horizontal one. In a few dayt the Fairfield will, no doubt, be in pretty good working order. We shall then make a few more tripa upon her, and be able to offer an opinion upon ber speed and power.-Herald.

Loxdon and North-Western Railway-Deterioration of Permanent Way. -It is slated a committee has been appointed by the directors of the Lun. don and North-Western Railway Company, consisting of Mr. Dockray, the resident engineer; Mr. M'Connell, the locomotive superintendent; Mr. Madigan, the ballast-carrying contractor for the southern division of the line ; and Mr. Crampton, C.E.; for the purpose of discnssing by what means the comparative deterioration of the permanent way, caused by beavy engines of different classes, may be ascertained.

Certain Prevention of Explosions in Steam Engines.-It is impossiblo for the force of elastic steam to produce the breaking of engines and rending of boilers that so frequently occur, they are the work of the explosivo principle, when disengaged from its combination with steam. Bimilar in its effects to lightning, it ls identical with electricity in its distinctive properties ; its velocities are in effect unlimited; it is devoid of weight, and not subject to the laws of gravitation, which are inherent in all matter that has woight, and it is hence evident that it may be conveyed away by similar conductors. It is absolutely certain that the explosive principlo is disengaged from steam as it is let into the cavity of the nozzle, or valve chamber, on the opening of the steam valve; the pressure that kept them combined is then in great part taken off, until the cavity is filled with steam. There is no proper escapo of the explosive element from the nozzie, which is heated, and in effect insulated, and the accomolation is highly dangerous; but it may be safely carried off by proper conductorgthose most convenient are small copper tubes. One end of a tube of proper length is to be terminated in the best manner for the diffusion of the electric flaid-the other end to enter the cavity of the nozzle, and havo over its orifice a slight valve, kept by a spring a little open, to allow the explosive element to pass off by the tubular conductor, the valve to close by the force of steam, as the cavity becomes filled therewith. The conductors of a condensing ongine should be carried high enough above the water in which they terminate to preserve the vacuum. The security from explosions and breaking of engines must be complete, the cost and trouble only nominal.3. Wilder: N. Y, Tribune.

Testing of Hetal at Woolvich Dockyard.-The trial of the large guns supplied to the Board of Ordnance, which has been carried on during the last 18 months, for the purpose of ascertaining the best destription of gun, and the beat metal supplied by contractors, has just been concluded, and Colonel Dandas, C.B., and Mr. Monk, deserve great credit for the excellence of their models. The former 32 -pounder gun, of 50 cwt ., is now reduced on Colonel Dundas's priaciple of construction to 25 cwi ., effect-
ing a saving of $1 \&$ ton on each gun of that calibre-the average price of the metal being from 10l. to 121. per ton. There is also a eaving of 6 lb . of powder on each charge, the former charges being 10 lb ., and the new pattern being found equally efficient with a charge of 4 lb . The gans cast at the Low Moor Foundry, in Yorkshire, have bees found to stand the heaviest charges when fired, and will consequently receive the largest orders. The expense of the trials has been cousidorable; but the saving which will ultimately be effected, and the knowledge that no danger is now to be apprehended from tho bursting of guns when placed on board of ships, or monated for service in the gerrisons, mast give confidence in working them. A trial has also been made of a wronghtiron 9 -ponoder gun, submitted by Mr. Morgan, of Bristol, but it had been found inapplicable to the service, in consequence of the great recoil hreaking the cap squares, or coverings, of the trannions.

Marine Compass,-A new Invention, by Captain Sir Samnel Brown, K.H., patentee of the chain cables, has been exhibited in the Portsmonth Dockyard. It is a compass in a glass box, sustained by a small pillar with telescope slides, by which it can be elevated or lowered to any desired beight. It is designed to obviate the local attraction of the ships. The card is transparent, and the whole apparatus will sopersede the use of the binnacle. There is a mirror attached to it, on which the helmsman will be able to see the reflection of the compass card. A lamp will be placed over it at night. The whole is a mont ingenious contrivance, and, if successfal, will effect a great desideratum for the bautical world.

Smpply of Water from the New Red Sandstome. We learn, from the Manchester Guardian, that the mayor of that town and aeveral of the coun. cil, on the invitation of the directors of the Manchester and Salford Waterworks Company, proceeded lately to the works of the company at Gorton, to witness tho success with wbich a shalt had been eunk into the new red eandstone. After inspectlog the reservoir, they visited the chief object of attraction-tho splendid now and powerfal Cornish engine, which bas just been put dowa hy the company, and which was set to work to exhibit its great capabilities in pumping up a vast volume of the water obtained by sioking in the red sandstone to a depth of 70 yards. The water is stored by means of galleries from the main shaft, which serve as internal and suhterrapean reservoirs. The volume of wator thus raised by this engine is estimated to be equal to about $2,000,000$ of gallons per day, a quantity considerably exceeding the expectations of the company themselves.

A New Method of Extracting Pure Gold from Alloys and from Ores.The following method of obtaining pure metallio gold in the form of a apongy mass, has been practised by me for several years, and no account of the process has, to my knowledge, herotofore been published. It is very useful to the chemist and to the manufacturer, and is more economical than any other method that I mm acquainted with. After meparating the gold from silver, by means of a mixtore of nitriu and hydrochloric acids, as is usually done, the solution containing gold and copper is to be evaporated to small bulk, and the excess of nitric acid is thas driven off. A little oxalic acid is added, and then a solution of carbonate of potash, sufficient to take up nearly all the gold in the state of aurite of potash is gradually added. A large quantity of chrystallised oxalic acid is now added, 80 as to be in great excess, and the whole is to be quickly boiled. All the gold is imnediately precipitated in the form of a beautiful yellow sponge, which is absolutely pure metallic gold. All the copper is taken up by the excess of uzalic acid, and may be washed ont. Boil the sponge in pure water so long as any trace of acidity remains, and the gold is then to be removed from the capsule, und dried on filtering-paper. It may he formed into rolls, hars, or thin sheets, by pressing it moderately in paper. I have made several usefal applications of the gold sponge thus prepared, and had a tooth plugged with it in October, 1846, to which purpose it is well adupted. By moderate pressuro the spongy gold becomes a solid mass, and burnishes quite brilliantly. The jeweller or goldsmith will find spongy gold to be quite convenient when he requires it for a solder, and it is a convenient form of the metal for making an amalgam for fine gilding. I have used it for some gears in soldering platina, and prefer it to the tilings of gold or foil for that purpose. This method of separating fine gold from coarse is very simple, and cheaper than the usual processes. It is applicable in the separation of gold from ores that may be treated by acids, and is rasily preferable to the method commonly ased by chemists and assayers. When making oxide of gold for dentist's use, the chemist will fiud that oxalic acid, added to this potassic solution, will at once recover all the gold that is dissolved in an excess of the alkaline solution. Many other applications of this very simple method will occur to chemists and artisans.-C. T. Jackson : Silliman's Jowrnal.

Extraordinary Block of Granite. - A block of granite, containing upwards of 12,000 cubic feet of stone, and exceeding in weight 850 tons was lately dislodged at the granite quarries of Messrs. Ereenan and Co., at Maen. A hole 9 feet deep having been bored, $1+$ pound of powder, with which it was charged, produced a slight crack; into this was thrown another charge of 3 l lbs., which, on explosion, threw out this immense block several yards from its bed. Considering the largeness of some of the stones produced at these quarries, it is astonishiog in how comparatively thort a time they are prepared for exportation. A few dags since, another large rock was anseated, measuriag when wrought 150 feet, and in weight 11 tons; the preparing and working of which was performed by a couple of men in a week.

Safety Presaure．Gauge for Gas．Works．－In the manafacture of gas there are many circumatancea under which accidents are very likely to occur ；for instance，if the pipes which condnct the gas bappen to become obatructed by deposits of crystalised napthaline，or carbonate，or hypo－sulphate of am－ monit，there are great dangers of explonions．Any neglect in the compli－ cated arrangements of the valves will form an obstruction，and by preventing the free flow of the gas generated in the retorts into the gasometers，an ex－ plosion is the result．The only means at present in general use to callat－ teation to the state of the gas in the tubes is the ordinary pressure gauge， which is，under many circumstances，insufficient．M．Magnier communi－ cated at the last sitting of the Paris Acaderny of Sciences，a plan for an apparatus for giving timely warning of any obstruction to the passage of the gas，which is simple and inexpensive．He terms it a＂Safety Pressure－ Gange，＂Which consists of a small bottle－shaped vessel，with two orifices，one of which is attached to the glass tube forming the ordinary pressure－gauge． To the other of these orifices is attached a whistle，in such manner，that whenever any obstruction or excesa of pressure occurs，a loud warning in given．Water is introduced into the pressure gange，wbich communicates with the gas apparatus，on which the pressure is reproduced，and all the va－ riations of preasure，to several inches of water，can be traced；but if greater than ordinary，the water contained in the pressure－gauge is forced into the bottle，and the gas，in eacaping through the orifice，acts on the whistle，producing a sound which gives notice of danger，and which sound hecomes so much louder as the pressure increases，thus giving sufficient timely notice to avoid danger．

A Novel Steam Engine．－Practical Application of Water in the Sphe－ moidal State．－It will be remembered by our readers，that at the meeting of the British Association at Cambridge，a considerable sensation was produced by M．Boutigny，who brought before the meeting a series of experiments on what ho calls the opheroidalatate of water，and the remarkable phenomenon of freezing mater in red－hot crucibles，under the influence of this peculiar condition．At a recent meeting of the Academy of Sciences at Paris，M． Boutigny monounced，that by the peraevering efforts of a young engineer， M．Testud de Beauregard，a steam－engine had been constructed，which was moved by the vapour of water in its spheroidal state．This is a machine of one－horse power，the boiler of which is so amall that it can be easily carried in the pocket．It wis also stated，that two other machines were in progress， one of two，and the other of fonr－horse power；and that a third，of four hundred borse－power，was about to be made in England．From a commu－ nication to La Prase，wo learn that the boiler is placed in a bath of melted Jearl，and water projected in small quantities at a time upon its heated sur－ face．The apheroidal state is produced，and although the teinperature of the water never rises above 190 degs．，the elastic force of the vapour given off is found to be very far superior to that of steam in its ordinary condi－ tions；and if we underatand the somewhat obscure description given，a por－ tion of the water is decomposed，as in Professor Grove＇s beautiful experi－ menta；and the additional force of the gases is rendered available．We may briefly state，for the benefit of those who may not be familiar with Bou． tigny＇s experiments，that if water is projected upon a metal－plate beated to dull redness，it is not vaporised at once，but it forms itself into a sphere， and rolling with great rapidity over the heated surface，evaporates with comparative slowneas．This is the spheroidal state－a remarkable phyaical condition is produced，in which even the ordinary powers of chemical affi． nity are suspended，but the vapour of which appears to obey other laws than those of ateam．We may therefore hope tbat we are on the eve of a great improvement in the employment of heat as a motive power．－［The abova French invention it not new in England．Patents have been taken out in this country by Smith，Howard，and otbera．－Ed．C．E．\＆A．Journal．］

EIET OF WEV PATMNTH．

oranted in gngland rhom Octorer 26，to Novembirr $23,1848$. Six Months allowed for Ennolment，unless otherwire expressed．

Alfred Vincent Newton，of 66，Chancery－Iane，mechenical dranghteman，for＂certaln improvements in the manufacture of atel．＂－Sealed Nor． 2.
Charies William Kesselmeyer，of Manchester，warohouseman，and Thoman Mellowdew． of Oldham，for＂certain Improvements In the manufacture of velveta，velveteens，and other timiler fabrice．＂－Nov， 2.
Charles Dawton，of Herdinge－atreet，Islington，profesmor of masic，for＂certaln Im－ provments ln musical tastrumente，and in apparatus to be used in connection with mu－ ical inatruments．＂一Nov． 2.
Robert Thomson Patison，of Glasgow，printer，for＂an Improved preparation or mate－ fal for faine paint，or pigment coloure，on cotton，lluen，woollen，allk，and otber moven Cabrles．＂－Nov． 2.

James Hart，of Bermondeey－equare，ewglneer，for＂Improvements fo machioery for
manufacturing brick，and，and tiles，parts of which machloery are applicable to mould－ manufacturing urick，sand，and
lng other anbatances．＂－Nov． 2.
Wilitam Welld，of Mnachester，mechavical dranghtsman，for＂certein Improverienta In machidery for sploniog cotion and other fibrous substancess．＂－Nov． 2
Richard Bright，of Bruton－atreet，Middlesex，lamp inanufacturer，for＂Improvementa in lampe，wheks，end covers for veseels for holding ofl and other fulds．＂一Nor． 2.
Robert Walter Winteld，of Birmingham，mannfactnrer，for＂certain Improrements to the construction and manufacture of metalic bedsteads，couchen，and cofas．＇一Nov． 2 ．
John Harris，of Richard＇s terrace，Rotherblthe，Surrey，engineer，for＂a mode or mode of founding type，\＆c．，and of cantlag in metal，plater，and certaln materiata．＂Nov． 3.
Jamps Robertson，of Liverpool，cooper，for＂a mode or modes of consuming emoke and other gateous products arising from fuel and other substancere．＂－Nov． 2.
Bichard Archlbald Brooman，of Fleet－street，London，gentleman，for＂ic certaln Im－ provementa in the manufacture of hingen，and the machtuery or appuratue userd therela．＂ Nov． 2.
Willam Ballock Tlbbits，of Bramaton，Northatipton，gentleman，for＂Improveraesu in obuining，appiying，and controlling motive power，parts of which toprovemeats are applicable to the raising and forctng of liquide．＂－Nov．2．
Francie Gybbon Spilabury，of St．Joha＇s Wood，gentleman，for＂Improvemente in paliats and pigments．＂－Nov． 2.
George，Arthur Biddle，of Ipawich，engineer，for＂Improvemente apphcable to gas barners．＂－Nov． 2
Meyer Jncobi，of Spitaldelds，Middlesex，gentleman，for＂certala Improvements in the manufacture，stamplng，and treating generally，of woven fabrics of all kinds．＂－Nor． 2 ．
Thomat Jibh Knowlyn，ot Heysham Tuwer，near Lancastér，geatleman，for＂Imprure－ ments in the application，removal，end compreseiul oi alcuus；herte aif．＂＂－Nov．z ．
George Henry Bachhoffoer，of the Royal Polytechnic Institution，Loodon，doct rof philosophy，professor of natural philosophy，for＂I mproved means of trandonitiuys，com－ mulcating，or conveying intellgence．＂一Nov． 4.
Jomeph Cooper，of Walworth，tallor，for＂Improvements in fatening lor wearing ap－ parel．＂－Nov． 4 ．
Charles Iles，of Birmingham，machiniet，for＂Improvements in the manufacture of certaln deacriptions of drest fastenings，and in the muking up of diess luncenings and certaln descriptions of drese fas
other articlea for anle．＂－Nov．

Henry Kempton，of Pentonville，Middleser，gentieman，for＊Improvemente in refec tors and npparalus tor artificial light．＂－Nov． 7
Mowes Poole，of the patent bill office，London，gentleman，for＂certalin Improvementi in machinery for makiug nalla．＂（A communicatiun．）－Nov． 7.
James Napler，of Swantea，operative chenlat，for＂Improvements in the manafacture of copper and other metale，and alloys ot metals．＂－Nov． 9.
Richerd Coad，of Kennington，Surrey，chemist，fur ${ }^{46}$ Improvements In the constraction of blast and other furasces and fire－places．＂－Nov． 9.
James Anderson，of Ablotsford－place，Glaggow，starch manufacturer，for ${ }^{4}$ a certain Improved mode of separating the different qualstes of putatoes aud other regetables．＂－ Nov． 11.
Alerander Parkea and Henry Parkes，of Birmingham，for＂Improvements in the ma anfacture of metals and alloys of metals，and in the treatcont of metalle tatitere，with various substances．＂－Nov． 11 ．
John Browne，of Onnaburgh－street，Middlesex，gentleman，for＂I mprovementa in fire eacapes，and in apparatus to factitate persons employed tu cleaning windows．＂Nov．If
Alezander Balfour，of Dundee，Scotland，Jeather merchant and manufacturer，for ${ }^{* 4}$ Im provementi in appuratu＊for cuttug metal washere and other artichig，and ln the coa struction of buffers．＂－Nuv． 16.

Sanuel Adams，of Weat Bromwich，Stafford，organlet，for＂Improvementa in mils for grinding：＂－Nov． 16.
William Wilkinson，of Farrow，near Gatesbead，Durham，coke manufactarer，for ＂certain Improvements in the constructiou of coke oveng，and in the machinery or appa ratus to be connected therewith．＂${ }^{\text {－Nuy．}} 16$ ．
Thomsa Masters，of Regent－btreet，for＂certain Improvements In apparetus for making aerated waters，and in apparatus for ehargiug boulet and other vessels with gaseous fuid；also tmprovements in bottles and other vesels，and in apparatus for drawing of Iqquids；In securting corks or atoppers in butties or other vesseis，and in taps and vent pege．＂－Nov． 18.
Thomas Culten，of the clty of London，genlleman，for＂Improvements In apparatus for stetring abips and other vessela．＂－Nuv． 18.

John Juckes，of Rosamond－cottage，Fulham，gentleman，for＂Improvements in fur paces and fire－place．＂．＂－Nuv．18．

Alexander McDougai，of Longsight，Manchester，chemist，and Henry Rawson，of Man－ chester，agent，for＂Improvements in the manufacture of sulphuric actd，nituic act oxalic acid，chiorine，and sulphur．＂－Nov． 21
John Olirer York，of 24，Rue de Ia Maldelelne，Parls，engraver，for＂Improvemente in the manufacture of metallic tubes．＂－Nov． 21.
William Hood Clement，of Philadeiphia，for＂certaln improrements in the mander． ture of augar，part of which improvements are applicable to evaporation generally ；also Improved apparatur for preparing the cane trash to be used an fuel．＂－Nov．21．
Henry Newson，of Smethwick，near Birmingham，for＂Imprcrements in truases．＂－ T． 23.
Hugb Bell，of London．Gentleman，for＂certain Improvements in merial machines，ard machinery in connectlun with the buoyant pawer produced by gaseons matier．＂－Nov．＂－ Christian Schlele，of Manchenter．mechanician，for＂certafo Improvements in the construction of cocks or vuivet，which in provements are also applicable for reducing the friction of axles，journals，bearinga，or other rubbing surfaces in machioery in geatral＂
Nov． 23 ．

Peter Llewellin，of Bristol，brast and copper manufacturer，and John Fammons，of the save place，bracs－founder，for＂Improvements In the manufacture of cocks or valves for drawing of liquida．＂－Nov． 23.
Henty Archer，of Great Gcorge－streeh，Weatminster，gentleman，for＂Improvement In facllitating the division of sheets or pieces of paper，parchment or other fimillar sab Lances．＂－Nov． 3 ．
Prederick Bramwell，of Mill－wali，Poplar，engineer，and Samuel Coliet Homersham，α the Adelphi，geotleman，for＂I mprovements in feeding furnaces with fuel，＂一Nor． 25 ．

[^0]: - The rpece which a gravitating body whil pana throragh in one mecond is $10 h^{2}$ g feet; bat ty the pinclple of scceleratiog forces, the veloctiy of a falling body to any given
 thene to equaf to twice the apace through which it has pased in that time, or the velocity. thare ti eqnal to twice the ipace through which it has passed in that time, or the relority
 fa equal to the square root of the number obialned lig multiplying 64 by the height in feet.

[^1]: *The proportlon a suction plpe beara to a pump, is an angalous cace; for, if we dire the backet at a greater velocity than the auction plpe will supply it with water. the consequeace will be, that we thill not UN 00 much water, at the came itme that Fo are consequeace whil

[^2]: - Quabromere de Qulncy mags of Caserta: "Une plus 'srande conception de palais n'extrit polate Earopp:"

[^3]: "There is no kind of economical structure that resists the action of fire so perfectly as brickwork does, and any structure wholly of bricks, set in and combined with proper mortar, may be deemed for all econonical purposes a fire-proof atructure. But foore and roofa, or roof coverings, cannot be formed in brickwork alone, without the sacrifice of apace and materials, to so large an extent as to render such a mode of structure inconsistent with a due regard to economy in those important particulars. Mesns are to be sought, tberefore, by which brickwork may be rendered available, to the greatest extent postible, consistently with economy of space, and, if it riay be, of materials sleo. For tbis purpose iron presents ittelfan a substance wholly incombuatible, and capable, in the form of beams and girders, of bearing over space horizontally, and so as to leave, for economical parposes, a large proportion of extent in beight, which brick vaulting would absorb; and, requiring no such alsorption of space as brick vaults require for their lateral abutmente, iron, employed as a meana of vertical support, in colnmns or story-posts, will give the requisite strength to that effect in far less space within an enclosure than brickwork requires in piers or pillars to give the reqnisite bed to the springing: of vaalts, and to carry the weight of brick vaulting. But iron, although incombustible, is fusible under the sction of intense heat, and is, in its more economical condition, frangible if auddenly cooled when hot ; witbout reference to itt generally brittle character, or to the uncertsinty whicb attends its manufacture, when applied in that condition. Beams, girders, and columns or story-posts, of wrought-iron, if such things could be produced in wrought-iron economicalls, would bend when exposed to a high degree of heat, and let down any atructure that had been made dependent upon them; whilst beama or girders of cast-iron break when dashed with water; and columas of the same substance are liable to

[^4]: - The nominal power of thene enginen is, 224 horne. puwer for each valr at the Hionies; and 140 torme-power for each palr at Blackwall. There are dupticate enginet at each nitation, malidg 448 borse-power at the Minorles, and 290 hotre power at brickwall.

[^5]: 1 This amount locludes (besides the profesaional remuneration to the architect on acoount of worke executed to the general building) the commimion upon works to the coferdem, itver wall, exc., and the mum pald for a dotalled ustimete, in mecordence with the approved deagn.
 2 It is proposed, under Treasury authority, dated November 28th, 1842, to obtaln possemalon evensually of the bulldings on the sonth side of Brldge-street, Wentminater: the probable cost of these buildiags hea not been arcertalued.
 a By Treasury letter, deted February 25, 1839, the sum of 225,000 was directed to be pold to the architect al profeasonal remuneradion for muperintanding, directing, and completing the Housea of Pariliament in conformity with the orginal denign and eatimate. (It is right to state that the principle of this arrangement bet never bepn acceded to by Mr. Barry. The remumerntion to the archltect on eceornt of worin not ineluded. In his ortginal entimate, but erbbequently authorised, has not yot been the sebbjeet of conalderation.

[^6]: ligibie, all the feetares betng so rery Fudel/ expreated, that it is lmpoalble to make out
 more than the mere more than the mere generul dealgn. Allom's, on the contrary, is castafally toached, and graving; at the same time, here are inacecuracies in it whith ought to have been guarded againat. That so able an architectural artist as mr. Allom is, should have given oniy a alogle extertor, and not 30 much at oue interior view of so lomportant a pubile monument, in to be regretted. Perhapi he himself, or his publishers, regret it now that circume stancee have given a particular latereat to that particular building. Let an hope then, that Mr. A. Will valt the French capital once more, and give as a "Parts after the Thind Revolution," since he may there find many subjecte for his penctl which he had pase: over, -among othera, the Church of st. Vincent de Paule, and the Eicole dea Beanx Arts, both of which would require to be llustrated by more than one drawlog.

[^7]: "From what is astd of Mmin in Nagler"s "Kanstier. Lexioon," we find that this architect (Who Was born to 1781) was employed, among other works, on the restoratlons of the Cathedral of Ameins; and that while he was boppectour en ched at is youe section des T tra. vaux Pubitic, be mede plana, elevalions, ond eections of varioun cburthes at Puste, anounting in all to about three huodred drawings; yet whether they were ever publiahed is not stated.
 t It it mentloned ehiefly for the purpose of liforming us that it was from the central Window, Louis XVI, addreserd the people with the cap of Liberty on his heed; and Lowis Phillppe afintwards addreased them, when lafayetite Lold them, that fo bim they herheld "the best of all Repablical"-words which the present Bevolution and the now Bepublic will probably reity moet dimetronty.

[^8]: After all, such omistion on the part of the letter-preas wat perhaps jadiclous, be caute to have spoken of those parts ar the interior a they demerved to be, would have been accusing the artiat of culpable onission on hla part, in not deseribling any of them with bis peach, more eaperially as his forte lien in fotertur subjects.

 + Prom the perspectire view of the atsircase, It appears that theae compartroenta in the vaulting of the criling ere nol enactly what we should call Eliflighth brit orammenta panels Alied in with Hgured glas, elther coloured or plulin, in tbe inme plane as the other panels. Thin ought to have been explalned in the letler-press, as Itrewise ought meny olher particulna with reapect to decoration-colour ineluded-which are now left to be conjectured.
 t Thus, in regard to mere general diaposition of plan, thewe stalrcates are comemiat armar to thome in our Nattooal Galler; but olfer retemblance there io nome. In al saperfority lies.

[^9]: 4 "Remarks on Canal Narigalion." By W. Falrbairn. Bvo. London, 1881. * Vide "Phil Trans.," 182l, p, 423.

[^10]: - Fide MInntes of Procredlags, 1842, vol. H. p. 108.
 'Vide Fhll. Trane., 1828, rol. extill, p. 15.
 - Fide "Trans, Inthi. C.Es" vol. I, P. 168.

[^11]: - When alteration was going 00 , it would aurely have been worth while to remove she cotrances to the "wine tanlis" beneath the chapal, from the frons to the side; or henter athl, If it coald have been done, to the rear of the bullding, whers thep would have been entirely out of eight.

[^12]: - Vode Phil. Trane, Cambrldget, roL. v. p. 298; rol. vi. p. 460

[^13]: Wilining, during his profensorshly to the Acedemy, eshiblted only two mall drawings, and those showed us htt very wornt work of atl- Wowning College, Cambridge: The present Profestior has shown at loket more diseretion, for insteed of expoilog to critician
 tion for a pediment in a building erected by another archifect.

[^14]: e $12-82$ belag the potat of eatartion of witer whea at a temperatare of 200°.

[^15]: - This paper wir sectientally omitted to the report of laft month's proceedinga.

[^16]:

[^17]: - In consequence of the elabornte character of the two enkravings, we are obliged to poatpone giving one of the platen natil nest month; but when the volume is bound up, the two plates will appear cosether.

[^18]: Since this paper was printed, a cofferdan on the ame principle and thitir-are feet aquare, has been made for the Forth Navigation worki, Stiriling, where, ta the removal of the "fords," under my direction, muen dificulty has bither to been experi. enced, from the contant inow of the river.

 + Before lifting the cotferdam, the plt was blled with asind, to mpport the phes thet Were to remaln, which, whin the works were done, was cleared out by meabe of a waterscour, provided for the purpose of koeplag permanentily open the navigable tract.
 t in atuationa also, where there is a conslderabie depth of water, and where, consequentif, the frames muat be gade as as in stund high above tbe ground, It will be found of groat advantage to plank the oukside of the tranet between A and \mathbf{G}. This will not ons make the dam more vater-bight, but have the etrect oi biading and atrengthening
 the framework.

[^19]: *We are ladebted to the "Prankilin Jouran"" for the tranciation.

[^20]: In the following translation we have prearred the French unte of leagth, weight, and temperature. The metre is 39.971 tochen. The Fllogramme 2.206 lh. , TV .

 The degree of the Cealdgrade thermoneter, 1.8 degreen Pahrenhel
 To reduce Centigrade to Fahrenhelt desreet, multiply them by 9 , divide the product
 by $b_{\text {, end }} \quad$ add 38 degrees.

[^21]: －M．Kegoault describet in a note an Independent series of experimente tried by him according to the method of M．Giy Lasaac－that ls，by obsering the dil atations of a quantity of dry alr contained in a true thermometer and separated from the erternal atmosphere by a small index of mercury．（Biot．Traite 4 ．Phys．tom．1，p．182．）The results obsained did not agree at all，and were all teebler than by way of the other methods；the lighest retals recurded was l．3647．

[^22]: \qquad

[^23]:

[^24]: Euturematy Trentuse un Meckanice, p. 6.
 A course of Leeturet on Nat. Pbil., vol. 2. p. 37.
 New Math. and Phtl. Dletionary, -Art. "Vis."
 Pbil. and Mfath. Dictionary, rol. 2, v. 568 .
 G. G. Leibuiliii, Opera Umnin, tom. 3, p. 318.

 Meghaulce of Engineertog. P. 132 .
 Mech. Pifo. of Engineerimg and Arch., P. 133.
 Elementary Princtples of Carpentry. p. 9.
 Elementary Treanse on Mechantcn., p. 84.
 it Meeb Prin. of Englneering and Arch.,j. © 4 .
 ${ }^{14}$ Practical Englueer's Pocket Guide, p. if.
 Princ'ples of Mechanics, p. 68.
 is On the Pree Motion of Polats, p. 96 ,

[^25]: 90 A Treatise on the Rectlinear Motion and Rotation of Badien, p. 35.
 2 1 New Math. aod Phil. Dletionary,-Art. "Force."
 go Phil. and Maih. Dictionary, vol. 1, p. 335.
 as Mechanics of Englitering, p. 1s3.
 94 A conrae of Lecturen on Nat. Phil., vcl. 1, p. 4s.
 23 Phil. and Malh. Dictionary, rol. 1, p. 297.
 Is Principles of Mechanics. p. 81 .
 padia Net, -Art. "Mechanice;"Art. "Centre of Gpeation " and Eecys Prisctples of Mechanice, 3.89.

[^26]:

[^27]: - That th, nenalble to one four-milionth of the wial load. Quere, whetbor thin genalblity was deternined after the glolver had been haoglay from the seules, and the belenet in action for ancea days?

[^28]: *This in the oniy direct mathod which can be nued for thit determination, in gaset - Eich allack nercury.

[^29]: - Berzelfus bimself now actrnowiedges the error of his former determination, and
 Dumgh's determination. (Berseliun Tralte de Choio, Eeconde Edution Sratanist 1845 tom. 1, P. 263.)

[^30]: Blot, Beppanit remarks, in a note, that all the nomerical corrections made by MM Blot and Arago, for the porpoee of reducing the weight of alr to 00 and to absolute dry Ben, contibitued to reader the number which ther adopled $200 \mathrm{~h} / \mathrm{gh}$. Anotber circumstape may hare produced a similar efrect. Theee experimentera exhanated the globe Hemeral times with s very good air-pamp, and they supposed that the ullght tenalon which temataed in thetr globe whe produced by the vapour of water which the walls of the flobe abailaned in raguo, Fhich thry re-condeased when the air entered agaln. It In, in fact, probable that thla wis the case, but it sermit to be alio very probable that when the dobe wid liled with alr'very meerly saturited with moleture, if gave a met portion of

[^31]: pupil of Leble, was entrusted with the analyeet of the coal, Mr, Galloway analyned the goves, and Mr. Howe also asoleted in the analymes.

[^32]: －Inf of dee it would not be neeensary to carry on the process of distilation so far as at Pe new the realdual coke woutd be more comburtible and the gases purer．

[^33]: －Tho eo－eflacient fcr the latent heat of ateam at 212° is generally taken at 10000 ，but the above number is frem the recent experimeuth of Regasult on this subject，at given in Table I．

[^34]: a, Carriage Pavement; b, Chanael Stone; c, Curb; d, Foot-Paviag; e, Coal-Vault Shoot ; f, Gas-Pipe; g, Water.Pipe; h, Sewer; i, Syphon Trap; j, Tube: k, Coal-Vault.

[^35]: 9 Derby Reporter.
 4 Leicediershire Mercury.

 - Derbyabire Courler, Angust 19. 1848.
 - Gatenhead Ubeerver, Augut 19, 1849.
 - Speech at Newcastle, June 18, 1848.

[^36]: 2t Treat Valley Meettog.
 1 © Derby Baporter.

[^37]: Is Wood on Kaliroads, 2nd ellton, peyea 134 and 186 , where different dates ere hiven, In the report of Stophescon's apeech at Newcasile In l644. he is mad
 dace mas y^{2} yonre lefore, which woold be in 1812 . This
 it Sperch at the Newreatie and Darlinalon
 si Lerdiner on the Bteem. Engize, p. 840 .
 st Lerdner on the 8team- Engine, p. 840 .
 si Wood on Balirouds, 2ad edlivon, p. 18,

[^38]: The leagthe of Engliah, Scotch, and Welsh rallwiyn open June 1848 wer
 Ditto, open at the commencement of 1848
 The groes recelptes retarned for the year 1849 wure
 Dutio, for the year eadiag Jave 30,184
 1,990
 88,597
 $8,740,000$
 $8,36,772$

[^39]: * "Obeervations on the Duties and Renponalbilities involved in the Managenent of Mints; chiedy with refereace to the Rules and Prackee of those of India. With sugs. reatione for their lmprovement" By Major J. T. BMITH, B.E.I.C. Engineers, F.M.S., A.l.C.E., Mnster of the Madras Miol. Madras, letu.

[^40]: *From the Introdnction to Part 1., fust published, of the "Clill Enginear and Archieact:a Coarse of Nechanics, appllcabie to Structures and Machines." By Homeroham cos, B.A.

[^41]: - Philosophy it written in that grestest of books which stands continunily open before the eyes of men [that Is, the untrerse]. but cannot be learoed without previone prepara. tion to understand the tanguage and dectpher the charactera in which jt it written. It is written io the languse of mathematics, and tic charncters are triangles, circles, and other geometrical figures; whout which, we thould wander in vala, through mases and obseurtif.

[^42]: 2 Histolre de l'Academie Ropale, 1763, p. 1, quoted by Dary.

 - Hutchinson's History or Cumberland, quoted by Davy.
 - Journal des Minea, Flif. 839, quoted by Davy.
 - Bee Sir Humpbry Davy's eeveral worla in 1815, 1816, 1818, and 1825, but which ure searly the same. The one bere quoted is thit of 1818 .

[^43]: 'Teport, Moodle't witnem, p. $18 . \quad$ - Stephenson, in the Repart, p. 15.

 - Wood's witnees, in the Report, p. 17.

 27 Witnees of Bichurd Thompson, in overman.
 Beport, P. 이.

[^44]: 1 - Theo partner with Stephenson in the patent for the raile and chatry.
 29 Afterwards adfector of the Newcaste and Carliale Railming.
 2 a Robert William Brauding, Esqu, is the won of the late Char'es Brandiag, Esq. M,P., and connecter with most of the leading coalowneris [Rallway Post-Office Directory, $18-8$, belog brotber-in-ibw of Rowland Burdon, Esq.; upcle of Matihew Bell, Esq.. B.P. and coasin of R. W. Grey, Fsq.. M.P. He whe therefore wrell able to but has taken a great share in all undertaking. in his neighbourhood; among other but has taken great ghare in alt undertaking in his neighbourt
 thingi, In the Brandilag Junction Radmay, and fo the Safoty Lamp.
 \& i The Bells were likewice great friends of Stepheneon. Natihew Bell, Esq., of Wooleington, is the one named above. The son, born in 1723 , is now M.P. for South Northumberiand, and hat been a director of the Nemenstle and Cartale Railmay suce 1829 [Ralloray
 Northumberland.

[^45]: 3s Morning Chronlcle, Dec. 18, 1814.-Neweatle Chroulife, Der, 23, 1893.
 34 Lardier ou the Steam-Euglae ; Ritchie on Ralwars, p. 222; Stamis Aneodones of the stean Epglat.

[^46]: The total number of death in Paris, in 1852, wat 44, 11: of which 18,402 were due to

[^47]: - The gange at Comb'e Revervolr io a cylindrical gaupe. 7 ioches diemeter, and 18 tinchen above the level of the ground, and ban a foat and unari to indicate the moomat of

[^48]: The plane of fiotation, to the horisontal section of the bouy, coliseinemt with th surface of the fufd; or it is that horizontal section whith se, arates the fmporsed aud emersed portions of the body.

[^49]: -The vertical line which passen through the centre of gravity of che immersed part of the fluatlag body, in called "the diae of buoyancy," of "tbe liae of sapport."
 t The vertical line which passes through the centre of grapity of the whole loation mass, to culled "the line of presaure."

[^50]: " We are indebled for the drawings to a work that Mr. Leon in aboat publinhige, an "Colonan Machinery for Manufacturing and Refiniog Br. Leor."

[^51]:

[^52]: - Ritchle on Rallways, p. 37. Wente's Eneamples of Hallways, p. 4 .

 4 Rtichle od Rallivays, p. $289 . \quad$ B Michie on Rativaya, p 2\%6.
 © Rallway of Great Britain, by Frauch Whishaw, C.E.,-Art. Canterbury aud Whitatable.

[^53]: - Communicated by J. C. Robertoon, Eeq., of the Mechanles' Megesion.
 a Wood, on Railroeds, 1825 . \quad Trudgold, on Rallroeds, 1825, p. 2a,

[^54]: 2: Poat Oftice Railway Directory, 1848.
 1 : Poet Oftice Mallway Directory, 1847, 1848.
 14 Tuck's Rallway Sbareholder's Manaal, p. 230.
 is Rallvays of Great Britala, by F. Whiehaw, p. 415.-Nicholae Wood, Ist edtan,
 f. Whishaw, p. 278 , is, by error, siated as 36 ith.

 1 © Rltehle, on Rallwayn, p. 36.
 38 Wood on Ralironde, lst edition, p. 06.

 1) Flrat edition, $182 s$

 20 Ritchie on Rullrosds. p. 67.
 10 Wood, ist edition, pp. 83, 0n.
 bet it is not sure whether cos the S.oction and Darlingson Billway, or afterwirdis.
 se Whinhen's Analyale of Bullways, p. 275.

[^55]: 24 W'bishaw's Anairsis, p. 280.
 gs Whichaw's Analyais, 1896; p. 257.
 9a Whisbaw's Rallways of Great Britsin, p. 415.
 of Bltchle on Rallways, p. 233. 9a Whisham on Rallways.--2Itchie on Rallways. e Tuck, Rallway Shareholder's Manas, p. 243.
 0 Analyds of Rallwayt, p. 292.-Quarterly Review, vol. 31.
 of Whishaw on Rallway, p. 413 . 39 Whishat on Rallwayt, p. 418.
 as Whishaw on Raliwny, p. 416 . 4 Whathew on Rallways, p. 422.
 is Perlementery Retarne, 1840 .

[^56]: as Newcastle Magasine. vol. 1.
 a 1 Ritchic, on Rellasyt, p. 32, where there Is a drawing.
 a Wood, on Rallronde, lat edition, p. 175.
 is Gateshead Observer.
 4 i Gateahead Obverver, Ang. 19, 1848.

[^57]: 42 Nerrantle Magaxine, Vol. I.

[^58]: penotion rods, platiorm, mad loud matiny the weight, aud c belug the angle at the polat of sumpeaslon, formed oy the horinoutal chord with the teugrat is the curre.
 If the carre in consdered as a parabola, this becomes $T=\frac{W a}{8 d}$, boing the upan or chord line, and d the deflection; an expression Identical with that given by Mr. Cor. But the suspenstion chains do not form an exact curve; thelr g, ure a a polyson, or whetch the angles have their incl in a parabola, according to the connlitinna asamed; and a ebange in the form of calculation fotlowa in consequeace, without howevar any differeace
 in the result which is worth notice bere.

