

THE NEW YORE FUBLIC LBRARY
geten, hemax ant theen poumoationa

THE LEECHWATER EMGINE.

$$
d
$$

CIVIL ENGINEERAND ARCHITECTS

J 0 U R N A L,

SCIENTIFIC AND RAILWAY GAZETTE.

1847

LONDON:
R. GROOMBRIDGE AND SONS, 5, PATERNOSTER ROW ; J. WEALE, s9, HIGH HOLBORN; WILEY AND PUTNAM, NEW YORK; GALIGNANI, AND MATHIAS, PARIS.
-

THE NEW YORR FUBLIC LIBRARY'
abten, Lemex Ant TILDEN FOUNOATION:

```
#:O:O:O:O:O
```



```
    .":#: \therefore :":-"::
    #:O
```

THE NEW YORE FUBLIC LABRARY
nten, LEMOX AnO TMEEN FOUNDATION:

THE NEW YORK FUBLIC LIBRARY
 antor, lemex ane tilden foumdatione


```
\bullet:!..: : : : :
```


\square
FUBEIC LBBRARY thesm, foumonatiow
oseph Gibbs \& Arthuer Dean.; Eingineers.
3 CALE.
\qquad ss

Section of ail Kump.

CIVIL ENGINEER AND ARCHITECT'S JOURNAL.

INDEX TO VOL. X.

A
Abattoir, Railefay, 164
Abbey church of St. Alban, Buck. ler's history of (review), 364
Abbey near Rouen, 94
Abbey of Weatminster, 94
Aberdeen railway, 96
Academy, royal, the, 95,400
Account of the iron barque Josephine of Liverpool, 227
Acid, sulphuric, lecture on, by H. M. Noad, $\mathbf{2 6 2}$

Acountics of theatres and other auditory buildings, 29
Action of waves, by Prof. Airy, 254
Address of Sir R. Iuglis to the members of the British Association, 254
Admiralty, electric telegraph at, 164
Adulteration of flax, 164
Aerial locomotion, 94
Age of volcanoes, 185
Agriculture, notice of, by Sir John Rennic, 150
Air and water of towns, remarks 0n, 127
Air, the tides of, 255
Airy, Prof., on the action of waves, 254
Alban, Dr., investigation of the higb-pressure steam-engine (review), 45
Algebra made easy, by Tate (review), 92
Algeria, irrigation of, 99
All Sainls' church, St. John'b-wood, 30
Alnwick, St. Padl's church at, 28
Alpine railway, Vienna and Trieste, 109
Alps, a road over the, 162
Alpa, tunaelling of the, 30
American great bridge, 152
Amici's Colosseum, \&c. (review) 18
Amiens and Boulogne railway, 95
Analysis of the waters of King's well, Beth, 30
Analysis of Pernvian alloy, $\mathbf{3 0}$
of Bohemian glass, 64
Ancient and modern structures, materials of, 94
Ancient and modern architectare, by Jules Gailhabaud (review), 19

Ancient decorative art, paper on, by Hadson Turner, 22
Ancient Syracuse, paper on, by S. Angell, 95, 62
Ancient world, Prof. Ansted on the (review), 158
Anemometer and revolving scales, paper on, by Capt. Cock hura, 286
Angell's paper on ancient Syracuse, 95, 62
Angles, on the measarement of, by
O. Byrne, 313, 351

Animal Electricity, 255
Ansted, Prof., on the ancient world, (reviem), 158
Ansted, Prof., on geological science, 112
Ansted's, Prof., geological lectures, 393
Ansted's, Prof., introdnctory ad-
dress at King's college, 358
Antiquities in Australia, 199
Apparatus for lessening the effects
of collision on railways, 190
Apparatud for lighthouses, 385
Aqna Virgine (review), 105
Arabia, copper mines in, 112
Arabia, lithographic stone in, 111
Arches, construction of, 211, 249
equilibrium of, 66
of Upton church, on one of
them, by W. Bromet, 123
Arcbitects, British, royal institate of
6. 26, 62, 82, 123, 155, 192, 227,

261, 367, 397
Architecta, Irish institute of, 336
Architectural carvings, 65
Architectoral history of St. Alban's abbey, by Buckler (review), 364, 392
Arcbitectaral maxims and theorems, by T. L. Donaldson (review) 204, 246
Architectural works, German, 241
Architeclure, arcuate and trabeate, 4
a glance at some of its at-
tributes, by F. Lash, 165, 298
Architecture, Buddhish, 111
ecclesiastical, castellated, and domestic, of England, by J. Hadfeld (review), 363
A rebitecture, engineering, by Sir J. Rennie, 150

Architecture in Great Britain, history of, by J. Elmes, L66, 209, 234, 268, 300, 337, 378
Architecture, Grecian, Bell's essay on, 123
Architecture of St. Alban's abbey, by Buckler (review), 302
A rcuate and trabeate architecture, 4
Area gratings, Marvin's patent, 88 Armament for war steumers, $\mathbf{t} 61$
Armament, new, for the royal nary, 315
Army and navy clubhonse, 163, 173, 231
Art collectors, over-zeal of, 93
Art of mosaic, Dighy Wyatt's paper on, 87
Art of sketching from natare simplifed (review), 247
Art, private collection of her Majesty and Prince Albert, 199
Artesian wells, 79
Artesian wells in volcanic formations, 208
Artifcial minerals, $\mathbf{3 9 5}$
Artists, physical improvement of, 71
Arts, royal Scoitish society of, 25, 61, 81, 123, 152
Arts, society of, London, 24, 61, 81 122, 153, 192, 229
Art-union, Munich, 162
Association, the British, 254, 286
Astronomical society on the new planet, 111
A stronomy, tangible, 256
AUantic and Pacific oceens, plan for connecting, 225
Atmospheric electricity, Highton on the effects of, 25
Atmospheric railways, 115
Atmospheric railway tubes, Warcup's patent, 00
Atmospheric railway valves, Fair. bairn's, 162
Atmospheric rays, colours of the horizon, 867
Atmospheric resistance, law of, 307
Atmospheric system, Croydon, 200
Atmospherio waves, Birt's report 00, 257
Austin and Remmell's patent tessolated work, 89
Anstria, city embellishments in, 29

Anstria, literary and art property in, 199
Austria, polytechnics in, 143
Australian entiquities, 199
Australian railway and Syduey wa. terworks company, 812
Avignon and Marseilles railway, 231
Axles for railway carriages, by H . Bessemer, 190

B

Baden, Grand Dachy of, meeting of archæologista, 126
Bailey's memoir of Sir John Soane, 19
Baillie's method of saving life when akating and curling, 62
Balance spring, laws of isochronism, by C. Frodiham, 188
Banks of the Rhine, great adorning of, 126
Barlow, W. H, on the conatruction of arches, 211, 249
Barry, (Cbarles), on the new house of Lords, 163
Baronial and ecclesiastical antiquities of Scotland (review), 290
Basbforth's description of a universal time table, 306
earthwork tables, (review) 202, 289
Basire's blade protractor, 310
Bavaria, goveramental chemiatry in, 63
hall of liberty in, 163
Basle, bridge over the Rhine at, 136
Baylis's patent alub chains, 356
Beadon's patent for warping vessels, 291
Belgium, buildings in, in the London style, 30
Bellis enasy on Grecian architecture, 124
Bell's patent for smelting copper ore, 88
Berlin, great newa hall at, 29
society, for the improvement of the working classes, 163
Bessemer's railmay axles, 190
Bieléfield'ı patent papier maché ornaments, 119

Billings and Burn on the antiquities of Scotland, baronial and ecclesiastical (review), 159, 290
Birkenhead and Cheater extension railway, 95
Birmingham corm exchange, new, 92 inatitution of mechand-
cal engineers at, 37, 190
Birt's report on atmospheric carves, 257
Blackburn's sketcbes, graphic and dencriptive (review), 363
Blade protractor, registered by James Basire, 310
Bocejus on his improved gas barner, 193
Bobemia, reilwaye and conl mines in, 29
Bohemian glass, amalytin of, by Dr. Rowney, 64
i
Boldeat enterprise of the age, the draining of the Zayder-zee, 29
Booka lately pablished (foreign), 87
Borrie's patent for the construction of piers and harboarn, 247
Botany and steam navigation, 256
Boulogne and Amions railway, 95
Bonrac's catechiem of the team angine, (review), 391
Bradford and Leeds extention rillway, 96
Breakwater of Cherbourgh and Ply. mouth, 283
Breakwater in Delaware Bay, 281
Brees'n first series of rilway practice (review), 92
Brett and Little's patent electric talograph, 294
Brett's paper on his electric printing telegraph, 193
Breynton's patent rotary engine, 293
Bricks (moulded), 92
Bridge (great railroad) in Amerien, 152
Bridge over the Rhine at Baale, 136 atrain on the platform of a sumpession, 97
Bridge over the Poldervart, by Manby, 125
Bridge (Niagara), Waro, 162
Bridges of the Romans, (reviow), 104 (tubular), 64, 376
Britith Architect, Royal Inatitute of, $6,26,62,82,123,155,192,227$, 261, 367, 397
Brithh Aseociation, 254, 286 museum, I., 239 ; II., 257 ; III., 302 ; IV., 346 ; V., 383

Brighton and continental steampacket company, 263
Broad and narrow gage, wear and
tear 0n, 317
Brockedon on the vulcaniration of india-rubber, 186
Browning's mode of measaring and valuing carpenters and joinere' work, 62, (review) 195
Brown's description of a coil clectr1cal muchine, 26
Brasels, prevention of accidents on ruilwayi in, 199
Buchanan's patent improvementa in ahipe and propellers, 178
Buckingham palace, 31, 265
Bucknill on locomotlve alide valven, 177
Bncklor's history of the abbey church of St. Alban, (reviow), 364
Buckle's paper on the use of the fan blant, 190
Buddhinh architecture, 111
Builders' bencrolent inutitution, 233
Boildings, (fire-proof), defects in the principlo and construction, 156
Brilding act, 399

Building operatives, short time for, 263
(public), inauguration of, at Constantinople, 162
Bunnett's patent water closet, 144
Burnettizing timber, 28
Bury and Ipawich railway, 95
Bntton the archsoologist, 31
Byrne on logarithmi, 242
on the measurement of angles,
313, 351
Byrue's now theory of the earth, 99, 131

C.

Caen in France, a basin in progreas at, 87
Calcotta, gallery of art at, 31
Cambridge, chapel of Jesus college at, 109
Cameon, Gray on the manufecture of, 154
Canal, the Gangex, India, 163
(Helder), Jacknon on, 124
locks, wicket gate for, by Lowthorp, 244
Candidas's Note Book, Pasciculas LXXII., 233; LXXIII., 266; LXXIV., 298; LXXV., 341 ; LXXVI., 371

Canina on ancient architectore (review), 317
of Rome, 163
Canning's plan for arreating the progress of fire in dwelling bouset 192
Canterbury cathedral, 109
Ceontchouc, Moulton's patent im. provements in, 320
Cape Town gas works, 399
Capillary attraction, 256
Carlton clab-house, 297
Carpentry in divisions A, B, C, by P. Nicholeon, (reviem), 204
Carpentera and joinert' work, Browning on measuring, exc., 62
Carpmael on raising and shaping metals, 112
Carriagen, Rennie on, 80
(railway), Wight's improve.
menta in, 153
Carrick's improved railway indicator and alerum, 61
Cart drag, Rutherford's improvementa in, 153
Carter's lubricator for macbinery, 391
Carvinga (architectural), 65
Caske and vemsels, 183
Cast-iron, Kenrick's patent for glazing it, 27
Castle of Ontia, Bipingille's aketch of, 21
Castle's notes on anrveying and levelling, (review), 159
Catechiam of the steam ongine, by J.
Bourne, (review), 391
Cathedral (Canterbary), 105
(Cologne), 33, 126
(Durham), 164
of Speyer, restoration of, 93
Cement intonaco, Marshall's, 153
Central ind, 86
Centre punch, 263
Cerography, Dr. Morse's system of,64
Chairs and fasteninga for railways, May's, 390
Chambers on andent sea margins, 260
Chambers's (Robt.), select writingt, (review), 92
Chamonix, the valley of, 162
Chance and Badger's patent for the monnfacture of glate, 27

Chandelier suspenders, Pinlay's patent, 58
Changes in the position of the transit instrument, 286
Chantrell on the geometric syatem of medireval architects, 123, 227
Chemical society, 156
Cherbonrg harbour, 281 and Plymonth breakwaters,
283
Cbest-board (economical), Dr. Roget's
25
Chesshire's apparatus for rilway car. risget, 100
Chester and Birkenhead extention railway, 95
Chimney cans, improved, Stewart, 158
China grase rope, 400
Chipese wail, 968
Chromatype, Hunt's, 802
Church of Adel, York, Chantrell on ancient roof of, 128
Church of the holy sepulchre at Jo. rucalem, 198
Churches, new metropolitan, 40
City embellishments in Austria, 29
City of London Union workhouse competition, 898
City of Mexico, 264
Civil Engineers, jastitution of, 62, 72, 88, 124, 155, 188, 227, 261
Clarke and Varley's pneumatic pilo driver, 91
Clauseen's patent propellers,88
Cleopatra's needle, 80
Cliff, Shakapeare's, 126
Clocks, Rennio on, 148
Clubhouse, army and nary, 163, 178 281
Coaches, steam, 116
Cochran's sawing machine, 200
Cockburn, captain, on anemometers and revolving scales, 286
Cohesion of liquids, influence of heat on, 8
Coil electrical machine, 26
Coke ovens, cooling, Rapsome's patent, 320
Coke, conversion of diamonds into, 263
College of surgeons, 400
Collins, Willinm, death of, 05
Cologne cathedral, 88, 126
Colonial railway progrese, 812
Coloured glass in the new palmhoase, Kew, 286
Commonicatlon between Trieste and the Rhine, 95
Comparative strength of various kinds of wood, 185
Competition, City of London Union workbouse, 898
Competition of railway companies, 817
Compress for andue bleedlag, 163
Condie's patent steam hammer, 224
Connell, Prof., on the precipitate in water, 258
Constantinople, ingagnration of a pablic bailding at, 162
Conatruction of arches, Barlow's paper on, 211
Construction of penitentiaries, 834
Construction of sea walls, $8,5,251$, 281
Continental and Brighton steam packet company, 263
Continental railways impracticable in winter, 63
Continental railway lices, great, 199
Conversion of diamunds into coke, 268
Cooling coke oven, Ransome's patent, 820
Copper, revalaion in the manufacture and trade of, 110

Copper mines in Arabia, 118
Copper ore, Bell's patent for mmelting, 88
Copper ore, 103
Copying presses, Kempton's, 890
Copyright of deaigns, by W. Spence (review), 196
Cordes and Locke's rotary engine, 88, 61
Cornelius and Humboldt, 98
Correspondence, 32, 64
Cost of constructing railways in France, 95
Cost of various railweys provious to 1841, 183
Coltingham, the architect, death of, 368
Coupling, disconnecting, 190
Covent garden theatre, 64, 139, 230
Cowper'a rail way suspension bridge, 869
Crease's patent improvements in bouse painting, 88
Cresy on civil engineering (roviow), 102, 156
Crimple viaduct, the, 98
Croll's patent gas meter, 91
Cromptons's large wheel marrow gauge engiaes, 153
Curr's railway locomotion and steam navigation, 362

D

Dalmatia. drainage of land $\mathrm{in}, 109$
Damp walls, 296
Daguerreotype combined with the telescope, 104
Deacon's patent fattening glass kilns, 143
Death of Mr. Collins, 9s
Death of Mr. Cottingham, 868
Death of Mr. Yapworth, 239
Death of senor Vasquet, 368
De Boureuille on the safety of railways, 41
Dee Bridge, failare of, 304
Dee Bridge girders, 810
Decimal gages, 16, 39
Decimal weights, measures, and money, 196
Decomposition of water, 268
Decoration of Covent garden theatre, Laugher's paper on, 230
Decoration of the palace of Westminster, 201, 283, 284
Decoration of theatres, Dwyer's paper on, 28, 187
Decoration of the meeting room in the commercial bank of Scutlaud, Edinburgh, 159
Decorative art, ancient, Turner's paper 0n, 22
Decorative Art Society, 896
Defence of the country, Weale's paper on (roview), 812
Defries on his patent dry gas meter, 193
Deluware bay, breakwater in, 281
Lelfosse's patent for preventing the incrustation of boilers, 146
Demolition of Trinity church, Edibburgh, 31
Depressions in the land, recent, 900
Description and drawing of a sluice, by J. Macdonald, 81
Description of four portable appa. ratus for inhaling ether, 82
Description of the Leeghwater en. gines, 2
Description of pottery made by the Ojibbeway Indians, 81
Design, the government school of, 18 899
Destruction of a high road by an earihquake, 68
Destruction of moontainous foreats,

Diemond, conversion of into coke, 863
Dickenson's patent nas meter, 290
Disconnecting coupling, 190
Discoveries at Nimroud, by H. Leyard, 227
Discovery of Termessus, 34
Docks at Southampton, 173
Donaldson's architectural mexims and theorems (review). 201, 246
Doppler on the combination of the telescope with Daguerreotype, 102
Douglas, Sir H., on the long range, 197, 243
Douglas, Sir H., on the construction of sea walls, $215,251,281$
Double gauge, observations on by
R. Stephenson (review), 289

Dover, landing pier at, 263
Drainage and sewage, 170
Drainage of land, 165
Drainage of land in Dalmatia, 199
Drainage of the Haarlem lake, 1
Drainage of the Zayder-zee, 20, 31
Draining, important saving in, 164
Draining with engine ashes, 86
Drawing, thermogenic, 94
Drayton's patent process for silver-
ing glass with pure silver, 102
Dredge's suspension bridges in In. dia, 31, 263, 289
Dressing lace and fabrics, Keely's patent, 247
Dripp's patent water wheels, 87
Dry gas meters, Defries's paper on, 198
Dublin, school of engineering in, 31
Dundalk and Enaiskillen railway, 95
Dundonald's, Lord, war plan, 127
Darham cathedral, 164
Dupasquier on the water test, 103
Dwjer's lectare on the scenery and decoration of theatres, 187
Dwyer's lecture on high art, 396

E

Earl's art of aketching from nature simplified (review), 247
Earth, a new lheory of, by Oliver Byrne, 09, 131
Earthwork, Bashforth's tables for the calculation of (review), 202, 289
Earthwork, Sibley and Rutherford's tables for the calculation of (review), 246
Ecclesiastical and domestic architecture of England, by HadGeld, (review), 363
Eclipse, the, 368
Economical chess-board, Dr. Roget's 25
Edge's patent gas meters, 247
Edinburgh, demolition of Trinity churcb at, 31
Egypt, rise in the soil of, 126
Elastic fluid, Froude's paper on, 229
Electrical musical instruments, 200
Electric light, Wriglt's patent, 355
Electric spark, Wilson on the noise of, 128
Electric telegraph, 30
Electric telegraph, Brett and Little's patent, 294.
Electric telegraph, Brett'a paper on, 193
Electric telegraph, Highton's, 400
Electric telegraph, induction of atmospherlc electricity on the wires of, 176, 222
Electric telegraph, Nott's patent, 56
Electric telegrapb, the political and ancial influence of, 256
Electricity, ligbt from, 399
Electricity, smelting by, $\mathbf{8 5 0}$

Electro-coppering, 8zo., Piaget and

Du Bois's patent, 292
Electro magoetic coil machine, 69
Elements of geometry, by J. D. (revievp), 393
Elevations and earthquakes, Hopkin's report on, 257
Elliott on the sea defences of Romney marsh, 201,
Elmes's, J., history of architecture id Great Britain, 166, 209, 234, 268, 300, 337, 378
Encyclopzedia of civil engineering, Cresy's, (review), 102, 156
Engine ashes, draining with, 86
Engine, the stationary aystem, 116
Engineer and contractor's pocketbook, Weale's, (review), 50, 290
Eugineering and railway members of parliameat, $\mathbf{3 0 7}$
Engineering, civil, encyclopædia of, Cresy's (review), 102, 156
Engineering evidence, Stephenson's, 817
Engineering field notes, by Castles, (review), 159
Engineering, bistory of, by Sir John Renaie, 50, 75, 113, 146
Engineering literature, 28
Engineering, military and naval, 161
Engineering society, King's college, 95
Engineers, civil, institution of. 62, 72, 83, 124, $155,188,227,261$
Engineers, continental, 151
Enniskillen and Dundalk railway, 95
Enaiskillen and Londoaderry railway, 95
Erratum, 239
Erskine's method of overcoming an incline of 1 foot in 18, 192
Ether, apparatus for inhaling it, 82
Ether, vapour of sulphuric, safety of from explosion, 123
Elherization, 225
Evaporation, \&c., canse of, 258
Evaporation of water, 135
Excavations, recent, at Pompeii, 367
Exhibition at the Royal Academy, 174
Expansive action of steam, paper on by J. M. Heppel, 227
Expansive action of steam, paper on
by Tate, $2 \mathbf{2 8}$
Expansively, working steam, $\mathbf{3 7 0}$
Expenditare of railways, 182
Experiments on models, 352, 398
Experiments, photogenic, 369
Explosion of a locomotive engine in the United States, 245
"Express" steam vessel, the, 263
Extension of railways for speedy travelling, 385

F

Faber's patent for indicating the height of water in steam boilers, 87
Fagade of the new building of the lnatitation of civil engineers, 78 Failure of the Dee bridge, 204
Fairbairn on the defects of fire-proof buildings, 156
Fairbairn on atmospheric railway valves, 152
Fairbairn's pateat tubular bridges, 143
Fairbairn, tribute to, from Sultan Mahmoud, 400
Fall of a building on the French Northern line, 30
Fan-blast, Buckle on the use of, 190 Fan-blast, Jones on the use of, 191 Fano, the gate of Augustus at, 102 Fecundation, 256

Figured surfaces, Millward's patent, 225
Finlay's chandelier suspenders, 58
First serips of railway practice, by Brees (review), 92
Flax, adulteration of, 164
Fluids, on the motion of, 97
Force, on the measnres of, and the
laws of motion, 129
Foreign books lately published, list of, 87
Foreign works, notes on, 29, 62, 08, 126, 162
Forge portable, Queen's patent, 87
Form and equilibrium of arches, 66
Fortifications at Sheerness, 30, $\mathbf{3 3 6}$
Fortifications of the southern coast, 367
Fossick's patent lociomotive engine, 819
Fossil sea-serpent, 199
Foulis's ink for the blind, 61
Four rail system, economy of, 817
France, cost of constructing railways in, 05
France, great scientific prizes in, 63
Free trade, 336
French Institation of civil engineers, 126
French Northern line, fall of build. ings 00, 30
French proof engravings, 335
French railways, state and prospect of, 140
French vessels, sheathing for, 385
Fresco painting, 200
Frodsham on the laws of isochronism of the balance-spring, 183
Frost, phenomena of, at Rome, 63
Froude's paper on the law which governs the discharge of elastic fluids, 228
Fulgurites and fulminary tubes, 864
Fuller's india rubber baffers for railway carriagen, 154
Furnaces, Grundy's patent, 819
Fusion of mercury, 336
G
Gages, decimal, 16, 39
Gailhabaud's ancient and moer n architecture, (review), 49
Gallery of art at Calcutia, 31
of the Louvre, and French
works in general, state of, 93
Galloway's patent locomotive engines, 120
Gandon the architect, life of, by Mulvany, (reviow), 48
Ganges, steamers for, 30
Garofola, great picture of, at Rome, 29
Gardens, royal botanic, 163
at Kew, 163
Gardner's introduction to railway
mensuration, (review), 393
Gas burners, Boccius on, 193
Gss, Rennie on, 79
the manufacture of, Hillary's patent, 88
manufacture of, Lowe's patent, 224
ligbting at Nuremberg, 93
metert, Croll's patent, 91
Dickinson's patent, 290
Idge's patent, 247
Gas retorts, Walker's patent, 290
Gas works at Cape Town, 399
Gate of Augastus at Fano, (reviem), 102
General table for facilitating the calcalation of earthwork, by F. Bashfortb, (review), 202, 289
Geological lectures, Prof. Ansted's, 393
,

Geologioal maps, Salter's syatem of colouring, 287
science, the successivo phases of, 112
Geometric syatem of the medieval architects, by F. Lush, 165,238
Geometry, elements of, Uy J. D. (review), 393
German architect ural worke, 241 overland routes to India, 197
railwaya, 96
Germany machine manufactories, 96
Giles, George, and the senate of Hambargh, 94
Girder bridgen, iron for, 263
Glance at some of the attributen of
architecture, by F. Lush, 165, 238
Glans, Chance and Badger's patent
improvements in, 27
malleable, 263
ornamental, 84
painting, the art of, 91
vilvering of with pare silver,
Drayton's paper on, 192 thained, 86
Glazing cast-iron, Kenrick's patent, 27
Glynn's plan for connecting the At. lantic and Pacific oceana, 228
Goddard's improved anemometer, 60
Gold mines on the const of Guinea, 63
Goodman's paper on the potassium battery, 287
Gorgon steam ship, the narrative of her recovery, (revjew), 18
Government and the railways, 349
echool of design, 13,399
Grace's renaissance decorations, 220
Gradal elevation of the land at Plymouth, 94
Grafton's patent improvements in railway wheels and breake, 248
Grand Duchy of Baden, meeting of the archseologists, 126
Grantham's account of the Sarah Sanda ateam vessel, 189
Grass rope, China, 400
Grayon the improved Kinnaird grate, 123
Gray on the manufacture of shell cameos, 154
Great Britain steam ship, 31
Great Britain, history of architecture in, by James Elmes, 166, 209, 234 268, 300, 337, 378
Great continental railway lines, 199
Great Nassav tundel, 349
news hall at Berlin, 29
picture of Garofolo at Rome, 29
Great scientific prizes in Prance, 63
water-works at Hamburgh, interruption of, 63
Grindstones, 263
Grondy's patent furnaces, 319
Guildhall of Louvain, 29
Guines, gold mines on the coant of, 63
Gan cotton, improvements in, 296
Gunpowder, 84
Gustafanon's hydraulic log, 375
Gustafseon's practical observations on the present state of the ateam engine, (review), 193
Gntta percha safety fuze, Smith's patent, 179

H
Hearlem lake, drainage of, 1
Hadfeld's architecture of England, (review), 363
Hale's patont mewer valves, 181

[^0]

\square都
\qquad
\qquad

\qquad
\qquad
\qquad

Hall at Hampton Court palace, 63 of liberty at Bavaria, 34, 163
Hamborgh, interruption to the great waterworks at, 63

Mr. Giles and the senate of, 94
Hampton Court pulace, hall at, 63
Hand-book of the "Sounder," (review), 203
Hana's treatise on the steam engine, (review), 194
Harbour board, tidal, 399
Harbour of Ostia, 20
Harria, (Sir W.S.), on the protection afforded by metallic conductors, 260
Hartlepool, west harbour and dock, opening of, 231
Harveg's patent filtering apparatus, 143
Haven of Swinemünde, Prussia, 93
Havre and Rouen railway, 95
Hay on decoration, 24, 152
on symmetrical beanty, 25
on the means of rendering scolp. tared sandstone lmpervious to the effects of our changeable climate, 154
Heat, infuence of, on the cohesion of liquids, (review), 8
a good non-conductor of, 94
on the natare of, 85
Heated air, Wilkinoon's paper on, 191

currents, Wishaw on the ap-

 plication of, 193Heather's treatise on mechanich, (review), 108
Heating apartments and buildinga, Rothschild's patent, 26
Height of water in steam boilers, method of indicating, Faber's patent, 87
Helder, or great north Holland canal, Jactison, 83
Henderson (Capt.), on ocesn steam navigation, 261
Henry (Prof.), on the induction of atmospheric electricity, 176, 222
Henson's patent wagon covers, 223
Hepbarn's night telegraph, 61, 192
Heppel on the expansive action of steam, 227
Heraldry, Partridge on, 314
Herapath's mathematical phyica, (review), 361

- Herron's method of constructing permanent railwaye, 83
Higga's patent sewage manare, 58
High art, Dwyer's lecture on, 396
High presoure hoilers, marine, 330 steam, 364 steam engine inventi-
gated, by Dr. Ernat Alban, (revief), 45
Highton on the effects of atmospheric electricity, 25
Highton's electric telegraph, 400
Hillary's patent for the manufacture of gat, 88
History of architecture in Great Brltsin', Blmes, 166, 209, 234, 268, 300, 337, 378
of engineering, by Sir John
Rennie, 50, 75, 113, 146
History of the architecture of St. Alban's abbey, by Buckler, (review), 392
Holdaworth's patent life buoys, 145
Holtzapffel on tarning, (review), 15
Holybead harbour, 30
Holy Trinity church at Liverpool, 31
Hourly eelf-registering barometer, Macfarlane's, 62
House painting, improvements in, Crease's patent, 88

Hourea of parilament, new, 92, 175, 280
Haman voice, the reach of, 126
Hamboldt and Cornelius, 93
Hungerford bridge, stability and strength of, 73
Hungerford and Reading railway, 95
Hant's cbromatype, 202
paper on coloured glans 286
Hydraulic and pneamatic machinery, Walker't, 389
log, Gustafteson's, 375
Hydraalic machine for raining water, 287

I

Ibbetson's practical rulet for gradients, (review), 195
Impermeable colution for atone, Teychenne's patent, 91
Importent experimental trip, 198
arving in drainage, 164
Impracticability of cootinental railways in winter, 63
Improved anemometer, Gordard's, 60 expanding die, by Salt, 295 gas burner, Bocciua on, 193
locomotive engine, 263
Improvements in gun cotton, 296
in locomotive and rail-
way carriages, Wright, 62
in Long acre, 30
in Suaderland harbour,
Marray on, 189
Imparities of water, Solly's lecture on, 186
India, Elphinstone college, 126 Dredge's suspension bridges in, 31, 263, 289
rubber, vulcanized, Brockedon, 186
Indicator and dynamometer, Main
and Brown, (review), 312
for ascertaining the speed of railmay trains, Ricardo, 153
Indicator, tteam, Smith's patent, 399
Induction of atmospheric electricity
on the wires of the electric telegraph, 176, 222
Infuence of heat on the cohenion of liquids, 8
Inglis's, (Sir Robt.), address to the members of the British Association, 256
Ink for the blind, Foulis, 61
Institate of Architects, (Irisb), 336
(Royal), of British Archi-
tects, 6, 26, 62. 82, 123, 125, 192,
227, 261, 367, 397
Institation, (Brilders' Benevolent), 233
of Civil Bngineers, 62, 72,
83, 124, 155, 227, 261
of Mechanical Engineers at Birmingham, 37, 190
Interior forms of baildings in refe-
rence to the lawe of sound, 82
Internal fittings of St. Denis, 60
Interruption to the great waterworkn at Hamburgh, 63
Introduction to railway mensuration, by Gardner, (review), 393
Introduction to the present practice of surveying and levelling, 92
Introductory address of Profesior Ansted, at King's college, London, 358
Invention of the apinning jenny, 77
Ipswich and Bury railway, 95
Irish Institute of architecta, 336
Iron barque, Josephine, of Liverpool,
account of, by Capt. Maters, 227
Iron for girder bridgea, 263
tubing, Roose's patent, 179
tabalar bridgea, 376

Iron vensele, 335
wire, Reid's patent, 180
Irrigation of Algeris, 29
Isochronism of the balance spring, on
the lawt of, by C. Prodshatn, 188
Inthmus of Suez, cutting of, 126
Italinn model railway, 63
railmay, 96
Italy, moring mountain in, 125

J

Jackson's paper on the Helder great
junction canal, 83, 124
Japanaing metals, Walton's patent, 355
Jeans's trigonametry, (review), 393
Jesus college, Cambridge, chapel of, 109
Johnson's patent steam power for cranes, 29I
Jones on the application of the fan. blast, 191

K

Keely'u patent for dressing lace and fabrics, 247
Keblheim, hall of liberty at, 34
Kemp and Co.'s electric magnetic coil macbine, 62
Kempton's copying prenses, 390
Kinnaird grate, Gray on the improved, 123
Kenrick's patent for glazing cast-irun, 27
Kew gardens, 163, 296
Key's (Astley Cooper), narrative of the recovery of the ateam sbip Gorgon, (review), 18
King'i college, London, 358
engineering society,
King's mell, Bath, analytis of the waters of, 30
Knight's description of a railway break, 190
Knowelden's patent improvements in steam englines, 356

L

Lambeth suapension bridge, 127
Lamegié and Henry's patent improved railway chair snd sleeper, 146
Land reclaimed from the ien, value of, 367
Landing pier at Dover, 263
Laugher's paper on the decoration of Covent garden theatre, 230
Large ships, new rudder for, 93
Largest merchant ressel in the world, 31
Lew of atmospberic renistance, $\mathbf{3 6 7}$
which governs the discharge of elastic fluids, Proude's paper on, 228
Lawrence (Saint), tunnel across the, 310
Laws of force and measures of motion, 172
Laws of sound, Scott Russell's paper in reference to, 82
Leyard on the discoveries at Nimroud, 227
Leeds and Bradford extension railway, 96
Lecture on sulpharic seid, by H. M. Noad, 262
Lecturet, geological, Prof. Ansted's, 393
Leduc, the repairer of Notre Dame, Paris, 93
Legousace's hand-book of the "Sounder," 203
Legislation of rivers and water

Leeghwater stemmengine, 1
Leith's tradesmen's book of orns. mental deaigns, (review), 202, 247, Lift bridge, (railway), 241, 295
Light from electricity, Staite on, 399 Lighthall's patent for improvementa in the steam eogine, 87
Lighthoase apparatas, new, 385
Lime, calcareons cements, mortars, \&c., General Pasley, (review), 310
Limerick and Waterford railway, 95
Liquids, influence of heat on the cohesion of, 8
Literary and art property in Austris, 199
Literature (engideering), 28
Liverpool, Holy Trinity church at, 31
Llandeff cathedral, restoration of, 30
Lock furniture and apindlea, Pitt's patent, 357
Locomotion, serial, 94
Locomotive axle box, Norris and
Tull's patent, 318
engine, Crompton's large
wheel, narrow gauge, 153
engine, explosion of, in
the United States, 245
engine improved, 264
engines, 113
engines, Fossick, Hack-
worth and Elliott's patent, 319 slide valves, Bucknell,

177

Locomotive! and railway carriages,
Wright's improvements in, 62
Lodge's patent ateam boilera, 181
Log, hydraulic, Gustafason's, 375
Logarithms, by Oliver Byrne, 242
London, Brigbton, and South-coast railway company, 95, 200
London Society of Arts, 24, 61,81, 123, 153, 192, 229
Londonderry and Enniskillen railway, 95
Long-acre improvements, 30
Long range, Sir Howard Douglas on the, 197, 243
Lord's patent steam boiler fornaces, 121
Lords, the new house of, 163
Loper's patent for letting down and raising up propellers, 87
patent improvements in the steam engine, 87
Louvain, Guildball of, 29
Louvre, reorganization of the sculpture galleries of the, 126
Lowe's patent for the manufacturing of ges, 142, 224
Lowthorp's wicket gates for canal locks, 244
Lubricator for macbinery, Carter's, 391
Lunar theory, 255
Lush's glance at some of the attributes of architecture, 165, 238
observations on Venice and her arts, 342, 373
Lyell's paper on the age of volcanoes, 185

M
 M

Macadam's description of pottery made by the Ojibbeway Indians, 81
Maccarthy's patent sheathing for ships, 180
Macdonald's description of a sluice, 82
McEwan's new registering indez for the pendulum, 153
Macfarlane's hourly self registering barometer, 64
Machiue manufactories in Germany, 62
Machinery and manufactures, 76
e

\qquad

都

Maobinery, Iubricator for, 391
Machinery, pneumatic and bydranlic, Walker's, 389
Maddington charch, reparation of, 31
Mädler, Prof, on Brachansen's new theory of the Auctuations of the rea, 135
Madras and Arcot railway, 312
Main and Bruwn's indicator and dynamomatar (review), 312
Making rioc and gas, Shears's patent, 294
Malleable glass, 263
Manby oo the bridge over the Poldervart, 125
Manufacture and trade of copper, revalsion in the, 110
Menufactore of casks, \&c., and the geasoning of timber, 183
Manufactures and machinery, 76
Manures by Persoz, 164
Maremme, Tuscan, and their improvements, 175
Marine boilers, bigh-pressnre, 330
Marshal's intonaco cement, 153
Marrio's improvements in area gratings, 89
Maryport and Whitebaven railway, 96
Master's, capt., account of the iron barque, ". Josephine," 227
Materials of ancient and modern structures, 93
Mathematical physics, Herapath's, (review), 301
May's railway chairs and fastenings, 390
Measures of force and laws of motion, 172
Measurement of angles, Byrne on the, 313, 351
Measuriog and valuing carpenters and joiners' work, 62
Mechanical engineers, Institation of at Birminglam, 37, 190
Mechanical equivalent of heat, $\mathbf{3 6 7}$
Nechanics, treatise on, by Heather, 108
Medieval architects, Chantrell oo the geometric system of, 227
Mediterranean, railway from Paris to the, 140
Memoir of Sir John Soane, by G. Bailey, 19
Menai tabolar bridge, 31
Mensuration, railway, Gardner's introduction to (review), 303
Mercary, fusion of, 336,
Metal for clocky, 367
Metal, raising and shaping of, 112
Metal rollers, Payne's patent, 90
Metallic conductors, protection afforded by, 260
Method of saving life on skating
lochs and curling pouds, by T. Baillie, 62
Metropolitan churches, new, 40
Metropolitan sanitary regulations, 136
Meteorology, Renaie on, 150
Mexico, city of, 263
Microscopi6m, 255
Military and naval engineeriog, 161
Military cemetery, 336
Miller's patent safety rein, 26
Millward's patent Ggured surfaces, 225
Mines of south Staffordahire, 30
Mineralogy and geology, by Rennie, 149
Mining, by Renaie, 149
Miscella nea, 127
Model experiments, on, 352, 388
Mollusce, 256
Moreland's patent farnaces for coppers, 122

Morin on the measurement of water, 134
Morse's aystem of cerography, 64
Mortar, Lieut. Roberts's, 161
Motion and force, on the measures and laws of, 129
Motion of Guids, 97
Moulded bricks, 92
Moulton's improvements in ceoutchouc, 320
Mountainous forests, effects of the destruction of, 71
Moving mountain near Unkel on the Rhine, 98, 126
Mulvany's life of James Gandon, (review), 48
Munich art-union, 102
Munich in 1847, 945
Muatz's sheathing for ships, 180
Murdock's piginents or paints, 354
Murray on improvements of Sanderland harbour, 189
Museum, British, 239, 257, 275, 302, 346, 383
Musical instrument, electrical, 200

N

Napier's improvements in smelting copper, 357
Naples, two new churches at, 63
Nasmyth's patent screw cocks, 353
Navigation, ateam, by Rennie, 115
Navigation of the Seine, 162
Navy and army clab, 163, 173, 231
Neapolitan railways and steamboats 93
Nelson column, Trafalgar-square, 399
New act od steam Davigation, 30
New armament for royal navy, 815
Newhold oo Tyre and Sidon, 112
New church in Old-street-road, 40
New corn exchange, Birmingham,

93

New docks at Wisbeach, 31
New fulminating powder, 296
New Great Prussian line, 63
New house of peers, 280
parming and ventila-
tion of, 262
New life boat, 314
New lighthouse apparatus, 385
New line of rail at St. Germains, 45
New method of overcoming an in-
cline of 1 foot in 12, Erskine, 192
New metropolitan churches, 40
New Oxford-street, 126
New palace at Westmingter, 201, 233
New parliament, the, 296
New rudder for large ships, 93
New system for propelling vessels, 94
Niagara, wire bridge at, 161
Nicholson's carpentry (review), 204
Night telegraph by coloured lights, Hepburn, 193
Nimroud, discoveries at, by Layard, 227
Noad's lecture on sulphuric acid, 262
Non-conductor of heat, 94
Norman pillars dug up at Latheaey abbey, 80
Norris and 'Tull's axle box, 318
Northern drift, wave of translation in connexion with, 94
Northern line of railway from Paris, 140
Note Book, Candidas's, Fasciculas LXXII., 233; LXXIII., 206; LXXIV., 898 ; LXXV., 341 ; LXXVI., 371

Note on experiments on the new line of St. Germain, 45

Notes of the month, $80,63,94,126$, 163, 199, 231, 263, 295, 355, 367, 399
Notes on engineering, No. VIT., 66
Notes on fureign works, 29, 62, 93, 126, 162, 199
Noton's improvements in smiths' tue irons, 26
Notre Dame at Paris, 98
Nott's electric telegraph, 56, 128
Nuremberg, gas lighting at, 93
Nutation, solar and lunar, 101

0

Obituary : Mr. Collins, 95
Mr. Cottingham, 368
Mr. C. Holtzapfiel, 163
Mr. Papworth, 232
Senor Vasques, 368
Ocean bieam navigation, paper on
by Capt. Henderson, 201
Oil-cake presser, Robson's, 390
Ojibbeway Indians, pottery made by, 81
Old-street-road, new church in, 40
Opening of Hartlepool west harbour and docks, 231
Opera house, new, at Vienda, 29
Opera, royal Italian, at Covent gardeo theatre, 139
Ore, copper, 163,
Organic substances, preservation of, Ryan's patent, 178
Origin of the Oxford, Worcester, \& Wolverbampton railway, 317
Orleans, railway from Puris to, 140
Ostia, castle of, Ripingille's sketch of, 21
Ostia, harbuur of, paper on by Sir J. Rennie, 20
Obtia, pharos at (review), 104
Overland route to India, German, 197
Over-zeal of art collectors, 93
Oxford-street, new, 126
Oxidation of metals, prevention of, 200

\mathbf{P}

Paddington, Trinity charch at, 31
Paintings and carvings of St. Bavon, Ghent, 93
Palace at Westminster, new, 201, 233, 284
Papier Mache ornaments, Biel6. field's putent, 119
Papworth testimonial, 62
Paris aud Lyons railway terminos, erection of, 29
Partridge on heraldry. 314
Pusley's, General, observations on liwes, morlars, cements, \&cc. (roview), 310
Patents, American, specifications of 87, 317 :-

Indicating the height of wa. ter in steam boilers, Faber, 87

Letting down and raising propeliers, Loper, 87

Locomotive axle-hox, Norris and Tull, 318

Poeumatic hydraulic engine, Strode, 317

Portable forge, Queed, 87
Steam engine, improvements in, Lighthall, 87
ditto, Loper, 87
Truss frumes of bridges, Rider, 87

Water wheels, Drips, 87
dittr, Latab, 87
Patents, English, lists of, $32,64,96$, 128, 161, 200, 232, 264, 206, 336, 368, 100

Patents, regiater of apecifications of new, $26,56,88,119,142,178$,
228, 247, 290, 319, 353, 389
Apparatus for melting einc,
Smith, 26
Area gratinge, Marvin, 88
Atmospheric railway tubes,
Warcup, 90
Brick machine, Ransome, 145
Caoutchouc, Munlton, 320
Chandelier suspenders, Finlay, 58

Cooling coke ovens, Ransome, 320

Copying presses, Kempton, 390

Dressing lace and fabrics, Keely, 247

Electric light, Wright, 355
Electric telegraph, Nott, 56
ditto, Brett and Little, 291
Electro coppering, gilding,
Exo., Piaget and Du Bois, 292
Excarating machine, Prideaux, 121

Fignred surfaces, Millward, 225

Filtering apparatng, Harvey, 143

Flatteding glass kilng, Duacon, 143

Furnaces for coppers, Moreland, 122

Furnaces, Grundy, 319
Gas apparatus, Hillary, 88
Gas meters, Croll, 91
ditto, Dickenson, 290 ditlo, Edge, 247
Gas improvements, Lowe, 142
Gias retorts, Walker, 290
Glass, manufacture of, Bad-
ger and Chance, 27
Glazing cast iron, Kenrick, 27
Gun cotton, Taylor, 142
Gutta percha safely fuze,
Smith, 179
Meating buildings and apart-
ments, Rothschild, 26
House painting, Crease, 8s
Hydraulic and paeumatic machinery, Walker, 389

Impermeable solution for stone, Teychenne, 91

Iacrustation of boilers, Delfosse, 146

Iron and brase moulds, Stew art, 122

Iron tubing, Roose, 179
Iron wire, Reid, 180
Japanning metals, Walton, 351

Life buoys and boats, Holdsworth, 145

Lock furaitare and spindles, Pitt, 357

Locomotive engines, Fussick, Hackworth, and Elliott, 319

Locomotive eugines, Galloway, 120

Locomotive engines, Stephensod, 120

Lubricator for machinery, Carter, 391

Making zinc and gas, Shears, 294

Mauffacture of gas, Lowe, 223

Metal rollers, Payne, 90
Oil-cake preaser, Hubsod, 390
Papier mache ornaneuls, Bielefield, 119

Piers and harbours. Borrie, 247

Pigments or paints, Murdock
854
Preservation of orgunic sub-
stances, Ryan, 178

Patents, Propellers for ateam ressels, Claussen, 88

Railway axles, Waterhouse,
247
Railway chairs and fastenings, May, 350

Railway switches and torn-
tables, Wild, 320
Railway wheels and breaks, Grafton, 248

Rotary engive, Breynton, 293
Screw cocks, Nasmyth, 353
Sewage manure, Higge, 58
Sleathing for ships, Munta,
180
Sheet metal and paint, Wetteratedt, 225

Ships' anchors and masts, McCarthy, 179

Ships' logs and sounding machines, Walker, 59

Ships and propellers, Bu. cbanan, 178

Slub chains, Baylis, 856
Smelting copper ore, Bell, 88 ditto Napier, 357 Steam boiler furnaces, Lord, 121

Steam boilers, Lodge, 181
Steam engine regulators,
Poole, 58
Steam engines, Knowelden, 856

Steam hammer, Condie, 224 Steam power for cranes, Johnson, 291

Tesselated work, Austin and Rammel, 89

Tubular bridges, Fairbairn, 143

Valves for sewers, Hale, 181
Wagon covers, Henson, 223
Warping vensels, Beadon,
291
Water-closets, Bunnett, 144
Patents, apecifications of, a treatise on, 106
Paving, Rennie on, 81
Payne's patent metal rollera, 90
Pendulum, a new regulating index for, Mc Bwan, 153
Perspective simplified, Stewart, (review), 18
Permanent railways, method of constructing, 83
Peruvian alloy, analysis of, 30
Petersburgh (St.) 126:
Penitentiaries, conatruction of, 334
Piers and harbourt, Borrie's patent, 247
Pharos at Oatia, 104
Photogenic experimenta, 369
Photographio manipulation, 278 portraita, 95
Pbotography, 387
Pile-driving, pneumatic, 388
Plan for arreating the progress of fire in dwelling hoases, 192 for connecting the Atlaotic and Pacific oceans, 228
Plane and spherical trigonometry, by Jeana, (review), 393
Planet beyond Uranas, 9, 64, 111
Plymonth, elevation of the land at, 94
Pneumatic and hydraulic machinery, Walker's, 389
Pneumatic pile-driving, 388
Pompeii, the Rustian, 126
Poole's patent steam engine regula. tor, 58
Portable apparatus for inhaling the rapoar of etber, 82
forge, Queen's patent, 87
Practical treatise on peripective, Pyne, (review), 18
rulea for gradienta, 193

Practice and theory, Rennie, 151
Prideaur's patent excavatiog machine, 121
Proceedings of scientific socioties, 20, 61, 81, 122, 152, 183, 227, 261, 396
Propellers, method of letting down and raising, Loper's patent, 87 for steam vessela, Hillary's patent, 88
Propeling vessels, new aystem of, 94

Q

Quarterly papers on engineering, Weale's, (review), 312
Queen's patent portable forge, 87.
Query, a, 368
Quick and alow trafic, 371

I

Raffaelle, an architectural author, 29 Raffaelle's Breve, 26
Rails, iron bridge, Wood's, 164
Railway abattoir, 164
and coal mines in Bohemia,
axles and aignala, Waterhouse's patent, 247
break, by F. Knight, 190
carriage apparatus, Ches-
shire's, 190
carriage axles, by HI. Bessemer, 190
carriage break, 289
carriage, (new), 368
carriages, Puller's india-rabber buffers, 154
chairs and fastenings, May's
patent, 390
club, 296
curves, setting out of, 28, 41
expenditure, 182
extention for speedy travelling, 385
from Avignon to Marueiiles, 231
from Naplet, to the French frontier, 29
from the Adriatic to the North sea, 95 indicator and alaram, Carrick, 61
in Switzerland, 163
intelligence, 95
lift bridge, 241, 295, 310
locomotion and stenm nari-
gation, Curr, (review), 362
legislation, accidenta and in. spection, 271
mensuration, Gardner's introdaction to, (review), 393

Soath Devon, opening of, 263
statistict, 40
suapension bridge, Cowper's,

369

switcbes and tarn-tablea
Wild's patent, 9.320
traing, indicator for ascer.
taining the apeed of, 153
wheels and breaka, Grafton's
patent, 248
wheels, tires of, 230
Rellwayt and steamboati, Neapolitan, 94
cost of previous to 1841, 183
in Germany, 96
in Italy, 96
safety of, 41
state and prospects of in
France, 140
Rencome's patent cooling coke oven, 320

Rancome's patent brick machine, 145
Register of new patents, 26, 56,88 ,
119, 142, 178, 223, 247, 290, 317 , 353, 389
Restoration of the Ulm minster, 29 of Llandeff cathedral, 30 of the cathedral of Speyer, 93
Reading and Hungerford railway, 95
Recent depresions la the land, 200
Regulation and drainage of the Rhine, 199
Reid's patent iron wire, 180
Renaiasance decorationt, by F. Grace, 220
Rennio's history of eagineering, 50, 75, 113, 146
Rennie on the harbour of Ostia, 20
Report on atmospheric waves, by W. Birt, 257

Reviews:-

Algebre made easy, Tate, 92
Ancient architecture described and demonstrated by ite monuments, L. Canina, 17
and modern architecture, Gailbabaud, 49
Architectaral maxims and theorems, Donaldson, 202
Art of aketching from nature simpli. fied, Earl, 245
Baronial and ecclesiastical antiqnities of Scotland, Billings and Burn, 159 290
Bridgea of the Romans, 104
Carpentry in divisions, A, B, C, Nicholson, 202
Catechism of the steam engine, Bourne, 391
Colosmeam, St. Peter's, and the Pantheon, Amici, 18
Copyright of designs, Spence, 196
Double gauge, Stephenson, 289
Earthwork tablet, Sibley and Ratherford, 246

Bashforth, 202, 289
Elements of geometry, J. D., 393
Engineer and contractor's pocket book for 1847-1848, 50, 290
Ecclesiastical and domestic architectare of England, Hadfield, 263
First series of railway practice, Brees, 92
Hand-book of the " sounder," 203
High-pressare steam engine, Dr. Alban, 45
Hiatory of the abbey church of St. Alban, Buckler, 364, 393
Introduction to railway mensuration, Gardner, 353
to the present practice of surveying and levelling, 99
Indicator and dynamometer, Main and Brown, 312
Letter to Lord John Roasell, Weale, 312
Life of James Gandon, the architect, Mulvany, 48
Mathematical physica, Herapath, 361
Narrative of the recovery of the Gorgon, Key, 18
Observationa on lime, \&c., Pasley, 310
Post-office directory for 1847, Kelly, 202
Practical observations on the present state of the steam engine, Guatafs. sou, 193
Plane and apherical trigonometry, Jeans, 393
Practical rules on gradiente, Ibbetson, 195
treatise on perspective, 18
Quarterly papent on engineering, Weale, 312

Railvay locomotion and ateam navigation, Curr, 362
Select writings of Robert Chambers, 92
Sketches, graphic and deacriptive, Blackburn, 363
Short treaties on the steam engine, Hann, 193
Tradesman's book of ornamental designt, Leith, 202, 247
Turning and manipalation, Holtzapffel,51
Revue du Havre, 296
Rhine, adorning of the, 123
regulation and drainage of, 199
Richardson, on ventilation of mines, 155
Richardson's reversing waterwheels, 141
Rider's patent truss frames, 87
Ritchie, on ventilating buildinge by hot water, 153
Rivert and watercourses, legislatlon of, 162
Rosd over the Alps, 162
Roads, Whitworth on the cleansing of, 261
Robert's, Lient., mortar, 161
Robinion, Dr., on the decomponition of water, 258
Robson's patent oil-cake prester, 390
Rome, Archeological Institute of, 29
Romney marsh, sea defences, 26
Roose's patent iron tabing, 179
Rope machinery, 77
Rope, China grass, 400
Rosse's, Lord, teleacope, 254
Rotatory engine, Breynton's, 293
Cordes and Lacke's,
38, 61
Rothechild's patent for heating apartments, 26
Rouen, abbey near it, 94
and Havre railway, 95
railway from to Paris, 140
Rowell, on evaporation, 258
Rowney's, Dr., analyai of Bohemian glass, 64
Royal Academy, 95, 174, 100
Artillery, 367
Botanic gardens, 163
Institute of Britieh Architectr, $6,26,62,82,123,155,192,227$, 261, 367, 397

Italian opera, Covent garden, 296
nary, armament for, 161,315
Scottish Society of Arta, 25,
61, 81, 123, 152, 192
steam navy, 63
Rogendes, the painter, 63
Ruasell, on the interior forms of buildinga and laws of souod, 82 , 124
on engineering works exposed to the sea, 125
Rutherford's self-acting cart-drag or break, 153
Ryan's patent for preserving organic substancea, 178
Safoty of railways, by M. de Bou. reuille, 41
rein, Miller's pateat, 26
Saint Alban's, architecture of, by Buckler, (review), 392
Saint Bavon, Ghent, paintinga and carvinga of, 93

Denis, internal fittings of, 60
Germain I'Auxerrois, 31, 399
Paul'a church, Alnwick, 28
Peter's at Rome, 126
Petersbugh, 126
Sandstone, tculptured, impervious to the climate, 154
Salter on colouring geological maps,

Salt's expanding die, 295
Sanitary regulations of the metropo. lis, 136
"Sarah Sands" steam vessel, 189
Sawing engine, Cochran's, 200
Scenery and decorations of theatres,
Dwyer on, 187
Schintel on art-culture, 226
School of design, gorernment, 13,399 engineering, Dublin, 31
Scotland, antiquities of, by Billings
and Burn, (review), 159, 290
Scott's hydranlic machine, 287
Screw propeller, 170
Sea, Brachhausen's new theory of, 135
defences of Romney marsh, 261
margins, ancient, by Robert Chambers, 260
serpent, fossil, 199
Seaconing of timber and casks, 183
Sea wails, conatruction of, 215, 251, 281
Seine, narigation of the, 162
Select writings of Robert Chambers, (review), 92
Senegal, public worke in, 162
Setting out railway curven, 28, 41
Sewage and drainage, 170
manure, Higgs's patent, 58
notice of, by Rennie, 79
Shakspeare cliff, 126
Shears's patent zinc and gat, 294
Sheathing for Prench vessela, 335
for ships, Muntr's patent, 183
Sheerneas, fortifications at, 30
Sheet metal and paint, Wetterstedt's phtent, 225
Ships'anchors and masts, Maccarthy's patent, 179
and propellers, Buchanan's
patent, 178
loge and sounding machines,
Walker's patent, 59
logz, Gustafsson's, 375
Short time for building operatives, 263
Sibley and Ratherford's earthwork tables, (review), 246
Silvering glass, Drayton's patent, 192
Sketches of decorative painting in
the middle agen, by G. Bleckburne,
(review), 363
Etimming ladiea for pouring cast-iron, 263
Slab chains, Baylis's patent, 358
Sluice cocka, Nasmetb's patedt, 353
gate and railway lift bridge, 310
Smelting by electricity, 256
copper ore, Bell's patent,
88
Napier's patent, 357
Smith's apparatus for melting zinc, 26 gutte percha afety fuze, 179 steam indicator, 399
8mitha' water tne-jrons, 27
Smyth, Professor, on the cbanges of poaition in transit inatruments, 286
Soane, Sir J., memoir of, by G.

Bailey, 19

Society, Chemical, 156
of Arta, London, 24, 61, 81,
122, 153, 192, 229
Royel Scottish, 25,
61, 81, 123, 152, 192
Society of Decorative Art, 396
Soil of Bgypt, rise in the, 126
Solly on the impurities of water, 186
Sound, Lawt of, by Rassell, 82, 124
Southampton docke, 170
South contit and London and Brighton sulway, 95

Devon railway, opening of,

South Staffordshire minet, 30
Spanish surveys, 199
Speed on railways, 317
Spence on patenta, (review), 106, 196
Spinning jenny, invention of, 77
Stability and atrength of Hungerford bridge, 73
Stagnant water, 335
Stained glass, 86
Staite's light from electricity, 399
Star cataloguen, 255
Statistica of railways, 40
Steam boilera, Lodgo's patent, 181 cosches, Reanie on, 115 drainage, Rennie on, 76 engine, high pressure, inveati-
gated by Dr. Alban, (review), 145 engine, Lighthall's patent, 87 engine, Loper's patent, 87 engine regulator, Poole's pa-
tent, 58 engine, Rennic on, 50 ongine, treatise on, by J. Hann
(review), 194 engines, Knowelden's patent 356
Steamers for the Ganges, 30
gorernment, armament for, 161, 315
Steam hammer, Condie's patent, 224 Heppel on the expanaive ac-
tion of, 227
indicator, Sydney Smith's, 399
jet for ventilating, 230
navigation and botany, 256
new act on, 30
on the expansive action of,
228
packet company, Brigbton
and continentel, 263
power for cranet, Johnson's
patent, 291
thip "Gorgon," recovery of,
(review), 18
ship "Great Britain," 31, 109, 127
ship "Sphynx," recovery of,
110
temperature of, 351
vessel "Expreas," 263
vessel "Prioce Metternich," 164
Stearm, working of expansively, 370
Stephenson on the donble gauge (review), 289
Slephenson's railway evidence, 317
three-cylinder locomo.
tive engine, 120
Stewart's improved chimney cant, 153
patent izon \& bress moulds,
122
Stong hridge over the river Mense,
348 348
Stone lifter, 262
Stone, lithographic, in Arabis, 111
Strode's poeumatic hydraulic engiue,
317
Submarine telegraph, 31
Sues, cutting of the isthmus of, 126
Sulphuric acid, lecture on, by H.
Noad, 262
Sonderland harbour improvementa,
by J. Morray, 189
Sun, the central, 110
Surgeons, college of, $\mathbf{4 0 0}$
Surveying, Rennie on, 150
Suspension bridge, Lambeth, 127 bridgea in India, Dredge's,
31, 263, 289
369
form of, 97
Swinemünde, harbour of, 93 Symmetrical beanty, Hay on, 25

Syracuse, ancient, Angell on, 35, 62 System of colouring geological maps, Salter's, 287

T

Tait, G., on white light, 25
Tait, W., on setting out railway curves, 41
Tangiblo astronomy, 255
Tate on the expanaive action of steam, 228
Tato's algebra made easy, (review), 92
Taylor's patent gun cotton, 142
Telegraph, electric, Highton's, 400
Telegraph, eleotric, Rennie on, 148
electro-magnetic, Nott's patent, 123

$$
\text { the Admiralty, } 164
$$

Telescope, Lord Rosso's, 254
Temperature of steam, 351
Termessus, discovery of, 34
Terminu: of the Paris and Lyons railway, 29
Tessellated work, Austin and Ram. mell's patent, 89
Teat for diatinguishing steel from iron, 335
Teychenne's patent impermeable solution for atone, 91
Theatres, new, at Vienna, 29, 163
Theatres and public buildinga, acoastics of, 29
Theatres, scenery and decoration of, by Dwyer, 23, 187
Thermogenic drawing, 94
Thrust of arches, 67
Tidal harbour board, 399
Tidea of the air, 255
Tides, on the progress of, 259
Timber, Burnettizing, 28
Tires of railway wheels, 230
Towns, on the air and water of, 127
Toynbee, on ventilation being ren-
dered compulsory, 155
Trabeate and Arcuate architecture, 4
Tradesman's book of ornamental de. signs, by S. Leith, (review), 202, 247
Traffic, quick and slow, 317
Transit instrument, Prof. Smyth on
the changes of position, 286
Treut palles railway, 95
Tribute to British acience, 400
Trieste and the Rhine, comonunica. tion between, 95
Trigonometry, plane and opherical, by Jeans, (review), 393
Trinity church, Edinburgh, demolition of, 31
Truse Paddington, 31 patent, 87
Tuhular hridges, 64, 376
Tunnel acrote the St. Lawrence, 310
Tunnelling of the Alps, 30
Turbine, the, 77
Turkisb bonours, 100
Turner, H., on ancient decorative art, 22
Tuscen " maremme," 175
Tyre and Sidon, Newbold on, 112

U

Ulm minster, restoration of, 29
Universal time table, Bauhforth's, 906
University college, 296
Unkel on the Rhine, moving mounthin Dear, 98
Uranus, planet beyood, 9, 64
\mathbf{v}
Valley, the Chamonlx, 162

Valves for sowerl, Hale's patent, 181
Vasques, Senor, death of, 808
Venice, and her arts, by F. Lash, 342, 378
Ventilating buildings, Ritchit's method of, 153
Ventilating, steam jet for, 280
Ventilation of house of lords, 175
Ventilation of mines, Richardson od, 155
Ventilation, Rendie on, 149
Ventilation, Toynbee's paper on, 155
Vessels, iron, Rennie od, 140
Vienda and Trieste Alpide railmay, 195
Vienna, new theatres at, 29, 163
Volcanic formations, artesian wells in, 208
Volcanoes, Lyell on, 185
Voltaic battery, 94
Vulcanized india rabber, 186

W

Wagon oovers, Henson's patent, 223
Walker's patent gas retorts, 290
Walker's patent hydraulic and pneu.
matic machinery, 389
Walker's patent ships' logs and
sounding machines, 59
Walkinshaw's wrater-balance winding machine, 177
Walton's patent for japanoing metals, 355
Warcup's patent atmospheric railwry tubes, 90
Warming and ventilating of new house of peers, 262
Warner's invention, the 'long range' (reviep), 159
Warner's 'long range,' Sir Howard Douglas on, 197
Warping vessels, Beadon's patent, 291
War plan, Lord Dundonald's, 127
Water as fuel, 72
Water balance winding machine, Walkinshaw's, 177
Water, decomposition of, by Dr. Robinson, 258
Water, decomposition of, by Wilson, 156
Water, evaporation of, 136
Waterford and Limerick railway, 95
Waterbouse's patent railway axles and signals, 247
Water, impurities of, by Solly, 180
Water, on the measurement of, 134
Water, test by Dupasquier, 163
Water tue-irons, smiths', 27
Water wheels, Dripps's patent, 87
Water wbeels, Lamb's paicat, 87
Water wheels, Rennio on, 77
Water wheels, lichardson's revers. ing, 141
Watermorks, Rennie on, 78
Wave of translation in connexion with the northern drift, 94
Waves, on the action of, by Airy, 254
Weale's letter to Lord J. Ilussell, (review), 312
Weale's quarterly papera od engineering (review), 312
Wear and tear ou broad and narrow gauge, 317
Wellington statue, 6
Wella, artesian, 79
Westminster abbey, 95
Westminster bridge, removal of, 5
Westminster, new paluce at, 201, 233 284
Wetterstedt's patent sheet metal and paint, 225
Whitehaveu and Marsport railivay, 96
White light, Tait on the production of, 25

Whitworth, on cleansing roads and streets, 261
Wicket-gate for canal locks, Lowthorp's, 244
Wight's improvements in railway carriages, 69, 153
Wild's patent railway switches and turn-tables, 9, 320
Wilkinson on heated air, 191
Willis, Prof., on Canterbary cathedral, 109

Willis, Prof., on the sepulchre Jerusalem, 192
Wilson on the decomposition of water, 156
Wilson on the electric spark, 188
Wire suspension bridge, 296
Wisbeach, new docks at, 31
Wishaw on hented currents, 193
Woodhouse on solar and lnnar nuiation, 101
Wood's iron bridge rails, 164

Workhonse, City of Loodan Union, competition at, 398
Working steam expaosively, 370
Wright's patent electric light, 355
Wrought-iron tubular bridges, 376
Wyath, Digby, on the art of mosaic, 81

Young's patent for safety from the explosion of ether, 123

Zinc and gas, Shears's patent for manofacture, 294
Zinc, Smith's patent apparatue for melting, 26
Zuyder-zee, draidage of, 30, 81

LIST OF ILLUSTRATIONS.

Angles, mensarement of, 7 cats, 313 , 351
Aqua Virgire, 105
Archet, Barlow on, 15 cata, 211,249 thrast of, 5 cute, 67
Architectural carvings, 3 cath, 65
Ares gratings, 2 cuts, 88
Atmospheric railway tubes, 2 cutin, 90
Breakwater in Delaware bay, 281
Brick machine, 2 cuts, 145
Bridge over the Meuse, 348
Centre panch, 263
Chandelier anspenders, 4 cnts, 58
Civil Bngincers' Institution, 72
Copying presses, 2 cuts, 390
Crapes, ateam power for, 291
"Cricket" steamer, 332
Dee bridge failure, 6 cuts, 223
Electric light, 355
Electro coppering, gilding, \&c., 2 cuts, 292
Expanding die, 2 cuta, 295
Expansive ateam, 370
Explosion of locomotive engine in United States, 245
Filtering apparatus, 2 cota, 43

Fornacen improvements in, 4 cats, 319
Gas, manofacture of, 224 meters, 2 cuta, 290
Gate of Augustas at Pano, 102
Glass, improvements in, 27
Heating apartments, 2 cuts, 26
Hydraulic and paeumatic mahinery, 389
log, 4 cats, 375 machine, 6 cutt, 287
Iron tubing, 180
Leeghwater steam engine, 2
Life buoys and boats, 145
Lighthouse apparatus, 2 cats, 385
Lock furniture and opindles, 357
l.ocomotive axle box, 5 cuts, 318 slide valve, 177
Long range, Warner's, 198
Lubricator for machinery, 2 cuth, 391
Model experimenth, 352
Motion of flaids, 98
Oil-cake presser, 4 cats, 390
Ontis, castle and harbour of, 2 cats, 20

Clandias's port at, 103

Ostia, pharos at, 104
Piers and harbours, 3 cote, 247
Platform of a suapension bridge, 97
Pneamatic and hydranlic engine, 3 cuts, 317
pile-driver, Clarke and Varley's, 91
pile-driving machine, 388
Preservation of organic anbstances, 178
Propeliert for iteam remele, 2 cute, 88
Railmay chair and sleeper, 2 cats, 146
chairs, 2 cuts, 390
curves, 2 cuth, 41
awitches and turn-tables, 4 cuts, 329
wheel and breakt, 248
Reversing water wheel, 2 cuts, 141
Rotary engines, 293
Screw cocks, Nesmyth's, 5 cats, 353
Screw propeller, 170
Sea walls, 3 cuts, 215
Sbips' anchors, 179
and propellert, 2 cuts, 178

Shipa' logs and sounding machjines, 5 cats, 59
Slub chains, 3 cuts, 356
"Sphyax" ateam aloop, 111
Steam boilera, 2 cuta, 181
engine, Knowelden's, 2 ents, 356
hammer, 3 cuts, 224
indicator., Sydney Smith's, 399
Stone lifter, 262
Tesellinted work, 7 cats, 89
Theory of the earth, 3 cats, 99, 131
Tubular bridgen, 2 cuts, 143
Tue irona, amiths', 2 cuts, 27
Turning and manipulation, 15
Univeral time table, Bashforth's, 7 cuts, 306
Warping vensels, 291
Water-balance vinding machine, 2 cate, 177
Water closets, 3 cuts, 144
Wicket-gate for canal locks, 3 cuts, 244
Wrought-iron girder bridges, 4 cuts, 377
Zinc, apparatus for melting, 26

DIRECTIONS TO BINDER.

CIVIL ENGINEER AND ARCHITECT'S

J O U R NAL.

THELEEGHWATER STEAM ENGINE.

drainagr of the baarlea haEE, holland.-Engineets: Messrs. J. Gibbs and A. Dean.
(With Troo Engravings, Platem 1 and 2.)
.he geographical changes which are produced near the embouchures of rivers by deposition of alluvial matter are in no part of the wortd exbibited in a more remarkable manner than in the delta of the Bhine. The matural operations of that river interest the antiquarian by the remoteness of their date, the geologist by their extent and physical character,* and the engineer by the grand artificial works undertaken to resist or modify their effects.
The Rhine on entering the Low Conntries divides into several branchen : the southernmost of these, the Whaal, reaches the sea near Kampen; the most northem branch is nearly at right angles to the former, and empties itself into the "rolling Zuyderzee," and another branch passes Rotterdam. The Rhine proper continues its enfeebled course to Leyden and Utrecht, and, nearly exhausted by the nomerons canals which are comected with it, finally reaches the sea by a small artificial aluice. Ite fate has been aptly compared to that of a dethroned monarch, who is deprived even of the satisfaction of a ttracting sdmiration and sympathy by the grandeur of his exit.

It is very interesting to observe how this delta has been altered even in the historic period. In the time of the Romans the Rbine bad bot two branchen; Virgil calls it bicornia, and Tacitus says that the largent of these branches, that nearest to Gaul, is called Vahalumn. + Even in the days of Charlemagne, the Rhine communicated with the Eecaut, by a branch of the Meuse, which has since entirely disappeared. 4 greatinuadation, A.D. 860 , destroged the regularity of the mouths of the river. But perhaps the most remarkable alteration of all has been the converaion of the Zuyderzee from an inland fresh-water lake, such as it is described by Pomponius Mela, into a gulf of the sea. This change took place in the 13th century, and wan the result of violent storms, during which the sea destroyed the barrier between itself and the lake. Traces of this barrier atill exist in the ialands and shoels between the Helder and Ter-shelling.
The natural division of the \mathbf{R} hine into two brapehes was first dis-
 of allavtal mod are carried down by the stramm anazally. The greater part of this soll th deportted in Bolland.

+ The paperpe in Tseltas (Ann. 11. 6,) soems samowhat hroosutant oth another is Cuper (De Bell. Gell IV. 10), where, arter a sentrace of which ihe tert is evide athy cor-

 Oemanem in fati" It has been sappowed, however, that Omear spente merely of the mbordinate atreava and moutha near the conet.
tuibed by the Roman legions under Drusus, who, in the 12th year before the Christian era, dug a canal from the Rhive to the amall river Sala, as a military defence. This canal soon became eularged by the force of the current into a third branch of the Rhine. A fourth branch, the Leck, was created subsequently, in a similar manner, during an insurrection under Clandius Civilis.

In our own times another important change is about to take place. The Lake of Haarlem is a large freah water lake, between Leyden and Amsterdam, and communicates with the Zuyderzee. The project of draining this lake has been long entertained. The bottom consiats of an alluvial deposit, well suited for agriculture. It was at the end of the last century, when team engines began to be used for drainage, that the idea of employing them in draining the Lake of Haarlem wes first entertained. The idea was but the extension of that which had already been practically exemplified in the drainage of the Beilm and Diem, in Holland. The longest slde of the iake of Hasiem is parallel to the sea, and is separated from it by a very narrow strip of land. Moreover, the level of the lake is some twenty feet below that of the sea. When, therefore, the drained conntry is covered with villages and farms, it must be well protected by diken, or the sea may some day perhaps pay the sober Dutchman a visit for which even their amphibious nature has not eufficiently prepared them.

In order to ascertain the most approved method, and at the same time the mont economical manner, of draining the lake, the Dutch Government appointed a Commission of Engineers to report upon the best means and to examine the varions plans of drainage adopted in England. After examining a great variety of schemes and proposale, it was determined to adopt the plan submitted by Mr. Joseph Gibbs and Mr. Arthur Deap-who bave, by close attention to all the details, produced an engine which is working with great effect and astonishing economy of fuel. It is proposed to bave three engines of the same power, and three sets of pumps.

The first of these engines is now in operation, and the engineers have furnished us with the following description, which is replete with valuable and interesting information, and is aceompanied by ample illustrations of the details. The means taken to avoid shocks or impulses in an engine of this magnitude are especially worthy of attention.

DEBCRIPTION OT TEE ENGINES.

The Leeghmater Engine, as shown in Figg. 1, 2, and 5 of the accompanying Engravings, Plates 1 and 2, has two ateam cylioders \mathbf{A} and $\mathrm{C}_{\text {, }}$ one within the other, anited to the same bottom X, but the inner one is not attached at the top, a clear space of it inch existing between it and the cover, which serves for both cylinders. The large cylinder A, ts 144.37 inches diameter and 14 inoh thick, and C, the small cylinder, $84 \cdot 25$ inches diameter and $1 \begin{aligned} & \text { ingh } \\ & \text { inch } \\ & \text { thick }\end{aligned}$ both are truly bored out, and the small cylioder is also turned on its outer circumference. B is a steam jacket for the large cylinder, cast in 13 segmente-which is again enveloped by a wooden casing 4 having 4 inches of peat ashes between them.
Pistons.-The small cylinder C is fitted with a plain piston of 5474.81 aqnare inches area, and the large cyliader A is occapied by an annular piston of $10,323.36$ equare inches area. The areas of the two cylinders, after deducting 472.8 square inches for the thickness of amall cylinder, are as 1 to 2.85 . The internal and external packings of the piatons consist of hard cant iron segmente at bottom, with gasket above, pressed down by glands, also in segments; the open spaces in the pistons ccare filled with cast iron plates, and the tops of the pistons have moveable cast iron covers.

Cap or Crossiead.-The pistons are conuected to the great cap or croashead G by the main piston rod Y, of 12 inches diameter, and by four small rods y of $4 \frac{1}{d}$ inches diameter (figs. 1 and 5). The great cap G has a circular body 9 feet 6 inches diameter, divided into eight compartmente, which can be filled with cast iron weights; from its centre a guide spindle \approx passes throngh a stufing box placed in the centre of a great beam of timber 2 feet square, which passes acrows the engine-liouse, and is secured to its walls; there are two other guide rode, b, which pass through stuffing bozes in the arms of the great cap G, and are secured to the upper and lower spring beams.
Plungers.-Suspended from the arms of the great cap are two 9 -in. plunger poles P, working in planger cases D; attached to D are two valve nozzles $d^{\prime \prime}$, connected with stand pipes d^{\prime}, by two branch pipes $d^{\prime \prime \prime}$; the valive pozzles are connected with each other and an hydrostatic equilibrium valve nozzle O, from the bottom of which a branch piece is connected with the stand pipes $d^{\prime \prime}$ by the pipes $d^{\prime \prime \prime \prime}$. The exterior surfaces of the plunger cases D, are torned truly, so as to allow the rings ee to slide ap and down freely; the rings are suspended from the great crosaliead by rods o, and are furnished with cross bearing ${ }^{\text {, }}$ on which the jaws of the two air-pump balance beams E reat: the innsr ends of these balance beams move in a perfectly verticul line, and the outer ends are furnished with rollers working between gaides, to allow for the variation of the beams during the up or down otroke.

Air $P_{\text {umpo }}$-From the centre of the air-pump balances, the two air-pump plunger pistons n^{\prime} are suspended ($6 \mathrm{~g}, 2$) ; diameter of planger pistons 40 in ., stroke 5 feet; the two air-pumps N are united by a branch piece with the bottom of the condenser M. The condenser has an intermittant injection by a valve 8 -in. diameter, mad a constant injection by asother valve of $\mathbf{3 - i}$. diameter. R is the condensor cisterm

Pipes and Valoes.-L is the steam pipe (2 feet diameter) from the boilers; in it is placed a double-beat governor valve of 16 -in. diam. eter.

P, the inctuction valve, $\mathbf{1 6 - i n}$ diameter and nomale.
Q, Equilibrium valre, 20 -in. diameter and pozsle.
S, Eduction valre, 26 -in diameter and pozzle.
g, Equilibrium steam pipe.
The induction and equilibrium nozsles are each connected to a separate port cast in the cylinder's buttom. The eduction nosale is connected by a plpe M, $\mathbf{3 4}$-in. diameter, to the branch-pipe M of the coodenser. The pipe M is also connected to the bottom of the oylinder, in which a port is cast, which communicates with the space under the annular piston; by this arrangement a constant vacuum is maintained beneath that piston.

The Hand Gear is connected to the weigh post K, and the plog rod is worked by a lever and shaf T, the outer end of which is stotted and worked by a pin on the sliding ring e-

Pumps-The engine works eleven pumpe of 63 -in. diameter; each pump is furnislied with a cast iron bulance beam \mathbf{H} (fig. 1), which radiates from the centre of the piston rod; the inner and onter arme are of equal lengtha from the centre godgeon. The inper ends of the balapee beams are furaished with cast iron rollers, workiog againat a plate, filted with guides for each roiler, which in screwed up againat the under-side of the great cap; each beam is connected to tha cap by two slotted bridles, to ensure simultaneous upward motion daring the up-stroke of the engine. From the outer end of the balance beam the pump piston is suspended by wrought iron rods, 3 -in diam-
eter and 16 feet long, and an additional length of 14 feet of pateot chain cable attached to the pump piston. Fig. 3 shows a aection of one of the pumpe, and fig. 4 an elevation of the piston. A, working barrel, 63 -in. diameter ; B, windbore and clack plece ; C, the piston or bucket; D, bottom valve and seat.

The pump piston C is of a peculiar construction; it is composed of a wrought iroo centre piece, 1 inch thick; firmly bolted to this piece are two double elbow frames of cast iron, called " the eradies;" the elbows are faced with gun-metal plates; the cracles serve to sapport two wrought iron semi-elliptic valves c c, which occupy the whole area of the pump when they fall out, and constitute in fact the pistor These valves are edged with wood, having a piece of leather on the apper side secured by a wrought iron gland; the valves are hung to the centre piece at about 3 inehes from their lower edgen, 20 that when they open during the down stroke, any dirt or sand which has lodged on the bottom may fall through. Attached to the centre pieoe are two plates of cast iron, which serve as ballast to sink the piston; these ends are cast with a jaw, in which pieces of woud are secured to prevent friction against the sides of the pump and to give steadiness to the piston. These pistons require a weight of $1 \cdot 4 \mathrm{ib}$. per square inch of the area of the pump to sink them with the velocity required upon the down stroke. The pump pistons of the Leeghwater are not fornished with guides, as shown in figs. 3 and 4 , and work very well without them : but the pistons for the pumps of the Cruguine and Van Lynden engines (now constructing for the drainage of the lake) will have gaides, as shown in the drawings, in consequence of the diameter of the pomps being increased to 73 inches.

Pump Valres.-The bottom valves have cast iron seats secured to the windbore, the valve beate are of wood, and the valves are simply plates of wrought iron, 1 inch thick; the valves are not hung on fixed jointa, but are each fixed to a bar, the ends of which are entered in cast iron slot piecen, allowing a rise of $1+$ inch, so that the valve can rise altogether from its beat, and give a large water pasage all round.

Poner of Eingines.-The steam and pump platona both perform a stroke of 10 feet in length: each pnmp by calculation should deliver 6.02 tons of water per stroke, or 66.22 tons for the eleven pumpsi but by actual admenarement of the quantity delivered, is is foond to be 63 tons. The loss might be reduced, but probably at the experce of increased friction.
The Engine House is a massive circular tower, concentric to the cylinders; on its walls are placed the eleven pump balanoes radiating from its centre, shown in the accompanying sketoh. The pamp

balapces a, b, c, are placed at 120 degrees from each other; $d d_{1}, e e_{,} f f$ $\mathrm{g} g$, are placed opposite each other: therefore, by this arrangement, the equilibrium of the great eap of the eagine, uoder which the inner ends of all the balances are concentrated, is not in any way disturbed. If any of the pampa require repairs, the opposite pairs caa be eacily detached, without causing more than a trivial deluy to the workiog of the eagine.

The Action of the engine is very simple; the atean being admitted into the small cyiinder, the whole of the dead weigtt and pump balanoe beams attacbed to the great croashead are eleviled with it and the etemm being cut off at such portion of the etroke as anay be required, the remaiader is effected by the momeatum aequired by the dead
wingh and tire presuare of the expending steam upon the small piston (the pump pistons at the same time make their down atroke); at the end of the up stroke a pause of one or two secoods is requisite, to enable the valves of the pump pistoms to fall out, so that upon the down atrote of the steam piston they may take their load of water withoot shoek. Doring this time it is necessary to sustain the great croesbend and its loan of dead weight at the point to which it wat elevated by the up atroke, as otherwise it would fall back until the expanded iteam under the small piston was compressed to a density equal to the pressure per square inch of the load lifted, or would eane a very violent shock opon the pump valves by suddenly throwing them out agrinst the sides of the pumpe. To avoid these evila, the bydranlic apparatus D F was devised.
Bydraslic Apparalus-W Wen the engine makes its up atroke, the ologger poles F (which form part of the dead weight) are lifted, and the water from the stand pipes and repervoirs d flows through the ralves a'd $^{\prime \prime}$, and follows up the plunger poles as fast as they are elevated. At the end of the stroke the spherical valves instantly close, and the dead weight is suspended exactly at the point at which it had arrived-and, of comrse, if the ralves are tigtt, could be maintained there for any given perjod; in consequence of all strain boing thus removed, there is no pressure to close the valves of the pump pistons beyand their own weight ; therefore, they fall out without the slighteat shock. To make the down stroke, the equilibrium steam ralve Q, and the hydraulic valve O are opened simullaneoully: the water from beweath the plongers escapes to the stand pipes and reservoirs by the pipes d""', and the steam from the small cylinder pasees by the plipe g, roand to the upper side of the amall and annular pistons, puts the pressure on the small piston in equilibrinm, and presses upon the ampular pistou (beneatb which a constant vacuum is maiptained), in ad of the dead weight now reating upon the Inner ends of the pump balavees: by the united effort, the pump pistons are elevated and the vater discharged. Before the nest stroke is made, the eduction valve is opened and a vacuam formed over both piatons.
So well doea the hydraulic apparatus juat deseribed, effect the objeet for which it was designed, that the Haarlem-mer Meer Commiscionera have decided to use only eight pumps, but of 73 -in. diam., for the other engines; the chief reason for the adoption of the 63 -inch permps for the Leegtwater Engine baving been the fear of the shocks to which auch large pump pistoas are ordinarily liable.

Boitera-The Leeghwater Engiae is farnished with five oglindrical boilery, each 30 feet long and 6 feet diameter, with a ceotral fre tube, 4 feet diameter : a return Bue passes under the boilers to the front, cond then splits along the sides. Over the boilers is a steam chamber, 4 ft .6 in diameter and 42 feet in length, commanicating with each boiler; from theoce a steam pipe, of 2 feet diameter, conducts the team to the engioe. The stean space in the chamber, boilers, and pipe is nearly 1820 cublic feet, and as the engine draws its supplien from such an immenee reservoir of steam, no "primage" takes place, and a very uniform pressure upon the piston is obtained until the induetton valve closes. These boilen have produced steam enough to work the engine to the net power of 400 horses. The Cruquius and Fas Lynden Eogines will have boilers capable of working to 500 horses' power if required.

The Drainage.-Prior to the construction of the engine-house, \&sc. mothern dam of a semi-circular form was thrown out into the lake, to enclose about 11 acres; after the water was pumped out from within the dam, a strong piled foondation was made, and the masomy commeneed at the depth of 21 feet below the surface of the lake: a small steam engine was erected to evacuate the water from the dam. When the Leeghwater was completed, the Cominissioners determined to test its merits fally before deciding on the construction of the other engines upon the same model; and as they had the means of evacuating the water within the dam to any level required, the Leeghwater could be tried and worked continuounly under any circomatances, precisely similar to those which will occur during the drainage of the lake, if, instead of discharging the water from the pumpre into the upper canal, it was allowed to fall back again to the level from whence it was derived.
The average depth of the lake is 13 feet below the general level of the earface water of the canal and watercourses conducting to the sea dnices; when the communications between those waters and the lake are closed, the engine will at first have only the head of water caused by the diseharge from the pumpa, and the friction of the machinery, to overcome; in this atate, all the filling plates or ballast of the great ap and pintors will be taken out, and counter-balances added to the nocp talance beams "oot of doorr," so as to take up as much of the dead weight attached to the great cap as may not be required for working the engine: as the lift becomes greater, the dead weight
"in doors" will be gradually added. In thin manner, the engine was worked for a considerable time, to get all the parts in good working order. A sab-committee of the Commission conducted a series of experiments, and sstisfied themselves that the Leeghwater will perform a duty of 75 million ponoda, lifted one foot high, by the consumption of 94 lb , of good Welsh coal, whilat exerting a net effective force of 350 horres' power. With a lift of 13 feet, the angine easily worked the eleven pamps simultaneously ; the net load of water lifted being 81.7 tons, and the discharge 63 tons, per stroke.

When the bed of the lake is cultivated, the sarface of the water in the drains will be kept at 18 inches below the general level of the bollom; but in time of winter floode, the waters of the upper level of the country will be raised above their ordioary height: in which case, to keep the bed of the lake drained to the regulated height, the lift and bead may be increased to 17 feet. To teat the power of the engive under these circumatancen (and without regard to the consumption of fuel), the whole of the 11 pumpe were worked simultaneously, and the exfreordinary quantity of 109 tons net of water was raised per atroke to the height of 10 feet; bat, in practice, it will be advisable to work a les number of pumps, and increase the number of strokes per minute.

After numerous and severe trials of the eagine, the Commisaioners were satisfied that it is capable of performing its work under the mout difficult circumatances that can arise; and immediately determiced on having two more engines constructed, of equal sise, and on the same model-the only material alteration being in the arrangement of the pumps ; the number boing reduced to 8 for ench angina, but of 78 in. diameter, placed in pairs oppoaite each other, and the ends of the balapce beams projecting over the great cap of the engine (instead of under as in the Leeghwater), to which they will be conneoted by stout wrought-iron strapa. The boilers also will be inerested in mumber, and in power nearly 100 horses. All the feed-water will be filtered before passing into the boilen.

Ldoantages of Theo Cylindera.-Many persons imagine that the engines are constructed with two cylinders to obtato a greater expanaion of the ateam than would be attainable in one cylinder ; but anch is not the case, as no greater economy of steam can be obtained by the nse of two cylinders than by one, although greater steadiness of motion for rotatory engines, and less strain upon the pitwork of a mine-pomping engine; may result from the use of two cylinders. In the H.arlem engines two cylinders are nsed, because if one cylinder only were employed it would sometimes be necessary to use a dead weight of 125 tons to overcome the resistance of the water load and friction of the engine and pumps ; such a mass of iron or other heavy material would be unmanageable, and no alteration in the force of the engine could be effected but by tatiog from or adding to the dead weight, which would be a source of great difficulty and inconvenience, when the varying character of the load, during the drainage of the lake, is consldered; particularly as at times the water will be charged with so much foreiga matter as greatly to add to the friction of the pumps. By the syatem adopted the maximam dead-weight elevated by the small piston will seldum exceed 85 tona; the additional power required being derived from the pressure of the return ateam, at the down stroke, on the ano nular piston; by varying the expansion and pressare of the steam in the small cylinder, the engineman can add to, or diminish the premure upon the annular pinton, to as to meet any case of viriable resistance Fithout the inconvenience and delay attending an alteration of the dead weight; the load is therefore under perfect command at all times.

Quantlty of Water.-The area of the Hasplem Lake is 46,230 acres, the estimated contents to be pumped out about 800 million tona, but should the quantity be increased by any unforeseea cause even to 1000 million tons, the whole amount could be evacuated by the three engines in about 400 days.

The bed of the lake when drained mast be al waye kept dry by machinery, and observations contibued during 91 years show that the greatent quantity of ruin which fell upon the area of the lake in that period would give 36 million tons as the maximum quantity of water to be elevated by the engines in ope mooth; to perforin this work would require a force of lu84 horsea' power to be exerted duting that period ; the average annual drainage is estimated at 54 million tons.

The cost of the Leeghwater, buildinge, and machinery was 36,0004 ; of this amount about 15,000 h, are due to the buildings, and certain contingencies. For the foundations 1400 piles were driven to the depth of 40 feet into a bed of hard sand, and a strong platfurm laid thereon at the depth of 21 feet below the surface of the lake; upon this platform at the distance of 22 feet from the engine-house, a strong wall pierced with arches was constructed, and at 7 feet from the coping, a stout floor of oat was laid between the wall and the engine-

Souse; the pumpe rest upon the platform beneath and opposite the urchen, and their heads come through the floor alluded to, and stand about 3 feet above its level: into the canal thus formed between the engine-house and the outer wall, the water from the pumps is discharged, and fows off on either side of the boiler house, through sluice gates, into the canals conducting to the sea aluices.

The great cost of the buildings for whatever description of machinery might have been employed, rendered it an object of considerable importance to lessen this expense by concentrating the power to drain the lake in three engines; in addition to which a considerable saving in the wages of enginemen, stokers, and others is effected, as these large engines require very little more attendance than an ordinary mine engine; this is an important feature in the economy of the charge for the permanent drainage of the "Pulder," which will be formed by the bed of the lake.

The arerage consumption of the ordinary land-draining engines applied to scoop wheels and Archimedean screws, may be taken at 15 lb . of coal per ret horse porver per bour ; this quantity will be greatly reduced if the horses power of the engines be calculated by the pressure of the steam on the pistons, and not by the net delivery of the water; in a case where the water delivered by a large steam engine working a scoop wheel, was measared during eight hours, the engine was found to exert a net force of 73 horses' power during the first bour, with a consumption of 15 lb . of coals per ned horse power; as the lift increased the power diminished, and the consumption of fuel increased, until at the eighth bour it was found that the engine only exerted a nat force of $\$ 3$ horsess power, and consumed 2416 of coal per ret horse power per hour. The comamption of fuel by the Leeghwater is 2till of coals per horse power per hour when working with a net effective power of 360 horses.

No new prisciple bas been developed in the Leeghwater, but im. portant facts have been demonstrated, which must bave an immense influence on the progress of agricultural hydraulic engineering: it has proved that with proper attention to well-known principles, ateam engines of the very largent class (the Leeghwater is believed to be the largest and mont powerful land-engine ever constructed), may be employed to raise great bodies of water from low lifts for the drainage or irrigation of low lands with as great an economy of fuel as was hitherto generally supposed to be confined to the elevation of comparatively mall quantities of water to great beights. To the Haar-lem-mer Meer Commissioners belongs the merit of having ventured to earry out this bold experiment, and they will reap their reward by an economy of at least 100,000 . over the cost of draining the lake by the ordinary aystem of steam engines and hydraulic machinery em. ployed to drain land; and of upwards of $170,000 \%$ and three veara thme, over the cost of draining the lake by the windmill system bitherto generally employed in Holland.

Upon the cost of annual draioage an important saving will ulso be effected; by the syatem adopted it is estimated at 15001. , by windmills at 6100%, and by the ordinary ateam enginem at $10,000 \%$. per annum, and if interest at 5 per cent. on the money saved in the origi. nal cost of draining the lake be taken into the account, the figures would stand thes, $4,500 \mathrm{l}$. $14,600 \mathrm{~h}$, and $15,000 \mathrm{l}$.

The Leeghwater is numed in honour of a celebrated Dutch engineer, who, from his great success in draining numerous lakes in North Holland, was popularly known by the name of "Leeghwater," or "the drier-up of water," and with him the first proposal to drain the lake originated in 1623. The other two engines are called Cruquius and Van Lynden, after two celebrated men who have at various periods jnterested themselves in promoting the drainage of the Lake.

The engines and pumps are manufactured as the well-known establisbonent of Messrs, Harvey and Co., of Hayle, and Messra. Fox and Co_{n} of Perran, Cornwall; the pump balances and boilers by Messrs. Van Vlessingen and Van Heel, of Amsterdam.

TRABEATE AND ARCUATE ARCHITECTURE THIRD ARTICLE.

It is bul a thankless office to demonatrate that an object of general admiration is unworthy of the bomage paid to it: though the innovator may dethrone the idol, be cannot propitiate its worshippers. The advocate of heterodox opinions in architectore must not, therefore, even if he succeed in convincing his opponents, expect to win their applause. In these papers, of which the object has been to demonstrate the errors which bave crept into our archltectural system from an attempt to combine two irreconcileable means of construction-the
arch and archltrave-we have endeavoured to avoid the appearance of leterodozy by confirming our opinions by the citation of acknowledged authorities. For the last three centuries it has been customary to consider architectural forms independently of their purpose; but though the effort to idculcate similar principles be comparatively res cent, the labourers in this arduous undertaking are by no means few. We already reckon the names of Hope, Willis, Whewell, Cockerell, and Paley, among the advocates of architectural truth.

As an example of the effects of confounding trabeate and arcuato architecture, we have referred to the inconstructive arrangements of the dome and other parts of St. Paul's Cathedral-a bold illuatration certainly, but one supported by the recorded opinion of Profeesor Cockerell, thut this building exlibits a confusion of the principles of Classic and Christian Architecture. If, by way of contrast with the dome of St. Paul'r, we examine the spires of Chichenter or Salisbury. Cathedrale, the differenca between the principles of the medinval architects and of those who succeeded them will be set in a very clear light. In the two medieval spires there is n , casing or outer covering to conceal the inner mechanical arrangements of the atructure. Every course of stones used in the construction is visible, both from the outside and inside of those voble works. The visitor on ascend. ing finds himself within a vast cone, formed of circular horizontal courses of masonry, diminishing in diameter from the base to the summit: he looks in vain for a single means of appport not visible from the exterior of the cathedral. In St. Paul's, on the contrary, the real spire is, as has been shown, a concealed cone of bricks: the dome is merely a wooden frame-work fized on to the cone after it was finished. Two ends are answered by this contrivance: the bricks are bidden, and an appearance of vaulting is given where it does not exist.

This and similar Inconstructive arrangements are readily explained when we consider them the natural effects of an attempt to combine arch and architrave construction. It is time however to tura to another example of thone effects; and the inference with reapect to modern art being far more direct in the instance which we are about wo select than in the former, the necessity of quoting authorities bew comes greater.
"But of all the parts borrowed from Grecian Architecture," nays Hope in the eighth chapter of his admirable Eesay, "that which came to be applied in the way most different from, most inconsistent with, its nature and distinction in the original, was the fastigium, the part which we call the pediment.
"The pediment, which was only the termination of a roof slanting both ways from its central line or spine, of which, throughout its whole length, from end to end, the continuity was never broken, which wat never seen in Grecian buildings, except on the atraight line at the anmmit and the gable formed by the extremity of the rool, in Roman. architecture frequently appeared as if cut off from all that belonged to it, and grew out of, and was stuck under, the entublature which it should huve surmounted, against the upright wall, or a window, or a niche,-even as in the temple of Baibeck, pluced within a projecting portico, a situation in which it could not be useful even to carry off the wet. In Grecian architecture the aquare pilaster only terminated the square pier or antie; by the Romans it was carried in shallow slipa or slices along the whole surfuce of the wall; and as the tyrant Mazentius tied tugether the living and the dead, so the architects of Rome everywhere attached the round, vigorous, and iudependent columa to one of these flat, weak, and confined pilasters, for no other purpose that can be conjectured than that the effect of its tapering form might be destroyed by the straight lines of the pilanter."

These opinions respecting the use aud abose of pediments and columns are applied, in another part of the same work, to the Cathedral of St. Peter's, at Rome, in the following terms:-"One condemns in the church ite front so much broken by partial projections, ite pediment standing on a base too narrow, and an expanse too amall, and rendered cevidently uselees by the poxdorout atlic that riees balind it and crushes the facade to which it was interded to give elevation.
"Contemplating those columbe of neariy 9 feet in diameter, bat which, formed of masonry of amall stoves, ouly look on a near ap. prowet like amall tarreta, one cannot help casting a lingering look beok on the portico of the Pantheon, and thinking that elevation of imalated columas of granite of one single piece, though amaller in its dimenalone, grander in its conception, and more atriking in effect, than chese chusters of large pillark, all reliculated with joints, and jammed upagainet a wall"

All these solecisms in the employment of pedimente and columa may be easily traced to the attempte to retala tbe forme of Greet trabeate arehitecture, after the invention of the arch. By meam of this invention the Romans were enabled to give to their edifices an extent and diversity of form before unknown. It wat no longer necensary for the stability of a structure, that its roofs should be supported directly from the ground by vertical columas, placed so close that the istercolnmaiation might be apanned by a single block of atone. On che contrary, the buildings were raised to many atories in height, and toth vertically and laterally were made op of that rest multiplicity of parts which, jodging by the eye alone, we should pronounce the main formal distinction of Roman from simple Greek architectore. A nacoral consequence of the invention of the arch was the vaulting of roofs, which rendered the pediment generally unnecessary, and therefore adscititious.
It ia by no meana to be inferred that the introduction of the arch was prejudicial to the art. On the contrary, every new contrivance by which construction is facilitated ought to be looked upon as a direet benefit to architecture; for the mont liberal and elevated views of an art are thone which encourage its extension by every available meano. The injarious effects complained of by Hope arose, not from the invention of the arch abutractedly conaidered, bat from the injudicions application of it. It had rendered almost all the Greek forms mecessary; they ought therefore to have been unreservedly abandoned in arcuate building, or at least those of them alose should bave been retained which were peceasarily common to the two modes of construction.

The pediment was appropriate and bad meaning where what Hope aptiy terms the spine of the roof (that is, the line formed by the two melined planes intprsecting at their vertieal angle) was continued throughout the building from end to end. Where, however, the roof was fat, or surmounted by a horizootal entablature, as in Roman, and subeequently in Lomburdic, architecture, or where the strueture was erowned by a "ponderous attic," as in the case of St. Peter's, and numerons modern Eoglish buildinge to which it is unnecessary to epecify, it is clear that the pediment could bave no real constructive res.

To the general reader we may appear unnecessarily minute in insiating upoo these pointa, becaase be is not aware how much prejudice has to be curmounted in eatablishing them. A great change of opinion on architectural subjects is, however, bappily taking place, and we truat that the day io not far distant when these obeervations will appear mperfuoum arguments in favour of self-evident propositions. For the present, bowever, we must be content to utter truisms, and to iffoutrate in every poseible way their application and effect.

Flat-roofed buildings can never require pediments: let us apply this rule to the new show-front of the British Museum, now nearly completed. We will at once allow that there is romething exceedingly attractive in the long range of anmerous columas there presented to the eye. Culumpiation ou an extensive scale bas such peculiar natgrificence that the difficulty is rather to produce an ungraceful, than a graceful, appearance by means of it. The architect of the British Museum has, however, surmonated this dificulty to a great ex. tent. Still, much remaina that will captivate the general eye, and we Coube not that those who prefer profnsion of opnament to the right we of it, will greath admire the new fapade. But we are now addreaing those who are willing to eatimate architecture not by the eye alune, bet by the jadgment alao.

It in to be oboerved then, in the firat place, that the Britioh Maseam, though an isolated atructure, in a position whers it is seen from many points of view, has only one side decorated, the decorations being of course placed where they will be seen from the mont frequented streat.

The pediment, comintently enongh, is atuck on to the fegade, junt at the façade in stuck on to the boilding. The borizontal entablatnres of the wings are either mere masks to conceal the real ootline of the roofs, or else the roofs are flat. On the latter supposition, it is qoite clear that the central pediment is placed where it dges not define the outline of another roof; for a glance will convince us that there is not bebind this pediment an inclined roof with its axis perpendicalar to the front of the building, and its spine continued ${ }^{\mu}$ throughout the whole length from end to end."

In point of fact, this pediment has no more connection with the boilding than the sign-boards frequently seen on the parapets of taverns bave with walls to which they are attached. The comparison may be a bomely one, but it exactly expresses the nature of the cesa Similar remarks might be applied to the Mansion House, Buckingham Palace, and numerous other buildinga, in and out of London; but the general principle is so clear, that it is uneless to provoke unnecessary opposition by pointing out all its conaequances.

Had not custom familiarised us with the absurdity, there would appear something inexpressibly ladicrous in the fasbion of uniting the front of a Greek temple to a modern secular square-ballt structure.

It is well known that a ayntematic and growing oppositiou to Classic architecture now exists in this country. Those who resist the novel tepete and exprese their indigation at the term "Pagan," do not copsider that they themselves atrengthen the argumeate of their opponents by their adherence to debased Clasaic architecture. A barbarous confusion of different principles of construction can never be permanent, however obatinately it maf be defended; and it certainly appars the mont prodent cuurse to give up a part of the contest at once, and return to pure and faithful Clasoic architecture, than, by blindly defending its most corrupt forms, to emare the ultimate disuse of every form of it.

The attempt to combine the forms of trabeate and arcuate conatrocdion has produced, as all will admit who are not interested in the denial, a atrange mongrel atyle, in which members, which had originally significance and utility, are distorted and disarranged in every con. ceivable manner. Such architecture resembles a mere hortus siccus, or herbal filled with botanical specimens; for its relation to true architecture is that of withered leaves to a living flora. Or is it not, rather, an architectural Frankenstein, endued with vitality indeed but vitality of that monstrous kind which renders it only the more hideous by adapting its individual meabers to atrange, umateral uses?

REMOVAL OF WESTMINSTER BRIDGE.

Many arguments have been urged in favour of the exisling nite of Westminater Bridge; those in favour of a new site have not yet been communicated to the public. There can be no doubt that the Commiscioners of Woods and Forests have wise and cogent reacons for giving notice of their Intpotion to apply for " an act to alter, amend and repeal, several acts of Parliament passed during the reigna of George II. and II., relative to Weatminater Bridge, \&c." And as we give the Commissioners credit for the best and most prodent motivea, it cannot but be regretted that the public have of late yeam fullen into the onhappy babit of judging for themselves on matters of public intereat. It has been argued (indiscreetly, no doubt) that the collective opinlou of the Inhabitants of Westminster and Lambeth an to the relative advantages of the new and old siten, is as valuable as that of a Government commission. The idea that the latter possan exclusive information on the aubject, and are therefore the moat com-
petent to decide, is summarily rejected by the contending paity, who reph (and it is difficalt to detect a flaw in their reasoning) that the seture of the subject preclades the exiatence of enclasive informa-tion-that whatever knowledge of the facte may be ponsessed by the Commissioners is shared with the inhabitants of the districts affected -that the convenience of any particular thoroughfare is to the latter a matter of daily observation, and that in the ordinary intercourse of trade they would be certain to learn whether traffic was obetructed by dificalties in the route chosen for it. Finally, it is argued that if the Comonission have any exclusive knowledge on the aubject, it is the very kivd of a knowledge which they ought not to have; for though private information may be very important in carrying on business of high diplomatic importance, the existence of private information on wuch a very matter-of-fact topic as the alteration of a thoroughfare givea colour, at least, to a charge of undue regard for private intereets.

At a erowded meating of the inhabitants of Weatminster, held during the laut month, the chairman, Mr. B. Hawes, the mamber for Lambeth, in opening the proceedings, said-
uThere bad been so manifentation of prblic feeling in favour of the propoeed new bridge to Charing oroas, although the money for erecting it, amounting to upwards of $\mathbf{2 8 , 0 0 0}, 000$, would be taken from the public parne. The new bridge bad not been anactioned by the govermeat, farther than that a public department had oonsented to give certain notices prior to the introdaction of the bill. He hardly thought any member for Lambeth, Westminater, or Surrey would be foand to aupport such a measure ; and it might reasonably be asked what public reason was to be assigned forit? He onderstood the architect of the new Houses of Parlinment thoaght the present bridge an eye-wore ; but could it not be repaired and beautified, or rebuilt on the existing site f There were many reasons for retaining it: first of all, on the ground of economJ. All the approachen to the present bridge were the property of the bridge eommisaienors. In she aext place, a bridgo Jower down, as was proposed, mast be longer and larger, and all the approaches would have to be bought. Bot was it just to oxisting interests to build a bridge elsewhere P There were at present two private bridgen close to the site of the now bridge-Waterloo and Hangerford bridgee-the first of which did not pay a farthing to the aubgeribers, and the other paid but very badly. From the proposed bridge to Waterloo-bridge there would be a distance of only about $\mathbf{y 0 0}$ feet, whilst the Hungerford-bridge would be close to it ; and Westminster-bridge being Gaken down, there would be no accommodation for the public from the Charing-cross bridge to Vauxhall bridge-a distance of about a milo. When the present bridge was built, the site was a matter of considerable discussion ; it was, moreover, selected as the mont beneficial for the publio at large ; and be believed, that from the corner of York-road over the now bridge to Charing-arose, would not be 80 Jards aearer than by the present ronte. Beaides this, there was a great traffic westward over Weatminater Bridge to Belgrave-square, Pimlico, Knightsbridge, \&cc., and access to the Houses of Parliament, and the law courts. He pledged bimself to oppose the bill io every stage, and he did not believe that ive gentlemer would be found in parliament to manction such an unnecessary wate of public money."
It was aloo asserted at the meeting, that the Commissioners themsalves were not very strongly persuaded of the necensity of altering the sitnation of the bridge, but had merely allored their solicitor to prepare the notices: another suggestion was, that Hungerford Bridge had been already conditionally sold to the Southampton Railway Company, who intended to use it as an approach to their new terminus in Lambetl. If thin importans information be correct, it may reasonably be feared that the promoters of the removal of Westminster Bridge to Charing-cross will incur the charge of over anxiety to facilitate the conversion of Hungerford Bridge to the purposea of the Southampton Railway Company. This bridge and the new Weatminater Bridge wou'd so nearly adjoin at their Lambeth ends, that the former would be rendered nearly useleas to the public at large; apd its conversion would therefore be greatly facilitated.

The metropolitan bridges are at present nearly equidistant. This arrangement secure the greatent amount of benefit from each of them: but by removing Weatminster Bridge to Whitehall-place, a lange and denaely-populated district extending from that point to Vauxhall Bridge, will have no intermediate communication with the opposite bank of the river. There can be no doubt but that after a time, this evil will be so seriously felt, that another bridge must be built above the new Houses of Parliament-that is, the public will be put to the expense of building two bridges instead of one. More-

Over, may we not jently complain of the ineomisteney of promonncing Hungerford Bridge by one legialative act a uneful, by another a uno leas, structure I The only juti ground for sanctioning its ereetion wran pubie convenience. If it were not of public utility it onght not to bave been erected : if it were of peblic atility it eaght not to be remdered useless, by the erection of asother bridge almont close to it In every point of view, the propoesd masure premen the same eppearance of baing anticipatory of a purchase of Hungerford Bridgo for private parposes. For mo ane would be mad enough to proposs two contiguous bridges, woles one of them were about to be closed againat the public.

We have asid little of the injury to existing and justly sequired interents consequent on the alteration, because we wish to view the quection on general grounds. But it certainly seems a matter of imjustice, almost of robbery, to ruin the property adjacent to the present line of traffic. Many of the houses in the roads leading to Westmineter Bridge have, doubtlews, frequently changed hands during the last century, and the pricu of purchase must have beeu materially influenced by the consideration of the present facilities of communication. The purchaser, who has bought on faith of the permanence of those facilities, finds suddenly that the amonnt of his purchasemoney was twice too much. On the other hand, the owner of mean tenements in Lambeth, adjacent to the new site of the bridge, finds bimself in possession of valuable property, at a most inadequate cost. The injustice is double. The latter class of purchasers have no moral right to a treble or quadruple value of their property-the former class are deprived of the value of investments honeatly and legally acquired.

To the tover of architecture, it will appear'no small argament against the removal of Westminater Bridge, that by that act the only convenient point for viewing the Houses of Parliament is lost to the great body of the inhabitants of London. This consideration has gained additional force since the repairs of the old bridge have been in progress. Recently, the footway has been lowered, and a light parapet of wood, breast high, has been substituted for the former lofty balustrade, by which the view was almost entirely obatructed. The river facade of the New Palace, consequently, presents itself to the eye with a diatinctness and unity never before exhibited. It is really curious to observe bow much the appearance of the edifice has betn improved by the alteration of the bridge. Of course, this advantage would be ascrificed by removing the bridge to Whitehallplace; in fact, the public generally would then have no means of viewing the Palace of Westminater except from a considerable distance. That Mr, Barry has nothing to do with the proposition for altering the site of the bridge, but is, on the contrary, desirous that it should remain unaltered, may be announced on the authority of a statement made by Mr. Grissell at the meeting referred to above.

THE WELLINGTON STATUE

AND TEE ROTAL INSTITUTE OF BRITISH ARCEITECTS.

Little has been litherto said in these pages respecting the position of the equestrian statue on the Triumphal Arch in Piccadilly. Our contemporaries have entered upon the discussion so copiously, that ruom scarcely seems left for new opinions. Besides, when many speakers harangue simultaneously, they are apt to drown each other's voices, and the beat of a debate is but a poor compensation for the lack of judgment and perspicuity. At the present moment, however, as the storm of discussion is somewhat lulled, we may as well profit by the momentary silence to express the few remariss which we have to offer on the subject.

There are many persons of good taste who, without hypercriticism, would condemn a colossal statue in which the atural proporions are greatly exceeded, as a gross unwieldy object, evincing an utter disregard of the , modesty of nature. Without, however, allowing the ob-
jection to apply with full forse in the present inatanee, we may still coscede that an equeetrion figure, exngeernted to giganatic (or more than heroic) dimensione, mant require more than ordioary skill in its artistie treatment, and more than ordinary care to render the unmataral magniterde inoffensive. Onr rimal ideas are all relative. The giants of Brobdtionag appeared to Grulliver hideom, and hie own sise reemed horifle to the Lilliputiam

The Wellingtos atabes will, it is said, be removed to the spece between the Horme Goards and the Enclomare in St. Jamea's Part. Thin removal is on many seconits commendable. A colowal figure, to appear even tulerable, most be placed where the dlaparity of surrounding objects is not offeneively observable. Ssoh a contrast is by every means to be avoided, and the eye must be attracted by the ab. molute, not by the comparative magnitude of the work of art. Colosal fagures háve generally appeared best when standing on a wide open plain, isolated from all other artificial objects. The Lion on the field of Waterioo is so placed, standing apart from haman habitation, on a broud expane of country, over which it is risible for miles roand. The appearance of the figure in asch a aituation is, we imagine-for we bave never neen it except at a great distanoe-very effective. The sise of the object secorde well with ite solitude and its simple character.

By anslogy, wo may presome thet thle new memorial of the Water100 conflict should be similarly isolated. To flod in London a situation which would perfectly fulfil the conditions here suggeated, is of course impracticable, but the position in St. James's Park sufficiently satisfies them. Elevated on a simple plinth or base of steps, at a considerable distance from the nearest building, the statue would no longer look a beavy lamp of metal; its size would, we may hope, appear magnificent -at present it seems merely unnutural.

The circumstapee of the statue being initially placed in its present ridiculous position will prove by no means prejudicial to the interests of art. On the contrary, the discussion which has arisen produces this net resolt-the English people will no longer tolerate the absurdity of statues elevated out of sight. The condemantion of the present position of the Wellington Statue, and the ridicule heaped on the Nelcon Monument, will render the renewal of this ktad of barberism practically impossible. One great step has therefore been taken in the progress of the doctrine of trath and fidelity in art. The grand abjection to the position of the Netaon and Wellington atataes in, that their merits or defectes works of art are inappreciable to the ordinary powers of vision. The whole matter may be reduced to a dilemme if the mtatues be worth seeing, they abould be put where they can be examised; if the statues be not worth seeing, they ought not to be erected as public monuments.

Al far as ean be at present judged of the Wellington Statue, it is not unwortiny of being publicly exhibited. It would be unwise to antieipate the opinton which will be formed of the statue when situated wiore conveniently for examination; bat to judge from the outline (which is almost all that is now discemible), the composition, if not possessed of extraordinary merit, is free from gross defects : and it is etated that the work has been carefully finished and will bear a near tropection. The new pedestal ought to be very simple and of ample breadth, and its elevition ought to be regulated by this plain rule-the best beight to which a statue can be raised is that at which it can be most conveniently examined. We have atrong hopes that on such a pedestal, and in such a commanding situation, the monament will not prove unvorthy of the evente commemorated.
The opinion of the Institute of British Architects respecting the elevation of the statue on the arch, corroborates the judgment already formed by the public. The Report of the Institute is already before oar readers, and is wurth a brief analysis; it conaiste of eix paragraphs, of which three are argumentative. The three reasons for which the Institate condemns the position of the statue are thesefirst, because Mr. Burton does not like it; secondly, because it injares the architecture of the adjacent buildings (among which are Δ paley Hoase and the $"$ elegant" screen next to it); thirdly, because it te an inpovation

We should like to koow which of these argument satisties the reeder : aeither han much woight with ournelven. We do not fear that the merits of Mr. Burton's arch will be deatroyed, because we are unable to perceive their existenoe: and the asme consideration removes all appreheasion serpecting Apeley House and the row of whose columse adjacent to it. In the firat place, the triumphal arch diaplays eminevely the fault of all its tribe-forms without parpose. If the arch be real, its object mest be to sapport a superatructure of proportional size; a vault to enormous an this would never have been erected without auch a supesstructure, had the loant idea of construetive propriety entered the mind of the architect. The vast arches which form the portico beneath the Victoria Tower of the Houses of Pariament are about an large as that in Piccedilly, but then they are of a aize correaponding to their purpose;-were it not intended to support a vast tower npon them, they muat appear ridicalona it serms to be forgotten that an arch is not an integral building, bot only a part of one, just as a single limb is only one of the compenent parts of the animal body. Again, if Mr. Burton's arch were real, it woold have bottresses; for we know by ordinary mechanieal principles that an arch cannot exist without lateral pressures, and that a buttres diminiahing in breadth from ito base upwards is the proper form for racisting those premures. The fact, then, of the buttresses being dimpersed with, proven that this arch is applied to no purpose, or to a wrong purpose. Lantly, if the arch were real, what is the purpose of the Corinthian columne and horizontal entablature ? An arch properly built requires meither. If the weight be aupported on a single beam of stone laid on vertical propa (as the columns and entablaturs anggest), then the arch is auperfluous. Or If the construction be altogether different-if the space be spanned by numerous wedgeshaped stones, arraged in the form of a vault-then the columns are superforus. The arch and the entablature cannot both be wanted; one at least of them is inconstructive: we believe that both are.

Neither is Apsley House much likely to be injared. In our view, the columas, stuck in front of the walls of the first floor for show, effectually put the building beyond the pale of criticism. We should have thought the same of the adjacent screen of columns, had not the Institute of British Architects pronounced it "elegant." Where is the elegance: We can see the beauty of the periptery of a Greek temple, for thare the colums bave meaning and parpose. But sarely the row of columns at the eotradee of the Hyde Park are $u n$-meaning. They sustain no weight but that of the small horizontal course of stones laid athwart them. Jadging from their dimenaions, you would say that the architoct had intended to build a large solid edifice, but had been compelled to relinquish his work when ouly juut commenced: or it might be thought that the subatructore was begun by one architect ; and that another, who did not know for what superstructare it was intended, had finiahed it in the readieat way he could.

$$
\begin{aligned}
& \text { Amphora cosit } \\
& \text { Inatitul : currento rote edir urceut edis? }
\end{aligned}
$$

In the seoosd paragraph of the Report, the Inotitute spoak of the triumphal atch as "a successfal work :" is the cometodleg partagraph it is recommended that it should be erriehed with " accessorial and subordinate" decorations, as "it would then no tonger be subjeot to the severe criticism of artiste, foreign vintors, and pernose of asknowledged taste." When the writer of the Report pratres the areh as saccemfut, he contradicts the laws of good arehitecture and comman sense; bat when he suggents means of avoiding the severe and general criticism of it, he does something totaily difierent--he contra. dicts himself. We are told, first, that the arch is euceemfalit socondty; that it should be decorated in a very different way to what it has ever yet been, to order to be "no longer mabjeet" to uriversal com dempation. Clouply then, its saccess bus been of a very diffarent kind to that which the Inatitute set out by assigning to it.

These ntrietures upon the Report of the Inatitute are dictated by a sideere conviotion that the formal opinion of so distiagrishad a body ought to possess far greater weight and authority than will be asoigued to this document. The Institute is comprised of those whose learning and position command general respect, and whose zeal in the cause of architecture, and auccess in the practise of it, indispotably eatitle
them to the support of the profession which they represent. But dissatisfaction at the acts of the collective body is not inconsistent with a most ample acknowledgment of the talents of the individual members.

Considering that the leading architectural doctrine of this Journal is the dependance of decoration on construction, it is natural enough that wheu the Inatitute applaud structares in which this great principle is grossly violated, we at least should examine the grounds of their judgment. How has it been arrived at \boldsymbol{H} Certainly not in ignorance of the pribciple of architectural truth. Neither, we sappose, in defiance of it, for this-to put the question on its lowest basiswould indicate opposition to the doctrines adrocated by the most learned architectural writers of our own day, and exemplified by the noblest monuments of ancient architecture. No other supposition remains but that the Institute recognise the principle, butare literally afraid of its consequences. Much opposition, doubtless, must be overcome before what may be called nonsense architecture is consigned to its deserved desting. But the Institute carry their complaisance and caution too far when, to avoid offending Individual prejudices, they adrocate an irrational system which is fast growing obsolete. It lies in their power to contribute most effectually to the emancipation of art from the artifice and conventionalism which have too long enthralled it. They may direct the reform, and beneficially modify its operations; but it ia beyond their power to restrain ite progress.

Every paper read before this learned body, or sanctioned by it, is retrospective-none prospective. The progression, the improvement of art is scarely ever heard of. The past-the past only, claims all attention; and this among those who are best qualified to make provision for the futare. The Institute owe it to themselves, and owe it to the public, to take a far more elevated and independent position than they have yet assumed: when they have shown their determination to lead the public taste, instead of following it, we doubt not that their title to do 20 will be universally recognised.

A statement has been made that Mr. Weale offered to the Institate to publish illustrations of the worke of the members, and that his offer was rejected. We are in no way concerned in this statement, and know nothing whatever of it but that it appears in the Westminster Revien, and has been contradicted at a meeting of the Institute. But the very existence of the rumour, and the earnestness of the denial, indicate its importance. The difficulties of procuring information respecting the progress of architecture are, as we know by experience, almost insuperable. Have we not a right to complain that this information is not roluntarily offered? Our applications to individual arohitects have been met with uniform courtesy and liberality. But we atill feel that the greatest possible benefit which the Institate could confer on their art would be by calling on the members to detail, from time to time, the progress of their works*-not to read dissertations on Roman remains in London, or the scamilli impares of Vitruvius. We are also perfectly certain that this feeling is atrongly participated in by the architectural profeasion at large and the whole body of the lovers of architecture. Surely an opinion so universal ought to claim some respect from the Institute.

To the remarks made at the meeting just referred to respecting the impropriety of authors reviewing their own writings, we fully assent. All public confidence in reviewn must cease when the slighteat objection or even suspicion of partiality attaches to them. It has been an invariable rule of this Journal that every paper should be rejected, whatever might be the subject of it, if it seemed written with a covert purpose of furthering individual intereats: We are quite willing, or rather, we are most solicitous, that if cases should occur in which our subscribers think that this rule has not been applied with sufficient stringency, the particulars should be publicly communicated in our own pages. These observations have somewhat of personal interest; but the occasion seemed to demand them.

[^1]
ON THE INFLUENCE OF HEAT UPON THE COHESION OF LIQUIDS.

By C. Bromare, Jun.
(Tranclated in an abridged form by M. Rooenthal, M.D.)
Laplece and Poiseon have established it as a law, that at varions temperatures the beight of the capillary colamn is in a direot ratio with its density. In aceerting this, howorer, they were eolely gaided by theoretical viows on the "force moleculaire." Guy-Lamac's experimenta bearing on the abore are too insuffleiont in namber to settle the question; and, notwithstanding many raluable publications being aince communicated by several anthora, Bromnor deemed it worthy his connideration to undertalise a fresh inventigatlon of the matter. M. Hagon having lately stated that in the case of water, a ohange of temperatore, amonating to a certain namber of degroes, has no influence on the phenomepa of its capillarity, the anthor was the more atlentive to this point io bis researches. M. Hagen io his experiments employed brass plates, broaght together in a parallol direction, bat Bramner operated with capillary tubes.
These experiments were conduoted in the following manner:-The liquid to be examined wes introdnoed into a eylindrical jar, and the latter pot in an oil-bath; care being taken that the portion of liquid conlained in the capillary tobe shoold be of the same temperature as that observed in the external liquid. To measuro the hoight of the liquid coloma raised, a glaes mass was frst immersed in the external liquid, in order to raise the liquid sorface ontil it reached the point of a ateel needie fxed for this purpore. The observer, by means of a cathetometer, haviog noticed the appermost point of the liquid column raised in the capillary tabe, removed again the glass mass immersed as above; the water thus lowered ceased to toach the steel point, and the catbetomoter was directed towards the steol point.
The distance between the highest point of the capillary columa and the steel point, obtained by means of the cathetometer, indicated the amount of elevation occurring in the capillary tabe above the natural level.

These experimente were made with water, other, and olive oil. In all these liquidn, it appeared, the beight of the capillary colnma was cunt alderabis diminished by an increase of temperatare, in a ratio far greater tban would anawer to Laplace or Poisson's law relative to the propor. tionality of density; water, for inatance, its temperature belng raised from 82° to 158° F., had its density lowered by $\frac{7}{80}$, whereas ita capillary height decreased to almost $\frac{f}{6}$. It soems in general that the diminution of the capillary height, caused by elevation of temperatare, is mot proportional to density, bat that it is rather corresponding with the increase of tem.
perature. perature.
Founded on thia assention, Bramuer calealated his experiments agreeably to the method of the "least squares." In this manner be had this law fuily confirmed ; and the hoight (k) at which a column of liquid in a ca. pillary tube of one milimeter radios, at a given temperature, is raised, may be determined by means of the following mont simple formale :-

$$
\begin{aligned}
& \text { For water, } k=15.58215-0.028639 t \text {. } \\
& \text { For ether, } k=5.2586-0.029012 t \text {. } \\
& \text { For olive oll, } k=7.4640-0.010486 t \text {. }
\end{aligned}
$$

In these formalw, t expresces the temperature in degrees of the centigrade acale.
The law, that capillarity is not a dlrect ratio with density, but that it is inversely proportional to the olevation of temperatare, becomes most evidently corroborated by observations made with water at low temperalures. Aboot 200 experiments, instituted with water at temperatures varying from 0° to 8° centigrade, or $\$ y^{\circ}$ to $46^{-4} 4^{\circ}$ Fahr., showed that the well-known anomaly occurring in the density of water, from 82° to $39 \cdot 2^{\circ}$ F., had no infuence whatever on its cohesion; and starting from $\begin{array}{ll} \\ 32^{\circ} & \text { F. cohesion, diminished in a ratio proportional to the increase of tem- } \\ \text { peratare }\end{array}$ peratare.

We may, therefore, consider it as established that beat has another inluence on cohesion than that caused by mere change of density.

> THE AL:A iURE

PUBLIC LIBRARY

ATHEN, LEMAX ano
AJTEN, LEMAX ANO
TMEEN POUMOATVMA

WILD'S RAILWAY SWITCH.

(Wili an Engraving, Plate III.)
In the present number we give an engraving of a new railway switch. There have been since the first iutroduction of railways, several arrangements proposed for passing trains from one line of rails to another; the whole of these, however, which bave been adopted may be classed under two heads: those in which, in order to effect a change from one line of rails to another, the apparatus had to be moved by hand ; and those in which an engine can pass from either of the two diverging lines on to the single line without sach aid, clearing the way for itself, shoald the switch be in the wrong position. These are termed, and are, to a certain extent, self-acting.

The former possessed the adventage of making the guage perfect for either line, but was deficient in the more essential quality of safety; while the latter, to attain this quality, sacrificed the parallelism of guage. In the improved switch the advantages of both are united, the self-acting principle being accompanied with perfect uniformity of grage.
In order to describe the working of the new apparatus, it will be frat advisable to refer to the one now mostly employed, in which either tongue rall is embedded in the ordinary rail according to the position of the switch; in this arrangement the guage is always imperfect, as the notch occupied by the end of the tongue rail is, when this is withdrawn, left exposed: this defect is partially provided against by the introduction of a check rail.

In the improved switch, the end of the tongue, when in contact with the rail, is ajso embedded in a notch, which bowever ceases to exist When it is no longer required. This motion is effected by causing the rail abuttiog against the end of the tongue to move in connection with it, bat in the opposite direction, so that when the tongue is withdrawn, the protruding rail which formed the notch is withdrawa also.
In all inventions of this class, bowever ingenious they may appear on paper, practice is the main test of their utility, and we are informed that the invention which we bave now noticed, has been for some time in successful operation upon several railways; among which we may mention the Grand Junction, the Manchester and Leeds, the Chester and Birkeabead, and the South Eastern Railwaym.

THE PLANET BEYOND URANUS.

The memoir of the discovery of the planet beyond Uranas, read by the Astronomer-Royal at the November meeting of the Royal Astronomical Society, bas been printed on account of its importance before the remainder of the usual monthly notice was completed. Extracts of Professor Airy's memoir are gived below, bat for the sake of brevity several parts are omitted, for which we have substitoted the paragraphs in brackets.
We wish to direct the reader's attention chiefly to the papers marked 11 and 12, and to the remarks following them. It will be seen from these, that a few days afer Mr. Adams had communicated to the AstronomerRoyal all the elements of the planet, M. Le Verrier pablished, in the Comptes Rendxs, a paper on the perturbations of Uranus, in which he says sotbing of their being caused by an exterior planet: we may, therefore, soppose that he had not, at that time, made any discoveries respecting it. Seven months after, M. Lo Verrier publishes another paper, in which be, for the first time, speaks of the new planet. The Astronomer-Royal says that he received this paper with "a feeling of delight and satisfaction," becanse it confirmed the conclusions of Mr. Adams respecting the position of the planet, which he "had perused seven months earlier." It is important to observe that this second paper by M. Le Verrier gave only the position-dot the mass and orbit-of the planet, which lead been however ascertaised by Mr. Adams. The eccentricity of the planet was not discovered by M. Le Verrier till Angont, 1846-that is, ted moaths after the Astronomer-Royal received Mr. Adams's determination of it.

It appears that neither the Astronomer-Royal nor Professor Challis theugtt it worth while to take the trouble of looking for the planet until

Lo Vorrier's paper coofirmed that of Mr. Adams. The self.exculpatory tone adopted by the superintendeats of the two principal English observatories, does not seem altogether needless. The fact of their both offering apologies, seems to indicate that apologies wore necessary. The Astroso-mer-Royal had "alwayn considered the correctnons of a distant mathematical result to be a subject rather of moral than of mathematical evidence." Professor Cballis says, in a paper following that by Professor Airy, that his motive for undertaking the search for the predicted planet, was the agreement of M. Le Verrier's "deduclions with those of Mr. Adams, together with the recommendation of the Astronomer-Royal." He tells as, also, that be was deterred from commencing the work sooner, because it was "so novel a thing to andertake observations in reliance apon merely theoretical deductions."

We have no desire to depreciate M. Lo Verrier's labours. 'On the contrary, they entitle bim to high renoma. His first paper alone, investigating the perturbations of Uranos withont assaigning a new canse for them, is a work of the atmont acientific value. But the chief pecaliarity of this eveut in the history of science is the predictive ovidence and application of the laws of gravitation. Hitherto, the evidence of the truth of those laws, wonderfolly minate and varied as it has been, was restricted to the explanation of observed facts ; bot the most overwhelming evidence of a theory is its capability of anticipating the result of experimental observations before they are actally made. This kind of evidonce is farnished in an onexampled degree, by the anticipatory calculation of the mass, \&xe, of the anseen planet. Regarding, therefore, the prediction of the planot as an event altogether onparalleled, and as the feature of the discovery most important with respect to the evidences of science, we cannot over-estimate the vaiue of the fact established by the AstronomerRoyal, that Mr. Adams was the first predicter of the ponition, mase, and orbit of the new planet.

When the Astronomer-Royal speaks of the discovery as "a consequence of what may properiy be called a movement of the age," we must take this as a rhetorical expression, not intended to have any specific meaning. In fect, the atmost that can be made of the sentence is this, that thero has for some time existed a general snspicion of the existence of a planet beyond Uranus. The numerical determination of the iongitude of the planet ($\mathbf{3 2 8} 84$), \&c., by an elaborate mathematical investigation, required something a little more tangible and definite than a "movement of the age."

It has not been usual to admit into the Mempirs of this Society mere historical atatements of circumstances which have occarred in our own times. I am not aware that this is a matter of positive regulation: it in, I believe, merely a rule of practice, of which the appligation in every particular instance has been determined by the discretion of those Officers of the Society with whom the arrangement of our Memoirs has principelly rested. And there can be no doubt that the ordioary rule most be a rule for the exclusion of papers of this character; and that if a ponitive regulation is to be made, it mast absolutely forbid the presentation of such histories. Yet it is conceivable that events may occurin which this rule onght to be relaxed; and such, I am persuaded, are the circumatances attending the diecovery of the planet exterior to Urancs. In the whole history of astronomy, I had aluust said in the whole history of science, there is nothing comparable to this. The history of the discoveries of oew plameta in the latter part of the last century, and in the present centory, offors nothing analogons to it. Uramm, Ceres, and Pallas, were discovered in the course of researches which did not contemplate the posaible discovery of planots. Jwno and Vesta were diecovered in following up a series of observations suggested by a theory which, fruitfal as it has been, we may almost ventre to cali fanciful. Astrcea was foond in the conrae of a well-conducted re-examination of the heavens, apparentiy contemplating the diccovery of a new planet as only one of many poasiblo resnits. But the motions of Uramas, examined by philosophers who were fully impressed with the universality of the law of gravitation, have long exhibited the effects of some disturbing body: mathematiciens have at length ventured on the task of ascertaining where anch a body could be; they have pointed out that the sapposition of a dinturbing body moving in a certain orbit, precisely indicated by them, would entirely explain the observed distarbances of Uranus: they have expreseed their conviction, with a firmness which I must cbaracterise as wonderful, that the disturbing planet would be found exactly in a certain spot, and presenting exactly a certain appearance; and in that spot, and with that appearance, the plauet has been found. Nothing in the whole history of astronomy can be compared with this.

Tbe principal steps in the theoretical investigations have been made by one iodividual, and the published discovery of the planet was necessarily made by one individual. To these persons the public attention has been principally directed; and well do they deserte the bonours which they
have received, and which they will contince to receive. Yet we should do wrong if we considered that these two persons alone are to be regarded as the authors of the discovery of this planet. I am confdent that it will be found that the discovery is a consequence of what may properly be calied a movement of the age; that it has been urged by the feeling of the scientific world in general, and has been nearly perfected by the collateral, but independent labours, of various persons possessing the talents or powers beat suited to the different parts of the researches.

With this conviction, it has appeared to me very desirable that the authentic history of this discovery shonld be pablished as soon as possible; not only because it will prove a valuable contribution to the history of ecience, but also becanse it may tead to do justice to some persons who otherwise would not receive in fatare times the credit which thoy deserve. And as a portion of the history, I venture to offer to this Society a statement of the circumstances which have come to my own knowledge. I have thought that I could with propriety do this : not because I can pretend to kuow all the history of tbe discovery, but because I know a considerable part of it; and because I can lay claim to the character of impartiality to this extent, that, though partaking of the general movement of the age, I bave not directly contributed either to the theoretical or to the observing parts of the discovery. In a matter of this delicacy I have thougbt it best to act on my own judgment, without consulting any other person; 1 bave, however, solicited the permission of my English correspoadents for the publication of letters.

Without pretending to fix upon a time when the conviction of the irreconcilability of the motions of Uranus with the lam of gravitation first fised itself in the minds of some individuals, we may without hesitation date the general belief in this irreconcilability from the publication of M. Alexis Bouvard's Tables of Uramux in 1821. It was fully shown in the introduction to the tables, that, when every correction for perturba ion indicated by the best existing theories was applied, it was still impossible to reconcile the observations of Flamsteed, Lemonnier, Bradley, and Mayer, with the orbit required by the observations made after 1781; and the elements of the orbit were adopted from the latter observations, leaving the discordances with the former (amonating mometimes to three minotes of arc) for future explanation.

The orbit thus adopted represented pretty well the observations made in the years immediately following the publication of the tubles. Bat in five or six years the discordance again growing up became 80 great, that it could not escape notice. A small error was shown by the Kremsmünster Ohnervations of 1825 and 1820 : but, perhaps, 1 am not in error in stating that the discordance was first prominently exhibited in the Cam. brige Observations, the publication of which from 1828 was conducted under my superintendence.
[Hers intervene letters from Mr. Hubsey (1834) and M. Bouvard (1837), surmising that the perturbations might be produced by an unseen body.]
I have departed from a atrictly chronological order for the sake of keeping in connexion the papers which relate to the same trains of investigation. Several months before the date of the last letter quoted, I had received the frat intimation of those ollculations which have led to a distinct indication of the place where the disturbing planet ought to be songht. The date of the following letter is Feb. 13, 1844 :-

No. 6.-Professor Challis to G. B. Aiay.

[extract.]

"Cambridge Oberreatory, Feb. 18, 1844.
"A young friend of mine, Mr. Adams, of St . John's College, is working at the theory of Urasur, and is desirons of obtaining errora of the tabular geocentric longitudes of this planet, when near opposition, in the years 1818-1820, with the factors for reducing them to errors of heliocentric longitude. Are your reductions of the planetary observations 80 far advanced that you could furnish these data? and is the request one which you bave any objection to comply with ? If Mr. Adams may be favoured in this respect, he is farther desirous of knowing, whether in the calculation of the tabular errors any aiterations hare been made in Bouvard's Tables of Uranus besides that of Juyiter's mass."

$$
\begin{aligned}
& \text { No. 7.-G. B. Airy to Professor Challis. } \\
& \quad \text { [extract.] } \\
& \text { "Royal Observatory, Greenwich, 1844, Feb. } 15 .
\end{aligned}
$$

"I send all the results of the observations of Uranus made with both instruments [that is, the heliocentric errors of Uranus in longitude and latitude from 1754 to 1830, for all those days on which there were observations, both of right ascension and of polar distance]. No alteration is made in Bouvard's Tables of Uranks, except increasing the two equations which depend on Jupiter by zor part. As constants have been added (in the printed tables) to make the equations positive, and as fo part of the numbers in the tables has been added, for part of the constants has been subtracted from the final results."

> No. 8.-Profeesor Challis to G. B. Airy.
> [EXTRACT.]
> "Cambridge Obecroatory, Feb. 16, 1844.
"I am exceedingly obliged by your sending so complete a series of tabular errors of Urunus. - The litt you have sent will give Mr. Adams the means of carrying on in the most effective manner the inquiry in which he is engaged.

No. 9.-Professor Challia to G. B. Airy.

"Cambridge Obsercatory Sept. 22, 1845
"My friend Mr. Adams (who will probably deliver this note to you) bas completed his calcolatious reapecting the perturbation of the orbit of Uranks by a supposed ulterior planet, and has arrived at resulta which he would be glad to communicate to you personally, if you could spare him a few moments of your valuable time. His calculations are founded on the observations you were so good es to furaish him with some time ago; and from his character as a mathematician, and his practice in calculation; I should consider the deductions from his premises to be made in a trostworthy mander. If he should not have the good fortune to see you as Greenwich, he hopes to be allowed to write to you on this sabject."

No. 10.-G. B. Airy to Professor Cạallis.

" Royal Observatory, Greensich, 1845, Sept. 29.
" I was, I suppose, on my way from Fraoce, when Mr. Adams called here : at all events, I had not reached home, and therefore, to my regret, I have not seen him. Would you mention to Mr. Adume wat 1 am very much interested with the subject of his investigations, and that I shonld be deligbted to hear of them by letter from hirm ?"
On one of the last days of October, 1845, Mr. Adams called at the Royal Observatory, Greenwich, in my absence, and left the following important paper:-

> No. 11.-J. C. Adams, Esq. to G. B. Airy.
"According to my calculations, the observed irregularities in the motion of Uranus may be accounted for by supposing the existence of an exterior planet, the mass and orbit of which are as follows :-

Mean Distance (assumed nearly in eccordance with Bode's law)
$38 \cdot 4$
Mean Sidereal Motion in $\mathbf{3 0 5 \cdot 2 5}$ days
Mean Longitade, Ist October, 1845.
$1^{\circ} 30^{\prime} \cdot 9$
Longitude of Perihelion.
32334 Eccentricity -
Mass (that of the Sun being unity) : $0 \cdot 1610$.
For the modern observations I have used the method of normal places, taking the mean of the tabolar errors, as given by observations near three consecutive oppositions, to correspond with the mean of the times; and the Greenwich observations have been used down to 1830 : since which, the Cambridge and Greenwich observations, and those given in the Astronomidche Nachrichten, have been made use of. The following are the remaining errors of mean longitude :-

Observation-Theory.

1780	$+0^{\prime \prime} .27$	1801	$-0^{\prime \prime} .04$	1822	$+0 \% \cdot 30$
1783	-0.23	1804	$+1 \cdot 76$	1825	$+1 \cdot 92$
1786	-0.96	1807	-0.21	1828	$+2 \cdot 25$
1780	+1.82	1810	+0.56	1831	$-1 \cdot 06$
1792	-0.91	1813	-0.94	1834	$-1 \cdot 44$
1795	+0.00	1816	-0.31	1837	$-1 \cdot 62$
1798	-0.99	1819	-2.00	1840	$+1 \cdot 78$

The error for 1780 is concladed from that for 1781 given by observation, compared with those of four or five following years, and also with Lemonnier's observations in 1769 and 1771.
"For the ancient observations, the following are the remaining errors:-Obsertation-Theory.

1690	+44'4	1750	- $1^{\prime \prime} 0$	1765	$-5^{\prime \prime} \cdot 1$
1712	+6.7	1753	+ 8.7	1769	+0.6
1715	-6•8	1756	-4.0	1771	+11.8

The errors are small, except for Flamsteed's observation of 1690 . This boing an isolated observation, very distant from the reat, 1 thought it best not to use it in forming the equations of condition. It is not improbable, howevor, that this error might be destroyod by a small change in the wesumed mean motion of the planet."
I scknowledged the receipt of this paper in the following terms :No. 12.-G. B. Airy to J. C. Adams, Esq.
"Royal Observatory, Greenuich, 1845, Nov. S.
"I am very mach obliged by the paper of resulte which you lefthere a fow days since, ahowing the perturbations on the place of Uranks produced by a planet with certain assumed elements. The latter numbers are all extremely satisfactory : I am not enough acquainted with Flamsteed's observations about 1690 to say whether they bear such an error, but I think it extremely probable.
"Bat I should be very glad to know whether this assumed perturbation will explain the error of the radins vector of Uranus. This error is now very coosiderable, as you will be able to ascertain by comparing the normal equations, given in the Greenwich observations for each yeur, for the times before opposition with the times after opposition."
I have before stated, that I consider the establishment of this error of the radius vector of Uranus to be a very important determination. I therefore considered that the trial, whether the error of the radius vector would be explained by the same theory which explaided the error of longitnde ${ }^{6}$ would be truly an experimentum crucis. And I waited witb moch angiet
for Mr. Adams's answer to my query. Had it been in the affrmatioce
should at once have exerted all the infaepoe which I might poseess, either divectly, or indirectly through my friend Professor Challis, to procure the pablicaliog of Mr. Adame's theory.*

From some canse with which I am nasequainted, probably an accidental one, I recelved no immediato answer to this inquiry. I regret this deoply, for many reacoon.

While I was expecting more complate information on Mr. Adam's theory, the resolts of a new and most important investigation reached me from another quarter. In the Compte Rendy of the French Academy for the 10 hh Nov., 1845, which arrived in this country in December, there is e paper by M. Le Verrier on the perturbations of Uranws prodaced by Jupriter and Saturn, and on the errors in the elliptic elements of Uramus, consequent on the ase of erroneons perturbations in the treatment of the obeervatioas. It is impossible for me here to enter into details as to the coeclusions of this valnable memoir; I shall only say that, while the correctnes of the former theories, as far as they went, was generally establiched, many small terms were added; that the accuracy of the aalcula. tioas was entablished by duplicate investigations, following different couro sen, asd executed with extraordinary labour; that the corrections to the clements, prodnced by treating the former observations with thene corrected perturbalions. Were obtained; and that the correction to the ephemeris for the present time, prodnced by the introduction of the new pertarbations and the now eloments, was investigated and found to be incapable of ex. plaining the observed irregalarity of Urance. Perbaps it may be truly said that the theory of Uramm was now, for the first time, placed on a antiofactory fonemation. This important labour, as M. Lo Verrier states, wes undertaken at the orgent request of M. Arago.

In the Compte Rendy for June 1, 1846, M. Le Vorrier gave hie recond memoir on the theory of Urasus. The frst part contains the reanlts of a mew reduction of nearly all the orioting observations of Urames, and their treatment with reference to the theory of perturbations, as amended in the furmer memoir. After conciading from this reduction that the observations are aboolvtely irreconcilable with the theory, M. Le Verrier considers in tbe second part all the possible explanations of the discordance, and conclodes that none is admiesible, oxcept that of a disturbing planet oxterior to Dramm. He then proceeds to investigate the elements of the orbit of soch a planet, sasuming that its moan distance is donble that of Uramm, and that its orbit is in the plane of the ecliptic. The ralue of the mean distance, it is to be remarked, is not fired entirely by Bode's law, although suggested by it; several considorations are atated which compel us to take a mean diatance, not very greatly difforing from that suggested by the law, but which nevertheleas, without the suggestion of that law, would leave the mean distance in a mont troublewme ancertainty. The peculiarity of the form which the investigation take is then explained. Finally, M. Lo Vorrier gives as the most probable result of his investigations, that the trae longitude of the distarbing planet for the beginaing of 1847 must be about 825°, and that au error of 10° in this place is not probeble. No elemente of the orbit or mass of the planet are given.

This memoir reached me about the 2Brd or 24th of June. I cannot eafilieatly express the foeling of delight and astisfaction which I received from it The plece which it assigned to the disturbing planet was the amme, to one degree, as that given by Mr. Adams's ealeulations, which I had perused seven months earlier. To this time I had considered that there was still room for doubt of the accuracy of Mr. Adams's investigatioos ; for I think that the results of algebraic and numerical computations, co long and 50 complicated as those of an inverse problem of perturbations, are liable to many risks of error In the details of the process: I know that thore are important numerical emors in the Mfcunigue CCleste of Laplace; in the Therorie de la Lune of Plana; above all, in Bourard's firat Lables of Jupicer and Saturn ; and to express it in a word, I have elvays considered the correctnese of a distant mathematical resuit to be a enbject ralher of moral than of mathematical evidence. But now 1 felt no doubt of the sccuracy of both calculations, as applied to the perturbation in loogitndo. 1 was, however, atill desirous, as before, of learning whetber the perturbation in radius vector was fully explained.' I therefore sedressed to M. Le Verrier the following letter:-

No. 18.-G. B. Airy to M. Le Veparer.

" Royal Obserbutory, Greennich, 1846, June 96.
uI have read, with very great interest, the account of your investigations on the probabie place of a planet disturbing the motions of Uranme, which is contained in the Compte Rendy de ' Acadernie of June 1; and Inow beg leave to truable you with the following question. It appears, from all the later observations of Urame made at Greenwich (which are most completely reduced in the Greensoich Obserrations of each year, so as to eachibit the effect of an error either in the tabalar heliocentric longitudo, or the tabular radius vector), that the tabular radius vector is considerabiy too small. Aad I wish to inquare of you whether this woald be a consequence of the distorbance produced by an exterior planet, 00 in the poation which yon have indicated?
${ }^{6}$ I imagine tirat it would not be so, beeause the principal term of the inequality would probably be analogoos to the moon's variation, or wonld depend on sin $2\left(0-0^{\prime}\right)$; and in that case the pertarbation in radius vector would the the aign-for the present relative position of the plapet and

Urames. But this analogy is worth little, nathl it is aupported by proper aymbolical oompitations.
"By the carlieat opportnaity I ahall have the hoeoer of transmittiog to yon a copy of the Plamefary Reductions, is which you will find all the obervations made at Greenwich to 1830 carefully reduced and compared with the tables."

Before I conld receive M. Lo Verrier's answer, a tranaction oocurred which had some infinence on the conduct of English actronomers.

On the 291h of Jone, a meeting of the Board of Visitors of the Royal Observatory of Greenwich was held, for the coseideration of epecial business. At this meeting, Sir J. Herschel and Profestor Challis (among other members of the Board) were present ; I was also present, by invitution of the Board. The discucsion led, incidentally, to the general question of the adventage of dirtributing subjects of observation among differont observatories. I spoke strongly in favour of snch distribation; and I prodaced, as an instance, the extreme probablity of now discovering a mew planet in a very short time, provided the powers of one observatory could be directed to the search for it. I gave, as the reason upon which this probability was based, the very clowe coincidence between the reenlts of Mr. Adams's and M. Le Verrier's inveatigations of the place of the sopposed planet disturbing Uramus. I am anthorised by 8 ir \mathbf{J}. Herschel's printed statement in the Athenawie of Uctober s, to ascribe to the strong exprescions which I then used the remarkable sentence in Sir J. Herschel's address, on September 10, to the Britiah Association ascembled at Southamplon. "We see it [the probable new planet] as Columbus saw America from the shorea of Spain. Its movements have been folt, trembling along the far-reachlog line of our analyais, with a certainty hardly inforior to that of ocular demonstration." And I am avthorised by Profespor Challis, in oral conversation, to state that the same expressions of mino induced him to eontemplate the search for the suspected planet.
[M. Le Verrier's reply follows, in which he says that M. Bonvard calcalated incorrectly the orbit of Uranas, In ignorance of the exterior planet, and that the error of the radins vector of Uranus arises from errors of ite eccentriclty and longitude of perihelion.
Tho following letter is from Professor Airy to Professor Challin, requeating the latter to undertake the cearch al Cambridge, with the Northumberland equatorial telescope, as the only instrument in Eogland Large enongb for the purpose.]

In explantion of thin letter, it may be neceseary to state that, in come. mon I believe with other astropomers at that time, I thougbt it likely that the planet would be vinible ouly in large telescopes. I knew that the Observatory of Cambridge was at this time oppressed with work, and I thought that the undertakiog-a survey of sach an extent as this seemed likely to prove-would be entirely bayond the powers of its personal establishment. Hed Profoseor Challis assented to my proposal of assiatasce, I was prepared immediately to place at his disposal the services of an ofticient ascistant ; and for approval of cuch a step, and for liquidation of the expense which mast thas be thrown on the Boyal Obeervatory, I should have referred to a Government which I have never known to be illiberal when demands for the benefit of soience were made by persons whose character and position offered a guarantee, that the assistance was fairly abked for science, and that the money would be managed with fair frugality. In the very improbable event of the Government refuaing such indemnity, I was prepared to take all consequences on myeels.

On the 13th of July, I tranemitted to Profoneor Challis "Inggestions for the Examination of a Portion of the Heavens in search of the external Planet which is presumed to exist and to produce disturbance in the motion of Uranus," and I accompanied them with the following lotior:-

> No. 16.-G. B. Aigy to Profestor Challig.
"Royal Obsercatory, Greenwich, 1846, July 18.
"I liave drawn up the enclosed paper, in order to give yon a notion of the extent of work incidental to a sweep for the possible planet.
"I only add at present that, in my opinion, the importance of this inquiry oxceeds that of aoy corrent work, which is of such a nature as not to be totally lost by delay."

My "Suggestions" contemplated the examination of a part of the heavens 80° long, in the direction of the coliplic, and 10° bromd. They en. tered into codsiderable details as to the method which I proposed; details which were necesaary, in order to form an estimate of the number of hours' work likely to be employed in the aweep.

I recoived, in a fow days, the following anower :-

> No. 17.-Profeseor Caallis to G. B. Aily.
> [Extacta.]
> "Cambridge Observatory, July 18, 1846.
"I have only just retarned from my excursion. - - I have determined on sweeping for this hypothetical planet. - With re. spect to your proposal of supplying an asaistant I need not say anythiug, as I understand it to be made on the supposition that I decline undertaking the search myself. * - I purpose to carry the sweep to the extent you recommend."

[^2]The remainder of the letter was principally occopied with the details of a plan of observing differeot from mine, and of which the advantage was fully proved in the practical observation.

On August 7, Profeseor Challis, writing to my conflential assistunt (Mr. Mais) in my supposed absence, said,-

No. 18.-Profensor Crallis to the Rev. R. Main.

[EETract.]

"Cambridge Observalory, Auguat 7, 1846.
"I have underiaken to search for the supposed new planet more distant than Uranke. Already I have nade trial of two different methods of observing. In oae method, recommended by Mr. Airy * I met with a dificulty which I had anticipeted. - I adopted a eecond method."

From a snbsequent letter (to be cited hereafter), it appears that Professor Challis had commenced the search on Jaly 29, and had actually observed the planet on Augast 4, 1846.

Mr. Main's enswer to the other parts of this leiter, written by my direction, is dated Angast 8.

At Wiesbaden (which place I left on September 7), I received the following letter from Professor Challis:-

> No. 19.-Professor Challis to G. B. Airy.
> [Extract.]
> u Cambridge Obsertatory, Sept. 2, 1846.
a I have lost no opportnnity of searching for the planet; and the niphts heving been generally pretty good, I bave taken a considerable number of observations: bat I get over the ground very slowly, thinking it right to inclade all stars to 10.11 magnitude; and I find, that to rcrotinise, thoroughly, in this way the proposed portion of the heavens, will require many more observations than I can take this year."

On the same day on which Professor Challis wrote tbis letter, Mr. Adams, who was not aware of my absence from England, addreased the following very important letter to Greenwich :-
No. 20.-J. C. AdaMs, Esq., to G. B. AIRy.
"St. John's College, Cambridge, Sept. 2, 1846.
"In the investigation, the results of which I communicated to yon last October, the mean distance of the sopposed disturbing planet is assumed to be twice that of Uramss. Some assumption is necessary in the first instance, and Bode's law renders it probable that the above distance is not very remote from the truth : but the investigation conld acarcely be considered satisfactory while based on any thing arbitrary; and I therefore determined to repeat the calculation, making a different hypothesis as to the mean distance. The eccentricity also reaulting from my former calculations was far too large to be probable; and I found that, although the agreement between theory and observation continued very antisfactory down to 1840, the difference in subsequent yeart was becoming very sensible, and I hoped that these errors, as well as the eccentricity, might be diminisbed by taking a different mean distance. Not to make too violent a change, I assamed this distance to be less than the former value by abont shth part of the whole. The result is very satisfactory, and appears to show that, by still further diminishing the distance, the agreement between the theory and the later observations may be rendered complete, and the eccentrioity reduced at the same time to a very small quantity. The mass and the elements of the orbit of the supposed planet, which result from the two bypotheses, are as follows :-

Hypotheals I. Hypothesis II.

"This investigation has been conducted in the uame manner in both cases, so that the differences between the two sets of elements may be considered as wholly due to the variation of the fondamental hypothesis. The following table exhibits the differooces between the theory and the observa. tions which were nsed as the basis of calcolation. The quantities given are the errors of mean longitode, which I found it more convenient to employ in my investigations than those of the true longitude.

Anctent Observations.					
Pate. 1712	(Obs. - Theory.)		Date.	(Obs. - Theory.)	
	Eypoth. I.	Hypoth. II.		Hypoth. 1.	Hypoth, II.
	+6"7	$+6^{\prime \prime} \cdot 3$	1756	- $4^{\prime \prime} \cdot 0$	- $4^{\prime \prime} \cdot \boldsymbol{\theta}$
1715	-6 8	-6 6	1764	$-5 \cdot 1$	-4•1
1750	$-1 \cdot 6$	-2 6	1769	+ $0 \cdot 6$	$+1.8$
1753	+5 7	+5-2	1771	+11 8	+12 8
Modern Olserrations,					
1780	+0'027	+0".54	1810	+60.56	+0**61
1788	-0-28	-0 21	1813	-0.94	-1.00
1786	-0 -26	-1.00	1816	-0.81	-0.46
1789	+1-82	$\pm 1 \cdot 68$	1819	$-2 \cdot 00$	-9.19
1792	-0.91	-1 06	12898	+0.30	+0.14

| 1795 | +0.09 | +0.04 | 1885 | +1.92 | +1.87 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1798 | -0.90 | -0.93 | 1828 | +2.25 | +2.35 |
| 1801 | -0.04 | +0.11 | 1831 | -1.06 | -0.89 |
| 1804 | +1.76 | +1.94 | 1834 | -1.44 | -1.17 |
| 1807 | -0.21 | -0.08 | 1837 | -1.62 | -1.63 |
| 1810 | +0.56 | +0.61 | 1840 | +1.73 | +1.31 |

"The greatest difference in the above table, viz. that for 1771, is deduced from a single observation, whereas the difference immediately preceding, which is deduced from the nuean of several observations, is much smaller. The error of the tables for 1780 is found by interpolating between the errors given by the observations of 1781, 1782, and 1783, and those of 1769 and 1771. The differences between the results of the iwo hypotheses are exceedingly small till we come to the last jears of the series, and become sensible precisely at the point where both sets of results begin to diverge from the observations; the errors corresponding to the second hypothesis being, however, uniformly smaller. The errors given by the Greenwich Observations of 1843 ure very sensible, being for the first hypothesis $+6^{\prime \prime} 84$, and for the second $+5^{\prime \prime} \cdot 50$. By comparing these errors, it may be inferred that the agreement of theory and observation would be rendered very close by assuming $\frac{a}{a^{2}}=0.57$, and the corresponding mean longitude on the lst October, 1846 , would be about $315^{\circ} \mathbf{2 0}$, which I am ioclined to think is not far from the trath. It is plain ulso that the eccentricity corresponding to this value $\frac{a}{a^{2}}$, would be very small. In consequence of the divergence of the results of the two hypotheses, still later observations would be most valuable for oorrecting the distances, and I should feel exceedingly obliged if you would kiadly communicate to me two normal places near the oppositions of 1844 and 1845.
"As Flamsteed's first observation of Uranus (in 1690) is a single one, and the interval between it and the rest is so large, I thought it unsafe to employ this observation in forming the equations of condition. On comparing it with the theory, I find the difference to be rather large, and greater for the second hypothesis than for the first, the errors being $+44^{\prime \prime} \cdot 5$ and $+50^{\prime \prime} .0$ respectively. If the error be supposed to change in proportion to the change of mean distance, its value corresponding to $\frac{a}{a^{2}}=0.57$, will be about $+70^{\prime \prime}$, and the error in the time of transit will be between 4^{\prime} and 5^{\prime}. It would be desirable to ascertain whether Flamateed's manuscripts throw any likht on this point.
"The corrections of the tabular radias vector of Cranus, given by the theory for some late years, are as follows:-

Date.	Hypoth. 1.	Hypoth II.
1834	+0.005051	+0.004923
1840	+0.007219	+0.006962
1846	+0.008676	+0.008250

"The correction for 1834 is very nearly the same as that which you have deduced from observalion, in the Aatronomische Nachrichten; but the increase in later years is more rapid than the observations appear to give it : the second bypothesis, however, still having the advantage.
"1 am at present employed in discubsing the errors in latitude, with the view of obtaining an approximate value of the inclination and position of the node of the new planet's orbit; but the perturbations in latitade are 00 very small that I am afraid the result will not have great weight. According to a rough calculation made some time since, the ioclination appeared to be rather large, aud the longitude of the ascending uode to be about 800°; but I am now treating the subject much more coupletely, and hope to obtain the result in a few days.
"I have been thinking of drawing up a brief account of my investigation to present to the British Association."

Mr. Main, acting for the Astronomer Royal in his absence, answered this letter as follows:-

> No. 21.-The Rev. R. Main to J. C. Adams, Esq.
> "Royal Observatory, Greenuich, 18ti, Sept. 6.
"The Astronomer Royal is not at home, and he will be absent for some time ; but it appears to me of so much itaportance that you should bave immediately the normal errors of Uranus for 1844 and 1845 , that 1 herewith send you the furmer (the volume for 1844 has been published for some time), and I shall prubably be able to send you those for 1846 or Tuesdag next, as I have given directions to have the computations finished immediately. If a place (geucentric) for the present year should be of value to you, I could probably send one in a few days."

In acknowledging this letter, Mr. Adams used the following expression:
No. 22.-J. C. Adams, Esq, to the Kev. R. Main.
[Extract.]
"St. John's CWlege, Cambridge, 7 th Sept. 1846.
"I bope by to-morrow to have obtained approximate values of the in-
elination and longitude of the node." clination and longitude of the node."

On the same day. Sept. 7, Mr. Main transmitted to Mr. Adams the normal places for 1845, to which allusion was made in the letter of Sep.
tember 5 . tember 5.
On the slat of Angust, M. Le Verrier s second paper on the place of the
dintarbing planet (the third paper on the motion of Urawns) was communtcated to the French Academy. I place the notice of this paper after those of Seplamber 2, \&x. becanse, in the unal course of tranamission to this coostry, the number of the Comptes Rendus containlog this paper would mot arrive here, at the carllest, before the third or fourth week in Septem. ber; and it does not appear that any earlier notice of its contents was received in Eogland.

It is not my design bere to give a complete analysis of this remarkable paper; bat I may advert to some of its priscipal points. M. Le Verrier statea that, considering the extreme difinculty of attempting to solve the problem in all its generality, and considering that the mean distance and tbe epoch of the distarbing planet were determined approximately by bis former investigations, he adopted the corrections to these elements as two of the unknown quantities to be investigeted. Beaides these, there are the planet's mass, and two quantities from which the eccentricity and the longitude of peribelion may be inferred; making, in all, five anknown quantities depending solely on the orbit and mass of the disturbing planet. I Len there are the possible corrections to the mean distance of Uramus, to ite epoch of longitude, to its longitude of perihelion, and to its eccentricity makiog, in all, aine coknown quantities. To oblain these, M. Le Verrier groops all the observations into thirty-three equations. He then explains the peculiar method by which he derives the values of the unknown quan tities from theme equations. The elements ohtained are,-

It is interesting to cumpare these elements with those obtained by Mr. Adams. The difference between each of theee and the corresponding element obraiped by Mr. Adams in hls scond bypothesis is, in every instance, of that kind which corresponds to the further change in the assumed mean distance recommended by Mr. Adams. The agreement with observations does but appear to be beiter than that obtained from Mr. Adams's elements, wich the exception of Flamsteed's first observation of 16:50, for which (contrary to Mr. Adams's expectation) the discordance is considerably dimi nisbed.
M. Le Verrier then enterm into a mont ingenions computation of the liads betwenn which the planet must be sougbt. The principle is this: aguming a time of revolallon, all the other unknown quantities may be varied in such a manoer, that though the observations will not be so well represented as before, yet the errors of observation will be tolerahle. At Inst, on continuing the variation of elements, one error of observation will be intolerably great. Tben, by varying the elements in adother way, we may at leagth make another error of observation intolerably great; and so on. If we compate, for all-these different varietios of elements, the place of the planet for 1847, its locus will evidently be a discontionons carve or earvilipear polygon. If we do the anme thing with different periodic times, we shall get different polygons ; and the extreme periodic times that can be allowed will be iodicated by the polygoas becoming points. These extreme periodic times are 207 aod $\mathbf{2 3 3}$ years. If now we draw one grand corre, circumecribing all the polygons, it is certain that the planet most be withio that curve. In one direction, M. Le Verrier found no difficulty in aseigning a limit ; in the other he was obliged to restrict it, by ansuming a limit to the eccentriclty. Thos be fuund that the longitode of the planet was certainly not less than 381°, and not greater than 388° or 315°, according as we limit the eccentricity to 0.125 or 0.\%. And if we adopt 0.125 as the limit, then the mass will be included between the limits 0.00007 and $0-00081$; either of which ezceeds that of Uranus. From this circumatance, combined with a probeble bypothesis as to the density, M. Le Verrier concluded that the planet wonld have a visible disk, and sufficient light to make it conspicoons in ordinary telescopes.
M. Le Verrier then remarks, as one of the strong proofs of the correcteess of the general theory, that the error of radias vector is explained as accurately as the error of longitude. And finally, he gives his opinion that the latitude of the disturbing plavet must be small.

My aualgsis of this paper bas necessarily been exceedingly imperfect, es regards the astrocomical and mathematical parts of it; but 1 am sensiWo that, in regard to another part, it fails totally. I canoot attempt to convey to you the impression which was made on me by the author's andoabiing confidence in the general truth of his theory, by the calmaess and clearaess with which he limited the ield of observation, and by the firmness with which he proclaimed to observing astronomers, "Look in the place which I have indicated, and yon will see the planet well." Since Cupernicus" deciared that, when means should be discuvered for improviag the vision, it would be found that Venus had phases like the moon, nothing (in my opiaion) so bold, and so justifiably bold, bas beea attered in atronomical prediction. It is here, if I mistake not, that we see a character far superior to that of the able, or enterprising, or industrions mathe-

- 1 borrow thig bistory from 8oith's Optscr, seet. 1050. Slace realing thin Memotr 1 have, however, beep informed by Profewsor Do Morgan, that the prigted wortit of Co centrua do out at all eupport thl bletory, and that Coperaicus apperart to hive bellemed fret the placets mre selficuainown-G. B. A
malician ; it is here that we see the philosopher. The mathematical investigations will doubtless be poblished in detuil; and they will, as mathematical studies, be higbly inatructive: but no details pablished after the planet's discovery can ever have fur me the charm which 1 have found in this abstract which preceded the discovery.

I noderatand that M. Le Verrier communicated his principal conclasions to the astronomen of the Berlin Observatory on September 28, and that, guided by them, and comparing their observations with a star-map, they found the planet on the asme evening. A od 1 am warranted by the verbal assurances of Professor Challis in atating that, having received the paper on September 20, he was so much impressed with the magacity and clearness of M. Le Verrier's limitations of the field of observation, that be instantly changed his plan of observing, and noted the planet, us an object having a visible disk, on the eveniug of the same day.
My account, as a documentary history, supported by letters written during the events, is properly terminated; but 1 think it advisable, for the sake of clearness, to anpez extracts from a letter which 1 have received from Professor Challis since the begioning of October, when I returned to Eugland.
[In this letter Professor Challis details lis labours in search for the planet, and states that on September 29, he singled ont one alar of $\mathbf{3 0 0}$ observed that evening, for which be noterf, "seems to have a disk." This turned oat to be the planet.]

Before terminatiug this account, I beg leave to present the following re-marks:-
First. It would not be just to institute a comparison between papers which ut this time exist only in manuscript, and papers which have been printed by their authors; the latter being in all cases more complete and more elaborately worked out than the former.
Secood. I trust that I am amply supported, by the documentary history which I have produced, in the view which I first took, namely, that the discovery of this new planet is the effect of a movement of the age. It is shown, not merely by the circumstance that different mathematicians have simultaneously but independently been carryiug on the sane investigutions, ad that different astronomers, acting without concert, bave at the same time beed looking for the planet in the same part of the lieavens; but also by the circumstance that the minds of these philusophers, and of the persons about them, had long been influenced by the knowledge of what bad bren done by others, and of what had yet been left untried; and that in all parts of tbe work the mathemulician aud the astronomer were supported by the exhortatious and the sympathy of those whose opinions they valued most. I do not cousider this as detraction in the sarallest degree from the nuerits of the persons who bave been actually eugaged in these investigations.

Third. This history presents a remarkahle instance of the importance, in doubtful cases, of using any received theory as far as it will go, even if that theory can clain no nigher merit than uat of beiog plausible. If the mathematicians whuse latwurs I bave described had not adopled Bode's law of distances (a law for which no physical theory of the rudest kind has ever been buggestrd), they would never have arrived at the elementa of the orbit. At the same time, this assumption of the law is only an aid to calculation, and does not at all compel the computer to confine himself perpetually to the condition assigned by this law, as will have been remarked in the altimate change of mean distance made by both the mathematicians, who have used Bode's law to give the first approximation to пкено distadre.

Fourth. The history of this discovery shows that, in certain cases, it is advantageous for the progress of acience that the publication of theories, when so far niatured as to leave no doubt of their general accuracy, shoutd not be delayed till they are worked to the bigheat imaginable perfection. It appears to be quite within probability, that a publication of the elements obtained in Uctober 1845 might have led to the discovery of the planet in November 1845.

I have now only to request the indulgence of my bearers for the apparently egotistical charucter of the accuunt which 1 have here given; a character which it is extremely difficult to remuve from a bistory that is almost atrictly confined to transactions with which I bave myself been concerned.

THE GOVERNMENT SCHOOL OF DESIGN.

Thongh a considerable time has elapsed since the following report on the French Schools was presented by Mr. Poynter to the Council of this Inatitution, it has remajned onpublisbed. The Conacil have since sanctioned ite pablication, and as the subject of the document is not of temporary interest, it in well worthy of perusal.
"My Lords and Gentlemen, - Previonsly to entering upon the exercise of the office to which the Couucil have dune me the bonour to appoint me, I considered that a more intimate knowledge of the syatem of instruction adopted in the Freach Schools, and its results, would enable me to judge more adrantageously of the condition and prospects of our own. I have, therefore, visited Paris with a special viem to this subject; and would willingly have extended my jouraey to Lyoes, had time permitted. But,
althongh it was out of my powrer actualy to lappect any other School than that of Paris, 1 have had the advandage of obtainivg an intimate acquaintsece with the Bchools of Lyons and Toulouse, through the Reports lately zade by M. Charles Texier, commiasioned by the Goverament to ioapect the Sohools of Art, which were very obligiogly placed in my baxds for perusal.
"The Report Iald last year before the Corncil by Mr. Townsead, will remder superfinous any detailed account of the views entertaided with regand to industrial art, and the system opon which they are carried out, in the 8chool of Paris: I shall therefore notice merely such points as it oocurred to me might be of importance with reference to our own Sebools, and which may be mentioned withoot needless repetition.
"The conrse of instruction at Paris is divided into three maja branches: 1. The Figure; 2. Ordament; 8. Arohitectore and Geometry. These three coursea of stady (subdivided and classified) are tagght on alternate days, in the order namen, a day being devoted to each; but the limited space to which the 8chool premises are confoed bas cansed a most inconvenient system of taking the clasees is relays, greatly to their diandvantage. The studeats are admitted free of charge, and no pledge is reqoired from them of their exclusive devotion to any branch of indastrial art; many, it Is well known, pass from the elementary classes of the Ecole de Dessin to the Ecale des Beaux Arts, in order to follow the higher branches of painting and sculpturs; but this is not coasidered to militate in any way against the asefoluess of the School, as a nursery of art applied to manufactures. To extend a aond knowledge of art in general is held to be the best mode of securing a supply of artists for indastrial parposes. The only condition to which the pupils are bound is, that if they remain in the School they must follow ap the whole conrse of atody prescribed by the regulations. Exceptions are made in favour of artisans who wish to take advantage of the means afforded by the School to increase their knowledge and improve their taste. This class of atadeats, however, have recourse more generally to the Ecole Commasuale,-for an acconnt of which I must refer to Mr. Townsend's Report.
"There is one branch of instruction in the Paris School which I beg leave to offer to the special notice of the Council-a course of lectares on the History of Ornament, illustrated by examples drawn by the Professor in the absence of the pupils. These examples be sketches to working ecale, on large canvas covered with paper. They connist of a chronological sories of every class of ornament, beginaing with the Greek, and followed throughont all styles and all ages, explaining their origin, their connexion *ith each other, and the peculiar characteristics by which they are to be disoriminated. Each lecture is a continuation of the anbject from that which precedes it; and the Profescor is bound by his engagement to vary the examples during the period of three years. Tbis professorship is held by a pupil of M. Constant Dufeux, the Architect to the School; and the frat requlaite toward the establishment of a similar class elsewhere would be, to find an artist with the knowledge of ornament possessed by this gentleman united to the handicraft skill with which he expresses its forms, and briage them out in the truest effects of chiar'-oscuro by the most simple manjpulation in black and white. It would be very desirable to possess some of this geatieman's sketches in our School, as examples of masterly oxecution in this branch of art. I mentioned this to the Director, M. Belloc, and have no doubt they might be obtajned if the Council thought proper.
"An excelleat plan is adopted in the Mathematical Class to secore to all the pupils the full benefit of the instructions aiven by the Professor. It is not to be expected that mathematical demoustrations will be comprehended by a whole class the firat time of explanation; thowe pupils, therefore, who have anderstood the lenmon, are charged with repeating it to those of slower appreheasion, until it is made clear to every jndividual.
"I beg leave to enter somewhat more particularly upon a subject which has over been regarded with great joterest in oor own establishment, namely, the Female School. This branch is placed, at Paris, under the superintendence of two Dames Directrices, who divide the labour of teaching. There are two classes in the day, each of about fify pupils, a diviaion rendered necessary by want of room for a better arrangement. The Female School has beed established with a double purpose : it is cal. eulated out only for the improvement of the arts usually practised by females, bot some prominence is given to the object of exteading as much as possible the resources, hitherto too narrowly limited, for the exercine of fomale industry. It is considered that the employments open to females, and for which they may be qualifed by instruction iu the arts of design, may comprise designing and working in embroidery uf every description, lace, gimp, fringe, and every sort of worsted work; designe for everything relating to jeweliery, cograving, and onamelling in gold, settiog stones, false jewellery (which is manufactured in Paris to an immense extent, with great tasto and ingenuity), small articles in or-molu, and the burnishing and colouring of metals ; fancy works in oard and paper, and patterns for the papers employed in them; piotorial toys for children, dinsected puszles, \&c.; porcelain painting, in all its branches; lithography, and engravioy on copper and wood. And it is to be observed that the Ecole Compmunale is much frequented by females already occupied in sach pursaits, who devote their leisure hours to improving themselves in drawing; those engaged in jewellery, artificial fowera, and engraving in gold, resort there in numbers. In order to carry out the intentlons of the Goverament in this respect, the course of instruction In the Female School includes the figure, landscape, animals, flowers, and urnaments. It has boen noticed that many of the pupils take up especially the atady of the head, the figare, and landecepe, with view to become teachers of drawing ; but the conrse of
stady followed is the school is not comsidered to be of a nature to qualify them for this position, which regairet that the clementary studies common to all clasees of art abonld be followed up by thoee peculiar to tho higher branches.
"It must be obeerved, that in this branch of the School at Paris the objects proposed are dof yet carried out to their full extent. There are several deficiencies to be supplied; and lithography has not hithorto beeno taveht at ail.
"The Provincial Schoole in France are aot necesearily regniated by that of Paris ; and a view of the system paraned at Lyons, where the firat of the Provincial 8chools has beed earried out to its rimost capabilities, with the mont succeseful resalt in effeot upon the peculiar manufactures of the plece, cannot fail to be regarded with interest. But the success which has atteoded the School of Lyous is mainly owing to the appreciation of its im. portance by the authorities and inhabitants of the oity itself, to the energy, with which they have promoted it, and the liberality with which they have contributed to the faods for its support. And I may here notice in evidence of the seal and jntelligence of the mannfactarers of Lyons in the pursuit of their commercial intereat through the means of industrial art, a memorial lately addressed to the Mayor of Lyona, that, with reference to the vew vent for manufactures opened in the East, he should call apon the Minister of Commerce to procare for the manufacturers, by means of the Consols and other commercial agents, patterns of the oriental staffs of silk, wool, and cotton, which can be lmitated at Lsons; and it is significantly premeed upod the Minister "that this proceeding ahowh not be left to other nations.'
"It is a fact worthy of altention, that at the forndation of the School of Lyons the mistake was committed of drawing too distinct a line of demaro cation between the olements of Ane art and those of art as applied to ioning. try and manufactares; and the first course of instraction established in the School was applied to the techaical procens of the mise en carle; this was shortly saperseded by a clase for 'drawing applicable to manyfactures,' that is to asy, to silk manofactures; bat as the pupils who attended this class proved to be already advanced in flower painting, the profescor found the basis of iostrdetlos to which he was confined too narrow to evable him to effect anything eacential for their improvement: the course of instruction was therefore made general, by the adoption of a methodic course of ornas ment, applicable not only to that style of drawing, but to eculptere in wood, metal, and stone. From this period important modifications have been made from time to time in the system of instruction, so that searcely anything is now left of the original orgenization of the achool. Into these changes no theories have been suffered to intrude-they have all bees effected as experience has dictated their necessity, and the reault, as is well known, is eminently practical.
"The present course of study pursued in the school is as followa:-the elemeatary study of the figure, drawing the figare from the round, and from the living model. Hence the pupils onter the classes for drawiag and painting flowers, and after passing through the class of architectural ornament (combined with geometry and perspective), finish the course of stady obligatory on nll who remain in the echool by a class of composition applied to manufactures. Thus it will be seen that to perfect the taste of desiguers and manofacturera, for that is the great point to be attained, a sort of inversion of principle is adopted, begioning with the figure, thence paesing to fowers, thence to ornament io general, so as to prepare the student With a sound artistical education for Goishing with the course of composition pecuiar to the silk maoufacture. To give instruction in this course, there are ten professors, including one for anmomy, one for etching, one for geometry and perspective, and one especially for fower pajoting. The annual expense of the establishment amonats to about 40,000 fruncs, of which 80,000 are supplied by the city, and 10,000 by the Guvernment; bnt the citisens of Lyons consider all their literary and scientific establishments as intimatoly connected with their school, and that its suocess is greatly promoted by the general L nowledge diffused among all classes by means of their library, their museums of antiquities and natural history, and other public institutions.
"The school is open five hours every day,-Lhe profeseors attending from nine o'clock till two in the winter, and from oight to one in the summer. The pupils enter at the age of fourteen. They must be able to read and Write, and to do the four rules of arithmetic, and are compelled to follow the whole course of jostruction if they remain in the school. They are remuved from one alass to another on the recommendation of the Professor of their class to the Council of Professors. Daring the first month the papils draw for the purpose of ascertaining the class in which they are to be placed. Two years' trial are allowed before they ars dismiseed for incapacity.
"The Director has abolished the use of heads in lithography as stadies for the pupila, finding them from their general mediocrity, anfit for the purpone. The frequent competitions at the Ecole des Brame Arts, at Paris for 'thes d'exprestion,' has onabled him to collect a sufficient number of valuable drawings of this class, mostly prize works, from which the pupils now study to the exclusion of engraviugs. This example is strongly necommended to be adopted in all schools, not only as regards chalk draw. ings, but also for models, add all other objects of study. Tho Director greatly desires that casts of the Xarthenon marblen may be added to the coliection.
${ }^{4}$ The object of the Government in supportiag the Provincial Schools, is to develop art in such a manner as to enable the propils in quitting them to exerctse a profossion, aseb tomn directing the final studies of the popils more particularly to its predominant manufecture, and the aystem opon
-hich the sohools are worked is calculated to direct not only the hand and eje of the pupils, but also their taste. For this reeult, the stady of the figure is found by practical experience to be the most instructive. Geometrical forms alone, though useful to exercise the lingers, are insufficient to give a perception of beauty, and harmony of ontline-a fact folly proved by the practice of the School at Touloase, where the latter mode of study Hes been subatituted for the formor. Cold and namenning linea coavey no intelligence to the papilb, and excite no interest. Hence the popils who at Toclonse pass from the elementary to the higher classes, aro found to be atrikingly inferior to those of the same standing at Peris and Lyons. When they come to draw other objects from the round, they are altogather defieient in the knowledge of light and shade, and relief, and even facility of band. The error which han been experienced at Somerset House senms to have been committed at Toulowse, of confining the study of the Ggure to a caall and select class, the master of which bas another class to aitend to ; so that, to ase M. Texier's words, "the figure has ouly half a Professor allotted to it.' It is therefure proposed, as an improvement of the utmost mecessity, that the School of Toulouse shoold be assimilated, in this respect, to those of Paris and Lyons. A pupil who has followed the elementary stody of the figore, with the management of the chalk and stomp, is found to possess a knowledge of shadows and refiections, which oper to him a thorough understanding of every work in relief before which he may be placed. The School is also deficient in other particulara : the classes sit for two hours only even for the stody of the figure-a space of time totally inenficient. There is do class for plants, and the class fordemonstrating the composition of ornaments of all dutes and atplen, deacribed ander the Paris Behool, is much to bo desired, uot ouly at Toulonso but at Lyons. There seems to be some difficulty in finding a competeat Professor. The Conncil of Toulouse wish for the establishment of a course of chemistry appliceble to manufactures.
U 1 could have wished to take such a view of the manufactares of Paris as might have enabled me to draw some comperison with those of our owa coontry; bot as the time at my disposel did not admit of any general inquiry, I confioed wyself to the subject of stained glass, of which a great quantity bas lately been erecuted in France. The church of st. Denin has been completely fitted up with modern coloured glass, in a style which it is imposaible to commend. Hart of this glass is designed on the imbecile prieoiple onhappily 100 prevalent in England, of imitating the wretched drawing and composition of the middle ages, under the notion that this pervernion of art is easeotial to the character of the work. But the glass of this order at St. Denis is destitute of the archaological koowledge and tante is the arrangement of colour, which are the redeeming quality of many English performances of this class. Other portions of the glass at 84. Deais are designed on the still more mistaken system of assimilating glass painting to painting on canvas.
e At the royal manufactory of Sevres, great pains have been beatowed on the improvement of stained glass. Being, bowever, doubtfal of the impression to be produced by the view of mere specimens, I did not visit Sevres, but performed a journey to Dreux, about sixty miles from Paris, where a magnlficent chapel, designed by the present king an a mansoleum for his family, has been completely fitted up with 8evres glass. There is moch good art in this glass. There aro Agures and groeps, of which the drewing, composition, and expression are extremely fine, bnt the colouring is in some portions crude, and in others vapid. There is an insufficiency of the detail essential to the proper effect of stained glass. The draperies are too plain. There is an attempt at diaper-work opon some of the backgrounds, but it is feeble and inafficient, and the general effect of the whole is peor. The artists, with all thoir merit, and it is great, have evideally been hampered by the principles and practice of painting on canver, and the mechanical process of joining the glass has been 50 ill understood that all the sabjects are cut op into squares by the ironwork. The aame obeervations will apply to the glass in the chapel erected at Paris to the momory of the late Doke of Orieans, aleo from the Sèvres manufactory.
ω The modern glass displayed in the new charch of St. Vincent de Paul is of extraordinary quality. In this the artist has solved the problem of maiting bigh art with the conditions required for the due effect of paintlog on glass. Fine deslgo, drawing, and expression, comblaed with a perfect conception of the distribution and collocation of colonr, and a profasion of detuil in the draperies, background, and borders, render it an example of rare perfection in stained glass, not inferior to the ancient in brilliancy and harmony, and immeasureably beyond it as a work of art. Esch window containg a fignre, or two, on a blue backgronad, richly diapered, within a border of amall figures in compariments, formed by green arabesque. This gims is the work of M. Maréchal, of Metz, un artist also greatly distin. gaished as a crayon painter. I should consider a fine speclaen of bis work un important acquisition to our School, if it could be obtajoed at eoy price.
${ }^{4}$ It is probeble that some of the facts and observations which I have sow bud the honour to submit to the Conocil, may bear upon circnmatances consected with our own establishments, and it is not impossible that comparions may offer themselves during my approachiug visit to the Provintial Bebools. I have therefore hastened to submit these remarks to the Conncil whilst they were fresh in my mind, and uobiassed by anything unsing in the course of my tour of inspection.
7th Oct. 1845.
"Ambroal Poynter."

2mviEvo解。

Turming and Manipulation. By Chables Holtzapfyel, Vol. II. Illus. trated by upwands of 700 woodcuts. Holtzapffel. Londov: 1896. 8vo. [sECOND Notice.]
In the former notice of this intoresting work we gave a brief outline of its contents. The volome concludes with an appendix containing papers by several contributors, and additional notices of new processes and inventiona which have come to the author's koowledge while the work was passe ing through the press. The author hus directed our attention to the following remarks, which we accidentally overlooked when alluding to the contribations by Prof. Willis.
"The formation of the tools ased for torning and planing the metals is a subject of very great importauce to the practical engineer, as it is indeed only when the mathematical principles upon which such tools act, are closely followed by the workman, that they produce their best effects. With a full conviction of the advantages which reanlt when theory aud practice are thus associated, the anthor has to congratalate bimself on being ahle to present to his readers, two original pepers, respectively written on the sobject of the privciples of tools for turuing and planing metals, by Charles Babbage, Eaq., F.R.S., \&c., and Profescor Willis, A.M., F.R.S., \&ec, both distioguished by their high mathematical attaimenents, and their intimate practical experience in the use of tools."

The first paper by Mr. Babbage treats of the nature of the resistance to be overcome io the cutting a revolving substance by means of a fixed tool, and is an adminable instance of the importance of applying general inferences from the theory to the practice of mechanics. Uf course it would be impossible to calculate with perfect accuracy the amount of resistance to the progreas of the tool, at the material will never be perfectly homogeneous, nor the thickness of the shaving separated from it perfectly uniform. Still in this, as in other instances of the application of theory to practical cases, thongh the numerical results mey not be depended upon, the general conclusions are of the etmast value. The principles here lajd down, by Mr. Babbage, would tead to a considerable modification to the forms of tools, and would probably bave this advantage-that the conatruction of colting instruments would be made to depend not upon ancertain arbitrary rules, but apon fixed and reasonable laws.
"Steel of varions degrees of temper and under varions forms, is almost universally employed for cutting metals. Before deciding on the forms of the different tools It is desirable to inquire into the principles on which their cutting edges act, and to assign special names to certain angles on the relations of which to each other, and to the metals upon which they are used, their perfection mainly depeods.

In the engraving c is a cyliader of steel or other metal, and T is a planing or turning tool acting upon it at the polnt a. A c is a horizontal line through the center c, and the cutting polnt a. $B a$, is a line passing through the cutting point a and along the apper plane b a, of the cutting tool T. C a, is a lloe passiug through the cutting point a and along the front plane a, of the cuttiug tool. $D a$, is a line from the cutting point a, at right angles to the radlus c a. The angle $\mathrm{Da}_{\text {a }}$. may be called the angle of relief, becanse by increasing it, the friction of that face of the tool opon the work is dimiaished. The angle C a b, may be called the angle of the tool. The angle $\mathbf{B a A}$, may be called the angle of escape, beoause the matter cut awry by the tool escapes along it.
The forces to be overcome in cuttiog a thin shaving of metal from a cylinder or from a flat surface are of two kinds,
1st. It is necessary to tear along the whole line of section ench atom from the opposite one to which it was attached. The force reguired for this parpose will obviously be proportioned to the length of the cutting edge of the tool, and depeadent on the nature of the metal acted upon. But it will be quite independent of the thlckseas of the part removed.
2ad. The shaving cut off by the tool must, in order to get ont of its way, be bent or even curled romed into a spiral. This second force is
often considerable, and when thick cots are taken, is usnally far larger than the former force. If the bending were of small extent, then the force to be exerted would vary as the square of the thic kness of the shaving multiplied by some constant, dependent on the aature of the metal operated upon. But the bending very frequently procerds to such an extent that the shaving itself ls broken at very short intervals, and some shavings of iron and steel present a continued series of frartures not quite runaing through, but yet so complete, that it is impossible even with the most careful annealing to unwind the spiral. This partial severauce of the atoms in the shaviag itself, will require for its accomplishneat a coosiderable exertlon of force. The law by which this force increases with the thickness moat probably embraces bigher powers than the first and second, and may be assumed thus

$$
\text { force }=a+b t+c t^{2}+d t^{3}+
$$

For the present illustration It in annecessary to consider more terms than those already more particularly explained, namely the consthat force, and that which varies as the square of the thickness of the shaving. If therefore t be the thickness of the shaving, and A and B two constants, we shall find amongst the forces required for the separation of the shaving the two terms

$$
\mathbf{A}+\mathbf{B} \boldsymbol{t}^{\mathbf{I}}
$$

where A, and B, depend upon the nature of the metal acted apon. We may learn from this expression, oven without being acquainted with the values of the coustants A and B, that the furce required to remove the same thickness of metal, may vary considerably according to the manoer in which it is effected. For example,-if a layer of metal of the thickpess of $2 t$, is to be remored, it may be done at two successive cuts, and the force required will be equal to

$$
2 A+2 B \ell^{2}
$$

But the same might have been accomplished at one cut, when the force expeoded would have been

$$
A+4 B t^{2}: "
$$

The latter quantity always exceeds the former when t^{2} exceede $\frac{A}{2 B}$ as the writer shows algebraically. Consequently, when the square of the thickness exceeds balf the ratio of \mathbf{A} to \mathbf{B}, less force is required to effect the operation by two cuts, than by one. And in the same way it may be shown that any number of slices (n) require less force than a single slice of n times the thickness If f^{2} exceed $\frac{A}{n}$.
"The angle of relief shonid always be very small, because the point a will in that case huve its support nearly in a line directly opposed to that force acting apon it.

If a tool either for planing or for turaing is defectively formed, or if it is presented to its work in such a manner that it has a tendency to dig into it, then a very small angle of relief, in addition to a long back a e, will in some measure counteract the defect.

The smaller the angle of the tool, the less will be the force necessary for its use. Bnt this adrantage of a small ungle is counterbalancrd by the weakness which it produces in the support of the cntting point. There is also another disadrantage in making the angle of the tool smaller than the escape of the shaving requires; for the point of the tool being in immediate connection with a smaller mass of metal, will not so quickly get rid of the heat it acquires from the operation of culting, as it wonld if it formed part of a larger mass.

The angle of escape $\mathbf{A} a \mathrm{~B}$ is of great importance and it varies with the nature of the material to be acted upon. If this angle is very small the action of the tool is that of acraping rather than of cutiong, and the matter removed approaches the furm of a powder. If however the material is very flexible and cohesive, io that case shavings may be removed. The angle I have found best for cutting steel is about 27°, but a series of experiments upon this sabject is auluch required.

After the form of the cutting tool is decided upon, the next important point to be considered is the manner of its application. The principle which is usually stated for turniug tools is, that the point of the tool should be aearly on a level with the axis of the matter to be turaed, or rather that it should be very slighly below it. This rule when applied to the greater number of touls and tool-holders is calculated to mislead. Before applying the correct rule it is necessary to consider in each tool or tool-holder, what is the situation of that point around which the culting point of the tool will turn when any force is put opon the tool. Let this point be called the center of flexure. Then the correct rule is, that the center of dexure should always be aboce the line joining the cedter of the work and the cutting point.

Un looking at fig. 983, A c is the line joining the cutting point a and the center of the work c. By making the tool weak about Q that point becomes the center on which the point a will bend when any nausual force occors. On the occurrence of any such onusual force arising from any pin or point of onequal density in the matter cut, the point of the tool a, by bending around the center Q will dig deeper ioto the work and cause some part of the apparatus to give way or break.

If on the other haod the proint P is that around which the point of the tool whea resisted teuds to turn, then since this point is above the line joining the cutling point and the center of the work, the tendent y of the addi-
tional strain on the point is to make it sink less deeply into the work, and consequently to relieve itself from the force opposed to it.

Fortunately the position of this point can always be commanded, for it is ajways possible, by cutting away matter, to make one particolar part weak. This is iodeed a circomstance too frequently neglected in the construction of machinery. Every piece of mechanism exposed to considerable force is llable to fracture, and it is always desirable to direct it to break at some one particular point if any unerpected atrain occurs. In many cases where danger may arise from the interference of the broken part with the rest of the machinery this arrangement is essential. In all cases it is economical, because by making the breaking, if it occor, at a selected spot, provision may be made of duplicate parts and the delay arising from stopping the machine be avoided.
The results of the preceding inquiry wonld lead to considerable changes in the forms of tools generally osed in cutting metals. and as the time ocmployed in taking a cut is ususally equal whether the thaving be thick or thin, the eaving in power by takiag thin cuts separately would be accompanied by a considerable expense of time. This however need not be the case if proper tool holders are employed, in conformity with the following several conditions: thos
The tool-holders should be so contrived as to have several cutters succossively removing equal cats.-The cutting edges should be easily adjusted to the work. - The steel of which the cutters are formed should be of the best kind, and after it is once hardened should never again be aubmitted to that process.-The form and position of the cutter shonld be such that it may, when broken or blunted, be easily ground, having but one or at the utnost but two faces requiriag griading.-It is desirable that when being ground it should be fixed into some temporary handle, in order that it may always be ground to the same cutting angles.-The cotters shonld be very securely, but also very simply tightened in their places.-The center of flexure of the catter should, in turning, be aboce the line joining the center of the work and the cutting polnt;-Whilst in planing the center of flexure shoold be in adpance of a line perpendicular at the culuing point to the surface of the work planed. Examples of come tool-holders of this kind will be given subsequently.
The effects of such improved tools would be to diminish greatly the strain pot upon lathes and planing machives, and consequently to enable them to tarn out better work in the same time and at a less expense of power: whilst the machines themselves, so used would retain their adjustments much longer without reparation."

The next paper contains an acconnt of various tool-holders invented by Mr. Babbage. Prof. Willis's papers relate not so mach to the mechanical as to the geometrical theory of cutting tools or the relatlons of their sides and angles, the inclination of the edges required for different metals boing assumed to be known. Hrof. Willis also describes a new tool-holder invented by him, which Mr. Holtzapffel states to be now generally used in his manufactory.

Among the papers in this appendix one of the most osefol is that on the diversity of gauges of wires and sbeot motals, \&c. Our anthor compares the differeat scales of measnrement of rod iron, nail rod, rifle tubes, wire, sheet iron, zinc plates, crown-glass, \&c.: he shows that the greatest inoonvenience arises from the nomerous scales, which are perfectly arbitrary, and vary in different manufactories. He bas given a table of the values of several of the principal gauges to three places of decimals of an inch, the measnres being ascertained by an exceedingly accurate sliding gauge, constructed by himself, and indicating by a vernier the thonsandths of an inch. In the following extracts the advantage of a general application of decimal notation to small quantities is admirably illustrated.

Drcimal Gaors.

"The remedy proposed to remove the arbitrary incongruove system of gages now wsed, is simply and in every one of the cases above referred to, and also in ull other requiring minute moasures, to employ the decimal divisions of the inch, and those wnder their true appellations.

Thus for most purposes the division of the inch into one bundred parts would be sufficiently minute, and the measures 1. 2. 5. 10.15 or 100 buadredths, would be also sufficiently impressive to the mind ; their quantities might be written down as 1. 2. 5. 10.15 or 100 hundredths, as the decimal mode of expression might if preferred be safely abandoned. and the method would be abuadantly distinct for common use if the word "Mundredthe" were stamped upon the gage, to show that its nuaserals denoted bundredths of an inch. quanities which could be easily verified by all.

In practice no difficulty could be seriously felt even without this precuotion of marking the gages respectively with the word Hundredths or Thousandths; as we should not more readily mistake $\overline{0}$ thousandths for δ hundredths, than we should 5 tenths or half an inch for 5 whole inches, or 5 entire inches fur as many feet.

Neither is it to be adduitted that no such gages are attainable as may be read of in hundredths or thousundibs. The demand would immediately create the supply, and there could be oo more difficulty in conatructing the gages of the customary forms, with notches made to systemutic and definite measures, that may be earily arrived at or tesled, than with their present nusyatematic and arbitrary measures, which do not admit of verificalion.

Hesides, for those who desire to possess them, several very correct deci-
mal geges alreedy oxint, amongot which may be cited the decimal sector geges long since recommended, and publisbed by the Sociaty of Arts, Eulinbargh, and various sliding gages with reraiert some to read off in bundredths, and finer ones in thousandthe, of the inch, all of which have been long and constantly ased in the aothor's manufactory.

To these may be added-La Riviare's gage, modifed and enlarged from that used for the balance springs of watches amongst the Genova watch-makers.-Chater and Haywand's gage for sheet metals and glass.-WalLer's gage for sheet iron, -W hitworth's micrometer gage and others-which may be severally read off to the thoosandth of the inch, and even more minote quantities, and amongat which kinds sufficient choice exists for drost every porpose.

The proposed decimal scbeme woold introdoce one universality of system, iacelligible alike to all, instond of the nomerous and irregular measares now used, which are but partially and indifferently known and load to frequedt mistakes.

It woold give a soperior idea of partisolar magnitude, and enable the theoretical and practical man to proceed with so much more decislon in their respective commonications.
In coaveying verbal or writen instractions, the aystom would be in every Wey soperior th the asoal methods, as being almost free from the chance of misunderstanding; more especially as some of the decimal sliding gages te so small as hardly to take op more room in the pocket than un ordimary penknife, and might be therefore conlinoally within reach for referace.

Whon certain objects are reqoired to be $s 0$ proportioned as to constitate a series; the intervals between the decimal measures would be far more easily arranged and appreciated, than those of vulgar fractions; and if ealcolation were referred $t 0$, the decimal figures, especially when divested of the decimal point, and the zeroe to the right of the same, would be im. mediately intelligible to the least informed, from being then 00 mure in fact then simple onmerals.

Quantities expreased decimally woold be more easily written down, and more exactly defined than the compound fractions, socb as and its of an inch-or than the atill more obscara method of $\frac{8}{4}$ of an inch fiull or bure, as the case might be; which latter nearly sets all attempts at exactuess at denoce.
 of an inch, althoogh in themselves very precise, do not frou their ueture so randily admit of definition or comparison, as the quantities 2. 3. 4. 6.6. 7. 8. 9. or 10 hundredths of an inch; because, in the vulgar fractions every woe has a specific relation to the inch, whereas the decimal terms have ono ceneral relation, decimals being sometimes considered as the numerators of fractions, all baving the constant denominator unity, or 100, 1000, \& : and therefore the latter, or the decimal terms, constitute a simple arithmetical series, or one in which the intervals are alike, but this is not the case with rulgar fractions.
The decimal scheme wonld allow the exact weight in every superficial foot of sheet wetals and other subutances to be readily arrived at.-Tbus, as a cubic fool of water weighs 1000 ounces troy, the specific gravities of lead, copper, silver, \&c., denote at the same time how many troy oudces ere severally contaived in one cobic foot of the same. The opecific gravity divided by 1200 , gives the weight of a plate or film, the one hundredith of an inch thick, and thence a table may be readily computed, by addition chone, to show the weight of plates of any thickness in troy ounces.

How confosing would it be, if the measures by wbich broad cloths, lipens, cottons, silks, velvets, carpets, and other textile fabrics, are manufactured and sold, were all different, instead of being voiformly the yard mesaure; and yet this incongruity fully applies to the various articles Whose measorements are described under the mystical onmes of anmber, des, s age, and other appellations, which assume different valoes in differeat branches of manofacturing art; as for example, in the various kiuds of sheet metals, varions kinds of wires, in tubes, joiners' acrewn, and vast nambers of small manufactored articles, the various sizes of which are erbitrarily designated as Nos. 1.2.3.4. \&c.

Why not in all these branches of trade, describe every thing measoring fith of an inch, as No. 10 ; those of itbs inch, as No. 30 ? and then in aets of ohjects required to be nearly alike, the succeeding nambers could be 31. 31. 33. 34. 36. 36. \&c.; or if fewer and wider variations were wanted, the series might be 34. 34. 36. 38. 40. \&c.; or else, 35. 40. 45. 50. 53. Every trade could select any portion of the series it might reqoire, both as regards general magnitude, and the greater or less intervals between the ciecs, and with the power of adding to, or subtracting from, the scale first selected, as circumstances might saggest.

But there shonld be one common onderatanding that the commercial nombers or sizes, when different from the measures of the foot-rule, should be always anderstood to be hoodrediths of the inch, (in some rare inatances thoosandths, es then from the onity of system no confusion or difficulty coold posibibly arise.

It may be true that some of the proposals having reference to the waights of materials in the superficial foot, the correspondences with foreiga measures, and some of the projects principally intended for the porposes of scieuce, may not be required in every-day practice; but still much remains in the system, that in the opinion of the author, wonid admit of very easy introduction, and most general aud satisfactory employment.

In respect to the practical epplication of the method of decimal divisions, as regarda mechanical construction, the anthor can speak most sutisfactorily
from some years' experience in his own manofactory, as he has found it to be mont readily followed by bis workpeople, and also that it has avoided frequent and vexulious misunderstundings, to which, before ite adoption be was frequently subjected, from the want of a more minute and apecific syatem of measure, thas is afforded by the coromon foot-rule and wirs gages.

Therefore, from conviction of the usefulness and practicability of the decimal system of measures for small quantities, be would most atrongly urge its general, or indeed universal, aduption, as above proposed; the more especially as it is a change that would be atteoded with very little temporary inconvenience or expense, circumstances which greatly metard all atcompts at generalization."

We cannot conclude our notice without renewing the expression of approbation of the work. As far as we are aware, the plan of Mr. Holtmapfel's labours is nnique: no other similar bouk has been pablisbed, and this is so comprehensive and perspicuous that no other similar book need be desired.

Ancient Architecture described and demonstrated by its Monuments. -L'Architetlura antica descrilla e demonatrata coi monumenti. By L. Canind. Rome, 1834-1844. 9 vols. 8 vo. text, and 3 vols. gr. fol. Plater. Price £24.
M. Canina divides the history of ancient architecture into three epocbs and classes-the Egyptian, Greek, and Ruman-and symbolises this idea by the juxta-pusition of the pyramids and obelisks of Thebes, the Acropolis of Athens, and the Roman Capitol, represented in the title-page of bis splendid allas. As the personal representatives of these art-periods, the busts of Ramaes IIL. or Sesostris, and those of Pericles and Augustus are depicted. Siuce the great discoveries of Champoillon and his disciples, never has Egyplian architecture been treated in that deep and consequential detail as in M. Canina's fioe work; and he bas also the merit of giving the firat caronological account of Egrptian architectual mouuments. The author further assigns the times of the resorting to the different architectural organic improvemements; for instance, the ouull, derived from the very inscriptions of the munuments-which implies, besides the kuowledge of the architect, that of the hierogly phist und philologist. The next new feature of this excellent work is, that M. Canina considers the architecture of Egy Pt, and its limitroplis, as the generic and prototype-of which that of the Jews, Assyriaus, and Phoencicians is merely derivative and co-generic. To that common source, also, those very ancient monuments of Asia Minor, only lately discovered, are ascribed, whence Greek and Roman art have taken their origin. Going still further, M. Canina unitem to Egyptian architecture that of Persia, India, China, and South Aunerica, being all only the diverse modification of the same prototype, modified according to climateric, national, and social reasons und incitives. This system of uniting aft here introduced, is rich in pregnant.ideas and viewa; atill, it must be confessed, one difficult to be carried out, both in its techaical and historical bearings.

In the portion of the work treating of the atructures of Bellas, many most tasteful restorations of those now vanished erections are represented in all their origiual symmetry. Still, some weighty critics have taken umbrage at the hy pethral form which has been given to some of the fioesi temples of Greece-for instance, to that of Zeus Parhellenius at Aegina, the Partinenon, the Temple of Jupiter at Olympia, that of Apollo Epicurios at Bessä, of Neptune at Pastum, \&c. This contruversial point has vecupied much of the attentiun of architects, and been also dilated upon in the transactions of the Archmulogical Society of Athens. The opinion that the Greeks left the middie part of the cella-where the figure of the god-image stood, surrounded by valuable votations,-uuroofed, or party so, has been generally received, and M. Canina also udheres to it. Quatremère de Quincy and Wilkins tirst combated it, and C. Russ* Uas, of late, again brought it before the public. The maloquestion binges on the passage of Vitruvius, lill -"Hypoethros vero decastylos est in pronao et postico-medium autem sub divo eat sini tecto, aditusque valvarum ex utraque parte in prodao et porticu. Hujus autem exemplar Romae non est, sed Athenis octustyluan est in templo Olym-pio."-This passage is coustrued by Gerroau critics aguinst M. Canina. It is scarcely to be suppused, that the Greeks cuuld leave, such beauteous and surprising colossal sculptures as Pallas Athwna of the Parthenon, or the Jupiter Olympius, to be merely illumined by the dim light from the entrance of a cella, without any windows runoing duwn the whole length of the walls.

Among the Greek temples, which our author has so becutifully pictured, some omissions have occurred,-unavoidable, perbape, in so large a work. Amongst these, we may inention that lumic show-

[^3]temple of Jupiter Parhallenius at Aizani, described by Texier. The department of Roman architecture, an \mathbf{M}. Canina'a more immediate and autoptic province, is treated with a detail descending ioto the alighteat minutie of theory and practice. The great number of 256 plates is deroted to this portion of the work.

Narrative of the Recooery of H. M.S. Gergon. By Aethey Coopiz Ker, Commander, R.N. London : Smith, Elder, and CO. 184T. 8vo., pp. 113.

Daring the military operations of the Buenos Ayrenn army ageinat Monte Video, in 1843, a violent gele occurred, by which H. M. stomm-ship Gorgon, part of the British squadron stationed in the Biver Plate, was driven achore. The present work contains a clear, interesting, and most minute account of the unechanical means by which the vessel was rescued from her periloas position. The difficalties contended against were to formidable, and the ingennity and energy displayed in overcoming them so great, that the account given by an officer of the vescel, who appears to have had an important share in the work, possesses a general interest. To the naval officer and engineer, however, the narrative will appear of moch more importance than an interesting story : the accorate and detailed explanation of all the operations and apparratus, and the record of their comparative efficiency, brings this wort into that clase of circumstantial publications which the two professions have learned to consider invaluable. It may be added that the present moment seems bappily chosen for pub. lishing this book, when general attontion is attracted to the fate of the Great Britain.
Before analysing the part of the work reforring to the recovery of the abjp, we may be doing some service by calling attention to cortain defects of conatruction, which Lient. Key asaigns as contributing causes of the stranding of the Gorgon; they are these-lest, insufficiency of enginepower for extraordinary emergencies; 2nd, the want of nachors and cables In number and size proportioned to those of sailing vessels; 3rd, the absence of a mizen-mast. Under the first head, our author well remarks that a steam ship ought to have power sufficient for extraordinary as well es ordinary occasions. The Gorgon had oot during the gale safficient power to steam into deep water, and berely gained aeerage way. Again, the sails could not be used to bring the vessel to the wind, for from the position of the mainmast, the effect of the main trysail was neutralised by the action of the wind on the paddle-boxes, which were as much before the centre of the ship as the trysail was abatt it : had there been a mizenmant, its sall woold have had leverage to turn the vensel.
In order to understand the subsequent operations, we must consider the position of the vessel after stranding. She was fond on examination after the storm, to have rua head foremost into a sand bank, 13 feet bigh. A few feet of her stern wore still in the water, but by far the greater part of the ship rested on-and, forward, was imbedded iu-the zand. The idea of getting the ship from such a position, withoat taking her engines cot, when first expressed by her commanding officer, Capt. Hotham, subjected him to the pleasant suspicion of labouring under a fit of insanity.
The means of the recovery were mainly these : the formation of a dock, by the excaration of the aand for a distance of twenty feet from the vessel; the application of large acrews on the beach, partly to raise her vertically and partly to start her forward; the lashing of buoyant caissons to the ebip's bottom to lighten her; the hanlage by cables attached to the vessol worked by capstans on the beach ; and by other cables attached to anchors in deep water, and worked by the ship's engines.

The first of these operations was by far the most arduous, and was continued almost incessantly during the whole time occupied in recorering the vessel-upwards of five months. From the loose nature of the sand and effect of the tides, the banks of the dock frequently gave way, and the labour of a month was andone in a tow bours. A great part of the excavations were effected manually, but an ingerions machine, constructed upon the spot, was also used for the same purpose. To a fulcrum on elther side of a barge was fixed a long lever, with a capacious mod-bag at the end of it; the mouth of the bag being kept open by a hoop, to which chaiss were attached to drag it through the sand : the chains were worked by winches in the extremity of the barge. By these simple means, 4h tons were cleared away in an hour, and the apparatas was sometimes kepl in use night and day for several weeks together. The great dififoulty bowever was not to get the mud oat, but to keep it oot. A resident civit engineer uadertook the comatruction of a dam of piles of three-iach plank, driven four or foe feet into the sand;-the first high tido carried them all
away. Another dam, however, constructed on the starbourd side of the vessel, where the water had little force, answered its purpose tolerably well, the piles forming it being driven deeply into the sand. A complete bulwark against incursions of the sand was subsequeatly constrected by mooring alonguide the vessel three large iron boats, which together formed a breakwater 120 feet in leogth.
The application of preasore by means of large ecrews to force the remed forward seems to have been a novel one. The employment of vertical screws in transporting and lannohing ressels had been already prectised, but bere for the firat time screws were used to propel the ship as well as raise it. Only a limited number of cables conld be obtained for hanting, and the aggregate strain which these would bear without breaking was totally inadeqnato to move the ponderoas mase to which they were attached. The application of the screma therofore effected that which without thom would have been impracticable. The great difficulty was to obtain a firm parchase for them, as the abotmeats on the loose foandation, against which they acted, were liable to give way. This dificulty was overcome by imbedding enornoos blocks of wood deep in the sand, so as to diatribato the back-pressare of the screws over a large surface.

Oar author calculates that a force of about 550 toas whe applied to start the ship forward- 300 tons from the pressure of screws, and the tomaiader from the teasion of cables. The serews were all inclined to the horizontal, so that their force was partly vertical, partly horizontal. The pressure resolved in the former direction was about 130 tons ; in addition to this upward force there were 470 tons arising from the buoyancy of large camels, caissons, boilers, tanks, and barrels attached to the ship's bottom; so that the total force tonding to raise the ship was about 600 tons. We cannot parsue the narrative further than to state that by theso means, after nearly half a year of forethought and invention on the part of the officers, and unceasing industry oo the part of the men (nearly 800 in all), the veasal was restored to her native element, withoot any injury, anless we except the following very trivial one, which we allude to merely becance it arose from a cause worthy of the attention of the practical engineer:-
"At one of our previous attempts to move the ship, when oo impression could be made on her, beyond giving her a lift to port of aboat 10°, tbe sodden heel had fractored the waste water and injection pipen, thereby showing that the ship must be slighty strained somewhere; but, as thee pipes are of cast jron and are rigidly bolted to the ship's sida, a very slight jeris would be sufficient to break them; soon afterwards, however, when the ship was brought upright by the camels, the broken parts resumed their original position, and so exactly, that the fractore could not be discoverod without very minute inspection, and in that state were easily and eficiently repaired; this ahowed what a trifling strain wes safficient to break these pipes, and it would appear that in the event of a steamer taking the gromad under any circumstances, should she not be so atrongly built as the Gorgon, these vital parts of the engine would be liable to serious injury-surely a remedy for this might readily be found, by fitting these pipes with a sliding Joint, and also, instead of boltiug the extremities to the ship's side, lese liability to fractore woold be incurred, by fitling it with a slide and fange, giving the extremity of the pipe free motion in every direction, and making the daameter of the bule in the ship's side, something leas then that of the pipe."

The principal prectical value of this book arises from the minatenese with which the information ls given. There are eightoen lithographic plates, and every pieco of apparatus of any importance is carefully do linented and described in a detailed manner. The information respecting admeasurements also is generally complete, and the anthor seems to possess considerable knowledge of theoretical mechenics.

The Colonsewne, St. Peter'a, The Pantheon, The Formon ; dracen and ongrubed by Domanioho Amid, Membro d'Onore delle Cougregazione de Virtnosi al Pantheon. Size 22 inches by 10 inches.

These spleodid engravinge, illuatrative of Rome, have just been imponted into this conatry from Rome, by Mesers. Groombridge and Sons; they are admirably drawn and engraved in the line manner, by Domenicho Amici, an Italian engraver of considerable merit; they are the commencement of a series. The above four prints are well suited to the studio of the archbs teot.

4 Prectical Treatise an Perepection Simplified. By Grozar Prene. Weale, 1846. 18mo. pp. 109. Lithographic plater.
This treatise is addressed to those who wish to acquire only a limited knowledge of perapective, but to acquire that little correctly. The abject of the author has been to reader the work as coccice as pomiblo, and to
ant every saperinons line: he hat attained this object, without saoribcing brevity. To those who merely wish to sketch from mature in correct permpective, without attaining the geometrical precision of the architectaral draghtsman, this little Manoal will be an excellent gride.

The Literary and Scientific Register and Almanach for 1847. By J. W. G. Guroz. This annual is replete with highly useful scieatific information.

SIR JOHN SOANE.

For the following memoir we are indebted to the laboars of Mr. George Belloy, the able Curator of the Soenean Museum ; It was pabliched some time sisee an an Appendix to a Memoir of Sir John Soane, by Mr. Domaldeon, and has now reeeired some triting corrections to render it mare perfect.
1753. September 10, born near Reading.
1768. Bntered the affice of Mr. George Dance.
1772. Exhibited his first drawing at the fourth exhibition of the Royal deademy, "Front of a nobleman's town-honse."
1772. Obtained the silver medal at the R. A. for tha beat drawing of the front of the Benqueting House at Whitehall.
1774. An unncceaful competitor for the gold medal at the R. A.
1776. Gained the gold medal for the best design for a trinmphal bridge. 1777. Left London for Italy.
1778. Hia first publication, antitled, "Dasigns in Architecture," appeared.
1780. Blected memher of the Acmdemy of Fine Art at Parms, and retarned to London from Itely in Jane.
1784. Designed and executed extemaive alterations and additions to Mulgetve Hall, near Whitby, Yorkshire, for the Earl of Molgrave-and to Ryston Hall; designed a house for the Rev. G. Gooch, Norfolk; Tendering Hall, Suffolk, for Admiral Sir Joshua Rowloy.

1785-8. Desizned a house at Shottisham, near Norwioh, for Robert Fellowes, Esq.; Letton Hall, for B. G. Dillingham, Beq.

1788, October 16. Appeinted arcbitect and surveyor to the Bank of Baglend.

1788-1794. Detigned alterations and additions to Norwich Castle.
1789-90. Rebuilt Blackfriars Bridge, at Norwich; deaigned and executed ertensive additions to Chillington, the seat of Mr. Gifford; designed a house for the Rev. Charles Collyer, Ganthorpe ; deaigned extenaive alterations and -dditions to Bentley Priory, near Stanmore, for the Marquia of Abercorn.

1790-4. Buckingham House, in Pall Mall, for the Marquis of Buck. ingham, and a town mansion for the Doke of Leeds, in St. James's-iquare.

1790-9. Designed alterations and additions to Moggerhanger House, Bedfordshire, the seat of Godirey Thornton, Beq.
1791. Deaigned extensive alterations and additions to Skelton Castle, for John Wharton, Beq.
1791. Appointed Clerk of the Works to St. Jamen's Palace, the two Eonses of Yerliament, and other pablic buildings in Westminater.

1791-2. Designed and executed alterations and additions to Barons Court, in Ireland, a seat of the Marquis of Abercorn.

1791-3. Detigned and executed alterations and additiont to Wimpole, the seat of the Earl of Hard wicke.
1792. Designed and built his own house, No. 12, Lincolg's-inn-fields.
1792. Desigaed and executed alterations and additions to Sulby Lodge, Korthamptonahire, the seat of Rend Payne, Baq.
1793. Published a work, entilled, "Sketches in Architecture."

1793-6. Designed and executed Tyringham Hall, dear Newport Pagnel, for Wro. Praed, Esq.

1794-1802. Detigned and executed a house at Reading, for W. B. Simmonds, Beq.
1794. Designed and executed the entrance gates and lodge in Hyde-park, opposite Great Cumberland-atreet (since taken down) ; a house for the Hon. Mrs. Yorke, near Southampton.
1795. Became a member of the Society of Antiquarien; elected Assodate of the Royal Academy; appointed architect for new buildinge and repairs in the royal parks, moods, and forests, July; designed and execused ertensive alterations and additions at Bagden Honse, for the Earl of Ailesbury.
1796. Designed and executed extensive alterations and additions at Hinmon St. George, for Earl Panlett ; deaigned and arecnted a house at Beading, for L. Auatwick, Esq.
1797.9. Designed and execnted alterations and additions to Holwood Hoose, the reat of the Bight Hod. W. Pitt.

1797-8. Erected a house in Stratton-atreet, Picendilly, for Col. Graham; designed and orecoted alterations and additions to a house for the Countess ci Pembroke, Grosvenor-equare.
1799. Oftered himsalf candidate for the surveyorship of the Bant Indis Company; pablished a letter to the Earl Spencer, EG.

1799-1808. Designed and executed exteasive alterations and additions to a bonse in St. Jamea'cetquare, for Samuel Thornton, Req.

1800-1. Designed and executed axtomaive alterations and additions to 4 Hho, Brale, the meat of W. R Certwight, Beq.
1801. Deaigned and execated the banking-house in Flectatreet, for Mesarn, Praeds and Co.
1802. Rleoted Royal Academicina; detigned and executed alterations and additions at Albury Park, the seat of Samuel Thornton, Esq.; ditto, at Cricket Lodge, near Chard, the seat of the Viscount Bridport.
1804. Deaifaed and execnted the obelink in the market-place at Reading, erected at the expense of B. Simeon, Baq.; built a large house, count-ing-hones, wrehousea, \&c., in Fountain-court. Aldermanbory, for W. A. Jackson, Beq.; a villa, for himself, at Reling; deaigned and executed alterations and addition to Port Eliot, St. Germans, Cormwell, the seat of Lord Eliot, alterwarde Barl of 8t. Germane.
1804-1807. Designed and executed alterations and additions at Rameney Abbey, Huntingdonehire, the seat of W. H. Pellowes, Eag.

1804-1806. Denigned and executed alterations and additions to a honse at Roehampton, for John Thomen, Esq.

1805-1819. Dexigned and executed alterations and additions to a house in St. James's-square, for Lord Bliot, and the Earl of St. Germang.

1805-1806. Deaigned and erecuted the Gothic Library, at Stowe Hoase, Buck.

1806-1807. Alterations and additione to Macartacy Hurec, Bleckhemsh, the seat of the Hon. G. P. Lyttleton.
1806. Elected profestor of architectore, in the Royal Academy.

1806-1811. Erected manaion at Moggerhanger, in Bedfordshire, for Stophen Thornton, Eeq.
1807. Brected a monnmeatal tomb, in the church-yard, at Leytanatone, in Eseex, for Samuel Bosanquet, Zeq.; appointed clerk of the works of the Royal Hospith, at Chelses.
1808. Made deaigna for the completion of Taymonth Castle, the aest of the Barl of Breadalbane; for the Royal Academical Institotion, at Belfast; deaigned and executed a mansoleum, adjoining the house of Mr. Desenfans; in Charlutte-street, Portland-place.

1808-1810. Designed and executed the five new houses in Princes-street, forming "New Bant Buildinga."
1809. Designed and arecuted the new infrmary, at Chelean Hospital; 27 th March, read the firut lectoros Doyal Academy.
1810. Repeated the firti lectare, Royal Academy, January 8 ; lectures stopped, at the fourth lecture, on Janary 29 ; deaigned and oxecuted alterations and additiont to Whitley Abbey, near Coventry, the seat of the Right Hon. Lord Hood.
1811. Deaigned and executed the entranee to the London Dock Company House, and to the counting-honse of Messrs. Thellusen and Co., in Mecting-house-court, Old Jewry.
1812. January 9, Lectures renumed, Royal Academy; designed and executed a bouse in Park-lane, for Mr. Robins ; alterations and additions to Evertun-house, Bedfordshire, the seat of William Antell, Esq.; designed and built his own house, 13, Lincoln'a-ino-felda ; the New Gallery, at Dulvich College, to receive the collection of pictures, bequeathod by Sir Prancis Bourgeoin, and a manolenom, wherein are deponited the remain of Sir P. Bourgeois and Mr. and Mrs. Desenfans.
1813. Elected Grand Saperintendent of Works to the United Fraternity of Freemenons.
1813-1815. Deaigned and built a house for the Rev. G. Monins, at Ringwould, dear Deal.
1816. Deaigned and erecated additions to the Earl of Hardwicte's hone in St. Jamer's-equare; appointed one of the atteched architecte to the Oftice of Works.

1816-1817. Dengred and built a farm-house, for Thomas Swingerton, Esq., it Butterton, in Staffordshire.
1818. Designed and executed extensive alterations and additiona to the banking-house of Measrs. Grote, Prescott, and Co., in Threadneedie-street.
1818. Alterations and additiops $\$ 0$ Marden Hall, mear Hertford, the seat of Geerge Thornton, Esq.

1818-1819. Designed and built the National Debt Redemption and Life Anguities Office, in the Old Jewry.

1820-1821. Deaigned and built houses in Regent-atreet, for Mr. Roblns, and others.

1820-22. Detignod and superintended the re-building of Wotton Hoase, in Buckinghamahire, the seat of the Marquis of Chandos.

1820-1827. Deaigned and built the new law courta, at Weatminster.
1821. Chosen a Pellow of the Royal Society; designed and executed Pelwall House, neer Market Drayton, for Parney Sillitoe, Esq.
1822. Denigned and arecuted a new chnrch at Walworth, in the parish of St. Mary, Newington.

1822-1824. Designed and executed the new Scala Regia, Royal Gallery, and Library, in the House of Lords.
1824. Deaigned and executed Trisity charch, St. Marylebone; a new chapel in the parish of St. Matthew, Bethnal-green,

1824-7. Deaigned and erected tha new officet for the Board of Trade, and the Privy Conncil offices.
1823. Deaigned and erected additional committes-roome, House of Lords.
1826. Deaigned and erected additional committee-rooms and a new libsery for the House of Commons; the new grand Manonic Hall, adjoining Ireemason's Hall, in Great Queen-street.
1827. Pxinted for private distribation "Denigas for public and private buildinge.
1829. Published "a brief statement of the proceedinga reapecting the new law courts, at Weatminater."

1829-1833. Designed and execnted the New State Paper Office in Dukeatreet, Westminster.
1831. Deaigned and executed the ante-room to the Sculptare Gallery of Sir Prancis Cbantry, R. A.; September 21, received the honour of Knighthood from his Majeaty King Williem IV.
1832. Printed for private distribation, "Deacription of the house and museum on the north aide of Lidcoln's-inn.fields."
1833. Oct. 16. Resigned the appointment of Arehitect to the Bank.
1833. April 20. Procured an Act of Parliament for settling his musenm, Kibrary, and works of art in Lincoln's-ino.fields, for the bedefit of the pablic.
1835. March. Presented with impressions in hronze, silver, and gold, of a medal, struck in his honoar by the architects of Bngland; received a medal from the Société libre den Beaux Arts at Paris; elected member of the Anmdemy of Fine Arts at Vipone.
1836. Blected consigliere corrispondente of the Academy of Fine Arta at Parma; elected honorary memher of the Société libre des Beaux Arta, at Paris, December 9.
1837. January 20. Expired at his house in Lincoln't-lon-fields.

FROCEEDIECS OF BCIENTMFIO BOOXITREB.

HARBOUR OF OSTIA.

On the Ancient Harbour of Ostia. Paper read at the Iustitution of Civil Engineers, by Siz John Rennie, Prenident.

New Harbour of Ostia -The river Tiber appears to have been osed exclusively as the port of Rome antil the reign of the Emperor Clandius, who, conceiring it to be utterly hopeless to improve it againat the obstacles of oatore, conceived the bold and original idea of making an entirely oew port altogether indepeadeat of the Tiber. Having once come to tbis determination, he communicated his views to his engineers, and asked their opinion as to the sum which would be required to carry it ioto effect; they replied that the sum woold bo so great that if be knew the amount be would never think of uadertaking it. Not at all discouraged by this answer, which, on the contrary, only served to confirm Claudius in bis resolution, he ordered the necessary preparations to be made for commenring the work. The situation selected for the new harbour, was a litale to tbe northward of the then mouth of the Tiber, with the entrance pointing N.W., by which means it woald be better protected against the montherly and weaterly gales, and farther removed from the deposit of alluvial matter brought down by the Tiber; still, however, it was too near to be effectual, for the projection of the new works only served as jetties to check the corrent alooy the shore, and thos to occasion the accumulation of a deposit as great as that occorring at the mouth of the Tiber itself. It conld hardiy, however, be expected that the knowledge of the day was sufficient to enable the eogineers to predict all the consequences of this state of things. The effects of the Tiber were evident, and it was naturally concluded, that by abandoning that river, all danger from deposit would be avoided, and it was ooly by experieoce that their error was digcovered. Accordingly, the Emperor Claudius determined to construct an entirely new harbour, independent of the Tiber, but at the same time having a converion with it, to be used according to circumstances.

The ancient writers agree generally as to the principles of the design, construction, and extent of the celebrated port of Clandius. The general plan of the harbour is shown in fig. 1. It consisted of an extensive lowwater onter harbour, B, and a small inner harbour, F, The onter harbour, B, was formed by two artificial moles, DE, of 1900 feet in length, projecting oearly at right angles from the shore; each mole consisted of two parts or arms ; the one nearest to the shore was perfectly straight for about 950 feet, the remainder formed a quadrant of a circle 1800 feet long, the breadth, which was equal throughout the whole length, being 180 feet. Between the outer extremities of the two piers or moles was a distance, \mathbf{C}, of about 1100 feet. Immediately in the centre of the entrance, or opening between the two moles, was an isolated or detached mole, 780 feet long and 400 feet wide, forming as it were an island, and leaving an opening at emeh extremity between it and the opposite pier, or mole, of about 140 feet, thus giving a double entrance to the harbour. The distance between the two piers at the shore, or the tolal length of the barbour, was about 3000 feet, the width 2330 feet, and the surface extending over about 180 acres; about one-third of this space, however, was excavated out of the main land. Immediately in front of the outer entrance, there wus a small inner harbour, F, 1200 feet long and 520 feet wide, covering an area of abont 7 acres; this inner harbour was divided from the outer harbour by another isolated or detached roole, G, of the same length as the onter one, with an entrance at each end 120 feet wide.

1 mmediately behind the harbour were iwo parallel cuts or canala, H J, commanicating both with the Tiber and Mediterrranean. The one nearest to the harbour communicated with it at each end of the loaer harbour, so that the vessels could proceed either up the Tiber to Rome, or they might go to sea, or in fact might make use of it eitber for entrance or departore as the wind and other circumatances might be favourable. The other
canal was quite independent of the harbour and of the firt canal. It was probably osed for ressels going direct to Rome, or proceeding to sea without stopping at the harbour. Across both canals there were communicating bridges and probably stop gatea, particularly on the one next to the harboer, so that the waters of the Tiber might be turned into the harbour,

or be prevented from communicatiog with it, according as circumataboes might render suck steps advisable. The lock does not appear to have been then knowo. The circular part of the northern outer mole was open, or constructed upon arches, so as to give free access to the current, but was at the same time built sufficiently solid to break the sea and produce tranquility within. The circular part of the sonthern outer mole was solid, to prevent the deposit of the Tiber from entering the harbour. At the extremities of the detached mole, and also of the outer and inner moles, were towers for the purpose of defence, and for drawing strong chains ecrose the entrances, in order to preveat the access and egress of vessels when necessary; thus convertiog the port into a close harbour ($\lambda \mu \eta y$ n入etoroo), as used by the Phoenicians at Tyre, and subsequently adopted by the Greeks and Romans. The upper part of the moles was covered with sheds or colonnades, which were used probably for landing goods and for promenades; the interior harbour was surrounded with magazines and warehouses. In the centre of the detached mole, at the entrance to the onter barhour, was placed the great lighthouse, described by Suetonins; the base of which rested upon piles, and was founded by a caisson, formed ont of the vessel which brought the great obelisk from Egypt. The depth of this harboar does not appear, but judging from the nature of the coast and the extent to which the piers were carried out into the see, it could not have been less than from 15 feet to 20 feet, at low water, and that of the inner harbour not less than 8 feet to 10 feet, to have enabled it to accom. modate the ressels used at the time.

After the reign of Cladius, the inner harbour was found too small and inconvenient; Trajan therefore ealarged it by making an entirely nem inner harbour or hasin, K. This was of an hexagonal form, each aide being 1160 feet, the diameter being about 1800 feet, and the superficial area being abont 70 acres. The entrance between it and the outer harbour was 120 feet in widuh, and was formed by part of the inner canal made by Claudius to commonicate both with his harbour and the Tiber. The remainder of this canal and of the other one by Claudius, was filled up, and a now one, L, nearly parallel to them, was made about 400 feet to 500 feet pearer to the Tiber, communicating with the hexagnoal basin, and was no doubt used for the same purpose as the canals of Clandius before mentioned. The innor harbour was also surrounded with quage and storehouses ofon
an extensive seale, condaining all the requisites for carrying on a considir. able tradn for the supply of Rome, and for the construction and maintenance of the feets, which were stationed in this quarter for the protertion of the capital, as wrill as for the purpose of sending expeditions to the varions deparments of the widely extended Roman Empire. The whole of the berbour was surrounded by an extensive and lofty fortified wall, fanked with towers, quite independent of the town of Ostia, which was slao surrounded by a wall.

Old Port filled ap. -The port of Claudius Csesar has now become comFletely filled up by the allorial matter bronght in by the littoral curreate, an well as by the deposit of the Tiber, and is now abont a mile from the store. We cannot be surprised at this result, but at the same time we mast admira the great skill. ingenuity, and perseverauce by which it wan attempted at that early period, to overcome by means of art the obstacles interpoed by nature.

Dredging-It is a question well worthy of serious consideration how far this principle may be carried with advantage, or where the obstacles isterpoeed by natural canses become too powerful for the comparatively feeble resonrces of art. The Clyde at Glasgow, and the Liffey at Dublin, ere extroordinary examples of what may be effected by this system. The harbours also of Boulogne, Calais, Dunkerque, and Ostend have all been materially improved in this manner; it still, however, remains to be proved how moch forther this system can be carried with advantage at these ports. It is doubsful whether the ancients were acquainted with, or had applied the modera system of penaing ap water in large reserroirs, and then discharging it with increased velocity by means of slnices, so as to enable it to act with more effect ln scouring and deepening oavigable channels: it most, however, be recollected that this system can only be practised with edvantage when there is a considerable rise of tide (which does not take place in the Mediterrenean), for otherwise it is difficult to oblain sufficient head or fall to discharge the water from the reservoirs with the required velocity.

In the second place, as regards the barboar of Claudins, there was chearly a great effect, accompanied by considerable boldness, as well as mgenuity, both in the design and execution. He mast have foreseen, Jndging from past experience, that it was in rein to contend farther with the difficulties of the Tiber, and determined at once to get rid of them by making an entirely new harbour, which he anticipated would be entirely free from similar objections, and yet, at the aame time, would be aufficiently pear to commnaicate with the Tiber, and to take advantage of its navigatian to Kome. The works were designed and constructed npon a magnifcent scale, comprising almost every principle, both in design and construction, adopted at the present time, with the exception of the open or arched mole, which was peculiar to the ancients. This principle is certainly ingenions, and is well designed to obviate one of the must serions difficulties in maintainıg a harbonr apon a flat alluvial coast like that of Ostia. It might be applied with advantage to many cases in modern times, and it is singular that it has not been more atudied, although it must be admitted, that the great rise of tide and the stormy nature of the northern seas (circomstances which do not exist in the Mediterravena) interpose practical difficullies in carrying the system into effect. It has been tried with advantage upon a small scale in the onter harbonr of Ramsgate, and there are many cases where it might prove equally applicable. The double entrance, when circumstances admit of ite being tried, is very valuable, and where it cannot be ased, such a particular form of entrance is desirable as would enable vessels under sail to enter and depart at all times; and at the eame time wonld prevent too great an increase of sea. Such a principle was adopted by the late Mr. Rennic at Donaghadee, and was also proposed by him at Kingatown.

The curved form of the onter piers, although well calculated to facilitate the passage of the current, was ill adapted to break the waves; on the contrary, it tended rather to increase their force, particularly at the entrance, where tranquility was mach required : the angular form would therefore have answered this parpose better.

Conatrwction.-As regands construction in Ostis, there is an illnstration of almost every principle in use at the present time; the rubble thrown promienously into the sea to form its own slope, according to apecific gravity of the materials and the action of the waves upon them; the solid vertical wall of masonry with arches resting upon piers, founded by means of poszolano and rubble mixed in caissons; and the caisson and piled foandation for the light-honse on the onter detached mole. There is no account of the diving-bell having been applied to the parpose of building nader water, but the use of the material pozeolano, which abonads in Italy, was well understood and generally adopted. The mode employed in using it was to mix the pozzolano in a moist state with certain proportions of lime and sanall pieces of atone, then to throw the whole mass into a dam or caisson. constructed in the form required, and there to leave it until it had set aufficiently hard; the caisson might then be removed, and the mass of conerete left atanding, and which became more solid the longer it remained, as the rujns of Caligula's Bridge bear ample teatimony. The same system is parsued in many of the ports of Italy at the present day. The French at their dew moles at Algiers and Cherbourg, are said to have extended this syaten with advantage; yet its meris, as compared with masees of matural stone, atill require the test of time to prove its saperiority.* Vitravias, in his Chapter on Harbours, especially describes the different

[^4]model of operation before mentioned, with repect to rabble, and poxzolano walls, coffer-dams, piling, \&c.

From the above account of the ancient port of Ostia, the following general conclusions may be drawn :-

First. That the ancients were well acquainted with the general primeiples of design and construction of harbours.

Secondly. That as regards the mouth of the Tiber. they carried the improvements as far as was practicable, and that having arrived at that point, their only rerource was to construct an entirely new port elsewhere, free from the difficulties by which the Tiber was surrounded.

Thirdly. That in flat alluvial and deeply embayed coasts like those adjacent to the Tiber, it is a matter of the first consequence to ascertain by practical experience, the extent to which the coast line may be expected to advance, from the construction of works at the mouth of a river. This point being first decided, if further improvements be required, then the question of a new harbour free from the difficulties of the old river port may be entertained; and its construction should be so designed as to give the required protection, without incurring the risk of an injurions accumnlation of deposit. The port of Clundius, although it was well designed and constructed in itself, was too near the month of the Tiber to be effeo tunl, and in fact it acted like a great jetty or continuation of the old woilas at the mouth of the Tiber ; thereby obslructing the free action of the current and producing atagnation on both sides, and by thas, to a certain estent, facilitating the deponit of alluvial matter, which it was intended to obviate, it became overwhelmed and destroyed.

Fourthly. The fate of the port of Claudins and Trajan demonstreted the impracticability of making an effectual harboar near the mouth of the Tiber. Trajan therefore determined to select an entirely new site free from the dificulties of the old, and, with that view, constructed the wrell known port of Civitu Vecchia, anciently called Centum Cellas, which has been preserved to the present time, a monnment of skill and ingenuity in this department of construction. Upon the whole, therefore, the history of the port of Ostia is replete with instraction, as we at once see exemplified nearly all the varions departmente of barbonr construction, both theoretical and practical, together with their usunal results, and it is only by careful study of this and similar examples, combined with a curreet knowledge of the various local circumstances, that we cap obtain a oomplete knowledge of this difficult but highly useful and importunt branch of Civil Engineering.

THE CASTLE OF OSTIA.

[Prom a Sketch by Mr. Miplogilie in 1844.]
Remarks,-After the paper was read, the following ubserrations wrere made:-

Mr. F. Ginss had listened with much interent to the excellent paper which had been read; it wat full of inatructive, practical facts. He had been forclbly strack with the similarity of the resulta described, to the effects Which were daily under the observation of engineers, in the harboun of the south coast of England. Rye, Dover, and Shoreham, might be quoted as examplet. Of the ancient harbuar of Rye, scarcely any traces remained. Mr. Giles was sent to Dover by the late Mr. Rennie, during the last year of the Pitt adminiatration, in 1805, with instractions to make a survey, for the parpose of forming an extenaive harbour of refuge for the Channel fleet. The design was not proceeded with, but certain improvements were commenced, with the view of removing the mase of shingle on the bar, and preventing a further accumulation. Mr. Waller had since done much for the further improvement of the harboar, hy extending the backwater, and affording greater power of aconring by slaices. There was atill great room for improvement; and, although there wes at present rarely anch an accumulation of shingle acr ost the entrence, after a atom, as to close it up, which frequently occurred in former times : yet it was evident, that wherever piers or other obstacles were projected directly from the shore, the shingle would ccenmalate againat them, and turning the point, would be thrown, in the form of a ber, acrost the entrance. Thia had become wo evident, that the
attention of eagineers was now dirseted to the formation of a harbong of refuge, which must, in his opinion, be detached from the shore, in order to permit the free run of the shingle. Such a harbour, or even a good breakwater, behind which steamers could take shelter, would be extremely usoful, particolarly in casc of war, as from the proximity to the French coset, Dover would require special protection. There were several harbonrs where, in the course of his practice, Mr. Giles had seen these views exemplied. Bridport harbour consisted of two small piers and open timber jetties, through which the shingle was carried, and was depotited in the entrance. When he was called apon to devise methodis of improvement, be directed the open jettios to be filled up with rabble wrork, and by astablishing a ayatem of acouring by sluices, the eccumulation wht carried away. Shoreham harbour was much In the asme atate, and in apite of all that had been done, it atill remained a bar harbour. The harbour of Sunderiand was liable to be choked up with and, and bot for the scour of the river Wear, it conld with diffleulty be kept open. It, however, was atill a bar harbour, and oeither in it, nor in any other of the ports that had been mentioned, conld vemole be received at low water; in fret, only doring the time the tide was up. It would alwaya be observed, that upon cossts which were subject to the shifting of shingle, and, or mud, any solid projection would inevitably cause effect analogous to thowe which had been mentioned; and to which might be added, the instances of the works of the herbour of Conrtown, County Werfard, 00 mmenced by Mr. Nimmo, and continued by Mr. Giles.

8ir Journ Remnes, President, said, that the ehiof object he had la view, in bringing the history of the ancient pert of Ortia before the Inettietion Fas, independently of the interest which atteched to sach extencive writes, Fhich had failed so entirely from natural causes, to direct the attention of the members to the irmportant question of the effeot of the action of tides, and of rivers, in the formation of deltas, shoalh, and bars, at the entrancea of harbours. Soms inotances had been given of a few of the English harboura, but the opponite conste of France and Holland exbibited, in a more marked degree, the effects of this action, not only to the barn of the harbours, but in the formation of banke parallel with the shore. The ports of Donkerque, Calais, Boulogne, and Havre, might be especially mentioned. In all of them, in apite of continued extension of the jetties, and constant attention to the works, the aceumulation of matter at the entrance extended with the new works. Havie whet perhape, the moat extraordiaary inatance. The cturrent, at the anfrance, was at times to trong, that a powerfol ateam vesel, anch is the "Phcenix," had found moch difficulty in entering the harbour.

The formation of the Goodwin Sands was a aubject of intereating observation. There conld not be any doubt of these sands being formed by the action of the eddies of the tide and the river Thamen; an attentive atudy of the position, with reapect to the headlands near, the currenta of the river and the tidal waters, bearing in mind the direction of the prevailing winds, enabled a reasonable colotion of the problem to be arrived at.

Dover barbour was a curions example of the effects of the motion of ahingle, which was produced from the debris of the fallen chalk clitif, the finte of which formed the pabbles, and the chall and earth composed the ailt. In the time of Henry VIIL, Dover bay was inatanced as being very tae, and having very deep water. The prevailing winds caused the shingle and silt to be carried to and tro treely along the abore. As soon as an obatruction was offered by piers, the ahingle, having no longer a free and unrestricted courte, sccumulated across the ends of the piers, forming an embankment enclosing one side of the lake, which was repleniohed at each tide, until it became so extenvive as to burat through the bank, and scoured everything before it. Constant endeavoura had been mede, and in some instances suecessfally, to improve the harbour by extending the piers, but, as had been atated, very mach jet remained to be done, to form a good harbour at Dover.

It ahould be remarked perticularly in the paper, that one of the leading features in the worksat Oatis, was the conutruction of the molea upon arches, below the line of the low-water mark, so that the molen afforded atill water for the ressels, while the arcbes permitted the allovial matter to be carried through by the current. The aame aystem had been adopted at Pozzolana, in the mole called Caligola's Bridge, in which conerete was used for the building. Sir John Rennie was of opinlon, that this aystem of conatruction might be very advantageonaly adopted in many aituatlons, and he had fre. quently proposed it. At Carrickfergue he deaigned two solid breakwaters to leep off the run of the sea on the most exposed slde, while from the thore at right angles to it, and pointing to the contre of the breakwater, an arched mole would bave been built, betides which vensels would lie, at all times of tide; the run of the shingle along the thore, weuld thas bave been verg alightly impeded.

The Italian harbours denerved very particularly the atudy of ongineers. The port of Genos had been badly deaigned, and whas comatankly embarreased by the deposit in it. Ancona being nituated on a promontory hed leas deponit. At Ravenna the harbour had been nearly dentroyed. The port of Venice was almost entirely kept open by dredging by manal labour, asiated by the moderate rise of tide at particolar ceasome. In the Lagunes, the socomulation of allavial matter was immenee. A canal wha constrocted entirely round the Lagrases, with locks and slvices, to edmit the freah water when olear, by which means a power for reouring was obtained, and the channel wra kapt opas. Civita Veochle wat principally Indobted to ite poel.
than for being prevarred from the allavial deponit, which wes folt wo weroch all aloag the coant.

Mr. Trionold was struck with the apparest similarity between the harbome of Eandwich and that of anciant Ontin, both of which had friled from the anme canses; wherem Ramgate was, like Civita Vecchia, an instance of the ad vantage of a proper aelection of a site for a harboar. The port of Dubl. might be aleo inetanced as another erample of comperative fuilare; while that at Kingatown was altogether as succesoful, at he believed it was alsoest entiraly tree from and. The syntem of soouring away acenmalations of atad and silt from herbours, by means of large retervoirs, did not appear to be anficiently resorted to. Mr. Thorold wes of opinion, that in some canes. great adrantage would reault from the applioation of the stease engine acd the tash wheol, for raining water into the weouring rearroins. In the fews of Lincolnshire, and near Yarmouth, he had found that arrangement of nenchinery very economical for draining. It had been applied in the river eutting of the Yarmouth and Norwich railway, after it had been partially alled by a storm. The cntting was about half-m-mila in leagth, 100 feet wide at the top, and 20 feot in width at the bottom, and was 10 feot in depth. It was complotely drained in 36 hours, with an expenditure of only 5 toss of coals. A reverroir of thoce dimensions would be found a great maintace for cocuring a harbour, when any estre accumulation had oocurred.

ANCIENT DECORATIVE ART.

At the Archsological Institute was read the following interesting paper on the verious Amaient Decorative Arts and Process of Forking in Metche, emeh es Chasing, Embosing, Niello, Filagree, fc. By Mr. Hodeon Tva: nER.
The paper contaived rather a general view of the subject than detaila mepeofing the several processes in metallnrgy enciontly nsed. The writer obeerved that in the majority of instances we can now show scarcely more than the sames whereby numerons artificial procenses connected with working in metale daring the medieval period were designated, in evidecce of their having bee practised. The variety, however, of these distinctive appellations reodered it desirable that a catalogue of the descriptions whereby they were distinguished in commercial trafic should be formed, in order that disticotive namen, as yet uniatelligible, may be appropriated to the eeveral ohjects of curions workmaoship exbibited from time to time To the British antiquary it wonld be an attainment of great interest if his researches enabled him to identify the method of working in gold or silvet practised at an early period in this conatry, and kDown by repatation to other parts of Europe as the work of England, opws Anglicum, and a variety of it familiarly designated as the work of Durham, opws Dunolmena. It would be equally desirable to be enahled to classify such examples of foreign workmanship as may be found in our ialand by their proper designations; as the work of the Saracens, opus Saracenorwm, -or the opue Gracmin,-the opus Veneticum, work of Venice,-the work of Tours, opus Twronense,-or of Cypros, opus Cyprease. Any attempt towards such a classification would posseas more than a merely carions motiquarian ioterest ; since it could not fail to throw important light on the history of commerce end international relations in early times. Moreover, the extent to which objects of personal ornament and prodnctions of a costly charsoter were ased in a country afforded valuable collateral ovidence of the actual state of society. It is obvious that any considerable introduction of foreign luxaries during the infancy of commerce mast have been the resolt of some influential circumatances by whloh the taste of the time was fized or modifled; and therefore the prevalent esteem for any particular objects of foreign production may be taken as evidence of commercial and friendly relation at that period. The elevation of an ecclesiastic of Greek origin, Theodoras, to the see of Canterbury, in the seventh century, must have tended to the introduction of the arts and ohoicer prodactions of Greece or Aia, well as of the dogmas or ceremonial peculiarities of tho Eastern Chnrch : and it was in sacred ornaments that the most costly processes of art were lavishly displayed. The practice of performing pilgrimages to Rome, the Holy Sepulcbre, and other remote places-where the rich produce of rarious countries was displayed to view, and an emporiam opened for the apply of the most remote regions of Christian Earope,-doubtless led to the introduction of numerous works of foreign artificers into this country. By such pilgrimages, even more perhape than by commercial trafic, were the prodoctions of Italy, Greece, or the East, imported into our conntry in earlier times.

Mr. Turner observed that we have acaroely any data in regard to the actual practising of the more curious processes of motallargy, either by foreignern or nativen, in England, in very early times. It may be reaconably surmised that the most precious existing example of goldsmiths' work-the Alfred Jewel, preserved at Oxford-was fabricated in this conotry; though come antiqnaries consider its enamel as of oriental work, while the gold setting, richly olaborated in filagree, may donbtiess be Eoglish. Howover, it was to be remembered that, whilst the art was chieff subcervient to ecoleainstional purpoees, it was aleo chiety practised by ecolesianties; and that through their commonication with their foreign brethren, the knowledge of carions artistio processes would be diffased throughout thetr order, and carofully preserved. Thas, the arrival of some Groek soolyto with Archblshop Theodorns affords a reasonable ground for
explaining the fatrodection of arta jato our counfry which are undoubtedly of oriental charaoter. It whas toaroely needfol to remind the archaoologist that ecelesiantics of the higbest grade did not account therosejves deseaned by practising the cratto in which ebey had attained to eminent sitl as simple brethren of the convent. Bt. Dungtan in England, and 8t. Plot, bishop of Noyod, in Frabee, who lived at the close of the sixth cedtory, ere instances of pretaten colebrated for their skill in worling the pretoms metals.

Mr. Taraer mezt adverted to the undoabted practice in Ireland, from a very exrly period, of the veriors arts of working in metals. His observe. those appiled not only to productions in gold and silver, bat to castinge in bronse or mixed metals, presenting the united characteristics of very early fabrication with peculiarities of most elilful workmanship; and he alI aded to the superior advantages enjoyed by Irich antiqnaries for the proser ation of such an inquiry in the existance of a national collection. The natare and extent of the colleotion formed by the Royal Irish Academy was known to many members of the Institute, by the series of faithful dremings of the namerous objecte proserved in their musenm, which, by favorir of the Conncil and the kind iaterrention of Dr. Todd, were exhiBited at the last year's meetiog of the Institute at Winchester. It was obeerrable that some of the Irish specimens exhibited a remarkable skill fa the ase of the metallic compornd tecbolcally called niello, at a period lowg antecedent to that at which writers have usaally accounted that curious art to have been practised. That art, indeed, is of far omrlier date than the times of Piniguerra and the Florentine orfleres of the fifteenth century, as is shown by the researches of Connt Cicognara, who has given examples of it earlior than the eighth century. In the possession of the Bociety of Antiquaries there is a Stylas, or pointel, for writing on wazed tablets, the bead of which is beautifully ornamented, apparently with mielle. This little work is of early Norman, or possibly Samon, date. After some remarks on the art of engraving as applied to the enrichment - a sopalchral memorial familiarly termed " Brasses,"-which, independ. ently of their value as famils memorials, evidences of costome, \&c., poscoes additional jaterest as eramples of design, and of a pecoliar kiod of crtistic method in the working of metals, vis., the combination of the work of the burin with the ase of enamel, and of a coarse assimilation to the process of the ree of niello,-Mr. Torner obmerved, be regretted that it was at present impracticable to offer any definitions of a precise oulure in ropred to many of the mediaval terms to which he had occasion to advert. As respected the distinctive term opes Anglicmm, by which the works of the early metallargists of England were known abroad, he ventored to expreas an opinion that the phrase was not applied to denote any particolar prooese of ert, but was rather used to describe the general obaracter ad design of the objects fabricated in the precious metals in this country es an early period. And it might possibly bave reforence to the two pecoIisp patteros generally worted on the surface of such objects,-which may be broadly distingnished as the ribhon and the lacertise or dragon pattern. The opuy Droobinewse he was inclined to consider as a peculiar decorative procese which the monke of Durham, to whose akill it must be attributed, derised from their predecessors who came from Lindiafarne; and the charectoristics of this atyle wore probably analogous to those of the early Irish works to which previous reference had been made. The want of any mational Musenm of Mediaval Art in this conotry was a serions obstacle to the prosecution of researches of this aature; as it was only by ectual and carefal comparison of examples that any satisfactory knowledge of their date or origin could be obtained. In many instances, donblless, these terms were confounded; as, for example, works of oriental character may have been called without strict regard to their proper designations. But umquestionably these were appellations deaoting objects of perfectly distiact stgle, in their trne significatlon: and, Mr. Turner remarked, that in formal documents some attempt seemed to be made to distinguish the country of objects of price with precislon. Thus, in a list of presents (zenia) atven to Heary the Third by the Master of the Temple beyoad Set, we find, among other productions of oriental skill-" two Turkish bows with atrings of leather," and "two Iron maces of Saracenic work." The diverimination between Turkish and Saracenic work is curious in more reapects than one ; and, besides is indicatlog a knowledge of the difference between the races, it would appetr to mark some diatinction fully recogeised in the thirteenth centery in the character of eastern prodicotions. By the writers of romance these terms were donbeless nied in a noore vague ${ }^{\text {R }}$ geseral mense; as in the "Tale of Gawayn," written in the times of Richard the Second, in which the battle-are of the Green Kuight is minately described, with it handle streagthened with iron wound around 4

At the aame time, the frequent allosion to Greece as the noerce whenco anch decorations were derived, is fully consistent with the fact that the ehlef soorce of a great veriety of artistic proceseen, of overy kind, proveInat daring the Middle Agen, may be traced to Constantinople.

In illuatration of the goldemiths' worte of the 13th and 14th centuries, Mr. Tarmer read anmeroos extracts from the anpublished accounts of the antive artists employed by Heary the Third and Edward the Firnt, whoh towed the variety and olaborate charecter of the objecta execated by them in the procions metala, duriag thove times. In the couree of ende concluding, and necemarily hasty, remarke oe eariy iron- work, Mr Turaer callod experial attretion to a bountifal cant, cuhbitod by Mr. Willoment, of
the wrought iron ecreen which formerly enclosed the monnment of Eleanor, consort of Rdward the First, in Westminster Abbey. This beantifal specimen of the iron work of the l4th centary was removed but a few gears since, and is now rosting in the vaults or crypts of the Abbey. In Mr. Willement's opinion, it is scarcely inforior in beanty to the celebrated work at Notre Dame: and Mr. Turaer obmerved, it should possess great interest in the eyes of English archseologists, as he had discovered that it wea the vadoubted work of an English amlth, one Adam do Leigbton, of Leighton Bursard, in Bedfordabire; who recelved 121. for the entirt fabric-equal to 180%, of the prement currency. It is to be hoped that under the anspices of the preeent Dean this remarkable specimen of the excellent craft of a provincial amith in the old time may be either reatored to its original position, or preserved from further pesoible matilation or decay.

DECORATION OF THEATRES.

At a meeting of the Decorative Society, a paper "On the Decoration of Theatres," by Mr. DwyEn, was read. It was illustrated by sketches from the interiors of the Metropolitan Tbeatres.

The anbject was introduced by observations apon the infinence which dramatic art and its literature have had for good purposes when jodiciously conveyed. The just appreciation of the beautifal in scenic effects, now frequently displayed in our theatres, was adverted to. Mr. Dwyer considered that the best means of increasing the importance of theatres, and rasing them in the pablic estimation, is to reader them magnificently worthy, in every way, for the discemination of moral truths and refinements. He noliced the construction of theatres; and admitting that accommodation for the greatest number in the least possible space, whth subdivisions for various classes of visitors, formed an important requirement, he argued that the form generally adopted (that of the horse-shoe) is not the most suitable. He maintained that the idea of making the andience feel as comfortably seated in a theatre as in a drawing room had been imperfectly contemplated; and that, bowever much a curved side might with propriety be admired, wifily sbould have the first attention, so es not to restrict the view in any case to merely a portion of the opposite bozes. The circularand semi-circular forms employed by the ancients, Mr. Dwyer said, guggested a nseful moditicalion, comewhat approached in the plan of Drury Lane Theatre, and contrasting favourably with the straighi-sided horse-shoe form in Covent Garden.
An ignorance of acoustics was sald to be evident in the construction of our theatres. Mr. Dwyer referred to meveral well-known forms, such af tunnela, arch ways, and long curved spaces; as also to the atone-canopied seats on Wentmiuster Bridge, - Where the alightert whisper in one could be heard in the opposite, - 50 suggestive that he conid not but feel the greatest surprise at such repeated hluoders. The proscenium to each of the London theatres was said to be different in arrangement ; no two being alike, and none exhibiting an approach to any principle which the laws affecting sound would dictate. Bome censure followed on the prevailing use of massive Greek entablatures, with Corinthian colomns in anusual proportions (at Astley's very lofty, at the Haymarket very short), exhibit ing a disregard of harmony in form and proportion, from the entire absence of a medinm for combining the gigantic masgiveness in the one with the subdiviaion of parts throughont the interior of the horse. The theatre at Versailles was referred to as an instance where Corinthian columns being placed on the stage, Ionic colamns support the superstructare ; and which, together with some other arrangements, render this theatre particularly worthy of obsarvation. Nevertheless, the prosceniam there is imperfectly conatructed for tha distribation of sonnd. Mr. Dwyer considered the upper portion of the prusceninm at Covent Garden the least objectionable of any in the metropolitan theatree; and awarded praise to the pictoresque and agreeable manner in which it blends with the jaterior, and also an being in that part better calculated for the distribution of sound. A form of constraction was then explained, which, it was said, would obviate the necessity for extraordinary exertions on the part of the performers in attempting to prodace an andible and aatiafnctory effect throughont the house. Mr. Dwyer propounded a theory which, he anid, comprebended the principles embodied in two familiar instruments of sound;-vis., the bell and the violiu. He said he would constract two bold bell-shaped carres, diverging over not less than eight feet on the stage to the sides of the theatre; each composed of two thicknesses of wood placed about six lnches apart. The front one should be perforated ornamentally; thns serving to receive and distribute equally within itself the sonnds given forth near to it. The elevation shoold assume the form of an arch, with apandrela also perforatedthereby distributing with diatinct resonance the words or musio to all parts of the house.-In a subeequent part of the paper Mr. Dwyer offered some remarks apon the construction of oeilings; which we report now, wh having more tmmediate connexion with the aconstic theory last deacribed. He proposed the use of a apherical or a apheroidal roof, supported by iron ribe, which might bo ornamented; the spaces between eacb rib to be enriched with elaborate perforations (or otherwine, accordiog to the general atyle of the house), in a manner similer to the doorway in the circle at Astley's. The additional height thas given to the interior would enabla the chmodelier to be placed above the line of atght from the upper part of the theate to the stage; and the objections that might be made to this position of the chandelier wore met by the fact that a concare surfacu re-
fects much more than a lat one. Another important advantage arising from this form of ceiling was the fucility afforded for a powerfol syatem of rentilation. The painting-roon monid be raised some nine feet; and the absence of the rolls of canvas, scenery, and other properties, from the top of the ceiling, would add considerably to the reverberation of soundsbeaidea contributing greatly to the comfort and bealth of the artists employed in the theatre. Mr. Dwyer elucidated his ideas by sketches. Adverting to the general principles of construction exhibited in the theatres of the metropolis, Mr. Dwyer considered that the Surrey Theatre embraces more than any other the bast arrangements for seeing and hearing; the proscenium being formed on a bold level, judicionsly diminishing the width of the stage.
The disregard of unlty in the construction of theatres generally was pointed out; and, among other instances the St. James's was namedwhere light flowing ornaments, in the French slyle, are in juxta position with a masaive Classic style; and the oeiling of the Princess's was deemed an instance of discordant arrangement. The application of various decorative materials, such as distemper painings, paper-hangings, composition, papier mache, to the fittings, \&c., received attention : and it was asserted that the Princess's was conspicuous for elaborate richness and diversity of ornament,-but that it was questionable whether the Herculean expression therein, rether than the grace and delicacy of Apollo, may be doemed appropriate. Mr. Dwyer said, that as a specimen of decoration it merited warm praise; owing to the characteristic vigour throughont every purt (up to the ceiling), as well as for a soitable strength and richness of coluur. The nsual enrichment on the fronts of bores was commented on; and the use of bas relief, or raised ornament, recommended in preference to the most elaborate surface-painting on panels,-as exbibited at the Italian Opera Houss, where the effect partakes of the weakness peculiar to paperhanginge and similar media. The second tier in the Princess's was alluded to as a good apecimen of this manner ; being decided in character, with the details effective bnt subordinate, and the terminal figures between the compartments skilfully devised. Tbe velvet valances to the boses in this thea. tre were commended; bat the practice of baving them, as in several theatres, to extend only above the private boxen was deprecated. When it is not wished to have ornament in relief upon the fronts of the bozes, valances of this kind suspended from the cushion weresuggested as imparting a pe. culiar and good effect. Ornamental iron-work, is was said, muy be introduced with great diversity of design, for balconies, open fronts to the boses, fret-work and ornaments in relief for various parts of a theatre. Some remarks were added on the usual method of supporting the boxes by eeries of columns; and others condemnatory of the manner in which the liers of stage boxes are generally placed between large Corinthian columns. Sculpture was mentioned as offering an important adjuuct in producing a higher class of decorations,-and encaustic painting as facilitating cleuuliness and darability.

At the following meoting some observations on the paper were made by Mr. Cooprs; in which, referring to the remarks on a plan of a theatre, he aggeated that another form offered considerable, and probably greater, advantages. This he described as the oval; which he would have divided hy its longer diameter, one half apportioned to the audience, and the other to the stage, scc. He alluded to several continental theatres, approaching to this form in construction-the Circas Franconi, Napoleon's grand amphitheatre at Milan, the Roman Circus at Verona, and the Colosseum. As painted or shifting scenery was not employed with the Greek Drama, the proseninm was richly decorated with ranges of marble columns, statues, gllding, and bronze. The advantages of the semi-circular and semi elliptical over those of the horse-sboe form were enlarged apon; and the Olympic Theatre at Vicenza, built by Palladio, was said to exhibit them in a perfect manner. This theatre may be considered the chef-d'crucre of Halladio; and was erected, by order of the Olympic Academy of Vicenzawhose members directed him to build it in accordance with the ancient plan, that they might afford their compatriots an idea of the magnificence of encient theatrical exbibitions. Various plans, as well as the prosceninm, whicb is a remarkably elaborate architectural composition, were exhibited in an old work upoo the public and palatial buildings of Vicenza. Mr. Cooper then noticed the remarks by Mr. Dwyer on decorations: several of which met with his concurrence-and otbers he extended by additional deacriptions and suggestions; referring especially to the decorations of the Theatre Comedie at Paris, as of a chaste and appropriate kiod. The details were said to be very light, and in the Renaissance atyle. The discussion was supported by Messrs. Parris, Seddon, Crabb and others: und the following observations are selected from others of interest. A spheroidal form of ceiiing, it was admitted, offered several advantages; inGuencing ventilation and lighting, us well as contributing much towards a pictaresque and pleasing effect., The decurations of the ceiling in the Italian Opera Honse, it was observed, had been copied from one in the Ducal Palace at Mantua (a coloured plate was exbibited from Gruner's work), but they had not been succensfully adapted. It was considered questionable if the example was auitable for such an extensive surface; if, admitting the propriety of selectlon, the figures hold their just proportions. The great distance at which they are required to be seen had not been sufficiently regarded in the colouring; and the peculiur baze to the atmosphere in a large theatre, as well as some other general principles in colouring, demanded a different treatment. The use of bright colours, such as vermillion, it was remarked, oughi to be restricted to a very limited applica-tion,-Mr. Perris supported this opinion by references to works by Raf.
faelle and Rembrandt; and recommended Indias red and Veatian red, when supported by a bold mase of shadow, as prodacing a more powerful effect. He also objected to the prevalent ase of bright coloars for interior decorations-from their harah and, owing to the geaeral absence of greed, fatiguing impression. It was remarked that the decoracions of the I lalian Opera House appear most catisfactory when the sents are vacant; asd consequently, that the design does not embrace some essential priociples. The box tiers on the rising of the cartain were compared to baods of white ribbon figured with cerlain dark spots, oddly aseociating with the rich sceners and dresses on the stage. Encaustic paiating was alluded to; and its durability and effect were said to have been proved equal to fresco when subject to the influence of gas and vitiated atmospheres. Coloured decorations when composed of sprawling cupids or allegories were slightinaly menthoned. Sume suggestions were made stating that rich fabrics, colonrell as Persian carpets, cluth of gold, \&xc., when thrown over the fronts of the boxes, would conduce to a rich and gay appearance quite distinct from any obtainable by painting. - The Opéra Comique at Paris was described by way of coutrad to the decorations of our Opera House. A satisfactory, quiet, yet rich effect, it was said, is there displayed, together with some important matters in constraction. The ornaments are composed of stamperd brass.-A description was given of Covent Ganden Theatre as it was when first opened. It was designed by Smirke, and painted ander bis directions. The drop-scene was painted by Willian Dison in subilued colours; with sienna columns and statuary, with broad masses of sbadow, conducing to a forcible impression by powerfally enhancing the effect of colours in scenery and dresses on the stage. The repose conveged on the fall of the curtain was said to have been agreeable, although splendour was not aimed at.

SOCIETY OR ARTS, LONDON.

Dec. 16. -Dr. Rooer, Sec. R.8., V.P., in the Chair.

The Secretary read an address from the Council, which pave a retrospect of the procerdinge of the past year, and the proposals of the Council for the future. It stated that formerly the Society, as is well known, stood alone as the great active sciontific, neechanical, and artistic society of Loodon, the Royal Society being the only other in any analogous putitio. That nuw, however, that great theld is bappily fall of co-operating Sucioties, each labouring on some one sabject formerly a mere dependant on its vast territory. That this removal from the parent Suciety of so many branches, has necessarily stripped it of many of its bright oruaments; but it appears to the Council, that far from being regarded as an evil, this multiplication of useful Societies is a subject fur congratulation, and should be regarded as one strong proof of its past osefulness.

The Council conaider that the field on which the Society might with best effect concentrate its future labours, as well as that which mort properly belongs to it, is a department of the Fine Arts hitherto much neglected in this country, and which bas been strongly approved of by H.H.H. Prince Albert, President of this Society,-namely, that of promoting high art in connection with the mechanical, for which our manufactarers are so justry celebrated.

The Address then procooded to state the various alterations and lmprovements which had been effected on the Society's premises during the recess, and conciuded with a list of the various pecuniury and honorary rewards about to be offered for competition during the carreat eession.

The first paper read was "On the principles employed in the recent Decorations of the Society's Great Knom." By D. K. Hay, Esq.

The paper commenced by teating that the decorator who has been intrusted with the embellishment of the hall of a Society which has for ite object the advancement of the ormamental and useful arts, naturally felt much anxiety as to the result of his labours; and this anxiety was incressed by the reflection, that his work must necessarily be of a nature calculated to accompany one of the greatest efforts in high art of which this couniry can boant. His first object, therefore, has been to adopt auch a style of decoration as shonld not only embellish the ball, but at the same time give additional offect to those grest works of art which it contains, connecting the whole in one general harmony of form and colour.

Tbis has been effected by surroundiag the pictures, by Barry, with cloth of a deep purple hue, which colour is the most effectual in giving clearness to works of high art. The spaces of wall which surround the pictures thes have the effect of being in shade, while the pictares themselves will appear in full light.
Having in some messure separated the pictures from the ceiling, the next consideration of the decorator was the general effect of the hall itself. It is requisite that all apartmenta, in which great works of art are exhibited, should possess a cortain degree of grandeur. This is sometimes imparted by architectural decoration alone; but in the Society's hall searcely anything of the kind exieks. The wall ; terminates by a narrow and lightly enriched cornice, surmounted by a plain cove of 8 ft .4 in . wide-m this cave is termsnated by a narrow border of stucco work, between which and the apertpre for the capola light there is a flat apace also quite plain. The aperture towards the cupola light is thrown into eight panela by a plain narrow moulding, and this completes the architectural decoration.

It, therefore, appeared to the decorator that whatever grandeur wein to be
imparted to the hall mast depend upon the embellithment of the plain surfeces, and that the architectural decorations could only be made to appear as bands dividing those surfices. It became, however, requisite to anite in aome mearure the cornice with the walls, and this has been effected by peintiag it of an Btruacan browa, or deap ferra cotta hue, which hue forms a matural hamony with the colour of the cloth apon the walls. The plain surface of the cove which surmounts the coroice, afforded the decorator the firet field apon which he conld exhibit a atyle of decoration, and this he hat confined to a simple combiation of geometric with chromatic harmony; and that it might have a rationale, be hes mede this combination to represent motaic work composed of giallo antico, rasso antico, lapis Laruli, and inlaid gold. This selection of material has a double advantage, for while it gives meaning it also affords an opportanity of using what artiste term broken colourt, the giallo artico being gellow intermixed with tinte of purple, the roapo anfico being a low tone of red, broken up by tiate of grey and white, and the lapis lazuli being intense blue, likewise broken with tinte of gold coloar and gres; thes proventing the crade effect of plain patches of colonr, and giving the qualities of unity and continuity amongat the parts. The band of atacco work which divides this cove from the flat part of the ceiling is painted pare white, to represent statuary marble, at are also the mouldings roond and upon the apertare that leads to the copola light. This whes adopted in preference to the lerra cotia colour of the cornice, as being equally appropriate and more ligbt in effect. The flat part of the ceiling in also eariched by a monaic work of a similar chromatic harmony of the ame marblea, but of a different harmony of form from that of the cove, and without gold. The panels in the apace leading to the cupola are similarly ensiched by a mosaic work, composed of lapis lazuli and siema combined with inhaid gold.

The figurea forming the design in the cove are produced by the combination of elliptic hands round central pointa, so that they are all perfectly carvilimear, and formed by arca of the ame ellipee, the size of which was propartional to that of the prictipal figures in the pictures. As a contrast to this arrangement of curvilinear forms in the cove, the decorator has introduced a rectilinear design upon the fiat part of the celling which divides the cove from the capola. This design arises ont of a combination of equilateral triangles producing hexagonal and rhomboid figures, into the former of which the aational emblems-the rose, the thistle, and the shamrock-are intro. deced as if inlaid in yowe antico marble. In the pancls above this, and torming the sides and apandribs of the space below the cupola.light, the derign is prodaced by the combination of an equilateral triangle and a circle; thas uniting the eurve with the straight line, as an appropriate winding up of the livear harmony.

In the centre of each of the four side panels, a shield has been inserted. The one over the chair is blazoned with the royal arms. The shield opposite to the chair is blazoned with the family arms of H.R.H. the President of the Society. The shield on the right of the chair, is emblazoned with the roms of Burry the painter, and that on the left, with the bedge of the Society.
The cecood paper read was "On the frst priaciples of Symuetrienl Banaty, and their applioution in cortain branches of the Art of Design." By D. R. HAY, Em.
This paper commenced by stating that the first principles of symmetricel beaty originate in the power of numbers, and that a means of applying the priaciple of anmbers in the formation of plane figures is afforded by the division of the circumference of the circle into 860 degrees, which degrees are again divisible and subdivisible by 60 into minutes, seconds, \&c. Thos, the abstract principle of harmony and proportion ia the relations of certain nombers to each other, becomes apparent and visible in their application to the structure of geometrical figures by means of the division of the circle. It then proceeds to show, that to apply these degroes to rectilinear plane Ggares, each Ggare must be reduced to its primary element; that the triangle, which is half of the square, is the first and most simple of its clase, and is the representative of the No. 2 ; that the scalene triangle, which is half of the equilateral triangle, is in like manaer the representative of No. 3 ; that the next scalene triangle which arises naturally in the series is that which is half of one of the Gre isosceles triangle which form the peatagon, and is the representative of No. 6 .

We have, therefore, in tbe square, the equilateral triangle and the pentagon, the primary elements of all symmetrical beanty, as represented by plave fgrures, and evolving the operation of the harmanic numbers of 2,3 , and 5. Out of the primary rectilinear figures already referred to, arises a second class, as, when an equilateral triange is divided into two scalene triangles by a line drawa through one of its angles and bisectiog the opposice side, these scalene trianglea, if reunited by their hypothenuses instead of their longest sides, will form an oblong rectangle-overy rectilinear fgure baviog its corresponding curvilinear Ggare.

The paper concluded by sbowing the operation of the principles of harmonic ratio io the formation of the mouldings of Grecian architectore, oramental vasos, bousehold utensils, \&cc.

Dec. 23.-W. H. Bodkin, Eeq., M.P., V.P., in the Chair.
The first communication read was by Dr. Roget, Sec. R.S., "On his Econmical Chests-Bowrd," the object of which is to give the chess-players * bourd of emfetently small dimensions to admit of being put into the
pooket, when folded, at any part of the game, without deranging the pooition of the men on the board, so that when it is reopened they will be found in the amme place as before, and the game or problem can be resumed where it had been lef off.

The second communication read was "On the effects of Heary Discharges of Atmospheric Electricify, as exemplified in the Storme of 1846 (iacluding an Accomat of the Destruction of St. George's Church, at Leicester, on the Let of Augmet) ; with Remariks on the Use and Application of Lightning Conductors." By E. Hiohton, Eeq., C.E., Telegraphic Engineer to the North Western Railway. Fragments of the roof of St. George's Churcb, and the apparatas used for gotijug rid of the injurions effecte of lightning on electric telegraphs were exhibited in illustration of the scbject. The author commenced by staling that the frequent occurrence of thender storms during the past snmmer had afforded aimost unequalled opportuojties of investigating the effects of atmospheric electricity in the concenarated form of lizhtning. He then proceeded to give a description of the effects produced on St. George's Church, Leicester, by a discbarge of lightning. The church, which was a new and handsome building, was entirely destroyed by the effects of the thoader storm of the lst of August ; the steeple having been burst asunder, parts of it were blown to a distance of 30 feet in every direction, while the vane rod and top part of the epire fell perpen. dicularly down, carrying with it every foor in the tower, the bells, and the works of the clock. Tbe falling mass was not arrested until it arrived on the ground, ander which was a strong brick arch, and this also was broken by the blow. The gatters and ridge covering were torn ap, and the pipes used to convey the water from the roof were blown to pieces. The author next proceeded to compare the power developed in the diecharge of the lightaing which destrojed St. George's Charch with some known mechanical force. He stated that 100 tons of stone were blown down a distance of $\mathbf{3 0}$ fect in three seconds, and consequently a 12.220 horse-power engine would have been required to resist the effects of this single flash. In the course of the paper the author exhibited the effects of a new battery, conatructed by himself, and which was less than the $\frac{1}{40}$ of a cubic inch in aize. This battery, be badfound, would for a month together ring a telegraphic bell 10 miles off. He also exhibited a second battery, which, altuough so small that it would pass through the eye of a needle, is of power sufficient to work a telegraph. Having detailed the course of soveral discharges of atmospheric electricity, be then proceeded to show the effects produced on the electric telegraphs, and the means which have siace been adopted to prevent injary to them in future.
M. Highton farther stated that since the occurrence of the above atorms he had examined the cathedral of St. Panl's, in London, to ascertain bow far this noble pile of building is protected from the effects of lightning. He found that the iwo small tnrrets have lighening cooductors erected, but the central dome has none. He fonnd, however, that the position of the sponts and other metallic connections is such, that he considers if the same are preserved as they now are, the building will, for years to come, be free from damege by lightning; but sbould they be removed at any time, and glase or porcelain be emplojed in their stead, then the main part of that ooble building would be in constant danger from every storm that passes over the city.

He then concluded by urging the inportance of a correct and systematic principle being acted on in the new Houses of Parliament, with a view to securing them from the disastrons effects of lightning.

ROYAL SCOTTISH SOCIBTY OF ARTS.
Not. 23, 1846.-David Maclagan, M.D., F.R.S.E., President, in the Cbur.
The following communications were made:-

1. On producing While, or Newtral Light, by meant of ordinary artificial light. By George Tait, Esq., Advocate, Vice-Preaident.

The white light, or artificial day-light, was exhibited, in contrant with ordinary artificial light, upon the primary and the secondary colours, and upon a coloured sketch.

In this communication Mr. Tait shown, that, while the white light of the sun is composed of raya producing orange and of those producing blue, in equal parts, in ordinary artificial light the raye producing orange exceed by many times those producing bloe; the conseqnence of which is, that the latter lignt resolves into an orasge light a little modified by bloe, which affecte vary moch the appearance of the colonra of objects exposed to it. Ia order to produce white light, be incioses the ordinary ligbt in a lantern, or otherwise, and transmits it through colonred glase, or painted glass, of the proper depth of bloe, so at to abourb the excens of orange; by which means it is produced at fire or aix times the expense of the same quantity of the ordinery light employed, which, by asing a gas argand lamp, ia about a half of the axpene of ordinary light from tallow candles. He ascertains the proper tiot for the glaas by colonring it so that white paper receiving the light transmitted through it may be in unison with similar paper receiviog the white light of the sun. He exhibited in a simple and siriking manner the great coutrast of the effect of ordinary light and of that of white light, or artificial day-light, thua produced by him (by means of glass which he had peinted with "French blue") apon white, the primary and the secondary colours, and alao upon coloured landscape sketches.
2. Description of a Patent Safely-Rein. By Mr. Alexander Miller, saddler, Bdinburgh.-By this rein, which has been a conaiderable time in use, and severely tested, Mr. Miller atates that all possibility of a horse running off is effectually prevented. Its effect when drawn is to compress the horse's windpipe, and thas render him powerless. A vicious horte once or twice checked by thim rein is completely onder command and learns obedience.
3. Deacription of a very cheap and convenient Coil-Electrical Machine. By Mr. Alexander Beown. Commanicated by George Wilson, M.D. Dr. Wilson, in bringing forward this machine, did so not at claiming a different arrangement from the coil-electrical machines already in ose, but he considered Mr. Brown had great merit in making his machine not only con. venient in size and handsome in rppearance, bot very moderate in price. It can be sold at 1L. 15s., and is fitted for all medical purposes. The shock can be graduated from the slighteat to the strongest, by withdrawing and again gradually introducing the bandle of wire into the centre of the coil

ROYAL INSTITUTE OF BRITISH ARCHITRCTS.

Dec. 14.-S. Anoell, V.P., in the Chair.
M. Lesogur, of Paris, was elected an honorary member.

Drawings were exhibited to illuatrate the description of the mode adopted by Mr. J. B. Gardinea to warm the Synagogue of the Spanish and Portoguese Jews, in Bevis Marks; that object baving been successfolly attained by the admission of warm air from a chamber beneath the bailding.

Mr. D. Mocatta read a paper descriptive of a distillery and its appurtenances recently erected from his designs in London; witb some obserTations on the principles of distillation, heating furnaces, and general ventilation.

Mr. E. J. Anson described a modification of the "Polmaise" system of warming, applied to a vinery near London. A discossion arose on the ill effects of the syatem if applied to general purposes, in consequence of the vitiated air being rebeated.

Remarks were made on the consamption of smoke, and also on the necessity of providing means of ventilation wherever warm air is introduced.

RAFPAELLE.

The following is the Brere of Pope Leo X., by which he conceded to Raffalle the license to purchase all stone and marbles required for the construction of St. Peter's, and to preveat the destruction of ancient momaments and inscriptions by the masons and builders of Rome. ${ }^{\boldsymbol{*}}$

"to raffablle uabinatb.

"As it is most necessary for the construction of the Roman temple of the Prince of A postlen, that stone and marble, of which we onght to have an abondant supply, should be rather procured at home, than be conveyed from abroad; and as it has been ascertained, that the roins of Rome contain a great quantity of these materials, and that all persons who, either in Rome or even in the neighbourbood, intend to build, do appropriato the same to their own use; 1 make sou, whom I use as the master of this said temple, the overseer of all the marbles and stones which, henceforth, may come to light at Rome, or at a distunce of ten thousand paces therefromfor this rreson, that you shall purchase for me those which may be proper for the edificution of this temple. Therefore, I command all people, middle, highest, lowest, that wherever they shall, hereafter, dig out marhles or other stones, of any kind, within the space assigned by me, that they shall acquaint you, the overseer, forthwith, of the nature or kind of every thing $s o$ discovered or excavated. And also, that whoever shall not do so within three days from the timo of such discovery, he be fined from 100 to 800 gold roins, as sball appear to you fit. And, moreover, as I heve been informed, that moch of ancient marble and stone, engreven with inscriptions and other monumenta-which monuments often bear some exquisite stamp of art, and ought to be preserved for the caltivation of literatare and the improvement of the Roman tongue-are vilely cat up by the marble-workors as building material, and that thus the inscriptions are destroyed, I command all persons who exercise the trade of cutting marble and ocher stones, that, without your orders or permission, they may not dare to cut or work any inacribed stone,-applying the same fine, as aforesaid, to all who may act otherwise than 1 connund.-Given this sixt Cal. of September. Year three. Rome.'
J. LL

[^5]
REGISTER OF NEW PATENTS

HEATING APARTMENTS AND BUILDINGS

Anthony Nathan de Rothschild, of Londod, merchant, for a Improcements in heating apartments and buildings."—Granted April 28 ; Enrolled October 28, 1846.

This invention relates to heating any desired space, by forcing heated air by mechanical means to the apace to be heated; or to beat or dry various manafacturing articles in the same manner, and also to lead heated air for auy desired purpose, whether perfectly dry or containing the moistore required for varions purposes, to any situation that may be required, and is well adapted to warm chorches, hospitals, theatres, saloons, bathing establishinents, barracks, manufactories, prisons, horticultaral establisbments powder mills, breweries, \&c., \&cc., as well as for other purposes where a high aod regular degree of heat is required.

The apparatus is shown in the ancexed ongravings. a is a furFig. l. Plan.

Fig. 2. Section.
nace, in which are placed cast-iron pipes $b b b$, the number of which may be increased if much heat be required; pipes of an oval form have been found most convenient. The pipes are beated by the fire a. The entrance of the pipes is connected at c, with a ventilator e, set in motion by mechanical force, which forces pure atmospheric air into the pipes b. The same ventilator forces also a strong current of air through the pipe f, to the fire. All the pipes have valves, $g \mathrm{~g} \boldsymbol{g}$, to increase or decrease the carrent of air. By being driven throngh the heated pipes, beginaing with the lowest and ending with the highest temperature, the air acquires a vory intense heat. It has been found that the most convenient length of the cast-iron pipes, to produce high temperature, is 15 feet, which allows the smoke with the circnit (in h), and pressed down (in i), to leave the chimney with the temperature of the open air. To the end of the pipes l, united in one current of air by the chest m, is attached to the conduit pipen, which, with its branch pipe o, conveys the heated air in any direc. tion desired.

Should it be desired to convey warm or hot moist air, this object may be easily obtained, either by introducing steam, if the motive power is a sfeam-engine, into the conduit pipe in q, or by placing an iron vessel in the cheat l, which vessel fills itself from the outside in the same ratio ws the water in it decreases by evaporation.

APPARATUS FOR MELTING ZINC.

Andrew 8mith, of Princes streat, Middlesex, eagineer, for "Improvements in coating or covering metnls for precenting oxidation."-Grapted Feb. 11 ; Enrolled Augast 11, 1846.

The improvements relate to coating metals with sinc, melted in a beth of lead or tin, or any suitable medium that melts at a lower heat than ainc,
which is effected in the manner shown in the annexed engraving, representing a vertical section of the apparatus, which consists of a wrought or cast iron pan or vessel d, for holding the zinc, placed within another wrought or cast iron pan c, with a span of about $1 \frac{1}{4}$ inch all round and under the npper pan; this lower pan is set in brickwork a, over a furnace b, and garrounded by the tue, and contains molten lead, or lead combined with tin, through which the heat is transmitted to the opper pan, containing the zinc ; the upper pan is lined on the inner face with fre-clay or fire-brick, to prevent any galvanic effect by the action of the sinc on the iron. By this method the zinc is kept in the bath at an even temporature of about 800° Fahrenheit.

IMPROVEMENTS IN GLASS.

James Timmins Chance, of Handsworth, Slaffordshire, glass manufacturer, and Henry Badoer, of West Bromwich. glass stainer, for "Improcernents in the manufacture of glass."-Granted April 28; Enrolled October 28, 1846.

The improvements relate, first, to the application of heat to sheets, panes, or plates, or other articles of glass, when they regnire to be reheated for any parpose, such as the producing stained, painted, enammelled. or other glass, which has been hitherto effected either hy placing the glass upon metallic shelves within a muffle, and applying the fire externally, or by placing the glass in a kind of reverberatory kiln, upon a bed of stone or barned clay, and then applying the fire internally and directly upon the glass. Hy the former method there is a difficulty in preventing plates of giass from becoming bent or cockled, and in beating the glass uniformly; and, by the latter plan, the direct action of the fire opon the glass is injurious.

The improvements consist in so applying heat that the advantages of the two methods above mentioned are united, and, at the same time, their respective peculiar defects are avoided. In carrying out this part of the invention, the glass is laid upon a suitable bed (stone is preferred), and the glass covered by suitable covers, so as to enclose the glass in a chamber, by which the direct action of the fire on the glass is prevented, the inverted pans, for the time being, producing close chambers within the kila. In the top of each cover there is a small aperture, commanicating, by means of a pipe, with the outside of the front of the kiln, this contrivance being intended to allow of the eacape of any vapour. In order to facilitate the practical operation of enclosing the glass in covers, moveable beds are preferred, placed upon an iron carriage running upon rails, the kiln being properly constructed for receiving such carriages. The annexed engravings show a plan and longitudinal section. a a are the fire-places ; bbcar-

riages, with a bed or beds; ce inverted pans or covers. The carriages ar ${ }^{\circ}$ introduced into the kiln at the doors ee; thr doors are then closed, and the ${ }^{e}$ Iame and heat will be reverberated within the areh, and then pass off ap the cbianey f, which is to have a damper to reguiate the draft. The process of beating and cooling the glass is then couducted in the ordioary way. And for the purpee of still further securing the glass from being injured by the fire or smoke, the edges of the corers are fitted into groores cnt into beds, there being powdered chalk, or other suitable subetance, to close the joints.
The secood part of the improvements relate to the mode of applying heat to sheets, panes, or plates of glass, when it is desired to alter their shape, whether to render them more fat, or to give them any reguired curvalure. According to the methods generully adopted, the kiln has to be cooled consiterably before a second charge of glass can be introduced into it. Now, the improvements consist of so employing moveable beds and covers, as described, that the cooling down of the kiln is rendered unnocesasy, and the glass, when enclosed in the chambers formed on the beds, can be safely introduced into the fiattening or beuding kiln, without necessarily reducing the temperature of the kiln. The moveable beds aforesaid, previoosly to their beiog charged with glass, are to be heated to a temperature approximating to that of the kilo itself: this is done by means of a emall kiln, similar to the main kiln. When the glass has remained suffciently long in the flattening or bending kiln, it is withdrawn along a loar or long arch openiog into the kiln, sinular to that described in the specification of a pateat granted to the said James Timmons Cbance, Jaly 7th, 1842. This lear or arch, huwever, is not an eseential appendage to the
present system of the patentees, because the beds and the covers above mentioned may be of such a thickness as to allow the glass to be withdraw from the kiln without the intervention of a lear or long arch.

GLAZING CAST IRON.

Timothy Kenzice, of West Bromwich, Staffurdshire, ironfounder, for "Improvements in glazing and enamelling the aurfaces of Cast Iron."Granted May 26 ; Earolled Nuv. 26, 19.16.
The improvements relate to coating and glazing articles of cast iron, with two separate coats, one to give it a body, and the other the glaze, in the following manuer:-The cast iron articles are first to be thoroughly cleaned, and then to be coated with a composition, consisting of 100 lb . of calcined flints and 75ib. of borax, both ground fine and fused; when cooled, 401b. of this mixture is to be added to 51b. of potters' clay, gronnd in water till of such a consistency, that when the article is dipped, it will retain a coating l-16th inch thick. It is then allowed to set, and while moist, the glazed composition is carefully sifted over the surface, consisting of 1001 l . of cornish stone, ground fine, 117 lb . borax, ground fine, 351 lb . soda ash, 351b. saltpetre, 351b. slaked lime, 131 b . white sand, and 501 b . white glass, well pounded; the whole are mixed, and well vitrified: when cool they are ground to a fine powder, washed, and dried; 451 b . of this mixture to be added to 11lb, of soda ash, in hot water, and well stirred, and then dried in a stove. When the article has received the glaging it is placed in a stove, und kept at a temperature of 213° Fahr. Afterwards it is fired in a kiln or mumte, raised to a heat sufticient to fuse the glaze; then removed and examined, and if the glazing be not perfect, the mixture is sifted over it, and it is again subjected to the action of the kiln or muffe.

For coatiog the interior of iron pipes, the first mixture, or hody coating, is poured through the tube, at the sume time turning it round so as to insare its contact with every part throughout its entite length, and whilst moist the glazing powder is passed through in the same way; after which the tube is to be treated as ubove described.

The patentee does not claim glazing the interior surfaces of vessels of capacity, but only for enamelling the external surface of sucb articles, and the enamelling and glazing of cast-iron Italian irons, box irons, knobs for door handles, and sucb like articles, and the inside of cast iron pipes, and ornamental surfaces of cast iron ornaments.

IMPROVEMENTS IN SMITHS' WATER TUE-IRONS. Bz W. Noton.
 (Reported in the Franklin Journal.)

The smiths' water tae-iron as fitted up on the ordinary conatruction, is bad in principle, lasts a very short time before it is destroyed, and is eminenthy calculated for being an expensive item in the economy of the amith's workshop. Much inconvenience and hindrance results from the frequent stoppage occaioned by the failure of this useful appendage to the amithy fire.

My attention was directed to the circumstance, eight or nine years ago, with the intention of finding a remedy for, or at least an amelioration of the ovil. Upon examination of the disabled tue-iron, I found the inside, more eapecially the end nearest the fire, generally filled up with a substance auff. ciently solid to provent any water getting to that part-the place where it is mont required to carry away undie temperature; thus the tue-iron is not fairly worn, bat burnt out before its time.

What is meant by the ordinary construction may be underatood by reforence to figs. 1 and 2 , of the prefixed aketch :-

A, water tue-iron. B, ciatern for water, at a convenient height above A. $a x y$, wrought-iron pipe, connecting the lower part of the cistern, B, with the lower part of the tue-iron, A. \mathbb{d}, another pipe, connected with the upper part of A, and passing either through the bottom of the cistern B, or by one side, and over the top with a bend. Water prared into B will descend by the pipe, $a x y$, into the tue-iron, A, driving the air before it up the pipe, d, and if suficient water be supplied till it atand at the height shown by the line in the clatern, the whole of the pipes and tue-iron will be full of water.

In setual working, the nose, p, is covered with brraing coal ; the watar soon attaina a boiling temperatare, and ateam being formed, a portion of the water is driven out of the tue-iron up the pipe d, into the cistern B, when a fresh aupply descends by $a x y$, to be in its turn heated and driven out as before.

If distilled water could always be supplied to the cistern B, and that kept clean, the toe-iron would have a fair chance of doing ite duty to the end; but an it is not so, and as there is a great probability that other substances get into the cistern, and ultimately find a settlement in the tue-iron, some eontrivance was desirable for preventing the accidental, or perbape, in some instances, wilful choking of the tue-iron. The means adopted for this purpose will be readily anderstood by again referring to the two figares. Instead of the water descending by the carved pipe a $x y$, it is convered by the straight pipe ab, into the catt-iron box C, which is fixed considerably befow the tue-iron, and must first be flled before any can rise up the pipe c, into the tne-iron. Should any tand or ashes get into the cistera B, it will settle in the box C, and not in the tue-iron, which will be supplied with water containing no heavy particles. A mod-bole door n, is provided, by which the box may be cleaned out at any time when the work is not going on. Thia additional apparatns, if atteoded to, will ensure a satisfactory working and add a considerable period to the existence of the water tueiron. The box C, I have made, is of the capacity of one cubic foot to each fire, and I would recommend that the mad-hole door be opened every two or three weeks according to circemstances.

ST. YAUL'S CHURCH, ALNWICK.

Sir, -In your notice on new cluarches in the last number of the Journal, you have made some remarks on the seats in the chancel of St. Paul's Church, Alnwick, and on the Dake of Northumberland, which I am sure you would not have done had you written from actual observation and knowledge of the case. I therefore beg leave to lay before you the facts. Yon are correct in denying the name of stalls to the seats in the chancel ; they are not stalls, neither are they pews-but open seats, two rows on each side, and the end of one row on the south side prepared to that the duke can wheel his chair into it. In the aisles of the chancel are seats fitted up and reserved for the boys of his grace's achool.
The castle not being in the district of St. Paul's, the family, with fow exceptions, never go there. And I may say (from having been well acguainted with the feelings onder which the duke has acted throughout this munificent work), that the ouly privilege be desired, was to be able, when he did go to that church, to get to his place-meat I cannot call it-as guietly and unobtrusively as was possible, considering the affiction be labours under.
I am, Sir,

Your obedient mervant,

21, Savile-row, Dec. 4, 1846.

A. Salvin.
*-The explanation given by Mr. Salvid is perfectly satisfactory as far as it refers to the Duke of Northumberland, and we readily believe that his munificence has been characterised by its usual uoobtrusiveness, and that the arcbitect has executed his task with his usual ability. Bnt we capnot regret haviag ingiated that a charch is not the place for mundane distinctions, and ought not to contain priviieged seats for privileged worshippers. The remark is intended to be perfectly general, and this protest against a specific application of it is an admission of its abstract correctness.
The question respecting the propriety of setting apart a large portion of the church for liturgical porposes has been learnedly liscussed on both sides. It is not within our province to consider it except with reference to architecture; we certainly believe that the architecture of a church may be fauldess where the distinction of nave and ohancel is not maintained, and that the services may be conreniently performed in such a building in strictest conformity with the rubric. The Temple Cbucrh in Loadon is an eminent instance. Where there are distinct chancels, it may also be objected that no one portion of the laity ought to be admitted in preference to the rest-the exception made in farour of singing men and choristers has no more valid excuse than the paid attendance and musical ahility of this portion of the congregation. Beaides, the rubric expressly directs that the whole " people," not a selected few, are to engage in this service.
Architects who view the question in this commen-sense way incur a certain amount of vituperation, to which the slightest exerclse of moral conrage would reoder them perfectly indifferent. It is certainly to be regretted that the coatroversy has dot been authoritatively settled. On one point conrected with it there can, however, be no dispute. If in a new
chorch, a chancel be built at all, it ought to be set apart excluaively aod strictly for its professed purpose. To build a chancel, and then suffer the laity to occupy it, or to erect stalls (as at St. Giles's, Camberwell,) which are merely superior seats to be had for paying,-is an idle, ostentations retention of forms, after their significase and parpose have ceased.

BURNBTTIZING TIMBER.

Sir,-In looking over your Joornal for December, I meet in the "Notes of the Month" with an account on "Burnettizing Timber and Marine Worm," which statement I beg you to correct, it being replete with errors. I am the person by whom the experiments were made for Sir William Bornett; having given the sobject of marine worm ationtion for many years past. Your correspondent is totally unacquainted with the subject he handies, and asserts the specimens. wrere "duly immersed iu bis (Sir William's) solution;"-they were not immersed in the solution known to the public as Sir William Burnett's far-famed solution. When the pieces of wood (about six in number) arrived from bim, I received them understandiug them to be pieces inmersed in order to try the effect of a prepara-tion-which preparation is very different to the former, whicb stains the wood considerably; but in this instance the wood was not in the least discoloured. The far-famed I am perfectly acquainted with, seeing the awe of it every day.

Sheerneas, Naval Yard,

James Mitchell,

Civil Engineer.

- The paragraph was taken from the Naval Intelligence in the daily papers. With all due deference to Mr. Mitchell, we should have been much better pleased if he had stated what preparation had been used by Sir W. Burnett for the six pieces of wood, which it is not denied had failed, and we should be glad if Mr. Mitchell would state wbetier Burnettized timber, or any other prepared timber, had generally withatood the ravages of the marine worm at Sheerness.

SETTING OUT RAILWAY CURVES.

Str,-I have seen, in your Journal for December, Mr. Tait's notice of my letter to yon, inserted in your October namber, and I have read his description of an iostrament invented by him for setting out railmay curves.

The objection which appears to his instrument seems to be obvious: it clearly is that the pridciple is liable to much perplexity and error, because it is founded on a system of what surveyors call "building"-that is, making the accuracy of the whole work depend opon the niceat accuracy of a great number of minute parts, consisting of arithmetical calculations in trigonometry, accurate measurement of small distances, exactoss of instruments, straightness and uprightness of boxing rods, \&c. \&c. This machinery appears to me to be too complex for practice.

It is objected by Mr. Tait to my proposal, that it may be possible a surveyor may not be able to see the two extreme points of a curve. In answer to this, I need only say that surveyors, employed to set out curves, would always be in possession of means to find out, without any great 1rouble, and without trigonometrical calculations by means of arithmeticbut merely by the aid of a common theodolite-the direction of the chord line : having once determined this, he must be a poor surveyor who does not see his way clear in leying down a curye, the radius of which is given. The method follows from the system of chords mentioned in my former letter, and is obvious to any tyro in geometry.

The system suggested by me deduces particulars from generals ; in other words, it proceeds upoe the plan of accertaining fundsmental of geoeral pointa, and producing the minor points by means of them. The plae of Mr. Tait proceeds by "building" a great namber of minute triangles, one upon another; which is not, amonget sorveyors, acconated orthodox.

Oswestry, Dec. 6, 1846.
Yoar's,
An Emoineer oet of Emplonment.

ENGINEERING LITERATURE.

Sis-In your roply to Correspondents in the December namber, Inoticed your answer to a six years subscriber, respecting the best published account of the details of the Steam Eogine; and, notwithstanding you reforred him 10 the treatise of the Artisan Clab, yet your opinion was, "that a satiafactory work on the Steam Eagine remains among the de'siderata of Engineering Literature." I ave 80 nach gratified that you have given expresmion and publicity to an idea which I believe very many persons have long thought most denirable, that I caunot forbear askisg if it would not be possible to form a society for the purpose of publishing some valuable works on the " Btem Engiae and Engineerins
in Ganerll" on the rame pian as the Canden and Sha efprare Bocieties have alruedy dase eo eccocesfully, and which, it appear is to be followed by enother, to be called the Hackluyt Society.

For myeelf, I shall be happy to coatribote towarda nny subscription which may be made to carry out such a measure; and I have no doubt I contd, amoag my frieads, obtain several names and subscriptions, in addition to my own.

I am, Sir, your obedient servant,
A Reader of your Joornal from the Commenogment.
Lewre, Dec. 24, 1846.
P.s.-If my saggestion is considered practicable, I will commnnicate with yom again. I have the first volnme of "Farey on the Steam Engive :" can you inform me if the secood volume is likely soon to be pub. lisbed ?

* We may probebly reply to this letter hereafter.

NOTES ON FOREIGN WORKS.

Tremactions of the Arehadogical Inctitutc of Rome.-Tbe volutne o the proceedings of this Sooiety, just published, again proves the richness of antiquarian relics, and Jikewise an increased activity of the Society, under the auspices of the present Pope. The first memoir contains Profestor Ulirich's travels in Greece, from Atheos to Chalkis, A nthedon, Aulis, and Oropos-places scarcely yet explored by any antiquarian. Amongat the monnments discovered is a broaze tablet, with a marsian inscription, foand at Rapino, and, mont probably, the only relic of the kind extant. Another tablet of lead, with a Grecian imprecation, is interesting to the samehers of lingaistic and reigious antiquity.-The celebrated architect, L. Canina, has contributed a paper on a round pedestal in the Lateran, with emblems of Valcan apon it.-The most altractive paper, however, is that of M. Welker, oa the portrait of Sophoclog. M. W. has compared the spleodid statue in the Lateran, fonnd at Terracina, where the poet is represented in a proud, any triamphing attitude-with that of the Mosaic pavement lately found at Köln.-Two double entaglios of Sophocles and Earipides, from the collection of M. Torlonia at Rome, were exhibited. The confguration of the two heads is very characteristic,-Sophocies handsomer, quioter, of great regularity and harmony of form of head, approach ing the ideal ascribed by the ancients to Jupiter; while that of Euripides is more shrewd, actire, and bustling.
The great picture of Gerofolo, at Rome, ropresentiog the descent from the crose, a huge canvas, comprising seven figures of life-size, has been bitherto in a very procarious condition, on account of the wood, on which if was atretched, having become rotten, if not decomposed. M. Radice, its present owner, knowing the great artistic value of this historical picsure, engaged the famons restorer, M. Bunosi, to trangfer the canvas to another substralum. This has been done so successfully, that M. Orer. beck has expressed bis perfect colacidence and approbation.
Rribury from Naplea to the Roman Frontier.-The Neapolitan governwent have granted to M. Falcon de Cimier the concession to congtruct a rilway from elther Capam, Ceprano, or Foodi, direct to the Roman frontiors; bat under this condition-that the newly discovered system of Jonffroy be tried on the line. T is system, which is said to afford greater security to travellers, and a savin iof expense, will first betried on a space © two miles; a commissioa is thif to decide whether it be advisable to employ it on the entire line.

Reiloweye and Coal Mines in Bohemia.-Anstria boasts of having condrected the first railway on the continent of Europe, namely, the Budweis and Linz line, commenced in 1825, although merely worked by horse power. Acother from Prague to the coal minee of Lahaa, a leogth of 30,840 cobrits, was begun in 1896. It was at Arst intended that this line shonld extend to Pilsen, and thus form a junction with the Bararian States' limes. The Lahna coal mines now sopply fifteen manafactories with 15,000 tons of coal monthly; bat as this coal yields a superior kind of coke, which could be mdvantageously used on the Great North Line (whose eagines have hitherto burnt wood), thes new branch lines will be of great commercial value to the whole country.

The Erection of the Terminne of the Paris and Lyom Railhoay, at the former cily, excites much controversy among our French conterpporarios. The right baok of the Seine was origimally fired upon, bat the subsequent andertand doings of certain land proprietort, who desired it near the Bonlevard Masa, meens to have belanced the decision io their farour. Now, the Place de la Bastille seems likely to suit all requirements. The intereats of the whole line, and the immense capital which has to fow throngh it, demands that the terminus ahould be as near as possible to the centre of . he commercial and banking activity of Paris.

The New Opera House at Vienna.-Tbe present building near the Kärtnerthor, is one of thoee insignificant edifices ereoted nnder the lato Emperor. This having become too palpable, the plan for a new one has been devised. The two gates of Carinthia will be palled down, and replaced by oue in a monumental style; the ramparts on this aide of the city demolished, and the limits of the city extended; by which alterations, sofficient space for a splendid new Opera House will be gained. As the mese of the present theatre, however, does not expire for two years, the operations will not commence until that time.

Irrisation of Alserime-The Froach Minister of woods and public worics has nominated a commisuios, chowen from anong the general staff of surveyors of roads and bridges, to examine the plans and projects sent to Parie from Africa, for the barrage of the rivers of Africa. These plans have been made on the spot, by nother commistion, which is sorveying Algeria for that porpoee. The first plans of irrigation will bo executed on the waters of the plain of Mitidje.
The Guildhell, Lovomis, Beisimm.-By a carions accideat, the name of the builder (hitherto anknown) of this splendid structure has been discovered, by one of the keepers of the archives at the Gulldhall. His name wan Matheens de Layens, master masas of the city of Louvain. While occapied on this task, for thirty years, he received foar sols (half-pence) per day in summer, and three sols in winter; and when this immortal work was completed, the muaicipality gave him a recompenen of five Peters and ten sols !

City Embelliahmente in Austria. -The imperial building court comalllor, M. Springer, has undertaken the reboitding of the façede of the Altstadt gaildhall, at Prague, which will be adorned by sis broose statues of Bohemian monarchs, sculptored by M. Marx. The corporation have voted a sum of $\mathbf{8 0 , 0 0 0}$ forins (equivalent to $\mathbf{£ 2 0 , 0 0 0}$ Eaglish) for that porpose.
Restoration of the UTm Minater. -Amongst the most important monar ments which the grandeous art-taste and generous piety of a great ago has left to its not always grateful successors, the Ulm Minster occupios a considerable place. It covers an area of 58,400 squaro feet, and is not surpassed by any medizeval cathedra, Cöln and Speyer excepled. Its naves, complete as they are, are of gigantic proportions, the principal one being 141 feet in height, and the four lateral ones 701 feet; the choir 90 feet. The spire, had it been completed according to the plans of the original architect, Mathew Boblinger, would bave overlooked even that of Cöln, as it was planned at a height of 475 feet (Rhenish), while the latcor was to be 474 feet. The spires of Freyburg, St. Stephen at Vienna, and even Strasburg, are all of a lesser beight. Thus, what is related by tradition may well be true-namely, that the Ulm burgbers, at whose expense this edifice was raised, said then, that they wanted to crect a case for the Strasburg Minster. This gigantic building was begua in 1377, the names of the architects being Heinrich and Michel (most probably only their Christian names). When Mathias Boblinger took charge of it, from 1480 to about 1490, the building had proceeded as far as the platform. A gubsidence of this stupendous mass was sabsequently apprehended, and Boblinger was compelled to fly from Ulm; Bunkhard and Eogelberger de Hornberg being then appointed architects. They underran the spire with such tremendous walls, that professional men suy any height can be raised thereon. The bailding was not sobsequeatly proceeded with, if we except those gracefal columas erected by Lienhart Aeldin ($1502-1507$), by which the lateral naves are divided. Want of funds-and sull more, the approach of the Reformation, prevented every further endeavour to complete it. Thus it remaioed until 1844, when the tendency to restore the mediseval monoments of Germany-already manifested in that of the dome of Coin-reactied also the inhabitants of Ulm. The completion of the spire is certainly, up to the present time, a sabject of mere wish and desire; bot that of the central nave (only inferior to that of Coln by 80 feet) is more easily to be achieved. The projected lateral pillars, which support the central nave and the still aofinished turrets, are get wanting. The completion of the two easterly turrets would at once impart to the whole a more perfect appearance. If all this be done-as it has already been begun-then the hage spire conld be attempted, the expense of which, albeit large, would be only one-third of the cost of the completion of the dowe of Cöla, calculated at five millions of dollars (at for shillings). The works are under the sole direction of the city architect, M. Thrän, whose epergy is generally praised and appreciated.

Great Nev's Hall at Berlin.-M. G. Julius has just completed the erection of the above establishment, in which the periodicals of all nations and conntries, and of every branch of homan knowledge and on every subject, are to be mel with. Situated in the very centre of the town, its saccess is almost sure. [A similar place does net exist in London.]
Raffaelle an Architectural Aulhor.-If some persons are astonished to hear that Raffaelle, whom they smpposed hitherto the painter of Cartoons and Madonpas, was also the completor of St. Peter's dome, at Rome, they will be still more surprised to understand that he was also an author, and this on a professional subject. His "Report to Leo X. on the preservation of the aotiquities of Rome," is a jewel of delicate yet deep thought; but it is the ooly thing which the divine painter ever put to paper, his mind manifesting itself in a different sphere.

The Boldeat Enterprise of the Age is, certainly, the draining of the Zuider-Zee in Holland, the expense of which is calculated at 61 millions of florins (10 millions sterling). The plan is ready, and embraces a gigantic dyke to protect the new land against the force of the Baltic Sea-a maritime canal, accessible at all times of the tide, to connect the sea with Amsterdam. No plan, except to form a railway over one of the passes of the St. Gothard, can be compared with the above.

Acoustics of Theatrea and other Public Awditory Buildinga,-It has been tried in some of the reoent constructions of theatres in France, to provide spaces in the body of the walls and pilasters, for increasing the acoustic character of the building. The rationale of this scheme is quite correctit agrees with the theory of sound, lately brought before the French Insti-
tute, that it is not a vibration of air, but a substance-a material body, like electricity, maguetism, beat, \&c. It in obvious that walls, and other golid work, canot and will not propagate the rays of soond dyoamically, as well and accuratrly as air does, which is its appropriate menstroum and vehicle. Of what shape these spaces are to be, and where they are to be placed-both according to the shape and size of the building-is a anbject open to the investigation of arcbitects. It is curious, indeed, to know that Aristotle says (Problem II, sec. 11) that the ancients placed empty vases or pots iu the walls of theatres, forums, \&c., for increasing the vibration and power of sound.

Fall of a Building on the French Northern Line.-On Friday, the 20th Nov., the large wooden building at Lille, in which the company gave the grand banquet to the Prench princes and the company invited to the inaugaration of the line, and which was recently being prepared for a waiting-room for passengers, fell with a frightfal crash. Not one of the upporting timbers resisted. The excavation of the earth around the sopports was the cause of the accident.

Belgixm. - The Laxembourg company contemplate bailding eight streets in the London atyle next spring around the station to he erected in the Quartier Leopold, Brussels, for the occupation of opalent Eaglish families It is well known that the English establishing their residences at Brassels have alwaya chosen the upper part of the city for the benefit of the air of the park and neighbnurhoood.

Tunnelling the Alps - The Moniteur Belge annonnces that experimenta have beed made in order to test the efficacy of a machine jnst invented for the purpose of effecting a new and speedy method of boring tuanels. It is proposed to apply this machine to the construction of the great tunnel about to be commenced in connection with one of the Italian lines. The machine was placed in front of the weh, and effected a bore to the depth of 181 centimeteres (7 inches) in thirty-five minutes. At this rate, the new invention will complete upwards of 5 metres (16 ft .6 in .) of bore per day, and the proposed tunnel througb Mount Cenis will be finished in the space of three sears. The exprriments have been repeated twice before sevcral of the first engineers of France, and with the most complete success.

NOTES OF THE MONTH.

Electrical Telegraph - At the Paris Arademy of Scieaces, M. Brégue exhibited a new electro-magnetic battery, intended for the line of electrica telegraph of the Paris and St. Germain railroad. A prepared magnet of steel is fixed perpendicularly upon a strong board. Above and very near the poles a rectangular plate of soft iron is fixed upnn an axis, which beara a pinion commanded by a large copper wheel. Upon the plane are engraved the letters of the alphabet, and opposite each letter there is a hole. The axis of the wheel has a haudle, to which is fixed a steel point, capable of entering the holes of the wheel. The handle has a binge, in order that it may be raised or lowered, and is free at the centre of the wheel, so that when the point is out of a hole the handle may turn in either sense to find the letter and irasmit it. Very oear the edge of the wheel is a lever, the small arm of which is rbove its centre of notion, with a larger one under, which serves to work a second lever: they are combinrd in such a way that a slight motion of the small arm of the first may describe an arch to the extremity of the large arm of the second. Tbe upper arm of the first lever serves as the point of arrest of the handle, at the same time that the large arm of the otber stops the movement of rotation. The apparatus is so contrived as to engage and disengage itself in the finding and transmission of the letters, without any effort on the part of the person working the battery.
Steamers for the Ganges.-On the 21st Nov, a number of scientifc gentlemen connected with India and steam navigation, met at the iron steam ship works of Messrs. H., O., and A. Robinson, Mill Wull, Poplar, to inspect a large iroo ateamer, intended for the navigation of the river Ganges, between Mirzapore and Calcutta, and named (by the spirited Cumpany who ordered her) the "Mirzapore." She is the third of a line of steamers for the Ganges designed and constructed by the same firm, and is the largest river ateamer ever built, with one or two exceptions in America, her length being 250 feet and her breadth inside the paddles 88 feet. The veasel is an admirable combination of strength and lightness, and embraces some novelties in iron ship-huilding to attain this deaideratum in the navigation of shallow rapid rivers. The engines are of the collective power of 250 horses ; are hotizontal and perfectly unconnected; their valves are on the equilibrinm priaciple; are acted non by cambs, and are well geared for the easy manipulation of the engines. The first of these ateamers, named the "Patna," has proved to be admirably adapted to the navigation and traffic of the Ganges, and the company have in consequence given orders for the immediate preparation of additional steamers.

Restoration of Llandaff Cathedral.-The Dean has just isaned a statement of the progress of this work. The eastern chapel has been completely restored ; the windows and open parapet work at the east ead of the south uisle are in progress. Active operations have been commenced in the choir, and a moble arch of Biahop Urban's work, with olaborale mouldinge,
has been opened. Beneath this a beantiful screen of Bishop Marshally, A.D. 1048, bus been exposed; as also a beautiful recessed monument ir he south east wall of the choir.
All Saints, St. John's-Wood.-Two stained glass windows have been presented by Mr. Fairs.

Holyhead Harbour.-The Admiralty have given notice of their intention to decpen and dredge this harbour, and to construct relaining walls and wooden jetties.

South Staffordshire Mines.-A weekly paper says-" We have been informed, on the beat anthority, that the Government have appointed as experienced engineer, thoroughly versed in the system of mining, who will immediately proceed to visit the iron and coal mines in South Stafordshire."

Cleopatra's Needle has, it is stated, been offered by the Bey of Tonis to Louis Philippe and accepted, and is to be placed in the Carousel at Paris.

New Act on Steam Narigatiox. - On the lat January an important Act "For the regulation of Steam Navigation, and for requiring sea going vessels to carry boats," comes into operation. Every vessel of upwards of 100 tons is to be provided with huse for extinguishing fre. Every steamvessel passing another steam veasel is to pass as far as may be safe on the port-side. No compensation is to be recuvered for injury by vessels not exhibiting lights at night. In rivers steam vessels are to pass as near as practicable to that side of the mid channel which lies on the vessel's starboard. Owners are to transmit to the Board of Trude iwice n year certificates of the efficiency of the engines, and are to report the supposed loss of any vessel, \&c.

At Lathency Abbey, Gloucestershire, five ancient Norman pillars have been dug up.

Long Acre Improcements - All the holnses belonging to the Mercer's Company, in Long Acre, opposite the end of Bow-sireet, have been demolished, and a direct rommunication is thus established with Wuterloo-bridge. The new itreet at the end of St. Martin's-lane is rapidly progressing; it is one of the widest thoronghfares in London, its breadth being 110 feet.

The Fortifications at Sheerness.-Dec. 21.-These works continue to progress rapidif. The large and formidable battery opposite the dock yard gate, facing seaward, is now complete, with the exception of the curtain or parapet wall, which will shortly be proceeded with, after which the beds for the traversing platforms of from 40 to 50 guns will be laid down. The musketry walls connecting this battery, on the one hand to the fortifications at Garrison Point, and on the other to the land defeaces, are also complete, and present a fine appearance, being excellent specinens of sabstantial workmanhip. These land defences, which ertend continuously from the Thames to the Medway, interrapted only by the drawbridge to Mile Town, are now in course of being repuired and beightened, by the mud procured in the deepening of the moat which protects them. The excavations for the noat which surrounds the new buttery, and which have been continued northwari, as far as the second angle of the old works at Garrison Point, and southward into the moatisurrounding the land defences, are neurly completed, aud workmen are now engaged in several parts banking it up with rubble stone. The greatest nuaber of men are, bowever, engaged in the construction of a ravelin, capable of containing $\mathbf{3 , 0 0 0}$ men, on the Mile Town side of the drawbridge. The moat is to be conducted round the ravelin. and a second drawbridge thrown over it. The repajrs and alterations of the old works at Garrison Point are completed. The magazines are iu course of being filled. New barracks, capable of containing 1,000 men, are to be inmediatels erected, and three Martello towers on the lale of Grain shore, should the foundation prove satisfactory. A party of Sappers and Miners are at present engaged there making the necessary burings and examinations.

Analysis of a Perwian Alloy, by Mr. Henry How.-This was a amall plate of a sellow metal, which was taken from a band of aimilar plates surrounding a buman shull: it consisted of-

It is a question whether the metal is an artificial alloy or the crude prodect of a metullurgic process. The author was inclined to the lattor opinion,Chemical Sociely.

King's Well, Bath. Analysis of the Water, by Messra. Mrack and Gallowar.- The whole method of analysis parsued in this inveatigation is given in detail in a paper to the Chemical Society, and the authors som up with the followiag results in the imperial gallon:

Carbosate of lime	\cdots	\cdots	\cdots	-	..	88820
Carbonate of magnesis	.	-	**	.	-	0.829
Carbonate of iton	\because	.	-	..		1.684
8uiphate of lime	\cdots	\cdots	\cdots	.	\cdots	80.052
Sutphate of dotash	..	.,	-	.	.	$4 \cdot 641$
Eulphate of toda	\because	-.	\cdots	-	-	19.229
Chioride of zodiam	-	..	-	..	.	12.612
Chloride of magnesium	..	-	14.581
Sllica					\cdots	2-983

Its epecific gravity is 1.0025 n d its temperature 115°, the atmospherie being 68° at the time.

The Lurgeat Merchant Veasel in the Worls.-This magnificent ship arrived in the Mersey last month on her first trip across the Allantic. She is inteoded to take her station as one of the packet-abips between that port and New York. She is 188 feet long between perpendiculars, 196 foet from the stem to the tafirail, 42 feet extrome breadith of beam, 28 feet deep, and is $\mathbf{1 , 8 1 5} 15.95$ ths tons, carpenter's measurement, or 1,511 31.95ths, Govermment measurement. It is estimated that she will stow $\mathbf{5 , 0 0 0}$ bales of cotion, or 3,000 tons of measurement goods. She bas three decks, the same as a frigate, the upper one being as aubstantial, in proportion, as either of the uthers.-Linerpool Mercwry.

Dublin.-Thesuccess of the School of Engineering, established by the Uaiversity in 184\%, bas exceeded the expectations of its founders. Soventy stadents at present are altending its classes. The conrse of instruction lasts for three years. At the end of each year the students pass an ex. amination previons to their being admitted into a higher class, and a final examination for the Uaiversity diploma; the whole is under the control of Sir John Macneill. L.L.D., Profeceor of Engineering in the University.

Drainage of the Zuyderzee.-Tbe works in operation for draining the Lake of Harlem, seemed to bave stimulated the ingenaity of the projectort of a till more gigantic undertakiog-the drainage of the Zuyderzee, which sc. cording to a plan published at the Hague, is proposed to be effected hy the comatruction of an immense dike, cutting of the commanication with the North Sea, and by forming a canal between Amiterdam and the coast, into Which are to be diverted the rivers which at present emply themselves into the Zuyderzee.

Demolition of 7rinity Chweh, Edinburgh.-The North British Railway Compeny have projected tbe deatruction of this ancient buildiag, erected in 1462 by Mary of Gueldres, wife of James IL. of Scotland, and containing ber tomb. The condact of the Commissioners of Woods and Porents in appealiog to the magistrates for the preservation of this edifice, affords an admirable contrast to the cold, money-loving spirit which inatigated its demolition.

4 Gallery of Art at Calcufia hat been projected. The Government offer to eontribute 5000 ropees ($\$ 500$).

Buttom, the Archeologitt.-An entertainment in honour of this veteran mapporter of the canse of Boglish architecture wat recently given at the Freemasons' Tavern. We regret to amy that he himself was prevented by iadiaporition from attending.
Buctringhem Palece,-The demolition of the colonnade in front of the conth wing has been commenced.

Trinity Charch, Paddington.-The foundations of this chnreh have partially failed : the cause is stated to be as fullows: The roads round the cite of the church bai been raised 16 feet above the natural level, the bailding was therefore supported on brick work 16 ft .6 in . high, that its bese mighi be on the gronad line. The embankments of the surrounding roeds having slopiog sides, and the foundation of the church having verifeal sides, there was of course an intervening spice to be filled in: the earth used for this purpowe han pressed against the brickwork and caused is to yield.

Sabmurize Telegraph.-The South Eastern Railway Company bave oxhibited their confilence in this invention by making preparations to lay down an electric telegraph from Folkstone to Boulogne,

New Docks at Wisbeach, covering 13 acres, are about to be erected by the Eastern Lounties and Great Nortbern Railway Companies conjointly.

Leddington Charch bas been restored. The stone work has undergone extensive reparation, and a new pulpit of stone has been erected.
St. Germain L'Auxerrois.-At this church, one of the most interesting Paris. a chapel pninted by M. Amaury Dnval, bas just bern exposed to view. and four others by different artists at Notre Dame, de Lorrette, and 8. Sulpice, will soon be completed.

Hely Triaity Church, Liecrpool, is nearly completed. The style is the Decorated, wnd the material red freestone. The chorch has a spire and tranerpis. The beaches are fitted up with Honduras mahogany, and polyehrome decorations are used as borders to the windows. Mr. John May, of Liverpool, is the architect.

DREDGE'S SUSPENSION BRIDGES IN INDIA.

For the following particolars of another failure of these bridges in India, taken from the Calculta Star, Oclober 6th, 1846, we are indebted to the atientios of a correspoudent in Calcutia, who states that the bridge al Jingaratchy was erected by military engineers, but that the iron work was teet to order from Engiand.
" It is with deep regret wo anoonace a melancholy and most fatal accident whicb has happened at Jingurutchy, nine miles this side of Jessore. The bridge there, recently completed by Gaptain Doncan, of the Engineers, has sulea. The chains gave way when the bridge was crowded with people, and at the moment three boats were passing ander it, which were sunk with all their crews. Our informant says the lose of life had not been
ascertaibed when a messenger was sent off to Captain D. with the report of the disaster; but he computes it at 100 . We earnestly bope this may prove over the mark. We believe it was oaly the other day the bridge was oxamined by Major Sage and two other engineers, and favourably reported on."
The following paragraph appeared in a second edition of the same paper:-
"We have since learnt from Capiain Goodrin, of the Engineers, that this bridge was constructed in England by Mr. Dredge, the patentee, and that Captain Gooderin reported unfavourably apon it on its arrival here; and also the committee, who examined it after its ereotion, decided that the structure was only fit to endure the weight which would be placed on it by ordinary traffic. On the occasion of the sad accident in question, some five or six hundred persons were on the bridge for the parpose of witnessing a poojah, and the accident was mainly owing to a sudden rush of the whole crowd to one side of the bridge, which onr readers may remember was the case in the Yarmouth catastrophe, which happoned about a twelvemonth ago. There is no doubt bat that on anch an occasion there ahonld have been police stationed to prevent the structare from being overloaded."

THE GREAT BRITAIN STEAM SHIP.

Mr. Brunel has addressed to the proprietors of this vessel a report, dated December 14th, of which the following is a brief analysis :-

The ship is at present comparatlvely little injured. The strains and damage sustained are entirely local, and not communicated to the whole hull, as would have been the case in a wooden reacel, under similar circumstances. All the iojuries done to the Great Britain might be repaired if she could be got into dock.

To this object all attention ought to be turned, as the ship woold scarce pay the expense of breaking ap; and if she wore brought into port exactly in her present condition, she woald be worth from $\mathbb{E 4 0 , 0 0 0}$ to $\mathbf{E 6 0 , 0 0 0}$. It would require, at least, three months to complete the means of floating ber, and in the interim it is necessary that she should be protected againat the effects of the sea. To this end, Mr. Brunel proposes to erect-ant at fired breakwater, which has been already proved impracticable-bat a mese of fagots, used as in the protection of cea-banks in Hollaod. The strongest cooviclion of the sheapness and effeacy of this plan is expreased, though " few persons who bave not seen the effect of a sea beating against fagots will share in it." The fagots are to be packed closely against the ship's exposed side for a considerable thickness and up to the level of the deck. The whole is to be bound into a compact mass by rods, driven through the fagots vertically, and is to be atteched tightly to the ship by iron chains. Abont $\mathbf{1 0 , 0 0 0}$ fagots woald be required.

So much for the means of protecting the vossel-next, as to the mode of subsequently raising ther. Mr. Brunel is of opinion that this cannot be well effected by flotation. There are only 10 feet of water at ondinary bigh tide, and she has worked herself 5 or 6 feet into the rock and sand: The weight to be raised is $\mathbf{2 0 0 0}$ tons, and therefore if the buoyancy of foating camels were resorted to, the apparatus wonld have to be of ecormous magaitude.

It is recommended that, instead of hydrostatic, mechanical power should be enployed, and that when the ship is raised sufficiently to allow the repairing of her bottom, she should be readered water-tight, and then be towed to Liverpool or Bristol.

MBNAI TUBULAR BRIDGE.

EXPERIMENTS AT BLACEWALL.

We have on one or two recent occasions witnessed experiments made on the huge model of the proposed tubular bridges of the Cbester and Holyhead Railway, under the able direction of Messrs. Hodgkineon and Fairbairn, when several other eminent eagineers were present. The principal object of the present experiments bes been to escertain the proper proportions of the sectional areas of the top and bottom of the tube. Great additional strength has been obtained by stiffening the side plates with vertical ribs of T iron, attached at equal intervals tbroughout the whole leggth of the tube.

In the fira experiments, the sectional aree of the bottom plate being 221 equare inchea, of the top 24 square incbes, and the nides 10 inehee, a weight
of 58 tona produced a dofioction of 8.2 incher. Thin woight was allomed to remain till the following morning, and the increace of defection was found to be inconsiderable. The tabe being subsequently laid on ita side, in order to teat its lateral strength, it wan found that 9 tons produced 2 inchee defeotive, and 12 tome, the lant lond lidi on the tube in that perition, produced $3 f$ inches total defection, including that dee to the weight of the bean itself.

In the concluding experimenta, Dec. 23, it was determined to lond the model bridge till it was broken. The fallowing table exhibits the deffection correaponding to eneth loed:-

In order to a right apprehenrion of the manner in which the fracture took place, it mat be anderstood that the thickness of the bottom plate had been greatly increased near the middle point of the model by additional platen, which wore continved for 20 feet on ench side the centro; and it was where the thin part, of aingle thickness of the bottom plate, commenced that frocture took place. The bottem plate was torn acunder with a very irrogalar line of fracture, not contigeons to the rivets. The vertical or side platea alco gave way, bat in thom the rivets (24 on each oide, of fotiron) were actually cut or sheered amoder, the rivet-holes baing perfectly unin. jured. The top or cellular plate remained perfect.

Thene experineasts have sugsemed several inprovennents of details in the lridgee to be conatrected over the Menai and Conway: bat at preeent the medifications are not defned refficiently to be hid before the public. The ntmont preeautiona have beon takea to secure the otrength and atability of the proposed atractures. The greatent credit in due to the atdll and perneverance displayed by Mearn. Puirbuirn and Hodgkinoon, and other gentlemen called in by Mr. Stephenson to carry on the inventigation, and alco to the piberality with which expenaive models have beea provided.

LIBT OF RED PATEMTE.

GRANTED IN ENGLAND FROM MOVEMEER 25, 1846, TO DRCEMAEE 91, 1846.

Henry Bobert Bamabothm m, of Bradiord, York, worsted-eplaner, for "Improremeonte In combing wool."-Sealed Nov. 25.
James Bullongh, of Bleciburn, Lanestar, and Adan Bullough, of the atme place, for "eartain Inprevemente In boons for meavirg."-Dee. 1.
Henry Bridges, of Croydon, Surrey, conch-bulider, for "cortaln Improvementa in rill-way-wheels. ${ }^{m}$-Dec. 1.
Wiliam Twomas, of Chepalde, eity, morehant, for ${ }^{*}$ Iroprorements lo "mechlatery tor eeving or attiching vartous fabita." Dec. 1.
William Johneon, of ©rotvenor Wharf, Millibsok, fentleman, for "certain Improvements in machinery for ralsing or linlog and lowering weighte or ponderons bo dies,"Dec. 1.
 is epparatus for marafecturing ealt."-Dec. I.
Bichard Love, of Coleman-street, City, merchant, for ${ }^{*}$ certald Improvenenta iv papIng atreets, roads, yards, and other murfaces, over whtch carriages, and beasts of burden have to pases.t-Dec. 1.
Jacquen Praccois Pinel, of Lyons, France, chemist, for "Improvements in grinding wheat and other graln."-Dec. 1 .
Samnel Cunlffe Lister, of Mannlagham, near Bradford, manufacturer, for ${ }^{64}$ Improvementa in combing wool."-Dec, 1 .

William Mayo, of Sliver-atent, City madefncturer, for "Improvenente in the manafacture of aerated ligulds, and in apparatus used for such manufactures, and when pumpfactare of aerated liguids, and In apparatus used for
ing the lignids, and aloo in bott Hog fulda."-Des. 1.
George Ferguason Wison, of Belmont, Vauxhall, Surrey, gentleman, and John Jeckgon, of Southollte, Wandeworth-roed, for's In provemente in the proeen of and apparatus for treasing fatty and olly mattere, and manufacturiag candike and afghtifhts." Dec. 1.
Whises Johnson, of Growenor Wharf, Milibank, Weatmineter, gentieman, for "certath Improperiente in propelling carrlages on rallwers."-Dec. 2.
Joweph Bencroft Reade, of BLone Vicaragt, A yleabury, Bucldngham, clerk, for "certain Improvements in inks, and in the process by which the same are manfactured, and the apImprovements in inke, and in the process by which the same are manfictured, un
Thomes Cradduck, of Blrcningham, maginetr, for "Improvements in atem engines and bollers, and in machlnery connectad theremth."-Dec. 8.

WIlliam F. Fox Talbot, of Lecock Abbey, Whte, Eequ, for "Improvenente in obtalnter and epplyine mectw power."-Dee. 3 .
Edmund Morewood, of Thornbridee, Derby, machert, and George Ropers, of Buarn-

 De. 7 .

Bugene Badie, of Rouen, France, manufecturer, for " Improvements In obtaining heat during the mannfacture α colre, and applytng auch het to verious porpowes." (A coms during the manufactur

John Decie, of Foxiey, Kennington, Surrey, Gentieman, for α an improved apparatie to be sttacbed to boots and shoes, for the purpoee of protectios the werem tow spleabes of arad In walting."-Dec. 7.
Bampel Cilit, of Weat Bromaich, Btiford, gentleman, for " certaln Improvements in the diatilution of tar and pitch. ${ }^{n}$-Dec. 8 .
Alexander Baln, of Banover-street, Edinburgh, electrical engineer, for ω certaln Improvemenis In tranamitaing and recefing electrical telegraph communicatione, and it mpparitent comected therewith."-Dee. 18.

Moen Poola, of she Patent Bill Once, Loodion, genthemen, for "Improverpenta In the construction and vorkins of electric teles raphs, and in apparatu conpected therewth, construction and wortiog of lectric teletraphs, and in spparatua co
partly applicable to other purpoees." (A communicetion.)-Dec. 14.

James Yates, of Maborongh, in the parish of Rotherham, York, engineer, for "Improveriente in the cornatriction of blat furamers. ${ }^{n}$-Dec. 14.
John Eeeley, fundor, of Nottingham, dyer, for ω Improcespents to dreadig or faniabios lace, and other barics. th-Dwe. 14.
Whllam longmaid, of 81. Helen's, Lenceater, fencleman, for "Improvemente in the manufucture of alliald and chlorive."-Det. 14.
Etijah Gallowny, of Buchiogham-atreet, Strand, Middieser, eivil engineer, for ${ }^{4}$ Improveraente in rotatory englies, and in locomotve carringes and ralimay."-Duc. 14
John shaw, of Blacitbarn, Lapcawer, for "ertah Impropemente in machtuery or epparatus for earding, drawing, elabbtog, and roving cotton wool and other parous sub-pances."-Dec. 14.
James Carter, of Oldham, Lancaster, palnter, for "an Improved Iubricator."-Dec. 14
Charles Ford, of 8belton. Stefford, engineer, for "Improvements in the menufacture of potiery or eartheaware, and in the toola, Instruments, or apparatue employed theretn. potery or earthenware, and in the toon, instruments, or apparatus employed cherein,

Henry Bleedale, α Chyplnt, Lancaster, roiler-matrer, and Wultan Ryder, of Beltoge In the same county, coller-mater, for "certala Improvemente in machinery or apparatue to be employed In the manufacture of rollem uned in meehinery for preparing and aptonlne cettoon and other fibroas snbatapees.r.mDec. I4.
Joha Todd, of Glagow, Engipeer, and Willam Johnoen, of Btradocham, engiveer, for

Jobs. Chubb, of 8t. Paul's Churchyard, City, for "Improvements in locks and latebes to be need for fastemings."-Dec. 14.
Beajamin Vickers, of Shefiald, Yorkghire, merchant, for "an Invention called the mechanical chirographer, or machloe for delineating letiors, Agures, and othar charneters." (4 communicetion.)-Dee. 14 .
Jeremiah Camplon, of Somers-place, Hyde-park, Middlemex, gentleman, for "Inprovemente in soldfers' beltenod improvements to thcilitate the carrylog of tatpacirs."-Dee. 15.

Thomes Priend Dichingon, of Newcastle-upon.Tyne, sharebroker, and John Faltons, of the mane phece, gie engineer, for "certaln Improvements is gan metrea."-Dee. 15 .

Merk Bingley, of Cannon-street, London, stationer, for "Improvements in bookbind. ing, and in weaving materlals usad in bookbinding, appliceble also to other weavinger and in pregaring for, and making alphabeta for mecount and other beakg, and In matiot type thertor and other purpones, and in preparing sprinkled, granaleted, or motied paper for book pinders and ouners, applicaNe also

Bleherd Tymer, of Dammersmith Works, DubHy
Behard Trarmet, of Dammeranith Works, DabMn, and Bath-place, New-roed, IIMlle-
 toort of other balldings."-Dec. 15.
Walter Bmart, juntor, of Leather lane, Middlesex, lithographic prister, for "a new er improved lithorstiphic printint preme."—Dec. 21.
John Wataon. of Glangow, manger to Mewars. Gllmour and Kerr, power-loom cloth manufactarer, for "Improvemente in weaving by Jacquard looms by power."-Dee. $\mathbf{z 1}$.
Peter Berrle, of the Crescent, Minories, Ctty, engtacer, for " Impropemente in the coraPeter Bertie, of she Creacent,
struction of plors and harbours. $"-$ Dec. 21 .
John Jenninge, of Ollerton, Chester, farmer, for "certuln Improvement in machibery or apparatus for threshing."-Dec. 21 .
Rlchard Boyce Osborme, of Limerict, Iroland, civil engtacer, for "certain Improvemeats in bildges, roofing, and toorine." (A communication.)-Dec. 21.
Lavie 8 yivian Gonin, of Paris, manaficturer, for "In provements in prinilag stufis, paper, and other matters."-Dec. 21.

Mosew Poole, Loodon, gentieman, for " means and apparatur for administering certain matter to the fung for medical or erresical purposes." (A commanicetion.)-Dec. 21.

Jouph Whitworth, of Manehester, engineef, for " Improvernants in machjnery for matHDg."-Dee. 21 .
Auguatus Applegarth, of Dartford, Kent, calico printer, for "Improvemente in me chines for printing paper and other fabrica."-Dec. 21 .
Mones Poole, London, gextleman, for " Improvemente in stenn-eprioet, and machinery for propellitig maehloery and Anlds." (A conmuniention.)-Dec. 2l.

Antoine Perpigin, of Parte, advoeale, for "crialn Improvements In machinery for pialing asd bratding." (1 communleation.)-Dec. 21.
John Perry, of Leicester, wool-comb manufleturer, and James Noble, of the ame plece, woof comber, for "certaln Improvemente in combing wool, and In preparing wool for combing and cardiag."-Dec. 21 .
Pierre Frederic Gougy, of Lefcester-aquare, MIddiesex, gentleman, for "Improvemente in apparatus and machinery for ralsing; lifing, and otherwise moving heavy bodies."Dec. 21.

TO CORRESPONDENTS.

Sir Howard Doagles requests as to atate that he will in a short time roply to the observations on the Strength and Stability of Hungerford Bridge, in our last (December) number.
H.S.-The second letter was, we suppose, intended to prevent the publication of the first, which Fould otherwise have been ingerted. Yertupe onr correspondent will write again after reading the letters on the subject in our present number.

Received: "Ancient and Modern Arcbitecture;" "Life of Gandon;" X Y Z, North Wales,-Next month.

COLOGNE CATHEDRAL

(With an Bugraeting, Plate V.)

It is not a century since Christian architecture was praised for its barbaric magnificence. The admiration accorded to it differed in degree, bot was identical in nature, with that given to the grotesque Indian pagoda, or the fantastic extravaganciea of Louis Quatorze. Vitravios had reduced the proportions of temple architecture to numerical calculation, and shown how many times the beight of a colamnshould exceed its width: but as there was no book extant in which cathedral architecture was similarly treated, it was condémued as oneystematic and inharmonious. The plomb-line and foot-rule were then the critic's stock-in-trade; with thene implements the "doble art of criticism" was worked out with all the mechanical preeision of plane surveying.
After a time, however, the bright thought was snggested that, perbapa, the mediaval architecta were not the barbarians they had been taken to be ; that, with all their caprices and apparent defiance of rale, there might be some method in their madness, if it could but be found out. It was questioned whether there might not be other harmonies more subple than those which are capable of being settled by the multiplication-table. And when these heresies in architecture had once been started, they were not forthwith silenced as visionary ; bot, on the contrary, spread and multiphied 'exceedingly. It is trut, that the orthodoz Acadernies and "Yegally conatituted authorities" had nothing to do with the promulgation: of the new doctrines; and that one of thome Rojal Sócieties who have been kind: enough: to. modertake the protection of art-mamely; the Académie Royale, das Bearax Arts at Paris-did in its wisdom prononnce, in June 1846, a trong avathema againat the revival of Pointed architecture. But, rotwithatanding the reaistance of this and other very'solid bodies to external preasure, it bas become more or less evident.to all who are concerned in the miatter, that-the, opposition, whether passive.or sctive, was quite too late' and might be sufely dieregarded.

Now, among all who love Art for its own sake, and who can, therefore, appreciate its existence independently of the aid of arithmetic; a general conviction seems to be growing up, that the most eloquent defegee of their doctrines bas been set forth on the banks of the Bhine. Universal consent appears to point to the fact' that there stands the noblent and mightient.of all monuments of mediaval thought and skill.-The Catacdrax of Colognh, wasted by time and the ejemente, despoiled by French soldiery, despised by classic connoisceurs, and neglected by its own proper guardians, has come to be comidered the most beantiful of poems which man's hand has ever written in stone.

But this bailded poem, thougb it excel all others in beanty, is yet ove of the least complete; so to speak, only a few books of it remain, and those have been sadiy marred by the notes and emendations of commentators. Accordingiy, the promulgators of the new architectarsi doctrines were desirous to repair the injuries which false friends and profesmed enewies had inflicted upon Cologne. But the work of reparation had scarcely been begun, before it was found' out that another work, far more magnificent, might be attempted with everij prospect of success-mamely, that of completion. Now, in order to comprehend the magnitude and buldnoss of this project, it is requiate to underatand clearly the original plan and denign of the building, and to what extent the intention of the firat architects had been earried into effect.

The desigo of the bailding comprebended, in the first place, two enormons towers at the west end, sarmounted by spires ; and this part alone, as it enrpased in magnitude everything similar to it in the worth, 80 also would have been superior in the contlineses of its decorations. For the spires were each to have attained the height of 636 foet-a beight nearly double that at Linooln, and exceeding that at Salisbury by 132 feet; and the profusion and delicacy of aculpture would have outvied Strasburgh itself. The height of the nave in. tarnally was to have been 160 feet, and some idea of itu magnitude eay be formed from the eseertion that it is of sufficient eappoity to
contain the Chapel of King College, Cambridge, completely within it. The nave at Cologne was to have double aisles, including whicb, its total' breadth would be the same as its internal height, namely 150 feet. The approximate equality of the breadth and height of the nave is observed in most of the English cathedrale.
Besides the parts described, there were double transepta, and beyond them the atately choir delineated in our engraving, which in the only complete part of the building. The external height of the choir is 208 feet-as nearly as possible the height of the tomert of Weatininater Abbey!
The total length of Cologne Catbedral is not very great compared with its width, being 500 feet. In this respect it is exceeded by three of our own cathedrals-Winchenter, Eiy, and Canterbury, and equalled by two otheri-York and Lincoln : and it is curions to observe, that while in these edifices the length is six or seven times the breadth, in the great continental charch the length is ooly three times and ore-third the breadth.

Of the vast pile thus contemplated, comparatively little has been actually execnted.' The choir, as we said, is the only complete part. In each transept a portion of the east walls is erected. Of the nave little is built, and there exints a great g ap, which is covered in by temporary walls and roofs; the northern aisles are in the most perfeot condition, seven compartments in their ropfs being' groined over, and the windows being fiaished and filled with stained glass; but in the southern alale the windows had only reached the apringing of their arches. . In the grand western facade of the cathedral there in a large vacant, space between the north and south towers; and of these towers, the southem only bad reached to the height of the nave und phoir-roofs, the northern being only just commenced.

- It will be seen, therefore, that the work of completing this Cathedral excels in magpitude that of erecting almont any other. And this comaderation alone can give us an adequate notion of the boldness and enthasiasm which must have actuated the Germanic nations when they undertook this gigantic task: for though the mere magnitude of the work may be understood from the foregoing dimensions, their.variety and intricacy can only be ascertained from minute local inspection. The.tracery is different in eveny window (the manufacture of u Gothtc' windows' at 'so mach a dozen being a somewhat Iater invention): The whole structure, as may be seen from the view of the choir, would tower above a'forest of finials, pinnacles, and flying buttresses. Every part seems literally covered with the luxufiant overgrowth of delicate sculpture-rich canopies for figares of the saints, crockets carved into the semblance of roses with the minutepesa of natare; every beautiful form which Flora could suggest, and every strange form which a fantastic imagination conld create, seem here embodied in stone. Amidst flowers and foliage and cluatering fruity, appear strange fabulous monsters, dragons, griffins, and winged nuicorns. The demons and hobgoblins who, as every one known, used in olden time to play, such terrible pranks about the mountaine of the Rhine, here live again, long after the printing press aud the steam engline have laid them low.-As you walk round the building, look up suddenly, and you will probably see some fantantic merry devil grinning at you from beneath a watersboot or corbel; suddenly turn the angle of a buttress, and you find that a troop of little imps have been watching you round the corner: while within the gorgeous choir, solemn figures of the saints look down from their lofty nichea, and gigantic angels seem to hover high up above the altar. Tuwarde dusk, it requires strong nerves to look at these myaterious forms without awe, for they gain in apparent size, and look tenfold more myaterions, in the twilight ; and no ode, probably, would like to be locked up all night in Cologne Cathedral, with no other compeny than these saintly effigies, the sepulcbral monuments, and the reliques of the Three Kinge.

[^6]BALL OF LIBERTY (LIBERATION), KEELHEMM,
It is not only by its pregoant historioal and etbic eharacter, bat by the massivesess and aterlingoess of itu architeotural conception, ibat this monument (called forth by the will of the King of Bavaria) deserres eapecial attention. Thus, Libesty Hall, with its huge brosse memorial teblets, will infere new ideas and thoughte in the mind of natione, which, however they may be imparted, we are manh in meed of.

Kehlheim is situated about four leagues above Donanstanf; opposite whioh latter place the Walkelle reflects its shadows in the waters of the Danube. Celebrated for yeare past by ite valuable Itmentone quarries-another consideration has induced Lewis J. to select it for the site of his mew oreation, vis, it being the place where the Ludwig canal disembogues into the Danabe. In the nearly rightaggle space which the river and canal form here, the lerraiz asoends considerably, and forms, towards the Danube, melevated ateep wall of rocke It is on this commanding platean that Liberty Hall is being erected. The main structure, a huge rotubda with a dome ceiling, forme a oeto-decagon (Acheensek) of 206 feet diameter in the greatent width of the hall, exclusive of the outer groined vaulted arcade that surronnda it; the outer hall abuts to a beight of 60 feet (including a flat roof) against the dome structure, and round the outer vaulted hall extend the groined vaulted arcades, of a joint height of 22 feet, including the groining. The building will rise, up to the highest point of the lantera in the cupola, to the elevation of 175 feet. The height from the vaulting to the entablature is 100 feet. Beneath the latter extends the onter triomphal-area, conaisting of double arch-openings, separated by two pilasters, all round the octo-decagon. Above the entablatare, three atepes surround the outer dome vanlting.

The stairs, from the entrance, lead up to balf the beight, straight to the matn building; they then branch off, laterally, in two ascents. If, therefore, we step in the centre of the building, we are surrounded by a cycle of columns, whose diameter, from the ceatre of one column to the opposite eolamn, threngh the diagonal of the rou tunde, mesoures 100 feet. Bightees colurons rise from the floor, on the radii of the oeto-deeagon. They are monolithr of gravite, and measure (inotuding bases and capitals, of white marble) 27 feet, and have a diameter of 4 ft .4 in . Above theme, apring circular arches with archivolte, also of white marble, and the eighteen mural aurfaces sbove them mafe of yellow marble; on these are inscriptional tablets of white warble. The apace above the eighteen mural aurfaces is divided by double arch openings, with pilasters and semi-columns. Behind these, extends the inner triumphal area. Above these archppenings of the inner triumphal area, the vertical portion of the building extends to a beight of 84 feet above the inner floor. The imer dome vanlting rises thence to a height of 30 feet ap to the lantern, whose diameter in the clear, is 31 feet. Behind the circle of columns, on the ground foor, extends an arcade with groined vaultinge, which the architect intends to dress with dark red marble, the effect of which will be surprising. This arcade is surrounded by a cella-wall of 8 feet thickneas, which latter divides the inner from the outer arcade. According to these measurements, the plan, elevation, and sections of thingigantic structure may be easily conceived.

This hoge rotunda and cupola structure is merely destined to be the shell of its internal, strictly monumental, kernel. If we again g° to the cenitre of the podium of the hall, under the lantern of the capola (which alone will light this hage apace), we shall see ourselv es surrounded, at the distance of 40 feet, by a ring-formed styiobate, which bas oo entrance, wave by one opening, opposite and in a right line to the main entrance of the hall. On this (continnous) stylobate, stand, in a circle, thirty-four colossal Victories, in pairs, elose to each ofber, before the columas, and boiding each other with one hand with the otber, each pair grasps a bronze sbield, made of the enemies' cannon. On the gilded front of these shields are insoribed the names of the diferent battles, $\&$ oco, and the names of the leaders will be put in the corresponding marble tablets on the same wall-face of the octodecagor The backs of the shialds. will not be gilded, for the pur-
pose of showing the metal they are made of. The winged Victories are ench 10 feet high, and of white marble, and form, with the mase of shields which they bear, an unterrupted and most imposing circle; this being only open at ode place-the main entrance. They are to be made after models of Manter (aic) Schwanthaler.
In conclunion, it is to be remarked, that the king of Bavaria has ordered thot not one piece of wood is to be used in this structure. which will consist entirely of Kehlheim limestone, granite, Slander's marble, iron, and copper, with which latter metal the cupola and the entrance-hall will be roofed. The very foundation of the walls had to extend, at places, to the depth of 50 feet, owing to the ineqnality of the terrain, is, in itself, a vast complex of numberless arches and vanlts, well worthy the attention of builders. The ingenious manner in which the architect has executed the donble vaulting. of the dome is not to be passed over in ailence. The name of this worthy master is Sir Frederick Gaertner, P.R.A of Arts at Municb.
J. L——.

DISCOVERY OF TERMESSUS.

The site of Termesens, one of the largest and moat important cities of Asia Minor, has long been a matter of doubt. The recent travels of Lieat. Spratt and Profemor Forbes in Lycia, have however settled the dispute, and to thase enterprising travellers we are iudebted for a discovery of great interest in an architectural point of view, and one whioh adds to the records of ascient art a whole city filled vith Roman edifices, many of them very important and in an exceilant atate of preservation. Of these, one of the principal is the ancient theatre, which is minutely described. The nature and exteat of the discoveries will be seen from the following narration:-
"The valley became more and more confined. We were evidently ealering an important pan ; every here and there were traces of fortifications: suddenly, in the narrowest part of the gorge, we came upon a rage of perfeot and admirably built Hellenic walla, strotohing across it, fortified by towers, and pascable only by the ancient and narrow palimay. The forlifications mentioned by Arrian, the pees through which the army of Alexander marobed, seemed before os, and at every turn we oxpected to see the walls of Termessas. Our gride pointed to the summit of the monatain above us, and said he bad heard of ruins there. Abont a mile beyond the grateway, we reached a khan, consjating of three stome boild ings, and a coffee-honee, kopt by Torkish coldiers, ecting as guards to the pass. Here we put up for the night, not a little gratified by the assurance given vi by one of these men, thal the report of ruins on the noighbouring mountain was true.

Early in the morning we commepoed the ascent of the mountain, to seek for the rained city. The first part was over steep and rocky groand, but after a time we came upon an ancient roadway, leading towards an openlog in the monntain side between two towering rocky peaks. Following this road, which was buried in treen, and eneambernd by anderwood, foe an bour and a half, we anddealy oame apon two ascient guard-boceos, almost perfect, one on either side of the way. We did not linger to 1 race any connecting wall, but hurried ansioasly on with sangrine expectations. For noarly a mile we mot with no other truces of ruins; some surcophagi wepe at leagth discovered amang the thicket, and bear them, on the finoe of a great roak, were earved in large letters, the words IAATONIEOX \$INOZO\$OZ.

Suddenly, aftor crossing a low wall, we emerged from the thlcket, and entered an open and flat area between the two great rocke, and wallod by by inaccesaible precipices. On it ruins were profutely seattered; nume; rous tombs and sarcophagi, fallen buildings of large size, and a tomple, the ornamented doorway of which still stood, fronted by a goodly fight of steps. Fluted columas of large dimeosions hay etrewed in fragmena upon the groond. Unwilling to delay until we had asoertained the full exteat of the aify, aftar a haty glance we proceeded to the upper end of the platform. Here the valley became more contracted, and a strong and perfect wall was thrown across it. Within this, rains of nobler style and more perfeot preservation appeared, especially a palatiol building of great extent, haviag anmerous doors and windows, and alonoat perfect to the roof; like the others, it was constructed of rectangular blocks of limestone, without intervening cement ; bofore ut, on what appeared to be the monntion top, a third wall appeared, to which we ascended, expeeting to Ind the ecropolis. Hitherto we had met with 80 mention of the ofty in apy of the isscriptions, but, on asoendiag to the last-menlioned wall, wo came npon an inscribed pedestal, which assured us we were in Termeseni, a name shouted out by the finders with no small delight, and eoboed by the ofd fooks, to if in confrimion. It mun bave been now to then after
having reated so loug anepoken. Or raching the thind mill, our surprive wes grout ta fording that hitherto wo bed been wandering es it were oaly in the veatibale of the city, and that Tormemoss ftoalf wes yet to como, bailt oa the morntain top, evea as Arrian has recorded. It stood on a platiorm, surrounded by a oatnral wall of crage, three to four hundred Zeet high, except on the east, where it terminated in a tremendous precipice, diving into a deep gorge, opening into the Pamphylian plain.

After crosaing the third wall, our attention was first attracted by an avenue, bordered on each side by a close row of pedestals, terminated at each end by public buildings, apparently temples. These pedestals were afront ah ibscribed, and the inseriptions in good preservation. One of
nom was of peculiar ioterest, confrming this aite as Termesus Major,

Above the areane to the weak, appears to have bean the habitable popr tion of the city,-the buildings there, which are all failen, baving the aspect of the remains of dwolling-honses. To the south and east the groand is covered by pablic edifices, many in tolerable preservation, others proatrate, -all of substantial architecture. In the centre is an open levelted space, which, from an inscription, proved to be the Agora. In the midst of it atands an isolated rock, about fifteen feet high, surmonnted by a plain anrcophagus, below which, at the hend of a flight of ateps, bews out of a rock, is a recess with a meat (a Bems 9). There are also siches for votive tablets. The aree of the Agora is undermined by extenave cisterns, the roofs of which are supported by masaive pillars asd arches. This ares seems, dering tho Middle Ages, to have boen incloned by the walls aad cells of a monastory, one of tho very fow remains of Christian origis at this site. Termemas mes the seat of an episcopal cee. Aroand the Agore are the most important public buildiage; the mont perfect of these is a great square erection with highly finisbed walls, ornamented with Doric pilasters, and having only iwo windows, placed high ap. A smaller and similar boilding stands behind the larger, the mont promivent objeat among the ruins, and by its side a mecond, in froat of Which are two pedestals, bearing inscriptions, one in honour of Plato, who eppears to hare been beld in high esteem by the Tormesaians, and the other dedicated to the Muses, of whom thit wes probably the temple. By the side of the Agora, and on the lof of the greal equare bailding, are the fallan remains of a Doric temple, apparently (from an inscription) dedicaled to the sun. Some of the blocks are of Parian marble, and are fragaents of seviptared frieses. A search and excavation among them would mont probably lead to the discovery of many worke of art."

ANCIENT SYRACUSE

 tevit, Jem. 11, 1847.
The ancient Syracuse occupied the firat rank of all the cities of Sicily, or Magna Grecia, in point of extent and political importance; and there are few remains of ancient cities, even in Greece herself, which are more intereating to the scholar or the antiquary.

I visited the ruins and the modern city in company with nome fellow-students in the summer of 1822 . The classical intereat of the spot, the beauty of the situation, and the splendour of the climate (noted by Cicero for ite sumahine in every day of the year) were such, thet not evepa week's painful imprisonment in the quarantine, on a mbequent ocoasion, coudd dimiaish my feelinga of admiration for this renowned spot.

The present paper being principally devoted to the architeatural description of the ancient city, I will not occupy the time of the meting with a long account of its history: it will be sufficient for our purpose merely to refer to the tradition of its having received its inhabitante, in very earty ages of the world, from Egypi and Phoefieia; that they were drlven out by the Siculi, who, in their turn, were replaced by a colony from Corinth, led by Arcbias, one of the Heraclide, in the second year of the eleventh Olympiad, or about 732 yeart before the Christian era. The city was named by them Ortygia, or the island of quails (the same name was originaily given to the island of Delos).

We have the uaited testimony of ancient historians and poets to the effect, that the city rapidly tocreased notil it arrived at 30 great se extent, and to such, a degree of splendour, that Thucgdiden (long before it reached its summit of prosperity under Dlonysius) acknowledged it to be equal in size to Athens; and Cicero mentions it, in one of his orations, as the largest and most magnificent city in Greeoe.:

The eity wan under different governmenten antil freed from the tyrawny of Thrasybulue, 446 Bc .; and nixty-one years afterwards it was yurrped by the Dionyili, who were expelled by Timoleon, $343 \mathrm{s.c}$. The celebrated part it took in the wars with Carthage, its memorable

[^7]corficts with the Alhenians, and its sad and mighty fall, after enduring a threc yeart siege by the Roman comqueror, Marcolua, are events so well known to every scholar, as to require no further altasion to on my part at this meeting.

In after years, the Saracens completed the suin the Romans commenced; and A.D. 827 Syracsse resigued to her rival, Palermo, the proud title of Capital of Sicily. From that time the city bas dwirdled into comparative insigoificasco. Her popolation at the presem time does sor exceed 12000; and that commeroe which once filled its glorious harbonrs with the ships of Rhodes, Alezandria, and Caythage, is now confined to a few speronaras engaged in a miserable coasting trade.
Syracuse is said to have derived itn name origtrailly from the netghbouring Marsh Syrnoo (now called If Pastano), and sitmate on the right be ok of the Anapos i it wes afterwards callod Taragolie, a city formed of four distinot quarters, and these were named Ortygia, Acradina, Tycha, and Neapolis.
According to Strabo, the circuit of the anciest walls was 80 thadia, or $22 \frac{1}{1}$ miles, including the suburb of Epipole, which wes to the west mard of Neapolis, and commanded the whole city. At the extremity of Epipole was ap almost impregmble fortsese, called Earyale, neer tioned by Livy, and other historians.
The great port of Syracuse-one of the finest in the Mediterra-nean-is about five miles in circumference. As yon enter from the ocean, to the left hand is the rock Plemmyriom, distant from the opposite shore of Ortygia about half a mile. It was across this entrance to the port that the Syrecasans, by advice of Hermocrates, threw a strong chain, and thus blockaded the Athenian fleet.

In modern times, the great port of Syracuse has its name compected with a glorious event; for it was here that Nelson revictualled his fleet previous to the battle of the Nile. The lesser port is on the other side of the island Ortygia; it was called Portus Marmoremen according to some authorities, from the bottom having originally been paved with marble; bat perbaps with more probabiliny from the cootly buildings which lined its shores.

I will now endeavour briefly to describe the four quarters of the city, commencing with the mont ancient one. Ortygia was formerly considered the most important part, in consequence of its commandiing the entrance to both the ports. The tyrants established their residences in this division, and added, from time to time, to the fortifications. The Romans also, when masters of Syracuse, regarded the situation of Ortygia in the same important light, and probibited any native citizen from reaiding in that portion of the city.
The Temple of Minerva was the most sacred and froportant boilding in Ortygia : it now forms the cathedral, or duomo, to the moders city, to which purpose it was converted during the 12 th century, when the Goddess of Wivdom wis obliged to resign ber strme to "Our Lady of the Columps ;" for such was the change in the dedication of this edifice.

The temple was of the Doric order, peripteral and hezastyle, with fourteen columps on the sides. The lower diameter is about six feet eeven inches, and the height twenty -eight feet ten inches. The character of the order resembles the Agrigentine examples.* Twentyone columns of the Peristyles, with portions of the entablatare, are still standing ; but, uufortunately, they are built up in the outer walk of the duomo. The two columne of the Posticum also remain. Tbe columns, unfortunately, have been disfigured with modern plaster and additional mouldings; and it is much to be regretted that these, by some oversight, have found their way into an important work on Magna Grecia, and are there shown as part of the ancient wort. H was only after much entreaty and persuasion, and offering ample security, in case of injury, that the church authorities (who, unforto nately, in Sicily, are not so devoted to archeological pursuits as the clergy in this country) gave us permission to raise a scaffold, and clear away these unseemly encumbrances.
Cicero has given us an excellent description of the gorgeous magi ifificence of this temple, which, spared by the piety of Marcellus, was stripped of every thing but the roof and walls by the rapacious Veores. "Its doorn," say the Roman orator, "were the theme of universal eulogy, exhibiting the labours of Hercules, curiously wrongtt in ivory, the angles of each separate panel being adorned with goldun bosses of exquisite workmanship, while a Medusa's head, formed of the same rich material, shone above the portal, surrounded with it bristling snakes." We learn also from Athenwus, that apon the exterior summit of the roof was elevated an enormous shield, consocrated to Minerva, and visible to a great distance by the reflection of the solar raya. A custom prevailed among the Syracusan sailors, to

- I have abown the capitals holf the real stat. The anta cap may be conaldered at a

secure a safe return from their voyage, of carrying from an altar near the Temple of Juno some ashes in a chalice, whlch, with fowort, honey, frankincense, and other aromatica, they cast into the sea as coon as they were about to lose sight of this shield. The interior of the walls of this temple were covered with paintings, amongst which was in equestrian combat of King Agathocles, one of the moat esteemed works of Syracusan art; this, with twenty-seven other admirable pictures, did the unscrupnloun Verres carry away. According to tradition, Archimedes drew an equinoctial line in this temple, and Mirabella saya that in 1582 the commissioners appointed by Pope Gregory for the correction of the calendar came to Syracuse for the purpose of examining it This buildling has suffered mach from earthquakes, but I atrongly auspect the hand of man has been the great destroyer: the modern fucade of the Borromini school forms a grange mixiure with the rigid Doric of the ancient peristyle.
Of the Temple of Diena, two Doric columns with a small portion of entablature alune remain. To judge of the effect of them is no very easy matter, for the columns are unfortunately encased by the - walls of a modera dwelling, and the capitals are absolutely inclosed in a wretched closet. Notwithatanding this sad modern degradation of the great Disna's fane, these scanty remains posess considerable degree of interest, as belonging to the most ancient temple of Ortygia; and it is a curious circumstance, that the etyle of the columns, . With the bold swelling capital, strongly resembles the order at Corinth, the mother city. The Selinus und Pestum examples have also a great resemblance to it. The intercolumniation must have been very small, there being only 1 ft .6 i in . between the abaci of the two capitals. I am happy to state, that since my visit to Syracuse, the Duke of Serradifalco (a nobleman so well known to us all for bis successful architectural researches in his native country, and for his contributions to the library of the Institute), has discovered the lower portions of these columas. Near this temple stood the celehrated Batbs of Daphne, so named from a luurel grove sacred to Diana: the spot is now called Bagnara, and many remuins have been discovered nearit.

The celebrated fountain of Arethusa next clalms our atlention. This classic spot, sacred to the nymph to whom divine honours were offered, and upon whose shrine even Hercules sacrificed, still pours forth its abundant supply of fresh water as of old, bnt alas how different its present state! It is now the public wasbing place of the town; and when I saw it, a number of Hangarian soldiers were lounging about it, enjoying their merschaums, unconscious of the fame of the spot, or of the gibes and wit that the Syracusun laundressen were indolging in at their expense.

According to Diodorus, the celebrated boilding, the palace of sixty couches, which in magnitude and spiendour was so superior to the temples, that the gods, from jealousy, are said to have destroyed it by thunder, was situate in Ortygia. This, together with the palace and gardens of Dionysius, the citadel surrendered by Dionysius to Timoleon, the Palace of Hiero, afterwards the residence of the Roman prator and proconsuls, and the workshops of the intamous Verren, have all disappeared, and their sites are now occupied with modern fortifications, and narrow streets of miserable dwellinga.
I now proceed to the adjoining quarter of the city, called Acradina, described by Cicero "as the second city, containing a apacions forum, a beautiful portico, and an ornamental prytaneum, or public hail, from which Verres stole the inimitable statue of Sappbo; the great work of Silanion." Of these buildings there are now no existing remains, It is, bowever, probable that the Church of San Giovanni occupies the site of an ancient temple; and Mr. Hughes, in his admirable and elaborate description of the city, supposes it to have been the Temple of Jupiter, in which Hiero suspended the Gallic and Illyrian apoils presented by him to the Roman senate; and from a passage in which Cicero upbraida Verres for allowing a piratical cornair to sail into the port, and penetrate up to the very forum, we may infer that the forum was placed near the Lathmas.
In this quarter of Acradina are several of those Latomis, or stone quarries, which are so numerous in Syracuse. The most remartable one is perbaps the one attached to the Capuchio convent, and now converted into a garden, forming one of the most beautiful and retired spots that possibly conld be selected for devotional atudy.
There are also various subterraneous remains in this quarter, with vaults constructed of earthern pots, and the ruins of a bath excavated by Landolina, in 1804, in which was lound the beutiful Turso of Venua, now forming the most valuable specimen of ancieat sculpture to be found in the museum of the modern city.

The celebrated catacombe are in the quarter Acradina, and whether they are the works of the Syracusam previous to the Roman conquest by Marcelius, or subsequent to that period, in aill a matter of conjecture. Mr. Hughes is inclined to attribate them to the Romaps.

At all events they are prodigious works. Denor describes them as a perfect subterramasn city. The principal atreet of avenue in the catacombs is about eighteen feet wide and ten high, with numerous recesses and chambers on either aide, with separate receptacles for the bodies, in one of whieh I counted no less than fifteen divlsions. Swinburn relatea that he saw a gold coin of the time of Icetas just taken out of the jaws of a body found in a tomb here; this must have been the Naulon, or Charon's fure.
Along the main street, at intervening distancea, are transverse streets, forming at their intersections square and circular apartments, which are generally vaulted, and in some of them are conical apertures for light and air. Around these chambers are numerous recesses, symmetrically formed. In some parts the walls are covered with fine stucco, and there are the remains of painting, with monograms and symbolical devices, the works probably of the early Cbristians. An old Capuchin monk acted as our cicerone in going through the catacombs, and the effect of his slow and solemn step, and the glare of the torches through this city of the dead, will not be readily effaced from my memory.

Of the walls of Acradina there are still remaining considerabla veutiges, and the rock iteelf is in some places formed into battlements.
Not far from a gap in the rock, called Seale Greca, where the quarter of Acradina terminated, and that of Tycha commenced, may be traced one of the principal gates of ancient Syracuse, and which, lite some of the other gateways, was admirably contrived for defence, the assailants being forced to expose their right side, which was unprotected by the shield, to a great length of wall, and the missiles of its defenders.
From Scala Greca a broad road traversed the clty to the point Ortygia, lined on each side by strong walle and towers. Fazello states, that a little beyond it, in the quarter of Tycha, stood the town called Galeagra, where a Roman soldier, during the conferences of Epycedes and Marcellus, by numbering the courses of stone and com. puting their height, found the wall much lower than common opinion, and scalable by the ordinary ledders. By these means Marcellus took' the city in the night, during a fentival of Dinna, when the inhabitants, more attentive to their superstitious observances than the means of defence, were in a state of great intoxication.

The quarter, Tycha, is described by Cicero as the third city; and he says it was so named from the Temple of Fortune within its precinote, and that it contained a spacious Gympasium, and many sacred edifices. Of this once splendid quarter of the city little now remuins, excepting large sepulchres cut in the rocks, chanaels of aqueducts, and vestiges of the city walls. To account for so large a space being so completely cleared of the remains of the numerous buildinge which formerly oecupied it, one is almost led to the suppositiun thet, from the facility of transport given by the inmediate vicinity of the port, the materials must have been tranaported to other ahores.

Neapolis is the fourth quarter of the city mentioned by Cicero, and, as its name implies, was the last built. It was adorned with a theatre of vast dimensions, two superb temples-one of Ceres and another of Proserpine-and a very beautiful colossal atatute of Apollo Tcmenites.
The theatre is perhaps the most perfect of all the ancient buildings of Syracuse. It was the largest in Sicily, and is computed to have contained 30,000 persons. Ite situation, ou a rising ground, commands a magnificent view over the ports and surrounding cuuntry. The greater portion of the seats are cut out of the living ruck.
In my examination of this edifice I had the great advuntage to poss sess the elaborate and careful studies made in the previous year by Professor Donaldson; and as these bave beea given in so admirable a manuer by that accomplisbed arclitect, in the supplementary volume of "Stemart's Athens," it is unnecessary for me to attempt a further drscription of a work already so familiar to the membera of this In stitute.
Above the theatre are pumerous excarations in the rocks, remains of water coursen, streets, and sepulclires. One, more perfect than the rest, is called the Tomb of Archnmedes; and althougb the sepulchral stele, with the sphere and cylinder carved apun it, ure no lunger to
be found to authenticate its identity, one feels unvilling to doubt be found to authenticate its identity, one feels unwilling to doubt that this must be the very monument discovered by Cicero, and propounced by him as the sepulchre of the immurtal Archimedes.

Not far from the theatre are the remains of an amphitheatre, which was aloo in part excavated from the platform of living rock. The arena, seath, corridors, pudium, subterranean cell, and water-docts are still eusily truceable. The construction is evidently Roman.
The extensive quarries, or Latomie, are principaily in this quarter of the city. They are said to have, been excarated by the Albenian prisoners, uod afterwards used as places of confivemeot. No greater contrast can be imugined than their former with their prement state;
for those once fioomy aboden of the viotims of Dionyslas are now fourishing with the luxurinus vegetation of the pomegranate and the orange, and are watered by the transparent streams which still fiow aong the ancient chanpels; and the spot where the infamous Verres inearcerated not only Syracusans, but Roman citizens, is now termed "Il Paradieo." In this Latomia is the church of San Nicolo; under which is a chamber ezeavated from the rock, 64 ft .6 in . long, 22 ft . 6 in. wide; and from the remains of a water-duct at one end it was probably used as a reservoir.

I must not pas by the curions cavern called the ear of Dionysius, which is bout 170 feet in depth, 35 feet in width, and 60 feet in beight. It is atated that Dionysius constructed this cavern on acoustic principles, for the purpose of overbearing the conversation of the prisoners confined within its walla, There is begond doubt a wonderfol power of conveying and increasing sound in this curious vault; but an examination of it, jncluding the somewhat hazardous ascent with ropes and pullies to the cavity near the top, impressed us with the notion that this power, as is the case with most echoen, in more to be ascribed to accident than to art.

Neapolis was also adoroed by a colossal statue of Apollo Temenites, which stood proudly pre-eminent on a rising ground, and was preserved, say Cicero, by its magnitude, from the sacrilegious grasp of Verres. Suetonius atatea, that it was contemplated by the emperor Tiberius to place it in the library which be had built, or restored, in hononr of Augustus; but that be was prevented by the Deity in a vision.

The rain of the Temple of Jupiter Olympius are situate on a gentle eminence on the right bank of the Anapus, overlooking the great port. Portions of the sliatts of two Doric columns alone remain standing; but I am rather doubtful whether these are in the original position. It is to be much regretted, that so little is left of this temple, which, in its original state, was described as the richest monument in Syracuse. In its adytum wan placed the famous statue of Juplter, esteemed one of the three* most noble representations of that deity ever produced, and from which Dionysius stripped off the golden melntle, replacing it with one of wool, accompunying bis robbery with the impudent apology, that gold was too heary in summer and too cold in winter for the king of the gods, but that wool was adupted for both seasona.

I believe I bave now generally, though I fear very imperfectly, detcribed the prinoipal remain of the fnur quarters of the ancient city; and I will trespane for a few minutes longer only upon the attention of the meeting, by making some short observations upon the suburbs and ontmorks.

Epifola, so celebrated in the sieges of Syracuse, is to the westward of Neapolia, on a spot (as its name imports) commanding the whole city. It was inclosed by Dionysins within those remarkable fortifications and walls said to have been constructed by him in the incredible short space of twenty days, and upon whicb he employed 60,000 workmen and 6,000 yoke of oxen.

It was also defended by a fort, which, according to Fazello, was called by the Greeks Labdalo, but Mr. Hughes is of opinion (judging from the descriptions of Thucydides and DioJuras) that Labdalo was conaiderably lower in the descent, and that the fort in question was the celebrated Hexapylon, a work cosstructed with extraordinary military skill and art. Mr. Cockerell (and I cannot appeal to a higher authority in these matters) states that he considers the remains of this fortress to be the most admirable apecimen of ancient military arclitecture be had ever met with in all bis extenaive travela.

The priacipal entrance is admirably constructed for defence, with flank walls, from which the assailants were exposed to the attack of the defenders. Some of the walls are of solid masomry, 12 feet in thickness. Oibers, of that species of construction termed Emplectom, \dagger are fifteen feet tbick. At two of the angles of the walls are square towers of solid masonry, and there are several remains of fosses, 25 to 80 feet deep, cut in the solid rock, and defending the accessible approuches to the castles. In une part is a subterranean pasasge, nine feet wide and twelve feet high, leading in an inclined plane from the castle to the fosse, protably for the use of cavalry; and in other parts of the walls ase small openings, about two feet in beight, and sufficient to allow a man to creep through, by which the sorties were probably made.

The suburb of Epipolis aras terminated by a second almont impregmable fortress, called Euryale, mentioned particularly by Livy in hia account of the slege of Syracuse, by Marcellus. In the $17 \mathrm{th}^{\text {a }}$ cemtury the village of Belvedere was built on this spot, but no vestlge of it Dow remaims.

The river Anapas, so much vaunted by the poets and historians of

[^8]old, is now a small stream, and its banks covered with lofty reeds and aquatic plants, growing so luxuriantly as almost to impede our progress in a sroall boat. We contrived, bowever, to reach the beautiful fountain of Cyane, a natural basin of about 50 feet in diameter, and celebrated by the poets as the spot where Pluto mado his dencent with Proserpine. We bere saw the elegant Papyrus plant growing in great perfection, and it is said to be the only aput in Europe where this rare plant flourishes.

It bas been remarked that there is no ancient example of any state so circumscribed in territory, extending so far and wide its induence, as Syracuse. In military fame she was equal to Lacedsomon, and contested auccessfully with the Atheoians for paval pre-eminence! Her laws excited the admiration of Aristotle. The great Theban bard sung the victories of ber conquerors in the games of Greece. From her power emanated the colonies of Acra, Casmens, and Camarina. Her resources were so great, that Gelo offered to assist the Grecian states in their armament againat the Persians witb 28,000 troops and 200 Trinemes, and, in addition, to supply provisions for the entire army of Greece, during the continuanco of the war; and the perfection she bad attained in the fine arta was such as to soften the bithertn rigid babits of her Roman conquerors, to refine their taste, and to ezcite and ensure their clemency.

Fazello tells us that ber skill in works of gold, silver, and embroidery, was proverbial! The extent and magnificence of ber buildings we have already adverted to. The superb medallions of Philistides euff. ciently testify the auperiority ahe had attained in the numianatic art; and of the extent of her scuiptural embellishments we may form some idea from the remark of Cicero, that the Spracusans lost more tatue by the rapacity of Verres than they did men by the victories of Marcellus.

The indefatigable Capodieci* presents us with a glorious llat of warriors, statesmen, poets, philosophers, and men of science, whom be claims for Syracuse ; and proud indeed must that city be which conld produce Agathocles and Dionysius as commanders! Pbilistos as an historian! the poet Theucritus, and, greater by far than all these, ber own Arcbimedes!

I trust this feeble attempt in describe the ancient Syracuse, will be excused, with all its imperfections; and most amply shall I be repaid If the interest of this meeting has been in the least degree promoted by a short account of that city, where the friendship of Damon and Pythias was fostered, and whose inhabitants derived their greatest pleasare in listening to the vertes of Euripides!

- The compller of forty follo volaress on the antiquitien of his native etty.

INSTITUTION OF MECHANICAL ENGINEERS.

A second meeting of the promoters for establishing a pational "Institntion of Mechanical Engineers" was held at the Queen'a Hotel, Birming. ham, 00 Wednesday evening, the 97 th ult., Fhen it was at once resolved to eatablish the Institution. The meeting was attended by Mr. George Stepheoson and sbout 70 other gentlemen. The object is establishiog the Institution was explained by Mr. McConsell. It is to enable mechanics and engineers ongaged in the various manofactaring and railway eatablish. ments of the conntry to meet and comrespond. The early progress of the Inatitation having beea briefiy aketched by Mr. McConuell, and the formal resolutions edopted for conducting it, -

The Preaident elect (Mr. Btephenson) addreseed the members at some lengib, adverting to the dificulties he had encuuntered in his own early career, when, withont edacation, assiatance, or apprenticesbip, and in the face of a vast amount of prajudice, he had succeuded in battling his way, until success crowred his exertions. He enjoined perseverance as essental to a joung engineer, pointed out the folly of attempling impossibilities, for thers was, he said, a law which governed mechanics, wu uverything else; there was a point to which mechanieal skill could be carried, and no further. Mr. Stepheason concluded by obeerving that he should wid this rising Institution by every moans in his power. The council, and other officers were afterwards appointed, and a general meating of the members is to be held quarterly. A dinner alerwards took place; and in the cosrse of some observations during the after sederwat, Mr. Stepheneoa said-as I have worked my way, bat I have worked as hard as any man in the world, and I have overcome obetacles which it fall to the lut of but few men to onconnter. I have known the day when my sun was a child, that after ay daily labour was at an end, I have gove bome w my single room and cleaned clocks and watches, io order that 1 might be eaabled to put my child to school. I had felt too acuteiy myself the loes of an eduration oot to be fulls sensible of how such advautage one would be to him. I may say, too, perhapt, without beiag deemed egutistical, that I have mixed with a greater variety of eociety thwn, peibaps, any man living. I have dined is mines, for I was once a miuer; and I have dioed with kings and queese, and with all grades of aubility; and have seen enough to inspire me with the hope that my exertivas have not beem without their beneficial reenlts-that my labour has not been in vaiu."

CORDES AND LOCKE'S ROTARY ENGINE.

We have received a copy of a report by Mr. Josiah Parkes on the merits of "Cordes and Locke's condensing rotary steam engine." This engine is a contrivance for gaining power from the momentum or impact of steam, unassisted by fits expansive force. The apparalus is so simple, that the nature of it may be readily comprehended without a figure : it consists of a vertical paddie wheel, revolving freely in a cylindrical case, and each float or paddle in succession is exposed to the action of a current of steam roshing against it from a pipe entering the side of the cylindrical case tangentially; so that steam impinges perpendicularly on each float.

The action may be compared to that of an undershot water-wheel, except that the steam does not act on the floats at their lowest position but when they are ubout half-way between their highest and lowest position. The eylindrical case opens into a condenser, so that the steam may be said to fow from the boiler through the case into the condenser, meeting the paddles in its course. The extremities of the paddle-wheels do not quite touch the internal cylindrical surface of the case, and the expansive action of steam is in no way employed.

Mr. Parkes makes out that under these circamatances the steam acts with, as nearly as possible, the same efficiency as in an ordinary cylinder condensing engine. He arrives at this result in the following manner:-
"I most first atate that thin kind of engine precladed the employment of the indicator to accertain its groses power, as in ordinary cylinder engines; and even if that inatrument could have availed for the parpose, it wat deemed to be of far greater importance to measare the emount of force actually ditposable, as delivered off by the engine, rather than the power of the steam in action, which alone in denoted by the indicator. To attain this end it was necessary to ax apon some sufficiently uniform load to be applied to your engine, as well as apon some method of deterroining the reaistance overcome. The load selected was a serew-propeller, tubmerged and driven round in a tank of water, 16 feet by 11 foet square. The renittance was weighed by Mr. Daries'a dynamometer, adapted to a atrap-polley on a counter-shaft, working intermediate between the englne and serew-shaft.
These preliminary arrangementa having been made, the engine was worked doring several days; the quantity of water, as stenm, which passed throngh the wheel-care, as well as through the small axxiliary engine which drove the air-porpt, being carefolly meanared on each occation. The reastance thown by the dynamometer was continually noted; the number of revolutions made by the wheel was exhibited by a counter; the pressare of the uteam at it entered the wheel-case, wat observed on a thermometric steamgroge; the value of the vacruan in the wheel-case was obtained hy an ordipary gauge commanicating with it ; and the amount of power employed to drive the air-pumps and maintain the racuam, was aceertained by an indicator. The diameter of the steam-wheal in question is 11 feet 7 inches, and at 502 revolations per minute, ift periphery travels at the rate of about 208 miles per hour. The width of the wheel-case is 15 inches; the number of vanes and radinal arms 28 ; the breadith of each vane 6 jnches, the depth 7 inches, and the area, therefore, of each vane about 42 equare inches. The oritioe of the nteame jet is of an oval shape, 3 ibches by 2 inches, set vertically.
It appeared, after a great number of trials, that your engine gave the following reauits, when osing ateam \ln the boiler at a prestare of 2 ct lb . per square lach above the atmosphere:

> Revolations of wheel per minute Hortet power per dycmometer Vacuum In the wheel-crive Wacer expenced per hore power

The same dynamometer and itrap.pulley were then tranferred to your workt at Newport, Monmouthshire, and applied to a condensing engine made by Messra. Bowman and Galloway, of Manchester, having the following principal dimenaions, viz. : diameter of cylinder 30 inches, length of arole 5 feet. Previously to the experimenta, the engine was pat into the best possible working condition. My indicator was applied to the cylinder; the dynamometer to the engine-shaft; cards were taken during several hount of continuous work, under an uniform load; the inder of the dynamometer was noted down every five minutes; the water consumed, as atenm, was accurately measured. The subjoined may fairly be considared to represent the mean result of numerous trials :

Speed of plstor per minute	-	280 feet.
fran promare per indicator	.	1084216
Mean vacuum throughout etroke		10.100
Verunin in condeaser		28.3 ld
Weter evaporated per hour		3248 lb

The indicated power amounted, from the above data, to 48.73 honcen ; and the water expended for each horce power, per hoar, to 60.65 lb .
The dymamometric, or effictive power, at denoted by the inatrumeot, whe

32-29 horset; and the water expended for each effective hare power, per hour, wien 100.5 lb .
It hence appears that the power aetually delivered off by the cylinder engine, was leas than the grose or indicated power by 38.73 per ceat.; and, that a similar naeful effect was ohtaiped both from the cylinder, and your rotary engine, with the mame expenditure of ateam and fuel."
Mr. Parkes had some years ago the misfortune to publish, in the third volume of the Transactions of the Institulion of Cimil Enginacre, a paper calculating the power of steam engines, in a mamer rach more amusing than instructive. The reader who is curious in such matters may find in the second edition of the Count de Pambour's Treatise on Locomotive Enginea, an ample critique upon this paper, and exposure of its errors. We are not going out of the way in referring to this matter, because we can only conjecture Mr. Parkes' present mode of calculation, by comparison with what be did in 1840. At that time he could not understand that the effect of a steam engine depends directly and aboolutely on the evaporation, and that it is ntterly impossible to compute the effect without having estimated oumerieally the quantity of steam generated in a given time. Seven yearm of subsequent experience have not much mended matters, for the calculations now presented to us are evidently independent of the essential consideration just stated. The " mean pressure per indicator," or cylloder preasure is given, together with the quantity of water evaporated per hour; but nothing is said about the boiler presarse. Now, having given tbe quantity of mafor evaporated per hour, we must know the boiler pressure, in order to calculate the quantity of steam generated per hour; and this being $k n o w n$, we may calculate the velocity of the engine from the work done, or the work done from the velocity. By omitting, however, a single element of this cumputation, the whole chain of reasoning is broken, and when Mr. Parkes tells us that the "power actually delivered off by the eylinder eagine was lem than the gross or indicated power by $39 \cdot 73$ per cent." we are entitled to attribute the fault not to the engine but to his calculations.

The principal assertion, that an equal effect was produced from both kinds of engines, with the "aame expenditure of ateam and fuel," does not anywhere appear to have been corroborated by direct ex: periment. With respect to the expenditure of steam, we know that that could not have been ascertained, because the boiler pressure is not recorded: and if the expenditure of fuel in the cylinder and the rotary engines bad been compared, something would have been sald to show that in both cases it was consumed in firegrates of the same form and dimensions; as otherwle the comparison would not be a fair one.
Another altogether different application of the rotary engine was as an auriliary to the common cylinder engive, by causlog the ateam in its course from the cylinders of the ordinary construction to the condenser to pass through a circular ateam case with revolving paddlea, as before described. The experiments on the rotary engine 80 employed were as follows :-
"One of the wheel or rotary enginet, divested of its air-pump, condener, \&cc., is connected at jour works with a common reciprocating condensing engine, in the following manner. The steam wheel is placed near to the cylinder of the condencing engine, in the amme room, and is simply acted upon by the stenm diecbarged from the latter. It therefore standa intermediate between the oylinder and the condenser, and derives all the power it gires off from the waite atenm of the condensing engine, in ita peange from the cylinder to the condenser.

Rach engive driven a perfectly diatinet load in the mannfectory, that is to any, exoh drlves aets of machines perfeetly diatinet, and in meparate boildingt; the power of the oylinder engine being siven off to a main apright shaft connected with oae kind of machinery, and the power of the wheel engrine applied to a strap commanicatiog motion to machinery at a distance. Thit condition of thinge has existed in actual daily operation at the works for 18 menthe pant. In order to arrive at the separate value of the effect prodaced by each angine, and of their combined effect, the following methods of proot were adopted.
The usual loads were disengaged, and friction breaks were applied in sach manner an to balance the whole power delivered of by each engine. Indicator cards were frequently taken from the cylinder engine; each break was placed onder the separnte management of an experienced mechanio, with evary provision to mainuin uniform friction ; the water enaporated wem metcared throughont the experimenth. The resclite were,

Indleated, or sroes E.P., of the cyltuder engin Efinetw \boldsymbol{B} P., as per break	**	$\begin{aligned} & 82 \cdot 88 . \\ & 10 \cdot 70 . \end{aligned}$
Exhibitiof a loge of sbout 81 - 82 per cent.		
Efrective H.P.t from the rotary engine, at per breat		$5 \cdot$
Water evaporated per hour	.	1800 lb .
Gtutag for ladicated E.P.4 jer horme per hour	-	78.74 lb .
Civing for affective H.P., per horse per hour		114.65 lb .
Givisg for combioed uffective H.P., per horst per		6.99 ib .

The dimensions of the cylinder engine were:

Dlameter of cylinder			194 Inches.
Length of trioke		.	9 feet.
Epeed of pliton, per mipute		.	283 feet.
Meas priesure per indicator			10.1 1 b . per sq. in.

The dimeasions of the rotary engioe were:
Diameter of wheel, 7 feet 9 Inches.
Number of vanes, 30 .
8ixe of vane 4 inches wide, by 5 inches danp.
Two stenm jete 24 Inches dinmeter each.
The usefal fact developed by thene last experimente, is the recovery of five horses effective power, in addition to 15.7 horses power from the same origrand steam, that is to say, ateam which wonld otherwise have pased nseleasy into the condenter, and been anvibilated. It is, therefore, menifent that mearly one-third more power may be obtained from any cylinder eagine by combining with it this rotery engine, without the nee of additional fuel, boiler, or apparatus of any kind.*

With the view of proving that the suxiling or supplemental wheel eagine, an combined with the condenting engine, did not diminish the performance of the latter, the indicator and break were applied to it when working alone, the connexion with the wheel engine having been shat off, and the wrate stemm saffered to paca throagh its usual pipe to the condenser. Under these cremmatances the effective power of the Condensing Engine came ont $15 \cdot 637$ horves, and the water expended as atenm $115 \cdot 1 \mathrm{lb}$. per borse per hour; thus demonatrating that no dimination of its original power, nor increased consumption, were occasion by its combination with the Rotary Rngine.

In order to prove that no opposition to the pasage of the warte steam from the eylinder to the condenser is nccationed by the interposed whoal and case, the indicator was applied on the connecaing pipe immediately in froat of the jet holes, and the vacnam exbibited by it was in clone accordsace with the vecaum in the cylinder as acertained by the same inatrament. The wheel-cave is, in fact, a virtual enlargement of the condenser, and the relue of the vecaum in the cylinder suffert no depreciation from its interposition. The power recovered and given off by the wheel is simply due to the stean's momentum-low as is its elastic force-acting by impact on the wheel ranes in transitu between the cylinder and condenier; - the wheel wortiog in vacmo, and therefore, unresiated, or resisted only to the extent of imperfection of such nacsam. The more perfeot the vacuam maintained throughoat the case, the greater will be the areful effoct obtained from the Wheel.
In respect of the practical economy of your rotary engine, an regards steam and fuel, and as compared with the ordinary unexpanaive cylinder engines, we know that the latter are not worked with lese than 70 lb . of water per boree per hour, and they much oftenes reach or exceed 80 lb ., deduetion being made of friction only when the engine is anloaded, which is very umal. It appeara, however, from the foregoing dynamometric and break experiments, that fally 30 per cent. should he deducted from the gross indicated power of the eylinder engine, as the vilue of its friction when loeded; or, is other worde, that we realise less than 70 per cent. of the grous power; and the lom of effect when apead has to be quickly got up, as in the case of marine eaginea working screw propellera, most probably considerably exceeds 30 per cent. The consumption, therefore, of 100 lb . of water as steam per horse power, per hour, by your engine, may be considered, in respect of coonomy, ar placing it on an equally advantageous footing with the class of eagines alkeded to."
The errors of calculation here exhibited appear to be just the same as before, and dentroy all confidence in the results. The question of the expediency of employing the revolving steam-wheel resolves iteelf simply into this-is more power gained from the impinging foroe of the stemm than is lont by obstructing its passage from the cylinder to the condenser? The assertion that no force is lost by thus impeding the passage of the steam is manifestly absurd; for it is equivalent to ayying that the efficiency of the condenser is just the same, whether the steam-ways be large or small. Mr. Parkes alleges, in proof of his asertion, a circumstance which does not bear on the case in the alightest degree. Premising that the power of the condensing engive in both cases "came out" nearly the same (by his calculations), he adds, when the rotary engine was at work, the vacuum in the cylinder and condenser was nearly the same. But the obvious way of

[^9]testing bis assertion was to try whether the vacuum in the cylinder was the same when the rotary engine was connected; and when it was disconnected-that is, to ascertain whether the resintance to the motion of the piston from imperfect condensation was not in creased by the interposition of the steam-wheel.

We by no means take on ourselves to decide absolutely againat the merits of Messra. Cordes and Locke's invention. On the contrary, so little is known of the impinging force of steam that the question is still fairly arguable whether more be not gained by employing that force than is lost by obstructing the passage to the condenser. The circumatance ssated in the foot-note, of 100 tons of coal being saved in 18 months, seems of itself an unmistakable fact-a coie de fait, as the French call it-in favour of the invention. At all events, the inventors deserve the credit of calling attention to a very interesting sabject, and it may be hoped that for the sake of science they will continue their investigation. The foregoing remarks refer exclusively to the erroneous methods of calculation adopted in the report sent by them, and will, we hope, direct-not repress-their efforts.

DECIMAL MRTAL GAGRS.

We wish to direct the attention of our readers to Mr. Holtzapfel's proposal for assimilating the Gages of Metals, by adopting a univeral decimal aystem, an aet forth in the annexed Table.
Vahes of Gages for Wire and Sheet Metals in general mee, expressed in decimal parts of the inch.

sxation one.	8ECTION TWO.	getion thaEs.		
Blrmingham Ginge for Iron Wire, and for Sheet Iron and Steel.	Biraingham Gage for Sheet Metals, Brask, Gold, Silver, \&c	Lencenbire Gage for round Stoel Wire, and also for Pinton Wire. The amaller atces distinguisbed by Numbers. The larger by Lettert, and called the Letter Gage.		
MARE. ginin	MABE. sIze.	MARE. 912z.	Mare. nizz	Mark. size.
0000-. 454	1-.004	80-.013	40-096	A - 234
000--425	2-.005	79-914	39-.098	B - -238
00- 380	3-.008	78-. 015	38-: 100	C -242
0-340	4-.010	77-.016	37-102	D -246
1-300	5-.012	76--018	36-105	E - 250
2--284	6-.013	75-.019	35--107	F - . 257
3--259	7-. 015	74--022	34-109	G - 261
4- 238	8-.016	73-.023	33-111	H - - 266
5- 220	9-. 019	72-024	32-.115	I - -272
6-203	10-.024	71--026	31-118	J -277
7-180	11-.029	70-027	30-•125	K - 281
8- 165	12-.034	69-.029	29-134	$\mathrm{L}-290$
9-148	13-.036	68- 030	28-138	M - 295
10-134	14-.041	67-.031	27-141	$\mathrm{N}-\mathbf{3 0 2}$
11-120	15-047	66-032	26-•143	$0-316$
12-109	16-.051	65- 033	$25-146$	$\mathrm{P}-.323$
13-.095	17-.037	64- 034	24- 148	Q -. 332
14-.083	18-.061	63-.033	23--150	R - 339
15-.072	19-.064	62-.036	22-152	S - 348
16-065	20-.067	61-.038	21-157	T -358
17-.058	21-.072	60- 039	20-160	U - 368
18-849	22-074	59-040	19-164	$\mathrm{V}-377$
19-942	23-.077	58- 041	18-167	W - 386
20-.035	24-.082	57- 042	17-169	X - 397
21-.032	25-.095	56-044	16-.174	Y - 404
22-928	26-. 103	53- 050	15-175	Z -.413
23- 025	27- 113	54-.055	14-177	A 1- 420
24- 022	28--120	53-.058	13-180	B 1-. 431
25- 020	29--124	52-.060	12--185	C 1-. 443
26-018	30-126	31-964	$11-180$	D 1-'452
27-016	31-133	50-067	10- 190	E 1-462
28-914	32-.143	49-.070	9-191	F 1-4.475
29-* 013	33-145	48-.073	8--192	G 1-484
30-.012	34-148	47-076	7- 195	H 1-- 494
31-010	35-158	46-.078	6--198	
82-.009	36-167	45-.080	5-.201	
33- 008		44-084	4- 204	
34-.007		43-4086	3- 209	
35-.005		42-.091	2- 219	
36-804		41-.095	1-*227	

NEW METROPOLITAN CHURCHES.

In almost overy part of England new churches are being built, of which the architecture woald be wurthy of the beat days of ancient ecclesiastioal art. Those who love architecture for its own sake, and who, in order to see nuble specimens of i, are willing to make short pilgrimages (no great labour in these reilway times), may see, in every connty, modern chorchas, the monaments of private munifcence, wbich elicit the admiration of the atrictest and most determined disciple of ancient art. Tbe recent edilicen, if they do not always posess the massice simplicity and unity which remains bitherto a characteristic of the olden time, still exbibit in their details a magnificeace and propriety which we can hardly hope to 100 excelled.

In London, bowever, it is not so. Here, charchen are built to cover In a given number of aquare feet of ground, and the architect must 20 arrauge the bailding, that the greatest possible aumber of sittinge may be contained within it. It does not pay to build London churchess with thick solid wralle and masaive plera and butiressen-the pew-rente would not cover the ouilay. Piaster aod patent cement and deal boards keep out the weather (while they last) nearly as well as atone and onk, and, if properly coloured, look as well. To be sure, these lath-and-plaster edifices will not last for qaite so many centuries as the medireval piles which they mimic (one of these fragile fabrics has already began to fall, almost before its completion)-but, then, those who buiid these churches have no concern in the permanence of them for centurien-for to themselves the pew-rents cannot acurve beyond the torm of their natural lives. They have made the churches to be houses of merchandise, and they build them just strong enough to answer the intended parpose. Onr ancestors did not build in such a manaer, nor with auch objects. Do we wrong to com. mead the old cuetom, as a good old custom?

We are not "travelling out of the record" in making these observations: they bave more sonnection with architecture than may appear at first sight. In many even of the beat of modern churches-thongh the critic can detect no fault of design or detail-something is felt to be wanting which renders these baildings less impressive than their ancient prototypea. The detection of this something is oftentimes very puzzling-the construction of the building is faithfully expressed by the decoration, the materials are honest and real. the composition simple and connected, and the monldinge, tracery, \&c. gracefal, and appropriate to the stylo adopted-and yet the oye is not satisfed. The more this anomaly is oensidered (and we doabt not that it bas occurred to many careful obserrers), the more readily will it be referred to the comparative slightness of bailding adopted in modern structures. This explenation may perhaps be objected to as too matorial. It may be thougbt a very matlor.offact kind of criticism which measures the thickness of wallu and the nectional area of buttresees; bat it is precisely this kind of criticism which, if it be correct, is the moat useful, because it is the most easy of application.
It is by no meana to be inferred that we would commend heavy clamsy modes of construction, when our present increased knowledge of mechanics has revealed improved and more scientific methods. The worst sort of affectation is that which apes inferiority. Bat we do want to wee charches brilt as if they were meant to last-not as if the architect had been arconatomed all his life to "run up" cockney villas or new metropolitan streets-as if he had so idea of magnificence beyond the plaster glories of the Regent's Park or Belgravia. How willingly does the eye, wearjed of this showy, ephemeral finery, torn to the ancient, unpretending, village church, with its vant bold buttresses and massive tower 1 Those venerable walls tell their story so simply, and yet so well-that within them successive generalions of mon have assembled in piety and reverence for, it may be, these six or seven centuries past. It is not merely that we admire the village church for its own intrinsic beauty, but that we feel that it was bailt for ages. It in the type of permaneuce, as far as the work of men's hands cas be so. The ancient churchmen, it has beea well said, built "for roiligion, not for fame; for ondarance, not by contract; for devotion, not in a spirit of economy ; pro salute axima, now pro crumend."

OUd Street Road.-A new church has been recently built here by Mr. Forrey, in the Eariy Eaglish style. The nave aud aisles are ander aepopate gables, and the entrance is ander the tower, which is at the southwest angle. Externally, the mesoory is of rag, with Caen stone dreasinge, which have (as in many other modern charches) a most ancatisfuctory, "pelchy" appoarance. It is well enough to ane Caen or aimilar atooe for
the monkings of traoery of a church, for rag cannot be worked for the parpose; but there is 00w a mania for sticking all over a church bite of the former kind of otoce ; and its light colour, contrasted with the dart hue of the coarser material, gives the building an appaarance of stone patchwork. or the fantastic pattern of a harlequin's dress. Besides, it is ridiculons to use the weaker atone for quoins and anglen, where, if any difference be made, it ahould be in favour of the material which had the greatest cobesird force. Had the angles of the buttrasses, \&cc, of Mr. Perrey's church been of rag-atone like the reat, the effect would have been mucb better. The love of Anery in arcbitecture has grown into a habit which seems almoet inveterate.

The windows on the south are arcades of four arches, two blante and two pierced for light-this arrangement, defended though it be by precedent, is most unworthy of modern imitation. Blank windows are equally inartistic, whether they occur in Classic or Pointed architecture. In the present case, the masses of Casn stone in the blank arches exaggerate the patchwork effect of which we have complained, to an unusual degree. The windows on the north side are couplets. This side of the bailding is mucb the beat. The sonth side is next the street, and is of courso made the most showy-for that very reason, it is inferior in appearance to the other. The rose window at the east end is mucb too large. We have not had an opportunity of seeing the interior of the building.

Horton.-Another Eariy Eaglish church is nearly finished here, which is a specimen of "Modera Gothic," of more than ordinary hideouspeas. It scarcely doserves a detailed notice. It is sufficient to san that it ex. bibite all the following characteristics of its tribe in an eminent mannermiserably thin walls, with square reveals to the wiaduws, as in an ordinary dwelling house-poor tracery-cast iron girders-pinnacles ugly ebough to have been buift twenty jears ago-plenty of plaster and stucco, and an enormons disproportionate chancel-arch, with amall communion reoess beyond it.

RAILWAY STATISTICS.

From the EisembahiJahrlweh (Railvay Xear-book), receatly published by the Baron de Reden at Berlin, we obtain some raluable additions to railway statistics. Tho author is now in office nader the Prussian government, and formeriy superintended the construction of the railway from Berlin to Stettin.

The analysis of accidents which occurred on railways in Belgium, England, France, and Germany, respectively, daring five years, commencing Ist August, 1840, is as follows:-

It appears, from thls table, that the total number of persous in any way injured daring this period, in the four conntries, was 1,849 ; and of theso accidents, 417 , or between one-farth and one-Afth, were fatal. The following table stows approximately what proportion of these accidents have occurred in esch country, and also the annual average of accidents:-

In this table, the casualties on Fronch lines inclade those of the Vorsailes catastrophe, by which 55 lives were lost. The accidents on the Belgian lines in 1843 and 1844 arose almuat entirely from broakage if axles and from carriages getting off the rails.

A more ecourate estimate of the relative insecority of railways in efther conntry is obtained by comparing the number of casualties with the total number of pascengers conveyed. Taking the annual mead proportion, wo get the following results, which distingaish whether the accident aroee from the fault of the anfierers or of the railway managers:-

In this list, each country is placed in the order of the relative insecurity of its railways. The terrible disproportion in this respect, between the two former and the two latter, is very nignifionat and desorves careful attena thon.

SETTING OUT RAILWAY CURVES.

Sir-The following mode of setting out curves, by means of equal chords and ordinates, which I have successfully practised, is both aconrate and easy of being applied :-
H. 1.

Iat B and D be the ends of two straight lines, tangents to the curve BCD, which we wish to set out-the position of the two lines having been correctly determined from the base line of the survey. We must then ascertain the angle that a chord of any convenient length (say 10 chains) wakes with the tangent A 8 ; which baving found, the intermediate points un the carve are fixed by offeets from the chord. The radius being known, and the length of the chord determined, the following formala will eachle us to find the angles of chord and tangent :

$$
\text { Radins: i chord : : } 1: \text { sio it the arc. }
$$

Therefore, ain the aro = chord.

2 rading.

Thue, 18 chord $=10$ chains, and radius $=60$ chains,
sin $\frac{1}{2 r c}=\frac{19}{180}=\frac{1}{15}={ }^{\circ} 0833^{\prime}=$ nal sine $4^{\circ} 47^{\prime}$.
To find the offsets, the line $\mathbf{F G}$ which bisects the ohord is at right engles with it GH, which is a tangent to the curve, is also at right angles with FG. GH and IC are, therefore, parallel. If HC be drawn at right angles with I G, it will be parallel to IG, and algo equal to it; and $G H=T C=5$ chains.

$$
\begin{aligned}
\mathbf{H C} & =F G-\sqrt{F G^{2}-G \mathbf{H}^{2}} \\
b d & =F G-\sqrt{F G^{2}-G b^{2}} ; \text { and } \\
a c & =F G-\sqrt{F G^{2}-G a^{2}} .
\end{aligned}
$$

The parallel lines, $\mathbf{H C}, b f, a c$, and $G I$, aro all eqnal.
Therefore, $d f=\mathbf{H C - b d} ; \theta e=\mathbf{H C}-a c$, \&cc. ; and $\mathbf{G I}=\mathbf{H C}$.
The formola $\frac{\text { GH }^{2}}{2 \text { FG }^{2}}$ will give a very near approximation to the distance of the tangent from the enrve, and might be taken as the offset withont producing any eppreciable error; $\frac{G b^{\prime}}{2 F G}$ will give $b d$; and $\frac{G a^{3}}{2 F G}=a c, 8 c c$.

In the case where a building or other obstacle may intervene, at B, (fg. 8) to provent the setting up of a theodolite; if from A wo eet off the digeance $A a^{\prime}$ equal to $b b^{\prime}$, we shall have the direction of a chord, $b a$, of 10 chuins; by means of which we can deterpine the direction of a new churd, b c.

Carmartben, Jan. 8, 1847.
2.

Bra-I had no inteotion to excite the ire of your correspondent, "An Engineer out of Employment." He bas evidently mistaken my meaning. I shall leave him, therefore, to cool on it.

A specifio chord line, it is well known, presupposes two points, already determined in a carve. The first, or atarting point, can be attended with no difficulty; but the other, though easily found, or assumed, on paper, is not always so readily found on the ground: and when obtained, or given, on the ground, it mast be sexn from tbe otber point in order to be of any ose. "To find it out," as your correspondent says, "by the aid of a common theodolite," would be an ondless affair-oven if the sarveyor knew how to set about it. The time occupied in his doing so might certainly be employed to more advanige, I may say, by any other mode of tracing a curve-even by " building," as your correspondent calls it ! - apropns, my instrument does not, by any meapn, limit the length of the tangent: it may be either lengthened or shortened, according to local of other circumatances.

Military Library, 80, Charing-cross
W. TaIt.

SAFETY OF RAILWAYS.

(Extract from a Report made to the Minlater of Public Works la Prasce, by M. DE BOUREUILLE, head of the Fallway Department.) Tranglited for the 'Loodon Jouran.'

The Special Commission, charged by the Minister of Public Works to inquire into the questions relating to the security of transit upon railways, bas, from the firut, had two subjects of very different natures to consider. The catastrophe of the 8 th May, 1818, hed called pablic attention most particufarly to the coastruotion of axles of locomotive engines and carriages, and to the terrible conseqdences of the shocks to which passenger trains might be exposed upon railways.

The safety of railway transit may depend on varions circomstances; 1st,-Oo the state of the road or way, and the mode of its construction; 2adly,-On the state of the materials employed, viz., the engines and carriages, and the different parts of which they are composed, viz., the wherls, axles, springs, \&cc.; 8rdly,-Un the formation of the trains-that is to say, the mode of attaching the engines and carriages together, the kind of brake employed, the methods of deadening shocke, \&cc.; 4 Lbly,-Oo the regulations to be observed when the trains are ruoniog, the speed at which they are to travel, the signals and means of communication established either between the engine-drivers, or between them and the officials at the stations or on the road; 5 thly and lastly,-On the degree of intelligence employed in the service, and the ability and characters of the persuns employed.

1. On the Railsay and its Accessaries, such as Crossings and Changes is the direction of the Road.
It will be annecessary bere to recapitulate the various plans which have been auccessively employed for the construction of railways: it will be sufficient to observe that the method now generally adopted in France consists in fixing the rails by means of wooden chairs placed in cast iron bearingi, which are fixed two together upon wooden sleepers, placed at equal distances apart : the nomber of sleepers varies according to the natore of the soil upon which the road is to be formed, the weight of the rails, \&o. The sleepers are covered with sand to keep them in their proper position.

Some engineers, in order to render the rails more firm, and to prevent their bending between the transverse sleepers, have proposed to lay the rails upon longitudinal sleepers. The line of rail from London to Bristol is laid down in this manner; but it is not apparent that this plan has been much followed in France.
The Commisaion had therefore to inquire, on the one hand, whether this method of coastructing railways was sufficient to maintain the rails at the required distance. This wus answered affirmatively, adding, however, that it woold be advisable to place the sleepers nearer together at the junction of two lines of rail, than at the intermediate points. As a corollary to this question, the Commission inquired whether the breadth between the rails nuoat commonly adopted, viz., 4 f. 8 in ., was sufficient, and whether it would not be advisable to increase it. On the first point, the answer in the affirmative was given without hesitation; and, as to the width of road, the Commission was of opinion, that the gauge at present in nse might be continned; adding, howrever, that it would be advisable to keep it in tannels, and between the parapets of works, the same as on levels and in cuttings.

With regard to any alterations to be made in the position and form of the road, the Commission declares, that the depression or elevation of the rails, a defect in fixing them in the chuirs, derangement of the aleepers enpporting. them, inequality in the sand forming the foundation of the road, or too thin a layer of this sand, must be considered as very likely causen for the carriages getting off the rails. The Commission mentions two other canses of the rails getting out of order, which seem to be quite as danger-ous:-First, the displacement of the rails in a longitudinal direction, or direction of movement; and secondly, the aviform inclination of the sleepers supporting the chairs and the consequent displacement of the rails. These various causes of danger may be averted, or at least greatly modified, by a constant and atteutive surveillance of the ruad.

The Commission had still to examine, on the one hand, whether the form adopted for the rails was the most suitable; and on the other hand, whether the test of the muoufacture of the rails, before employing them, was sufft. cient to be relied upon.

There are three different systoms of switches employed upon railways; the first-that of moveable rails, which act by presaing upon the inside of the carriage wheels, so as to force them to run in the required direction. This plap possesses the disadvantage of loosening the wheels and wearing them away quickly. The second system is, that of the moveable rails, which may, by torning on a pivot, be moved in the direction in which the train is required to run. In thls plan, there is no pressure on the inside of the wheels ; but, if by chance, the noveable rail is badly placed, the engine will ran off the rails. And, lastly, the third plan, which is generally adopted at present, is one that uaites the advantages of the first two. It ia composed of donble a witches, arranged in such a manner that there may be always a moveable rail opposite each road; and the switches being always brought back to thelr origioal position, by a connterbalance weight, there is no danger of running of the rails. This latter plan is much proferable, as regards public safety.
Indepeodently of the changes and crossinga in a level, the Commlasion has given its Cltention to some questions which are of great importance as regards security in travelling. For instance, when a railroad is carried across a deep valley, which can only be traversed by means of lofiy viadncts, or through deep cnttings, or across rivers, of greater or less width, it will be understood that it would be much more dangerous to run off the rails at such'places than when travelling on a level road, althoogh attended at all times with much danger. In order to prevent this, as mnch as possible, connter.rails are generally employed, placed eitber iuside or outside the line of rails, and more or less elevated above the ground. The Commisslon has thonght, that in certain cases, the connter rails may be useful, adding besides, that when used, it is advisable to place them inside the ordinary rails. In fact, by this means, the beight of the flange of the wheels is gained; and, besides, if an axle were to break, the wheel, instead of being dragged outside the rails, would have a tendoncy to run inside, which is an evident advantage as regards safety.

Lastly, - the Commission bas Lad to examine whether, as regards afety of transit, there should not be a limit to the radins of the curves, and what this limit should be; but it was not long io perceiving that nothing positive could be decided ou this point, and that it should be left to the government to determine, in each particular case, the limit to be adopted. This limit, as ut present stated in the railway books, appears suitable and sufficient for preventing accidents.
11. On the infivence of the state of the materials, as regards safety of tramsit, and the precautions to be taken for that parpose.
If the state of the rails, and the materials of which the railway is composed, have great iofluence upon the security of railway transit, the machinery employed in working it, viz.-the locomolive engines and carriages, is also worthy of serious attention.

Experience has proved, that by forming the upper surface of the rails of a slightly coosex form, the oscillation may be much diminished, and the friction of the langes of the wheels upon the rails will be reduced in proportion. They are, in fact, scarcely in contact, and consequently, the, rails may be made about a third of an ioch wider, which greatly facilitates the progress upon curves. These slight improvements need not increase the expenre of the railway, but by their adoption the chances of accidents will be greally diminished.
The next question to be discussed relates to the axles. Thls subject is one that has greatly occupied public attention, from most of the serious railway accidents having been accompanied, if not caused, by the breaking of an axle. The Commission has examined the arle, successively, in all possible positions:-first, in the process of manufacture, and in their form and adjustment; and, afterwards, in the different kinds of work to which they night be adapted. As regards the manufactare of axles, the Comnission is of opinion, that this manufacture is now conducted on as perfect a plan as posijble, as well for straight as cranked axles. The former are wrought by the hammer; and the cranked axles, which are always larger, are also made of fagotted iron; but is order to give them the desired form, only one method appears to have been thought worthy of being employed. This method consists in putling a number of iron bars topether to form a parcel of about two feet equare; and these, having been beated in a reverberatory furnace, are submitted to the action of a powerful bammer, and beaten on all sides, in order to weld the bars together: the bar thus made, is afterwards reduced to a thickness somewhat more than the diameter of the intended axle, keeping a sufticient width for the cranked part. Those parts of the axle which are to receive the wheels, are first wrought into the required form, and then the cranks (which do not require to be rounded) are brought to their proper shape.

The form to be given to the axles is not material. It bas been proved by experience that uxles nearly alwaya break inside the wheelas and at or near the nave. It is therefore advisable to make this part much thicker than the others; aud this is generally done by manufacturers; but they do not always pay great attention to the levelling of these parts with the body of the axle, as the incline is generally too abrupt. This mode of manufacture being very defective, and likely to decrease the strength of the axle, it is indispensably decessary to make the thick parts taper gradually down to the smaller ones, or in the form of a truncated cone, the apex of which would be equal to the diameter of the body of the axle.

The Commission had to inquire whether it was advisable, before omploying the axles, to test their strength; and their opinion was, that this trial was not desirable, but that there might be certain modes of trial which would not injure the metal, and which would nerertheless expose the dee
fects : such, for instance, as re-heating to a cherry red-an examination of the portions detached from the ends of the axles, \&c.

In a word, the especial attention of the Companies should becalled to this question, the inportance of which may be easily undersiood; and they ought to be also obliged to keep registers, in which all the axles roceived should be carefolly noted, together with all the circumstances of their reception, and a statement of the proofs to which they had been sub. mitted.

When working on railways, the axles are subjected to strains of different kinds, and to shocks and vibrations, eometimes of a very violent nature, which mey canse them to break. Accidents of this nature have frequently happened upon railways; but, in most instances, the circumstances have not been trnly investigated, nor the appearance of the fracture considered ; except in some cases (fortnoatoly very few) in which the breaking of the axles occasioned serious injury or death. But in these cases, the two broken portions of the axle had been so twisted, that no conclusion could be arrived at from the appearance of the fracture. It is, besides, generally, impossible to determine whether the breaking of the axle was the cause of the accident, or merely the effect.

From these circumstances, the Commission has been unable to discover any docnments of a nature sufficiently conclusive to determine the probable time that axles would last; but it has no hesitation in declaring that they are deteriorated in quelity by use. It may be concluded, from isolated but well-verifed fucts, that, after a certain time, depending upon the efrec. tive work accomplished by each, the axles will break.-Is this owiog to any molecular change in the material? It is impossible to determine this from what we know at present; but it will be readily conceived that this is matter of serious consideration, and, consequently, the Commission thinks that every Company ought to be obliged to keep a register, in which shonld be entered, iodependently of the particulare of the time of receiving the axles, \&c., the number of miles rnu over by each.

The documents extracted from these registers wonld doabtless be of great utility for solving the important questions relative to the duration of axles; but the fact cannot be denied that this will furoish no result antil after a number of years ; and, therefore, the Commission is of opinion that it would be advisable to make some experiments as to the means of uscertaining, at any time, the amount of alteration which has taken place in the axles; and either to restore them to their former stato, or limit the period of their working.

After ascertaining the averago weight which axles have to support, and the strain they undergo, the following experiments were proposed to be made :-On analysing the strain upon axlea, it was found to consist, 1 st, Of a vertical strain, due either to that portion of the weight of the engine bearing upon that point, in consequence of the position of the centre of gravity, or to the action of the springs of the hinder axle in the six-wheel engines. This strain being thus defined, even supposing that the parts upon which it acts are as near as possible to the point d'uppui formed by the wheels, tends, nevertheless, to bend the axle in a vertical direction.

2nd. - A twist or strain, arising from the conoidal furm of the peripheries of the wheels, and inequality in the inclination of the rails; from which it happens that the peripheries of two wheels, fixed npon one axle, never touch the rails at the same part at the same time, and consequently, each of the wheels slip alternately on the rail: if the twist resulting therefrom is not too violent, it keeps all the molecules in a permanent state of vibration.

3rd.-The shocks arising from inequalities in the road, caused by the undulations of the rails, and the momentary depression of the rails at their point of junction when a train passes. These shocks increase in violenoe in proportion to the speed of the train, and act in a direction at right angles to the axis of the axle.

Ath.-Another kind of shock, arising from the oscillation of the train, which acts on the axles both in the direction of their length and at right angles thereto, increasing in force in proportion to the diameter of the wheels oo the axles.

In order to appreciate the effects of these four kinds of strain, the Com. mission is of opinion, that the first series of experimonts to be undertaken, should be to inspect a certain number of axles whiah have already worked for a given time apon railways, and minutely examine their interior laxture. As, however, these ex periments could not lead to perfectly satisfaotory conclusions, from the want of points of comparison, the Commission is of opinion that it would be advisuble, at the same Lime, to commence experiments upon ax les.

These experiments might be made by takiog an ordinary locomotlve axle, furalshed with the two wheels, loading it as it would be if adapted to an engine, and giving to it a rotary movement, similar to that which it would ucquire if employed upon a railway. By placing the wheols of this axle upon a frame, consiating of unother axle, furnished with wheels, to which motion is communicated by a steam engine, the first clasa of action to be observed will be obtained.

All the other motions might be obtained by this means; and also, by a suitable construction of the wheels of the frame, the twisting of the arles, the shocks arising from the bending of the rails, and the shocks arising from the oscillation. By this method of proceeding, the axle submitted to experiment will be exposed as nearly as possible to the eane injurious mos tion as when in use; only, instead of advancing upan a railray, the railway will present itself to the wheels. The Commission, wishing to escertain the expense of the above experiments, arrived at the following tosulte : $=$

It will be anderatood, that the apparatas ased for trying the experiments mast be made of pretty large proportions, and all the parts must be suff. cieatly strong to resist the action, the effects of which it is intended to prove.
The details of this apparatus munt be carefolly attended to; hut the expease cannot be estimated at less than from 4001 . to 5001 . In order that the experimente may lead to results worthy of interest, it will be necessary to try, comparatively, axles of at least three differeot diameters, and to act upon two axles of each kind, in all air axles, furnished with their wheels, tho expense of which will be about 001 .
Lantly.-The working of the apparatus will require a certain amoant of power, constant attention, and the renewal or repair of some perts of the mechaiam, such as the brass bearings for the asies, or the tyres of the weels.
In coocloslon, the Commlesion is of opiaion that, in order to make experiments in a suitable mannor, an outlay of at least 8001 . will be required. It is evident that these experiments will ocoupy a considerable time ; but this does oot appear to be a sufficleat reason for abandoning them.
It was observed by the Commission, that lo locomotive engines there चere manay parts sobjected to considerable atrain and violence, the rupture of which would be of minor importance, and that they might therefore, whthout much inconvenience, be allowed to remain in nse until nearly worn ont : of this kind are the rods which connect the locomotive to the tender, and also the bolts which serve to fasten them. By manufacturing several cimilar pieces with care, pulting some of them in use, and zeeping the others for the purpose of comparison, the Commision is of opinion that interesting results might soon be arrived at.
To conclude, as regards axles,-it only remained for the Commiscion to ioqnire into the precautions to be taken in the asce of breakage of exles, to order to prevent any accidente arising therefrom. Plana bave been proposed for this purpose by a great number of inventors, which it may be ac well to make muention of here.
Tbere plans may be divided into two categories ; the firat of which condete in the employment of wheels ronning on the rails io front of the cogine, and serving as gaides. The second consists in the employment of guides on the raila, the rods of which, being atteched to the framing of the engioe, are intended to keep the train in ita place on the rails. Neither of trese plans appeared to the Commission susceptible of usefnl employment. The guide-wheels would have the inconvenience of preventing the eagideer from perceiring the breaking of the axle in time to atop the traio.
With regard to the goides, if they were mede as proposed, in the form of drags, they would cause shocke and serious accidents; they also would not offer any resiatanoe to the oscillations of the ongine $;$ if made light, they would roadily be brokeo when subjected to a violeat abock; and if heary, they wonld evidently facilitate the runaing of the train of the rails.
As regards the working of railways, another not less innportant question occupied the attention of the Commision. On the occasion of the Versailles accident the general opinion was, that nothing fatal would have happened if the locomotive "Matthew Murray" had been mounted on six Wheels inslead of fovr. This appoered also to be the opinion of Goveroment, as one of the first precantionary measures was to prohibit the companies to the environs of Paris from making use of locomotive engines With four wheels. Before, however, this measure was made general (the immediate application of which would prove ruinous to many other complaies besides thone in the environs of Paris), the Commission thought proper to inquire into it as regards safety, and for this porpose took an account of the number of accidents which had happened opon railways worked with locomotives, either of six or four wheels, and the conclasion they eame to was that, as regards public safety, the six-wheeled engine poneassed some advantage over the foar-wheeled engine, aspecially when the two driving-wheels are provided with flanges ; this advantage is not, bowever, so great at prosect an entiroly to do away with the four-wheeled egiocs. The attention of engineers must be especially directed to the tmprovement of the six-wheeled engines, and there is no donbt that when these engines have undergone the improvements which may be suggested, chey wili be geverally preferred.
The parties in favonr of the fonr-wheeled engines brought forward, in sopport of their opinion, the fact that, in six-wheeled engines, the contre \& gravity of the whole was always before the cranked axle, and that, serofore, in case of the front axle breaking, these engines would fall as asily as the four-wheeled engines. On the other band, by placing the framing which supports the fonr-wheeled engines laside, the fall of the wheels is prevented whon an axie breaks, and there is no further fear of secident : but the Commission observes, that if in most of the present sixWheeled engines the contre of gravity is in front of the cranked axle, there io 00 practical imposeibility in bringing it upon the axle itself. The front andes are, besides, not the only ones the rupture of which is to be foared; the cranked axles freqnenty break, and such accidents, which are not wach to be feared in a uix-wheeled engine, may have serious consequences to a foar.wheeled.
With regard to the advantage attributed to placing the framing insida, it le, pertaps, sufficlent to observe, that this arrangement does not apply particularly to four-wheeled engines, and that nothing conclusive can bo errived at as regards the safety of the engines fitted op in this manner. It does not appear certain that this will prevont the ranning off from the ralls on the breaking of an axle.

Fires can only arise from two cances:-1at. The sparks escapiog from the chimney of the iocomotive: 2nd. Portions of jacandencent or ignited fuel falling from the furnace, which falling pieces, even should there be no wind, are driven along by the current of air produced by the rapid movement of the train.

As regards the sparks which lasue from the chimuey, the Commission obserres, that ajnce railways were Arst worked, the ohimneys of locomotives have always been furnished with a woven wire goard, which stops the sparks, and at the same tinse returns into the smoke-bor a portion of the palverulent subsiances, which, wheo allowed to escape, oause great laconvorieoce to travellers. This guard has since beed eomewhat improved; for instavce, it has been formed of a closer fabric; aleo the chimney has been formed trompel-monthed, with iron wires stretched acrose it, Wheroby a stronger goard than the ordinary one is formed. The employment of the gaard not haring, however, always prodaced satisfaotory resulta, other methods have been resorted to, which it will perbaps be advinable here briefly to describe :-

A strong metallic basket was placed at the lower part of the chimney, in the form of a troncated oone with its small ead downwards. By this arraagement the portions of cirder aod ignited fuel are presonted obliquely to the meshes of the fabric, and therefore the smoke will have great difficolty in drawing thom op. A horizontal cover was placed in a part of the chimney to arreat the portions of oinder aod fuel, and throw them back to the bottom of the chimney, and the amoke escaped by lateral openings. In some casen, these two plans have been combined in one chimpey, one above the other. Lastly. -A plate of iron pierced with round boles, about onethird of an inch in diameter, was placed in the smoka-box, in a borizontal postion; whereby all the sulid portions of fael, which were not presented directly to the orificen, were immediately thrown back to the bottom of the smake-box.
To these may be added another method tried in Germany, which appeared to produce satisfactory results. It cossiots in piacing a fan, or wheel furniahed with wings, on the top of the chimey, at an inclination of 45°, which, being pat in motion by the heatod air issuing from the chimney, drives the sparks to the sides of the chimney, where they are extingoished and fall beck.
The Commission having ascertained the advantages of these several plans, was of opinion that there whe do occasion to recommend any one of them in particajar, but that it woold be adrisable to sabmit each to regalar experiment; and until it should be shown by experience which was the best, the railway companies should be obliged to use one of them.

With regard to the igroited fuel falling from the furnaces of locomotives, the only means known of preventing the aecidente which may result therefrom, is by employing an ash-pan to catch the cinders, and thereby prevent them from falling to the ground. There are, howover, aeveral disadvantages attending their use, such an-preventing the draft; being too near the gronnd ; causing the bars of the furnace to wear away more qulckly, and revdering the cleaning of the farnace more difficult; and, ladily, preventing the engineer from immediately patting out his fire, should it be necessary to do so.
An arragement might, however, be contrived to do away with these disadrantages, elther wholly or partially, in which case the ash-pans might be employed with great adratiage ; bui in the present state of things, the Commission is of opinion that there is no occasion to recommend their employment, and can only propose to await the result of loager experience.

III. On the mode of attaching the engines and carriages together, the

 kiad of break employed, and the method of deadening shocks.A very important question was next discuased by the Commission, vis., whether more than one locomotive ought to be allowed to be attached to a train. The conclusion arrived at wae, that there was always disadrantage, and sometimes danger, attending the nee of more than one engine. It in, in fect, impossible tbat the engineers of the different engines should always act in concert; and moreover, if the foremost engine should meet with any accident, rendering it necossary to stop, the hinder one, continuing to progress, would most likely throw it of the rail, if the speed were considerable.
The Commiseion is therefore of opinion that more than one engine ought not to be osed to one train, except, in certain casea, on railways in the onvirons of Paris, or other large cities, where there are an immense number of passengers.
Under these circumstances, when it is absolutely necessary to nse two ongines, how are they to be attached if one of them is a six-whouled engine, which of them is to be placed in froat; and if both are six or four-mhoeled engines, should the beaviest or the lightest be placed in front ?
In order fully to answer these questions, the Commiasion thinka fit to remark that the principal danger consints in the probability, in bertain casces, of the front engine being pusbed forward by the hinder one; in which case it is liable to go off the rails, and might thereby canse very serious accidents. Under these circumstances, as the six-wheeled ongines are more firm than the four-wheel, and are for that reason less likely to get off the rails, when two engines, one of six and the other of four wheels, are to be employed in one train, the sir-wheeled one should be placed in fronk For the same reason, when two engines of differont weighte are employed, it is desirable to place the heevieat foremost.

The Commiesion adis, that it will be belter to have both engines exarlly alike, and that the priacipal point to be observer when two angives are employed is, never to allow the hindmost one to be driven at a greater spered than the foremnst, and also to take carre that the driver of the froat engine has the driver of the other engine ander bis control.
The dext question discossed by the Committee was, whether, as regarded safety, the position of the engine in front or behind the train was material. With respect to this, it appeared evident that the engine-driver, if placed behind the train, could not easily see what was going on in front, ead that, therefore, there would be great danger of his not perceiving any obstacle. The Commission was therefore decidedly of opinion that the locomotive ought never to be altached to the hinder part of the train.
Haring thus disposed of the questions relative to the eagines, the Commission inquired into the different plans employed for linking the carringen together. There appeared to te three:-The firat consiate of chains of a oertain length, leaving a oertain space between the carriages, independontly of that allowed for the play of the springs. The second consistes in the employment of moveable bars, which also allow of the play of the springe, bat onite the carriages more rigidly than the frot plan. The third, and last plen, consists in oniting the carriages rigidly together, by screws and keys.

On comparing thene plans, the Commission remarked, that as regarded the first, independently of the disadvantage it possessed of causing napleasant shocks in starting, serions accideats might be occusioned, in the case of a violent abock, by permitting the carriages to ran over each other. It was, therefore, considered that the bent mode of uniting the carriages would be by rigid rasteniags acting upon springs. Hy this meana, in case of a collision, the traic would offer the resiatapce of a solid mass, and there woold be no danger of the carriages running over one another.

The only disadrantage of this plan wonld be, requiring more power from the locomotive; but this is a minor consideration, when the safoly of the passengers is concerved. The Commisaion was therefore of opinion, that the carriages should be united in such a manner as to allow of the buffers being slways in contact.

Another no less important question was, whother rebicles with cast iron wheels ought to be allowed between the tender and the paseenger carringes. This was decided in the negative, as it appeared that casti-iron wheels, runaing with great speed, would soon wear, and were liablo to breal ; in which case, the train would be aloost sure to be thrown off the rails.
The Commission having thas decided apon the best means of forming the trains, as regarled the safety of the passengers, the subject nest to be considered was the best means of regalating the speed of trains, and freeing thom as mach as possible from dunger of accident, to which they might be exposed.
The most usual canses of accidents may be resolved into one, vis., a sudden shock, produced either by the locomotive coming into contact with some obstacle; by the breaking of an axle; or by ranning off the rails.
As regards the breakage of axles, accideats likely to occur therefrom may be most readily provented by the promptitude and intelligence of the engine.driver.
With regard to ahocks and sudden stoppages, what tends most to ina rease the danger in the speed at which the train is travelling; in order therefore either wholly or partiaily to obviate them, it is desirable to 6nd out the best means of slackening the speed at pleasure. For this purpose brakes are used, which act by pressing on the periphery of the wheels of one or more carriages of the crain, and by that means diminish the speed.
The brakes most commonly used apon railways may be divided into three ciaspes.-1st. Brakes acting on one wheel only of each axle, and pressing on one side of the wheel. -2nd. Brakes acting on one wheel of each axle, but pressing against both sides of the wheel.-3rd. Brakee acting on both wheels, and on one side of each wheel.
Neither the first nor the second ougbt to be used, as they have a tendency to dismount the wheel opposite to that on which they act ; and the frst, especially, has a tendency to destroy the paralleliam of the axles, which misht occasion perious accidents.
The thind class of brakes possesses nelther of these inconveniencen. It is true that, by acting on one side of the wheel only, the whole of the pressure will be exerted upon the pivot of the axle ; and although this presenre is equal to the weight supported by the wheel (and consequentiy the pivot of the axle does not sastain mach more strain than under ordinary circumstances), the beat plan would no doubt be that by which a pair of wheels would be acted apon on both sides simultaneousily; the efforts of inventora should therefore be directed to this object.

With regard to the brakes now in nse apon railways, the Commission was not sufficiently iaformed upon the sabjeot to be able to recommend any one of the proposed plans, asid it appears that careful experimenta would be necessary to decide the question. The following are the facts to be considered in these experiments:-
1st. What is the time necessinry for enabling the person having the management of the brake to produce sufficient presure on the wheels to stop tlem, including the time neceasary for signalling?
2nd. What is the time necessary to elapse, and what distance will have been travelled, before a carriage, travelling at various apeeds and provided with efficient brakes, can be slopped i
This experiment onght to be tried many times, onder various atmospheric t-ndencies, in order to test the effects of dryness, dampnese, or boar-frost, or the effect of throwing eand oo the rails, as wre proposed and practinod
on the railway from Saint Etiense to Lyoos; the experiments abould be made apon levels as well as inclines.

3rd. What is the time necessary to elapee, and the distapce to be run over, in order to stop a train composed of a locomotive and tender, and siz or eight ordinary carriages, on different inclines and nader varions atmospheric infloences, the carriages being provided with brukes, and driven at rarions speeds, makiog ase,-lat. Ot the teoder brake, the ateam beiag shat off.-2nd. Of one, two, or more of the carriage brakes, the atearim belag shat off.-8rd. Of all the brakes, and reversing the engine; in fact, employlng all the means known for atopping,-The Commission, in coosiderligg the question as to the propriety of skidding all the cartiages, is of opinion that it wonld perbaps be advisable, when proceeding at a apeed of from twenty- 1 vo to thirty miles an bour, to adopt this method ; but gonerally, in a train composed of a locomotive, tender, and seven or oight carriages, only one of the carriages is provided with a brake, and the Comminsion wished to ascertain which carriage it should be applied to.
It wat remarked thet, independently of the momentum acquired by the carriages reapectively, each of them is, at the time of atopping. posbed forward by the one bebind it, especially when connected loosely by chaine ; it therefore appeared advisable to provide the last carriage with a brake, which ohould act at the moment of stoppage, and, by thus offering a rosistance, the force of which may be mathomatically calculated, tighten the connecting chains or rods of the front carriages.
8bould any apparatus be aned to deaden shocks 1 And if so, what position onght it to occapy?

On this sabject, the Commission is of opinion, that if it were possible to throw the whole or the greater part of the force of the abock upon any inort body, the safety of the carriages would be much iucreased; and as to the place it ought to occupy in the train, the Commisaioo considers it beat to place the brake between the tender and the passenger carriages.
Soveral kinds of apparatus adapted for this porpose, were presented. Some of them were composed of metallic springs, which would be gradnally compressed by the shock, and by that means slacken the speed of the train; and others were componed of air-apriogs acting upon the same principle.

With regard to the former, they would be the more efficacions, in proportion to the time they allowed the train to ran while compressing the springa; bot, at the same time, the leogth of the aprings must not be such as to cause danger of running off the raile when traversing chrves. On the other hand, it will be understood, that it is advisable to construat them oo as to offer the greatest possible degree of reaittance; their weight mass Dot, however, be greater than that of an ordinary losded carriage. In order to prodnce the desired effect, the apparatus shonld be so constructed as to allow the train to bear the greatest posaible comprension without injury; occasion no danger in trarersing curres; and offer the greateat possible resistance with the least weight.

With regard to the air apparatns, it woold not act efficiently naless made of very large dimensiona, so as to present a large body of air to be comprensed; this kind of buffer is therefore inadmissible, from its bulk. In fact, as the density is in an inverse ratio to the volume of air, the apparatus woald not act until the piston, meeting with resistance from the air, would be neariy at the end of its coarse, at which point it would not offer any efficient resistance to a shock of any considerable violence.
It appeared to the Comanasion, that an apparatus offerlag great resistance would not act so efficiently as one which would be broken by the bhoek of a collixion.

It was thonght that it would be advieable to propose a prize to the inventor of any apparatus, which, after being in use for some time, was found to act efficientiy.

There are some preliminary arrangements, as regards safety, to be consldered. One precaution which has been adopted consiats in interponing between the tondor and the passenger-carriages as many empty carriagos an there are locomotives: this procantion may, in most cases, proserve the passeagers from injury.

IV. Of Rules to be enforced by Lawo in Working Railwoays.

The first point to be considered, as regards safety in railoray transit, th the working with perfoct regularity, and subject to fixed rules, which musk never be infringed; it is clearly the daty of Government to legislate on this subject.

By the present lewn, railway companies are empowered to frame byelaws for working, but they are obliged to submit them for the approval of the bigher authorities. This is a salutary regulation, and the companies ought to be boand to inform the Government, in good time, of the hours fixed for the departure of the trains, as well from the termini as the inter. mediate stations.

Express trains must be used as rarely as possiblo, and ooly when they are absolutely neceseary: their approach must be signalled along the lines

The Commiesion has not given much attention to cases where accidents might happen from two trains meeting on the came line. Un railways, bs which a great number of persons travel, there are always at least two lines of rail, and the only likelibood there is of one train running into another, is whoo they are both travelling the same way; and even this might be aroided if the officials were to adhere to the timues fixed by the authorities for doparture from the terminj, and those fixed by themselvet for the intermediate stations.

Iodependeatly of the shocks which may happen when the trains are in motion, parengers have sometimes been seriougly injured from shocks
cocmsioned on stopping at the tersini, by coming into contact either with the walls or the carriages. This occurs either from the ignornoce or negfigeace of the eogineers, and somothes from a derangement of the brake not allowing the train to be stopped with suficient promptitude.

In ordor to obviate this, it would be advisable to direct the engios-drivers to stop the train completely before reaching the place where the pasengers are to alight. When a train is in progreas, it is indispensably necessary for the engine driver to be constantly warned of all that pasees on the line; and for this parpose there mutt always be, between the engine driver and atation-guarde, cortain signols, which may be readily undertood by the latter; and by means of which the station-zeepers may alwaye commonicate with each otber. Bignals between the engine-driver and gaard of railway traisa either do not, for the most part, exitit, or are very tmperfect. It will, nevertheleas, be readlly oonceived, that many casualties may ertse during the progreas of a traln, of whieh it is necesary for the engisedriver to have notice, -as in case of the breaking of an arle, the carriagen ropoing of the rails, \&c. The Commission thinks that Government onght to direct, that in ewch passenger-train there shoold be a gard, furnished with the means of commanicating the necessary intelligence to the enginetriver

Another anbject of great importacee in rallway trasit is the question, at what speed they should travel ? and on this head, the Commisalon doliberated, first, whother it would be advisable to fix a meximum speed; bet it was found, that e speed which would be without danger on very elight isclines and curves of large radias, would be extremely dangerons an steep inclines and corves of small radias, and which were to be tra-- ersed by heavy traias; it is, thereforo, propoeed to fix a maximum opeed for each road, regard being had to tho inclines and curves on each line, and aleo to the trains to run apon it.

It would also be very usefol for each eagine to be frroished with an apparatos for indicating (permanently and independently of the will of the engineer) the maximam speed of the train at any period of its joorney.

Note an Experiments made upen the nes line of rail at Salnt Germain, with a Locomedios constructed by M. Flachat.

The town of Saint Germain ls sitante on an elevation of about sixty Yards above the plain upon which the line of rail terminates at the Pecq Bridge. The atmospheric railway overeomes this differeace of level by means of a eries of gradienth, forming altogether a parabolic ourve, aloping towards the earth, and terminating in a gradient of 1083 yards in length, and baving an incilination of 88 yards.
M. Flachat, who was charged with the superintendeace of the worke ecknowledged the necessity of constructing a powerful engine, capable of propelling upon steep inclines the materials neoesary for the constraction of the road, and the apparatos for the atmospheric plan. The eagine is onw employed for drawing earth from cottings in the forest of 8aint Ger. main: the Fagons ranning ap empty, and returning foll.
The experiment made on the 17th of June last, was for the purpoee of acertaining the maximum weight the ongibe was capable of drawing on the above inchine. The train concinted of forr wagone loeded with earth, and weighing, when empty, between three and four tona. One wagon was fondr, fhen loaded with earth, to woigh nearly 18 tons. The load, on descending, was therefore-

The train atarted at a moderate speed, with the regulator entirely cloeed. The train having once stopped, it whe found to be impossible to ascend again. Une, iwo, and three wagons were then sucoessively emptied, and It was not poacible to ascend the inctive ontil this was done. The train therefore consisted of -

The Englne . .			20	92 tons dend welyits.
The Tender -ir eio	\because		9	
A louded fragon .	\because	\because	11	83 tons muetul weight
\triangle Brake Carringe ..				

This experiment was made twice, and gave the same resnlts both dimen
The engive was working at a presure of five atmonpheres; the power it exerted, sapposing the action of the stoan to be the same throughout, wras therefore about 8 tuns 4 ewt. The resistance to be overcome was as followis:

There remains a difference of 1 ton, 1 l art, owing to the diminntion of prensure, and additional frictlon of all klode, and other casualties. It will, of course, be anderatood, that on less steep inclitiee this tractive power will be much increased.

asvirivo

27e High Presmure Stocm Eagine twoestigated: an esporition of ite como paration merita, and an essay towards its improeed consfruction. By Dr. Gangt Arbar, practical machine maker, Plan, Saxony. Tranalated by W. Pole, F.R.A.S. Parts I. and II. Weale, 1847. 8vo., pp. 145. Sir plates.

The object of this book is a novel one. It is to advocate the superionty of the high-preasore orer the Jow-pressure engine; and the omistion of all exceptions in favour of the latter kind of engine leads to the inference, that the anthor recommends the adoption of the former under all circumstances, and for all purposet.

Dr. Alban tells us that he if a practical manufactarer of engines; that he has been engaged for thirty years, without intermission, in stadying this subject; that he has made a large namber of engines of various dimension and varietien; and bas been in the constant practice of experimenting with a view to their improvement. A man who brings forward his opinions thon anthenticated by long experience, hat a right to demand some attention to them, and will generally have something to say which is worth listening to. This is the cate in the present intance; bat while full credit is to be given to our anthor for his practical knowledge, it must be premised that he has confined his attention almont exclusively to engines worked by bigh pressars, and consequently is far more qualified to apeak respecting their advantaget and capabilities than respecting those of low-pressure engines. Possibly, had he studied the latter more, he would have thought better of them.

These cossiderations apply exclasively to Dr. Alban's practical knowledge -his theoretical opinions are to be criticised independently and abstractedly. We shall find that his physical conceptions, though often clear and vigorove, occusionally lead him into serions errors. The tranalator of this work sets ont with high profestions of the necessity of theoretical accuracy, and laments the aberrations of the unlearned in a manner which to some of bis reader will appear amusing. He in very caustic respecting the unhappy frequency of blunden arising " from the practical methods adopted by ignorant men." and complains that "unhappily, in mont cases, the unfortunate public have to pay for the schooling of their engineer,"-4 anleas the engineer has a knowledge of principlea to guide bim, and a capability too of reasoning on those principles." After this wholesale condemnation of engineers, it might have been hoped that Mr. Pole would have at leant avoided the errors which he denounces, and that he would not have published in an Engliah form several notions grevionely at variance with the sald "knowledge of principles." He profesces to correct his author's mistakes, but the worat of them are passed over ancorrected, and apperently unobserved.

Of the two Parts of the wart before us, the firat is theoretical ; the second refers to detaile of construction. We shall for the present confine our attention to the former, in which the author examinee the objections brought egainst high-presmare engines, and replies to them, and then proceeds to a errial eccount of the advantages peenliar to these engiaes.

The objections may be comidered firnt-they are principally thene ive. 1st. The danger of explosion : 2nd. The lon of heat: 3rd. The relinquishment of that power which arites from condensation: 4th. The connumption of oil and grease for labrication $:$ bth. The wear and tear of metal from the rapidity of motion. We will take these objections in their order.

The first objection-respecting the danger of explowion-may be considered to be of a two-fold nature: for we bave to ascertain primarily whether a high-preasure boiler be more ilkely to explode than a low-pressure boiler; mecondarily, whetber the resolts of th explosion are more disantrons in the former case than in the latter. Onr author does not make this diatinction; but it is obviounly aecessary for the complete examination of the subject. In comparing the probabilities of an explosion occurring in either eave, we must, of course, for the fairness of comparison, pro-pppose that, eateris paribus, the metal of the boiler is always made of a thicknees proportional to the intended steam preesare : that $i \mathrm{a}$, that a boller inteaded to bear a preaaure of four atmospheret, is made twice at strang at one intended for a pressure of two atmospheres, \&c. Unleas thin sppposition be made, an sceurate seneral comparition of the probabilities of explosion would be imponsible ; and, moreover, the precantion is one so palpably neceacary, that no man of common pradence would neglect it This being premiced, we proceed to our author's first view of the case.
"Every boiler may become supercharged with ateam when the quantity drawn off is leas than the quantity generated, and when the safety-valves, in
consequence of imperfections in their action or condition, do not properly perform their duty. Therefore, in so far at similar safety apparatus are used for both bigh and low-prewure boilern, they muat be liable to similar interraptions in their working. Experience has shown this very often, and it han been found that even the vertical open-mouthed feed-pipen of low-pressure boilers, which act as escape-pipes whed the boiler preasure is too great, (these are wanting in marine engines,) are not always secure. If then an overalling of the boiler with steam in equally poasible in both high and lowpreanure enginet, both are linble to danger from this source; as the atrength of the metal is adapted to the working presanre, and therefore the proper elanticity for which the veseel is constructed must be exceeded when such an occurrence happens. Bat shere is an advantage on the side of the highpresnure engide, for the elasticity mant be increased in a much higher ratio than with the low-pressure engine, befere it overcomes the pressare at which the boilar is proved (unually three times the working elanticity); and there. fore a much longer time will elapse before absolate danger arises. For example, in a boiler working at eight atmospheret, it will take a much greater Lapse of time for the presuure to rine to 24 -atmospherea, than it would to reach 12 lb . per square inch in a boiler working at 4 lb .; and these would be the pointa at which danger may be aupposed to arise in the respective cases. This gives a key to the oxperience of late timen, that as great a proportionate number of low at of high-pressare boilers have oxploded, at well in Bngland as in America and Prance; and that among the latest inatances, the accidenta with the former have reached an alarming ertent."

This extract bringa na to the first allegation, that it takes a longer time to overcharge a high-presenre than a lower premare boiler. The general trath is not atated with sufficient precision; it may be explained by the following example: by referring to the beat tables for the relative volumet of steam at different preasures, we find that any given quantity of water will produce 249 times its bulk of stenm of eight atmospheres' preasure, and 1669 times its bulk of steam of one atmosphere. Consequently, to fill a boiler with the Iatter or low-pressare team, rather less than seven times as much water would be required as would be necesary for filling it with the former or high-presaure steam.

Now, it hat been ascortained that the premure in the boiler hat no influence on the rate of vaporization-that is, with a fire of given intensity and a fire-box of given dimensions, the same number of ponnds of water will be converted into steam in a given time, whether the boller-preasure be one atmosphere or eight atmonpheres. Coupling this consideration with that in the preceding paragraph, we arrive at the conclusion that the overcharging a boiler which can only resist a preanure of one atmosphere, takes about oneseventh of the time required for overcharging a boiler which will bear a pressure of eight atmonpheres. In order to the accuracy of this conclusion, it is requisite however to suppose nothing altered bat the boiler preasure, and that the capacity of the boiler, the intensit; of the fire, and the dimensions of the fire grate, are in all cases the seme. With this proviso (which in not atated by Dr. Alban), we may eatablish the general conclasion, that a low-pressure boiler in overcharged in a shorter time than a high-pressure boiler.
Oor author then proceeds to consider the causes of explosion, and details the verious hypotheses which have been suggented, soch as that of the generation of an explosive gas from the decomposition of the water-the generation of hydro-electricity-and the suden conversion of water into steam by coming in contact with overbeated parts of the boller. The litter of theae hypotheses is by far the most probable; but there is one important point of agreement in them all, namely, that the ultimate or inducing cause of an explosion is the sinking of the water too low in the boiler, and the conce. quent over-heating of the metal. To this point, therefore, attention must be confined, when the safety of high-presture and low-prestare boilera in compared. We bave simply to sucertain which of the two is most limble to be overheated. One of the principal canses of this evil is
${ }^{4}$ Too great an accumulation, either general or partial, of seale or earthy sediment in the boiler. These aubstances being bad conductors of heat, prevent, when in large quantitien, the proper distribation of caloric to the water, or at least injuriously retard itm transmiation. The heat of the metal then increases to too great an extent, and may frequently rise to incandescence. Sometimes it happens that the layers of deposit arrange themselves in such wise as to leave interstices to which the water cannot penetrate: now if any of the adjecent portions become cracked, the water will suddenly find its way upon the bot metal, and will canse a local explosion, thereby loosening the scale not only from the part previously affected, but for considerable distance round, and consequently increasing the contect of the water with the heated metal. This produces a rumbling commotion in the water, which, if the incmadescent apot be large, may be in the higheat degree injurious to the etructure of the boiler. The steam thus suddenly formed sugments the pressure, and hence again increased denger may onsue, particularly the spot overheated will have been rendered more susceptible of damage. It has oftan been remarted that explosions were immediately preceded by the rumbling noise alladed to above. The high-pretsure engine
has in this respect aloo an edvantage over the low-pressure, in that the cellsment, when the elasticity in great, seldom attaches ituelf firmly to the sidem of the boiler, bat collocts in a loose atate, and is exaily removed."

The comparison proceed in a fiur manner as follows:-
"Boilers which are fitted with imperfect water ganges or feed apparatot, are particuiarly liable to the evils of a partial exposure of the Are sarface, and unfortanately thene defects are bat too common, particularly with hifb presare engines. The meme liability to danger is also incorred where inter nal fire-tabes are inserted, or where the water apace is too fat and confined, and is expored in an injudicious manner to the fives. When tabes are iotrodaced, they seldom lie deep enough under the water level, and are therefore soon left uncovered by an secidental slight deprewion of the latter; and if the water chambers are too confined, the water will be often driven out during violent ehullition. Marine and locomotive boilers are particelarly linble to this. A steam boat boiler which barit at Hall (an account of the accident, with a deacription of the appearance of the boiler after the explosion, will be found in the 'Ciod Enginoer and Arehsect's Journal', August, 1838, p. 283) furnishes an example of anch an improper make. Both imperfections were united in its conatruction, and the collapsed fire-tubea showed that the metal of these parts had been overbested in consequence of the water being driven ont of the too contracted surrounding chambers, and that by such overheating the parts were weakened, and at lest snddenly gave way to the presiare. It in much to be regretted that marine boilera are nanally subject to the evil of too confined and too shallow a water space; becanse the ship's motion rendera them particularly liable to the exposnre of the fire-tubes: the ure of ssile tncremes the mischief, for when the ship has lats over on one side for some time, her righting or careening will throw the water back upon any portions of the metal that may have become over-heated, and thas danger may enane in proportion to the length of time the parts have been expoued and the degree of exposure. Hence we find the majority of explosions occur on board steam bonts, and proportionately bat few on shore.

Now aince all marine boilera, as well for low as high-presuare, are liables If injudiciouly constructed, to similar dangers of the kind we have named ebove, no conclusion to the prejudice of high-preasure engines can be drawa from such accidenta. Indeed of late years a general comparison hes been to favour of the high-preasure aystem.* One reason why low-pressure boilers must, under the evils above-mentioned, be less secure than high pressure, is that in the former the eballition is much more violent, and the water thereby mora liable to be expelled, wherees under a great elanticity the bubblen of steam generated take a amaller volume, the ebullition goes on more quietly, and therefore the danger is lesmened.

The common cheat form of low-premure boilert with otraight aides tends to increase the liability to the exposure of parts heated by tbe fire, especially if furnished with internal fluen, at is generally the case with marine boilers. The large flat aurfaces easily bnige out by an increased pressure within, and the consequent augmentation of cubical content causes a sinking of the water aurface; after which the restoration of the elanticity to its original dogree may throw back the water over the apota it formerly left, and thus the source of danger in at hand."

The last mentioned evil in not enlarged upon in a manner correaponding to its importance. It may be demonstrated that boilers with flat aides ace subject to mach greater atrain than those which are curvilinear in every part If the boiler be of the form known in geometry ata aolid of revolution wist. out flat ends (that in, if every section perpendicular to its axis be a circle), the elastic pressure within will not tend to bulge it. We think it may be shown that, in this case, the tention of the metal in direct or tangential, and that there are no transverne strains, analogous to those of a deflocted beam or girder. But where flat surfoces are exposed to the action of stenm, there in tendency to make them belly oat, like the saile of a shig. In this case, the metal is subject to transverse strains, and in consequence of the tendency to bending, will be subject to forces of both extension and compreation (like a defected beam) ; these forces greatly exceeding those aridug from direct tension in the colid of revolation. It will be seen therefore that boilers with fiat sides have a great disadvantage-in addition, it muat be ob served, to the weakness at the anglen,-from the imperfect connection of the plates.

Another canse of danger in 20w-presare enginea, which Dr, Alben inalom apon, is their great aizo.
"The greater the content of a boiler, the greater surface it mast offor to the preasare of the ateam, and the greater danger it mast be anbject to. Thb truth is so self-evident, that it is incomprebensible how it should be so catveraally neglected. The size of many boilere at present in ase is traly es tonading. I have not unfrequently seen them as large as 5 or 6 feet in dit
-Vide 'Echo da Monde cavant,' 2to. 24, p. 178. Up to the Fear 1894, ouly twaty explocions had occurred in Amarica with hifh-prosaure engites, while thirty-two had bappened with low. preasure; and it to well known how common the high-proscare endide ha In that conntry, particularly in the Weatern Seates. At a later date, the proprietore of steam boatis in North Amerlica have stated, in a memorial to Congreas, that alpee the more general introduction of high-preazure steam. the oamber of accildenta han not onity oot mereesed, but become lenwened lo en extriondinary degrie.
meter. Such boilert aught indeed to be named explodere, and the lagialative rentriction at to the amount of presare to be used with them is, as far as it goes, a malutary measnre. Still bettor wonld the law stand if it began at the other end, and limited tbe size of the vasele instead of the elaticity of the steam withia them; for such an ensetment would be free from the objection of diccouraging the ase of bigh-presaure ateam, now promiaing 20 moch ad. vantage to industry. We can scarcely bope, however, for the foll realization of our wishes in this respect, unleas a bold and enlarged view ia taken of the aystam; for, as I shall hereafter show, the high-pressure engine cannot be made to diaplay ite advantages with ateam under about aix atmospheres' preasure. A compalsory enactment reatricting the aise of the generating weasels would tend moch towards promoting the nae of steam of sach bigh preasurea, and, by producing a necessity for acquaintance Fith the working of the engine, woald undoubtedly farther ite real improvement."

The comparison is not, however, here stated quite fairly. It in true, that all things alse remaining the ame, the tension of the boiler increates with ite aire; bat then we set out by appposing the atrength of the material in. cressed in like proportion. The anthor himeelf insista that it be preanppoed, in dimime, that the thickness of the metal be proportioned to the tension to be resisted; and, as we have already said, it in absord to inatitute a omparison on any other terme. In objecting therefore to the great size of low-pressure boilers he shoeld condemn-not their weakness (which in suppoeed to be provided againat)-bat the great wroight of metal required to make them sufieiently atrong.

The relation between the thickness of the metal and the dimensions and presure of the boiler, may be eavily determined in most cases; and we in. tend to iny before the reader, in a separate paper, the means of calculating, with great facility, the proper thickness of a boiler of given form and uize, is ordes to sustain a given preasure. Por the present, however, we may cobeerve, with Dr. Alban, that when the plates of a large boiler are increased to a thickness proper to ito dimenaions, they may become so thick as to be liable to crack from the andden application of heat. This is a source of danger altogether independent of those hitherto considered,-it mast be prevented cither by making the plates of metal of anperior temper and ceaseity ; or by gradual and careful heating; or lataly, by redacing the sice of the boiler, and consequently, the thickneas of its plates. Dr. Alban must, however, recollect that, in respect to thit danger of cracking, low. presure and high-pressure bollers are frequently on a par. He anyp-
"It in indeed customary to give to boilert of great size a proportionate thickneas of metal, but this help: the case very little; for experience has shown that thick plates, eapecially if of cast metal, are more lieble to crack by the sction of the fire than thin ones; inasmach as the temperature of their two sides, exposed respectively to the fre without and the water within, does not quickly assimilate; whereby unequal expansion and contraction enspes. It is moreover a difficult matter to determine what the proper terength ought to be in proportion to the diameter and the presare, and thare is a great difference of opinion among those who have given their attention to this point. It must alm be noticed, that thick veasela tend more to retard the transmassion of heat to the water than thin ones, although thil tact seems often to have eacaped the notice of engineers."

But how extremely unphilosophical is it to urge this as an argument mainst low-pressure boilers exclasively! A bniler of large dimensions and bow presaure may require the same thickness of metal at a boiler of small dimentions and high pressure.

The second objection against bigh-presare engines-the loss of heat-we must, for the alake of brevity, dismisa with the following brief consideration, which, in fact, embracen the sum of our author'a arguments. By a wollkown property of ateam, ascertained by Watt and many others, the sum of the latent and sensible beats is coustant at all pressures, and itherefore the aame fire will evaporate equal quantities of witer in a given time, whatover be the boiler pressure. Now, it may be demonstrated mathematically that steam scte with mont effect when used at a high pressure and worked expensively. Consequently there is, caterif paribur, a greater economy of fuel When the stenm is generated at high preasure.

The third objection-the relinquishment of that force arising from con-deastion-is stated correctly by Dr. Alban, oxcept in that he nuder-eatimatea the amonat of power obtained in practice by condensing the steam.
w Partly through imperfect condenaation, partly through the working of the air and cold water pumps, and from other causes of the same description, the useful effect of low-preanure engines is reduced from airout 17 lb . per equare inch absolute pressure upon the piston, to about seven, as made arailable in power obtained; so that the nae of condenation only in reality fifers a gain of from 4i to 5 lb . per square inch, or one-third of the atmopheric preswre. The objection loses in wetgbt as we use steam of higher preanure, and at seven or eight atmospheren is acarcely to be con. sdered, because the amrace of the piaton beoomet proportionataly lows at the
elasticlty in increased, and therefore the loss of the vacuun is lean to be falt; While the advantages of the aystom are increased by such increase of elasticity. When the presure aned is too low, for example, only two or three atmospheren, as is most common, the loas may be imporiant, and the advantages of the high-premure system are not sufficiently developed to cover it. For instance, an eagine of 10 -horse power at two atmospheren' preanure, will require about twice as much ateam as a condenting one of the ame power: it must be of about the amo dimentiona, and by the want of a vacuum must be supplied with steam of a donble elasticity to produce the same effect. Here, therefore, a power of ten borses will be sacrificed by the want of the vacuum ; that is, as much as the whole power of the engine. But if a pressure of eight or ten atmospheres be used, and the principle of expansion applied, the proportionate loss, by the sacrifice of the vncuam, will be scarcely equal to 2 -horse power nut of ten,-2 loss of very trifing weight when compared with the advantages posessed by such an eagine over a low-preasure one. Yet more in favour of the high-presaure engine Fould the comparison be if we could substitute ateam of sixteen atmoupheret for that of eight; but unfortunately, through practical difficulties in the working of the machinery, our limits of available elasticity are at present $t 00$ confined."

We may here observe, that elsewhere Dr. Alban recommend that the steam should always be generated at a presure of eight or ten atmospheres, or 120 lb . to 150 lb . to the square inch. He apeaks of emploging what we ahould consider excensive presnares, with great componure. "Once," mays be, "I worked as engine, for the sake of experiment, to a preasure of 1000 lb . on the square inch, and it was fonnd that under this tremendoas pressure, the engine itself remained perfectly frm and steam-tight"l Ho tellis us also, that in the ordinary working of his steam engines "the steam makes its exit from the cylinder with a presure of abont three atmospheres," or 45 lb . Now, in English railvay locomotives, steam fin often admitted into the cylinder at the presare with which Dr. Alban suffers it to escape. $\mathbf{S O}_{0}$ that if it were posaible for him to send his steam here When he had done with it, we might use it In working our locomotives. It seems scarcely possible that there can be any economy where steam in nuffered to eacape at this high preasure: for supposing it to be admitted to the cylinder at eight atmoepheres, and to maintaln nniform presenve throughont the atrake, the effective presaure in (8-3, or) 5 atmospheres : consequently, fith of the power is wasted. The resson asigned for expelling the ateam at high presanre exhibits some very odd philosophy :
"The ateam leaving the cylinder would at the end of each atroke retain 400 little excess of presance abore the atmosphere, and therefore would blow out with too mall a velocity, and leave behind an increased resistance to the piston. For example, ateam of three atmospheres, expanded to three timen its volume, would scarcely balance the atmosphere, and would thas have no tendency to blow out ; while steam of two aimonpheres aimilarly expanded, would sink so much noder the atmospheric presoure, as to canse a very injorious counter-resistance to the piston from the entering air."

The phrase, "leave behind an increased resiatance to this piston," is to as perfectly unintelligible. If the escaping ateam be of high elasticity, it will doubtless have a great tendency to rusb ont by the eduction-port-but the same elasticity also acta to retard the motion of the piston. Of course, it is denirable that the ateam should be got rid of with facility; and, in order that the piston mey drive it out with as little resistance as posible, the eacape-pipes should be made of ample size. But a "tendency to blow ont" in the steam itself it of no adrantage: for it has no power of itnelf to "blow out," after so much of it has eacaped as to make the pressinve of the remainder equal to that of the atmosphere. This remainder is expelled by the piston. Consequently, the piston will always have to drive out steam of not less presure than the atmosphere-if it be much greater than the atmosphere, an unnecessary resistance is created. We come, then, to the conclusion that, in all engines in which the steam isues directly from the cylinder into the air, the issuing steam ought to be as nearly as poasible of atmospheric pressure: in other words, if the steam be admitted from the boiler at a high preasare, its maximnm effect is obtained by working it expansively and reducing it to about 15 lb . pressure, before the edaction-port is opened.

The fflh objection-the wear and tear of metal from rapidity of motionour author tries to overcome by theoretical arguments: but the facts are too strong for him. That the rubbing parts of the best locomotive engines unffer a great wear and tear, due to the rapidity of motion, is an incontestable trath, which no argaments auch as the following ean get rid of 5
"It is inconceivable how the apparatus for transmitting the motion of the piston of a high-pressure engine to the machinery can be more aubject to destruction, in regard to tbe durability of its joints, than in a low-preasure. If the power of each be the same, the machinery muat have in each cale equal streagth : the stress to which it in anbject is the amme (or rather is lest in the bigh-presure engine, on account of the diminiahed prejudicial
redstance, and consequently diminished total preasare required), snd there is no reason whatevar why any required strength may not be given to these parts; so that if there shoald be apprebeation from the unequal action of the piaton when expansion is used, the atrength may be increased at pleasure. Can the gradually diminishing force of the steam of an exparding engine do more mischief than the great shock which mast ocenr in low. presoure engines, owing to their increased resiatance? Then evory one know: what sudden concuaions are prodnced thronghout the mechinery of a condensing eagine at the moment when the air-pamp discharges its conteats, at which instant the whole presure of the atmosphere is suddenly thrown apon the area of the pump."

The parenthesis in the above extract involvea a serious error. Even sapporing we admit the "prejodicial reaistance," and consequently the "total prensare," to be less in the high-pressare than in the low-pressare engine, it by no meane follows that the atring of the individan parts are diminishod. Those atrains arise not merely from the external resistence, but also from the momentam of the working parts-or, to use mathematical language, they depend apou both the effective and impressed foroes. For instance, a grindatone, though suffering no retardation from the friction of its arle, might revolve so fatt as to be torn to pieces by its own centrifugal foree. Similerly, the parts of a steam-eagine may move backwards and forwards so fast, as to be fractured by excessive strains : thene molecular strains being, moreover, far more dangerous where the motion in reciprocating than where it it rotary.

With respect to friction and attrition, also, it is undenisble that both increase with increase of velocity. If a drill, for inatance, revolve alowly on a plate of ateel, it will make no impression-if it revolve rery fast, it will wear away a hole for itself immedistely: the same considerations apply to the rubbing parts of ateam enginet. The review has, however, already extonded to anch a length, that we must not at present parsue the subject any further.

The Lifs of James Gandon, M.R.I.A., F.R.S., Architect, with Origtal Notices of Contemporary Δ rtiofe and Fragments of Eseaye. From materiale collected and arranged by his mon, James Gandon. Prepared for pablication by the late Tromas Mulvany. Dablin: Hodges and Smith. 1846. 8ro. pp. 297.

Gandon, thongh an Eaglishman by birth and education, exeonted the greater part of his architectural works in Ireland. Those by which he is best known are the Custom Honse, Courts of Law, and King's Inn, Dablin.

He erlinced early in life a atrong predilection for mathematical and englneering drawing-parsuits for which some of the most celebrated architects have exhibited great aptitude. His professional career commenced under Sir William Chambers, from whom he acquired, besides his architural kuowlodge, a rast stock of general information: for his preceptor was a great travelier-borne a Sweede, he had travelled much in the East, risited China, and wrote a book on its architecture-had resided several sears in Italy, and minutely informed himself respecting Roman architecture. Gandon began life well: greatly to bis preceplor's gratification, he obtained the first of the architectural medals given by the Royal Academy. This achievement took place in 1769, the year after that body was instituted, and is described in the following terms :-
"As soon as I read the advertisement for the diatribution of these preminms, I was like a person electrified. I horried to my friend Paul Sandby, who soos asaured me that I could have no chance of succoss as a competitor for the gold medal in architecture, inasmuch as 1 was not elegible to be a candidate: the adrertisement requiring that all the candidates shonld be students of the Royal Academy. This restriction certainly appeared a formidable obstacle to my becoming a competitor on the occasion. 1 had not mach time for refiection, and the temptation was great, but I 400 n determined how I should act: I immediatoly entered my name as a atudent of the Academy, and attended all the lectures given by each professor. This was my only uilernative.
*The Academy gave smple time for the candidates to prepare their respective productions. 1 commenced instantly to arrange my ideas on the subject given, which was a triumphal arch, commemorative of the Seven Years ${ }^{\text {' }}$ War.
"The day at length arrived when the candidates were to send in their designs, and I was soon informed, to my very great gratification, that my design was declared the beat, and that, consequently, I should obtain the gold medal.
"On the day fixed for the dlatribution of the medals, hut before they were actually delivered, the architectural class were required to attend a Committee of the Acadenicians in a private apartment, in order to test their respective powers in imprompta composition. The different subjects were deposited in a rase, out of which each candidate drew his eavolope,
in which the sabjeot was writton. That which came to my hand was a park-yate, or rather an ornamental entrance to a park. Having first arranged my idees, I then sketched out my deaign, and it was more admired by the Committee than my triumphal arch.

4 When the medals were being distributed I was congratulated by many of the members, but particulariy by Sir William Chambers, who expreseed the pleasure he experienced on flading his pupil so early distinguishing himelf."

Gandon next obtained the second of the premiums offered by the merchants of Dablin for a new Royel Exchange, and it appears from the biography that the award of first premium was infuenced by private interest -a dicumstance by no means unparalleled, as (we doubt not) many of our readers could attest. The next prominm gained by Gandon was one of 100 gnineas for the "new Bethlehem Hospital." This was the last public work for which he competed in Eogland.

In 1779, he received an invitation from Lord Carlow to go over to Ireland, which be accepted, and was then appointed architect of the Newr Cualom House. They manage matters in Ireland in a manner peculiar to themselves, as Gandon found ont to his coet: for on his arrival, the opposiv tion of individuals to the removal of the Custom House had become so atrong, that it was actnally necessary that he should secrete bimself for eeveral months. The foundations of the new building bad scarcely beed commenced before the mob were instigated to destroy the fences surround ing them. The architect received letters threatening him with personal injury, and in consequence always visited the works with a good camo aword; and "baving been in early life a good swordaman (says he), I am determined to defend myself to the last." There were other difficulties bowever besides those of a personal nature.
"The labourers had scarce got down two feet below the surface when they came to water, which four men emptied with scoops as they continued to extend the line of trenches, which were carried on in short leagths, and, for convenience, of different depths. It became necessary to make dams across parts of them with sods, and to ompty the water from the lower to the higher dam, until it was at last sent off in a drain prepared for that purpose, our pumps not being then ready. The ground was opened first at the north and continned round to the east front; theo to the south end, where a boiling spring with sand appeared at about fonr feet below the surface, which filled up as fast as it was cast out. It extended for a considerable distance. Inch and half sheeting piles, about aceven feet long, were driven down with a mand, to keep up tho bank, and sods were fitted in layers between it and the piles, which prevented the and from being washed out, thereby enabling the men to olear ont the trenches to the depth required. The general texture of the ground was gravel, mixed in sume places with a layer of blae clay and sand, under which was a hard strons gravel. When the trenches were thas prepared and cleaned out, the rough masons then proceeded to oarry on the first bench or course with all possible expedition with the black stone, and immediately flling in with earth, In order to give less vyater to the pumps. In the meantime anuther length, and of the same depth, was got ready, and an additional number of masuna set to work. In this manner the whole was continued natil all was brought up to the level of the ground.
"The quay wall or road on the south front was an old embankment, made about the year 1725 ; it was sixty feet wide at top, and badly constructed; the walls of black stone; its foundation laid on the surface of the strand ; on the side next the river it was twelve foet high, but on the inside only eight; the flling between the walls was a asnd used for ballast; the base of the foundations stood at least six feet above the bed of the river; the tide not ouly soaked under them, but filtered in several places through the joints of the masonry. It was, therefore, deemed most prudent to commence with the north-east wing, after the portion of the store- 500 m , it being less liable to be incommoded with water from the river.
"Directions were now given for excerating that part of the centre of the eonth front for the cupola and portico; and as this advanced so near the river we were certain of much obstruction from the flowing of the tide, which was the only water that now gave us any trouble, for the springe were now pretty well dried and kept ander. The pomps hitherto used were but thirteen or fourteen feet, we now used two of eighteen feet la length. As the ground altered in its textare towards the river, beooming more loose, with small sandy gravel, like that of the conth-west angle, to which depth we had sunk, we deemed it prodert to bore it in several places which were near the angles of the froot of the portico, bat particularly where the walis of the cupole were to be erected, to the depth of eight feet below the then surface, and it appeared to be much of the same substance as that already described. A pile ten feet long and one fout square was driven down in the centre to nine feet depth; hat after twenty strokes of the ram it could be driven no further, which assared us that we had got down to firm ground.
"Upon consulting with the principal artificers on the apot, it was thought advisable to desist from sinking any more, but to make an artificial fonddation, in order to sustain the great weight of the cupola; but whether by piling or otherwise was submitted wholly for my consideration. This part of the work bad long occupied my thoughts, and to it I had given overy
ettention, my conjeotures having led me to expect great difficulition on this sabject. I had nearly mede up my mind as to the means I should adopt, and whes the more atroogly confirmed in my intentions, having remarked a circumatance which escaped the notice of those around me. Immediately after the pile bad been difien, I perceived a suall stream of water arising op clove all aroond it, as if it had pierced a spring ; and recollectiog an obeervation in Labelye's" eccount of Wentminster Bridge, "that piles sometimes loomen and open fresh spring, which often make it very dificalt to get rid of the water,' I was now apprehemsive of jast acch an impediment. The great expense of preparing the piles, and the very long time it woald take to drive so great a number as would be required, presented a strong objection to the nee of them. I therefore gave directions to have a grating of Memel limber prepared, the timber to be one foot equare, to here the spper ones sotched down three meses in the ground pieces, which were to be bedded on a layer of ont healh, the whole ground being firat correctly levelled; the interatices of the grating to be filled in with hard sound stock bricks, Ep to the level of the timbers, avimming in mortar composed of poanded roach lime and mortar well mized, which answored nearly wa well es tarras ; over which was laid four-inch ir plank fatened down on the srating with oak trenpele, which was all completed. The foundation walls were then eet out on the 17 th of September. The part directly under the eapola was laid with rough blocks of mountain granite in regular courses ; in the flrst course was sunk an iron chain of fiat bar, foar ioches wide and two and a.half inches thick, into collars which were ron with lead, bot the bars were only covered with a cement of wax, resin, and stone dust. The rest of the fonndation was done with the usual black stone, and was carried op to the plinth by the 16 ch October, 1782, thereby completing the whole of the fonodations in one jear and four months from the opening of the groand."

Ancther of Gandon's works conaited in soveral extensive additions and altarations in the Irish Hoase of Lords-a large edifice, now converted into a bank. On the east side of the boilding a Corinthian portico was erected, in the constraction of which many local difficalties, ariting from the de. elivtsy of the ground, appear to have been overcome with great ingennity and coand architectural taste. The dome, whiob was part of the original work, was destroyed hy fire uader circumstances whioh indicate that erotchets reapecting ventilation beve been fostered by other parlisments beakdes our own.
"This dome was subsequently destroyed by fire cansed by the following circomatances. A man of the name of Neabit, a amoke doctor, had been minodaced to the Speaker, and recommended to bis notice as a prodigy, in prodncing the greatest beat with the least possible portion of fuel. He was, therefore, emplosed to warm the House of Commons: and was suffered to cut into the walle, in order to lead fiaes into copper tubes, which he proposed to place on the angles of the dome. These tabes, from their nature, were very liablo to be ohoked, and were often observed to be on fire, and large fakes of burning soot to fy out from them, to the great alarm of the noighbonrs, who gave repeated information of the fact, but to which Do attention was given. The windows of the dome were aloo left very frequently carelesely open; the burning soot was driven in by the wind, and, reating on the framing, the wood-work took fre, and on the 77 th Febroary, 2702, totally destroyed the dome, during the sitting of the house. An in. quiry was afterwards made as to the carse of the fire, but the real facte of the caso were suppressed, and-the inquiry ended in smoke 1

The fonedation stone of the Courts of Law, or Four Conrts as they are ealled, was laid in 1788 ; the erection of this boildiog was impeded by the ame factions opposition wbich attended Gandon's ather works. The last pablic edifice erected ander his asperiptendence was the Hall and Library and other offices of King's Inn, an ancient logal socioty constitutod in a amilar manoer to the Inos of Court in Londoa. This was the only buildfing which Gandon left uafinished; the completion of the work he assigned to other hands on bis retirement from profestional life. Hle architectural labours extended ovar the long period of sixty years, and be dled in 1884, the the of elghty-two year.

Gandon's worke appear to be characterised by the same morits and the anse defects the thow of his preceptor, Chambers. Jodged by exteroal appearance only, his worke exhibit aymmetry and mity, and impress the safod by their grandiose combleations: bet their great defeot to the pre. eence of adscititlous inoonstructive ornaments. Genden was essentially a Romad architeot. In his time, almost all that was known of Classic archl. tectare came from the Romans and Revivalists. The labours of athoalan" Stant and Revett were very recent and little known; and, antll their time, there was an aloost entire ignorance of Athenian, or pure trabeate architectnre. The trut volume of the Aatiquities of Athens whe prbliahed daring Gandon's appreatiocahip to 8ir W. Chambern, and fts eppearmace cansed a great sebsation. Still less was known of Poisted architeotnre-as Gandon himeelf sbows in an easay at the end of

[^10]the biography. It is not therefore to be wondered at that the dependance of decoration on construction was in his day little attended to.
The biography before es is well arranged, but there is too much gosaip in it; notices of people of no note, and of transactions not worth record. ing. The architectural eoconnts aro exceedingly meagro, and it is surprising thet no techaical or illastralive descriplion of Gandon's worke bas been gives. This omission greatly diminishes the value of the work. However, many of the observations ahow great taste and discernment, and the anthors have the credit of recording the honours of one who in his day and generation laboured earneatly for the adrancement of architecture.

Ancient and Modern Arehitecture, conciating of Fiewn, Plath, \&c. of the moet remarkeble adficee the the world. By JoLse Gailansaod. Third seriem. Permin, Didot, \& Co. 1847.

The third seriem of this work is by no means inferior to the preceding parts of it. The coaductors seem to have kept steadily in view their object of fornishing a complete set of illastrations of all known atylee of architec. ture, from the carlieat monolithic to the lateat Itallan and bastard Clasaic atractares. Among the plates before un we have several illustrations of Celtic monuments, details, arce, of the arch of Septimins Severus, the tomb of Cecilia Metolla, and the church of St. Ignative at Rome. There are alno numerous illastrations of 8t. Peters, at Rome, and 8t. Panl's, at London. We were eapecially pleased with the view of the interior of the cburch of 8t. Pront, at Perigueax, which dirplays in an extraordinary degree the pondblity of producing beantiful effects by the aimpleat mean. This church, a very early speciman of the combiation of the round and the pointed arch is remarkable for its severity; the interior has acarcely a single monlding or other ormement, and yet the effect is extremely impreasive, simply becanse the arobltectore is faithfur It would be abourd to recommend the masive arebea and piers of this chureh for modern imitatios; but it it in far better (asy we), that the architectare should be, at here, withont ornament, then that it abould be covered with the adscittions finery stuck upon buildings which by modern courteny are called "Classic."

The lettar-press of the serica before us in not satiafsctory-the descriptions are fir too concies; and another defect is that they are pablithed on loone theets of paper, 10 at to be liable to be lost before the sarien is completed. Moreover, theac "Sybilline leaves" are always dispersed (in the copien sent us, at least) in a most irregniar manner. The history of Stonehenge socompanies the plates of Cologne Cathedral, and the description of the Temple of Vesta follows the views of a vile Paridian chorch of the sixteenth century. Howerer, these defects are comparatively trivial, and might easily be re-medied-we mention them becanse the work is a good one, and deserves all the care that can be beatowed on improring it. The following acconnt of trimmphal arches may serve at apecimen of the letter-press. The writer remarks, rather simply, that "the Greeks do not appeer to have boilt any triamphal arches"-for which circomatance two very auficient reasons may be asaigred: fint, that they could not, if tbey would, have done no ; secondly, that they would not have done $s 0$ if they could. The Greekn were ignorant of arch comitruction, in the fint place : in the second place, they never made a single architectural member do daty for a whole bnilding; and consequently had they employed archos at all, would have made wer of them to sapport edifioe, and not have diaplajed them for mere abow.
"Triumphal arches are isolated portals orected at the entrance of towns, on poblic places, roads, or bridges; they are generally intended to commemorate a vletory, sometimes also to porpetuate the memory of the real of supposed virtues of a prince, or to do bonour to persons who have rendered greet eervices to the stato. In this last case they might more properly be denominated honorary arches. Not to mention here the great number erected for this last parpose in China, where arches called Pay-Leow are often relsed in honoor of the most hnmble virtue, we might name a host of these mounments consecrated to civil virtues, wach as the Arch of Apcona, bult in hooorr of Trajan, to show the gratitude of the citisens for the improrements be made in the port, and bearing a dedication in which the name of the Emperor is associnted with those of his wifo and sister. We learn also from ancient inscriptions that monuments of this kind were occasionally erected in honour of the gods. It is very probeble also that many of theme arches answered a twofold porpoes, being at the same time triomphal or hooorary monuments, and gates of towns. Wa mast be careful not to confonnd the subjeots of the present article with those structures which are merely town-gates, like thone of 8t. André and Arrous, at Artan, in the Department of the 8abse and Loire, though they present a close analogy with triumphal archos. It is equally necessary to distin-
guish those erches with four fronts, called Janas Arches, erected in mar-ket-places as a shelter for buyers and sellers, and of which a very beavtiful specimen is atill extant at Rome, in the Forme Boarimm.

The Greeks do not appear to have built any triumphal arches. All those in Greece or Asia Minor belong to the period of the Roman domination. The Romans must therefore be regarded as the inventors of these edifices, which, at first were nothing more than wooden structures raised across the streetr where the triumphal processions pessed. These fragile and temporary constructione andoubtedly supplied the original model of the form aud decoration of trinmphal arches. The descriptions in ancient authors jnform os that it was neval to place musicians and men bearing trophies on the top of these monuments, while the spoils of the eaemy and representations of battles covered the sides. Buch were the aature and object of the stractare, that the arobitect was afterwards required to produce in molid materials calculated to endure for centuries.

The first permanent triumphal arches were reared ander the Repoblic, but they had no pretensions to splendour. Rosini says of them: "Primo rudes et simplices fuere cam pramia virtutis essent non ambitionis lenocinia. (Antig. Roter. 1. x.) The Arch of Romplus was radely built of bricks; that of Camillas, of atones, almont as rough is they came from the quarry. For a long time these monoments consisted merely of a semicircular arch, surmonnted by trophles and the atatue of the conqueror. Such was the one whicb Cicero called Arcus Fabianus. Triumphal arches did not hold any honourable rank among the monoments of art until the time of the Emperors ; and it is a remarkable fact, that, notwithstanding several were erected to Augustas, and very probably in his lifetime, Vitruviut does not even allude to then. At a later period, when a considerable nomber had already been erected, Pliny speake of them as a modern invention.

Down to the time of the Antonines, arches generally congisted of a single arcade; but this role was not always adhered to, as the arch bailt in hopone of Tiberins, Drusas, and Germanicus, on the bridge of Satntes, in the Department of the Lower Charente, had two openings of equal dimene mions. This last atyle, though commonly and judiclously reserved by the Romans for gates of towns, was also employed in the Roman arch at Langres, in the Department of the Upper Marne, probably for the purpose of expressing the equalty of the two Gordians, who both received the honours of a triumph at the seme time. The use of three arcades, at an earlier period, is proved by medals of Domitian and Trajan, relating to arches no longer in existence ; but we find iustances of one priacipal arch, with a emall one on each side, for the first time in the Arch of Orange, belonging to the carly years of the empire; again, under Septimion, and his successors, as well as in most of those belonging to modern times. Thns we coe, in accordance with the osual course of human affairs, that the richness of triumphal arches increases in an inverse ratio to the merits of the actions and men whoee memory they were intended to perpetuato.

The Bngineer and Contractor's Pocket Book, for the Years 1847 and 1848. Edited and Publinhed by John Weale.

This work contains egreat deal of ntefal information suitable to the engineer. Besides the Standiag Orders of the House of Commons and House of Lords, and Acts of Parliament relative to railway pased in 1844, and for conatituting commissionera of railways passed in 1846, it also contains prices for mechanical engineering, an interesting description of the olectric telegraph, namerous table of reference, and memorande. We recommend Mr. Weale, in a future edition, to arrange the work a little more aystematically, and to withdraw the "Practical and Experimental Researches on Hydraulics," for the ressons stated in our review on that paper a short time since.

HISTORY OF ENGINEERING.

Bf Sir J. Rennie, President of the Ingtitution of Cifil Engineers.
The Address of Sir John Rennie to the last year's Annaal General Meeting of the Inatitution of Civil Engineers, contains a most valuable and elaborate report on the progress of engineering during the past century. The length of the address precludes the insertion of the whole of it at once, but as from the importance of the subjects considered, it is necessary that the reader shoald be pat in possession of the whole, the report will be completed in successive portions withont any omissions:-

Before I attempt to point out the course which it behoves us to pursue as regards nlterior proceedings, let us pause and take a retrospective glooce at the changes whicb have been effected in Great Britain since the days of that great man Smeaton, to whose genias and exertions Civil Engiceering may be sadd to owe its establishment as a profesaion in this conntry. Previous to that period (1724), Great Britain may be said, comparatively speaking, to have been lamentably deficient in pablic works. There were no canalg, railwayt, nor artificial harbours, or machinery, which at the
present day would be thought worthy of the name; and the ptoblic roas were little better then mere tracke acroas the conntry. Commonication between towns was difficult; and the few wheeled carriages in ase were of a rade and inefficient description. The inland commerce of the conotry was chiefly carried on by traneport on the backs of "pack hornes;" and the old-fashioned term loud, so commonly in nee as measure or weight, is a romnant of that castom-meaning a horse load. The loraries, and even necessaries of life, were, consequently, extremely dear and difficult of at e tainment. Inland navigation, which wes carried on in the rivers as natore had left them, was both tedious and uncertain ; and this navigetion, imper. fect as it was, coald only be adopted at times when there was suffioient water, arising from loods, or other causes ; occasionally (bot of this the instances were very rare) rude temporary stanches, or fagh-weirs, wert used to pen op the ruaning water in shallow places; theso weirs, or stanches, were then anddenly withdrawn, and thus the tncresaed depth of water and the current enabled the boats to float over them; these were folJowed by rough nnwalled locks; then by short side-cuts to aroid the diffcolt places of the rivers; in these side-onts the pound-lock was introduced, with side-weirs to enable the floods to escape, and to sapply mills with water, thus answering the double purposes of narigation and supplying power for machinery.

The above may be taken as the extent of improvement to which inland navigation had arrived in Great Britain up to the middle of the last cen. tury. The navigation of the ocean, depending upon the inconstant agency of the winde and tides, required months, nay, years, for communicating between distant quarters of the globe. The reckoning of a ship's coorse, during a long voyage, was most uncertain; neither cbronometers, nor lnaar observations, yor accurate instraments for making euch observations, were known.

Stram Enging.

The Steam Engine (to the honour of inventiag which so many individnale lay claim) had, in 1698, been so far improved, and was, for the frat time, constructed by Savery mo as to be employed as an effioient agent for raising water, was brought into active operation, in 1712, by means of a steam cylinder, into which cold water was injected for caneing a vacuam, so as to enable a moveable piston to be impelled by the pressere of the atmosphere, and thus, by the intervention of a lever, to work pumps for raising water; this was further improved by Potter and Beighton (171818), so as to become solf-acting; and thos Newcomen's engine, by degrees, became generally adopted for pumping water from collieries, and from a fow rich mines, and for supplying the metropolis with water; but the consumption and expense of fuel was so considerable that, even great as were the advantages derived from its employment, still its application was very limited. After Beighton, followed Lexpold, Hulls, Belidor, Payne, Biake, Fitagerald, Emerson, and others, who made various suggestions, without, bowever, adding anything material to the engine as improved by Newcomen, Potter, and Beighion. The relation between the quantity of fuel consumed and the effect produced by an engiae, had never been determined; and knowledge was wanting for the investigation of the important subject, antil Black and Cavendish, in $1760-62$, had made their experiments and discoveries on the combination of heat with bodies in their solid, liquid, and gaseous states. Notwithstanding the great adrantages reaviting from the employment of New comen's engine, still, for the reasons above mentioned, its application was very limited; wind and water were alone used as powers for drivlog machinery and working mills, which were rare, and only adapted for performing rude mechanical operations, such as grinding corn, fulling cloth, pomping water, blowing furnaces, hammering and rolling iron, and sucb other purposes as the feeble powers of human labour were naable to accomplish; and with the excoption of the silk mills introduced from Italy by Sir Thomas Lombe at Derby in $\mathbf{1 7 2 0}$, and which were worked by water, there was nothing in the nature of manufacturing machinery.

Emainerrs.

Smeaton, born in 1724, at an early age applied his jngenious and vigorous mind to the cultivation of philosophical knowiedge and thought, for the beaefit of mankind. He commenced his career as a mathematical-instrament maker in 1750 ; after obtaining some celebrity in the scientific world by his air-pump in 1752, he took up the subject of wind and watermills, which had, up to that perjod, been much neglected, and 800 made such improvements in thefh as greaty locreased their powers and effciency; be constructed several of both kinds according to his improved principles with great sucoess, which were considered as models, and soon afterwards universally followed. In 1758 he was elected Fellow of the Royal Society ; in 1759 he communicated his celebrated paper (being the regults of his experimente in 1752 and 1753) on the natural powers of wind and water to turn mills and other machinery depending on circular motion, for which he obtained their gold medal. These improvements of Smeaton were of mavifold importance, and produced, directly and indirectly, the most beneficial resalts, as they enabled a greater quantity of work to be performed both by wiad and water, particularly during temperate and dry seasons; hence, better roads became necessary to carry away the increased produce of the mills; and when they were worked by water on rivers; the mill-owner became interested in the improvement of the narigation, and, by economising the water on Smeaton's plan, obtained one-third greater result with the same quantity, thos benefling himself as well as the narigation. Windmills have beor rendered still more perfect

Chean Bmeratoa left them, by making them coll-reguiatiog as to the extent of the sarface of their ails premented to the action of the wind, according to the form and mode invented by Meikle in 1772; by Bywater in 1804, Fith an improred mode of clothing the saile; and still farthor by our valanble member, Cubitt, in 1807, who brought the aystem to perfoction. Smonion was amongat the firat to polat oat the laws which govern the formation and maintenance of barboors; and, after ondertaking a royage of obervation through Hollaod, be latroduced great improvemente in the drining of march lands (an at Holdorness and the North Level), a subject wribh had ap to that period teen very imperfectly anderstood; and, by the deadge and construction of the celebrated Eddyotome lighthouse in 1755.59, Sameaton introdnced a new ern in masoory, which forme a brilliant epoch in his valuathe life, apeat in the sorrice of mankiod, but more particulirly for the beacfis of his country. In 1765 Smeaton directed his attention to Newrocesen'c eogise, and oonstructed a amall eagine, at his own house at Aeathorpe, in order to condnot bis experimeats and obtain more accurate smentes tu prectice. By the jadicions improvemente which be introdaced to the proportiones and structare, be diminished materially the cocsumption - foel, then an object of paramonnt importance, and soon after constructed engines on Nemeomen's principle, which far exceeded anything of the kind bitierto produced : amoagat these may be mentioned the engines at Long Becton, near Newcatie, and at Chasewater, in Cornwall ; he thus reodered the aystem of Nowcomen as perfect as it could be made. From the improvemente of Smeation on wind and water mills, wo may date the fornden tion of the modern aystem of manufactaring, and from those in Neweomap's engine the modern system of mining.

Watt.-In 1736 Watt was boro, and from bis early gears manifested cymptoms of that genias and sagacity which, at a later period, onabled him to work oat, with wonderfal success, those grand discoveries which have immortalized his name. He began bis career at a mathematical-instrument maker, and sobsequently became an engineer. He proposed a plan for improving the river Clyde, and suggested the idea of the Caledonian Canal, bat afterwards dovoted bimself almont exclusively to the improvesemt of the steam ongine. His improvementa, or rather inventions, may be stated, generally, as follows:-the separate condenaing veseel, with an air-ponap for exhausting the steam cylinder, instead of injecting cold water toto it for tmpelling the piston on Nowcomen's plan, by atmospheric pressore ; in conjanction with Boalton, he brought these improvements into operation aboat the year 1773, and prodaced a still greater diminution in the consumption of foel than 8meaton had done, thas rendering the appllcalion of the steam eagine for pumping water much more general. In 1981 be invonled the means of producing rotatory motion by the steam engine, first by the crank, and afterwards by the sun and planet wheel, thus readering it applicable for the porpose of driving all kinds of machinery, which was a grand step towards the improvement of manofactores. In 1777.82 be invented the application of steam, with expansive action and with double action, alternately above and below the piston. In 1784 be invented the parallel motion, or working gear and vaives, the governor, and other important details. All these improvements or inveations were carried tato effeot to as eagine made by Boultonand Watt, in 1784, for one of the Loodon brewertes, and in 1785 in others for the Albion milla, which were the first steam-mills, now become so general; thus steam power was rendered available for working machinery of overy kind, by followiog the bent examples of this most wooderful and uneful of all machines, which has 80 deserved)y immortalized the name of Watt. The acconat of the extraordinary lebours and inventions of Watt and his successors is well given by our raluable member Farey, in hise excellent work on the steam engine, to which I would refer yon, and also to the treatises by Tredgold, Arago, Beott Rasell, and others.

Brindley.-About this period (1716), Brindley, who may be justly called the father of inlend canal navigation in England, was born. He commenced his career as a millwright, and was withdrawn from that occupation by the Duke of Bridgewater in 1768, for the purpose of executing bis great cabal. Pound locks bad been introduced long before on river navigations, and on the Exeter and Topabam Canal, which was commenced in 1581, and terminated about 1695 ; they were also used on the Sankey Canal in 1755, for the purpose of readering Sankey Brook naviguble; which ras effected by making an almost entirely new channel. Brindley sobsequently executed, with great soccess, the Trent and Mersey, or Grand Trunk, the Leeds and Liverpool, the Birmingbam, the Forth and Clyde canals, in conjunction with Smeaton and several others, with all the neces: eary works belonging to them, which will ever remain an lusting monaznents of his akill and genius in this valuable department of Civil Engineering. At an early period of the reign of George III., the importance of canal navigation becane noiverally acknowledged as one of the greatest means then koown, of facilitating the transport and reducing the cost of the nocessaries and luxaries of life, and thus contributing to the wealth and prosperity of every part of the kingdom ; those prejudices and obstacles by whicb, at the outset, every great improvement is surrounded, gradually begma to give way, canals became popular, and superseded river narigation mo muct as to call forth the celebrated answer of Brindley to the queation, "O What is the une of rivers $9^{"-}$ "To supply canals." Eogineers who had displayed soch abilities in planning and execating works of the natare above described, began to acquire that importance as a profession which wes 800 n anter deatined to work such a boaticial change, any, almost a revointion in society, and accelerate ao greally the civilizalion of man. kind.

8meator and Briadloy wero accompanied and followed by a anmber of able men in rapid succesion; amongat whom Jessop, Whitworth, Mylne, Yeoman, Heachall, Golborne, Haddart, Rennie, Ralph Walter, Chapmao, Telford, and others, ali stimulated to exertion by the magnificent career bofore then, each contributing, more or less according to their several opportanities, great akill und invention of their own, in addition to that acquired from their predecessors. Favoured by the command of great fands (which were rapidly fortbcoming an the succests of the worke already oxecuted became manifest), better workmen and materials, new and improved machinery, ateam power, and greater infineace over the public mind, their operations were conducted upon a scale of magnitude, utility, and importance which gave a new character to the age in which theg forarished, and adracced the prosperity of the empire.

Eicinezrina Wones.

Canals.-To attempt to ennmerate all the varions pablic worke which then crowded each other in rapid succession, constitating the character of the profeasion, and entitling it to public confidence, would be both difficult and tedious; they are well known and duly;appreciated, and it will suffice to point ont some of the mont important. The Forth and Clyde Canal by 8 meaton, (1788 ,) length 24 miles, depth 8 feet, locks 19 feet by 75 foet, top-width of canal 66 feet; the Elleamere by Jeasop and Triford, with its magnificent aqneduct across the Dee near Llangollen, consiating of 19 arches 40 feet span, the centre boing 126 feet above the Dee, with a total length of 1020 feet, and a width of 12 feet, the piers of stone, and the arches and aquednct of cast iron; the Caledonian Canal by Jensop and Telford, 22 miles long, depth 16 feet, locks 40 feet wide by 172 foet long, 8 feet rise, top-width of canal 110 feet ; locks intended for a depth of 20 feet; commenced in 1808, opened October, 1820; the frst and laat of wbich, together with the Gloncenter and Berkeley Canal, may be cilod as the first upon which see-borne vessele conld navigate, aod thas extend the benefits of ship navigation into the interior of the conntry, without the delay and expense of transhipment of cargoes until arriving at the warehouses whence they are to be distributed. The Grand Junction (Jessop and Whitworth), Lancaster and Kennet and A ron (Reanic). On the Lancaster navigation the canal is carried across the Lane by a atone viadact of 5 semi-circular arches, 75 feet span each; the total longth of vieduct is 600 feet, and beight 65 feet above the river. The Aire and Calder, the Union, the Shrewsbury, New Birmingham and Liverpool, Carliale, the Grand and Royal Canals, Ireland, amongst many other maj be quoted as examples of artibcial cannls for veseels, so as to eonble them to continco their navigation inlund from largo rivers and entaries. The total leogth of canal navigation now in operation in Eagland, Scotland, and Iroland, amounts to about 3,000 miles.
The most advantageons spoed for boats on a canal is aboot 21 miles per hoar, at which rate an arerage horse is capable of drawing aboat 88 tona withoot injuring bis physical powers ; whon this is mach exceeded, the ratio of resistance approsches the cabe of the relocity. The speed mast be diminished in proportion, and the horve exerts his powers to great disadvantage. Large canals, where practicable, on account of the trade and other circumstances, are preferable to small onen, as they are worked more economically. Various contrivanoes bave been made to obviate the pecessity of locks in overcoming extensive lifte or declivities, amongst these may be mentioned the inclined planes on the Duke of Bridgewater's and the Tamar and Shrewsbury canals. Double locks, side ponds, bydraviic lifts, by Woodhoase, Selmon, Congreve, Underhill, Green, and others; but extensive reservoirs and foeders are indispensable in most districts where there is a great tratio, and ateam engines bave been exteasivoly ased to pump back the water to be used over again in case of deficiency.
Steam Dredging-The improvement of the River Clyde, begun by Watt and Golborne, received fresh atimalas under Rennie and Telfurd, from the application of steam power to the dredging-machine by Grimabam, in 1706, and Bentham in 1809; that forming a pew era in the means of improving river mavigation and barbonrs, since which this important department of engineering bas boen carriod to an extent which could not otherwise bave been attempted. Steam-dredging machinery is now generally adopted with succose, more particularly in rivers where their beds and channels cas be excavated to a certain degree of aniformity, and where the inclination of the tidal and fresh-water carrents can be rediced to such an extent, by the removal of obstructions, as will enable them to keep their channels open. As successfal examples of this, I need only adduce the Lagan, the Boyne, the Newry, the Liffey, and the 8bannon, in Ireland. The Clyde, the Leith, the Don, in scotiend. The Tyue, the Wear, the Teos, the Thames, the Doe, the Ribble, the Sovern, and othera, in England; and as to barbours, most, if not all, of thom can be maintained by steam-dredging, in addition to other meane, to a greater dopth than could be obtainod withont such an important aid.

Stome Baidgra

Weatmineter Bridgr, by Labelye, in 1740.4T, may be considerod the frat example of extensive stractnres of this kind. li conaints of 18 remicircular arches (the centre of which is 75 foot apan), 1164 feet long; it wan originally intended for a wooden bridge, and was partly commenced on this principle; it was a great work at the time, but af might bave been expected, contained defects, particularly in the foundetions, which at that tme were bat imperfectly understood, and bave suffered mach by the acour of the curreat ; it will probebly be rebuilt in a short time. Caissons, or water-tight chente, were firat introduced there for the purpose of found-
ug the piers below the level of low water. Provious to thls, the priacipal existing bridges consiated of a number of amall Gorbic or of circular arobes, with rough piers of masonry built either upon a foundation of loove rabble -tooes tbrowa promiscuonsly into the river until suficiently high and solid, or upon timber platforms resting apon piles surroanded by large balwarka of timber, filled with loose atones, callod atarlings, which materially contracted the wator.way where tbey were placed, and by causing iacreased rapidity in the current, created great obatacles to tbe navigation, as weil an to the drainage of the adjacent conntry. Of this, the well-known examples of Old London Bridge, those at Newcastle-apon-Tyne, Rochester, and Belfan, may be meationed. All those, with the exoeption of Rochestor Bridge, are now removed, and are replaced with otbers constructed upon the modern improved principles. Weatminster Bridge was followed by that of Blackfriars by Myine (1700-71), conalsting of nine semi-elliptical anches, the largest of which is 100 feet span aod 41 feet 6 jaches riee; the total length of the bridge is 096 feet, and 45 feet wide; here the elliptical arch was introduced about the first tine in this country. Smeatoa's bridges of Coldstream across the Tweed, in 1763, composed of five circular arches, the largeat of whicb is $\mathbf{6 1}$ feet span ; that over the Tay at Porth, in 1766, of aine circular arches, the largest of which is 78 feet span ; at Hexham, over the Tyne, in 1767, of nine circular arches, the largent of which is 52 feet span, aod others, for that period, were works of considerable magnitade. These were followed by namerous smaller works all over the king. dom, more remarkable for conrenjence and utility than for any peculiarity in their construction worthy of notice, until in 1809-1817, whea Waterioo Bridge, across the Thames, consisting of nine equal cemi-elliptical arches, 120 feet upon each, and 35 feet rise, was built ol granite in a style of molidity and magnificence hitherto unknown ; there the elliptical arch, with inverted arches between them to counteract the lateral pressare, was carried to a greater extent than in former bridges, and isolated coffer dams upon a great scale in a tidal river, with steam engines for pumping out the water, were, it is believed for the first time, employed in this country ; the level line of roadway, which adds so much to the beauty as well as the convenience of the structure, was there adopted. The bridge acroes the Severn at Gloncester, in 1828, by Telford, in worthy of remark, as buing the first with one arch, of 150 feet span, like thone of the bridge acrose the Seine at Nenilly, bear Paris, by Perronet, where the interior of the arch is elliptical and the oxterior circular.
New London Bridge (1825-1831), consisting of five semi.elliptical arcben, viz. two of 180 feet, two of 140 feet, and the centre 158 feet 6 inches apan, and 37 foet 6 inches rise, is perhaps the largest eliliptical arcb ever attempled, the road way is 59 feet wide. This bridgo deserves remark on account of the difficult situation in which it was buith, being immediately above the Old Bridge, in a depth of from 25 feet to 80 foet at low water, on a zoft alluvial bottom, covered with large loose stones, soonred away by the force of the curreat from the foundation of the Old Bridge, the whole of which had to be removed by dredging, bofore the cofter-dams for the piers and abutments could be commenced, otherwise it woold have been extremely difficult, if not impracticable, to bave made them water-tight; the difficulty was farther increased by the Old Bridge being left standing, to accommodate the trafic, whilst the Now Bridge was building, and the restricted water-way of the Old Bridge occasloned snch an increased velocity of the current, as materislly to retard the operations of the New Bridge, and at times the tide threateoed to carry away all before it. The great magnitude and oxtreme fiatness of the arches demaoded unusual care in the selection of the materials, which were of the fineat blue and white granite from Scothand and Devonabire; great accoracy in the workmanship was also indispensable. The piers and abutmentestand apon platiorms of timber restiog upon piles about 90 feet long. The masoary is from 8 feet to 10 feet below the bed of the river.
I will conclude this division of the subject with the celebrated bridge across the Dee at Chestor. It consists of a aingle arch, the cogment of a circle 200 feet span, with a versed sine or rive of 48 feet, which is the largest atone arch upon record ; the arch stones at the crown are $4 \Omega 8$ in. deep, and 7 feet at the apringing, and the abutments on both sides of the river are fonaded on new red sandstone. The contre for building the arch was remarkable for its simpliaity, strength, and rigidity, by which meant the greatent effect was produced by tho smalleat quantity of timber, and any change of form, so prejudicial in centres, wah prevented. This fine atructure in due (it is believed) to the combined talente and energies of the Late Mr. Harrison, the architect, of Cheater, who made the original design ; to Mr. George Rennie, who equilibrated the arch, gave the proper dimepsions of the vounsoirs and form and dimensions of the abatments, the mode of constructing them, and desigoed the oentre, the original model of whicb is now in our gallery; and to Mr. Jense Hartloy and Mr. Trabshaw, who worked out the details, and carried the whole into effect.

A proper theory of the equilibriam of the arch, which shall salisry all the oonditions of the question, when applied to practice, may be eald to be still waoting, thongt much raluable information may be dorived from the scientific works of Hutton, Auwood, Moseley, Gwilt, and others, on the subjeot.

Oblique or akew bridges have but recently obtained oxtensive ane. Chapman bullt some in Ireland many years ago, and wrote an account of his mode of constructiog them. On reilways they were introdnced by 8tephoason, and are now generally emplojed. Buck's excellont treative on the pribciples and practieo of thair construction gready facillitated thoir exeoution.

Ifox Beidera.

The introduction of cast iron for the constraction of bridges commenced about the your 1779, when that over the Severn, near Coalbrook Daic, by Darby, was the first; it consists of a circular arch 100 feet span, and a versed sine of 45 feet, approaching nearly to a semicircle; the height of the springing is 10 feet above low water, and the total height to the underside of the eoffit is 55 feet; the banks of the Severn being high, this form accords well with them. It is formed by five ribs of catt iron, with perpendicular spandril pieces, resting apon them to support the roadway. This, for a first attempt, is well adapted to the situation, and has ans wered the purpose. Thie was followed by the bridgn over the Wear, at Sunderland: the design for this was said originally to have been made by Thomes Paine, the well-known political writer, and was cast at Rotherham, being intended for erection in America; but the materials were sabseqnently employed in constructing Sunderland Bridge, nader the direction of Wilson, in 1796, the idea having been suggested by Rowland Burdan. The curve of the arch is that of a eegment of a circle, the length of the chord or span is 200 feet, and the versed sine or rise 80 feet, the total height from low water to the underside of the soffit of the arch is nearly 100 feet It consists of six ribs, each composed of 105 cast iron radiating pieces, connected at the top and bottow by the circular pleces which form the curve of the arch; these ribs are united in their transverse direction by tio-pieces; the spandrils are filled in with cast iron circles, touching oech other at their circomferences, and supporting the roadway, which consists of a strong frame of timber, planked over and covered with a coment of tar and chalk, opon which a layer of marl limestone and gravel is placed. The centre denerves notice on acconnt of the dificulty and confined nature of the situation, which rendered it necessary to prenerve a constant passage for ships with their standing rigging ; this was effected by a perpendlcular framing resting apon piles in the bed of the river, with a sufficient opening on each side for the vessels. Upon the top of this perpendicular framing: the transverse framing or centre for eupporting the arch was fixed, and answered its purpose well. Some tjme after the removal of the centre, the arch was observed to awerve bodily in a horizontal direction to the eastward, forming a curve having a versed sine of abont 12 or 18 inches; if this had contimued to increase, it would no doubt have soon occasioned the downfall of the structure ; it was, howover, very skilfolly remedied by the introduction of transverse and diagonal tie-bars and braces, asaisted by wedges and screws, so that altimately the whole was brought back sod secured in its original form and position, where it has since remained in a sabstantial state without alteration. The width of the bridge is 80 feet $;$ the abutments are of stone, founded on rock; they are 24 feet thick, and from 42 feet to 87 feet wide. This bridge, for boldness of the design and construction, as well as for its elegance and lightness, must be considered a work of peculiar merit; particularly if the period in which it was con. structed be remombered.

A bout the same time, the bridge at Buildwas, ccross the Severn, by Tel. ford, was erected. It consists of a single arch, segment of a circle, whome chord or apan is 180 feet, and versed sine or rise 87 feet, the depth of the iron frame forming the arch being 8 ft .10 in ; it consiats of three gibs, 18 feet wide from out to out, connected together in their transverne direction by tio-bars. The spandrils for supporting the roadway consist of vertical pieces, resting apon the segments forming the arch; the abutments are of stone. There is a novelty in the construction of this bridge worthy of remark. The two onter ribe consiat of two segments of circles, each struck from different centres, the crown of one terminating immediately below the roadway, the other at the top of the parapet, to that the platform forming the roadway is both suspended and inaistent. The object of this belog, it is presumed, to increase the depth of the trass supporting the roadway, and thus to add to the strength of the bridge: but it was unneceseary, and does not appear to have been adopted in any of Telford's subsequent designs, which are numerous. Amonget them may be mentioned that of Bona, Tewkesbury bridge over the Severn, also that over the Dee, near Corwen, \&xc. Bristol bridge over the A von, by Jemsop, is a neat simple structare. Boston bridge, by Rennie, over the Witham, of 100 feet apan, with a versed sine of 4 feet, is remarkable for its boldnesa and lightneas. The principle of construction resembles that of Sunderland, but is an improvement apon $i t$, in having a better ayatem of transverse and diagonal braoos, and the spandrils consisting of vertical instead of circolar pieces. All these bave, however, boen far exceeded by the Southwart bridge over the Thames, by Renmie. This consists of three archen, all segments of the aame circle ; the centre arch is 240 foet span, with a versed sine or rise of 24 feet, and the two side archea are 210 feet span each, with a versed sine or rise of 18 f .10 in . each. The arches aro formed by aight eolid ribs in each, and each rib conslating of tifeen pieces, 6 feet doep at the orown of the arch, increasing to 8 feet deep at the eprioging, 21 inches thick in the middle, and 44 at the top and bottom: these ribs are connected together in their tranaverse direction by cast iron tie-braces of the same depth as the ribs, but open in the centre, and in the diagonal direction by another series of ribs; the whole of the segmental pieces formlog the arch, as well as the transrerse and diagonal tie-braces, are kept in their pleces by dovetailed sockets and long oactiron wedges, $e 0$ that bolts for bolding tho several pieces togother are onnecespary, although they wero used doring the construction of the bridge to keep the piecos in ther places until the wedges had been driven. Thns the ribs formed, an it were, a series of hollow masces or voussoirs simily to thowe of stone; a prisciplo whah it is believed is new in the conatruction of ont tron bridges, bot it

Lea saceeceded to well that it is worthy of adoption oisewhere. The spandrils are composed of cast Iron diagonal piecen, connected together in a similar manuer, and the roadway in formed by oolid platea of east iron reating apon the spendrils, and joined together by iron cement. The piers and abotments are of stone, founded npon timber platforms, resting apon bearing piles, and surrounded by sheathing piles, driven sufficlently deep below the bed of the river. The masoury is tied throughont by vertical and horizontal bood stoner, so that the whole acts as one mass in the best ponition to resist the borizootal thrust. Tbe ribs forming the arcbes were commenced in the centre, and were continued regularly on each side towards the piers and abutments, upon which a cast tron bed and connecting plate were kid, nicely let into the masoory to receive the ribe forming the arches; when the last segment of each rib was fixed in its place, threo eat iron wedges, each 9 feet long and 9 lnches wide, were placed behind each rib, and nicely adjusted and fitted to them; these having a very alight taper, were driven simultaneously by beavy hammers, and thus the arches were nearly lifted from the centres, so that the wooden wedges npon which the segment pleces rested were easily removed by afow blows of a hammer; the arches were thas relieved from the centres in a very simple and eficient manner. Tho whole of the iron-work had been so well pot together by Messrs. Walker, of Rotherham, the founders, and the masonry by the coatractors, Mesars. Jollifie and Banks, that when the work was tinished, acarcely any sinking was discernible in the arches. During the progress of the work, some esperiments were made, in order to atcertain the extent of the expansion and contraction between the extreme range of winter and summer temperature, and upon takiag the average of numerons trinis by differeat gauges, it was fuand that the crown of the arch rose in the summer about an inch to an inch and a half. The work was commenced in 1818, and the bridge was opened in 1819.

Whilat opon the snbject of cast iron bridgea, we mat not omit the Bwivel or Turning Bridge. The invention, if it may be sotermed, is, it is believed, due to England, and one was first made of iron sbout the yoar 1810. They are now almost universally adopted over locks, to the extent of 50 feet span, in preference to the old lifting bridge. Siuce the introdnction of the railway syatem, cast iron bridges have become very general, and have been particularly serviceable, being formed of girders, where the height was too limited to edmit of the arch principle being adopted. Experience of the value of wronght iron in roofs and for other building purpowes has indaced R. Stephenson to propose that material for constructing the bridge to carry the Chester and Holyhead Railony acrose the Menai Straits. His design consists of a close wrought iron tunnel or tube, 14 feet wide, 30 feet deep, and 1500 feet long, supported in the middle by a tone pier built upon a rock in the middle of the Straits, with two other piors at the low-water mark on either side, leaving four openings, two of them 460 feet, and two of 230 feet each, and 100 feet above high water, so as to admit of masted vessels sailing under it. Cubitt has also proposed to adopt wrought irod on a great scale, for constructing landiag platforms at Liverpool, where the difficulty of building docks or quays, which large steam vessels oan approach at all times of tide, render works of this kind pecessary to mccomenodate the immense traftic frequenting Liverpool. The ladiog platform designed by Cubitt, and now in courso of conatractlon, consists of a wooden frame, $\mathbf{5 0 0}$ feet long, by 80 feet wide, floated upon a ausaber of wrought iron pontoons, each 80 feet long, 10 feet wide, and 8 feet deep; it is connected with the shore by two bridges, each formed of two bollow wrought iron beans, 150 feet loug, carrying the platform of the bridge; the attachment with the shore and the stage is so made as to admit of motion, bath vertically and horizontally, to accommodate iteelf to the rising, falling, ebbing, and fowing of the tide, which there rises about 30 foel.

8ospension Bridoze.

The iaveation of chain or snspension bridges is said to have been imported from China and India. The first of the kind in Eagland was that acroes the Tert, at Middieton, consistiog of two common chains stretched ecrose the river, and secured to the adjoining rocky banks; the span was 70 feet. To Capt. Bir Samuei Brown, however, who had previonaly brooght chain cables into use for shipa, may be attributed the introduction toto Eagland of the improved system of the bar link, which is now 80 generally adopted. Brown, in 1818, first constructed a large model of 100 Leet apan, capable of sopporting a carriage and horses, indeed adapted for eeeral tranioc. He aftorwards constructed (1819), upon this priaciple, Union bridge, for geaeral traffic across the Tweed, near Berwick; the span wes 450 feet between the supporting towert, which were of masonry. He sabeequenuy built another, of smaller dimensions, across the Tweed, at Drgburg. He also constructed that at Montrose, one over the Hundred Fect river in the Feps, and others, and applied the asme priaciple with affect for laoding-piers at Brighton and Leith. This sytem whe afterwards carried out to a far greater extent by Teiford, in his great suspension bridge acrose the Menai, at Bangor, in 1818-90, $s 0$ well detcribed by Provis. It comists of three openings, the centre is 880 feet apan, the deflection of the chaia boing 48 feet, and the two aide openings are 800 feet span ench; the platform of the roadway is 100 feet sbove high.wates mark; the sustaining towers of masonry are $\mathbf{5 0}$ feet above the roadway, and are coanected to the abore by three stone arches on oee side, and four on the other, 68 ft. 6 in. span ench. There are sixteen mait cheing, each 1770 feet long, in sets of four each, suspended above each otber, on each side of the randwey, which is 80 feet wide from out to out, divided into three partis, two for carciagen, on the eatelde, 18 fat Fide each, and one for foot-pes:
coegern, in the middle, 6 foet wido. Eaok main chala congiats of five bart or liake, 10 feet long each, by $8 \frac{1}{\text { inghes and }} 11$ inch, connected together by platen and pins, on Brown's aystem, the whole being properly secared to the solid rock on each side. The total anspended weight of the mala opening is 644 tons. About the same time, ho constructed another upon the asme principles, $s 00$ feet span, across the river Conway, at Conway. These are fice works, and will remain as lasting monoments to his fame. The recent atructures of Hammersmith, acrose the Thamen, and Shorcham acroes the Adour, by Tierney Clark, who is now orecting another upon a grander scale, 700 feet span, acruss the Danube; and, lastly, that of Brunel acrose the Thames, at Hungerford Market (1845), show the progreas mado in this clase of structures, which are well adapted for croseing large and deep rivers where economy in an object; great care, bowever, is necessary in proportioning the strength of the chains, and their carve; the selection and manufacturing of the iron for them, and also it the connezion and bracing of the romdway platform, in order to insare the greatest streagth and solidity of construction; of this, the improvements to the Monirose Bridge, by Rendel, is a good example, and the syetem should be generally followed, as several disablruns failures have occurred from anglect of these important particulars.

Amongat variations of the system, that of Dredge may be mentioned.
The wire suspenaion syatem, although in extensive ase on the Continent, the largeet example of which is at Fribourg, in 8witzeriand, where a bridge bas been coastrncted of 800 feet span, for carriages as well as foot pacseagers, has been rarely used in this country. Althongh economical is the first cost, It requires constant attention, and it scarcely posemes euffcient durability for permanent structares.

WOODEM Bripera.

In wooden bridges, little was formerly dowe in Britain beyond the common pile bridge. These were formed by rows of piles for plers, driven at ahort diatances from each other, and connected together by straight girders planked across to form the romdway, with a wooden railing on each side. Of this kind of construction, the bridges of Londonderry, acroes the Foylo, Waterford, across the 8uir, Battersen, Pnlham, and othern, acrons the Thames, are examples. In some cases, this system was exteoded, by adopting larger openiaga, having diagonal strute, or batting pieces, be tween the anderside of the girders and the piles forming the piers, in order to reduce the bearing of the girders, and thas give them greater stability. The atraight trassed frame or girder, so much used in Americs, was omployed by Rennie, to a considerable extent, as service bridges, during the construction of the Waterloo and Southwark bridges, in 1909-19, and at New London Bridge, in 1825-31, with openings of above 100 feet, capable of supporting the heaviest weights. The late Colonel By, of the Royal Engineers, gave an acconnt of a bridge of this description, eaid to have been built acrose the Terrebonne, a large river neap Montreal, in Canada, 600 feet span between the piers. It is said that thls was carried into effect, and actually stood for a short time; but, in consequence of its having been badly constructed, it required beavy repairs, and whilst these were being effected, the whole structare came down, and was carried away by the floods. The trussed system has been applied with coosiderable success in some well-aonstructed bridges scross the Tjac, for the Newcastle and Carlisle Railway, by Blackmore, and in several other places. The ayatem of Wiehiking, of combiniog small curved pieces of timber connected together in the form of an arch, adapted for large spans, was firat introduced, I believe, on the A ocholme, in 1826, when a bridge of 100 feet apan was constructed with complete socceas. This has been ased by Green, in the viaducts for the Newcastle and North Shields Railway; and has been followed by others also. Price, long ago, proposed a similar ysten ; bat the scarcity and dearness of timber, and the prevaleat use of iron, probably prevented tis application before. The lattice bridge, of American origin, has latterly beep iatroduced on the Birmlngham and Gloncester Railway, by Moorsom, and on the Dablie and Drogbeda Rail. way by McNeil, and as they are economical and simple in their coastruction, they are applicable in some cases with advantage.
In the designing and constructing of bridges of atone, woud, cast and Wrought iron, an accurate knowledge of the strength of materials is peceliarly important, nay absolutely ladispensable; and the profesaion is mech indebted to George Rennie, who commenced a series of inventigations on this aubject in 1817, which were communicated to the Royal Society, adt published in their Trassactions in 1818. These experiments were among the first to determine with precision the absolute and relative atrengthe of materials, under the effects of tonsion and compression. He mabsequently made above six bundred experiments ln 1827, on the friction of plane and round sarfaces, with and without naguents, uader the differeat cireamstances of time, surfuce, and pressure, which were pablished in the Phtlosophical Traneactions, iu 1898. In 1830 be aleo made experiments oa the friction and resistance of suids, which were publiabed in 1881. Moo rin's experiments did not appear until 1884-Tredgold, Barlow, Fairbirt, Hodgtinson, Wood, and others, have slace carried thee experfmente to a gremier extent.
Concrete, a mistore of gravel, aand, lime, and other cements, in certain proportions, was well known to the ancienta, and in coajanction with the Iataluable natural cement, Porzolana, was applied with the granted asocesa in the then numeroas molew aod other submurtae works, and the we has been efill continued in Italy to the present day. Wren is ald to leve used it for a portion of the foundation of St. Paul's, where it was defec. tive. Semple aloo alludes to is in 1776. Its use appears to here been
discontinued for a time, bat recently to have been reenmed. Fennie proposed it for the foundation of the Pealtentiary in 1811; 8mirke and others followed in the same track, and now the omployment of concrete for the foundatlons of baildinga has bocome nearly universal, wherever it is necessary.

Brick has been mach aseif for bridges over canals and draina by Reanie, and in railway bridges by Stephenson, Cubitt, Locke, Rastrick, ard others ; and, latterly, it has been carriod to a far greater extent by Brunel in bin bridge across the Thames at Maidenhend, for the Great Wostern Rallwas. It consiste of two semi-elliptical arches, each 150 foet span, and rialng 24 feet; they are bailt wholly of brick, in Roman cement.

Roman Cement, discovered by Parker, in 1796, is chlefy made from a stone found on the shores of the Isle of Sheppy, near Sheerness; it is borat in a kiln, and when groand into fine powder, possesses the peculiar property of setting hard immediately, although exposed to water, which rendera it very raluable in hydravlic works. It had been litte nsed in public works until it was adopted by Rennic and others. It was extencively employod in the naval works at Sheernens and elsewhere, and is now naiversally employed in baildings where immediate iaduration or setting ie required, in order to prevent the action of water, or where any settlement from insistent weight would be injurions. Latterly Roman cement hae been found at Harwich and other places. Aberthaw, Lyme, Barrow and other limestones also poseess valuable properties for waterworks. The success of baildings depends materially apon the cement or mortar employed : and much has been done by Smealon, Rennie, and Telford, in the seloction of the best lime, sadd, and other materials, in combining them in proper proportions for the respective parts of the works where they were employed, and in the application of machinery for the more thoroughly mixing up and incorporating the materials together. Groat crodit is also due to Higgins, Panley, Donaldson, Smith and Godwin for their raluable oxperiments and treatises upon this important subject.*

Additional strength has been given to brick structures, by the introduction of bands of thin hoop iron between the courses ; this improvoment was firat generally introduced by Sir M. I. Branel.

Tonnels.
Bubterranean tannels have been mach used In inland narigetion, particularly in the Duke of Bridgewater's Canal, some miles of which, at Worsley, are made under ground ; in the Harecautle Tunnel, by Brindley, on the Tront and Mersey Canal, in 1776, which was rendered more convenient by Telford, in 1826, by adding another parallel to it, of larger dimenations ; in the Huddersfeld Canal, where there is a tunnel 5280 yards long; in the Brannston Tunnel, on the Graod Junction Canal, and many others: all of these, however, have been sorpassed by the Tunnel under the Thames, at Rotherhithe, by Sir Isambard Brunel, which, for magnitude, boldoess in the design, and ingenuity in the means of construction, as well as the extraordinary difficulties by which the work was attended, will long remain a lastiug moanment of the talents and perseverance of that celebrated engineer. This extraordinary work was commenced in 1825 ; it consiste of two arched openings 1200 feet in length, 14 feet span each, 16 feet 4 inches high, separated from each other by a pier 4 feet thick, having sixtyfour lateral arches of 4 feet apan, to communicate between the main openings, the whole being surrounded with maselve walls. The external dimensions of the walls, inoinding the openings, are 88 feet wide, and 22 feot high. It is approached at each ond by a perpendicular shaft, 50 feet diameter, and 80 feet deep; but the tunnel was intended hereanter to be carried out to the surface f the adjoining streets, at such a moderate inclination that carriages conld easily pass through it from both sides of the river. The crown of the tuanel is about 16 feet below the bed of the river. In order to carry into effeot this very difficult work, anosual meana and precautions were necessary. The ordinary wooden centre framing acarcely presented sufficient strength and connexion for that parpose. Brunel accordingly inventod a cast iron frame (which he termed a shield) sufficieatly large to embrace the whole width and beight of the intended structure, and divided isto thirty-six compartments, each safficiently large for a man to work in, yet capable of being closed to prevent the access of water whon required; tho whole was impelled forward by powerful screws, bearing opon the work bebind, as it was fnished. This ingenious contrivance was perfoctly successful; and although the works were twice stopped by the irruption of the Thames, nevertheless the apertures were stopped by bags of clay and other materiale, and the structure was continued with extraordinary perseverance until finally completed and opened to the pablic in 1843. The whole was constructed with bricks net in Roman cement, and cased inside with the same material; ard it gives every prospect of permanence and solidity.
A tannel under the Thames had been proviously proposed at Rotberhithe by Trevethick, and had advanced to some distance under the river, when it was abandoned; also one by Dodd at Gravesend, which was scarceiy commenced. A tunnel was also carried to a considernble extent onder the Severn, at Newaham, but failed for want of fands.
Tannels form part of the works of almost every considerable rallway, and the art of constructing them with accuracy and expedition is now brought to great perfection. Amongut the most remarkable tunnelis exe-

- From the ralanble resoarchan of these authory it appeari, that the hydrauile cements concalo considerable portions of ollica and alomintm and in some cases metalle ozddes, and, where nataral hydrailic cement canoot be obtalnod, they may be prodicod arti. yeimp, by the combination of then Ingrodtente in thetr proper proportions,
cuted upon reilways, many be mentioped that at Elibby, 2308 yerde long, on the Birminghum and London line, by Stepheason; that at Box Hiu, 3195 yards iong, on the Great Western Railway, by Brunei; and that on the Sheffeld and Manchoster line, 5280 jards loag, by Locke. Beveral others of great longth are now in progrese.

Harbodrs.

In the construction of harbours, Smeaton, as already observed, had pointed out the proper course, in his reports on Lyan, Wells. A berdeen, Dandee, Dunbar, Port Patrick, Sandwich, Scarborough, Sunderladd, Workington, Ryo, Dover, and others. Ramagate harbour was originally designed by Labelye in 1744 ; it had boen partly executed by others, and continued with little success through a tedions succession of yeara, with various changes of plan, uotil 1774, when it was pleced under Smenton's direction; be soon sem the evil arising from the constant accumulation of mud which threatoned to 811 it up, in consequence of there being no backwater or scouring power to remove it. He therefore divided the harbour into two parts by a crose wall; the part dext the shore formed a basin of elevon acres, in whlch the water could he retained by means of a book, and discharged throagh powerfal sluices in the cross wall into the outer harbour at low water, and thas form an effectual scouring power for romoving the mud. Here was the introduction of a new principle for the maintenance of harboars, which is so difficult on an allavial coast, operated apon by the tides and currents ; and although previonaly in use on the Continent, it is believed to be the 自ret example of the kind in Great Britain. Smeaton afterwards continued the works, and introduced an im. proved syatom of masonry ; in 1788, he founded the outer and inner walle of the outer piers, below low water, by menas of caissons or boxes of wood, and so far amproved the diving-bell as to render it useful in carrying on the operations, although he did not build with it, and about the same time he used it for examining the foundations of the piers of Herham bridge, one of which had partially snak. The late Mr. Rennie, who eftor Smeaton's decease took charge of the works at Ramsgate, profiting by what had been done, carried out the system to a greater extent, by eninging the sluices aod making shem of cast iron, the old ones being of wood and frequently oot of repair; a greater quantity of water could then be discharged lo the same time, when required, and thus act with greater effeet; or the discharge could be prolonged, according to circumstarses. The masoary also, which, although good for the early poriod at which it was constructed, had become dilapidatod, was rebuilt, where requisite, in a much more substantial manner. The steam-dredging machine was also applied to remove that portion of the mad which could not be effected by the sluices. The diving-bell was afterwarda porfected by Rennie, so as to be porfectly managoable, and being auspended from a frame worked by proper machinery, it conid be raised and lowered, or moved laterally, in any direction, with facility and promptitude, either according to the directious of the diver withln the bell, commonicated by means of signals, made by striking the aides of the beil with a hammer, or given by the superiatendent above. All the operations for preparing a foundation, and afterwards laging the prepared blocks of masonry upou it, conld thus be performed with as much certainty below as above the water. Reanie ernt used his improved apparatus in 1813 for rebuilding the advanced East Pler Bead at Ramagato Harbour, which was founded 17 feet below low water of apring tides with complete success. The value of this invention for submarine operations was now completely establiabed, and be afterwards employod it with advantage in founding the pier heads aud orter walls of Holyhead, Howth, and Sheerness Harbours, and other works under his direction, and it is now geverally adoptod in all similar circumstances. The diving-helmets and dresses, improved by Deane, Bethell, Edwards, Seibe, and others, have aleo materillly contribated to the saccess of submarine operations.
After smeaton, numerous artifcial harbours were designed and conatructed, and natural ones improved; amongst the former may be mentioned Holyhead, Howth, and Kingatown; ai the latter there is a depth of 20 feet at low water of spring tides, and an enclosed area of 250 acres at low water; which is the largest harbour attompted in this country by Beanie. Here and at Howth he substitated the flat alope for the apright wall to resist the waves, ${ }^{\text {" }}$ and introdnced the plan of throwing down loose blocks of rubble, or unhewn atone, for forming the main body of the piers, allowing the slope or angle of repose, at which the materials would lie, to be formed by the soa. In his system of making low-water harboors, which, up to that period, were almost anknown in Great Britain, he adoptod the plan of enclocing the area by piers composed of several straight arms or lengtha, iotersecting each other according to particular anglee, lnstead of making them curved, which, in his opinion, only served to increase the action of the waves. In asyium harbours, when practicabla, es at Kingitown, he preferred making the entrance open to the dangerous wind, thas rendering them more acceasible for ressela in distrose ; but in order to prevent the prejudicial effects of any waves which might roll into the hartours, he adopted the returaing and inclived form of entrance, by which means increased facility of entrance and departure wes also given. He also designed his harboure with a view to preserving the original depth, as far as practicable, which is a princlple of the greatext importance, and ought not to be loet aight of. The artificial harbours

[^11]of Androsean, the Troon, Peterhead, by Tolford, Boarborough, by Chapman, Hartepool, and others, are worthy of remark.
In the improvement of natural harbours, may be mentioned Sunderiend, Berwick, Abendeen, Dublia, Newry, Drogheda, Laith, Belfast, and othera. The priaciple geaerally adopted has been to confine and direct the tidal and fresh meters, by piers, in proper and suffeient channels, whence they are discharged into the ocean, so as to enable them to act with greater effect in comnteracting the baneful effects of the antagonist operations of the winds, waves, sad sand, brought in from the sea; also to increase, as far as practicable, the receptacle for tidal and fresh watert, and to dispese of them in such a manner that they shall act with effect in maintaining and preserving the chanaels. These operations, as in the case of the Clyde, are materially asisted by the employment of that invalumble anxiliary, the steam-dredging machine, which ougit to be attached to every harbour. I must not omit to mention the breakwater in Plymonth Sound, by Rennie and Whidbey, which is the fint and largeat example of a detached mole or breakwater in thia country. It is a mile long, constructed in a depth varying from 5 to 8 fathoms at low water, formed of loose blocks of rabble, of all sizes, ap to 10 or 12 tons weight each, thrown into the sea to form their own base and alope, acoording to the action of the waves. The surface from low water mart to its full height, which is 2 feet above high water, has been paved wish masonry, and at the base of the sea slope, it the level of low-water, there is a berm or benching to protect it. At the weatern extrecoity a lighthouse has been built, to point out the western or priacipal eatrance to the Sound, and a bescon on the eastern extremity points ont the ent entranco. The whole of the work, except a portion of the mesonry, which is granite, has been built of limeatone, brought from the adjoining shores. The intention of the wark was to protect the Sound egainst the heavy swell, which formerly used to roll in with considerable volence during strong weaterly and coeth-wenterly galen; this object has been complotely obtained, and the sondstead bem been rendered perfectly secure. The work has been emineatly anecentul in every reapect, for besides obtaining the deaired protection, the criginal depth of water bas been preserved, the faclity of ingtest and egrest bee mot been dimininbed, but nather increated, and the cont has corresponded a meariy as posible with the original eatimato.

Amother clacs of harbours, called Floating or Wat Docks, for recaiving merchant ressels out of the tide or mea. Wray, wai firt introduced at Liverpool abont the year 1716, and wet docks have been tince constrneted in almost ell the principal porti of the kingdom-viz., London, Bristol, Holl, Laith, Sunderland, at well as for the Royal Navy at Portamouth, Plymouth, 8heerness, Chathem, nad Woolwieh. The Rant and West India Docke, by Jessop, Rennie, and Ralph Walker; the London, Leitb, and Dublin, by Rennie; St. Cetherine's, London, by Telford; the New Docin at Liverpool, by Harthey; at Hull, by Jamea Walker; at Cardiff, by Cubitt ; at Newport, by Green; at Sonthampton, by Giles; and the great works now in progrees at Birkenhead, on the Mertey, opponite Liverpool, and at Great Grimaby, by Rendel, are magnificent eramples of private enterprise for facilitating the commerce of the empire. The denign of Rennie for a grand naval arsenal on the Thames, at Northfeet, immediacely above Gravesend, intended as a substitate for the imperfect naval eatablishments at Deptford, Woolvich, Sheerneas, and Chatham, is worthy of remark. Thin magnificent design consiated of tix capacious batins, with a total surfuce of 600 acres within the walls, the largent being 4000 feet long, and 1000 feet wide, and covering 87 acres; the whole to commonicute with each other, and be provided with capscious quiye, dry docks, building-slips, and storehonses ; steam machinery for manufactoring cordage, blocks, anchort, flour, and bread, aswing and converting timber, pamping, and working cranet ; in fact, for almost every operation connerted with the naval service, and so syatematically arragged and disposed, that the required operations should ancceed each other with the greateat dispatich and economy, whether of time, labour, or cost. The eatimate was $\mathcal{E l}, 000,000$, which wat perhaps more than would have been required : any portion could have been executed at it wat wanted, without interfering with the geaeral plan. It is to be regretted that this plan was not carried into effect, for it would have rapaid the coat in tho increased economy of itting ont fleate, and since that period abont $£ 5,000,000$ have been expended on the old establishments in the Thames and Medway, with s amall degree of beneft, compared with what would have been obtained from Northileet. Iis deaiga also for the improvement and enlargement of Chatham Dockyard is worthy of remark. It consinted of a now channal to be made for the Medway below Rocheater Bridge, and converting the bend of the river, in front of the Dockyard, into a magnificent toating dock of above 100 acres, end from thence making a canal, 14 mile long, 300 feet wide, and 30 feet deep, to the deop water in the Medway at Gillingham, by which meang ves wele of wer of the largent clase could come to the Dookyard with the whole of their armament, which they cannot do now; the cearse to sea would heve been shortened, and the shellow water of tbe Medway avoided : thus Chatham Dockyard would have been rendered the mont convenient and extendive is Europe, and its prosimity to London by a railway would bave rendered the yards at Deptford and Woolwich mnneceasary. The eatimate for thin work wat only $\mathbf{2 7 0 0 , 0 0 0}$, whereas since that time fully at mach, if not more, has been spent opon Woalwich, with a very inferior reanit; indeed, it is not even 800 lete to undertake this plan for Chatham now, and would well repay the expenditare. In deafging and oarrying into effect this important clay of pobise works, 00 as to render them enceeneful, a thorough knowledge of the natare and operation of tides, wiads, currente, coundinga, and all the dezeraents of hy dregrephy, phyticul geography, and-goology in neceanry, and
in thooe sciences much is dog to the exertions of Beanfort, Bullock, Washington, Deaham, Buckland De In B6ehe, Lyell, Greenongh, Sedgwick, Marchison, Phillips, and others.

Rivetigemts, on Ritaining Walls.

These, unatl near the latter oud of the lest centary, had been unally built with horizontal foundations and conraen, the toterior aide being almost vertical, and the exterior with a flat face and very little batter, or in many caces vertical. The curved face retaining wall was latterly introduced, with the foundation and courses inclining from the horizontal, so as to conform with the radius of curvature; this form of wall is preforable, is many cases, to the ald, as combining greater atrength with a Lass section, and being more convenient in other reopects, and wat commonly ned by Bennic in his various vortw, when applicable.

To whom the introdnction of this improved form of wall in due it is diffcolt to ascertain with accuracy; bet Reanie, Ralph Walker, and Jeseop were amongat the firat who bronght it into \mathbf{n} e. A further improvement was made in the retaining walle used at Sheerness in 1815 by Rennie, where the fonadation being composed of soft alluvial mud and quickand, to a grest depth, more than usual precautions were necemary to render the walls aubstantial and secure. The object wat effected by enlarging the base, and making the interior hollow, lite a caisan, with the bottom in the form of an inverted dome; the outer or river face being concave, and the fonndation, for a certain width, laid inclinlag at right anglen to a tangent from the carved face of the front of the wall; the remainder of the foondation wat horizontal, and the back or land side of the wall wat vertical. Thus there was both a front and back wall connected together by cross walls, forming one mast ; the inverted arches or domes ander the hollow spaces being filled with chalk and gravel concrete, and the whole renting upon a well-connected platform of piles and cross-beam and planking. By thus distributing the same quantity of materiala over a greater anrface, the vertical weight per square foot was reduced, and the desired stability wat obtained apon this very difficult and treacherons foundation. Reanio had previously tried, with success, a wall of a similar principle, and under similar circumstances at Grimsby. General Bentham also tried asimilar principle, about the same time, which was not 10 snocesuful, in consequence of an unsuitable form and constracLion.

The Coffir-deme which Rennie employed for constrecting the walle at Sheernese are worthy of remark, as being the mont extonsive and difficult that had been constrocted up to that period. The bottom being soft mad to a considerable depth, piles of 60 feet to 80 feet in length, were necessary, and when driven and braced in their places at far at practicable, chain bars and raking-ihoret from the land were requisite, in order to counternct the alternate preseure inwards and falling ontwards, oceasioned by the badsees of the fonndation and the heary shocks of the waves to which they were exposed. In order to break the effecte of the sea during storms, he employed series of old men-of-war bulks, to act as floting breakwatert; these were aneful to a certain extent, so long as they heid firm in their places; bat at times, during heavy gales, they dragged their moorioga, and driving againat the dams, occasloned considerabie damage; apon the whole, however, they were useful.* In order to give greater security to the dams, and to prevent leakage, a considerable quantity of grooved and tongued sheathing-piles were necenary for the works ; and to effect this, he invented a mechise worked by a team engine, which answered the purpose effectually, at a cont of one-ixth of the price of manual labour, and as it wis unsafe to withdraw eny of the coffer-dam piles, be made another for cutting them off at the ground level, below low water, which was also found very useful.
The dams for founding the sea-locks of the Caledonian Cenal at Fort William and near lnverness, by Telford, are worthy of remark. In the former case, great difficultica arose, in consequeace of tho foundation being rock, at some depth below low water; this was overcome by ingeniously securing the piles to the rock; and in the latter case, where the bottom was soft mud, the difficulty was obvisted by bringing cargoes or masces of earth and clay from a considerable distance, and afterwards driving the piles through the made ground. The great dem, 1000 feet in length, for building the foundations of the river-mall and New Houses of Parlinment, by James Walker, is another good example. The late Peter Bivart wes among the first who introduced cast and wrought iron for dame, for piling in genera, and for wharfa it has been since employed by Walker, Sibley, Stevenson, and others, in many situations, with great anccess. At the Albion Mills, already mentioned at the firat steam-mill conatracted in 1785, by Watt and Ronnie, on the banks of the Thamen, close to Blackfriara Bridge, the foundution being soft mad and moving and, inverted arches ware formed upon the ground, batween the foundation courses of the ralls, so that the whole area of the building obtained support by the same veight resting upon an increased baso.

[^12](Tb be continued.)

REGISTER OF NEW PATENTS.

ELRCTRIC TELEGRAPH8.

Jonm Nort, of the etty of Cork, gentleman, for "certcria Improvements in the means of commanicating inteligence from one place to mooher." Granted Joouary 20 ; Eunotled Joly 30 , 1846.-(Rrported in Nawion's London Journal.) With Eagreotings, Plate VI.
Thete improvemeats in the means of commanicating intelligence from one place to anotber consist in certuin novel arrapgementa of apparatus, by which audible and risible sigrals oan be given through the ageacy of eloc-tro-magnetism.
In Plate VI, Ag. 1 represents the external appearance of the apparatus, as seen in froat; Ag. 2 is a vertical section, taked transrersely through the apparatas, nearly at ita centre; ifg. 8 represents the internal coostraction and arrangement of the working parts of the apparalus, as they would appear if the dial plate and front part of the case were removed; and fif. 4 is a borizontal section of the apparatas, takea below the magneta, abowing the mechanism by which the course of the electric tlaid may be changed from the eleetric telegraph to the signal-bell.
In the front of the box or case, a circqlar dial-plate, ig. 1, is ined, ou which are four series of letters, which are pointed out by the long arm of the index; and aleo two concentric circles of namerala, indicated by the short arm of the index. This plate is gradoated on its face into oinety-six equal divisions, formed in a circle; and to each, one of the letters or one of the nomerals refers. Upon the outer end of an arbor a, passing through the centre of the dial-plate, a iodex b, is affixed, which is carried round upon the fuce of the dial-plate by successive ections of the mechanism, produced by the electric finid; each soccessive action moving the inder over one space of the graduated circle, wo as to eashle the operator to leave the point of the index in a atate of rest, opposite to any letter or numeral, as the case may be ; and, by repetitions of the like movements and reata, to point to such letters as will spell, or aumbers that will indicate, the word required to be communicated. These actions of the mechanismare effected by carrents of electricity, through the agency of a key or lever, rising or falling at the touch of the operator, as in a piano-forte.
The electric fiuid is derived from a galvanic battery dear the apparatus, as at A, B, fig. 4, and passen, by wires coilod round electro-magnets, from one pole to the other pole of the battery. Two electro-magnets, C, C,D,D, are atteched to the vertical backboand c, e, of the apparatus, as shown in figs. 2 and 8 ; and ln the same piane, nearly concentric with these magnets, is a ratchet-wheel d, ixed upon the arbor a; which Jatter passes through the ceatre of the dial-plate, and oerries the band or index b. Two lever armatures e, a, are supported by fnlcrum axles, turning in the brackets f, f, which armatures crose each other, and their movements are reoderod simultanoous by a connecting link g, immediately over the axis of the ratchet. wheel d. To the extremities of the inner arms of these lever armatures two pallets h, h, are coanected, by joints ; which pallets are pressed againat the periphery of the ratchet-wheel by delicate apringa, cansing the pallets to take jato the leeth of the ratchet-wheel; and, by the rising aod falling of the armatures, these pallets move the ratchet- Wheel roond; -the extent of action of the pallets beling limited by two latch-stops i, j, which give rise to a dead-beal movement of the index, as it is carried round the dial-plate. The onter extremities of the armatures bear upon alight springs k, k, fixed to the back-boerd of the instrument.
A third eiectro-magnot E, E, is affixed to the back-board, figs. 2 and 8 , and is intended to give motion to the machinery of the aignal-bell, attached to the telegraph. The armature of this magnet in shown at l, l, and is a T-formed iever, supported at the extremities of the edge of its iongitadinal bar hy pirots, bearing in the brackets m, m, projecting from the backboard. The arm of this lever l, passes through no opening in the backboard, and lies inciined, as shown ln 6g. 9. When this armature is attracted by the magnot, it will be drawn ap into a horizontal position, and, in rialog, the oxtremity of the arm will take into the fork at the end of the lever n, and thus cause the hammer p^{\bullet}, to strike upon the bell or gong F.
The means by which the olectric Guid is ronducted from the battery, through the wires of the electro-magnets, to the corresponding apparatne at the distant atation will be clearly anderstood by the foilowing descrip-tion:-Two wooden cylinders \mathbf{G}, \mathbf{H}, are supported on horizontal axles, by atandarde fixed to the longitudinal sopport I, I. Two separate strips of metal, as conductors, are pasced nearly round the cirenmference of each of these cylinders, learing unoecu pied a conducting portion on each oylinder between the onds of the atripa. Upon the support I, I, eight erect aprings $1,2,8,4,6,8,7,8$, are fixed; which apriags severally prese agaiont the peripheries of the cylindars G, and H. The apriags 2 and 3 , are connected by a conducting strip of metal, fg. 4, and the springs 6 and 7 , are also connected in like manner ; the latter being perfectly detached or inunlated from the former. A wire e coonected with the pole A, of the battery, leads to the stud K, where it is beld fast by a blading screw; and to this stud E, the end of another wire 10, is soldered, which pasess under, and is attacbed to the operaliog fingerkey J, and, beoding down, torminatea immediately over a cup of mercury 11, beat seen in 1g. 2. The ond of a wire 12, is coldered to the erect apring 6, and is brought round into come manication with the mercury in the cop 11. On the key J, being dePressed by the fiagor of the operator, the pendent end of the wire 10, will brasedent into ocmatect with the mercary in the cup 11, whea the eloourie

Agid from the batiory A, will be instapily cooducted from the pole A of the battery, through the wires $0,10,12$, to the spring 6 , and from the epring 6 , throngh its cosanection (Gg. 4), to the spring 7, and thence over the band on the cylinder \mathbf{H}, to the spring S, and from that spring, by a wire 18 , to one pole of the electro-magnet C , as showo in 6 g . 3. The edectrie Inid will then pase through the coils of this magnet C , and thence, by a wire, to ove pole of the magnet D , aod, proceeding through the coile of this magnot D, will then descend from its other pole by the wire 14, to the atud L. Gg .4 ; to the ander part of which stud it is soldered. Another wire 15 , is strached to this atnd L, by a hioding screw, from which it proceeds to the telegraph at the distant station, and the current of electricity is by that means condacted through the electro-magnets of soch dietant telegraph, which is precisely similar in construction to the apparatus above deseribed. The electric fuid having passed through thia course returne from the distant telegraph by the wire 16, to the stod M, fr. 4; which wire is secured thereto by a bindiag screw. Another wire 17, soldered to the uoder part of this atud M, conducts the electric lioid to the erect spring 4 , from whence it proceeds over the band on the cylinder \mathbf{H} to the ereet spring 8 , and from that spring by a wire 18, to the stud N; from the bioding screw of which another wire 19, soldered or connected to the under part of this stad \mathbf{N}, leads the current of electricity to the other pole B, of the battery, and thus the electric circnit is completed.

It will now be meen, that when the inger of the operator depressea the key J, the pendent end of the wire 10, being thereby brought into costect with the cap of mereary 11, will cause the electric fluid from the battery to pass through the circuit as described. The electric finid, in proceediag throagh the coils of the electro-magnets \mathbf{C}, and \mathbf{D}, develops an attractive force, which, sctiog apoo the lever armatures e, e, attracts the arms of those levers coward the poles of the magneta, and, in so doing, raises the pallete h, k; one of which then moves the ratchet wheel d, and with it the arbor a, and index-hand b, through a space equal to one division of the circamference of the dial-plate. On raising the foger from the key J , the wire 10 , is withdrawo from the mercury cap 11, and the circait of electricity becoming thereby broken, all the parts will fall into their original position, as ahown in fig. 8 ; and the other pallet will move the ratchel, and theroby cause the index. band to pass over another space or division of the dial. A repetition of the touch apon the key J, prodaces the same effect as dencribed, and moves the index-hand through another space or division of the dial-piate, and so on,-the operator resting when the hand b, arrives at any leuer or namber apon the dial which he wishes to have noted; and by a succession of these movementa and rests, the letters or symbole of any desired word or words may be indicated at the diatent athtion.

Io commencing the telegraphic communications, it is desirable, in the Grat place, to indicate whence it proceeds, which may be done by giviag one, two, three, or any other conventional namber of strokes on the sigmalibell. In ouder to effect this at the remote station, a current of electricity is conducted in the way above described; but a slight change in the posetions of the cylioder G, H, of the apparatus is first made.
It has been already stated, that the wooden cylinderi G, and H, bave metallic conducting bands placed partially round them; which bands leave non-conducting portions on the periphery of the wooden cylindern. It is by means of these that the operator is enabled to change the carrent of the eiectric fuid from the telegraph to the bell, and rice versh, by a simple movement. At figs. 8 and 4. (which represent the conducting wires in connection with the telegraph) it will be eeen that the erect aprings 1, aod 5, bear against thuse parts of the eylinder \mathbf{G},over which the metallic bands do not extend,-consequently tbose springs are at this time insulated; bat if the cylinders \mathbf{G}, \mathbf{H}, were turned round simultaneously abont a quarter of a revolution, the metallic bands of the cyliader G, would be brougtt into connection with the aprings 1 , and 5 ; and at the same time the aprings 4, and 8 , would become insulated, by having the non-conducting parts of the cylinder \mathbf{H}, brought into contact with them. This is effectod by the morement of a sliding.bur P, in front of the apparatus, shuwn at fg. I; whicb bar is attached to parallel levers p, p, ixed npon the outer end of the axles of the cylinders \mathbf{G}, \mathbf{H}; and at the centre of the bar is an enoct Index 9 . If the bar is slidden toward the left, as ahown in the figure, its index 9 , will point to the mark T, (referring to "telegraph,") and the Oy lindera will be situate as shown at fg. 3; the apparatos being then in a position to communicate with the telegraph. But if the bar \mathbf{P} be slidden to the right, so that the index 4 , points to the mark B, referring to the "bell," then the cylinders \mathbf{G}, H, will be turned round aboat a quarter of a rotation; by which mease the cunducting bands of the cylinder G, will be brought into contact with the springs 1,5 , and the bands of the cylinder \mathbf{H}, will be withdrawn or insalated from the springs 4 and 8 . When the oylin: ders \mathbf{G}, \mathbf{H}, have been thns turned rousd, the electric flaid will be conducted through the magnet E,E, inslead of following the course previoualy described.
The finger of the operator being now applied to the key J , the electric Guid will pase from the pole A , of the battery, by the wiros 0,10 , and 19, to the apring 6 , and thence, passing over the band of the cylinder G, will prooeed throngh the conducting spring 5 , and wire 90 , up to one pole of the magnot $\mathbf{E}, \boldsymbol{E}$. The electric carrent will Dow pass through the coils of the magnet E, E, and decend by a wire 91, leading from the opposite pole of the aunguet; which wire is connected to the wire 14, which is moldered to the stad L , as provioualy mentioned and shown at Gg. 4. This canses the electrio fluid to pase from the stud L, through the wire 15 , to the dite twal telograph, and returt agcia by the wire 1s, to the atud M, as before
 cuis the cleveric frid throegh the coils of the olactris magoet E , the lower

The patentee nert dupribes certain appendages which ho proposes to adapt to the electric telegraph. Firstly, of a commutator, or pole changer, for reveraing the direction of motion of the electric current; secnadly, of a rheopeter, for changing the direction simply of the electric current ; these beiog for the parpose of soparating any number of intermedisio stations from the telegraphic circuit, or of connecting any of those stations with the circnit, when desired. Fig. 5 is a front alevalion of the commu. tator, and fig. 6 a top view of the same. A, is a block of wrood, and B a wrooden cylinder, turning upon an axie monnted is standards. Upon the periphery of this cylimder seven strips of copper are arranged, as shown in fig. 7, which represents the periphery of the cylinder B, extended in a plana. One of these strips of copper, a, is imbedded transversely in the periphery of the cyliader; the other six strips, bcdand e, are also jmbedded, and extend partially roond the periphery of the cylinder. These Istter strips are intended to revarse the direction of motion of the electric carrent : the strips d^{1} and e^{7} are directly connected by two wires with b and c; and the strips d and e are alternately connected with b and c, by two wires crossing each other, one of which, f, forme communication hetween b and e; and the other wire g, between b and d. These wires, f and g, are insalated from each other, and deeply imbedded into the cylinder, and they are covered by a transverse pioce of ivory h. Four erect springs, ik land an, are afficed to the base blook A; their npper parts preasing against the periphery of the cylinder. A bandle m is affixed to the axle, for the purpose of tarning the cylinder roond; and an elongation of the handle forms a pointer, to indicate the estert to which the cyliader is to be moved. A wire is atzached to each of the springs, for the purpose of connecting this iostrament with the electric circuit; and by turning the cylinder to the right or left, the direction of the electric current may be changed, or, in other wonds, the poles of the bettery may be reversed.

The rheopeter is shown in horizontal view at 6 g .8 , and in vertical sectien at fg. 9. A, is a circular block of wood, in which two permanent margets are imbedded ; their poles extending upwards, as at $\mathbf{N}, \mathbf{S}, \mathbf{N}^{\mathbf{*}}, \mathbf{S}^{\text {e }}$. $x_{y} \mathrm{z}$, are three glass cups containing mercury. a a, is a bar of soft iron, supported in a horizontal position by the vertical pin b; round this bar an imalated copper wire $c c$ is coiled, the onds of which exten, at right angles to the bar, and are bent downso as to touch the surface of the mercary fin the enpa. A wire $\mathcal{d}_{\text {, }}$, being supposed to communicmte a current of electricity (sey from London) to the mercury in the cup s, that electric carent sill be conducted by the wire c, to the mercury in the cnp y, and from thence pase on by the wire e, to the place of its destination (say nagb), and thence through the remainder of the telegraphic circuit, back apain to its starting poist. As the electric fluid thos passes, the bar a beocmes magnetised, and its ends are altracted by the poles of the permareat ragnets, S and $\mathrm{N}^{\text {® }}$, as shown at fig. 8. If, for example, the current of clectricity is required to be cut off from the telegraph at Rugby, and direated, say towards Birmingham, the poles of the battery aro changed, by meaps of the apparatus shown at fig. 5. The direction of motion of the electric current being thas revarsed, it will, in passing through the wire d(fige. 8 and 9), cance the ends of the bar a to be attracted by the reverse ends of the magnets, that is, N and S°; by which meens the pendent end of the wire c will be brought from the mercory cap y, to the mercury cap \Rightarrow, and the current will then, ibstead of proceeding through the wire e, as before, take its course through the wire f, and so on, to Birmingham ; by which means the telegraph at the Rugby station is effectually thrown out of the circuit.

When the eirenit of the telegraphic spparatas in required to be closed, the key J, fige. I, mast be depreseed. In order to keep the circuit closed, the drawetop $Q 9$ is palled ont, which draws down a mall lever R, into the position shown by dots in Aq. 2. This lever R, keeps the key in a depressed position, and the instrument is thereby prepared for receiving commanications from a distant telegraph.

At figs. 10 and 11, a modification of this rheopeter is shown, in which the electro-magnet is made to move in a vertical ingtead of a horizontal plane. Tbe adrantage convista in the fecitity which it affords of changing the loeel direction of the alectric carrent, without interrupting the carrept itealf in so doing. This results from the manner in which the wire of the electromagnet ia coiled. Upon each half of the soft iron bar there is a separate coil of jasulated wire; the length of the wire of each of these coils proceeds from the extremity of the bar to its middle, and then returns, by overlapping, to the mame extremity of the bar where the ends of the wire, forming the coil, are made to dip into mercury eupe. By this arrangement, one of these coils is cextrorsum, and the other sinistrortan relatively to the side of the bar at which the oloctric correat eaters the coil. Then, if the electric current be eopposed to brach off ia two difisen ent directions, and pass from the mane side of the bar, through these iwo coils simultanconsly, the electric correat would flow in the ame direction through both coids, end, coasequentiy, the polar unity of the reeulting cectro-roagoet would be presorred. It is therofore obviees, that when the clectric curreat entere eitter coil from the same aide of the bar, a nimiler polarity resaits, and a oorremponding motion is communicated to the bar, by the influence of the pormanent magsets, as will be mabsequently doseribed; and when the electric enrrent enters either coil froms the opponite
side of the lare, the polarity, and, consequemty, the motion of the bur, is
 horimonal, as meen ta the frawtag, the ends of the two eoits are immersod in the mescery cops, and therefore, without interrupting the olectric current, its local direction masy be changed, by depreacing either end of the bar, as will be seen by the following description of the sereral parts of the insirmaent.

Fig. 10 is a plan view of the instrument, and fig. 11 in a vertical seetion. A is a bloek of wreod, forming the base, and Nigi N 5 two permaneat megraeta, boving thetr similar poles opposite to the mame vertical plane, and 1 Ired to the base A by braes olatipe OC. D D, are two brase tandande, acremed to the base, and carryiag set serew! with sunkea centres; which forch the bearing-polats of the horimontad axle E, which pasoer throgegh the rof irea bar P. Rousd oae-half of this bar a doublo coil G of insnlated wire is wound; and the ends of this wire dip jato the mer. cury cups H and 1. Round the other half of this aaid bur there is a similar coil K of wire, the ends of which dip into the mercury cups L and M. The two mercory cape L and H at the mane side of the bar, are both connacted by the wirn PI P with the sted 0 , to which the mein civout wirs V, is fastened by a biading eerow. The memonry cap M is comectent by the wire S with the stud T, to which, by a bieding sarew, the en rreetentering wire U of the telegraph is fastened. The marcary cap 1 is cosnected by the wire \mathbf{Q}, with the stud \mathbf{R}, which laster is connected by the small branch wire W, with the carrent-issuing wire of the telegraph, which passes to the remote terminas. Now, for example, suppose the eleatric current to be passing from the stud 0 , to the mercury cup L, it will then pass throagh the cail of wire K, to the mercary cup M, and so on through the current-entering wire \mathbf{U}, of the telegraph. The electric current now passing through a sinistrorsum cail, the extremity Y of the iroo bar becomes a noth pole, and the other, Z, a south pole. This extremity Y, of the bar is then ropelled by the pole N^{1} of the permanent magnet, attracted by the pole S^{1}; it therefore descends, and releases the ends of the coil G, from the mercury cups H and I. The telegraph isthen within the electric circuit.
If the direction of motion of the electric current be now changed, the current-entering wire U becomes the current-jssaing wire, and the stad R is now connected with the current-entering wira The olectric curront then passea from the stud T, to the mercury cup M, and thence through the coil K, to the mercury cap L, and so on to the main wire \mathcal{F}. As tho electric carrent, in this case, passes through the coil K, from the opposite side of the bar, this said coil is thas readered dextrorsam; the polarity of the iron bar is therefore changed, the end Z becoming a north pole, and the end Y a sonth pole. This end Y of the bar is therefore repelled by the pole gi of the permanent magnat, and attracted by the pole N1. The ex tremity Y of the ber in therefore raised from its inclined position, as in the Irat instance, and reloases the ends of the coil \mathbf{K}, from the mercmry cups L and M, at the same time that its other extromity, being depressed, immerses the ends of the coil G, in the mercury capa H and 1 , and thia immersion tales place before the ends of the coil K leave the meranry cops L and M.

As the stad \mathbf{R} is now externally to the telegraph connected with the current-entering wire, the electric current, instead of paesing through the telegraph, branches off to the atud \mathbf{R}; it then pasaes to the mercury oup I, thence through the coil G, to the mercury cup \mathbf{H}, and so on to the maia wire ∇. The telegraph is thus, without any interruption of the electric current taking place, put out of the circuit ; and as the electric current now passes through a sinistrorsom coil, the bar retaias its position, until the direction of motion of the electric current is reversed, to bring the telegraph again within the circuit.

Fig. 12 represents, in elevation, one of the posis for supporting the circuit wires of the telegraph along the liae of commanication. This post is of wood, and is to be sunk about five feet into the earth, the sunken portion being imbedded in Romav cement. A wooden lantern-shaped box complately covers about 16 inches of the upper end of the past, so to protect this portion of the post (which is to be well raraiched) from the humidity of the atmosphere. The box is made in two parts; the eover is of a pyramidical form, and is firmly fixed on the post; the case is made to slide op and down apon the post, and is fastened to the cover, so as to completely envelope the varnished portion of the post, and the broad binding screw clamps thereon, which carry the telegrapbic wires. No metal whatever is used in the construction of this box, to the ontside of which an insulated lightning conductor, passing down to the earth, is attiched.

The patentee claims, Firstly, -the construction and use of the direct action electro-magaetic telegraph, as before described; and particularly the arrangement of the letters or symbols on the dial plate; and the means applied to commanicate direct circulate motion to the ratchet-wheel, and the index, by the alternate motion of two jointed lever armatores, working sinaltaneously, by being conneoted with one another, in the prolongation of the vertical diameter of the wheel; the pendent portions of these lever armatures forming the pallets of the escapement, and taking into the teeth of the ratchet-wheel ; their ascending and descending motions being regalated by the lateh-stops, which prodnce a dead beat escapemeut; be also claims this escapement, whether it he worked by two levers, as described, or by one lever only. Secondly, 一the adaptation of the electro-magnets of the telegraph, as before deacribed and represented in the drawioga, whereby they form what may be calied a magnetic circle, and altract the extreme and mediate ends of the armatures simultaneously, when the electric circuit is closed; and by the proximity of the bell-electro-magnet and
its armature, one edge of which is always in contact with the poles of the said magnet, the reactive force of electrical induction is brought to bear so as instantly to destroy the attractive force of the electro-magnets of the telegraph, as soon as the electric circuit is opened. Thirdly,-the arrangement of the macbinery of the signal-bell of the telegraph, as before described. Fourthly,-the means employed for throwing the telegraph ont of the electric circuit, and bringing the striking machinery of the bell into the electric circuit, and vice versa; and also of permanently closing the said circuit by means of a lever and draw-stop. Fifthly,-the means of commonicating with all the stations simultaneously, or throwing any of the said stations out of communication, at pleasure, by the employment of the commutator and rheopeter, as hereinbefore described. And, Lastly, he clains the said improvements, however they may be varied in their constructive details, so long as the general arrangement of parts, as above set forth, is retained.

STEAM ENGINE REGULATOR.

Moses Poole, of London, gentleman, for "Improecments in regulating the celocity of ateam engines."-Granted Jane 29; Enrolled December 99, 1846. (With Engraving, Plate VI.)

The improvements relate to an apparatus to be ased in connection with a governor of a steam engine; firstly, to the mode of employing the power of compressed air forced into a chamber by means of a double-beat valvepump, worked by the engine, so that the air in the chamber may be kept in a more or less compressed state according to the resistance of the engine; the piston-rod of the piston, which is acted apon by the compressed air, communicates with a valve, to regulate the opening of the throttlevalve, through which the steam passes to the steam-cylinder, by wbich the engine is kept in a uniform state, whutever be its variation. Secondly, to the application of another apparatus similar to the one bereinbefore described, the difference of which consists in using the pressure of the atmosphere acting upon a piston, to press it into a vacuum in place of compressed air; so that the same apparatus, by reversing the action of the valves (causing them to open ontwards, instead of inwards) might be used practically for either parpose.
The engraving, Plate VI., shows a vertical section of the apparatus; a is the air pump with piston, worked by a rod connected with the driving ahaft ; b, b, b, valves opening inwards, at top and bottom of the cylinder; c, c, wind-bores or ports with valve-beat ; d, condensed air pasaage; e, condensed air cylinder; f, pressure piston; g, piston-rod, passing up through the conical standard h, to lift a counter-balance weight i, which is connected with the throttle-valve of the steam-pipe $; j$ is a small regulating valve, and m a regulating tube, with a regulating cock n, worked by the action of the governor 0 , through the intermediate rod and lever p.

The apparatus is worked in the following manner: the driving-shaft of the engine gives motion to the piston of the air-pump a, and at each npward and downward stroke forces, through the ports c, c, compressed air into the condensed air passage d, and lifts the piston of the small cylinder e, together with the weight h, which is kept suspended by the elastic power of the air. If the air be condensed too bighly, it is enabled to eacape through the valve-plug j. When there is any deviation in the speed of the engine, the governor immediately corrects by allowing part of the condensed air to escape through the regolating cock n, and canses the piston f and balance-weight i to be slowed, and through the latter the throttlevalve is acted upon.
By the combination of the air pump with the governor, the patentee states that the steam way of the engine is capable of being regulated to a greater nicety.

CHANDELIER SUSPENDERS.

John Finlay, of Glasgow, irodmonger, for "Improvements in raisiag and lowering Gas and other Lamps, Lwatres, and Chandeliers."-Granted February 18; Enrolled August 18, 1846.
This invention consists of a method of supporting, by atmospheric pressure, such gas and other lamps, lustres, and chandeliers, as reqnire to be raised or lowered, in the following manner:-

There is to be attached to the ceiling of the room from which the chandelier is to be auspended a rod, carrying at its lower end a piston, constructed in the manner hereinafter described. The chandelier to be suspended is connected to a tube, which is made to slide air-light on the said piston. A vacuum being produced in the tabe beneath the piston, as hereinafter particularly described, the pressure of the atmosphere supports the said chandelier; the area of the piston, and diameter of the tube in which it slides, are proportioned to the weight of the chandelier to be supported.

Fig. 1 is an outside view of a gas lamp slide, of 1 iuch diameter, inside measure, consisting of a gas tube, attached to the ceiling of the room, from which the lamp is suspended, by means of atmospheric pressure being brought into operation by means of a vacuum in the cylinder at 18, on the ander slde of the piston, 5 ; the position of the piston and of the tube are denoted by the dotted lines. 3 is a screw for attaching the slide to the lustre, the weight of which should be about twelve pounds. 2 is a tube placed within the roof tabe 1, which conveys the gas to the arms of the lamp, and is made fast at the screw 3. Fig. 2 is an outside view of the roof
tabe, with the piston, 5 , ont he lower end. The tabe, 9 , ind icated by dotted lines, projects beyond the under side of the piston. 15 is a shoulder, and 17 a helical spring, for preventing the lamp tube from sliding off when the lamp is drawn down. Fig. 3 is a section of fig. 1. The piston is shown

midway in the cylinder, and the exhausted or vacunm portion of the cylinder, 6, represents oil, pat on the top of the piston, for labricating the tube, and keeping the leather caps, 8 and 9 , which form the packing, air tight. 16 are two small holes, drilled through the body of the piston, which holes are covered by a valve formed of a leather washer, 10 , on which the brass washer, 11, is pressed by the spiral spring, 12. The object of holes and valve is to produce and maintain the vacnum by which the pressure of the atmosphere is brought into operation; for when the lustre tube is raised, the air which is included between the bottom of the piston, 5 , and the bottom of the said tube, is compressed, and elasticity canses it to raise the leather, 10, and the brass, 11, and escape throngh the oll, 6. When the tube bas been raised to its fnllest extent, until the bottom of the said tube is brought into contact with the bottom of the piston, 5 , the whole, or nearly the whole of the air is removed from under the said piston, and the spring, 12, forces down the leather valve, 10. On drawing down the lustre spring, 12, forces down the leather valve, 10. Ondrance of air nnder the said piston, and the vacunm existing there canses the lustre tube, and lustre attached thereto, to be supported by the pressure of the air external to the said tube. If from any canse air or oil should have descended below the piaton, it may be made to escape through the boles by the raiaing of the lustre tube. 7 are two small holes made through the piston, 6 , for feeding the inoer cups, 8 and 14, with oil. The cap or washer, 14, is for the parpose of preventing the gas from passing the sides of the tubes, 2 , and coming out at the holes, 7 , when the level of the oil is below the said holes. 4 is a cup for receiving a part of the oil when the lustre is drawn down. Fig. 4 is a sectional view of the roof tube, 1 , with the piston exhibiting the position of the inner tube, 2.19 is a screw in the body of the piston, by which the leather cups, 8 and 9 , are kept in their respective places; and 18 is another screw for keeping the leather cup or washer, 14 , in its place.

SEWAGE MANURE.

William Higas, of Wentminster, ohemist, for " the means of collecting the contents of severs and drains in cities, towns, and villages, and for treating chenically the same; and for applying ouch contents, when so ireated, to agricultural and ofher neeful purposes.-Granted A pril 28 ; Enrolled October 28, 1846. (Witk Engravings, Plate VI.)

The invention consists, firatly, in the construction of tanks or reservoirs in which the contents of sowers and drains in cities, towns, and villages are to be collected, and the solid animal and vegetable matters thereim contained solidified and dried as hereinafter described. Secondly, in the construction of buildings over such tanks or reservoirs in which the vapours and gases, evolved from the collected mass of sewage below, may be collected, retained, condensed, and combined with chemical agents, a hereinafter described, and also in the arrangement of spars or bars on which the salts, formed by the combination of such gases with other substances, may rest or crystallise. Thirdiy, in the construction and arrangement of machinery and apparatus to be used in distributing and depoaiting chemical agents over the mass of sewage collecting and collected in the

THE NEW YURK FUBLIC LIBRARY

AMYER, LEMOX AND thoen founcationa
tanks or reworvoirs above mentioned. Foarthly, in the use and application of chemical agents for the parpose of precipitating the solid animal and vegetable matter contained in sewage wrater, and also for the parpose of abeorbing and combining with the gases evolved in sach sewage water, and the animal and regetable matters contained therein or precipitated therefrom.

The first part of the invention relates to the conntruction of tanks or reservoirs. Fig. 1 is a transverse vertical section, and Fig. 2 a plan, of three tanks or resorvoirs, in which the mass of sewage is to be collected; also a section of baildings to bo erected over the tanks or reservoirs in which the repours and gases arising from the tanks are to bo collected and condensed, or combined with other substances. A, the extremities of the sowers, throngh which the sewas matter is to pass, commanicating with the tanks B, in such a manner that the sewage water will ran freely into then. The sewers A have sloices C, opened or closed at pleasure, 50 as to allow or prevent the flow of the sewage water and matter into the tanks as may be desired.
The tanks or reservoirs, \mathbf{B}, may be constracted of brick, stone, or ather ft materials, and of any number, form, and depth, as may be fonnd mont anitable and convenient, according to their local position and the quantity of sewage matter to be treated or operated upon. It is preferred that each tank shonld be made in the form of a parallelogram, the sides to which shall be three times the length of the ends, and varying in depth from twelve to fifteen feet. The bottoms of these tanks or reservoirs must be so constructed as to drain down to some one or more places where a filter or filters is or are to be placed for draining and drying the solid matter in the tanks, and with proper drains under such filters for carrying off the wrater passing through them. It is preferred to construct the bottoms of the tanks with double inclined planes, and with drains ranaing down the centres of the tanks, and into which the water in the tanks will drain. Over each of these drains is placed horsehair cloth, or some other porous and filtering material, to be supported upon gratings. The draing under the filters must be made to communicate with a cistern or other receptacle for receiving the filtered water, and so that the water may ran freely from them into such cistern or receptacle.

The sewage water from time to time poared into the lanks B, after being deprived of the solid animal and vegetable matter contained therein, is to be let of through the floodgates, \mathbf{C}^{2}, into the water-ways, \mathbf{C}^{8}, so as to bave the precipitated animal and vegetable matter, remaining in the tanks, to be aflerwards treated as hereinafter described. The floodgates, $\mathbf{C l}^{\mathbf{r}}$, mast be placed about three feet from the bottoms of the tanks, so as to lase a convenient space below the level of the floodgates.

When a sufficient quantity of animal and vegetable matter has been collected in a tank, the floodgate is closed, so as to prevent any farther flow of sewage into the tank until after it has been emptied of its solid contenth. The filtered water contained in the cistern, or other receptacle, must then be pumped up from time to time, or got rid of in some other way, so that the drains under or communicating with the filters may be kept free from water, and the filters so left free to act efficiently.

In order to facilitate the process of depriving the solid matter in a tank of its moisture, a partial vacuum under the filters is formed, so that the pressare of the air upon the contents of a tank may have the effect of drawing the water contained in it down through the filters into the drains below; and for the purpose of producing and keeping up such a partial recuum, the patentee either ases an air-pump for exhausting the air in the drains under the filters, from time to time, in the same manner as air-pumps are generally applied to such purposes; or he produces and keeps up such a partial vacuum by means of the pump by which, from time to time, the filtered water is to be pumped out of the receptacle.

The tanks \mathbf{B} may be subdivided into two or more compartments by divi sions, B: The line E, E, fig. I, represents the ground line, or level of the ground, showing how much of the building is to be raised above ground.

The second part of the invention relates to the buildings above the tanks already described, F. Fig. 1 shows the walls of a buildings erected over a set of tanks. G, the roofs furoished with a number of openings \mathbf{H}, through which the air may escape. I, are ceilings, furnished with one of more of Day's Patent Archimedian Ventilators J, or other similar machinery, for effecting an upward current and drawing off the vapours and gases evolved from the tanks, and carrying them up into the chambers K, to be condensed or combined with some chemical agents or matters, as hereinafter described.

In the chambers, K^{2}, are fixed a number of uprights of wood, C^{3}, and to these a number of spars are secured in a longitudinal position, on which the salts or other substances formed from the vaponrs or gases may rest and attach themselves, as hereinafter described.

The third part of the invention relates to the constrnction and arrangement of machinery and apparatus to be used in distributing and depositing chemical agente over the mass of eewage collected in tanks or reservoirs, which arrangement consists of trams or rails, fixed along the edges of each side of the tanks or reservoirs \mathbf{B}, on which suitable carriages may travel.

The operator will, by these means, be enabled to distribute the chemical agents or substances equally over the whole or any part of the surface of the contents of the tanks or reservoirs, as may be required. And for the porpose of more equally distributing the contents of the wagon over the anrface of the matter in a tank, the bottom of the wagon may be conctructed iike the hopper of a flour mill, and have motion given to it in tbe same manner, or any other similar means may, if thought fit, be adopted
for making the bottom of the hopper self acting for the purpose of distribating or throwing down its contents into the tank below.

The fonrth part of the invention relates to precipitating all the solid animal and vegetable matter contained in the sewage water from time to time ran into the tanks, and to canse the vapours and gases arising therofrom to be condensed, absorbed, or combined, with some other substances in the chambers above. For this purpose, hydrate of lime, commonly termed slaked lime, is preferred, being the cheapest and most efficient chemical agent for effecting it.

For the condensation of the raponrs and gases arising from the mass of sewage, it is proposed to use chlorine gas to unite with and condense all such vapours or gases as are composed of ammonia, or snlpharretted hydrogen, which are evolved whilst sewage matter is collecting or nader the chemical treatment in the tanks or reservoirs. Hydrochloric acid gas, and some other chemical agents, may perhaps be capable of effecting the condensation or absorption of the verions vapoars and gases arising from sowage matter, but chlorine gas is preferred, because of its efficacy and the facility and economy with which it may be obtained.

The solid animal and vegetable matter remaining in a tank after the greater part of its water has been drained out of it by means of filters, as before described, onght to be dried so as to provent the chemical decomposition of it, and render it fit for being transported to distant placen, for application to agricultural or other useful purposes.

This solid matter onght first to be formed into pieces of saitable shapes and dimensions, and then dried by any means which may be most convenient according to circumstances.

SHIPS' LOGS AND SOUNDING MACHINES.

Thomas Waleer, of Birmingham, stove makor, for "Improvencmes is shipg' loga and sowndings."—Granted Junc 22 ; Enrolled December 22, 1846.

These improvements relate to apparatus for registering the speed of versels and sonnding depths at sea. The first to registering the spoed of vessels by external or internal rotators. Fig. 1, shows the rotatory placed on

one side of the vessel, with its inder above the side of the ship. d is a suitable metal tube, inclosed in the connecting medium, such as rope or chain ; a, is the rotator; b, the rope, with a universal joint attached. Fig. 2, is a view of another description of rotator for registering the apeed of currents, which is contained in a carcular box or tube, a, having fianges for the purposes of removal; c, f, ate metal tubes, formed in the manner shown in the cut; d, is a racuum pipe, for the purpose of extracting the air and filling the tubes with water, to admit of a passing current through the blades $b, h ; g$, is the water line. The whole spparatus being above it, more readily admits of repairs. Figs. 3,4 and 5 , represent the application of the rotator within the weight or oylindrical metal c, a is the rotator ; b,
the blades; c, the serew into which a amall pioien taken; d, the pinion spindle; e, c, the weight or cylindrical case ; f, f, hocinotal beanigg ; f, tooth and pinion wheels : h, a longitudinal ntop; i, i, indicutors; $4, l$, a semicircalar chanael, fitted with an adhenive popponad for the pargore o

Pr. 1.

7. 2.
ascertaining whetherthe log reaches the botion or mot, by collecting partioles of dift or rubble therefrom. The action it as follows:-The log, on descendiog repidfy throush the water, cassea the blede b, to rotate, which is trumartted to the booth and pinion-vitheels, g, and from thence to the hands or indicators i, i, which revolve matil the log mas reached the botlon, when it is necesany, in order to keep the beade or fadicators in the position last jodicated by the motion of the rotator, to euploy the stop, h, which is pat in action by the pressure of water when the log is being withdrawn, thereby preventing a retrogressive movement of the hands.

GODDARD'S IMPROVED ANEMOMETRR

It consists of a double vane, ahaped like a trunceted cone, the amall ands being fised to a bran tube about 1 inch in bore; thin tube, panetreting the roof, rent on a hollow socket fred into a table, which mapports the inatre. ment ; immediately above the table the trbe passes through a solid cylinder, whose top is cut abligue to the axia, thus forming a molid, termed a hoof, the tube forming its aris; $s 0$ that an the wind shifts its quartern, vane, brass tube, and hoof, all revolve together in the plane of the horizon : beside this rotating hoof, a braw piece is placed vertically upon the table, and han a slit in it, so that a slider, containing a pencil, may rise and fall at the thick or narrow part of the hoof comes ander the sliding pencil, the former being the case with a north wind, sud the latter with a soath wind. Therefore it will be underatood that the peocil is lifted to the top of the scale at narth, and depressed to the lower end by a south wind; the eant and weet oceapying the mean or middle, it will be reedily reen thatt the east and weat are in the mame place on the conle; but in order to distinguish them from one another, a pencil (below the former pencil in in lowent excarnions) is made to mark in the eautern semi-uircle, and remaia insetive on the wetern. This is the direction of the wind-pencil.

To the minute-hand of a clock in attached a light aym, which, being eonnected with anotber peacil by mana of a bean (rimilar to that of a meamengine) placed in the neme alider, only above the highent lifait of the direc-tion-pencil and its auriliary, alternately raines and dopremee it, accortiag as the minute-hand points to 30° or 60 . This is the time-peneil. Indide the brass tube as iron rod pasces, connected at the upper and with a fan mbeel, which the wind turns in proportion to its veloceity ; and to fits lowar end with an endless acrew, which, communieating a motion to a fow ample wheals, gives a slow rotating motion to a cylinder, upen which a abeet of paper is fixed: apon this cylinder, and whose axis ls vertical, all the pencils describe their evolutions. The offee of the two first pencla is to record the direction, and of the last the time and miles of wind; $t t$ being previounly mocertained how many revolutions of the fan-wheel correspond to a mile or teen miles of wind.

The edvantages of this anemometer are atsted to be:-

1. That the seale of time is five times greater within an equal compass of paper than Mr. Onier's.
2. That the register of direction is fully eight thmes as large, with equal nized sheets, at that of the ordiany construction.
3. The data regitered are more compreheasive than those of Whewelly, Oaler's, or Poater's, vis:-
4. Miles of wind blown daring the day.
5. Miles of wind blown in each direction.
6. Miles of wind blown between any given periods.
7. Hour and notaste of the highent guast.
8. Houra in which most wind has blown.
9. Times of calma, and length of continusace.
10. Velocity of wind at any hour.
11. Time occupied by the wied going any certain diatance at any pariod of the dey.

9. Direction of wind at any minato.

10. Meen direction.
11. Direotion of longeat continnance
12. Direction of grement pasage of wind.

ENTEMAL FTTILNES OR ST. DENTS.

In the dmake Archefolyiquee for October, appeas: an ablo exiticinc, by the Baron de Gailberray, of the recent sutioration of the Abbey of \&t. Derim, near Paris. The severity of this paper, from which some extracts are given below, is fully jastified by the obvious incompetence of the architect, and the desecration of an ancieat and benatifol edifice by modern make-shift ecpedient. We can tentify from permand obecrutiva that the archinection of the Abbey now boole very metty, but prowimem and the iminaive doweration now extitbited in $\mathbf{8 t}$. Denis are worthy only of the geady shopt in the Palais Royal.
${ }^{4}$ The capital vios of the metrel doencation of St. Devis is to our eqes the beence of all sarions charmetw. You wouk frecy you mow the sork of a sceptical and mocking age, whlch, forced to rise up gein the reins of the
 mott caralior fachion thinge of a claw alrogther grave end reppectable. Hew they bere played at emecombe, and at primitive Chriatian ; there they have praned awly from the legende the mirceles which God condd not hawe wrougts withems mounding our remon; elewhere thay give jem, by way of tombe of the martyr, blocks of there which onty powetis the appeerimee of such, and utiars redly convecrated shether under thair tablea thowe lying ropresertations; finaliy, to crown the derision, two or three cyome metree of bend red serge, hung to a pole of gitt wood, at the end of the appe, smeritegionsly parody that glorious Orifimme of Prmace, which our fathern, in their religious enthusimen, innagined was sent down from Heaven, and pteced by an angel in the hands of the firt Caristian king.
"Chapels of the Nave--Seren chapels border the mave of St. Denis on the north; the firts serves for a lodging to the guardians of the church, and the seventh is occupied by the two manoleams of Louis XII. End Henry II. The of other chapela bare been restored to the porposes of worship, and at the prevent hour the last hand is being actually put to their decoration. Two alone amongut them, those of St. Martin, and the Trinity, premerve their anclent titles ; the three others, which bore the names of St. Lawrence, St. Louis, and St. Denis, have lost their old patrona. But an innotrious martyrs Like St. Laurence, kipg like St. Louis, an spostle like St. Denis, meritod some regard; mecordingly they have given them a compenution in the chapels of the apse, where they have in their turn aupplanted suints of a lem value. The confuaion resalting from all these displacements, will in no little degree obscure the history of the Abbey, for him who would wish to stady it in the different works left by the Benedictines. It wan not withont a motive that the monks of St. Denis had setiled the titles of their different chapela; the choice of each patron wat consected with some remarkable circumstance in the histary of the monatery.
"At St. Denia the decoration of the lateral chapels of the nave has been treated as if it were a case of furnithing the halls of a maseam. The people who had supprenced the Maseam des Petitr-Augutins, and who no longer knew what to do with the immence quantity of fragments of which this col lection was eomposed, entertained the unhappy thought of enriching St. Deais with the apoile of a hundred charches. On their side the architeeta gave themselves iscredible pains to make use of all these debris. So that the eye in every where sbocked with a disorderly accumalation of aculptarea which have neither connection of anbject nor community of origin, not anelogy of ațle."
"Four basi-relievi of the sixteenth century are fized in the wall."...... "In order to give this chapel an altar worthy to figare in the midat of a like disorder, they have gone and chosen in the magazine of arches, several pointed arches of the thirteenth ceatury in coloured atone, formerty comoprised in the decoration of the charmiog apee of the Sainte Chapelle as Paris, and on these sapports of a new sort is pleced a great alab which forms the table of the allur. At one stroke the Sainte Chapelle has been deprived of an important portion of its ancient ornamentation, and SL Denia han been eariched with a pitiable monument. These archen so diaposed form an opea apsee, a sort of cage, whose bars emprison a statue reclining on a sheet; leok at it well, and you will recognise the lover of Dians of Poitiens, (Heary II.) who here fulfis the functions of a Chriat in the sepulchre.".... "Above this altar of sufficiently profane composition rises a curious reredos of wood worked with more patience than art.".... "The style of this sculpture proves a Flemish origin. Finally our chapel has been entirely peinted; bat, in plece of clothing li with thowe brilliant coloure of azore and gold for which the middle ages had such an affection, they have given it a costume of the asddest and palest tint. Certain columas reproduce, on a gigantic scale, those innocent aticks of apple-bogar or cbocolate which our confectioners dieplay less to cheer our oyes than to excite our goumenderie. If, as they have dared to say, the money to do better was wanting, would it net have beea fit to have writed? The church of 8t. Desis will survive as A protecoded drapery of a greenish colour, powdered with meagre ornements of gold, (it it can be 20 called,) bengs heavily all round the chapel, to the lower pert of the walls. Higher up, honso-painters, turned into hintorical paintere, have executed two abominable frencoes representing Mosen on Sisai, and the Lant Judgment. In the scene of the Jodgment the tribanal only is given; the whole human race is missiag. Let as not forget to mention, by way of memorandum, three or four bad modern picturet straying about this toy-ahop, and to wate that at this very moment workmen ere figithing a great been
natios from the monthe of dxypone, which win moon be, if the new erchituat does not rectify it plontad serome the arch of the opening of the chapel; this piece of wood will serve as aupport to some twenty bad little atatues, which will be disponed like a celvary, such as still exists in certain rural cearebes, particularly in Britanyy. I simply announce these facts: they yent anminaty for therosetves, without their haviog noed of a comaer4.7.0
 into atrive, of which-
"Two beai-rethevi were mising; to replece them, they have modened wioe overin pepier-mache, a Preecting of 8t. John Beptint, which in thas fond therice repeated. All the little stateces which were deatroyed, have been aleo reatored in papior-mache. This wood-mork, of which the arecrtion in admirable, is now found so glued over with oil-paint (guare vernish?) that one can do longer appreciate the delicateness of the tool: the figures and the mincreres of the mala have had the seme fate. Socre panels of the
 initated there by the pemell-every mheve and alwaye the intontion to doceive the eye." "They have had the barbarity to use up, to cat, to pare doorn, which came from Gaillon, which passed for chef-d"aruere. They have employed the pieces to make a frame for the painting over the principal diter, besehes for the cholr-boys, and deaks for the cantors. "In a sealpture of the Nativity in this choir, they forgot, while reatering $t t$, to place Oar Lord in the cradle.".. \qquad "In this ame choir are now found the monnmenta of some abbats of St. Denis ; they are the only onew which the revolution hat pot deatroyed. But before they formad here the right of aglans, they have been compelled to mifer rude ontrage."-"They alao devied the fabrication of a Suger, by means of a grotesque face of pure fancy, faken from a boat of the ancient clointer, a bloated and trivial face, recently illominated with a drunkard's red."......" From four or five Apostles of the gainte Chapelle which hed been carried to St. Denis, they have drawn out the tweive by moulding them one upon another. These twelve figures, ereeuted in platrter, are placed against the pillars of the winter choir.".... - A gtreed enclowure guarantees the canons from every current of air, it in a real trane of glast, eet in plaister folinge, and papier-maché mouldings. The poor royal chnrch is croelly expiating its passed magnificence."
${ }^{\omega}$ Fe have not to talls cither of the high altar, per of the stalls of the great chair, nor of the rosaic pavemeat of the mactury; they have none of them any archseologieal pretemsions; let us leave them in peece. The choir in paved ia black and white equares, juat like the veatibule of a bowr. genim house, or a dinters room. At the extremity of the apee, two marble colvanes annalated like those of the twelfth centary, and crowned with capienla of the thistoenth, cerry a weoder platfors, on which repose, is alarines of gith bromes, the rellics of the three martyrs, and which serves th the teme ti-n as cenopy to the seet of the feet digaitery of the chepter. They have tho eat mp blices some precioses wed-wort of the chapel of Gaillon to compose with it s niche for the armed chair of the primicier, which has remelned empey since $1890 .{ }^{\circ}$
"Chapele of the Apee.-If we run over the chapels ranged round the apoe, we aquin find there all the faults which abound in thoec of the nave.".. "Phister displays all its magnificeace in the whole circuit of the sanctoary." ….." Aa the beight of lurury they have spread with fall hands on the borders of the tables of the altars, namy pioces of glasa picked up in the atals of the Bonleverds." "In the chapels of St. Benedict, St. Generiere, and St. Bugenias, ander the tables of the altars, great tombs of stone, which appear to contain bodies of the saints, are each fairly composed of a huge block, of which the exterior alone has the form of a sepulchre... In the chapel of St. John Baptist, a cross of the fifteenth century, a carions monument extracted from the ancient cemetery of the Innocents, is now planted ore ablustrade. This cross finds itself exalted on a column channeled in cberrans, in the atyle of the twelfth centary; it is sustained by a bar of iran, without tbe aid of which it would immediately fall upon the pavement. The Firgin and St. John the Evangelist ordinarily accompany, as is known, the representation of Christ upon the Cross:-tbey thought of placing here the statues of theae two pernonages. It was not very dificult to procure a St. John ; but there was a want of a suitable Virgin. What was to be done in this penury ? The restoration of St. Denis is fertile in expedients. A very indocent Apostle was condemned to the purishment of decapitation, and on hin masculine shoulden they adjusted the head of a woman with tearful eyes. On the facade, they had traveatied the Virgin into a man; they wished to give her her revenge. But unhappily in spite of the feminine head and veil, we travellers by the old road recegrise the poor Apostie, by the book which he carries, and the barencas of his feet.
ω We truat the reader will purdon ms mach minate details. We have remerved the arongent for the lest. They had in their baods the front of a encophagas, which may well date fron the aighth century. What a wiadfall for people who have seea Rome, and lrow a littile of their catecombs. The fonat of the tomb, in spite of its purely funcreal inscription, has become the frost of an altar. If We conplinin of it, shey suswer methat it is seen at Rewe in all the besilies. On the marble has been placed a reredoe of a aew mete, with Moagrarn, Fish, and Dove; one might really fascy obe't-saif at the end of the grotioes of St. Sobertian. In order to reader the illusion mope entire, and the perody leas imperfect, they comeaived the iden of ermeanist in a lively manear, the defeat of pegavire, and thi is the why they
cet cboud ita At the male of a defunct antiquary, of I do mot know what il. lastrion society, they parebeced a little marble vaee perfectly intact, ccilps tared with an engle, and decked with an epitupt. This sofficirntly imprere vase wala deatined to become a reliquary. A primitive Christion coald zot have seen withoat horror upon an altar, the eagle of the persecator, and the names of the Dii Manes; two etrokes of the chisel therefore dealt justice to theae pagan emblems, and on the debrie of the eagle, they traced a crows, which they took care to make as awkward at pomible, in order to make it pass for the work of a primitive Christian, fanatic and maledroit. It is thes that at St. Denis they make a joke of the Christinnity of the catecombs."

SOCIETY OP ABTS, LONDON.

Jun. 14-Jogrpa Paynr, Eeq., in the Chair.
The frat commubication read wes "On a mew Condensing Revery Shem Engiae," by Momars, Condee and Locze. Models and drawing of the invention were exbibited.

This is an invention belonging to the numeroas class of retary shane engiees, bet differs fros them tiv two respecta. 1st. That whenens they have extensive rabbing surfuces, which reqnire great sceursey and caroful packing, and are attended with much friction and lass of power, the mowly invented engise has no packing and scarcely any friction, being zerely a wheel or vanes revoiving withio a case, and receives impact from the ateas as if passes from the cylinder to the condenser. 2nd. That whereas the common engice, revelving at high volocities, bas to ewcounter grott reint ance from the air, this wheel revolves in vacures, by means of a copdamen worked by a triple mamp, separtied from the machimery of the engine. The proof which the patesteen offer of the excellency of the engive, consints in the results of certain exporimenta, mede on a large acale, ia paaping water, and in direet competition with engines of the comenen form; in Which experiments, it was made to appear that the same geperal copel effect was obtained from the new as from the old eagiae, but with a rach rimpler end cheaper apperates. The paper coocleded with an account of a large experimett, in which the rotary emgine was nsed as an enxiliery to a concon engise, with a gain of ono-third nore power.
Mr. Cospes geve an interesting acconnt of the working of the engine, and the rearits of the varions experiments that had been made; after which a lengtheeed disconsion took place, in which Mr. Newton, Mr. Rotch, and other scientific gendlemen and engineers, bore testimony to tho ingenuity of the invention. The cost of constructing an engine on Mesars. Cordes and Locke's principle is stated to be from $\mathbf{£ 1 5}$ to $\mathbf{X 2 0}$ per dynometric horse-power, exclasive of boilers, the weight of engine per hornepower not exceeding 4 cwt .

ROYAL SCOTTISH SOCIETY OF ARTS.

Dec. 14, 1846.-David Maclagan, M.D., F.R.S.E., President, in the Chair.
The following connmanications were made:-

1. "On the mewne of Preouting Accidenta to Reilnayy Traine." By J. Stiviart Hepsunk, Eeq. Two expedionts are proposed-for preventing collisions, and for rendering them tean fatal when they do happens To provent cotticimas, be propoess a break of a much more effecteal kindnot rubbing on the tyre of the whecis, but prosing down apeo the cail, and at the anve time lifting two of tho wheede af the rail altogether. This he proposes to be worked from the last carriage in the train, and gredually to be taken up by the next brealt in front, and so oo to the locamotive. In this way tbere would be no danger of the carriages in the after part of the train ranning intu those in front when the breaks are applied.To render collisions less fatal, if they should happen, he proposes to havo one of the laggage raps, both in front and in the rear of the train, fitted up as bufer wagoos, with a set of very strong springs at both ends of the wagon, to deaden the stroke, still continuigg the asual bufers in all the other carriages.
2. Description and drawing of an "izaproted Railway Indicalor and Alarnem." By Mr. Andrew Caraice. He proposes that a lever be attached to the locomotive (with a rule joint to prevent ite action on reversing the engine), which shall come in contact with a short inclined plane, at a certain distance from each atation, wben the engine shonld be slowed. The lever is pushed upwards by the incline, and strikes a bell, which gives notice to. the engineer, especially in foggy weatber, immediately to take the steam off, as he is approaching a station.
3. Description of an "Ink to be used in Writing to the Blind, with some remarks on whether the Roman Alphabet should be used, or one of eatier formation by the Pen." By Robert Foolis, Eaq. The ink is of peculiar kibd, composed of common ink, acetate of lead, and gum arabic, by writing with which on common paper, the letters, which must be of a tolerably large sige, are easily felt and read by the blind. This was proved by his making a blind boy read several sentences which he had not previously done. Mr. Foulis also goes into the question, whether it wonld bot be better, in writing to the blind, to have an arbitrary character of eacier formation with the pen than the Roman alphabet
4. Dr. Wileon exhibited in action, and described an "Electro-Magnetic Coil Mfachine," constracted by Messrs. Kemp and Co., Infirmary-street, and showed that Mr. Brown's coil machine, lately exhibited, is made on the same principle as Mr. Kemp's, which had the priority.

Jan. 11.-Georee Tait, Esq., V.P., in the Chair.
The following communications were made:-

1. Description, with a drawing, of an "Howrly Self-Registering Barometer." By Mr. P. M‘Farlane. He proposes to have twelve barometer tubes placed side by side in a case dipping into separate cups of morcury, the lower end of the tubes being bent at a right angle, and gronad even at their months. A valve ia fitted to act on each of the months, and to the other end of the valve is attached a lever, on which at every hoar, a wire moved by clock work presses and shuts each valve in succession : thus retaining the mercury in each tube at the exact height at which it stood at that particular hour of the day or aight, and as they are all read off at one time, there will be no occasion for correction for temperatnre.
2. Proposed improvement in "Locomotices and Railway Carriages, particularly in their Wheals and Breaks." By Mr. J. Wight. He proposen a now form of wheel for the running wheels of locomotive ongines and railway carriages. In place of running in a vertical direotion, which he finds by experiment to be very ept to cause the wheels to teap off the rail on arriving at some impediment, perhaps a very slight one, especially when on a curve, he proposes to have the wheels (except the driving wheels) ranaing at an engle of 45 degrees, the opper part of the tyre to be next the oarriage, and the lower part of it upon the rail, with two sets of apokes, one set as at present, and the other vertical, so as to bear the weight of the carriage. He conceives their axles, which are to be separate, and not in one piece as at present, will be mach stronger, though lighter, for the section, taken at the angle of 45 degrees, is stronger than a section perpendicular to the horizontal axle. Bat the chief improvement he conceives, consists in their safety, having no tendency to run off the rail, althongh upon a curve of small radius. He also proposes that the break, instead of checking the wheel by rubbing on the tyre, should be made to rub upon the rail itself. The break to be about 2 feet long, $s 0$ as to present a large rubbing surface to the rail, and to be moved by the ordinary lever or acrew power.
3. On a new and improved "Method of Saving Life on Skativg Lochs and Cwrling Ponds." By Mr. James Baillie. He proposes to have a flat-bottomed boat, with mallets, ropes, short ladder, and other impiements, Kept at the side of the loch, and a long rope also to be managed by two men at the opposite sides, who, when any one has fallen into the water, can speedily bring this rope over the spot, which the person immersed may lay hold of notil the boat arrives.

ROYAL INSTITUTE OP BRITISH ARCHITECTS.

Jan. 11.-Mr. Tite, V.P., in the Chair.
A paper was read on the Ancient City of Syracuse, by Samuel Angell, V.P., which is given in another part of the Journal.

Mr. Scoles, honorary secretary, exhibited a drawing of an ancient bath in Syracuse (be considered it Roman), the vault of which was formed by earthern cylindrical tubes, 21 inches in diameter, like a wine-bottle with the bottom out, the smaller end of which entered the larger end of the tabe next it, and so, without involving the priociple of the arch, formed a vault, in this case seven feet in span. The tubes were filled with cement, and covered on the top with a layer of tiles.

Mr. Donaldson communicated a paper, "On a mode of Measuring and Valning Carpenters' and Joiners' Work, with the ciew of obtaining greater correctness tham by the mode now pursued." By Mr. Baowning, architect.

Mr. Tite said, architects had been told recently, in a work which had attracted some notice, that this was a matter with which they should have nothing to do. But the fact was, they couldn't help it, and moreover would not do their duty towards their employers if they neglected attention to ft . He had himself no liking for measuring and valuing, but aevertheless he was obliged to do it. As to any change in the mode of measuring, he thought it would have to come from the operatives rather than from the profession. That it was much needed there conld be no doubt. The mode of measuring stone was especially empirical. Measuring first the cube stone, then "face," "bed," and " joint," as plain work; then the sank work; then the moulded work; led to a false result. Sir Robert Smirke, at the Post Office, had struck a blow at the system when he refused to allow the bed and joint to be measured, and gave an increased price for the cube stone. The engineers had cut the knot which the others attempted to untie, by measuring the cube stone and nothing else, including all labour in the price. This, however, was manifestly an qusatisfactory mode. Returning to the general question, architects were bound to see that their employers were fairly dealt with. It was easy to certify an amount, but no man should do so unless satisfied as to its correctness. The art could not be separated from the busineas. Measuring might be delegated to others, but even then the architect was justly held responsible. It was so also iu Greece, where, if an architect's estimates were exceoded in the execution of the works, his own fortone was liable for the difference.
[Will Mr. Tite sell ns how to get at the labour of saming the stone and sunk work and other labour connected with beda and joints, or the
labour on the face, vithont firat meararing them. It is very true that bailders, to suit the convenience of some architects, give e price for stone per foot cabe, faclading beds and joints; but before they do so, they firat calculate from an average, in the best manner they can, the value of the saming and setting, and then add it to the price of the stone. The only advantage of such a practice is that it anves a little trouble in measuring the work, allows a clerk of the works to measure the stone work, and dispenses with the employment of an experienced surveyor. In the came manner, it might be advocated that buildinga should be taken at so mach per foot cube, and doubtless this method would save much trouble;-but what dependance could there then be in the correctaess of the value of the work and laboor done ?-EBd. C. E. \& A. Journal.]

The Papworth Testinnonial.-Several architectural friends of Mr. Papworth, on his retiring from the profession as an architect, at the age of 70 years, mot at Mr. Donaldson's house, in Russell-square, on Monday, the 25 th ult., to present him with a beantiful Silver Inketand, "as a tribute of their respect and esteem for his talents as a diatingnished architect, and for his worth as a man." The teatimonial was presented, with an eloquent oration, by Mr. Cockerell,-the lateness of the month prevente us giving even a brief ontline of it, or Mr. Papworth's reply.

INSTITUTION OF CIVIL ENGINEERS.

Jan. 19.-Annual Meetiag.-Sir John Rennie, President, in the Cbair.
The following gentlemen were clected officers for the ensuing year: President, Sir John Reanie ; Vico-presidents, W. Cubitt, J. Field, J. M. Rendell, and J. Smpson; Couzcil, J. F. Hateman, I. K. Bronel, J. Locke, Sir J. MacneiJ, J. Miller, W. C. Mylne, T. Sopwith, R. Stephenson, G. P. Bidder, J. Cubitt, Captain Coddington, and C. Holtzapffel.

Telford medals were presented to Mesers. Barlow, Snell, Harding, Williams, Parkes, West, and Ritterbandt ; and premiums of books to Mesare, Turaball, Heppel, and Robertaon.

Council Premitms, consisting of collections of books of considersble value, were presented to Mescrs. Barlow, Snell, and Marding, in addition to the Telford medals. Succinct memoirs were given of the deceased members, Messrs. Crane, Deville, Handley, and Winsland.

The Report, which stated that the Institution was in a most prosperons condition, entered fully into a description of the alterations of the bailding during the recess. The principal works appeared to be the remodelling the basement story, patting a portico at the entrance, and balconies to the first and second foors, and enlarging the theatre. Thanks were unanimonsly given to Mr. T. H. Wyatt, the architect, Mr. Grissell, the bvidder, and Mr. Manby, the secretary, who superintended the execution of the works.

The President's Address.-Sir J. Rennie, after alluding to the stimnlua the profession had received from the number of public works recently andertaken, and the high position which the Institution bad obtained from the successful labours of its various members, impressed on them the necessity of still further exertions, in order to support the scientific character they had earned. He then reviewed the progress that had been made in railway travelling and steam navigation, and made some valuable remarks on the formation of bar barbours and the drainage of extensive districts of marsh lands. The president then remarked upon the appointment of oivil engineers by government to investigate into the merits of various projects which had been submitted to the Health of Towns Conmissioners, and observed, that if the same system had been pursued with regard to railways, the public would have derived infinitely greater advantages than they were likely to do from their present system. Sir J. Rennie concluded his able address by thanking the officers and members of the Institation for the kindness, attention, and support which they had on all occasions exhibited towards bim.

Thanks were roted to the president, vice-presidents, and other members of the council, and to the secretary, and the meeting adjourned.

NOTES ON FOREIGN WORKS.

Machine Manufactories in Germany.-The construction of the manufactory established at Esslingen (Würtemberg) proceeds rapidly. On the lst of May last, the building, 1000 feet by 60 feet, was begun, and one half is now completed, and workmen are already employed in the carriage department. For removing the single engines, some new water-works are being erected, the establishment having a $\mathbf{1 0 0}$-horse water power at its command. The annual produce will amount to $\mathbf{6 0 0 , 0 0 0}$ forins ($\mathcal{E} 150,000$, English), and employ 500 workmen. It will shortly be completed, and thas Würtemberg will not only produce her own locomotives, wagons, and other railway requisites, but it is said that even the Roman lines will be supplied from Easlingen. The direction is confided to M. Kessler, and government has assisted it with every facility and aid desirable. The same gentleman was also the founder of the Karlsruhe manufactory, come menced in 1837, which has since 1842 produced an immense quantity of railway implements. It now emplogs 860 workmen, and since its erection
has constracted 70 locomotives, and 90 are now in hand, for the lines of Soath Germany, 8witserland, Hanover, Prussia, Sce. If the making of torn-tables, bridges, and other stractnral perts of railways, be taken into ecconat, the activity of thene two establisbments may be easily calculated. Ocenpyiag, jointly, 1300 workmen, and producing 2,000,000 fi. ($£ 350,000$) of work a-year, they may vie with any establishment in Belgium or Eagiand. Ten years ago, any such plan would have been considered in Germany quite impracticable and chimerical.
M. Rugendes, the painter, who has travelled twelve years in different parts of Boath America, the Brasils, \&cc., has brooght back a collection of abont 3000 skerches, some of large size. The views of American cities, asd their chiof buildings, with architectural details thereof, will be the more intereating, as plans of the ancient structares erected by the Jesuits, and even the new public buildings of these infant commonweaths, are not seriojenlly known.

Intermption to the great Water- Works at Hamburg. -These important Forks have come to a sland.stili, by the burghessen council having refused a mopplementary grant of some 500,000 marks. This, afler millions have been already expended, seems a strange manver of doing bosiness. It it said, however, that the citizens of Hamburg never conteniplated the erecgioe of such stopendous show-buildings ; besides, yielding to private intereste, and other paltry practises, are also objected to.

Grewt Scientific Prizes is France.-Our Freach neighbonrs regret, very fortiy, the falling into disuse of those prix décennamx, institated by Napoleon, towards which, not merely monetary graspingness, but legitimate ennilition, were once aspiring. Still, the prises proposed every year for the advancement of science are greater in France than in any other coun2.9. We report on the present occasion one of the Prizes of Argenteuibvis, "Is the intervention of water, in the state of combinalion, necessary for eflecting chemical reaction between acids and their bases?" This impertant question has been treated by M. Frémy in bis interesting memoir "Os the Hydrates." It has been completely refoted, by the experiments of this philosopher, that all anhydrous acids (i, c. those deprived of water) eanoot combine with buses; which signifies that they bave lost their qual. ity of acids. He then proves that the carbonic, sulphuric, sulphurous, phosphoric, and other moids, combive very well, in their anhydrous atate with beses. And it is ouly those componnds which are both acids and beses in their turn, which require the existence of water for displaying their chemical affinities or attraction.

The New Great Prusion Lire.-The Berlin government have defnitely decided on a direct line to Koenigeberg, which will be began next spring. It is aid that this resolntion bas been bastened by that of the Ruscian anthorities, who intend to construct a line from the Interior to the Pruasian frontiers.

Frant-Phewomena at Rome,-The present severe winter has imparted to the eapital of the artistic world a etrange appearance: the palacenof the Emperors, the Colosenm, triumphal arches, and temples, are covered with a thick coat of jce, and the wide plain of Latiom, from the monntains up to the Mediterranean, is covered with e crust of anow, which even the midday rays of the sur are unable to melt.

Impracticatility of Contimental Ratimays in the Winter Secoon.-All the lines in the north of Germany bave been, more or leas, interrupted by the late severe frosts; an, for instance, the Berlin and Sileslan, as well as the Berlin and Hamburg, which had been only opened a few days previous to being thus obstructed. On the frontiers of the Mark and Silesia, where the line has been carried through the forests of the Lauspits, a company of sixteen or twenty travellers had to remain a whole night on the rils, on which the engiaes had been frosen in; and in the village of Kohlfarth there were, at one time, six trains stuck fast, so that no others could proceed, althongh three lines cross each other at this point. The mails and paseongers were obliged to be convejed on sledges.

Destrmetion of a high-road mear the Rhime by an Earthquake.-A most extreordinary phenomenon, caused by the upheaving of the earth (similar to those which sometimes occur is Sonth America, \&cc.), has lately taken place at Unkel, on the banks of the Rhine. In this neighbourhood, there exista a quarry of baealt, from which the atone is taken for the high-rond. Between this bacalt-stratum and the Rhine a large plain exteods, through Which passes the high road. This plain has now been converted into a mount, and the road thrown up 100 feet into the air. The locality resem. bles a place blown op by the burating of a mibs. Some minutea before the eroption took place, a terrible roaring was beard, like the approach of a hurricase, which caused the mail-drivers, who were passing at the time, to hasten away. This, however, was not heeded by a carter, whose vehicle, with a load of 5,000 kilogrammes, was rolled like a pebble, lifted up in the air, and thes horied 100 foet beneait the ruims of the falling rooks To the north of the baselt stratum extends a vineyard, on a bigh elevation of gronod : this mountain nas ripped asonder, at the same time that the plain was upheaved. The appearance of the spot is altogether extraordimary and curious.

Naples.-Two new churches, of good style, beve been lately erected here, litewise two large public fountains, whth antique figares and bas. rafletos. Broed footpalhs have been laid in the most frequented streets, as far as Posilippo, and the aquare before the charch of St. Francisco eacadamised, which hitherto has been very oncomfortable to the public. Eligh-walled, broad quags line the shore, up to the Villa of 8 Et . Lucia;
\rightarrow till, landscape admirers say, thet the former rocks and kravel, binding the see were more picturesque. An artesinn well is being dug in the gardens of the Palanzo Reale, and huge iron gates are being erected, on the grand pedestals of which the two bronse horses, presented hither from $8 t$. Petersburg, are to be plaeed. A large heap of aplendid gold cojns of the oldest period of Roman bistory, have been discovered at Pompeii, which bas filled our antiquarians with extasy.

An Italian Model Railcay.-The line between Lacca and Pian has been lately opened, and the commenication between the two cities takes place four times a.diry, and on holidays-as those set forth for the recreation of the bumbler classes-five times a-day. The line was constructed under the direction of M. Doblmejer, a German engineer, and is built in a very workmanlike, sterling manner. Even the carriages of the last class are covered, and the sides protected by leather curtains-if auch be necossary in that Ansonian climate. The prices are not bigher than on the other Italian lines, and the road passes through all the luxuriant olive groves of the Lucchese. A person is 00 able, during one day's stay at Livorno, to pass a few hours at Lucce, and also at Pisa, and return in the evening to Civita Vecohia ;-a forced way of travelling, it is trae, but one in accordance with the rapid progress of our times. A steam oommndicatios between Livorno and Corsica bas existed for some time past; and another with Elbe is projected. The live to Florence progresses very slowlywhich, however, is rather creditable to the Tuscan government, as the raral commanities raise some objections to the intersection of their commanal roads, and which the grand duke does not wish to out through in an arbitrary manaer.

Gold Mines on the Coust of Gwimea.-The attempt to regularly work these famoos mines has ofien been tried, but without any beneficial result; most probably arising from the climateric condition of the country; with which, however, onr present hygiaecistic koowledge is more likely to cope successfolly. The Dutch Government has now formed a new and syas tematic plan, and a person connected with the Colunial Ofice bas visited Freyburg, for the purpose of eagaging the most skilful miners. This has been effected, and the whole mining colony will immediately start for its destination.

Governmental Chemistry in Bararia.-A society has been formed at Mnaich for the dissemination (not difffurion) of useful knowledge, under the preaidency of the royal heir to the throne. The firat work published by this society is a "Handbook of Chemistry," by Range. A moat novel plan has been adopted in this work-namely, to put chemical solutions and compounds, in natura, upon slipe of peper, which, exhibiting all the ve. riety of chemical colours, and being pasted beside the text, afford to the incipient chemist, and such as have no laboratory at their command, the very substance described and dilated upon, before bis eyes; and which, in many cases, shows traces of crystallization, \&c. The book exhibits, thereby, very pleasing and varied appearance, and is, moreover, written with that simplicity and system, as to be intelligible to the capacity of every intellectual person-a merit more unusual than is generally supposed.
J. $\mathbf{L}-\mathbf{Y}$.

NOTES OF THE MONTH.

The Hell at Hempton Cowt Palecs, known as Wolsey's Hall, has beet re-opeaed to the pablic; having andergone a series of embellishments by Mr. Willement, which contribute to make it one of the grandest in Europe. The large windows, thirteen in nomber, on the north and sonth sides of the hall, have been filled with new stained glans, harmonizing with the noble windows at the enst and west extremities. The compartments of the eact and weat windows are occapied by the arms of Henry VIII. and thoee of his house. The subjects of the thirteen new windows now added by Mr. Willement are the armorial pedigrees of the six wives of Henry VIII., alteranting with the eight heraldic badges of the monarch-the Todor roeo, the Mewr-de-lis, the portcullis, the red dragon, \&c., within separate wreaths of follage.

The Glabe states that the Commienioners of Woods and Forents have resolved on carrying into effect the long-projected improvements in the vicinity of Buckinghem Palace. In the course of the ensaing summer, various buildings, nearly opposito the equerries' entrance, are to be rased with the ground; and shorty after Midsummer, it is romoured, Charlotiostreet Chapel is to be taken down.

Mr. Dyce has been commissioned to paint, on the walls of the staircase at Osborne Honse, in fresco, on a large scale, an historical, or rather poatical, subject - 6 Neptuve yielding to Britannia the Bovereignty of the Seas." The finisbed study for the pictore has been submitted to Her Majenty and Prince Albert; who have expreseed their satisfaction by ordering its im. mediste execution.
Cases have arrived in Athens containing the collection of oasta taken from the bee-reliefs of the Parthenon, now in London-and which the British Government bas presented to the Athenian Museam. These works of Art bave been temporarily deposited in an avoient Turkish monque; and will, in E few days, be ready for the admission of the public.

Royal Stem Navy.-It is in contemplation to appoint an additional comptroller of the steam machinery of the Royal Navy, and Captain Blise will have
the ald of a proctien enginuar in this dopertmont Mr. Iloyd, etief engi-
 etinery branch, with offices it the Adrirulty. Mr. Bifty is appointed reomed amistaint to the ehief engineor at Wootwich Doekyard, the inereave of the workt uequiring the addition of a meeosd secintant to the depmeneat.
The Trubular Bridges.-The platfoums and workshops required for the constraction of the Menai and Conway bridgos are tm progress. The ciatfors at the Menai 8traits will be 1000 feet loag. Tre worke will be soperinteoded by Mr. Ed wia Clart, the resideat cogiceer, whoen madideity and earnestness in the experiments and other habours conseotod with wis madertakiog bave proved very valuable.
The New Planet.-Mr. Adamas's mathemationl investigations are now publimed as an apeadix to the Nautical Almaneck. A very clear paper on the wibject of the controversy has recently appenred in ste Mechemica' Magazine, noder the title "Axonieacis," bo though the ubility of the writer and his zeal in defence of oar comntrymen's chaists are deverring of grent praise, we think that he has eotertatuod the question somentar too warmaly. The prierity of Mr. Adams's discovery is now cotablishod to yoad dispute, and all farther discoscion choold be maistaimed withoot even the apperance of personal recrimination. Nom tali anritio tempus of ex.

Dr. Morse's System of Cerography.-By this invention a map may be drawn as quickly and as well with a pen and ink on paper, in a gromed as thin and perfect as a common copper plate etching groond, and in a few hoars, perhaps in a fow minotes, obtain from it a type-meial plato. Which whall print every point, line, and letter of the drawiog ander the common printing press as rapidly as newspapers or wood-cats are printed. Several prapt executed by Dr. Morse wero apoe the table, and foe cimarness and betinty far exceoded any wood eagraving. Ia particolar, the writiog on the lives repremeating water, and which can lardly be dome at all in wood, in effected in a manner litule inferior to copper-plate. Already, in America, the diecovery has been ment extenaivety applied, puting the meens of isstroction into the bands of the many at the cheapeat poesible rate.-Geagraphical Sociely, Jam. 11.
An analysis of Bohemian glase, by Dr. Rowney.-This is the glass so valuable for its infosibility in the constraction of the combustion tobes ased in orgenic analysis. Althongh mode wha fond present to the oxtent of z of the potash, the glase appears to be esceatiany a silicate of lime and potab, in which the oxygen in the silicie acid is to that in the bases as 6 to 1. It gave 73 per cent. silicic acid, $11 \frac{1}{2}$ potach, 3 sode, 101 live, with mall quantities of alnmina, peroxide of iroo, magnecia, asd oxide of manganese, to make up the 100 parts-Chemioal Society, Dec. 1.

COVENT GARDRN TREATRE.

We have had an opportanity of watching the progress of the alterations of this bouse, from the commencement of the works on the Ird of December last to the present time, and have been surprised to soe snch a gigantic concern proceed with so much rapidity. Daring the two months the works have been in hand the whole of the interior of the theatre, from the coiling to the foundation, has been taken down; two wells, varying from 3 to 4 bricks thick, and 22 feet high, have been carried up in cement from the foundation to support the front and back of the boxes, and on these walls are erected cast iron columns, 10 i. 4 in , apart in front, and 11 ft .6 io. apart at the back of the boxea, and 6 in . to 8 in . in diameter, from the level of the pit tier of boxes up to the ceiting, which support five tiers of boxes. Two new stope staineases, sarrounded with brick wells, caried ap from the level of the grossd to the upper tier of boxes and gallery, have Deen bailt, aud all the stone steps propared, and the saloons, greed staircace, and the antreace halis and lobties have been compietely changed and re-constructed. When we tell our professional readers that these works have been execoted witbia the short period of two months, out of which three weeks were occapied in palling down the old interior, we think they will be surprised; and, we must observe, that all the works have been carried op in the strongest manner. We state this because a malicions report has been spread that part of the works had failed daring the progress. This, we can positively state, is not the case. If there be a fanlt, it is that too mack materials have been used; bat wheo it the recollected the necensity of having a theatre conarocted mithout vibratioo, this additional atrangth will sot appear superferos. The decorations will be soperbly grand, and seemmenced.
From our lust view of the premises on the 28th olk., we have no donbt of the works being completed, with all the decorations, by the middle of March. Too much praise cancot be a warded to Mr. Albade for his persevering labours in direnting the morks and labours of from 600 to 700 men, cosstantly at work right and day.
Duriag the progress of taking down the interior fittings, it was diecovered that the plates, 9 inotes by 6 inches, in the main wall of the building 4 feet thick, were eatirely perished, although they appear to have been of sonnd Memel timber whea put into the boidding. These timbers, to the extent of from 800 feet to 900 feet ron, bave been removed, and replaced with brickwork pinned in with cement. We firmaly trast this will be a Warning to architects against using large timber plates and boad timber in brick work.
When the whole of the works are complete we will give oor readers sone detailed account of the extent of the worky, to show what may be done by perseverance in a sbort period

Thomas Rdge, of Great Peter-street, Westminater, felemeter mannfeturer, for "Im -

Copge Dand M Mert, of Driderrew, Landen, engrover aod prater, Wimana Coepen, of Sodat Panl's Churchyard, bopnet maverthetyrer, and Thenas Wansbrough, of 8ooh wart Square, Surrey, hattef, for " Improvemente ti the menufacture of cape, bonnets, bookcovert, curtains, and hagings, sbow cinde boards, lebete, thentical deccrattons, sod c-lon.m-Due. 81.
 ments in eteam engines." Dec. 81.
Stephen R. Parkhurst, of Leeds, York, mamofacturer, for "t Ymprovements in carding woot, cotton, and other fibrous mbetances.m-Dec. 31.

 impollen, cottong and other fabran"-Dec. 81 .
. Adrlen Chemal, of Clichy Is Garenne, amar Paris, for "oertaln Improvemeste in the treatment of metallic oxdes and other comporinds, and in apparatue for the camenDec. 31.
Charies Dowe, of Cemden Town, Middeaex, gentleman, for " Improvements in apphylot sprimg to braces, o pertiotion, to his and cape, and memporendul and ofler books.m-Dec. 81.
John Clegg, of Oldham, Lancester, maehiniot for "Improvements in looms for wev. Ing. ${ }^{\text {m-Januer }} 7$.
Moees Poole, of London, gentieman, for ${ }^{\omega}$ Improvements In thh-hoohas" (A commoniction.) Jonvity 7.
 marafecture of trixes."-Jametry 7.
Piere Ioonis Thimete Thiere, of No. 40, Paenge Choinel, Paris, for "an Imprond tastrument for draitot off the railk from the breatet of women, and for raiaine apd pootecting the nipple both before and after childourth."-Jtanime 7 .
Charles Bunhold Lethman, of Craven-street, otrand, chemint, for "Improvementa in the manufacture of mbite lead."-Jamary 7.
 Eentis in stema-tadiane."-Jannery 11.

 and other locte for festening."—Januery 11 .
Doughe Pitt Oamble, of Crouch End, Middenex, gentleman, tor ${ }^{4}$ Improvemente in elece tric telegrephs."- January 11.

John Piatt, of Oldian, Ianenoter, pachive malrep, for ef certain Improvements in the

Johan Britten, of Livarpoel, Lencmoter, cbemict, for "certain Improvesaente in mas-
 Janury 12.
Lional Campbell Goldomid, of Rue Mogador, Paris, Esgo, for "Improvementa In ap-

John Fray Poole, of Bolten-la-Moors, Levengter, book-hweper, for "certala Impeone-
 remts in machatery or apparta
Joweph Seraphin Fancon, of Bocen, France, banker, for wimprovementi in the mapreseture of moep."-Jumury 14 .

Alerander M'Doagall, of Longight, Lapearter, geutiematy, for "Improverseats in the manufacturt of gloe, end in truiting products obtained in the manaiceture of plow ${ }^{2}$ January 14.
Stephen B. Parichurst, of Leede, maunfacturer, for "Improvements in rotary endimen" January 14.
Heary Grafon, of Hobborn-hil, London, engineer, for ${ }^{*}$ Impropenente in radmeg Henty Grafon, of Hotborn-hin, London, engineer, for wimpt
 provements in obtatning mottve power."-Jen. 16.
John M'Intosh of London, rentimman, for ${ }^{44}$ Improvemente in rotary engines, and in moving carriages up incllaen, and in propelling remels."-Jan. 19 .
John Read, of Regent Circon, Middloter, mechanist, for "Improvementa In certath Implemepts in the culdration of land, ${ }^{H}$-Jan. 19.
 Edward Vickers, of 8binield, Tort, mectiant
cutting fles." (A commanication.)-Jan. 19.
Towrers Shears, of Bankaide, southwart, for "Improvemeuts in treatiog stac ores for the porpose of producing Nbe Infots, Which improvenente are epplicable to the preducclop of other ores and motale."-Jran 19.
Thomas Dealing of EIng; Norton, Worcemtir, engineer, for " Improvertente is the construction and arrageasent of machingry to be uned in cutting, etamping and press. log."-Jan. 21.
Thomas Onlous, of Caids, Frabce, engineer, for "Improvements in rotatory ateamugitnes." Jev. 21.
George Beadon, of Tannton, Bomeriet, commander fon the neyy, and Andrew Emith, of Pribees-streat, Idcenter-equare, Middlewex, engtoeer, for "I mproremante in warpons or handiag veaph, which improvemeots an also applicable to moting other bodien. ${ }^{n}$ Jan. 21.

TO CORREGPONDENTS.

Sir Howard Douglas bas sent a valaable paper on the Strength and Btas. bility of Hungerford Bridge, which we regret being compelled to postpore till next month.

Ia reply to the inquiry respecting the dineonsions of the model experie mented upon at Milivall last month, Fe refer to the namber for Dctober 1846. The dimenrions there stated were the same as in the recent expentments, except that the thickness of the bottom-plate which bas no collalas compartments, what doubled for twenty feet on eithor side of the cante.

THE NEW YORK FUBLIC LIBRARY TKDEM FOUWOATIONG

ARCHITECTURAL CARVING.

(Trith an Emgraving, Plate TII.)

Mr. 1.-Hoof of Reveatworth Ceath Dinim-Moom.

Fg. 2.-Stone Wlodow-Carlale Cathedral.

Pig. si-Inladd 8tone Patig \rightarrow Great Malveta Church.

To our atrong consistent advocacy of the introduction into architecture of real materials, which in modern times have been supplanted by counterfeit, one of the moat obvious objections is-where is the money to come from to produce such an architectural effect as we are enabled to do by the aid of compo, papier mache, composition, and such productions? The ornamental work of the Italian fagade architecture exemplifies the natyre of the effect produced. Abstract reaconing is wasted on these reasoners : perbaps.a reference to the prectical effect of their dolngs may throw light on the subject. No doabe they succeed in producing a momentary effect on the spectator when the building is first oleared of its scaffolding,-but how long does cheap splendour last? Let the unbiassed spectator walk up Regant-atreet-Regent's-park-on the terraces at Brighton - and view the motley appearance of the buildinga; some of one tint and vome of another; one balf of a pedinnent light stone, the other half a dark stone tint ; the divisional line of two houses continued down

Ne. 116.-VoL X-Marce, 1847.
to the ground through the biant windows, and baif a column to each; -and let him take into account the weather-marks of the winter monthe, and the peeling off here and thare of the dishonest integument, and he shall allow. that these patches and stains are as motley as the rags of povefty,-it is but a beggar's dress which is held up for his admiration.
It is not to be infarred that, becanse we condern the impoature when unspocesaful, we condemn it becasse it is unsuccessful. Deceit and triokery are not the less deteatable because they are occasionally practised so well ais to encape doteotion. These plaster-clad edifices have a multitude of faulte beaides the patobwork. To take one of the mont practical arguments as most suited to the capacities of those whe constitute our opponente-the stucco usually diaguises wretchedly inferior briekwork, of bad materiuls imperfectly put together. The vile pretenders samuse the appearacee-the strength of stone masonry, while they bave not even the ordinary stability of
brickwork. They are like the feeble beast in the fable, who indued himself with the skin of the lord of the forest.
Not unfrequently thay are prostrated in ruin, the result of their own pretensions. Sume of these vile showy atructures in the new metropolitan streets have recently failed in this manner. We are not destructionists, but we rejoice greatly at the intelligence. If eny one would compare the mere workmanship of plastered and unplastered houses, let him compare those of Regent-street with the adjacent Hanover-square. In the latter place, the honest bomely bricks show themselves plainly, as if they had nothing to be ashamed of. But an honest builder could have taken oo pride in bis work when "running up" the neighbouring linen-drapers' palaces. Deceit begets dishoneaty: a good bricklayer will soon become a bad one when he knows that his work will be concealed by white alime. He has no gratification in doing his work well-he shirks it and cheats his emploger.
To assist the architectin carrying out the system we so strongly advocate, steam has been brought to his aid in rendering the productions of carved work less costly than when produced by manual labour. It is our intention to direct attention to the merits of such works. We bave already noticed the Patent Architectural Carving Works, in Eccleston Street, Pimlioo, and explained the machinery. The experience of two more years has pabled the proprietors to adapt the machinery to works that were not originally so produced. In the slow-rooms may be seen architectural perforated pannelling for gallery fronts, parapets, ceilings, roofs, and wainscotting, lecterny, furniture, church screens, and other works, generally possessing the merit of correct design and perfect workmanship. One of these elegant screens we have shown in an Eugraving (Plate VII). It has been lately erected at Great Malvern church, in the archway of the chancel, and is entirely executed in wainscot by the aid of the machinery of the Patent Carving Worke, at a very small cont; its length is 16 feet, and beight nearly 12 feet.
The annexed wood engraving (fig. 1) is another happy example of the application of the labours of the same Works; it shows the truss of an open timber roof, 30 feet span. There are eight of these trusses, together with the moulded purlins, ridge piece, cornice, rafters, \&c., all ezecuted in oak, for Ravensworth Castie dining-room. The roof is $\mathbf{3 0}$ feet span, and 70 feet long.

Another specimen, in a different material (ig. 2), exhibits the head of a window. This was executed in Caen stone, for Carlisle Cathedral.

Fig. 8 is a specimen of inlaid stone paving, which was also executed by the carring machinery for Great Malvern charch.

The Company have recently executed various other works, among which we may mention the flooring of Sir Robert Peel's Picture Gallery, and a beautiful stone screen for St. John's Church, Stratiord, in Essex, which has excited great admiration.

It will be seen from the drawings we bave given, and the prices, that ornameatal architectural works, of a highly ornate style, may be produced in real materials, at about the same price as the counterfeit, when we take into consideration the cost of ataining or painting, graining, and so forth. Much may be done if the architect will devote bis attention to the sabject, and get rid of the prejudices which he has been led into by a fales edncation ;-let him woll study proyortion. More is produced by this in a public building than all your excresences of enrichments, which are too often applied as if the structure were intended to be the show-building of a planterer or artificial ornament manufacturer.

No. VII.

THE FORM AND EQUILIBRIUM OF ARCHES.

The object of the present paper will be to explain a few theorems respecting the equilibrium of archen, which are very simple, and of great practical importance. They may, however, be prefaced by a notice of the authors who have already written upon the subject.

It may be considered certain that the medimal architects, notwithatanding their extraordinary akill in constructing arches and flyingbuttressen, and in determining the position and dimensions of piers and buttresses, derived their rules from experiment, and not from theory. This opinion rests upon the authority of the mont eminent architectural writers of the present day, among whom may be cited Professor Willis, who fortunately is able to combine two very different kinds of knowledge, which are both necessary for the examination of the sub-ject-archaology and mechanical philosophy. Parent and De la Hire, who wrote about 150 yeara ago, seem to bave been the first who endeavoured to give a mechanical theory of the arch; and since their time, the number of writers on the same subject has been extremely numerous, and has included some of the most eminent mathematiciaos in Europe.
It would occupy too mach space to notice the labours of these authors, or even to enumerate their works. But a sufficiently distinct notion of them may be obtained by considering them divided into two distinct classes, who inventigated the theory from two altogether diffe rent points of view. The first clase-the earliest and the most nume-rous-directed their attention chiefly to the conditions to which the component atones of an arch must be subjected in order that they may not alide upon the surfaces of mutual contact. The second clase consisted of those who neglected this idea of sliding altogether, and confined themselven to the oonditions neceasary to prevent the joints from opening. The first class includes the names of Conplet, Bernovilli, Belidor, Coulomb and Bossut, continental writers, who bave been followed by Hooke, Gregory, Hutton, Emerson, Whewell and Gwilt, in this country. Many of these writers bave considered the arch as composed of perfectly smooth voussoirs, and sustained independently of friction-in this condition the arch is said to be " equilibrated."

Now this theory of the arch, though long in vogue and sanctioned by the highest authority, has been found practically insufficient for the purposes of the engineer. As a matter of fact, the voussoirs of arches have always so great friction that they never slide upon each other. The old theory, therefore, speculated about an accident which experience showed to be never likely to occur. Consequently the investigations, though frequently exhibiting extraordinary mathematical research, and leading to very beautiful results, could scarcely be of any direct value to the practical engineer; and accordingly, a writer, who has taken the bighest position in this country for his practical applications of mechanical pridciples-Professor Moseley, has in his writings entirely excluded the speculative luvestigations just mentioned, and bas confined his attention to the statical conditions necessary for preventing that accident which may and does occar-the opening of the joints.

In this pursult we shall endeav our to follow him. It las unfortunately bappened that though his principles are characterised by extreme accuracy, the results are frequently too complicated to be of value to an engineer. Now what will be bere attempted, is to eatablish a few geaeral propositions which are frequently unknown or milsapplied, and to give some methods by which the form and thrust of arches may be calculated,-not with anything like the generality and precision atudied by Professor Moseley, bat with accaracy quite auffcient for ordinary purposes, and with perfect fucility of computation to all who are acquainted with common arithmetic.

There are three cooditiuns to be considered as affecting the equilibriom of the arch-lat The form and dimensions of the indrados or internal lower curve of the arch: 2nd. The form and dimensions of the custradoe or external curve of the arch: 8rd. The weight and disposition of the loading. The first condition of courses inclades the rise and apan; the second, combined with the firnt, is equivalent to a determination of the depth of the vousooirs; the third exhibits the external forces to which the syatem is subjeoted : for we suppose that not ooly is the weight of the loading known, bat also the manoer of its distribution-that is, whether and in what degroe its specific weight or density varies in differeat parts of it.
But, it may be asked, is not this enumeration of the conditions of equilibriam imperfect from the omission of the form, number, and position of the jolnts? The answer to this question is important, because it exhibits in the strongeat light possible the diatinction between the ancient and the modern theory of the arch. It is manifest that the extrados and intrados, which have been enamerated as two of the "cooditions" simply define the deptb of each voussoir and the form of its upper and lower carved surfaces : the lateral dimensions of the vousoir, and the form of those surfaces of it which are in contact with the adjacent voaseoirs, are as get left indeterminate. Consequently it is not known how many joints there be, or even whether there be any jointe. Neither is the direction of the joints ascertained; they may be plane converging jointa, or they may be "joggled," or all vertical, or all horizontal-(as an instance of the latter case may be cited the Treasury of Atreus at Myoene, where the stones are not wedged together, but are merely disposed in horizontal courses, each rating upon and over-lapping that beneath it, the whole being bewn in evech a form as to give the sirncture the appearance, bat not the mechanieal propertiea, of a dome).
It is as well to connider these objections in limine. The answer then is this. The theory which Professor Moseley has exclosively, and Professor Whewell and otber writers partially, adopted, and which we are endeavouring to set before the reader in a new form, presupposes that the atones are sufficiently cuneiform to be incapable of aliding past each other: but further than this no consideration is paid to the form of the bed-surfaces. The mutual friction of the voussoirs is so great, that there is not the least difficulty in so shaping them, that the arch shall not fall by their sliding past each otherthat accident, as has been said, is never known to occur. So that the preesution under this head being perfectly obvious, the theory does not at all deal with them, and, as we shall see further $0 n$, is independent of the form and direction of the joints-or to speak more precisely, the theory shows how to enaure the stability of the arch, whatever may be the inclination of the beds, \&cy, however namerous, or however few they may be ; so that the atructure should atand even if intersected by infinite ma mber of joints running in every poseible direction-provided alway that they were sufficiently convergent or joggled, so that the roumoira could only fail, if they did fail, by opening, and not by slipping.

The reader who approaches the subject for the fint time will not perhaps perceive at once the full effect of these observations. But his attention is now directed to them, as be will be left hereafter to apply them for bimself to the cases particularly discussed. Returning now to the three "conditions" which have been eaunaerated, we find that they give rise to four distinct problems-three of the problems arise from combining any two of the conditions as date to find the third, and the forrth problem arises from the combination of all three conditione considered as known data. The four problems are these-

1. Given the distribution of the boading and the intrados to determine the extrados proper for stability.
2. Given the distribation of the loading and the extrados to determalne the intrados proper for stability.
3. Given the extrados and intrados to determine the distribation of the loading proper for stability.
4. Given the extradon, the intrados, and the anount an well es dis-
tribution of the loading to fird the consequent horizontal thrust of the arch.

It will be observed that the abeolute weight of the loading is taken into aceonat in the fourth problem only: in the other problems the relative weight is alone considered; in other words, the form of the arch is connected not with the actual amount of the external forces, but with the relation or comparative amount of those forcea, as they vary in diffarent parts of the atructure. It may perbaps be as well to recollect that in this respect there is an analogy between the arch and the other two contrivances emploged for spanning the interval between piers or abutmenta-namely, the catenary and the girder. For respecting the catenary, it is known that if a heavy cable and a fine thread, both of the same lengtl, span the same distance, they will assume the same form : and this similarity of form will be observed either when the cable and the thread are each of uniform thickness throughout its length, or when (the thickness not being unjform) the law of variation is the same for each. Also the form of the girder of uniform strength, or the variation of the sectional dimensions of a girder that it may be equally strong in every part, depends not on the actual amount of the load, bat on its distribution or comparative weight in different parts. This digression will not appear superfluous when it is considered how much the physlcal conception of a sebject iike the presest is cleared by a distinot apprehension of its relations to kindred subjects.

We shall take the foorth problem first, because it is the simplest. Here, bowever, as elsewhere, it is simply intended to show how much may be done by very simple calculatione-the discussion of the problem in all its generality, and with perfect accuracy, will not be attempted.

Thrual of Arches.

The thrust or horizontal pressure of the arch tending to push its abutments ontwards is the distinguishing claracteristic of that structure. This kind of force does not exist in the other contrivances for spanning the intervals between abutments. The suspension chain, attached at its extremities to the summits of two towers, exerts at those points a horizontal force invards, equal to the tension of the catenary at its lowest point. In the beam or girder, the forces of tension and compression are equal and opposite, and there is, therefore, no external horizontal force on the abutmente.

The following method will explain the cause of the horizontal thrust of the arch, and serve in estimuting its amount. Let the accompanying diagram represent the half of an arch, and its own load considered as a separate statical system. Aud to make the case simpler, let us suppose the load on the bulf arch sustained entirely by it, and not supported in any way by the contiguous portions of loading on either side of it, which are supposed to be removed. The half-

loar here represented will not, in that casp, have any ezturnal force - ctitg dpon it to mudify the effied of its wright on the half arch.

Let it also be mupposed that the half arob removed had the effect of exerting on the half arch represented certain presares, of which the reaultant is a force P, aoting at some point d in the crown. P will be wholly horizontal, if the two hatres of the arch be similar and similarly circumstanced. For, if every part of their mutual pressare were vertical, it must act upward on one half arch; and in the opposite direction, or downwards, on the other half arch. And this is evidently idcomistent with the hypothesis that both half arohes are similarly circumstanced.

The other forces of the system are its pressures apon its abutment. These pressures will have a single resultant, acting at some point, a; and by equating the vertical and horizontal forces, it follows that the components of this resultant are an upward vertical force equal to the weight of the system (W), and a horizontal force equal to P, bat contrary in direction.

Now, the teadency of the weight W to turn the half arch about the abutment may be comidered the cause of the force P at d being called into existence. As no horizontal forces but those mentioned are supposed to act, the horizontal foree P exists in every part of this arch.

Draw a c horizontal, and G b vertical from G the centre of gravity of the system : this latter line is that in which the weight of the system aots. Draw also ed vertical.

The vertical distance of the apper force P from a is equal to $c d$, and the horizontal distance of the force W from a is $a b$. The moment of P about a is therefore $P \times c d_{1}$ and that of W is $W \times a b$: these moments are equal to each other.

$$
\therefore W \cdot a b=P \cdot c d, \text { or } P=W \cdot \frac{a b}{c d} .
$$

If, therefore, we knew the exact value of $a b, c d_{\text {, }}$ and the total weight W, we should be able to get P at once from the above simple equation. But, in fact, we do not know the exact point a_{1}, which is the point of application of the resultant of the forces at the springing ; neither have we accertained the exact point c. All we know of either point is that it is somewhere between the extrados and intradow at the springing and vertex respectively.

It is not necessary, however, for our purpose to define either point for the limits assigned for its position are generally small enough to define P from the above equation with anfficient accuracy for pr ctical purposes. By referring to the equation, it will be suen that the greatest value of P is derived from giving $a b$ its greateat, and $c d$ its least, possible value: aud conversely, the least value of P is derived from giving abits least, and $c d$ its greatest, possible value. The real value of P lies between these limits.
lat. The greatest value of P is derived from giving $a b$ its greatest and $c d$ its least value; which conditions are satiafied by supposing a to be in the extrados at the springing, and d in the intrados at the vertex. Hence, from the equation we get this rule-"The greatest value of the horizontal thrust is derived from multiplying the tota weight of the half arch by the horizontal distance of its centre 0 gravity from the springing of the extrados, and dividing the product by the least height of the arch, or the height of the vertex of the intrados above the springing of the extrados."
2nd. The least value of P is derived from giving ab its least, and $c d$ ita greatest, value. Hence, a mast be taken in the intrados, and d in the extrados; and the corresponding rule will be-a Multiply the otal weight of the half arch by the horizontal distance of its centre of gravity from the springing of the intrados, and divide the product by the greateal height of the arch, or the height of the vertez of the extrados above the springing of the intrados."

Having obtained these rules we may proceed to practical illuatrations of them. It may however be firat observed that their accuracy depends entirely on the suppooition that the balf arch does not mustain
horizontal pressures from the effect of the loading: if it did, the horisontal thrust P at d, would no longer be equal to the P at a, fig. 1.

Let ue take the case of a half arch, $a a^{3} d d^{\prime}$, supporting a mass of masonry above it, as in the accompanying figure 2. This would be the case of a gateentrence, or arch beneath a tower. If the tower be lofty compared with the rise of the arch, we may suppose G the centre of gravity of the half load centrically situated. This hypothesis saves the trouble of calculating the position of the centre of gravity of that part of the masonry which is situated in the spandril of the arch: the meight however of that portion must be included in the total load W; taking G in this position, then the rest of the calculation is very simple. Draw the vertical line b b, indicating the direction in which W acts. Then, as we have already shown, the greateat and least values of the horisontal or lateral thrust are respeotively,

$$
W \times \frac{a b}{c d^{\prime \prime}} \text { and } W \times \frac{a^{\prime} b^{\prime}}{c d^{\prime}}
$$

Sappose, for example, that the weight of the masoury W is 20 tove ; that by measurement $c d^{4}$ the least rise of the arch $=8$ feet, and $a b=$ 4 feet, (the span of the arch being about four times as much), then we get immediately the greatest valuo of the thrust $=20$ tons $\times \frac{1}{2}$ or $=10$ tons. And suppose it to be also found by measure that $c^{\prime} d$, the extreme rise, is 9 feet, and $\left.G^{\prime} b^{\prime}=3\right\}$ feet, then the thrust $=20$ tons $\times 81$ $\div 9=7 \frac{1}{8}$ tons.
Now it will be observed that between the greatest and least value of the thrust so obtained ($7 \frac{\mathrm{t}}{\mathrm{t}}$ and 10 tons), there is a considerable dis. crepancy, pamely, upwards of two tons. Bat it is to be remembered, that methods here explained, though founded on exact principles, are merely approximative; and, moreover, we have purposely chonen a much more unfavourable instance than will generally occur in practice.
In muking a section, as in the above figare, dividing the areh and its loading into two parts, it is virtually assumed that the part of the loading which is represented in the figare is not subject to forces arising from its connection with the part supposed to be removed. Tbat, in general, this bypothenis is nearly correct, will be allowed when it is considered that the masonry of the snperstructure is laid on gradually in successive horizontal coursen, and that each stone is mupported in its place by those below it, and has no tendency to roll over or move sideways. Where the workmanship is accurate, there will be little strain between the two halves of the load, except from "settling" or slmilar accidental causen, the nature of which prectudes specific calculation.

The above method of determining the thrust cannot apply except when the form of the strncture is such as to allow of a tolerably accurate guess as to the position of the centre of gravity of the load sustained by the half arch. This can only be made where the specific gravity of the loading is uniform, and the structure is so lofty compared with the rise of the arch, that the mass contained in each spandril is too small to materially affect the centre of gravity. Where, bowever, the rise of the arch is considerable compared with .th dimemions of the superstructure, we may resort to the following method, which will be found very convenient, and which will have the advantage also of determining the thrust when the loading is heterogeneous.

Let ABPE represent the vertical section of the half arohs the part of the load below B (ia the spandril) bearing a considerubla proportion to the part above B. And to take all the variatione of circumatances at once, iet oes suppose that it has been found necemary (from considerations which will be referred to hereafter) to loed the arch with hearier materials in one part than in another; for instance, with light aandy ballact near the vertex, and heevy granite rubble towards the apringing.
Instead of taking the load, * before, as a single mase,
comider it made up of aeveral portions, as in the figure. Let the part in the apandril be taken as two (nearly) triangular masses or

prioms, AEC, CDB. The forms of the reat of the loading will depend upon the nature of the superstructure. But where the upper line, \mathbf{F} GH, is a horizontal straight line, we may consider the rest of the loading as rectangular masses, ECGF, DGHB.

One of the advantages of this typothetical division of the loading is that it enables us to estimate the effect of variations in the density of the ballast. For example, AEC may be one kind of ballast, CDB a second, ECGF a third, and DGEB a fourth. The first operation in the calcolation will be to find out the weight of each portion as nearly as ponible. This will easily be done (the form of the arch and superstructure being already determined upon) by eatimating the cubic content of each portion, and multiplying this quantity by the wright of each cubic foot of the material employed. It is ecarcely necemeary to observe, that the weight of the voussoirs themselves must be included in the lower or triangular portions.

The weights being fonnd, there will be very little difficulty in aseertaining their effect or moment in producing the thrust. Let g be the position of the centre of gravity of the lower triangle. By a known property of the centre of gravity of triangles, $a g_{2}=1 E C$. Now, $a g_{1}$ is equal to the horizontal distance of the centre of gravity from A, and therefore determines the moment. Hence the weight f the triangle $\triangle E C$, multiplied by $\ddagger E C$, in the moment of that portion about A.
Similarly, in the triangle CDB, if g, te the centre of gravity, $\boldsymbol{g}_{2}=1 \mathrm{DB}$. Therefore, the horizontal distapee of ga_{a} from A is
$\mathrm{EC}+\mathrm{c} \mathrm{g}_{\mathrm{s}}$: the moment of the triangle CDB is, eoneequently, its weight maltiplied by (EC + $\frac{1}{8} \mathrm{DB}$).
The two parts EF G C and DGH B, being rectangles, their centres of gravity may be considered as situated in the centres of those figures. Consequently, $b g_{8}=\$ F G ;$ and $d g_{4}=1 G H$. On the whole, then, if we call the first mentioned weight W_{1}; the second third, and foorth, $\mathrm{W}_{\mathbf{8}}, \mathrm{W}_{4}, \mathrm{~W}_{4}$ respectively, we have for the sum of, the momente, the expression
 Adding these moments together, and dividing by the height of the arch, the reault or quotient is the amount of the thrust.

This method, like the one first explained, merely suffices to indieate the limits within which the value of the thrust lies. There will be, at before, a maximum and mininum value, bot the difforence between them will be very amall, except where the vouseoirs are of great depth compared with the other dimensions of the arcb. The maximam will be determined by estimating the horinontal distances of the weight from the springing of the extrados, and by giving the rise its leact value, namely, the vertical height of the vertex of the intrados above the springing of the extrados: and conversely, for the minimam value of the thrust, the horizontal distances of the weight must be measared from the apringing of the intrados, and the rise must have its greatest value, namely, the vertical beight of the verter of the extrados above the springing of the intrados. With these limitatione, the following is the general rule for calculating the thrust:- μ Codsider the loading as composed of triangular and rectangular portions. Multipiy the height of each portion by the borizontal distance of its centre of gravity from the springing. The sum of the products divided by the rise of the arch gives the value of the horizontal thrust."
To take an instance in illustration of the rule, suppose that in the last figure, the rise of the arch is 19 feet, and E C $=6$ feet, and D B also $=6$ feet, in this case the rise of the arch will be about 9 feet leas than the span Aleo let $\mathrm{W}_{2}=4$ tons, $\mathrm{W}_{2}=3$ tons, $\mathrm{W}_{2}=6$ tons, and $\mathrm{W}_{4}=5$ tons. The moment of W_{2} will be $4 \times \pm \mathrm{EC}=8$. The moment of W_{2} will be $3 \times\left(E C+\frac{1}{2} B\right)=24$. The moment of $\mathrm{W}_{\text {. }}$ will be $6 \times \mathrm{EC}=18$. The moment of W_{4} will be $5 \times$ $(E C+D B)=45$. The sum of these moments is 95 , and this quantity divided by 19 , the rise, gives 5 tons for the value of the horizontal thrust. If the above admeasurements be supposed to correspond to the maximum value of the thrust, a second calculation must be made, as above explained, with the admeasurements correaponding to a mlnimum value. The true value will lie between these two resulta.
Of course, where further accuracy is required, the load in spandrils may be oonsidered as divided into three or more triangular portions, with as many rectangular portions above them. As the divisions are perfectly arbitrary and hypothetical, they may not only be of any number mout convenient, but also the intersecting lines may be taken wherever they afford the greatest facility of calculation. In a fourceatred arch, for inatance, a vertical division may bo made where the segrent of short radius ends and the segment of large radius begins : or if there be an abrupt change from a heavier to a lighter loading, the vertical line at the place of change may be adopted in the calculation.
It muat be carefully borne in mind, that the whole of thene investigations presuppose that the only external forces are vertical weights. Where the loading rests firmly on the arch, and has no tendency to alide down the side of it, the lypothesis is strictly true ; but in the case of a series of arches, as in bridges, the spandrils which adjoin at each pier are filled up simultaneously by tbrowing in the ballast, till it reach the intended height of the roadway. In this case it is clear that anless the ballasting were rammed hard, or concreted, the removal of the portion in one of these apandrils would cause the portion in the other spandril to alide down. Here, it is obvious that the two portions of the loading ezert a mutual horizontal pressure, by which each prevents the other from alipping. This horizontal pressnre muct, is comsidering the equilibrium of each half arch separately (as
has been deve above), be reckoned among the extermal forces of the system. The thr unt of the areh is aniform in every part of its haunched where there are obly vertical forces. Bot were the horizontal exter net preasures just alluded to exist, the taruat of the arch will be greater at the orown than at the abotmente-being greater than we have calculated it at the crows, and lem than we have calculated it at the abotments. It seems impomble to c alculate the amount of this alteration, for to accertain it we mast know the matal promures of the contiguous portions of loading, the friction of the materiala, and the degree of cohesion produced by ramming or settling-effecte utterly beyond calculation. It may be obeerved, bowever, the ballant will gemerally be to firmily coapected that the part of each spandril, even if unsupported, would in mont oasen have little teadency to slide : and therefore where this procaution is used, the above methode will anawer all practical purposes.
Sometimes the voussoirs of two archen, which spriag from the same pier, do not rise isdopendendy, bat are built together, and preme upon each other at thoir extradosses for some dintance as they rise together from the pier. It is clear that for the parpones of our calcolation, the apringing of each arch muat be reckoon ed to commence from that point where the adjacent arch oeaves to affect it. Wherever the spandrils of the contigaous archee are connected pear their springing by small inverted arobes (as in Bleolifriars bridge, the modifying effect of these subeidimy structures mant be taken into account. The thruat in such canas can only be reokoned for that portion of the main aroh whioh is wot afeoted by the contiguity of the other arches.

The general conclusion from the above reasoning is, that the smaller the fise of the arcb in comparison with its width, the greater cateris paribus will be the lateral thrust (of course these conclusions canuot be applied to the platebande or flat arch, where the depth of the vonssoirs is so great, compared with the other dimensions, that the methods given above are totally inapplicable). As imstances of this trath, may be oited the lofty Pointed arches of cathedrals, which frequently sustain enormons weights without exerting great lateral thrust. Bet it may be as well to refer, in pessing to an erropeous notlon which is frequently entertained, that becamse high Pointed arches can sustain great weights, they therefore ought to do m for the sake of their stablity. An idea of this cort is expressed in Pratt's Principles of Mechanics, and is supported by very confused and perfectly inapplicable reasoning : as has been already sald, and will be proved bereafter, the form of the arch depends not on the amount of the loading, bat on the distribution of it.

To return from the digression-we easily see that the limiting cases of the general conclusions just stated respecting the thrust of the arch are these.-If the arch were quite flat (the voussoirs not being of appreciable depth), a finite load would produce an infinite lateral thrust: again, were the arch so lofty that its span could be considered inappreciable in comparison with its rise, the greatest load would produce no horizontal thrust at all. In fach, this last bypothetical case is equivalent to that of 2 weight sustained by vertical posts or columbe.

The consideration, that the thrust of the arch depende only on the rise and span-that the form does not affiect the thrust (except indi rectly, by inAuencing the position of the centre of gravity of the load), forms an appropriate introduction to the inveatigation of the leteral pressures of groined vaulting. In plain oylindrical arches, the thrust determined above is distributed in lines parallel to the axis of the arch throughout the whole of the springing. Consequently, it acts on the piers of a bridge (fo take an instance) along a surface of which one of the dimenaions is the breadth of the roadway, and may in general be considered as uniformly distributed. But if we take the case of doable or intersecting groined arches reating, as supposed in the following diagram, on four detached piers, the amount of surface oves which the thruast will be distributed is diminimbed with the diminution of the horizontal dimensions of the piers. In this case also the double aroh will exert a double set of thruta. Supponing the plan a
rectangle, and that the arches and the distribation of the loading are perfectly aymmetrical. Let $a f, b g, d h, c e, b e$ the four piers, and \mathbf{K} the keystone or bons. Also let \mathbf{P} be the thruat arising from the arch of which the axis is parallel to $f g$; and let Q be the thruat

arising from the arch of which the axis is parallel to $\mathrm{c} d$. We may suppose that the forces at a, b, c, d_{1} are all equal to P, and the forces at e, f, g, h_{1} are all equal to Q, since we bave supposed the two halves of each arch to be under exactly the same circumstances.
Now, if we take moments about $a c$, for the half arch, of which the axis is parallel to $a c, n o$ other moments will appear in the equation but that of the pressure at the crown of this arch, and that of the weight reating upon it. Hence the atrain P is determined by the rules already laid down for single cylindrical arches -that is, it is equal to the moment of the weight divided by the rise of the arch. In the same way is the pressure Q determined. And hence we arrive at the conclusion, that the total pressare on any one of the four piers, may be considered to be made up of two component force, - the thrust of each of the two arches considered separately and independently of the other.

It may so happen that the form of the 'groining materially affects the position of the centre of gravity of the loading. There will not however be generally much difficulty in estimating the moment of the weight by methods analogous to those already described.
This is as much as it seems necesaary to say at present respecting the thruats of arches. Of the means of resisting those throuts, or of fixing the dimemions of the buttresses or piers which sustain them, mention will be made hereafter. In conclusion, it may be observed, that though these methods are confessedly approximative, they appear quite an mucb entitled to confidence as others of a more elaborate nature. M. Garidel bas, with wonderful ingenuity and labour, formed tables of the thrusts of arches (Poussees des Voutce), calculated from a long mathematical formulen analogous to that arrived at by Prof. Moseley. Respecting, however, all long mathematical formalw applied to practical mechanica, we are convinced, from considerable experience, that the following atrictures are correct-Girst, these formule are too dificult to be employed by the ongineer ; secosdly, If be could employ them, it-would not be worth bis while to do sofor they generaliy neglect some practical circumstance which entirely destroys their accuracy. In the case, for instance, of M. Garidel's tables and Prof. Moseley's formulas, both proceed on the supposition that the materials of the vousoirs are perfectly unyielding and mathe matically adjusted. If, by the slightent settling, the point of application of the resaltant of the forces at the crown and apringing be altered, the whole invastigation fails. It is also obviously impossible to estimate rigorously the effect of the cohesive forces between the cortiguous portlome of loading reating on a series of arches; and the heterogenity of the materials is an insuperable obstable to any bat approximative caiculation.
H. C.

ON THE DESTRUCTION OF MOUNTAINOUS FORESTS as the cause of late inundations.

The dreadful disasters which bave, of hate, visited several of the French Departments, have induced the seeretary of state for public works to order the sabjeot to be investigated by competeat persons; and wo derive the following particulars from the reporte of Messres Bhanqui, Mansier and Rubichon :-
In ieveral parts of the Deppritments d'isere, dea Fiacters et Basces Alpen, and da Far, especiully in the mountalions regione, the destruoLioe of foreats bes not only consed the disappearance of regetable fred, bat even spriggs and cournes heve vanished, and the wil has been carriod off by the force of torrents. About Grenoble, this inconvemience has reached so far, that the penasta are obliged to bate their bread ou the excremente of oatte, \&ce. The abvee of outhrooding, ththage, and pastures, deprive the soil of mountain-lopes of all cobenios, and no resistance whatever is offered to counternct the aetion of loode of heavy reins. The rapid alope of mountainous terralns incresses this evil, and the loose and detached soil rolls, in the form of a torrent of back lava, into the valleys, where it spreade over plains which are eiker already cultivated or at least fertile. Oftentimen, a whole mase of earth is thus detached from a monntain, which thereby becomen visibly indented. Nothing can equal the acene of such terrible irruptions. limmense beds and layera of pabbles and dibrit, to the depth of mapy yards, cover the plaines, asd neutralise and destroy for ever the ferelity. Trees and otber vegetation vanish uoder the prewure of these debris; and the bedo of rivers and atreams, gradualfy beightened, reach at leat the piers of the bridgen, which are exried away.
Sech are the effects of out-wooding a terrain. And as the forests consith, in the above-mentioned parts of France, merely of underwood, and are generally composed of fir (coniferous) treea, which do pot grow again from their roots when once cut, the evil will become irrecoverable if no remedy be devived for it. In several locelitios, pota tree has bean left; and as the peasanta, therefore, have recourse even to the shrube and brambles, M. Blanqui thinka thast, fifty years hence, France and Piedmont will be separated from asch other by a desert, at in the cane of Egypt and Syria!
The diminution of aprings and sources is reriously felt in the Departmente of the Basses Alpes and du Var, in some of whose ravines add alopes all vegetation bas alen vanished. If a gale foods such localities, torrents sweep thene desolated placer, which neither cultivate nor fertilise them. As popalation increases and accumalates in othes places, even the steep slopes of mountains are put under tillage, which sill more augments the existing evil. The measures which have been bitherto resorted to, to bar thene imundations, are-says M. Blasqui-both inefficient and unaystematic. The owners of the lands on the beake of rivers and torrente quarrel and litigate, instead of combining against the common enemy. Notbing can be more utrage than the aspect of these isolated, ill-concerted work--bere and there an embankment, a wall of piled-up stones, a coffer-dam of wood, or aome patches of manonry. M. Blanqui thinka that none bat goremment, aided by the combined efforts of accurate surreys and scientific syatematic construction, can properly stay thene yearlyincreasing devantations: as, both for the re-plantation of out-wooded terrains and the embankment of the rivers, the akill and capital suilable by private persons, will ever be insufficient.
In the Pyrenees, also, the out-wooding of terrains, inundations, and veareity of cropa, have gone hand in hand. The area of foreats which belonged to the crown, at the end of the sixteenth century, was equal to 250,000 hectares, which, in 100 years, was reduced one-kalf; and, at the end of the last century, amounted merely to 40,000 hectares. The out-rooding of private forents has been on as great a seale as thone belonging to the crown. Thus, the outskirts of the Pyrenees, whieh once yielded a superior kind of timber for naval and atructurial purposet, are now soarcely sufficient to supply to the inhabitants the meomary quantity of fuel. Tillage bas also been carried out to a monelesa degree ; and after the slopes have been pat under cultiva-
tion, even the very crags of the mourtains are taken posmemion of;and here also, every inundation, however slight, sweeps all traces of vegetation and soil into the bed of the Garonne, and the Mediterranean.
We broach this rubject the more eagerly, as ample alluwion has been mads thereto in the "Atti dei Scienziati d'Italia," Florence, 1844, 4to.-whence it appears that the same causer, and the same punynese and insufficiency of remedies, exist in pearly all the mountainous parts of the Italian peninoula.
J. L.

ON THE PHYSICAL IMPROVEMENT (ATHLETISING) OF ARTISTS.

"Mens insans-sini corpore sano."
History ought to be, and can be, the teacher of every one-not merely the warrior and statemman, but of every ome; for history does not comprise merely the fates of such men, bat of all men. We do not think that our "young architects" (artists) have ever directed their thoughts to those unobtrasive, but anrepudisble lessons and bints, which history has so extemalvely placed before them. Let us not speak of Greece and Romo-where it is known that even Pleto danced at some public festive games; bat come point blank to thowe prototypes of modern ast. Where was Raffaelle born-how did be pass bis earlier years! Why, hls cradle stood on one of the most commanding situations of the Appennines, and in youth be became a wanderer to and fro Urbino, and to and fro a host of monasteries and castles - where he sam nature, men, and manners. But we will at once tranagress to the putting down an axiom: "that there never was a great man, whose bodily and phyaical powers were not adequate to the part he had to perfotm:' Sir Christopher Wrea, who would have been concidered nearly worthy of apotheose in former times, attained the age of ninety-two :no bad proof, indeed, that he muat have been a man of pith, stamina, muscle, and nerve. And agaid, to tranegress from artists to all kinde of men, -Sir John Herschel and James Watl both attained the age of eighty-four; the former a panderser as well-and a soldier to boot. Mont of this class of people, when young, had nelther carriages nor railways at their command; and wherever they wanted to go, they had to go per packe dpostolorvan. Take, therefore, the journeys of Rafiaelle amidst the hills and dalea, the forests and busben, and the freshoess and the sun of the Appennines, and that of many-mearly all-of our young men now. Born In Chancery-lane, or the Bull Ring at Birmingham-with a viem on some ricketty, lumbery, smoked, brick casement. When children, walking down this atreet and another; and when young men, loitering from a musty, dark, cheerless office in Fleet-atreet, to the coffee or eating house; and so on. The greatest feat they may subsequently perform, is to go on buainess to Manchester or Liverpoolstowed in the wooden case of a railway carriage.

- Their is a Iffe for yon-
makes Goothe exclaim Feant noder nearly similar circumstances.
And then, the working man's eanatory aseociation exalaim, "Why is there so much divense amonget us $\mathrm{P}^{\prime \prime}$ We know it-lhey do not. Young people's physical powers, if not (we woold asy terribly) used, will be terribly abnsed: thosee oor present pigmy generation-deplorable in all and every respect. But to revert to the artist. Training and knowledge are as one thing-they produce the prosy man of bosiness. So far so good: such men must also exist. Bnt, if the aspirations of the nation have to be raised above that, we cannot accomplish it bat in the manner in which it has been before accomplished, canoot but be so accomplished, and has been 80 acoomplished in Egypt, Asia Minor, Greece, Rome, Italy, Flanders, It is mere ehtmers to think that the mind can soar above, while the body is dwindling -crumbling down to the very soil, into the embraces of which it is hastening beadlong. The thing canpot be done; we are
not mere spirits, mere minds-but, as Goethe bas it, both are the same. It is well known, that several of the great artists of mediaval Italy were great fepcers,-cheap athletics, indeed, accessible to all means. And then our young men must betake themselves again to the slaff of the Grecian wise and good-to the knapsack worn by Cornelias, Overbeck, \&ce. Even a coustitution and miod, somewhat damaged in Cbancery-lane, may recover on the bills of Scotland or Wales, or amidst the luxuriadt scenery and sonny skies of Southern Europe.

[rafade of the new builidine.]

We present our realers with a view of the new facade of the In-- Hitution of Civil Engineers, from the design of T. H. W yatt, Req. $;$ as will be perceived, it is of the Italian style, and is faced with Caen tone, and forms an admirable specimen of atreet architecture. For he proportions of the openings of the doors and windows, Mr. Wyatt was compelled to be guided by those of the old brick elevation that was taken down. The frontage is 30 feet.

The bailding of the Inatitation has undergone, during the late recess, a complete metamorphosis ; the theatre has been reconstruoted and considerably enlarged, it is now 45 feet by 29 foet. The floor which was formerly nine feet above the ground line, is now reduced to that level; the seate of the president and council face the entrance, and those of the members are arranged in concentrie curret, rising gradually up to the level of the entrance. The area of theatre is increased full one-third, giving accommodation to nearly one hundred persons more than the former room. The height to the ceiling is twenty two foet. The evening lighting is partly through the inner akylight, by means of a gas ring, and by six gas borners provided with the meane of conveying away the prodoots of combastion. In the day-time, a skylight over the entrance, and three windows at the north-east end, afford ample light.

The ventilation lo provided for by a shaft rising from the centre of the ceiling to a large cowl on the roof, and an ample supply of warm or cold air can be admitted, through apertures in the skirting, from Price's warm-water apparatug, according to the temperature of the theatre.

Above the theatre is a rell-lighted room, for receiving the modele and drawing, and affording accommodation for taking copies of them. The access to it is by a lateral staircase, from the ante-room, and aleo across the lead flat from the principal staircase.

Tbe house department has likewise been considerably altered, and adapted to bold occasional convernazioni. The two roome on the firat floor, whioh form the libraries, have been thrown together, and by fixing a temporary staircase from the back window, a communication will be formed with the theatre, on the ground floor, for poblic occasions; the false foor for the raised seats will be removed, leaving a level floor the whole extent, and on the same level as the council-room and office, which will form, at those times, refreshment rooms, by this arrangement there will be a suite of rooms on the ground floor, 114 feet in length, and 29 feet wide.

There have been also alterations made in the other parts of the premises, and every attentiou made to the warming and ventilation, to render the building both convenient to the members, and suitable for the important occasione of the conversarioni.

The alterations have been couducted under the guidanoe and immediate direction of Mr. Manby, the indefatigable socretary, and the works executed by Mr. Griseel, the eminent builder, from the desigo of Mr. T. H. Wyatt.

ON WATER AS FUEL.

This seemingly atrange idea originatod in an occasional remark of Sir Humphrey Davg - that on the problematic oxhaustion of conl, men will have recourse to the hydrogen of water as a means of obtainiag light and calefaction. As the gas ased for lighting consists of hydrogen and a little carbon-it is ouly the latter which would have to be added, after the water had been decomposed into its eiementary parts. M. Jobard, of Brussels, was the first who extracted from water a gas, of twice as great an illumining power as that obtained from coal. This gentleman produces hydrogen gas by the decomposition of vapour, pasing through vertioal retorts filled with coke, being in a state of white heat. And at the momeat of the hydrogen being thus formed, it is mixed with a little carboaie acid gas, obthined by the distillation of oil, tar, or naphthe, or other coarse substance, bitherto usoless in the gas manufactory. In the Bulletin dy Muse d'Industrie, M. Jobard's method has beon amply detailed. Ho eays that at the expense of one penny worth of oil, a light may be obtained durjig twenty hoors, equalling that of ton tallow candles, Even oonceding that M. Jobard's dsucovery has not quite attained the objoct of using water for light, fuel, \&ec.,-still, it has done something towards it.-Thees ideas lead us to a calculation of Prof. Paraday, that the elements of a single molocule of water contain 800,000 charges of an electric battery, consisting of eight troughs of iwu inches in height, and siz iaches in circamfereace. At the suount of these slumbering forcen, the haman mind is startled; because if we should ever be able to elicit and make them available, the power of the mightieat steam engines would dwiadle to nothing-and thus, ends would be attained by the means of things seemingly tritling and worthless, which cannot now be accomplished by any eacritice or expense.
J. L - F .

STABILITY AND STRENGTH OF HUNGERFORD BRIDGE.
[Reply to the Objections redeed in the "Civil Engineer and Architect's Journal" of December, 1846, to the Analytical Inventigations and Dypamical Observations, contained the the Pamphlet enctiled "Metropolitan Bridges," nhowlog the Defecte and Inauncleacy of Bangertord Brdge, by 8ir Howard Douglas.]
"In the pamphlet entiled ' Metropolitan Bridgen,' Sre., it is intimated thet, at the tope of the piers of Hungerford Bridge, there exist horisontal forces, represented by a-a', by whioh those piers are continually strained; atad which, in consequence of the concusaions produced by the vibrations of the Bridge, may nlimately deatroy them.

Concerning these forces some explanations will prenently be given; bnt ap in a well written paper which appears in the Civil Engiacer and Archifect's Jowral for December, 1846, a0 attempt has been made to show that the danger which might arise from these forces is obviated by the friction rollers nuder the aeddles to which the chains of the bridge are attached at the tops of the piers, and believing that there is ground for considering the effect of the saddles in diminishling the strain to be very small or nothing, we feel it incumbent on ns, first, to say a fow words on this subject.

It is much to be regretted that experiments on the friction of cylindrical rollers are as yet too few to allow any precise determination of its valne to be fonnded on them, yet such experiments are not wanting; and from those of Coulomb principally may be obtained approximations which will seflice for the present parpose: it may be admitted, in fact, agreeably to many of the experiments made by that diatinguished philosopher, that the friction of rollers varies inversely as their diameters, and directly a the pressures which they support. Now, suspending eqnal weights on opposite sides of a cylieder by means of a string passing over a pulley to which the cylinder served as an axle, and then applying on one side additional weights sufficient to overcome the friction, Coulomb found the values of that element for wooden cylinders of different kinds and sizes ; reducing theee, by the frat part of the rule above mentioned, to cylinders four inches diameter, which is the aize of the rollers under the saddles of Hungerford Bridge, the friction of wooden rollers is nearly one-handredth part of the weight. This agrees with the experiments made by Mr. Babbage on rooden rullers, if as usual wo estimate the power requisite to draw a body borisontally on a sledge to be one-quarter of the weight of the body. But all these experiments having been mado with cylinders compressed by weights which are comparatively small, the above estimate is far lesa than it would be under the enormons prenaure to which the rollers anpporting the weight of a suspenwion-bridge chain are aubject.

The experiments of Conlomb on iron azles turning between cheeks of copper give for the friction of metallic rollers a value bearing a much bigher ratio to the preasares than that of wooden rollers: the diameter of his azles was 1.46 in . (English), and the friction, withont grease, was onewisth of the wreight; this ralue, increased in the ratio of $1 \cdot 46$ to 4 , gives, for the friction of iron foar-inch rollers, one-ffleenth of the weight or pres. sare, It wrould seem, therefore, that the friction of such collers, even in circumstances far more favourable to the freedom of their motion than those of the rollers under the saddles on the piers of Hangerford Bridge, ctanot be estimated at less than the quantly last named. Now the pressure In the vertical direction, arising from the weight of the suspending chains on the tops of the piers on each side of the centre of Hangerford Bridge, being estimated at 850 tons, it must follow that the friction and inertis of the rollers are together eqnivalent to nearly 57 tons; or strains at the tops of the piers, to that amount, may take place before the saddles will move. What has been said must be considered as independent of the iocrease of resisting power in the rollers, arising from the probable alteration of their figures and the indentation of the planes on which they rest, in consequence of the great pressure to which they are subject, each of the twenty-five rollers* ander the saddle bearing one-twenty-finh of the Weight on that paddle, or above 17 tong. The resistance ariaing from the force of cohesion may also, in time, become sensible ander such pressare. The entimate of the friction of collers on the pier of a suspension-bridge which, in the paper referred to, is derived from that of a railway carriage, if by no means admimible: as well might it be assumed that the body of a railway carriage, if moving on rollers four inches diameter, would have

[^13]only half the friction which it bas on its wheels. A milway carriage may be considered as moving on rollers whowe diameters are ted or twelve times as great as those of the bridge rollers; and, if any comparison could be made between cases which are 80 much unlike, it ahould be inferred that the friction of the Bridge rollers, instead of being half that of a railway carriage, shoold be ten or twelve times as great.
By an oversight, it was stated in the pamphlet on ' Metropoliten Bridges \&c.,' that the side chains of Hungerford Bridge have the same droop or defiexion as those in the centre; whereas, the side chains, being carried below the level of the road, the droop is greater, while the horizontal length or span is nearly equal to that of half the centre chain: the inference drawn from the difference between the parts of the chain, is, however, correct ; the value of a^{\prime} being still leas than than that of a. This is manifest from the approzimative formule which is given in the pamphlet; siuce x^{2} is small when compared with $8 y^{2}$, and the whole nomerator is divided by an increased value of $6 x$. But if the weights suspended from the central and side chains be taken into consideration, the value of a^{\prime} relatively to a will be much less than that which would reanlt from merely sabstituling the augmented value of x in the formula above alluded to. For the weight of half the chains and roadway between the plers being estimated at 500 tons, while, between either of the piers and the abutment on the land side, the weight of the chaing with the portion of roadway which they in part suspend, and in part support, is about $\$ 50$ tons :* then, still, for simplicity, consldering the curves as common catenaries, and using the correct formala for horimontal tension, vis., $a=\frac{a^{9}-x^{3}}{y x}$ in which , the length of the chain betwreen the polnts of attechment (in this case, the length between the highest and lowest polnts of the curve, may be taken to express the weight of the chain and loadiog between such points, it is evident that a^{\prime} will be leas than a_{a} both on account of the smaller value of and the grealer value of x.
It is, therefore, very correct to eay that there exista a foroe of considerable intensity, expressed by a- u^{\prime}, which is constantly acting towarda the river at the top of each pier, and whlch may ultimately be the cause of its destruction. And thongh it should be admitted that motion may take place in the saddles $s 0$ as to produce some compensation to the excess of strain towards the middje of the river, yet the effect of such motion would be far from equalising the contrary strains. In the actual state of the Bridge, the borizontal tension of the side chains at each abutment is about eleven-twenty-fifths of the like tension of the centre chains ; and a movement of the saddle to the extent of eighteen inches towards the river, while it would diminish the horizontal tension of the centre chains by about one-eight part of its value, would increase that of the side chains by one. handredth part only; and this is the whole extent to which the compensation alluded to in the Civil Eaginezr and Architect'a Jouraul for Decem. ber (p. 365, col. 1.) would amonnt. It may be observed, that a strain which should cause a movement of a saddle towards the river to the extent of eighteen inches, must be accompanied by a descent of the lowest part of the centro chain as much as six feet vertically.

The effects of the strains at the pier heads may, obvionsly, with propriety, be determined by the parallelogram of forces as explained in the fifth page of the 'Reply', addressed to the Editor of the Cioil Engincer and Architect's Journal; and of such resoluion of forces an instance uccurs in the description of a Jib-Crane, which appeara in that journal for December, 1846, p. 367. It is not, however, to be supposed that a pier of brick or stont is overturned as if it were a vertical rod, capable of turning on a joint at its lower extremity only; this is an effect which can scarcely take place in such structures ; but continual preasures and accidental strains at the head of a pier have tendencies to destroy the adhesion of the materials, and cause the pier to fall in ruins in consequence of a fracture taking place. at the point where the folcram of the lever may be situated. The position of such point will depend upon the construction of the piers, and those of Hangerford Bridge are not solid in all their height, bat each is perforated at a certain distance above the roadway by arched openings at right angles to one another, so that the top of the tower with the saddle is supported only on the four portions of the side-walle at the angles.

This construction renders the towers far less strong than they would have been if colid, and makes it very probable, that, in the event of andulations of the bridge producing a pressure even lesa than that value of $a-a^{\prime}$ wbich has been above found, fractures mill take place in thone portions of the side

* It mutt te obserred, that thte portion of the roedway, which is equal in length to inlf the distauce betwean the pient in the river, is supported at both ite extremilues.
walle; while it is not imponible that, from unequal settlements in the bed of the river, combined with straina at the topa of the towers, the latter may be wholly overtarned."

From the eatimate which has been made of the weight, (850 tons) on efther of the pairs of saddles, and the horizontal preasure (57 tons) which may take place before the addlea will move, it may easily be computed by the parallelogram of forces, that in either of the two towers on one side of the centre of the bridge, the diagonal which represents the resultant of the forces would make towards the river, an angle of $3^{\circ} 49^{\prime}$ nearly, with a vertical line passing through the centre of the saddle, and that the value of the resultant for one tower only, is 429 tons. The direction of this resultant, if produced, would fall within the base of the tower and therefore the latter may seem to have sufficient atability; but if, in the tower, a line be drawn fron the top of a aaddle to the foot of the opening, towards the river, at its middle point, that line will make an angle of $22^{\circ} 45^{\prime}$ with the resultant junt mentioned ; therefore, multiplying the pressure in the direction of that re. adiant by the cosine of this angle we should have 395 toas for the pressure thrown obliguely on that side wall of the towor. Such a preasure, being but slightly counteracted hy the tenacity of the walls on the other sidet of the tower, would be anfficient to canse the wall to bulge towards the river, and woald prostrate the fabric in ruins.

Under the enormons pressure which the saddles have to inpport, it may bo preaumed, that theat have scarcely moved from their places since the constraction of the bridge, having experienced only the alight agitations produced by the small number of foot passengers who lave hitherto been on it at one time, and it may be readily admitted that, as yet, the strains on the pier-heads have produced no effects which appear to be detrimental to the atability of the bridge. Bat the case will be different thould even such strains be long continued; and no one can, without dismay, contemplate the probable consequences of failure sbould sach a bridge be frequentl; subject to the sudden rushes on it of bodies of people, and the rapid movement of numerous trucks and other carriages, laden with baggage, proceeding from the main terminus of the several stations and roade leading from Kent, Sussex, and the south-western connties, which it is proposed to estahlish opposite to Hungerford, and for which it is imagined this bridge may serve at a viaduct.
Melencholy instances of the fatal consequences attending the failure of these graceful but treacherous structares, are too frequently takiug place. Mr. Trollope relates, \dagger that while he was in the West of France, a suspennion bridge over the river Dordogne gave way, at the time that a heavy van was conveying, to the place of their destination, criminals who had been condemned to the gallies, when the unhappy persons, being unable to disengage themselves, were all drowned; and an account of a atill more lamentable occurrence it given in the Civil Engineer and Archifect's Journal, for Jan. 1847, page 31. The suspension bridge recently completed at Jinguratchy near Jessore, and the iron-work for which had been obtained from England, gave way at a time when 5 or 600 persons had assemhled on it to witners a poojah, and when three boats were passing under it; the aad accident was cansed, as in the case of the Yarmouth catastrophe, by the whole crowd soddenly rashing to one side of the bridge; and it is reported that 100 persons were killed or drownded.

But a case which mant be considered as one of the highest importance on acconat of the lesson which it offers with respect to the instability of saspension bridges when the great atrains to which they, above all other bridges, are limble are not duly connteracted, is that of the Pont des Inoalides, which was constructed across the Seine, between the jears 1824 and 1826, and which immedintely upon the centering being removed gere way, 50 an to render its entire remoral a measure of necessity.

The span of the bridge was about 557 feet, and the deflecion of the chains, in the middle, nearly 33 feet. The dimensions of these were more than sufficient to ensble them to reaist the tension to which they would be subject; but the chains were supported on tbe tope of four Bgyptian columns, (of which the two at each extremity of the bridge, were connected by iron bracen, and, deacending abruptly from thence on the land side, they passed down a deep pit formed in masonry, to which, at the bottom, they were firmly attached.

[^14]If mere strengtb, unsecompanied by equilibriam, could have enoured ate bility, this bridge ought to have atood, a monument of elegance. But thoogh hese, as in Hungerford Bridge, there wat an effort made, by permitting the chains to slide on the tops of the piars, to produce a compensation for an excess of preasure on the bridge, yet experience has shown that anch compensation does not take place; and it is evident thet, in consequence of the great friction, the horisontal presure towards the river, in allowed to take effect at the tops of the appporting pien or colamns; that pressure, ($a-a^{\prime}$ above,) combined with the normal or vertical presenre of the chain, produced a resultant force which overtarned the piera.

It is remarkable that the project for the bridge was anctioned by the approval of a comminaion constitnted of engineers, in the department dea Ponts et Chansses, and that its construetion was superintended by two engineers specinlly appointed for the purpose, as well as by the distingaished projector himself. It is painful also to reflect, that the failure of the bridge pressed so heavily on that talented individual as to cause his prematare death.

The writer of the article in the Civil Buginetr and Architect's Jownal, endeavours to show, that the dangers which may be apprehended from vibrations, undulations, rudden additions of weight, and rubhes of people, are rather imaginary than real, and treats this question as one purely statical, considering the bridge as a rigid, solid, inflexible structure. Bat it it clear that in all the preceding cases, at well as those of North Yarmouth and Bronghton, the catestrophes that occurred, arove from the dynamical effects of oscillations and undulations; these the wititer entirely rejects, on acconnt of the difficuity of inveatigating and determining mathematically the effects of the forces, which ought to be taken into account, from the mutual action of the flexible bodies on each other. There is no doubt that it is extremely difficult to invertigate thene dynamical effects, and to assign precise values for them; but are we therefore to reject them altogether, in determining the atrength which should be given over and above that which is required to sustain the statical pressure, and are we to make no allowance whatever for the additional atrains which the dynamical effects produce ? It might as well he asid, that no considerations, with respect to the action of winds and waves of the sea, ought to be made in erecting Piert, Light-houses, \&c., because we cannot estimate ernctly their dynamical amounts."

The above is Sir Howard Donglas's rejoinder to the remarks made by ne opon his former paper in thin Journal. As might be expected of two dim. putants who set out, open to conviction, and determined that the discussion shall never digress to topics foreign to the question, thereremains now but little difference of opinion between us. We think that he has made out a strong primd facie case for the necessity of determining, by actual experiment, whether the "shifting addles" be really efficient for their proposed object. At the same time, we still think the horizontal friction overrated: it is dificult to suppose that the rolling friction of wooden cylinders can be less then that of iron cylindert, and "the experiments of Coulomb on iron axles," inoluded (we preanme) the effect of rubbing friction, and therefore are not strictly analogons to the case before us.

The fact is we are contending in the dark. To make anything like an accurate eatimate of the friction of the Hungerford Bridge saddles, we most not content ourselves with the confeasedly inadequate experiments which have been hitherto made, but ought to make a direct experiment apon the Bridge itself. When the consequences of the failure of a Metropolitan Bridge are considered, it will not seem unreasonable to ask that this inex. pensive investigation should be undertaken. Even supposing it ascertained that the saddles move with the greatest facility when the Bridge has its ex. treme load, the mere fact of atiafying the pablic mind would be ample recompense for the tronble and cont incorred. Not only ought the Bridge to be secure, but every one ought to be eatinfied that it is secure. As far an we know, Hangerford Bridge has never been in any why proved by hearily loading it.

By analogy, from what little is known of rolling friction from former experiments, it certminly atill seems to na that the statical effect of the friction of the anddles would be small. But friction, like other forces, may be of the nature of impact, A crowd anddenly running from the nide spans to the

[^15]Centre apan of the platform would produce a sudden or impultive horizontal furce on the top of the piers which could never be entimated from atatical principles. There is, moreover, the apprehension of the rollers becoming, from long disnse, settied and fast in their pleca, by indentation, the secumu= letion of rust, or other foreign subntancen, \&c.: from not being called into action under ordinary circumstancol, they might be inoperative juat at the time when they were wanted. This point ought aleo to be examined experimentally.

We have confined onr attention almost exclosively to the stability, and have anid little of the strength, of the Bridge. The following seems a sumple and catisfactory method of asoertaining the tenaion of the main chaime at the points of suspension. If t be that tension, l the loed borne by each half of the main chain, and θ the inclinatfon to the vertical at the point of saspension, we know that

$$
\text { f. } \cos \theta=l, \text { or } t=l . \sec \theta
$$

whatever may be the form of the chain. In other worda, we may ascertain the tension of the chain at its highest point, by multiplying half the cotal load by the eecant of the angle at which the chain is inclined to the vertical at that point. The advantage of this method is, that it is independent of any assumption respecting the form of the catenary, and is strictly true, if we suppose what, in fact, is the case, that no part of the load is anstained by the platform Itself rosting on the piers. In answer to an application for the value of the angle in Hungerford Bridge, we were promised the particulars by Mr. Brteel, bat subsequently found that he had been too much eagaged to sead them. Probably, the subject (the mare question of a few hundred lives) was too trivial to engage his attention.

There are many points in Bir Howard Douglas's paper on which remarks might be offered, but, for the sake of brevity, we refrain from making them; though, in one or two cases, our argaments seom to have been somewhat misunderstood. However, there can be no doubt that, if the traffic of Hungerford Bridge should appear likely, from a change of cireametances, to be hereafter greatly increased, the question will engage the attention of those who have more power than oarselves to demand information upon it. The inquiry which Bir Howard Douglas has persoally nudertaken (notwithstanding great obstacles), has, we believe, been most minute and laborions: such exertions can have no possible object but the public security and the advancement of engineering science, and ought, therefore, to be appreciated in proportion to their disinterested. nese.

+ The powerfai effect of the aceumulation of rote and concretions is frequently erblbited in a striling degree to the second or mboidjery tafefy.valvas of steaten bollers. Theap ralres are pever called Into uee except In unusnel emergenciet, and then, from ong diause, art onem clogged and stich fast, notwithotanding the vary great preature axerted to open them.

HISTORY OF ENGINEERING.

By Bir J. Renniz, Parsident of the Institution of Civil Engingere.

(Continued from page 55.)

Dramage.

In works of drainlag extensive districts of low marsh or fen lands, the Romans, with their ugoal energy and ability, effected much, and the Podike, Caer-dike, and the embankment of the Thames, amongat other works, are good examples. After they left the country, it relapsed into its former state of barbarism, and so remained for ages, until the art of drainage may be said to have been lost. Upon its revival the Datch, from necessity, had become extremely skilful, and were celebrated throughont Europe at a remoto period, almost before engineering commenced in Great Britain. On acconat of the proximity to England, and their experience in these kind of works, when it became a question of draining the ertensive districts of low marahy land on the east coast of England bordering opon the Humber, the Witham, the Ancholme, the Welland, the Nene, and the Onse, it was nataral that recourse should be had to those who, from their skill and experience, had already acquired such repotation as the Dutch; accordingly we find, in the reign of Charles the First (when it was determined to drain the great level of the fens, afterwards called the Bedford Level, from the name of the Barls of Bedford, Cornellos Vermuyden came over from Hol. Leod, and ather drainfag the level of Hatfield Chase, adjoining the Trent, and acquifing considerable celebrity and infuence, was knighted by the King. He planned groat works in 1640, at the Bedford Level, for Francis Ear of Bedford, but the execution of Vermuyden's plans were prevented by the Civil War, and were afterwards carried into effect by William, tbe suceseor to Francis, Earl of Bedford, aftor muoh disconssion and controversy, and were scooenafal in drainiag the lavel to a certain exteat. The
plan in 1651 consisted in placing a sluice acrose the River Onse, at Dene ver, about 15 mileu from the ses at Lynn, where the Ouse ealers the Great Wash, so as to exclude the tidal waters, leaving the chanuel of the River Onse, above that sluice, for discharging the fresh waters only; theme it was proposed to conduct from all parts of the land by small lateral drains or canals, carried to the river in as direct courses as practicable, having gluices at their jnaction with the river, to prevent the floods from entering them and covering the adjacent lands. He also cut a dew channel, about 20 miles long, called the Bedford, or Huadred Foot Biver, for a part of the River Ouse, from the point where Deaver Sluice was erected, to the old channel of the Onge, at Earith, where anolher stanch or sluice was placed for preventing the tide from going beyond that point.

Vermayden considered that by adopling this plan, and having only the fresh waters to contend with, he would get rid of that most powerful enemy to drainage, the tide; and then, having ouly to deal with the fresh waler, he anticipated no difficulty in accomplinhing the complete drainage of the land. For a time the plan answered tolerably well, und effected consider. able improvement in the drainage; but he overlooked the important facts that the tidal waters formed the most important agent in keeping open the channels of the rivers, in preserving a good outfull for the draiagge waters to the sea; that by excluding the tidal waters, the channel of the rivers would suffer, in proportion to the quentity of water which was thus abstracted from them, and that thas in time they would become incapable of effectually discharging the drainage waters; that the outfalls of the rivers wonld also suffes in the sama proportion, and then the marsh-land districts, dependiag apon them for their drainage, would revert to their former inefficient state, and so it happened with the Bedford Level. The mouth of the chansel of the River Onse, which is the chief ontfall for the drainage of the district where the Bedford Level is situated, being deprived of its accustomed and natural scouring power of tidal water, became so obatructed by shoals thet the land weters conid not pass off to the sea. In propartion as the drainage became defective in process of time, as it necessarily did under the system adopted, windmills were erected to work scoop-wheele, with a lift of 4 or 5 feet, for raising the water out of the lateral canals into the river. In 1713, Denver Sluice was undermined and blown up by the floods, and the tido recovered, to a certain extent, its ancient receptaclos, and if proper measures had then been adopted, both the drainage and the navigation wonld have been restored to an efficient state; but the aluice was rebuilt after a few years on the old system, and the drainage and navigation became deteriorated as before. During the past century the drainage of the Bedford Level, as well as other districts, has been submitted to, and has occopied in succession the attention of the ablest engineers of the day; among whom may be mentioned the names of Yerry, Elstobb, Grundy, Golborne, Armstrong, Kinderly, Smeaton, Jessop, Cbapman, Page, Robert and William Mylne, Hoddart, Rennie, Telford, Walker, G. and J. Renaie, Cubitt, Rendel, and others.

Amongst the mont remarkable operations of this nature, may be mentioned the works apon the river Onse, for the purpose of improving the drainage and navigation, which had become seriansly affected by the accumulation of sands at its month, and the abstraction of the tidal waters above-montioned. The principal defect existed immediately above the town of Lynn, where the river took an extraordinary bend almost at right angles to its general course, for a length of 51 miles, forming almosta semicircle, the diameter of which was only 24 miles ; independently, moreover, of this circuitous conrse by which so much fall or inclination of the current was lost, the channel was so irregular and disproportionate in width, and so much encumbered with shifting sands, that the tidal and fresh waters were unable to force thoir way through them; thos the drainage waters were penned up above, and being unable to get off, formed a tranquil pool, which during doods frequently broke the banks and innadated the surrounding conntry, the channel, moreover, being deprived of its natural scour, silted up in the same proportion. In order to obviate this great and growing evil, the ablest engineers of the day were consulted, and they ananimoualy concurred in the opinion, that tbe only sore means of providing a remedy was to cut off the bend in the Onse, by making the shortest chanvel between its two extremities. This plan was first proposed by Bridgeman, in the year 1724, und was subsequently recommended by the various engineers of the day who succeeded him. In the year 1792, an Act was passed, after great opposition, eappowering a certain body of Commisaioners to carry into effect this cut, which was culled the Eau Brink Cut the expenses of which, estimated at about $80,000 \mathrm{l}$., were 10 be defrayed by a tax of 4 d . per acre on the middle and south levels of the Bed. ford Level, comprising about $\mathbf{3 0 0 , 0 0 0}$ acres of land drained by the Onse. This great work was to have been carried into effect by Robert Mylne and Sir Thomas Hyde Page; but they disagreed as to the proper form and dimensions of the cot, and referred the matter w Captain Huddart, who decided between them; so much money, however, bad been spent in litiga. tion, that the tax which was levied to pay for its execation was exhausted. In 1817, another Act of Parliament was obtained, empowering certain Commisaioners to raise additional and increased funds from the lands which it was supposed would be benetitted by it, and the executioa of the work with its branches was intrusted to the late Mr. Kennie, as the prin* cipal engineer. The Ean Brink Cut, which was ezecuted according to the award of Hoddart, and the works connected with it, were fioished and opened on the 19th of July, 1821, and very beneficial effects, as had been anticipated, immediately followed; the exuraordinary wet winter of 1821 which succeeded, proved its success beyond doubs, for soon after the cut was opened the low water line in the Ouse, immediately above it, fell five
feet, which vecessarily produced a correspooding increase in the fall or thclination in the current, and thos gave it facreaned velocity and power to scour away and remove the obstacles lo the bed of the river, and to discharge a greater quanity of water le the mame time, as well as a longer period for discharging it, to the great beneft of the coontry drained by it. The lidal waters, moreover, beiog freed from the shinlog sanda and circuitnus course of the old channel, and being conflaed in one mass in the new direct channel, acted with grenter effect; finding their way opwards, aod becoming unlted with the fresh waters in ealarging and deepening the chanael above, they kept it open to the proper dimensions, and thus both the drainge and the mavigation derived beneft from thls great work. The improvement was carried still further, in addiag one-third to the dimenajons of the cut, particolarly et the apper ead; by this means an additional full of about a fret 6 inches was obtained, makians total increase of about 7 feet 6 juches in the fall of the current at the upper end. The effect of theze improvementa has been to increase greatly the produce and value of upwards of $\mathbf{3 0 0 , 0 0 0}$ acres of land drained by the Ouce, which otherwise could not have been cultivated. The measare, like almost all other great improvements, encountered great opposition at the time, and in order to tranquilise the fears of some and satiafy the prejudices of others, varions minor interior works were provided, such as locks and woirs, for penning up the wreter, most of which, bot for exiating prejodiert, it would heve been better to have diapensed with, and to have removed Denver slulce, raising the banks on the various rivers above, 00 as to have restored them to their oatural state, and thos by admitting a greater quantity of tidal water, to have scoured ont their channels, and thereby have enabled them to carry off the drainage waters more effectually.

A similar operation was ezeculed by Telford and Rennie, on the river Nene, in 1829 , at the Nene outfall, which commesces abont five miles boJow Wisbeach, and terminates at Skate's Corner, a leoglh of nemrly 5 miles, where it joins the great eatuary of the Wash. The beneficial effects of this work have been very extriordinary; the low-water mark has been lowered 10 feet inches, and a district of above 100,000 acres has been completely drained and bronght into coltivation, which formerly for the greater part of the year was little better than a stagnant marah; the navigation han been so moch improved, that the tide rises 14 feet at Wisbeach, and vescels of 200 tons are now enabled to come up to that town, where previonsly the river was ooly navigable for small sloops; and at Satton Bridge, 8 miles lower down, vessels of above $\mathbf{6 0 0}$ tons can arrive where formerly there was only water for vessels of 200 toms.
The river Nene having been thas improved, so as to enable it to carry off the tidal and fresh waters, an extenaive plan for ibe interior drainage was designed and carried into effect by Telford, in 18s0. It cousisted of one main drain of proper dimensions, with two subsidiary drains of amaller cepacity, extending above 20 miles, as far es Thorney, to bring down and discharge all the water from the low fen-lasd districts into the apper end of the new outfall, by means of a capacions new slvice with self-acting gates, which continves to discbarge the water from the drains into the Nene, so long as the level of the water in the drain is higher than that of the river; but whenever the water in the river is higher, the sluice-gates close and prevent the river water from entering. This plan of Telford's resembled one previonaly proposed by Rennie for tbe amme object, bot which was upon a more extensive scale, and was accomparied by the important addition of catch-water drains.

In 1806, Reonle propoeed and carried into effect a complete system of drainage, for an extensive district of fen-land, called the East, Weat, and Wild more F'ens, bordering opnn the river Witham, into which they drained, sbout 10 miles above Boston. Rennie at once perceived the defects of the Witham as a means of drainage and navigatlon, and decided that until the river was improved by shortening its course and increasing the capacity of its chapnel, the complete drainage could not be effected. Thls plan he proposed, but the opposition was so strenvons that he was obliged to abandon it, and to carry his main drains into the river below the town of Bost00: he divided the drains into two classea; one set be techoically termed catch-water drains, which rannlog along the base of the hills aurrounding the low lands, intercepted all the high land waters, which, deacending with great velocity, would soon have overwhelmed the low lands, in addition to the water falling apon them according to the oxtent of their surfaces. These high land walers were conducted by the catch-water drains info a maiu drain, which discharged the waters, by a celf-acting sluice, into the Witham immediately below Boaton; the low land waters thos freed from the high land waters, were conducted by separate drains into another maln drain at Hobhole, about 3 miles lower down the Witham, where there was more fall. By this means both classes of wetery were discharged withont interfering with each other; means were also secured of discharging all the water by the lower drain at Hubhole, in case it should be found necessary, which ultimately happened, and it was made of additional capacity for that object. The district was thus completely drained, aod from a stagnant marsh was converted into corn-fields.
The Witham being lef to itself, became silted up in 1887, as had been foreseen by Kennie, and the neap tides searcely fluwed above 3 to 4 feet at Boston. The channel was then improved as recommended by him, and the river is now in such a state that vessels drawiag 12 and 14 feet arrive at Boston, and the whole country drained by the Witham has been proportionubly bezefited.

He proposed a similar plan for the improvement of the Great Bedford Level in 1811, the cost of which he estimated at $1,188,1891$; ; bat onfortasatels for that district it has mever set been carried into effoot, althongh it
would have amply repaid the orthay. The orfain of the above ayctesn, it is believed, is due to Renaie, although is is said by come that the Romens employed cetch-wnter draios, and the Caer-dike is quoted as an example: It is, however, by mo means clear whother it was not merely a navigable canal to conrect the Nene and the Witham; at all events, the syotem, if ever it oxisted, had long beep abandoned, and the revival, at leati in mo dern times, in due to him. He aleo proposed the draipage of the Halfeld Chase and Ancholme districts, and Romney Marah, Holderneane, and other districts apon similar principles, where drainage had been tried and had ouly partially succeeded.

After matore consideration and experteoce, it appears that the safest end most certain principles of dralagge and navigation are:-The improvement of the chanoels and ontfalls of the rivers, as fur as may be precticable, for the free admisaion and discharge of the tidal and freab waters; with interior drains, woll laid out, of proper proportion and capacity for the low land, and catch-water drains for the high land waters; and according to circumatances, the drainage and navigation may be combined or kept soparate.

Steam Dreinage.-Where antural drainage could not be effeated, or was ouly imperfectly applied, recourse was had to windmills and scoop wheels, as still used in Hollend; these were alwaya adopted antil 1820, when Watt's steam engine was successfully applied by Rennie to work a large scoop-wheel, for draining Bottisham Fen, near Ely. Subsequeally this valuable system has been applied and extended by Glynn, Field, and others, to the great improvement of fen-lands, by draining the water lower beneath the sorface than conld be done by windmills, which are now almost generally soperseded by steam engines; the latter can be used when required, whereas the windmills can ouly be omployed when there is wind; and it frequently happens that calms prevail during rainy weather, at the very time when the mills are most wanted.

Whilst carrying ont the improvements of the outfalls and mouthe of rivers, it often occurs that large tracts of sand and mod may be converted fato fine arable lend, ft for agricultural purposes, by soceleration the natural accomulation of warp, or alluvial matter, held in mechanical caspension by the water, and whicb, from the absence of proper meagares, is otherwise carried away without producing any benefil. The works for this object and for improving the drainage and navigation, if properly conducted, eonsist generally in regulating and confning the channels of the rivers, through the sands bolow high-water mark, to one channel, for both the food and ebb waters, and accelerating gradually the accumolation of alluvial deposit, by jetties and other light works adjacent to them; in proportion as the deposit accumulates, the works are raised notil vegetution appeara, which generally takes place about the level of bigb water of neap tides, and then the land is embanked from the aea. The system of warping or artifcially soiling bad land where the levels will permit, has been practised for mapy years along the Trent, Onse, and Hnmber, with considerable soccess. The operation consists in admitting, through sloices and canals made for the porpose, the water charged with alluvial matter in muspension, to the lands to be warped, which are surrounded with embankments, and after haviog deposited the allavial matter the waters are cooducted away agaia to the river; this process is repeated at intervals until the lands have been sufficiently warped, and thus lands which, in some cases, are situated several miles from the rivers, and were comparatively worth little, have become extremely valuable. If these operations be judlciously condncted, the outfalls of the rivers, and the harbours and drainage and aavigation depending on them, may be greatly impruved, and the land gaised duriog the operation will, in many cases, amply repay the cost of draining it. In Holland, and other countries, there is a great Geld open: much depends upon the situation and other local circumstances; considerable jodgment and skill is required in eelecling the districts, and in properly applying the aystem, but its conseqnences are so important that it is well worthy of the attention of eagineers. A scheme of this kind upon an extensive coale is abont being carried into effect at the month of the Uuse and Nepe, where above 30,000 acres of land will be gained, and great improvement will be effected in the drainage and navigation of the extensive districta drained by the Ouse ana Nene. The same principle is applicable, in some cases, fur converting ghoals into effective breakwaters.

Machinert and Makdpactured.

The improvement and extension of machinery and mannfactures by mew inventions and applications have been immense since the time of Smeaton. Previous to that period wood was almost exclusively used in the constroction of machinery. Desaguliers, Lenpold, Gravesande, and other writere, have given descriptions of the bett specimens of mills and machinery in use a century ago, hat they were very defective, both in proportion and construction, when compared with modern machinery for similar purposes, The introduction of cast iron by 8meaton, in 1754, was a great step in advance. He begen by employing cast iron for the axis of one of his earliest windmills, in 1754 ; then in 1769, for the sbaft of a water-wheel, and the main-wheel attached to it, for boring cannon at Carron; cast iron atter-

The difintaldea here are peculfar, In consequence of the coant belpg ourrounded win a brond belt of loose shingle, which repders it vecenary to carry the dralane water throngh the met baplas by eloet tunnels, with vilvet at thetr outer extremaldith, 30 ws to be torced open by the hydraulle pressare of the water. Dymehurch well, or sea hank, bert is well worthy of remark : It was formed in the Dutch manper by tapes wattled copother,
 $i s$ esponed.

Wand was goverally adopted for axes, bot an some of thew, which wrese Inpeoperty mede, gave way, the applicution of cast hres in other machisery wres fa some meusure retarded, math Watt applied his slen: angise to dive aills. The Albion Mills, coastrueted by Renaie, in 1784, and worked by Wett's stram-engine, may be coasidered as the srateomplete ezample of the earployment of iron in every part of machinery, except for the teeth of some of the wheels, which were made of hard wood, for working into the iran teoth of otber wheels; that example also chowing the tree form of teeth, whith a fioe pitch, and adequate depth and bread th and adjastment with each other, 6 a to work well together with the leent friotion, and the aso of bevel gear, which is the perfeotion of modern mill wort.

The great improvement effected in the dealgn, proportion, and constracthon of millwork, together with the steam-engive, onabled mechisery to be driven with greater velocity, locreased action, and diminiahed friction, and thos greater effect was prodoced with the same anonat of power.

We are indebted to our honorary member, Profeapor Willis, for his able investigntion of the teeth of wheels, and to Whewell, Mosely, Jamieson. G. Rennie (for his new edition of Buchanan), and othert, for their valuable treatises on mechanical and engineering subjects.

The Invention of the Spinning-Jenay, by Hargreaves, in 1707, and of the means of drawing ont the fibres of cotton between succeavive pairs of revolving rollers in the water-twist opinoing, by Arkwright, in 176is, followed by his syatem of machinery ior carding and preparing fibres of cotton for apinsing, in 1775, occasioned a complete revolution in the arts of manofactaring, and led to the establishment of the factory aystem, with its celfecting machinery. A somewhat similar system bad, however, beop introdoced in the Siit Mills at Derby, aearly balf a centary before; but inasmoch as silk antorally consists of a series of fase threads, it is oaly seces. ary to twiat or retwist them, in order to combine them together, which is a Nery simple operation, compared with forming the abort detached f brea of cocton into a thread, withont the ind of the hand to gride them; and to eccomplinh this by sachinery was extremely dificult; it was, however, very ingeniously overcome by Hargreaves and Artwright in dlfferent waya, borlh of which were combined together by Crompton in the mule in 17T1. Arkwright's water-spinning was sobsequenlis simplified into what is techsically termed throtle-spinning, and together with his preparing machinery of 1775, was adopted for spinning worted by Toplis, and for fiax by Mar. shall. The carding machinery whe also adopted, with suitable modifice. tions, for proparing short wool, Hargreaves' spiaslog.jeany being ased for upinning it iato yara for woollen oloth. The mole for a long while was caly eomployed for cotton, but was adapted by Kelly in 1790 , to be partly worked by power io aid of manual labour, and was soon aftor improved se as to spin extremely fine threade.

All theae valuable iovertions, together with malfiplleity of other ingenivs contrivaoces connected with the factory bystem, were completed and brought into extensive use io the short period of 80 years. Mechinery for printiog calico was introdoced by Peel, and perfected by others. Watt, in $\mathbf{1 7 8 7}$, joiroduced chemical bleaching, whlch was afterwands carried to great perfection by Tenoant. Certwright, in 1787 , iavented clolh-weaving by power, althongh it was not brought into oce until twenty years after, and, in 1790, he invented machivery for combing and preparing long wool, to preparation for being aponinto wortted. Machinery for dresting woollon cloth by teazles whes perfected, and Harmer invented machiaery for shearing it in 1787. This bas since been carried to greater perfection by Lowis. Bramah, in 1796, introdnced the hydranalic prese, which furaished the means of presaing cloth, bookg, papers, and other articles with a degree of force which could be accomplishod by no other means, and its general adoption has been of great service. Self-acting machinet for makigg but-ton-shanke were invented by Heaton. Bonlton's large manufactory at Sobo contained many invention besides those of Watt. He inveated ma. chinery for coinjig money by steam power in $\mathbf{1 7 9 0}$, and erected a complete establishment at Soho, where, for a long time, he executed contracts for coiaing money for the Britigh, and various foreign goveraments. His plan for ctemping the pieces consisted in exhausting alr, by paxaps worked by a stean-eagine, from vessein properly adapted for the porpose, and connected by valves with air cylinders, baving pistons workiog the balancebeams of the coining-presses. By opening a valva, air is exhausted from withio the cylinder, and the atmospheric pressure acting upon the piston, turns down the screw of the press which stamps the coin; by re-admitting air, the piston rises and with it the screw, thos producing ap alternate rising and falling motion so as to strike from 50 to 60 pleces per minate; as the screw risel and falls, it works a feeding apparatus for supplying blank pieces, ready prepared for atamping, and as fatt as one piece is stamped it is pastred of tire die, and is replaced by another. The apparatos for cattiag oet the blank pieces is of a similer deacription ; the whole is celf-actfag, and is a mont beautiful and jogenious contrivance. These improvements were introduced into the Royal Mint, at l'ower Hill, which was constracted in 1810, ander the direction of Messrs. Boulton and Watt, who formished the stemengines and the coining machinery. The rolling machinery by Renaie, and the equalizing machinery of Barton, congtructed by Mandsiay, complete this magnificent establishment. At St. Petersborg, Copenhegen, Calcutta, apd Bombay, Messrs. Boulton and Watt orected similer eatablishments, with rolling-mills by Henaie, at the two latter places.

The whole of the above ingenious and ralasble inveations, except powerweaviog, had been fully carried out and brooght into ancceasfal practice before the ead of the last centary. The brilliant resulte which were obtained
from these inventions excited, in an fotepee dotree, the alill and iogenufty of a host of able mechanicians in the various departments above mentioned. The mont minuto operations were reduced to systom by the use of ma. chines, and the bigh profits derived from manufacturing by machinery, while the prices of the articles continged the anme as those formerly produced by manal labonr, occanioned a readinese bofore unknown to adopt all new machimes, as well as to extend and improve them.

Water-Wgezle.
The general introduction of self-acting machises induoed the construction of more extenslve mills of all kinds, and rendered neoensary the nee of more powerfol and better regulated prime movers. Water-wheels were employed an the moving power at the early eatablishments of Cromford, Belper, Matlock, Bakewell, Laoark, Cattran, Deanatome, \&c.; and when the governor was afterwards applied to water-wheels by 8trath, at Belper, the motion and power were regolated with a degree of aniformity aloont equal to that of the ntenan-engive, and waler was rendered as porfect a moving power as its natare admlited of. Beanie, it is believed, first applied the descending shattle, by which the now of whter is regalated over its upper edge, so as to obtain the fall benellt of the fall, imstend of pasaing onder the shottle as formerly, whereby some of the fall is lout. He improved the construction of the wheel, increased the width and diminished the depth of the brckets, at the same time angmenting the velocity of the periphery from 8 feet to 5 feet per second. By these means nearly 75 per cent. of the power was realised. 8tratt's improvements in water-wheels, execried by Hewer, consiat in makiog them with slender iron arms and oblique tierods, with segments of teeth on the circumference of the wheel, turaing pinions with nearly the same relocily as crapks of steam-enginen, and renderiog them almost equally applicable. In this department Donkin and Fairbairn have also taken a conspicnous part.

The Turbize, or a modification of the horizontal water-wheel, by Fourneyron, has latterly been introduced into thla conatry from France, with, it is sald, considerable success. The governor had been applied to windmills by Hooper, io 1789, and 200 a after Watt adapted it to hle rotative ateam engive, which was thereby reodered appllcable for turaing mille, and its superiority to water, and every other power then known, becane manifest. The unlformity and certainty of the movement, ita capability of extension to any amonnt, its applicability to any sitaation, readered its adoption almost universal, and extended the sphere of mannfacturing operations from the weaver's cottage and the banks of the lonely atream, to large popolous Lowns, such as Manchester, Leeds, Macclesfeld, and other places, wherever circumetances, iodependent of water, wore favoorable for their adoption.

The concentration of manafacturing operations, cansed a aumber of small machines to bo subatitated for thowe formerly impelled by hand in workmen's cottages, and brought together in large baildings adapted for that parpose, and worked by owe great moving power, and so combined with each other and the buildiag, as to ronder a apinning.mill, with its waterwheel, or ateam engioe, and all its accescories, one vast and complicated machipe. A new school for mechanics was thus formed, in which far greater power than had ever before been applied to machinery, was to be distributad amongit a number of delicate machines of the greateat variety of form and complexity, with some parts minote like clock-work, requiring every gradation of force to drive them, and corresponding strength in some for resisting the largeat and others the smallent impulee. A new and ex. tended field of inquiry and observation was thereby prodoced, which brought forward artints of every description to contribute their aid, as to ove common stock of knowledge, for the advancement of the new system of manufacturing, as well for the invention of new machines and procesces, as for the moltiplication and improvement of thoee previonsly iovented. The ingenions and valuable labours of the great mechaniciand of the last century have been mont ably continned by their succesmors, many of whom are, or have been, our contemporaries, and who with a greatly extended aphere of applicution, have advanced in the career of improvement with an almost unparalleled rapidity.

Many new machines have been invented, and mont of those in daily nee have been rendered eelf-actigg or antomatical, so us to mquire no further aid from man, than the mere act of presenting the materials to them to be manofactured, directing their progress through the machine, and disposing of them afterwards. The power logra, inveuted by Cartwright, in 1784, was fterwards improved by Auntin, Miller, Horrocks, M'Adam, Lane, Bowman, and others, and its employment greatly erteoded.
Rope Machinery.-Machlnery for making ropes and cordage was invented by Cartwright, Grimsbaw, Chapman, and others, and anbsequently earried to great perfection by Hoddurt, us exhibited in the establighment of Turner, Huddart, and Co., at Limehouse. Thia ingenions and valuable invention consisted in regulating and adapting the lengths of the different yarns, or threads composing the rope, so that each might bear an equal straia, which could not be done on the old aystem. To effect this, a serien of bobbins, with the proper leagths of yarns wound apon them, were placed in a frame of a creacent form, and the yarns from sheat bobbina were conducted through holes in a vertical guiding plate, having those holes arranged in concentric circles; from thence the yarns passed through a vescel of liquid tar or pitch, and then through a single bole of the required gage, on to a large reel mounted in an oblong frame, to which a rotatory motion aboat a horimontal axis, was commanicated for twisting all the yarn together into a strand, and aloo a circular motion of the reel at
right angles to that of the frame, for wioding the etrand upon the reel, as fast as they were wound off the bobbins; a guide wes autached which regulated the winding. The whole wae worked by one of Watt's stoam engines. By this beautifully-contrived piece of mechanism, the whole of the yarns were twisted into a strand of the required dimensious. The pitch and tar employed was used either cold or warm, and derived the appellation of warm or cold regieter cordage accordingly. The cables were formed by a larger machive, combining three of the above-described frames together, each having one of the strands to form the cable wound upon its reel; but the axes of the three frames, instead of being horicontal, as in the firt case, were vertical, and all monnted in one large frame, which received a rotatory motion, about a vertical axis of its own, and carrying round the minor frames combined within it in order to twist the three strands together. The several atrands were anwonad from the reels, in the minor frames, as fast as the three were twisted together into the intended cable, which was drawn upwards between pairs of grooved rollers, disposed above the centre of the main frame, and the cable was conducted away by the same machlnery and cuiled ap for use. Nothing could be more striking than the spectacie of one of these magnificent machines, resembllag a great orrery in motion, pursuing its silent yet resistleas course, produciug the means of securing at anchor the gigantic vessel of war againat the raging tempests of the ocean. This magnificent ma= chinery, after returning a handeome reward to its ingeaious inventor, and the enterprising capitalists who orected it, was bought by Government, and erected at the Royal Arsenal, Deptford. Chapman's rope machinery, and Curr's for making flat ropes, chielly used for mines, as well as a new machine, lately introduced at Portamonth from France, said to be the invention of Hubert, are worthy of nolice.
Dyer's machines for makiog cards, for cotton and wool, and others for culting nails; Wilkinson's, for making weavers' reeds; the self-acting mules of Eaton, Roberts, Smith, and others; those for weaving bobbfn. net lace, by Heathcoat, Morley, and others; Holdsworth's, Dyer's, and other improved macbines for preparing cotton rovings; Marshall's, P. Fairbaira's, and other machines for flax, are all ingenious and lmportant inventions of self-acting machinery, well calculated to improve, oxpedite, and eoonomise the manafacture of the various articles for which they were intended. Amongst the same class may be mentioned the curions inventions and improvements of Didot, Donkin, Foundrivier, Dickineon, Crompton, Towgood, Ibotson, Kcenig, Nicholson, Tilloch, Congreve, Stanhope, Cowper, Applegath, Spottiswood, and others, for making and drying paper, and printing by steam; Oldham's varions contrivances for priating bank-notes at the banks of Eagland and Ireland; Lowry's, Mandslay's, Perkins's, and other machines for eagraving on metal platos; Hollingdrake's method of casting copper ander pressare, for engraving; Branel's block machinery, executed by Maudslay, at Portamonth, by which every operation is performed, from the sawing of the rough piece of wood antil the perfect completion of the block for naval purposes; bis saw-mills at Chatham and Wool wich; Bramah's planiog machine at Woolvich; Wil. kinson's machine for boring large cyliaders, are spiendid specimens of machinery; neither must we omit Watt's simple operation of making small leaden shot, by pouring meltod lead through holes in a cuilendor at the top of a lofty tower, when they assume a spherical form in cooling, as they fall through the air, and finally into cold water below. Leaden bullets are compressed into a apherical form with great solidity by self-acting machines by Napier. The manufactare of crown and plate glass has been improved, and promises great extension; in this latter branch, Green, Pellatt, Cbance, and others, are making great progress. The universal and widely extended application of machinery to every manufacturiag operation readered a corresponding activity and means of supplying the increased demand for it absolutely necessary ; and additional means of making machines bave been invented. Self-acting taraing lathes, with alide rests, pianing machines for metals, also for screwing bolts and nuts, were introduced by Fox ; mortising macbines, similar to those of Branel, were aclapted by Sharp and Roberts for metala, and shaping machines by Penn; these have been improved by Whitworth, Nasmyth, and others, by whom aleo new ones have been invented. The former has introduced an ingenious adaptation of macbinery for sweeping roads and streets, and which, from its efficiency, is coming into general use; and to the latter we are indebted for the steam hammer aud steam pile-driving machine, which serve materially to economise and facilitate these operations. Rennie, as far back as 1801, had applied steam for driving the piles of the coffer-dam for the London Docks ; it has since been applied at Sanderland for a similar parpose, and be proposed it for working the cranes there as well as at the West India Docics ; bnt it was not adopted. Otis' American machines for excuration have been tried, but are not as yet much employed. The tavention and application of these various new und ingenious contrivances, fornished the means of oxecuting machinery with a degree of economy and acouracy which without them could never bave been attempted.

With the advaucement of machinery, the art of fonnding in iron, which commenced at Carron, soon became an indispensable part of machine making. In this department Boulton and Watt took the lead, in consequeace of the demands for their steam engine, and made great improvements in it, which were aflerwards followed by Maudsiay, and by others. The working in metals towards the commencement of this century thas became so much facilitated, that it was generally adopted, instead of wood, for the framing and moving parts of machinery; and castings in iron, of excollent quality, could be oblained in any number axacty like
each other, 80 as to be ftted together with great facility. In the progreas of modern improvements, wrought or forged iron came into more general use, and was snbstituted for cast iron in many cases, such an for railweys, suspension bridges, tic beams, and roofs for buildings ; varions parts of steam engines, mill-work, and machines of different kinda, and in enme instances steel has been adopted. As the improvement in machinery for manufacturing advanced, so did the arrangement, convenience, economy, and constraction of the buildings in which it was coatained; fire-proof arching for floors, with cast iron beams, wrought iron ties, cast iron 000 lumas, and wroaght and cast iron framing for roofs, vladow frames, and overy other part where the introdaction of metal wes precticable; in these improvements, Strutt, Rennie, and othern, took a leading part. Apparates for warming buildings by heated air was adopted by Strott and Sylvoeter; and by eteam, which had been employed by Smeaton, for dryiog gunpowder, was generally introduced by Snodgrass in 1798, and improved by Houldsworth and Creighton. This system has been more rocently suce coeded by that of beating the air by contact with pipes or vessels, is which a circulation is kept up, as practised by Price, Manby, Perkins, Haden, and others. These and many other improvements havo been introduced, and combined in the most ecientific manner in the great cotton. mills of Messrs. Phillips and Leo, M'Connell and Kennedy, Honldsworth, Birloy, and numerous others, at Manchester ; Messrs. Horrocks' at Preston, Strutt's at Belper, the flax-mills of Marshall, and the woollen-mills of Messrs. Gott, at Leeds, and of Wilkins near Bath, the silk-mills of Grote at Yarmouth, the lace-manufactories of Heathcoat at Tiverton, Boden and Morley at Derby, and Fisher at Noltingham, Cartwright and Warner's steam power stocking- reaving manufactory at Longhborougb, and many other magnificent establishments all over the kingdom. The workshops of Fox, Nasmyth, 8 harpe, Roberts, Whitworth, and others, for making tools: the steam engine and machine manufactories of Bonlton and Watt, Faw. cett, Bury, the Butterly Company, Stephenson, Hawthorn, Donkin, Hall, Fairbairn, Hick, Napier, Miller and Ravenhill, Mandslay and Field, Penn, Rennie, Seaward, \&cc., are a few of the vast establishments which abound, and which fill us with astonishment at the immense productive powers of this conatry; we are at a loss which to admire most, the genius and skill which has designed them, the energy and talent which directa them, or the cupital which has brought them into operation. For accounts of many of the numerous branches of the immense manufactaring industry of Great Britain, we are indebted to Farey's articles in the Cyclopzodin of Rees, the Encyclopsodia of Brewster, and the Snpplement to the Rncyclopredia Britannica, also to those of Babbage and Barlow in the Encyclopredia Metropolitana, and likewise to Dr. Ure.

The improvement and extension of manufactures required a constant, active, and steady commnaication between the several districts where they were carried on, and soon prodaced a corresponding improvement in the roads, railways, canale, rivers, and ports. The cost of every article was reduced to the greatest nicety, and economy was carried to the minuteat degree; being so intimately connected together, the extension of the one kept pace with the other. The same may be said of the arts of mining and metallurgy, by which coals for fuel and metals for manafactures are faraished to the different entablishments.

Watbrworks,

In the supply of that important necessary of life-water, which was so much stadied by the ancients, but 20 greatly neglected in the middle ages, grest progress has been made in modern times. Spring water was formerly conveyed to public reservoirs in the City of London, by leaden pipes from varions spriags in the vicinity: viz., from Tyburn in 1296, from Highbury in 149s, from Hackney in 1555, from Hampstead in 1543, and from Hoxton in 1546. For these aseful works, the citizens, were indebted to the manificence of geveral lord mayors and other individuals, bat those of Hampstead and Highgate are the only ones now remaining. Tbe open watercourse or conduit from Dartmoor, 24 miles long, fur supplying Plymouth with water, commenced by Sir Francis Drake, in the reign of Elizabeth, and the New River, for the supply of London, 39 miles long, 28 feet wide, and 4 feet deep, falling 8 inches in a mile, by Sir Hugh Mid: dleton, in 161s, are considerable works of the kind, and were planned and executed at the cost of those distinguished individuals. Middleton was, in fact, rained by it , and adopted the profession of an ongineer and surveyor to obtain a Ilvelihood.

London Bridge Waterworks were commenced by Morice, in 1582, with Fater-wheels turned by the food and ebb current of the Thames, passing through the purposely-contracted arches of Old London Bridge, and working pumps for the supply of water to the metropolis; it was the earliest example of public water service by pumps and mechaoical power, which enabled water to be distributed in pipes to dwelling-honses. Previously, water had only been suppliod to public cisterns, from whence it wan conveyed, at great expense and inconvenience, in brckets and watero carts. In addition to the London Bridge and New River, aeveral minor establishwente of the same kind were afterwards erected on the banke of the Thames, to supply separate districts in their immediate vicinity. some were worked by water-wheele on the sewors which discharged themselves into the Thames; others, by borses ; and one by a wind-mill. That as Broken Wharf in 1594, at Bhadwell and York Bnildings, worked by borses, and at Chelsea by water-wheels, may be mentioned. Early in laet century, when the old cistoras had nearly disappeared, and water wat supplied to the dwellings, a great improvement took place, by the applion-
tice of the steam engtoe (whioh had then begen to develope itn extriors dinary powers) to the York Brildings Waterworks by Bavery, in 1710, and afterwards by Newcomen in 1730. Newcomes's engives were subeequestly applied at Chelsea, Shadwell, Stratford, Loodon Bridge, and the Net River Waterworks. As soon as Watt had bronght bis improvements fato operation for pumping water, his engines were applied at each of the above wetervorks by degrees, in addition to the old engines, thas a come parison between them conld easily be made; and a00n showed the superiority of Watt's engine in every respeot. They were thos applied at Sbedwell and Cheleea Waterworks in 1778, at London Bridge and Lame beth soon afler, and at the York Baildings in 1804. The usual mode for the old eogiees was to pamp the water into a cistern, at the top of a high tower, and from thence it descended throngh pipes, to the districts and baildings where it was required; the eagine was thus always lept to its fall load, whether aeceasary or not, and a waste of power ensued. Airremele were aflorwards added to the pamps at Chelsea, and sabsequenuly became geseral; the air in the vessels being compressed, acted by expandion and contraction on the water, so as to foroe it with regularity through the pipes, without going up to the cistern. 8meaton, who had constructed wher-wheela for pumping at Stralford in 1768, and at loodon Bridge in 1767, where towers were employed, afterwards beoame the principal proprietor of the Deptford Waterworks, and in 1773 constructed a water. wheel for pamping water from the Ravensbourne without a tower. The mechive is atill in existence, aluhough steam engiaes have been subsequeaty applied. Aboat 1810, Boulton and Watt's improved pumpingeagines, coastructed wholly of metal, and erected in handsome substantial brildings of brick and stone, with large air-ressels for pumping direct into the pipea, became geperally adopted at all the London waterworks; cast irom pipes were anbstitated for the old ones of wood. The new engines being more powerfal, and the cast iron pipes stronger, enabled water to be distribated to cisterns on the tops of dwelling-houses, hence denominated the high earvice. Stone plpes were tried as the Grand Janction Waterworke, bat failed, and iron pipes were sabstitated. Fittering reservoirs tupo a large scale were constrocted at Cheleen by 8impson in 1880, and sibsequeatly at other places, with complete success, and are now volvercally employed. The water is now generally takeu from the Thames above the town, whare it is least adulterated. The old waterworks lower down the river, viz., York Buildings, London Bridge, the Borough, and Shadwell, have been abandoned, and new places chosen at Hammersmith and Brentford, higher ap the river, and at Old Ford apon the river Loa; the river wrater is received into capacions settling, or filtering reservoirs, and distributed by steam engines to the respective districts. Latterly, powerfal condensing steam engines, very similar to Watte, but worked by hagh-presaure stean with great expansive action, on the system introduced by Woolf, in Cornwall, for deep mines, were introduced by Wickateud, in 1840, at the East London Waterworks, ${ }^{2}$ and have since been adopted by otber Companies with adrantage in saving fuel. The double cylinder high-pressare condenaing engine, with great expansive action, on the syscem of Hornblower, hare also been introduced by Woolf, Hall, and Rennie, aed epplied to work mills with succeas. Weterworks, similar to thoee it the metropolis, have been erected at Ediabargh, Giasgow, Dublin, Mancheater, Liverpool, and all the priacipal towns in the kingdom. At Glasgow, one of the last engineering eforts of Watt was to suggest the siden of laying a pipe under the Clyde, to bring water to the city from the opposite side of the river; this was to have been effected by making the pipe with fiexible ball and socket joints, uniting the whole together in one pione, and cloning it at each end, fonting it to its position, and sinking it. ${ }^{2}$ Reanie effected a ciovilar operation at York Boildings in 1810. The in. creaved moans for the supply of water, and the economy and panctuality with which it is distributed, has occasioned a greater consumplion, and fnduced a degree of cleanlinese throughont all classet, which has teaded to angrant the comfort and health of the commanity. Still the syatem is capable of improvement: larger rearvoirn and more copions mopplies are eecencary.

Artanian Wells, which appear to have been known to the ancients, and have been common in France and Italy, were introduced into this country aboat the year 1790, it is said, by Valliamy, near London. The system conciats in boriag holes or wells through the superiacumbent strata, im. pervious to mater, antil they reach the porous strata where water aboands, the proweor then acting according to the level from whence the water ts derived, forces it apwards through the holes, frequently to some beight above the surface; these have siace been multiplied all over the kingdom daring the present centary, and latterly in Trafalgar-square, ${ }^{\text {a }}$ for supplying the fret public foontaing which have been erected in themetropolis. These fountaias, though upon a small acale, are a beginning; and it may be hoped that this example will be generally followed for the orvament of this great city; which, although perbaps the best supplied with water in the world, has not been adorned with fonntains, which are so geaeral, and are constracted uponsuch a grand scale at Paris, ${ }^{4}$ Rome, and almost all the other great citios in Evrope, addjag so mach to thoir magoificence and ealubrity. In carrying out the improvements above mentioned for the eapply of water, the names of Smeaton, Watt, Myale, Rennie, Telford, Stmpeon, Buleman, Anderson, Clark, Wiokstead, Walker, Marin, and others, mast bot be forgotten; and we shall no doubt witneest efforts apon a dill greater soale tn fatare. Projects for bringing a large supply from

the Thames, above Wiadeor, by Reanie; also from the Colve and Wandle, and Darenth, and eisewhere, by Telford, Reanie, and othera, have loag beer in agitation, and sooner or later may be efficted with advantage to the metropolis.

Sewagr.

Connected with the supply of water for dowentic parposes, we muat not omit the important subject of sewage, or surtioe drainage, upon the due operation of which the health of the commanity so mach depends. Sew. ere appear to have attracted notice at an early period, and daring the reign of Henry Vill. commiasioners were appoiatod with extensive powers to lery rates for, and to see them properly carried into effect; bat until under ground or covered sewers were adopted, all the surface water from the adjeoent hills and country, as well as the refase from the buildings, was discharged into open ditches and street gattern, which, pansing through the centre of the town, accumulated, and occasionally remaining stagnant for a considerable period, prodaced a degree of efflavia and malaria extremely prejudicial to the health of the inhabitents. This whe remedied to a certain extent, by covering over the open drains; but the bottorn of these were not low enough, and the want of sorface drains cootinued. By degrees, covared sewers, of enlarged capacity, entirely of brick work, were introduced; the importance of the sobject then became duly apprecinted and studied; sewers were laid out apon a general and enlarged aystem; main, substdiary, and surface dreins, and cosspools of a proper form, conatruction, and capucity, adapted to each otber, and to the several diatricts they were to drain, were designed, and, in many cases, carried into effect. The sobject is still under considerstion, and improvements are being daily effected, alchough much still remains to be done io the form, capacity, inclination, distribution, and arrangement of sowers, not only in the metropolis," bat in almost all the principal towns of the kingdom, before the syatem can be said to be oomplete. The removal of Old Loodoo Bridge, by which a fall of about 5 feet at low weter bas been gained, bes been of immense advantage in improving the drainage of the motropolis; and it only remalas for this greal improvement to bo carried ont farther, by removing the shoals and regalating the bigh and low water chanael of tho river, by dredging and other means, but to be cantious in contracting the width. It is greatly to be desired that this important work should be speedily carried into effect, upon a general acientific syatem, which, if properly done, would confer the grealest benefite apon the oxtensive and populous districts, drainjing into and bordering opon the Thames, as well as the navigation of this boble river, apon the proper malntenance of which the immense commerce, heallh, and prosperity of this great metropolis, and its adjoining popalous vicinity, depends. In the improvements of sewerage, Cubitt, Barry, Donaldson, Gwilt, Hardwick, Nash, Smirke, Souse, Walker, Renule, Roc, and others, have been conspicnons.

Gas.

It is dificult to point out with accuracy the date of the invention and introduction of that invalaable substitote for deylight, or artificial lighting, carboretted bydrogen gas. It is generally believed, however, that it may be attributed to William Mardoch, noon after he succeeded to the management of Boulton and Watt's steam engine works at $80 h o$, althongh the infammable properties of that ges had been long known. Murdoch's firat apparatus was erected at Soho, and he succemfully illominated that establishment with it in 1802, in celebration of the Pence of Amiens; he afterwards constracted similar apparatos on a large scale at Leeds, for lightiog Messrs. Gotts' wooilen manufactory, and for Messre. Philips and Lee, at Manchester, and publiched an account of it in the "Philosophical Transactions" for 1808. Clegs, who was brought up at Soho, also published an account of it in the "Transactions of the Society of Arts" in the same year. It was anbsequently, by degrees, introduced into several large manofactorion in Lancashire ; Winsor anterwards exhibited it in Pall Mall, where it excited a good deal of attention; bat the generai application of gas for lighting towns was for some time retarded, in consequence of the failare of several attempts by inexperienced persons, which prejudiced the public against it, so that it was not ontil the year 1813, that apparatus of efficient and proper construction whe made, and erected in London by Clegs, Farey, and Manby, upon the same principle as originally introduced by Murdoch. The employment of gas for ughting towns and buildings has now become almost universal here as well as on the Continent. It is manafactared by distillation from coel in cast iron or clay retorts, and collected in immense gasometers, some of them 100 feet diameter, 44 feet deep, and capable of containing $\mathbf{3 9 0 , 0 0 0}$ cobic feel; thence it is distributod through cast and wrought iron pipes, noder pro. perly regulated pressure, many miles from the place where it is made; and salf-acting metere, inventod by Clegg, are applied at each building and district, in order to ascertain the amonnt consumed. It ls parifted by lime, sulphuric aciu, sce., and its brillianey is augmented by naphtha. In the varions contrivances and detaile of the apparatas, and in the procenses for manufacturing it, as well as in the economy of management, many improvements have been made by Clegs, Lowe, Manby, Philips, Croll, Crosly, Hedley, Edge, and others. When we compare the present modo of lightiag towns and pablio baildings with gas, with the old system of oil lighting thirty years ago (even allowing that to bave been a vast improvement upon the custom of our ancestors), we are astonished at the amelioration, and can acarcely comprehend how we could have gone ou so

- There are nearly 500 milles of cotered mewers in the motropalio.
long withoat it. Thas wo find that the geveral adoption of overy great improvement creates a refnement and fastidionaness of taste which atimalates others, so that wo can no longer tolerate those imporfoctions which in a less adranced state of civilisation were pazsed over unnoticed. The introduction of oil gas by John Taylor, and by Taylor and Martinean; Gordon's ayatem of condensing into close vessels for rendering it portable; and renin gas by Daniell, must not be forgoten, on account of the superior light produced from those substances, although it has been superseded by the more economical coal gas, and when naphthalized on Lowe's plan, its light appeass so pure as ecarcely to be anscepticle of improvemeat. Gas for lighting ou an oxtenaive scalo was introduced iato France by Manby in 1820, and has since become general on the Continent. The use of geslight in private dwelling-houses is gradually extending, and as the objections of smoke, band smell, and risk of explosion, are fast disappearing before the exertions of the modern improvers, it will become more general; the ingenious contrivance of Faradey, conveying away by pipen all the prodacts of combastion, in worthy of notice. ${ }^{2}$ Clark aod M-Neil's, and other burners, which insure more perfect combustion, are decided improvements.

The employment of gas for Lighthoaces promises important results; for there, almont any reasonable degroe of cont and troable in perfecting the light, so that it may be rendered more distinctly visible at greater distances at sea, will be amply repaid; in this clase may be mentioned with praise the oxy-hydrogen light of Drummond, and the Bade light by Garacy. Letterly, the catoptric and dioptric syatem of Fresnel, which coasists in an ingenions and scientific conatraction of the lences, and an adaptation of the compound argand burners to suit them, has been introdnced into several of our light. bouses with advantage, bat further experience is neceasery to decide which is the bent,-the systom of Fresael above mentioned, or the old argand aystem with the parabolio polished silver retectors; both plans have been well exeonted by Wilkins and by Deville.

In the constraction of Lighthonses since 8ranton, Mensrs. Stevenson's and Walker have done mach, and recontly Gordon's cast-iron Lighthouses? appear, for certain sitaations, to merit attentlon.

Roads.

In proportion as the wealth and commerce of the country increasod in the latter half of the last century, so it became absolutely necessary to improve the communication by roads and wheel-carriages, between all the different towns and districts of the empire, for sapplying them with provisions, foel, and the necessarien and luxaries of life, with greater facility and economy, as well as for expediting commercial and general iatercaurse, in fact, the one followed as the necessary consequence of the ather, and the pablic zeeing and feeling the beneficial effects of what had been effected, and conviaced of the practicability and adrantage of proceeding further in the canse of improvement, would not rest satisfied uatil those improvemente were made; eccordingly, the improvements of roads attract. ted general attention. Originally, roads were mere footpaths, or horse tracke, across the conatry, in the most convenient and shoriest direction between the desired places, but wholly onadapted for wheeled carriages ; by degrees they became practicable for the rade carriages of the times, and were maintained in a very defective state by local tarea on the connties or parishes in which they wore situated; nevertheless, nothing in the way of effectual improvement was attempted, notil taropike trusts were established by law, for raising or levying tolis or taxes from persons travelling upon the roads. Several Acts of Parlinment for these trusts were passed previous to 1765, but in the early part of the reign of George 111. many more were passed, notwithstanding violent opposition was made to the tolls. They subsequently became general, and penalties were recoverable at common law, againat the trastees, for not keeping the roads in proper repair; a long period, however, elapsed before any good system of road making was established. The old old crooked horse tracks were geverally followed, with a few deviations to render them easy; the deep ruts were Gilled with any materials which could be obtained nearest at hand, and were thrown apon them in irregular masses, and roughly spread to make them passable: the best of these roads would in our time be declared intolerable. Road-making as a profession was unknown, and scarcely dreamt of, and the parties employed to make and keep the roads in repair were ignorant and incompetent to do their duties ; but inasmuch as travelling was uncommon, and the fanda at the command of the trastees were scanty, we canaot be mach surprised at it, as they could not command trigher taleat. Englneers, except in cases of great difficulty, such as making a bridge over a deep and rapid river, cuttiag through a bill, or embanking across a valley, where more than ordinery skill was required, considered road-making beneath their oonsideration, and it was even thought singular, that Smeator ahould have condescended to make a road across the valiey of the Trent, between Markham and Newark, in 1768. Tbe great activity and prosperity, however, which resulted fron the modera manofuctaring aystem, convinced people of the valae of time, and that easier and more rapid means of commanication than the old roads permitted were required; hence, the acclivities were partially reduced by cutting down the hills and raising the intervening valleys; improved bridges were built with easier ascents, and in some cases cots were made to shorten the distance; still, however, the general line of the old road was preserved. The roads were cortainly improved by these means, but still there was no general aystem; they were parcelled ont into small dia-

[^16]tricts ander separate truatese, withort any common concert or harmoay in Working logether, and bat little effectaal progreen was made. The imporiance of forming grod ronds was but imperfectly understood, the legitIation connectod with it was equally short-sighted, and many of the improvements in cotting down hills and levelling valleys were frequently repented, from want of proper skill and foresight at first. The rebelliona in Scotland, in 1715 and 1715 , induced the government of that day to tara their attealion to the anbject, and several roads were constructed by military engiveers for militery parposes.
Telford, previons to his being employed to construct the Caledonian Canal, had turoed his attention to romd-making, and was appointed by the goverument to lay out now linee of rond, both for the purpose of employing the then poor and thinly scattered popalation of the Highlands, as well as to improve the distriats by more general intercourse with the reat of the kingdom; he evinced a akill and knowledge which had not bitherto been bestowed on this important subject, bat which was afterwards developed upon a greater scalio in Ireland, and lantly In England, in his great works, the Hulyhead, Liverpool, and Great North Ronde, formed in consequence of the increased commanication with Iroland afor the Union, and which were excellent models for rads throughout the kingdam. Telford set out the roads according to the wants of the district thraugh which they wore made, ss well as with a riow to mare distant communication, and the acclivities were mo laid oat, that horses could work with the greatest effect for drawing carriages at rapid ratos. The road was formed by a substratom of large atones, with sufficient interatices between them for drainage: the materials laid on this foondation were hard and angular, broken into small piecrs, docreasing in sive towards the top, until they formed a fine hard aurface, whereon the carriage-wheols could rou with as little resistance as possible. The transverse section of the road had no greater convexity or rise, than was anfficient to canse the water to run ateadily into the side-drainage channels ; by this means, the carriages not being inclined laterally, the weight whs more equally divided oo the wheels, whereby they moved more easily and with thu least wear and tear of the roads. The surface of the road was always kept even and cleañ, by the addition of proper fresh materinds where necoseary, and distributed equally in thin lajers immediately after raia, in order that the now materials might bind and incorporute properly with the old. Telford's aytem was afterwarda extended by his assistant, Macneill, and is fulls described by our late honorary member, Bir Henry Parnell, afterwards Lord Congleton, who, by his perseverance and support of Telford, mainly contriboted to its exten. sion and succens. About the year 1816, M'Adam introduced his system, and brought it into goaeral ass in the vicinity of Bristol. It resembled in some regpeots that of Telford, but differing from it by making no foondation in the frat jastance ; it consisted in simply laying a stratam of Aints, or otber hard materials, 10 or 11 inches thick, broken equally into small pieces about two inohes diameter, and spread equally over the inteoded road ; this soon became so consolidated together by carriages passing over it, that they could travel with great facility and expedition. The seection and the mode of applying fresh materials and keeping it clean, resembled that of Telford. M'Adam, professing to be a road-maker only, devoted his whole time and attention to the propagation of his system, which was greaily superipr to the old, and becamo very generally adopted. Its iatrodoction and extension was in a great degree due to our honorary member, the Earl of Lonsdale, who is ever alive to improvement ; and to his lordship's exertions we are indehted for the present aystem of metropolitan romda, which has proved of great adrantage to the public.

Carriages.-The great Improvement in roads, which was aecompaniod by a corresponding improvement in the carriages and breed of bormes, produced an extent of travelling commensurate with the incressed facilities afforded. Coaches were frat introduced into England in 1580, about the time of Elizabeth. Pablic, or hacknuy-coaches, were only established in London in 1625; and atage or public travelling coaches, not catil I mach later period: in fach, there were fow roads npon which they could pass; and for foar of being robbed by highwaymen, or of being overturned or stuck fast in the mire, and other accidents of the road. they seldom or ever travelled during the night. In 1660 (the year of the Fire of London), a coach was established, which travelled between London and Oxford in two days; and another, celled the Elying Coach, afterwards atarted to perform the journey in thirteen successive hoara, or at the rale of 4 miles an hoor, but only ran during the summer montha. The journey between London and Edinbargh by atage coach, which was begun in 1712, took thirteen days to perform the journey: in fact, so great was the dimiculty and danger of travelling, that, before setting ont on a long jouraey, people made their wills, as if they never expected to reach their bomes again. After the roeds had become sufficiently improved, mail-coaches, upoa an improved construction, to carry passengers and letters, were first introdaced by Palmer in 1734, and the journey between London and Edinburgh was reduced to three days and nights by this conveyance. At the firm appearacee of this extrondinary oovelty, the inhabitants of the rural dittricts crowded the romdside to see the royal vehicle, with its gaily apperelled horses and scarlet liveried coachmen and guards, galloping by at the acceleratod apoed of 7 or 8 miles an hour; but, when it was increased to 10 and 11 miles an hoor, by farther improvements in the roads, carriagea, and axles, by Vidler, Collinge, and others, ameliorating the broed of horsea, and shortening the stages, and the distance between London and Edinburgh was performed in 42 hours, it was considered that this could not be excoeded-and so far it wes true; for animal strength and endar-
ance had reached ite ntmost limits, and, if any improvement was to be obtained, it was requisite to oblain it from a different source. In the race of improvement, the alage coaches were not behind the mails; and we have only to mention the Brighton, Oxford, Cambridge, Southampton, Shrewabury, and other coaches, to prove that the system was carried to the highest degree of perfection of which it was capable." In 1821 tbere were 24,581 miles of turnpike roads in England and Scotland, and 8,000 miles in Irelaod; and since that time they have much increased.

Peviag.-When the turnpike-road syatem was introduced, the perement of the metropolis was improved by the substitution of square blocks of granite, in piace of the rounded boulders, or large irregular pebbles, which hed been previously used. Blocks of granite of various dimensions, have, by way of experiment, been laid on concrete, with the jointa grouted with lime and sand, in order to insure the greatest stability amongst the blocka. M'Adam's system was introduced in some streeta where the traffic was light, bet it did not equal the granite paving. Wood blocks in different forms, heragonal prisms, or cubes, or rhomboids, with the grain placed vertically, or nearly so, have been introduced for paving, the blocks leing either conmected hy wooden pegs, or merely laid upon a bed of concrete. Tbis system mat borrowed from Rassia, and patents have been taken out by Stead, in 1839, and many othera, for different forms of the blocks; it has the adrantage of diminished acise and friction, but its great defect is that of heing dangerously slippery in particular states of damp weather, and it appears in consequence likely to be abandoned. Asphalte, a natural brittle, bituminous substance, found in volcanic districts, was introdaced from Prance for foot pavements, in 1936 ; it is brought to a semi-liquid state by heat, then mired with and and gravel, and spread over a bed of concrete, and when cold, forma a compact and durable pavement. Flats, or flat gritstone pavingblocks have been used in larger blocks, and hetter laid, ro that paving has been improved; the great difficulty, however, in keeping it in order in London and great lowns, is occasioned hy its being constantly broken op, to lay and repair the numerous gat and water-pipes; and it is desirable that sepante sunnels or subways should be employed for receiving them, as was anggeated by Williams and others, a few yeara sioce.

- The tranaport of goods was equally defective na to apeed, and wat comparatirely at outh an that of paigngers; at times, goodit were from four to twe weekr, and seldom mon than thirty. wix houre in going from Liverpool to afamchester, at a cost of forty shilhaps per ton; bhereat at prevent they are conveyed in thret or foar hourg, for three thrion per ton

(To be continued.)

SOCIETY OF ARTS, LONDON.

February 3.-W. F. Cooss, Eeq., V.P., in the Chair.

Mr. Digey Wratt read an Besay "On the Art of Mosaic, Ancient and Mokern."-The author commenced by atating that the most cursory glance at the onbject must convince that this art, taking the form of either pavement or moral decoration, has been connected with most of the nohlest efforts of architectural genias at all ages ; and as it is the wish of many at the present time to effect the rerival of this art, he world endespour to convey as clear an idea as possible of the nature, history, and condition of this graceful handmaid to the science of decoration. - Tbe first positive notice of the exittence of such an art occurs in the 6th verse of the first Chapter of the Book of Bather, wherein an account of the riches and luxury of the Palace of Ahatuerns is mentioned, and that pasage clearly establishes the fact that the Pervians were acquainted with the art, and it is supposed communicated it to the Greeks, from whom the Romans obtained their first specimens. Ciampini divides the art into four principal varietien, called tesselatum, secide, figtinom, and vermiculatum. The first, the opus tesselatam, probably the most ancient ; this kind of mossic consisted of small cubes of marble, celdom averaging more than ${ }^{3}$ of an inch square; the beat specimens of thin description of tessela occur at Pompeii, in the Vatican. The second division of the art, the opos sectile, was also applied to pavements, and it is in thia description of mosaic that the simple yet maguificent parement of the Pantheon at Rome is executed. This variety of mosaic was formed of thin liees of different colonred marbles, cut into slabs of a given form. The opus figlinom was more generally employed in mural decoration, and according to Pling, was first nsed in the decoration of the baths of Agrippa, behind the Pantheon; it consiated of figures, fruits, ornaments, \&cc., by means of small cenbes of vitreous comprosition, composed of allomine and some metallic oxide to coloar it. No specimen of this description of mosaic has ever been dis. covered in England. The fourth deacription of moanic, or opus vermicalum, is mbdivided by Ciampini into three varieties. The opus major generally emploged in large pavements or ceilings, to represent the figures of gods, centegra, tuc. The opus medium was a much finer kind of work, and was gence milly applicable to walls. The third division, opus minor or opus vermiculatim, was the finest and most elaborate of all the acient Roman mosaics, and comrinted of the most delicate patterns, formed entirely by motaic piecen of matble and fictile work, many of the atripes being only the $20 t h$ of an inch
aeross. The most beantiful specimen that has been presented to us is the one usually known by the name of Pliny's doven (a copy of which in mosaics was exhibited). There is one kind of mosaic which the aution has observed in Pompeii, and which be considers may not be inaptly termed the opus uncertain of mosaice, composed of all sorts and kinds of marblea put together in aingular shapes, and when united isto a mast with cement and laid on the floor prepared to receive it, it is reduced to a polisbed fece by friction. In completing the sketch of this art uader the Romans, the author stated that the preparstion ordivarily made by them for the reception of the mosaics, consisted in their first placing a layer of large atones or fints, but with very little cement, on the ground; upon this was placed a course of concrete composed of smaller stones and lime beaten and rammed with great care; opon this a third layer of cement was placed, the ressarse or monaic were then placed, and over the whole was poured liquid cement, to perfectiy fill up the interatices between the cubes.-During the reigns of the twelve Cesara this art rose to an unerampled popularity; during the reign of Hadrian, (A.D. 138) to that of Caraculla, the arta appears to have lost in quality; after the year 220 it became obscured by the clonds which swept the Roman empire.

From the time of Constantine three varieties arose, which obtained naiversally in Italy from the 4th to the 14 th centory, and during nearly 1000 years changed but little either in principle or design. The Emperor Aleanander Severus (A.d. 222 to 235) brought with him from Alexandria great quantities of: porphiry and sepentine, which he caused to be worked into small squares and triangles, and varionsly combined, thereby laging the foundation of this art which formed the pavement of all the rich Italian churches. We have an interesting specimen in Westminster Abbey referred to the year 1260.

The anthor, after tracing the historg to its decline, and giving some acconat of the encaustic tales, proceeded to atate the circumatances which had of late yeart led to its partial revival; he also gave a detailed description of the processes of manufacture employed by Messrs. Singer and Pether, and Messra. Minton and Co., and concluded by urging on architects and the public generally the applicability of the manafacture to the purposes of decoration.

The meeting adjourned after pasting a quanimons rote of thanks to Mr. Wyatt for his communication.-The rooms were filled with beantiful specimens of ancient and modern works of art in mosaic. There were some fine Florentine monaica contributed by Mr. Brown; modern gless moshics of exquisite workmanship executed by Mr. Pether and Mr. Singer ; encaustic tiles by Mr. Blashfold; mosaic tesserse by Messrs. Minton; and a large collection of elaborate coloured drawings contribated by Mr. Blashfeld, Mr. Wyatt, and Mr. Owen Jones.

ROYAL SCOTTISH SOCIETY OF ARTS.
Jam. 25.-David Maclagan, M.D., F.R.S.E., President, in the Cheir.

The following communications were made :-
" Description of Pottery made by the Ojibbeway Indians, with an accownt of a Chemical Amalysis of fragmente of it." By John Macadam, Esq.
The Pottery exhibited before the Soaiety, and referred to in Mr. Macadan's paper, was obtained from the neighbourhood of Peterborough, Canada West. It is of a brownish black colour, the outer surface being reddish It is exceedingly hard and difficult to fractare. The veasel is ormamented around the edges with a design evidently copied from nature, and somewhat resembling a pinnate leaf, besides which the surface is almost totally covered with a scratched-like oet-work; indeed, the design as a whole resembles much that which exists on the pottery occasionally found in the Druidical tumuli of our own country. There are small cryatal-like particles distributed throughout its mass, which rary in size from one-fifieth to one-twentieth of an incb in diameter. These particles are pure silica, and were prubably oblained by pulverising quartz or some other natural variety of silicic acid. The pottery also contuins organic matter to a considerable extent, which is of vegetable origin, and was added, no doubt, to this with the same iatention as straw was added to the Babylonian and Egyptian varieties of sun-burnt pottery, viz., for the purpose of increasing the adhesiveness of the particles. A portion of the poltery submitted to chemical analysis gave the following results :-

The amount of oxide of Iron stated is rather high, as the iron present, though calculated as the sesqui-ozide, does not exist as anch in the pottery, but is there, almost totally, as the protoxide, except in those parts of the pottery which possesses a red colour.
From the results of the investigation madeon this interesting piece of mannfacture, some conclutions were drawn to the following effect:-Firat, that the poltery had probably not been made by the ree of any one material found aative, bot was manufactured from a mixture of polverised silica, ferruginons clay, and orgenic matter; secondly, that the heat employed for baking the pottery, whon made, was one of no high tompornture, an, had it
been so，the protoxide of irou would have beet thereby corverted into the ceaqui－oside；and，moreover，ah the organic watter would bave been de－ eroyed．The red appearebce on the outside of the veasel iadicated its baving been baked al a common weod or other fire，the foffenoe of which betag in contact only with the outer anfoce，had cantoed ita ohemical ac－ tion to that purt．

Deacription and Drawing of a Shuice made by Mr．James Macdonald． Ihn eluices commonty in use are rafsed from the bottom，thereby causing a rubl of water，which injures the puddle of the poed，or aquedact，and are raized and shot with diffieulty．Those of a better construction are ex－ peasive，and cea oaly be made by skilfol persoos．This strice can be mede by any carperter，merer distarts the poddle，and may be made of may dive and atreagth by increasind its proportions．The comrsost andresu－ ed timber may be ooed，exeopt the edges of the planks ard their eods， where they 保 inte the frame．A stronts frame of woed ts borik into the ghes of ithe water way，mivering from ibe bottem，where it is narrowest，to the top．Pinate ere let in，ope above socutier，to the reqpirel heigtt；and M it be wiched to tocrasee or diminial the holght of wher in the peod，it is ooly pecencary to put in，or fo remove a plank at the top；the water thus always aceping from the top of tire delce in phoe of from the butho．

Fob．8．－Gmozas Tarr，Paq，V．P．，in the Cheir．

The following cond armientions were made $=$
 pivoric Eather，wieh some remarks on its eacetn，to fur at they have been oboerved in this eariy stage of 敌 application，to al modyme to relieve the ple of angical operations．

EOYAL LNETITUTB OF BPITSH ARCHIYRCTE

> Pes. 8.- Bellamy, Beq., in the Chair.

A paper on＂the Iufarior forme of Builinge with refanmoe to the Lave © Sewand＂by Mr．Scott Rugsell，was read．－Mr．Rusell，in commencieg hi remarts，mak，in excuse for interferimg with whet mifgt be conaidesed ant his province，that although extreme divioion of libour might，and did， enry seianea forwad，yet，by confaing particular departments to clapect，it induced marrow views．He thorght moch good resalted from the profocions of diftrant sciences miding together and interchanging opinions．It wh differalt to excel in more than one，atill there were mary examples of those The had done $20,-18$ Michial Aagele，Leonardo da Vind，and athers．If in anything extra－profesional aid was needed by architects，体 wat ia the arrangement of buildings with reference to the transmistion of sound， where all were avowedly at fault．All architects admitted that nothing wai more difficult．Mathematicians，when applied to，gave widely different forms as the beat．Even an ear－trumpet was no better made by the moet profonnd mathematician than by the mereat rule of thumb；and if it were so difficult to arrange an instrument by which sound might，with every advantage，be conveyed to one individual，how much more so must it be to arrange a room 30 that every one in it might bear what wiss said．The problem wat to en－ able 1 or 1,000 to hear equally weil．The weves of sound were generilly thought to be like the wavea of water：he had been led to inveatigate the latter，and，in eo doing，had arrived at some copelumioge not generaity enter－ taised．He propesed to divide the subject isto Ive parts．The firat prin－ ciple to be meationed was this，that rand travela in straight lines：light and wound are the same in this respect．Sound does net eanily go round a cerner；and this should be remembered in trranging buildinga．The question wae bow to make the greatent rumber bear and noe well．In the theatre of the Royal lontitution in Albemarie－atreet this had been succesuftoly worked oat ：he thought thet from every seat in it the lectorer could be most dis－ tinctly seen and beard．Thin wita arranged by Count Rumford and Sir Hum－ phrey Devy．The human roice，the lectarer reaarked，could be heard 500 feet with ease；and he believed thet a building might be mimaged to weat 20，000 peroins where all woold hear：the fact that Wealey，preaching In a nataral amphitheatre of hills，was heard by that mumber of persons，justified his opialon．He had noticed that a reader in the choir of Canterbory ca． thedral coald be heard 200 feet of dintinetly，and afterwarda making the experiment himself with a friend，had foond that he could be heard that distance when be spoke in a clear whisper．

Mr．Roasell then proceeded to explain a curve which he had discovered， and recommended for the sectional arrangement of the seats，and the mode of obtaining it，bat which we find it difficalt to conver without diagrams． It was first necessary to fix the position of the speaker，and to decide how much of the voice and sight of the speaker each anditor should have；be thought an area 18 isches high and 3 feet broad sufficiont．Drawing then a series of radial lines from the mouth of the lecturer to points decided by these dimensions，a carve was obtained for the rive of the seata，which was found in practice of good effect．

The second priaciple he would allude to was the aponteneon oscillation of air in a chamber，which was the source of much trouble，trat mighs be turned to good account．A long chamber of air，if eansed to oscilinte， continsed to do so，and would prodsee a tone depending on the length，at in an organ－pipe．Thas a gallery， 64 feet long，would produce the mote C ； and if 32 feet loog，it mould be an octave bigher．Ivery chamber，in short，

In it if ponsible．This fact opened the quention wether the could improve roomi for hearing by attention to the dimenaions and proportions．Length， breadth，and height should be in harmonious proportions，or the sounds produced would jar．There was a more intimate connection between music and architecture then is now generally admitted．Simple multiples for the proportions were desirable；an，for example， 48 feet long， 24 feet wide，and 16 feet bigh，and so on．Incongruous sounds，be said，neutralise meh other， and produce dead points，or points where the speaker could zot be heard． Care was neceasary in this respect．Harmonioas arrangement of an apart－ ment might sometimes be obtained by means of pilastera，or partition with doors．The choirs of our cathedrals manally approximated to simple maldt－ ples in their proporiont，and bore out his view，he thought，by their effecte． Incorgruoms forms made the worst apurtments for heariog．The lectaror was then proceerling to speak of the third divition of his subject，refection of soumd，bat was invited to portpone the comsideration of it till the next meeting．

Fcb．28．－－8．Amerli，Esq．，V．P．，in the Cheir．
The following Report of the Cowocil on the Desige and Eoreys an mithed for modals mex read ：－

Report of the Corucit to the Gemeral Meeting of the Diembers on the Dealges offered in competition for the Royal Medal of tbe Iartitote，for the Boane Medallion，thad on the Essaya subsrited for the Medals of the Invitute for the gear 1846 ：－

The Conncil have to report thet for the Rojal Modal，the subject beinge Duilding avitable for the ptrposes of the Boyal Inetitute of British Archi－ tects，eleven desigus have been recejved．I＇hey deem it proper in the first instance to advert to the pribted conditions prepared for the guidance of the competitors，and which were inened in May＿last．
 ampual medel for the promotion of architecture，it ha been reoolved，that it ahalt be applied to the oncourgerment of the fantor menbert of the profemion by a cocn patition
 Itallen architectare，aod farther，that the deatroe shall bo yodged of mot aily wir ro ference to thetp merita sa worki of art，but ilkewien as to the krowied se α cometroctive they may exhbil．
In order to secure，an tor so poosbla，uniforaity in the conditions ander whleh tho dedgris are mbmitted in compealtion for the Royal Medal，It bay been doucrmatised that the age of the competior ghall be Inmited to twenty．Give jears，and that with thin usoth－ thon the compefition mhall be open to the profectalion in zeneral．
The succeasfal competitior will be farther intilied to draw opon the Troururer of the
 otudies，at any pariod mithin five yeare trom the ume of the medal haring been amarded to bim ，upon mending to the Institate a matafactory atudy of some exiniag bullding， efther anelent or modarn
The Royal gold Medal for the pear 1846，will be awarded to the beat deajgi for a balid－ Ing nutuile to the purposes of the Royai Inulitate of Britiah Architacts；comprialing a room for general meetinge and lectures，with seath for 850 persoon，arranged with a view to the remdtre of papeth，the entibition of drawtuge and dimgrems expleastory ibereof． and for faclity of discusaion；a council room for twenty－ate members a library for 10,000 volumes，with suitable depontionies for drawinge，prints，medela，the．；a galiery for modela，easta，fragmenta，\＆c．；an exhibition room for archltectural aubjects，and mitrabie residences for a mecretary and a evintor．
The cont of the building not to exceed 220,000 ． The deelgp to coneprimen not
 Ieding int or mepla ooly．
The Conncil will not conalder themelres cadied upos to edjodge the modeh，wnlem the destores and drainga be of suficient morit to deserre that diaciuction．

In detailing thus minutely the accemmodation to be previded is the building，to render it suitable for the purposes apecifed，and by fixing a limit to the preposed expenditure，it was obviounty inteaded by the Insti－ tnite to impress the candidates with a feeling that in forming their desigete they were expected to treat the eubject practically，and direct their effort to the production of a design adapted to the requiroments of an axiatios； working Institution．

They observe，with much regret，that the well considered and clearly expressed conditions of the Institute have been almost enirely dieregarded， and that in consequence of the uncalled for maguitude of the rooms，balles ataircases，and other approaches，together with the lavish and injodicious introduction of colompar and other extraneous decoration，（in some instances actually uafitting the rooms for the purposes demanded），not more than one of the desigos，possessing the slightest pretension to consi－ deration as an architectural composition，could be properly esecuted for leme than double the sum opecified．

When the Council refect on the enormous amonnt of injury oecasioned to the public and to the profession，from competitors so frequeatiy disre． ganding the cooditions given with respect to the proposed expense of an intended strueture，and conseqnently presenting designa of much higher protession then could be prodaced with an honest and conscieations ad－ heresee thereto．And when they likewise refect on the strong reprober tion the Iastitate hae bad occasion more than once to express on this most irregular and improper practice，they feel that it woold ill become the Conecil to recommend to their fellow－members of the Inatitate to counte－ nasce such dareliction from hosourable professional practice，even in a competition litue the prosent one，where the publicinterests are aot dirvetty afreoted．The faet beind so appareat，eatirely preciudea the Councit from recommeerding to the members of the Inotitute the awarding of the Royd Medal to either of the desitme presented thits year．

They regret to be sompelted，en groonde which they consider too ta－ portant to be diareganded，to come 10 thit derichea，eppeciaity on the frot
cerecion of a competition for to hizh a dintinction at the Royal Modal, and the mere sa, since the design marked "Qagalo rectius hic qui nil nolitur imple," passeace a high degree of merit, and displays moch taste and artistic tilont.

The Boano Medallion for the year 1840, wes ofered for

 tranly preweoflig as ilile obstruction to dight as poedble. The chancel to be properly
 therrifor with stalaed prast.
 bs a donse.
ing arinings of the elevations and two sectoos, to be to a seate of ose quarter of an

 all sot coander thametres called upon to ndfudge a pieminm, untent the drawinge be

and for which, two Deaigns have been recaived. The Councll most elactantly observe that they do not consider either of them as deserving of the rewerd affered.

Threa Pnagy havo been reonived " on the sooptation and modificatiea of the ordors of the Oroeks by the Romases and modorns."

The Cocroft ere of opiasien that the Eecay marted by the metto 4 He thil erwet artes;" is dintiaguiched by concidernble reeenroh and knowledge of tha subject-the stylo is clear apd avaffectod, and the reanoning good. The Commeil comsider that the treatment of the subject is womewhel too hatorioel, asd that not aublicient attention boom paid to the rarious coilal eacses whith eperated in effecting the modifigations of the orders. The Consetil are of opivion that this Eceay stands trst in the order of merit, asd is well temerviog theMedad of the Instituto.

The Pasay marked e, oviaces conoiderable alady and able tratnoent of the subject, the Council therefore recemanend that a Medal of Morit be swerded to this preduotion.

For the medal offered by the Institate for the best Essay on Dralaage, vie.:-
On the beat cyaten to be adopicd with regard to the arrancemeate for the thorough dratoter of a town howee, and of a noblerenn's wansion and offcon In the couptry, repectively. Compriding the general arrangement for carrying of the watert and mwage,
 griptom of antelal to be employed, and the neveral procauthops for the prevention of amp, smell, and pemage of rermin;-to be accompanied by block plans aud detalis,one Enaey onjy, acoompenied by two plans marked "Hygein," has been revived.

On a aupofnl perucal of the Emay, it appeers that the author has not treated the subjeot in the teras of the programme; that he has aegloctad the main anbject proposed, and altogether omitted thowe details to which his atlention was directed by the published particulars. The writer has shown much diligence, and some knowledge of the matter on which be has treated, bat this also is in too general a manner, and upon points not properly within the scope praposed by the Institute.

Under these circumstances the Conocil cannot recommeod the medal to be awarded to this produotion.

Tho mealod papars boing opeoed, the obairman doolared the namee of the erceesaful candidatea : for the Bilver Modal, W. Jcha Woody Papmorth, of 10, Cmerolipe-etront, Bedford-Bquere, Fellow; for the Medal of Merit, Mr. James Bell, Associate.

The Easay which gained the Medal of the Institoto was then read by the author; it commenced by arguing that Hellenic Art, when introdoced by Cossutius at Rome, was corrupled by the influence of a previous style, in the same manner that the architecture of Alberti was degraded, through a Gothic feeling, into the Elizabethan, the Renaissance, and the Tedeschi veriations. Treating of the remains of the Etrascans in art, he ropodiated the testimony of their vases, and beld tiast they exercised litlle influence oo the early style of the Romans, which he considered to be Alban or Latin; he used that term to denote the aimplest order of Classic Architecture, which was gradually superseded in Rome by the lonic and trialyphed Doric. In justification of an original table which dictated the employment of Coriathian colomos only when in beight exceeding fitty feet, and gave average heights to each order, ending with only eleven feet allowed to the Latln Tuscan, the author appealed to several tables of cal calations, which showed that mecording to his formula, passages of equal widths between pairs of columns, of each order, of one dismeter, demanded lengths of architraven not exceeding the powers of the simplest mechanical constroction; and greatest when capping the highest columns: whereas the osual acceptation of the directions of Vitruvius absurdly teoded to show that the greatest leagths of architraves would seem most consistent with the lowest colomos, yithough the ancients always expected narrowpess of intercolumniation and alimoess of pillar to accompany each other.

The most important modifications made by the Romans, while retaining the saientific conventionalities of the Greeks, and adopting the Eostyle intercolsmniation, and the psoudodipleral and hypaethral arrangementa, consisted in the proportions of their plads and in the positions of their colamos; in the proportions of their entablatures, and in the contoor of the mouldings ; in the ase of square columan ofton allowed to be prodominant, and in debasing the oircular pillar to a mere pilater, and to the practice of sapercolumplation.

Refarence wres made to a drawieg exhihitiag a maiely of the mane baildiag in each aryle, enterion into a comparions of the different reanlts accompanying varieut ooincidences, and streas wes laid upon the santio meat of a rectangular and otateenque simplicity visibte in noarly all Greak edifices, in opposition to that of curred and picturesque groupiug in the eplarged aphere of actiog of the Romen imperial artint.

Tho author defended the revivaliets for eatablinhing a ataoderd for each order, on the ground that thay were justified io ampectiog all the artiquer (of which they really saw very litte) to be barberoug, and in tryiny to bring them to, ecorreapondanco with Vitruvies, eech publishing his one ides of perfection, in which the great maters were wonderfully agreed: and exponed the fault of makiag their illatrations formalat-to teapplind without change on eng occasion, at any heigbt, in any situation, for any pripose. He exnmined the practice of the great masters apd the pupils in the semeral modern echoois, and mentioned, in a list of their addltiona to the store of the architaot, the uce of the aictes, of pedratals, of baluetrades, of eculptare (of all earts) a mere decoration, of the areosystyle diaposition, of the besement and altic staries as fealares, of spires and steaples and bell towers, and of an axtraordionry lnzury of intaraal and external arohitecture.

The paper cloacd with the ohsorvations that, with Chambers, Mglae, Dance, Holland, and Boane, expired the race of architeots in eno etylo oaly—bus in a atyle of which they were macters; their succeasers being condemeed, by exposure to the caprice of patronage for a command, to summon up the resources of any atyle-to clothe even ne impracticable idea; and that the currept of tapte was andeviably tending torards an art altopether different from that of Greete in its constrietion, or olee to that of Palladio and Chambers.

IMATITUTION OP CIVLL ENOINRERE.

Feb. 2.-Sir Jobn Rennie, President, in the Chair.

The Inditation net for the fret tiac in the oow thontre, and a paper by Mr. W. E. Nemton wal read, giving a description of the metbod er.ployed by Mr. Herren "for the comatrmetion of the permanent way of the Philadelphic and Rrading, and ether railiosys in the United States." The mothod wes a deviation both frem the syotems of the longitudiana and the traneverse sloepers, cronsing anch other and apiked together at the intersections with wooden trenails or iron pias, acording to cirounstances, forming an extended platform, upon which their loegitanal bearers were laid, supportiog bridge-shaped raile with wrought iron chairs, The paper gave an sceonnt of several deviations from the general system, suah as making the trellim-work of iron Laid io bitumen, \&c., and also a detail of the amonnt of trafic oonveyed along the railway; whence it appeared, that within one year and five daye from its being opened for gemeral use, 1,400,000 tons of goods hed been conveyed along it, withont any prejodicial effeet, and, in fact, with less wear and tear that was noual npon railways io the 8tatos. The cost of a slogle line of permanent way weo about $\mathbf{2 8 5 0}$ per mile. From the diecusaion that enseed, it appeared to be the opision, that although the system might succeed in a oountry where timber abounded, it was inepplicable for English railroads; and excoptions were taken to the general features of the construction for high speed, as the reils, which weighed only forty-foor poonds per yard, and which were of a bridge form, could not resist the impact of the wheels at great velon city : the jonction of the diagonally haid sleepers would become looseaed, and there would be too mach deflection between the bearing points.
Feb, 9.-Sir John Renner in the Chair.

A paper was read on the "Helder or Great North Holland Canal," by Mr. G. B. W. Jackson, Asecolato. Thim canal was ceostructed by the lave Mr. J. Blanken, engincer, during the six years between 1819 and 1825, for the paseage of frigates and firtt-cias merchentmen, and extends fren A meterdan to Nieo wediep in the Tosel. The state of tbe anvigation through the Zoyder Sea, in the early part of the 17 it centory, having become so defective, in consequence of accomulated sand-banks and shoals, that ensels Were necoscarily made use of to lift the vessel orer the ehallowa at Pampas, thereby incorring both extrene low of time and inconvenience, the Dutch Gorernment deemed it aecemery to consolt Mr. Blanken on the possibillty of remedying the evil. That engineer accordingly projected the above caral, which has three divisions, the anmmit level being only 8 feot 8 inches above the owtlets. Its length is fify-ane miles. It is 198 feet 7 inches broad at top, 20 feot 10 inchen at bottom, and 20 foot 6 inobes deop. The pilo-driviog and boring ezperiment undertaken by him to secervin the probabllity of sucess, show that the orlginal soa ehope, boing the oaly really hard ground in the north of Halland, is to be met with at 48 feat under the preseat anrfaee of the gronad; and as the foandationa of the tooks wese laid nearly at that depth, the result of the experiment was conaidared to afford safilient guarantee for the atability of the works. The character of the soil is that part of Holland is exceedingly troncherone, and it rellects great aredis on eur foreign naighbours that they were able to overcome the various dificultion with which they had to contend.

The cometruolions generally conciat of fioatiog and ivingbridgen, tidelooks, pearege-looks, fec. The toetiag bridget are pecaliar ou acoount of thair fatitidity, consisting of two plutforms, one fixed to each shore on pitas, the oud of aach of which is moeked by atets of double lovers and reet-
ing on two boats, 80 that when the bridge is required to be opened, both boats are withdrawn, one towards each shore. The Willem lock is 297 feet 8 inches long, 61 feet 5 inches wide; the height of the lock walls being 32 feet 6 inches, and the gates being each 29 feet 5 inches by 29 feet 4 inches.

The total cost amonnted to one million and a balf pounds sterling. The time required by vessels to make the passage from Amsterdam to the Hel der varies according to their sire, and the means of haulage; fy-boats, with six relay of four horses each, making it in ten hours, whilst large East Indiamen require two, three, and four days, according to the wind. The details of construction of the whole of the works were given very freely and with illustrated drawings. Io the discnssion which ensued, it was stated that the only canal in this country which could be contrasted with that of the Helder, was the Caledonian canal, which was projected upon a report by Watt, commenced by Jessop, and in a great part constructed by Telford, a few years previously to the Helder canal. The principal difference between the two consisted in the nature of the ground through which they were cut, the former being excavated entirely out of alluvial deposit, whilst the latter bad to be cut out of hard gravel, and in some cases rock. An interesting acconnt was given of the mode of forming the spot for the entrance-lock at the Inverness end of the Caledo nian canal. The ohject was to carry the work out into deep water. A large inass of earth was depasited in the sea to the full extent intended. Upon this mound, a beavy load of material was laid to consolidate the mass. After settling for a considerable time, the upper mass was removed, the excavatinn was made for the lock-pit, and the construction was ef fected with comparative facility, and had endured much rough weather since, withuat any synptons of failure. The superincumbent weight which was removed, being greater than any subsequent strain, there was no danger of the lock ever sinking.

On the $1 G 1 \mathrm{~b}$ inst., this paper was continued, and treated principally of the art of building with fascine work, as practised in Holland and Germany.

The usual construction of these dykes was described to be, by sinking successive layers or beds of fascines or faggots of almost 30 inches thick by from 8 to 16 yards in width, and of proportionate length, weighted with gravel and siones mingled with clay, sea-Weed, and silt. These layers were continued until they reached above the sea level, when the top was constracted of more solid naterials, and sometimes capped with brickwork, as the public roads were formed upon them.

The slopes of the faces of the dykes vary considerably: some of the low dykes are in section of the form of an urc of a circle of 6 to 10 feet chord and 10 inches to 1 foot versed sine, covered with fascine matting, staked down upon a clay-bed. Otbers have a base of 19 feet wide and 5 feet of a triangular section, also made up of fascines fand slakes, secured by hurdles and wattling, with clay, peat, sea-shells, and saud, well rammed in, and then covered with turf. Others are furmed with rows of piles, 16 feet long, with their heads 6 or 7 feet above the shore, joined longitudinally and laterally by waling timber, filled io and arouad with fascine beds and weighted with stone. Baskets filled with sand are also used in certain situa: ojs, as well as various modifications of all these kinds of protections. It was stated that these constructions were found to succeed better and last as long as stone, being at the sume time about bulf the cost.

ON GUNPOWDER.

Dr. Faraday, in a lectore delivered at the Royal Inatitation, gave some account of the "Composilion and Qualities of Gunpourder."-Its composition contains 75 parts of nitre, 15 parts of charcoal, and 10 parts of sulphur ; which, couverted into equivalents, give 1 of polassium, 1 of nitrogen, 6 of oxygen, 3.4 of carbon, and 0.85 of sulphur, in a state of mechadical mixture.

The Action of Gunporder,-Gnnpowder is a solid body, in which a source of enormous power is locked up, capable of being brought into immediate operation whenever wanted : the action thus clicited being itself regulated by human skill with wonderful precision. The enormous quantity of gas generated by the combustion of gunpowder, irrespective of heat, was exbibited. It was remarked that, on the ignition of gunpowder, though the sulphur begins the combuation, it is not itself burned by the ozygen of the aitre, but unites chiefly with the potassium of that salt to form sulpharet of potassium, a substance which assista in giving to the flame of gunpowder an intense beat. If gunpowder and steel filinga be dropped togetber through four or Give inches of flame, the latter will burn, though the former will not. A flame from gas was made to play for several seconds on a heap of gunpowder, withont lighting it ; but when actually lighted, it evolves very great heat. It is to the immense heat produced on the solid products of the combustion of ganpowder, that the certainty of its complete combustion is greatly owing. In this respect gunpowder difers characteristically from gud-cotion. The latter fires at a heat whicb would not aflect the former; but produces, by its combus. tion a degree and condition of heat mucb leas communicable to other bodies. The eflect of the (heat generated, independent of the chemical change from the solid to the guseous or raporons state, was illustrated by
the violence with which a mixture of one volume of oxsgen with two of hydrogen gas bursts the vessel which contaius it, solely in consequence of the heat elicited durjog their combination. This is manifest from the fact that the space occupied by the uncombined gases is greater by one-balf than that taken by the resulting steam.
Gramulation.-Prof. Faraday laid great stress on the effect of the granulation of gunpowder. To this condition of ganporder, presenting, as it does, a number of separated surfaces of size just sufficieut to become sarrounded with fame at the same instant of ignition, much of the disraptive or projectile effect of gunpowder was ascribed. It was shown thet, without that porosity which its division into grajns imparts to a mass of gunpowder, the explosion of the whole could not be instant nor simultaneous. This was proved by bringing a piece of mill-cake successively into the condition of grain powder and of meal powder. The slow combnstion of the solid meal powder fuse was compared with the quicker infummation of the bollow rocket and the instant infammation of the charge of a gun. All these effects are related to the condition of the interior of the gunpowder in respect of its permeability by the flame of the first particles ignited. Then, as to its exterior condition, it was shown that the tardy burning of the miner's fuse is due to the granular state of the powder in its caso being counteracted by the pressure of the strands of rope wrapped very tigbtly round it; while, on the other hand, in the cracker of the firework-maker, a similar train is instanily fired throughout, because it has a loose jacket all over it, and, in the burning of the common cracker, an alternation of these effects is produced.

The great importance of Time in producing the effects of Gunpourder.Contrasting the action of gunpowder with that of fulminating mercury and silver, or of those still more fearfully explosive compounds, the chlorides of nitrogen and of iodide, Prof. Faraday showed, that, if the explosion of gunpowder were really instantaneous, it would be useless for all its present applications. As it is, however, whenever gunpowder is fired in the chamber of a gun, it does not arrive at the full intensity of its action until the space it occupies has been enlarged by that through which the ball has been propelled during the first moment of ignition. Its expansive force is thus brought down and kept below that which the breach of the gun can bear, whilst an accumulating, safe, and efficient momentum is communicated to the ball, producing the precise effects of gunnery. This manageable action was contrasted with the effect of a morsel of iodide of nitrogen put on a plate, and exploded by being touched by the extremity of a long stick. The parts immediately in contact with the iodide were shattered,-i. c., the end of the stick was slivered, and the spot in the plate, covered by that substance, was drilled as if a bullet were fired through it, yet no tendency to lift the stick was felt by the hand; whereas the comparatively gradual action of gunpowder lifis and projects those weaker subatances, wadding and shot, which give way before it.

ORNAMENTAL GLASS.

Mr. Apsley Pellatt delivered a lecture at the Royal Institotion on Feb. 12, "On the manwacture of ormamental glass." He explained that the refractive pellucid colourless brilliancy of fint-glass was owing to the presence of lead; and that flint-glass, or more properly glass of lead, most resenbled rock-crystal or the diamond ; and iu this branch of the trade, espocially as regarded table and chandelier glass, the British glass-manufacturers were pre-eminent, and superior to their continental rivals. The entire manipulation iu the making of a wine-glass, jug, barometer-tube drawing, patent pillar moulded vase, were explained in detail both from large diagrams and from the practical exhibition of these processes by two workmrn; a furnace having been fitted up by Mr. Pellatt in the theatre of the Institution for the express object; also salt-cellars were pressed by machinery, bottles blown and moulded, spun-glass drawn, \&x. During these operations Mr. Pellatt explained the conditions of whetting off by the application of the sudden contraction of the culd iron tools, so that a slight blow would separate the bowl of a wine-glass from the glass adbering to the blower's crow; that a punty might be applied to the reverse end for shearing and fonishing the bowl. The punty is a solid iron cane, with a Iittle hot glass adhering to it for handling glass pieces; which, by partial melting of the glass in the course of manufacture, is again removed by a tap when it is no longer required. The peculiarity of glass welding by contact (impossible if the slightest film of sulphur intervene), and various manipulations, were detailed, particularly the projecting moulded pillars Which possessed the refractive and brilliant effect of cut glass; and although invented and introduced a few years since by Mr. James Green as a novelty, it was found, on comparison with a Roman specimen of glass dug up in the city of London, the property of Mr. Roach Smith, apparently to have been manufactured by meass of the same appliances as the ancients, the fragmenta having a perfectly even interior, with a projecting pillared exterior.
The diference of glass made by hand and in monlds was atated by the lectarer, as well as the distinction between moulded blow-offs with cut scolloped edges, which were far superior in the interior polish, as comtrasted with articles, such as dishes and salt-cellars, pressed In monlds by mechanical power, as introdaced by the American syatem, whose interior
surfaces were uneven and ruffied, by the metal plunger not always being lept sufficiently hot an ingenious cylindrical vial mould, for hlowiog bottles without seam, of uniform sizes, was ured; and botles were manufactared both from it and the ordinary open and shut moulds, which will be polished and clean blown, provided the inside of the moulds are kept at mearly the same heat as the temperature of the glass blown in them. The elasticity of glass was exemplified by glass balls of about three inches diameter rebounding from a polished iron slab three-fourths of the height from which they rere dropped, as well as by blowing glass so attenuated as to be sastained some short time floating in the atmosphere; this is technically called glass frost. Annealing and its effects were briefiy stated. The process of casing (called by the French doublé, treble, \&c.) colours upon white glass was then practically shown by the workmen, who covered a White glass toilet-bottle with blue, about the thickness of an egg-shell; and Mr. Pellatt displayed a vase of the exact size and shape of the Portland rase, ioanufactured at the Falcon Glass.works with a thick interior coating of dark blue glass, opoo which a thin white enamel of glass casing was laid; bis engraver had cut away parts of the white, leaviog masses of bloe in the neck and upper part of the rase exposed to view, and bad chased out at the lathe, with the engraving tool, a portion of the bas-relief.
A foll size drawing of a double-handied vase, withont foot, now in the Museum of Naples, was exhibited, made of blue glass, and cased with white enamel, with handies, from which were engraved in relief, an elaborate arabenque subject, with a group of Bacchanalinn boys under each bandle. In design and artistic power it is considered by Zahn as second ooly to the Portland vase. This rase was found in Pompeii in the year 1837. Mr. Pellatt stated that Mr. Wigel, the celebrated gem-engraver, had expressed a desire to make an exact copy in glass of the Portland rase, provided he could set a part adequate professional time for the object; apd Mr. P. expressed his determination to aid this patriotic intention, piedging bis Firm to its execution, so far as regarded the manufacture of the crade vase. This species of engraving in relief, probably took its rise among the Greek and Roman artists, in imitation of real bas-relief gems. Manyroagh and unfoished specimens are to be seen in the British Museurn. Modern engraving of rongh patterns npon transparent glass cannot be traced carlier than the Venetians. A lathe, a copper wheel and emery-powder for the roagh grounds, and a lead wheel for polishing, are the engrarer's tools. Specimens were on the table, as worked by the lathe. Glass-cutters' iron wheels for cutting, used with wet sand; stone wheels, used for smoothing with water, and wood wheels for polishing with pommice, and aterwards with putty powder, were alightly explained from the apecimens exhibited. Flint-glass decanters, roughed, amoothed, atd polished, were shown; also four polished cut decanters, of one uniform shape and size, but varying in strength, to exemplify the difference of brilliancy; that with tea faces of futes on the cylindrical body being least refractive, and that with siz faces or fiating being most refiactive; and the eight finted and ten fated ranging between the two extremes in refractive effect ; the condition of pellucid refractibility depending upon the greatest projection of angle, in proportion to the greatest quantity of fat sarface cut away from the ex terior of the cylinder (the interior remaining circular). The lant glass manipulation of the workmen was drawing Venetian filigree cane. Thresdis of white and coloured glass were placed vertically around the extremity of the interior of a brass mould; a solid fint-glass ball was blown into the interior of the threads, welding the latter to the outside of the ball, and drawn as tube and cane is usually drawn, except that each workman tristed in an opposite direction, as they retired from each other to lengthen and attenuate the fligree cane; which, being whetted off into such leugths as may be required, is afterwards used for wine-glass stems, or made up into vases, pateras, and other Gligree objects of taste. Specimens of mosiac glass were also shown and explained, hy which, pictares, as described by Winkelman, were made, by welding lengths of small cane to each other, the patteras being previously sectionally arranged to required varjety of colour, \&ec.; so that when massed together by fusion, the whole shall appear bomogenons. These are cut off into slabs at right angles to the length; $s 0$ that the sobject or pattern is repeated on each slab. Venelian millefiore glass was explained to consist of single canes of filigree glass, cut off into amall lorenges, and placed side by side, and welded to white dint-glast, forming a sort of mosaic work. The manner of making achmelts and ritro de trino was slightly alluded to, and Mr. Pellatt stated that he bad tried to imitate the projecting cryatal forms divided by concave fissures of the Venetian frosted glass, and had failed, as he had plunged the manufactured article while hot into cold water, which only dislocuted the interior particles of the glass, leaving the surface nearly smooth; whereas his friend Mr. Green had chilled the glass in water in the earlier process of the manufacture, which being afterwards rewarmed at the furnace asd expanded by blowing, separated the crystals from each other, leaving the assores between identically with the Venetien; apparently full of iractures, bat really whole and entire. The enclosing of cameos in shut-up pockets was explained. A benatiful specimen of pedestal, wuth a caryatides enclosure is eolid glase, also bricks of glas, with written and composition imscriptions incrusted, were on the table.

Mr. Pellatt concluded by bearing public testimony to the workmen for their willingness and auccess, notwithatanding the ohurt time of fusion, and the comparalive incumpleteness of the furance; and by sincerely thankiog the possessors of ancient glase who had kindiy lent him apecimens, or given bim access to their collections.

ON THE NATURE OF HEAT.

Mr. Grove gave a lecture at the Royal Institution, Feb. 5tb, on "some Considerations of the Nature of Heat."-After a sketch of the existing theories of beat-the emispre, the ethereal, and the dynamic-Mr. Grove announced himself an advocate of the last, viz. that which regards heat as molecular motion of ordinary matter. The phenomena of what it called "latent heat" bave always been considered a atumbling-block in the way of this theory, and a strong argnment for the materiality of heat. Mr. Grove considered that all the phenomena of latent heat might be accounted for more simply by the dynamic theory, and that the greatest difficulty in applying this theory was the necessity of excluding ideas ascociated by long unage with the phenomena, and also of employing terms which had become engrafted by custom on the expansive effects of heat. Thus. in exponading a new view, although more simple in itself than the receised ones, we are obliged to avail ourselses of received terms, to which, while we use them, we object. Excepting the case of certain substances which expand in freezing, and which expansion is accoanted for by their cryatallisation, making the body occupy more space, by leasing interstices between the cryatals, Mr. Grove stated that all the phenomena in which the so-called latent heat is concerned were mere expansions and contractions ; and that what, according to that theory, would be called absorption of hest, ras mere extension of the substanee said to absorb the heat. Thut, suppose a given quantity of water to be heated by a given quantity of mercury; the firat effect is, that the water expands, the nercury contracts; at a certain point, viz. that at which the water is asid to hare reached its boiling point, the attraction of the molecules of water is so conquered by the repulsive force, heat, that the water bursts into vapour; here its molecules being more separated, and having consequently a less attractive force, are so much more readily expanded, and exhaust much more expansive force from the heatod mercury : this, therefore, loses expansive force, i. e. contrarts or shrinks; and the more $s 0$ in proportion to the readiness of expansibility of the substance which robs it of its expansive force. So, if the calorific force be supplied by otber means, such as ordinary combustion, say of coal and oxygen, i. e. chemical action, the expenditure of fuel will be in proportion to the expansibility of the sobstances heated; so that the sance quantity of water will require tho ame quantity of heat to coovert it into steam, whatever the pressure.
If, again, the same source of heat be applied to the two substances, water and mercury, bay to a thermometer immersed in water, hoth gradually expand, but in different degrees ; at a certain point the attractive force of the moleeules of the water is so far overcome that the water becomes vapour; at this point the heat or force, meeting with much less resistance from the attraction of the particles of steam than from those of mercury, expeods itself upon the former : the mercury does not expand, or expands in an infinitesimally small degree, and the steam expands greatly; as s00n as thit arrives at a point where circumarobient pressure canses its resistance to further expansion to be equal to the resistance to expansion in the mercury of the thermometer, the latier again rises; and so both go on expanding in as inverse ratio to their molecular attractive force. Again, if the steam be not allowed to expand, as by confining it by a less expansive body, say a metallio chamber, then the mercary of the thermometer immediately risea. Thus heat ia regarded as a purely mechanical effect; and indeed it can be made to reciprocate with mechanical action. If by mechenical pressure we cause a anbstance to contract, this gives out heat, i. e. causes surrounding bodien to expand; and, vice versi, if we mechanically raify or expand a substance, cold is produced, i.e. contraction in surrounding bodies. The theory wet also applied so the increase of specific heat in bodien as their temperature increases, and to many other points; and the whole subject was experimentally illustrated.

Mr. Grove next passed to the consideration of the effects of heat, viewed at repulsive force, upon another mode of molecular astraction, viz. chemical affinity. A vast number of compound bodies are decomposed or resolved into their constituent elements by beat; and these effects may be accounted for by suppoaing that heat ao far separates their molecules as to remove them from the spheres of their afinity. In other aubatances, however, chetnical combination is produced by the application of heat; and thongh by certain hypotheses these latter effects may also be accounted for by the repolsive action of beat, Mr. Grove seemed to consider these hypotheses rather atrained. Water has, up to a recent period, been considered not only undecomposahle by heat without the aio of anme other powerful chemical affinity, bat the elements of water are united by the action of heat; and in paenmatic analyses heat has hitherto been employed to combine the elements of water with each other, or with other gases. Mr. Grove however has proved, and experimentally showed on this oecasion, that water is capable of being decomponed by heat ; thas forming no exception to the general antagoniam of heat and attrective force.

STAINED GLA88.

At a meeting of the Deoorative Art Sociaty, on the 7 th Jan., Mr. Fildes is the chair, Mr. E. Cooper, "On Stained Glase Windows," observed, thet a combination of the Italian, or Repaiegance, with Gothic embelliahmeot, took plece doring the reiga of Hewry VIII., as soen in the chapol of Bishop Weet, at Ely, and in Wolsey's hall, at Hampton Conit, whilst, in. coed, the pare Italinn anchitectural desige by Torregiano, in the tomb of Remry FIL., as well as the wipdows, carved stalls, and orgam-soreen, in Eing's Colloge Chapel, Cembridge, belong to this period. Bome fine exemples of Italies decorations, in the paintings by Holbein, at Hampion Onirt, weos also roferred to. He ealarged upos these circumatances, lest he might be supposed to have anticipated by a oentary the introduotion of the nevival more neadly attributed to Inigo Jones. A detailed desoription of the windows at King's College, Combridge, followed; and the enet Fiadow of Saint Margaret's church, Westmioster, was, in his opision, demigned by the asme artist : wo examination of this window will convey a correct notion of thome Cambridge. It was said, that this bad been execated at Gonda, in Hollard; at which place may be seen some of the foent examples of stained glass in existence: they are in the style of the revival, with a considerable portion of white glase in the background, and wepe paisted towards the end of the sixteenth centery. Some elaborate eagravings of them, jost completed by Mr. Weale, were referred to. The enters window of Saint George's, Hanover-aquare, is also of this period. Mach of the detail was said to be valuable, although a confosed effect arises from the ornamental portion overpowering the figures.

Mr. Cooper theo remarked, that the windowis of the sixteenth century have a peouliar charmcter in the imperfectly attained pernpective effects, and the attempts to represent distances by paintiag ; hence exbibiting a departure from the trae principles of the art. He observed, that all figares ghould be sapported by draperied or diapered back-grounds, admilting depth in colour. The windows of King's College chapel might be coneidered beautiful, rather from the rich colours of the glase than from the artistic merit in the application of colours to the design, which can only be made out after some litthe study. Daring the 13th, 14th, and 15th centaries, one oniform tone of colour pervaded the back-ground; and as one of the finest examples of this class, the window of the north transept of Canterbury Cathedral was referred to. It displays a glowing brilliancy not aubsequently attained.

In the reign of Elizabeth, stained glass was largely introduced in man. sions, exhibiting heraldic devices and mottoes. The 17 th century led to a notice of several windows by Van Linge, that in Lincola's-inn chapel being a good example of this artist's productions. Others were enumerated, which belong to the 18th century, but they were not considered worthy of commendation, having been, for the most part, treated as an oil-painting, and with a preponderance of shadow on a transparent medinm. At the present day, Mr. Cooper observed, there is a return to the practice of medisval glariers, in the employment of fashed glass and pot-metals togetber Dith minute lead-work. The east window of Saint James's Charch, Piccadilly, he thought creditable in respeot of glazing and richness of tone in the colonrs; but a higher degree of artistic merit might have been readily obtained. A proper gradation of colour in the composition had not been observed; the most elevated Igare, vin., that of the Saviour ascending, being inconsisteatly clothed in acarlet, and which, the reader argued, shoold have been represented in drapery of the most aërial deacription. Much controversy aod critieion had takeo pleoe upon the the character of thin window. He said that he oeuld not detect any Gothie details in the wiadow as execoted; that the borders are Italian. from works by Ruffeelle, G. Romamo, and others, and may be seen is Grueer's work. The borders of mosaic-work impart a Byzantine feeling, whila the various aymbols and emblems introduced were commonly employed by the early Italinn Chriatians. He considered that we may expect success in direct imitations of the medispal works, as sees in new wiadows in the Temple Choroh, where the coloors and alazing are alike, good, and the tableaux, or subjoots, being smali, do not render any impropriety of intenaity conspicnoushy objectionabie.

The east window of the new chnrch in Wiltoa-place was next noticed as a migonderetanding of this kind of deconation. It is not Jet completed; but ín the lower portion a failore was said to be olearly indicated. The intention of the designer, the writer suppoced to be akin to those provalent doping the transition period, when the introduction of a series of amall and sopurate sobjects illustrutive of history was aimed at ; bul oraiting the principal charm arising from the harmonious and rich glow emanating from a combiation of foll-toned colours. The figures in this wigdow were then described as small, on light or white grounds, producing a spolled effeot from their size, and also prectuding the possibility of readily making out the eubject ; added to which, earh Ggure, or group, is aprmounted by th. bernacle-work io pale yellow glans, feebly contranting with the stone mullions of the window. He then argued, that one of 1 wo rules should be observed,-either a rich general effect should be produced (the desiga or subjects being subordinate), or the subject abould bo well defined, and sufficiently large to be well naderstood in any part of the bailding. Neither of which had been regarded in this last inutance.

One great canse of failures at the present day was attributed to the art being regarded as a mere trade; and it was contended, that were artists of eminent talent to devote attention to the principles which regulated the
application of colour to thit material, we might soon realise our brightest expectations. Much might be hoped for from the great advance taking place in chemical information. The writer suggasted improveroents that ho believed had not yet been applied to atained-glass windows. One was, to introduce " lights" in the representation of objects. Shadow had beep freely used, but he argued, that dark shadowing conatitntes a great faulc The best effects in a picture geverally arise from the lights. By using fashed glass and a partial removal of the coloured sarface these might be produced. Another plan by double glacing was mentioned, using two plates of fiashed glass of different colours, and subjected to certain modif. cations by grinding or acid. Specimens illustrating these considerations were exhibited.

By these and other means that might be saggestod, together with am aroidance of aürial perapective, a superior pictorial effect wonld reanti ; and he concladed the paper by a briof recapitulation of the leading characteristics of the dosign and colonring peculiar to each of the centuries which had been passed ander review.

CENTRAL SUN.

At the Royal Irish Acedemy, Sir W. Hamilton announoed the presnmed diacovery, by Prof. Madlez, of "a Cealral Slan," and exhibited Prof. Medler's esay on the asbject (Die Central Somm, Dorpat, 1846). The following report, containing a sketch of the resulte arrived ab and which were briefly stated to tho meeting, wo take from the Dublia Eremiegs Pout :-
"By an exteasive and laborious comparison of the quankitien and direce tions of the proper motions of the stars in various parts of the beavens, combined with indications afforded by the parallaxes hitherto determiaed, and with the theory of universal gravitation, Prof. Miadter has arrived at the conclusion that the Plejades form the oentral group of our whole astral or sidereal system, inclinding the Milky Way and all the brighter stara, but exclasive of the more distant nebulm, and of the atars of which thoes mebule may be composed. And within this central groap itself he has been led to fix on the star Alcyone (otherwise known by the name of Ete Tanri), as occupying exactly or cearly the position of the centre of grevity, and as entitled to be called the central sun. Assumisg Beseel's parallax of the etar 61 Cygai, long since remarkable for its lurge proper motion, to be carrectly determined, Mädler proceeds to form a first approsimate estimate of the distance of this central body from the planelary or solar system; and arrives at the (provisional) conclusion, that Alcyone is about $84,000,000$ times as far removed from us, or from our own gun, as the latter luminary is from us. It would therefore, according to this extimation, be at least a million times as distant as the new planet of which the theoretloal or derinctive discovery has been so great and beantiful a trinmph of modern astronomy, and so striking a confirmation of the law. of Newton. The amme approximate determination of distance conducts to the result that the light of the central sun occupies more than five centories in travelling thence to us. The enormous orbit which oor own sun, with the earth and the other planets, is thus inferred to be deacribing aboat that diatant centro-not indeed under its infonence alone, but by the combined attraction of all the stars which are nearer to it than we are, and which are entimated to amount to more than $117,000,000$ of masses, each equal to the total mass of our own solar systen,-is supposed to require upwards of $18,000,000$ of yours for ite complete deacription, at the rate of about eight geographical miles in every second of time. The plane of this vest orbit of the sun ie judged to have an inclination of about 84 degroes to the ectiptic, or to the place of the anuual orbit of the earth; and the longitude of the ancending node of the former orbit on the latter is concladed to be nearly 287 degrees. The general conclusious of Miidler respecting the constitation of the whole sybtem of the fixed slars, exclosive of the distant nebule, are the following:- He believes that the middle is indicated by a very rioh group (the Pleiades), containing many considerable iodividual bodies, though at immense distances from us. Round this he supposes there is a zone, proportionally poor in stars, and then a broad, rich, ring-formed layer, followed by an interval compuratively devoid of stars, and afterwards by another anuplar and sterry space, perhaps with several alternations of the same kiad, the two outmost rings composing the two parte of the Milky Way, which are confouaded with each other by perspective in the portions nost distant from ourselves. Professor Mädlor bas acknowledged in his work his obligations, which are those of all inquirers in aidereal astronony, to the reacturches of Sir William and Sir John Hersohol."

Draining wish Engine Aakes,-On the farm of Daldorch, the property of Archibald Buchauad, Esq., of Catrine Bank, Scolland, there are draine made 28 years ago, and filled with engine ashes, whieb are atill in full and eficient operation. The depth of drain is 28 inches, and the width between each 12 feet. The bottom of the drain it eut three inches wide, and the depth of ashes used in flliag them is about 10 inches. The soll is a firm clay. These drains promive to be as effricat half a ocatery hence as thay are at the present time.

LIST OF FOREIGN BOOES LATELY PUBLISHED.
 Civi Enginecring, Arohifectwre, and their Collatermbs. french wores.

Czynzki, J., Kopernik-Copernicas and his Works. Paris: 8vo. 6s, Errowx de Lincy, Hotel de Ville-History of the Paris Guildhall. Paris: 4to., plates. 250.

Figmente, B., Irrigateur-Practical and Law Fandbook of the Irrigator Paris : 17mo. 2s. 6d

Bewrdet, J. M., Theorie-Theory of Eclipses, and the antoular eclipse of Oct. 5 , 1847, vistble on the ancient Continent. Paris: 18mo.

Granjean de Montigny, Architecture-Tuscan Architecture, Palaces, amd other edifices, measared and designed by. Second Edition, with an addition on the Tombs of Italy. Paris: fol., 134 plates. 22 15s.

ELUe, F_{9} DGlage-Geoloxical and Historical considerations on the last Cetaelyams of the Globe. Paris: 12mo. 8s. 6d.

Palomern, A. R., Les Eung-Practieal Trention on Waber. Pario: 18.mo, platen. 84.

Buy de Morande, Ermaew-Critical Exemination of the Coman by Benboldt, with a move gyinm of the Universe. Peris: 8w. 2e. 6d.

Fennid, A., Gepie-The Genius of Art; Studies on the most celebrated Printere, Seulptors, \&c. Paris: 8vo., plates. 9s.

Betisefer, L., Histoire-History of Monnmental Art in the Ancient and Eriddle Ages, with an Easty on Glase Painting. Paris: gr, 8vo., plates. 11 le., [A very important work.]

Thierrsh Jeme, M6thode-Graphio and Geometrio mothod of Lioner Drawims. Second Edition; correoted by F.C.M. Mario. Paris: oblong 8 va , plates. 10 sed .

Ghasallom M. R., Marbesmennany of tho Tides on the Coast of Prases in 1847. Publiahed at the Dopot of the Nary. Paris : 18 mo .

Bichard, Chemine de Fer-The Great Freweh North Lime, from Parte te Oreend and Cologne. Parts: 18mo, 2 charts on oteel. 2e. 6d.
Ananaire-Anpuary of the Ecole polytechnique, up to the year 1846. Pris.

Andrand, Syatemo-Atmospheric Railways, after the system of,-Paris: 8vo., plates.

- Minard, My Cours-Course of Bydralic constructions at Sea-ports, dolivered at the College of Roads and Bridges. Paris: 4to., Allaen 118 s.

Mfigmard, B. R., Trait6-Treatise, Theoretical and Prectical, oa Centreation. Paris: 8vo., Athat in folio.
Famemany, T., Noticem-Notice on the Conatroction of the Tuanels of 8. Cloul and Montretont, with general obcorvatioes on subtermanean pasaren, asd the dimonsions and prices of sizty-aiz tuanels in Pratea, Englind, mad Belgimm. Paris: 8ro., plates. Es

Fient, L. I., Etudes-Btudlea on the Artifcial Pormolanas, composed of the ataral ores of Italy, and their ose in hoildinge in fresh and salt water. Paris: to., pl. 84.
Pres, C., Tables-Tables on the traciog of Converging Corves (c. de raccordement). Paris: 12mo. Ss.

Richard et Quetin, Guide-The Traveller's Guide through Monamental France. Paris: 14tan., chart. 10s.
Moadfalcon et Palimière, Traite-Treatise on the Salabrity of Large Cities. Paris: 8vo.
Application of the Properties of actual Celerity to the differeat conditions of Stability of Vaults and Drasaiagr, by General Coont L_{0} Paris: tito.

St. Claire Déoilit, Etudes-Geological Stadies on the Islands of Tenerife and Fogo. Paris: 4to.

Adhemar, F., Perspective-Perspective of distant objeats, being a Sapplement to the Treatime on Perspective. Paris: Ato. Athas in folio.

Somanerand, F., Arte-The Arts in the Middle Ages, Roman Palace at Paris, Hotel de Clony, \&ce. Paris: Five volumes, 8vo.

Narmased, Modern Paris-Villas and Raral Constrections about Paris; plate, elorations, and geseral ootline of their architectore. Paris: 8vo., plates. Esoh Part, 2s.

Fruce.-Caen, Peb. 8.-A besin for the accommodation of shippias is in progress at thin port. To render it of more service, a canal from the town to the sea (which ereeight miles apart) will, it is hoped, be completed dariog this year. At present, ships have to thread the shallow and serpentiae Orue to reach the town. A harbour of refoge is ateo is courne of comstraction at Port-en-Bersia, which will be iavaluable, not oaly to Eranch, but to Eadinh sbipping, there being now no plaee of refuge bee treen Havre and Cberbourg. The proposed herbeor in aearly eppenite to Chichestor, in Sussex, and, whea oomplete, will be capable of lomatiog tero-0I-witr.

AMERICAN PATENTS.

Improsersents in the portable forge. C. V. Queen, Pocksville, New York. The forge is provided with shatters, which slide around to enclose the fireplace when not in operation. The forge fan is provided with a pipe which commaniontes with the bellown, and from thia pipe there it a branch provided with a valve, so that air can be admitted to the fire, when the bellome it not at wock.
 Loper, Philudelptria, Pengrylvania.

It contiats in attaching two screws to cog wheels on the deek of the ressele, which mash into a large cog wheel on the drum of a capatas, the threads of the acrewt taking into nuts formed in the aliding frame of the propeller, the sides of which frame are bored out cylindrically to a certain depth, to admit the screwi to pass therein, and to protect them from the action of the sult meter deponite and rat, which would etherwise pervent their working

Inprowemente in water sohech, William Dripps, Coateville, Pennaylvanis, comants in mating the apertures is the wheal, for the introduction of the water to the bucketn, to extend through the outer or cylindricel perineter thereof, seez the top, and then epirally down through, between the bnokete, to the bottom thereof, ia the menner desoribed, is combination with the funnel-shaped inner rim and curred backeth; and also the combination of the sliding frame, and segment valves consected therewith, by rods or atems of unequal length, for letting on the water by degrees.
 Mamechusette, relates to the mode of producing the canber of the truns, by diatonaion wedgee, or apparatue, applied between the eade of the bars of the upper stringer, or chord, in combination with the eantractile and cambering chain, made and applied to the lower or other auitable part of the traes. The wedges are applied to the junctions of the pieces composing the upper stringer of the arch, and below the arch there is a chain made in two parts, and connected by a swival actev, for the parpase of ahortoning the chain which supports the arch.

Inypoved method of indlatting the hamer of wrive in steam bollort, George Paber, Canton, Ohio; consiming mophy hatming a magnet to the sxis of motion of a wheel or lever, to whieh the loek in muspended or attached, to commanicato motion by attraction and ropalaion, to an index needle turning on an adi outside the boiler, and apernted from the magnet by a ateam-tight plate.

Improvement in the atorm engine, R. F. Loper, Philedelphia, Pennaylvania; consisting in rotating two crank shafts with equal velocities and in opposite directions, by mean of a connecting rod, extending from the creathead of atemm eagine to the two crank shafte, the centre of vibration of the crom-head being centrally between them. The claim is for connecting the crose-hend of a reciprocating engine with two crank shafts on opposite sides of, and at equal distancea from, the centre of vibration, by means of a comrecting rod or lever tarning on the cross-bead, and reciprocating with it, and taking hold of the cranks on the two crank shafte, by which they are caused to tarn in opposite directions, and with equal velocities, at harela described.

Inprotement in the steam angine, William A. Lighthall, Abaay, Now York; consisting of the arrangement and disposition of the stemm chenth, aido pipet, condenser, exhaust pipe, bed plate, and air pump, in combination with the cylinder lying horizontal upon the solid keelson or frame, said cylinder being in the hold of the ressel, below the deck beams. Second, the mode of working the valves whole and half stroke, by the combination of tbe eccentric wheel, eccentric hook and branch hook, the beart cam and anm hook, togetber with the hollow rock ahaft, a matantially a deacribed, ia combiestion with the eylinder in the aforeaaid horizontal position.

Inppromment in tive water wheeh, William Lamb, Whitestown, New Yort, condits in the conatruction of water wheels designed to run onder water, with one, twe, or mort flate to placed in relation to the shaft and body of the wheel st to form a sbort transverse section of a serew of one, two, or more threads respectively-to be made of any suitable material, and of a shape that may be moulded and capt whole, or to be made of wood, or part of each-in combination with a coiled or acroll trunk, 20 made an to bring the water in contact with one side of the wheel, and conduct it around the wheel in the direction the wheel runs (except what is discharged in its pastege) the trank being diminmbed to size gradually by drawing in the side at silet, or by gradaally raising the bottom, or both, so that the size of the tromk at any given point, shall be adapted to the quantity of water remaining andiacharged at that point, in ite pasarge around the wheel under the froste; said tronk to be made of metal or wood, or part of each, and of a sive and form bent adapted to the circamatancen,

REGISTER OF NEW PATENTS.

SMELTING COPPER ORE.

Thomas Bell, of Don Alkali Works, South Sbields, for "Improrements in amelling copper ore." Granted July 23, 1846. Enrolled Jan. 23, 1847.

These improvements relate to obtaining sulphurio acid from copper ores daring the roasting, by placing the ore in powder on the shelves of a common roasting furnace. to which a roasting kiln is atuached by a liae, which enters two feet from the bottom, from 150 to 200 feet in length; in this kiln copper ore, in lumps, is put; near the end of the flue there is a jet of steam, which increases the dranght; coke, anthracite coal, or charcoal, may be used instead of bituminous coal. The top of the kiln is arched over, and a lue passes through the top into a vitriol chamber. Near the end of this tlue also there is a steam jet. During the roasting of the ore, sulphorous acid is formed, which, in passing through the flues, is mixed with the aqueons vapour, and partly becores condensed into sulpharic acid; in this state it passes into the vitriol chamber, and collects on the floor; at the same time, the uncondensed sulphurous acid gas and steam, on passing into the vitriol chamber, meet with nitrous acid gas, produced by acting on saltpetre, or nitrate of soda, by strong sulpharic acid. Bat that portion of the sulphurous acid which escapes condensation is afterwards condensed in columas of coke, previously exhausted, as described in a former patent (Nov. 3, 1845), "for improvements in the manafacture of sulphuric acid," or by means of a high chimney.

AREA GRATINGS.

FRichard Marvin, of Porisea, Southampton, gentleman, and William Henry Moore, of Southsta, gentleman, for "Impronements in gratings of metal or mood, for the fronts of houses and general purpases, for the admistion of light and zentilation."-Granted May 28 ; Earolled Nov. 28, 1846.

This invention relates to constructing gratings of wrought or cast metal, or wood, as shown in the annexed engraving; fig. I is a plan of part of a grating, and fig. 2 a section. The bars are fixed in the frame in such a manner that the top of one bar shall cover the bottom of the next bar. The leogth of the frame is regulated by the number of bars; it is $\mathbf{2}$ inches deep, and inch thick. Tbe length of the bar depends apon the size of the required grating; the depth of each bar is 3 inches on the top side, and 3 finches on the under side; the thickness is anch on the top edge, gradually reduced to inch in the middle, immediately beneath which it is reduced to $\frac{1}{16}$ inch, and then gradually reduced to inch at the bottom. The distance from one bar to another is $1 \frac{1}{8}$ inch at the top, which is increased to $1 \frac{1}{8}$ inch at the bottom.

HOUSE PAINTING

Harold Crease, of Brixton-hill, Burrey, paper atainer, for "Improrementa in the preparation of paints and colowrs for decoratire and other similar purposes."-Granted July 23, 1846 ; Enrolled January 23, 1847.
The invention relates to the preparation of colours, whereby they are rendered suitable for painting "falting or dead white;" the colours so prepared will be free from any offensive smell, dry quickly, and be ready to receive a second coat within an hour after the application of the first. The improvements consist in combining shellac, gelatine, and animal or vegetable oil, with an alkaine base, and incorporating this mixtare with ordinary paint, in the following manner:-Boil $2 \frac{\mathrm{lb}}{\mathrm{lb}}$. of well-bleached shellac and $\frac{1 \mathrm{lb}}{}$. of borax, or other suitable alkaline base, in five quarts of water until dissolved; the boiling to be continued ontil the solution is reduced in bulk to about one gallon. To one quart of this solntion, from half a pint to a pint of pore gelatine, according to its strength, and four drachms of alcohol are added, and gradually incorporated therewith by the application of heat. The mixture is then added to the remaining portion of the solation, together with the requisite quantity of white lead to give it a body, and a small quantity of well-bleached oil; the latter ingredients being added in the proportion of 9 lb . of white lead and two ounces
of oil to each quart of the solution. This mixture is ground in an ordinary paint mill, and afterwards thinned with a tolution of shellac: it is then ready for use. The preparation is applicable to all colours used by painters, excepting a few containing iron.

GAS APPARATUS.

Augdstus William Hillary, Esq., of Chelsea, gent., for " Improoements in the manafacture of gas."-Granted July 23, 1846 ; Enrolled Jan. 23, 1847.

The objects of the improvements are, first, for separating the condensible matters from the gas at one operation; secondly, for converting bituminous matters into gas ; thirdly, for decomposing the condensible matters, by passing steam over them in the heated tubes; fourthly, the ohtaining from the pitch, tar, \&cc., matters capahle of eariching the gas. Thse objects the patentee proposes to obtain by the arrangement of apparatus, consisting, first, of a retort, which is of an oval form in front, with one end rounded, and within which are placed, lengthwise, three parallel tubes, reaching nearly the whule length; the ends of the tobes towards the back are open. The tabes coatain, to about three quarters of their length, twisted plates of metal or other suitable material. From the centre one of these tubes, which is larger than the other two, a tabe rises to a considerable height, and then turns downward again in the ordinary manner of refrigerators, the end dipping into a condenser. This condenser is a rectangalar receiver divided into eight compartments. The tube above mentioned dips into the first of these compartments, from this again another tube passes to an equal beight with the first, and dips into the second compartment, and so on througbout the several compartments to the last in the series; from which a tabe passes into the hydraulic main. From the ends of the two latter tubes above described, two smaller tubes rise and enter the front of the condenser; these tubes have such a form that by a bend in the horizontal portion, it acts as a syphon, and prevents the gas rising from the retort by these channels into the condenser. From the back of the condonser there is a syphon, which can be opened or shut at pleasure; this syphon, if required, will conduct the tar and ammoniacal liquor to the furnace.

When the charge of coal in the retort is being decomposed, the gas and vapours formed pass (by the middle tabe above described) up and down the series of pipes in the refrigerator, depositing the tar and oflier condensible matter in the condenser, from which the fuid matters, viz., water containing ammonia and sulphurous acid, and tar, fluw by the two syphons first above mentioned, into the two tubes within the retort; here, coming in contact with the heated metal plates, these waters, the putentee states, are decomposed; the metal becoming oxide of iron by the decomposition of the watery vapoar, at the same time that the free hydrogen unites with the carbon of the pitch and tar, it forms a auperior gas. Coal contaias besides sulphar, ammonia; the steam in passing over the oxide of iron formed in the tubes, enables it to absorb a larger quantity of salphar. In this manner the metal is converted into sulphur of ammonia and iron, and the gas sufficiently parified for ordinary purposen; bat if it be used in private houses, it is to be further purified by passing it through sulpharic acid, diluted with three proportions of water, and then through lime before entering the gasometer.

PROPELLERS FOR STEAM VESSELS.

Peter Claussen, of Leicester-bquaro, Middlesex, gentleman, for ${ }^{6}$ Improcements in methods of an apparatus for propelling and exhansting und compressiang air and aeriform bodies."-Granted July 28, 1846 ; Enrolled Jan. 23, 1847. (Reported in the Patent Journal.)

This invention relates to propelling vessels from the stern. With this view, the patentee employs horizontal propeller shafts, attached to the pistons of two ateam cylinders; the ends of these shafts, which pass through stuffing-boxes into a watertight casing, are affixed to frames or chases, subdivided into twelve or more compariments, for the reception of an equal
amber of swing tonts, which open one way, to admit of little resistance to the return stroke. These propellers, which move in a line vertical with the rudder of the veasel or boat, are thrast or driven, by the action of the stan piston, forward in the direction with the line of motion of the veasel or boat ; the mode of reversing being the alteration in the direction of the Soat boands to the required direction. The patentee claims under the first bead of bis specification the mode of, or apparatus for, propelling boats or vessels from the stern by snitable means bereinafter described.

The second part of the specification relates to the mode of an apparatus for propelliag vessels or bouts by the means of circulatory revolving ped. dies. In constructing float wheels according to this invention, instead of applyfag foat boards to hollow frame wheels, the patentee aftaches them to cylindric drums having suitable receses formed in their peripheries for their reception. Fig. 1 represents an end view of the improved wheel, and fg. Ia sectional side eleration taken through the dotted lines, A B. a a, $i^{\text {s }}$ the eylindrical drum which may be of metal or any other light substance, such as cork, wood, or otherwise. bb, are foat motion rody, atrached at right angles by the hinge or joint d, to the float boards $c c$. e e, are emall friction rollers, which turn on centres at the ends of the motion rods $4 b$, for the purpose of directing the poeition of the flost boards; $g \mathbf{g}$, are slotiled bridles or guides, in which the friction rollers ee travel ; these, rollers, when moving concentric with the drum a a, remain stationary, but When they diverge into the eccentric channel $h h$, they cause the free ose of the somt boards to move outwards, tilt, on arriving at a poiat coincident with a vertical line drews through the centre of the drum, they present the whole of their surfaces to the water, ms seen at $f ; i$ i, is crank shaft passing throngh atamog bozes, $k \boldsymbol{k} ; j j$, is a water-tight casing, enclosing the paddlo-whealn. The inventor atates that wheels so constructed are to be placed in the hold of a vessel or boak, on each side of the keel, transveraly, and driven by steam or other motive power engines; and he claime under this second hend of his invertion, the mode of, or apparatus for, propelling vemeds or boats, by circalatory revolving paddles, as hereiabefore explained.

The third part of the specification relates to the construction of veasel or boets formed with bottome of dowble curves and double bilges, the ohject of which is to enable those on board to ballast the vessel or boat when necessary; for this parpose tho palenteo employs an air-pump in consection with a balk.hend, or longitudiaal channel in the hold of the veanl or boat ; each boet or vensel having double curved bottoms, with dosbis bilges, are formed like two boate or veasels placed side by side; these doable carved botloms are boardid over, forming the floor of the vessel or boast, ad botwees which an air-pump and suitable apparatus is employed to drive the bilge watar ont, or let other in : the action of valves openieg ortwands as well as inwards onasing the water (by a pressure of ain from the air-pemp, on the surfice of the same, between the bult-hend cr longitndinal chamber) to be driven ont throagh the bilge at the bottom of the vemal. Tho ieventor claims uader this third head of his invention, the method of, or apparatus for, constracting vessels with doubte ourveth and bilges, for parpoes of ballinting, or driving the bilge water from the vessel or boat, through saitahis valres in the boltom of the vessal or boat.

The fourth purt of the specification relates to the mode of, or apparatas for, propelling boats, vessols, barges, carriages, and vebiclos, by the means of pelley wheels attached to the vesel, or carriage, to be propelled, and drivea by team or other motive-power, by fixing a rope or chain at each ead of the rond, or canal, and passing it over the pulley wheels in a suitable manner to be acted upou.
The patentee claims laoily, the mode of, or apparatna for, propelling vesnols, bats, barges, carriages, cart, egricultoral implonents, and vebiches, by the application of wheele, pullies, ropes, or chaias, for the purpoest herinberore doncribed.

TBESELLATED FORE.

 Lendop, civil engineers, for "Inprovements in mood moveic, and fovolintent wh'Hranted Jane 20; Barolled, December 20, 1846.

The improvememes relate, firnt, in the application to wood monaic and tessellated work of an alatic and eatily-compressible material, surrounding each separate aquare or teasera. Second, to the mode of putting together and forming such worts when the tessera in oquare, with such elastic and easilycompressible material sarrounding each square or tessera, as shown in figs. $1,2,3,4,5$, and 6 .

Fis. 1, shows a block of wood mosaic, and temellated work, in its Anal state of preparation, with a full design or pattern ranning through it, and merely requiring to be cat into sheets of the required thickneases, for ne in the manner after described. Migs. 2 to 5 represent fve dfererent blocks a the radons celoored woode, forming pert of the dewiga or pattern in Ig. 1. n. 7 represeats a bloek of the wood roosie, and bumllated work, showing tix frutrolloction inte the dealga or ppetern of dingoand wark.

 le polioed griticilly, tio to be tabsa the gtage of the maninetare

moscic, these pieces being regratated according to the design intended. Them sheets of cork are taken and carefully cut or prepared to a thickness in propartion to the size of the square or tessera, (about foth); the cork is then trimmed or fitted to the length and width of the before-mentioned pieces of wood; and pieces of wood and shects of cork are then glaed or cemented alternately together, forming them into difierent blockn, such blocks being regulated in number by the number of the compartments into which

the intended derige or patter men be divided; for instance, in the devig or pettern shown at fe. 1 , the full deaigh or puttom, it will be seen, i divided into, or concists of, five compartmeaty, and there aro, consequently five of these blocke, similer to figne 2 to 6 , each block being confoed to its: distinct complartment of the full devign or pattern, at shown at e,f,g, h_{i}, i_{0} in fig. 1; and in forming and making up these blocks, the different coloured and description of pieces are to be arranged in the order reqaired to form the pattern. These blocke are next cut np, arranged, and prepared, after the following manner, vis.:-Then it is deaired that the mosnic should be prepared with the grain or fibre of the wood vertical, or nearly 00 , Irst cut tho blocks so arranged, in half, in the direction of the dotted line, dig. 2 . and then cut each of the halves into separate planks, or pieces of the required thicknesses, in the direction of the dotted lines, b, b, b, as shown in fg. 2; and when it is desired that the moasic thould be prepared with the grain or fibre of the wood horizontal, then eut the blocks co arranged seroes, in the direction of the dotted lives, c, c, c, m shown in fig. 6. Afterward plape these seperate planke of piecen to the exact aive of the equare or tensera of the work, and then proceed to make up the block of the foll desip. or pattern, at shown at fig. 1, in the following manoer :-take the plonit from each of the seperate bloctos, 2 to 6, and them ghe them together, in the order of the pettern and of the numbers of the blocke, with other show of corly cut and prepered, and of the thicknees mafore deacribed, alteraptity tegether; then contione on as before, repeating the making op of the fur iodge to the decired leagth of the bleek, as shown at fls. 1, as to which, shout thirty inches will be found a conveaieat leagth. The bleck theo chmined is then to be sawn in the direction shown by the dotted lime, $4_{1}, 4,4$ tho shenter of the thickneet demined (any Ithat of en inch), and each sheot will prewent preciobly the same doays or pathern, and each square or twaes be carrousded by the cork to intreduad in the wort as boffere anowtiened, thil be in a ctate for vee recorling to the propoee for which it in incended, ex-
 sheetr, or such parts of them mave isteaded to be artilcially coloured, wh firnt require to uoderge that proees, which is well known, it bolag st eth atige of the mavafuctere thet it in prefured to colour the woed when it in ertiflcielty colourred.

the propeec of makivg tooring and wainscotingt, or panelliog againat walle, it is preferred, before firing it, to fasten each sheet of the mosaic, so prepared, upon a meparate anitable ground-work or foundation; for this pur. pow a double set of thin boards, glaed or cemented together transvernely to each other as to grain, does extremely well.

When used as a loose corering, it is fastened on to a thin surfase of papier maché, or felt, or a preparation of india rubber and cork, known by the name of hamptalicon, or other auitable material. The material we have aamed througbont the description already given of this invention, as the surrounding material for the square or teasera, hat been confined to cork, and which is the matarial proferred by the patentees; bat any other material which may be of an elantic or easily-compresaible character, anch as caoutchouc in ther varions states of preparation, or soft leather, papier-maché, felt, gutta
percha, and other materials partaking of the like properties, will anmer the purpose ; some of the materials here referred to for surronnding each of the equares or tessers, may alen be applied in a finid, or coft, or plastic state, and poured or pressed in between the squares or teasera, instead of being applied in the way described.

In diagonal work, where the tessera of the mosaic is otherwise than square, it is to be made up in the usual way of preparing and forming inlaid work when made up into blockn, except that the elastic and easily-compressible meterial before deacribed all round each vessera, is introduced; and where combined with work in aquare tessers, as shown at fig. 7 , ihe principle of meting up the pattern is applied, when formed of square tessers as alrendy deacribed, as far as it may be practicable.

ATMOSPHRRIC BAJLWAY TUBES.

Whminy Waroup, of Ashton-terrace, Coronation-road, Bristol, civil angineer, for " certain Improvemente in the mannfacture and arrangement of parte and apparatue for the construction and making of atmospheric sailways."—Granted Aug. 11, 1846; Eurolled Peb. 11, 1847. (Reported in the Patent Jourmal.)

This invention relates to an improved metbod of manufacturing the traction tuben for atmospheric railways, in which the driving pistons work these tubes, which are of cast iron or other suitable metals, made in the ordinary manner, bnt differ only in the construction of the longitudinal valve, which is formed of different wogments (answering a double purpose, by forming the top portion of the traction tube at well at the longitudinal valve), each megment being formed by layers of tioxible material, such as indie.rabber, leather, or other elastic substance, placed between metal plates of given lengths, admitting by its flexibility a free paasge to the piaton rod. Fig. I .espresents a transverse vartical section, and fig. 2 a plan view of the top, thowing the longitndinal valve; $a a$ is a castiron tube, or trection pipe; b is a metal segraent of the longitndinal valve; $\mathrm{c} c$ is the outer segment or flexible portion of the sume; $d d$ are four lifts, two of which are attached by their amde to one side of the segment, l, and the two alternate ones to the other, m, by which it will be seen that, as they press upon the fiexible subetences, e c, they keap the joint, indicated by the dotted lines, hermetically sealed; . is a ghting valve wheel, which travels with the piaton on the framen, $f f$; If a piston motion rod, which is attached to the carriage, when motion is fiven to the pinton by an external atmospheric proseure; the wheal irnised, a the piaton advances, the alternate megmentt of the valre, shown by the dotiad ling k, forming an open channel for the tramominator of the arm g; in a cricely har or hivge, on which the valves tarp; y if it a belt or loop,
pasning throogh the "semicircular bearing j, and over the rod or higge, H_{H} The inventor statea that be does not confine himself to the whole of the details berein given, so long as the important peculiarity of his invention be retained; but he claims the use of an atmotpheric tube, divided longitudinally into two parts, whether connected by hingee or not, and forming conplete tabe, ready for exhaustion when closed, the longitudinal connection and joint between the top and bottom parts of the tube being effected without having recourne to the elasticity of the material of which the tube is come poned, or the intervention of an elastic or texible material, to form a hinge, ea at present used in the construction of Clegs and Samuda's, closing entirely by the weight of the upper parts, without the atsistance of springe or other mechanical contrivance. He claims also the longitudinal ribs forming the abotment for the top ralve, or the other half of the tube.

METAL ROLLERS.

Thomas Parne, of Handeworth, near Birmingham, gentlemen, for "Ino provemente in the mannfactwre of rolle, for molling inom and ather metale."Granted Augutt 4, 1846; Enrolled February 4, 1847.

This improvement relatea to the mode of rolling iron and other metilas Heretofore the rolls have been ceat with neoks or arlet at their ende, which are liable to be broken when in use; and it has aloo beem attempted to east rolls on to bars of iron, to streagthen the axlea or necks ; but in anch cases the inventor states that bars of iron 20 used are moch iojured, and beins weakened, ere unfts for sach purposes. The patentee proposen to enat tha rollem of any given sive required, hollow, 20 st to admit of the shaf or aris being peased through, and fred thorein by keyt or otherwise; aare boing atrea in expint that the hollow apece within a roller is enat or formed truty,

deiving in wedges or keys at the end of the roll, which keys should be searroly retained from moving by shrinking wrought iron collars on the shaft or axles ; the working journals are turned in the wrought-iron shafta, after keying on the rolls, and the surfaces of the rolls tarned; by which mesns of manufacturing rolls for rolling iron and other metals, the inventor is enabled to obtain them with stronger necks or axles. The wrought-iron shafte or axlea are paused through hollow rolls, which the inventor prefer to he cylindrical openings in the cast iron rollers, but he does not confne himself thereunto, as other shapes may be used. The claim is for the manufscture of hollow cant rolls for rolling iron and other metals, and fixing thereanto wroaght-iron shafts or axles, as described.

GAS METERS.

Almyander Angus Croli, of Suffolk-street, Clerkenwell, for " Improsements in gasmetere."—Granted May 13 ; Enrolled November 13, 1846.*

The improvements relate to the use of a tumbler apparatus for actuating the valves of dry-gas metera with one partition, which approaches to and recedea from the plane of attachment to the side of the meter, bat does not pass through the ame; so that the flexible material whereof the diaphragm is partly formed, is bent only in one direction. The improvements consist in the application of an apparatus for working the valve, which depends for its action upon the use of a tumbler, so formed, that on being moved to a poiat jaut begond the horizontal or central position, the tambler will fall over and instantly change the position of the valve.

Fig. 1, Plate V1. is a vertical section of the improved meter; fig. 2, a vartical section, taken at right angles to fig. 1 ; fig. 3 , is a horizontal section, taken on the line $A, \mathrm{~b}$, of figa. 1 and 2 ; and fg . 4 , is a plan, top plate removed; a, the central part of the diaphragm, formed of metal, and b, the sexible material, fastened to the edge of the part a, and to the side of the meter at c, c; the part a, is so large that it cannot pass heyond the point c, Where the outer edge of the flexible material is secured, but simply advances to and recedes therefrom; bence the beading of the flexible material will only be npon one surface. The diaphragm is supported in a vertical position by the frame d, d, which is jointed to it, and to the upright rod e, supported hy the arm f, which is fixed on the vertical spindle g; the diaphragm is guided in ite movements by tbe rods h, h, the lower ends of which are connected by short links to the part a, and their upper ends are suspended by a horizontal rod i, (inserted througb them), from two arms j, j, fixed to the upper side of the cylindrical portion of the meter. Upon the top of the spindle g, is fixed an arm k, carrying a roller, which, being moved to and fro within the inverted arch l, on the tumbler tuhe m, will canse either end of that tube, alternately, to be raised from a depressed position to a point beyood the horizontal, when the weight, preponderating at the other end, will oceasion the instanstaneous descent of that end, and this movement is communicated to the valve by the means hereinafter described;-the tumbler. tabe falls on a spring n, at either side, and thas any shock is prevented. The tambler-tube contains quickailver, but shot may be anbstitated, and the tombler apparatus may be otherwise varied, and get retain the ame character of action.

0 , is an arm, fired to the tambler, and provided "with a fork p, which acta on a plate or arm q, on the axis of the valve r, and by this means the position of the valve is changed at each movement of the tumbler, which, as will be readily underatood, derives its motion from the reciprocating action of the diaphragm, commonicated to it through the agency of the parta d, e, f, g, k, and 2. The valve r, is contained in a valve-chest s, (to prevent the gas from coming into contact with the works in the opper part of the meter) into which the gas entera from the supply pipe through the pasages t, w; by the movement of the valve, the gas is alternately admitt d on cither side of the diaphragm, and, after acting apon it, proceeds through the pasages θ, w, to the pipe leading to the barners. The motions of the diaphragm are registered by means of a detent or driver x, on the upper part of the spindle g, taking into a ratchet-wheel y, connected with an ordinary registering apparatas or index.
-The deecription of this patent was secidentally omitted to lagt month'e Journal ; the enfravingo are there given.

IMPERMEABLE SOLUTION FOR STONE

Fankgols Teychenne, of Red Crose Square, Cripplegate, feather merchant, for "Improvements in treating afone, to reader it hard and invermable, and in colouring the aunc." (A communication.)-Granted Aug. 6, 1846 ; Enrolled February 6, 1847.

The improvements relste to rendering soft and porous stone impermenble to moistare, and coloring the same by immersing the stone in a boiling so. letion consisting of coal tar, pitch, bitumen, tallow, and other fatiy substances, in the proportion of 85 parts tar, 10 bitumen, 3 tallow, and a small poption of linseed oil. The ingredients ure boiled in a suilable veasel, and
when they boil the stove is placed on a frame, and lowered into it. The period allowed for the stone to be soaked through is from 8 to 48 hours, according to the size, or if it be only desired that the solution should penotrate the surface, two hours will be sufficient for every inch in depth. Some description of very porous stone will not become filled by a loag continued boiling: for such stone there is to be added to the above mirture carbonate of lime, such as chalk or marble, iron rust, granite, and potters' clay, in 6ne powder; this latter mixture is to be applied to the anrface of the stone with a hot iron. If it be required to have the stone of a light colour, instead of tar apply resin of the lightest colonr, mixed with turpentine, oils, and all kinds of gam, in the proportion of 15 parts resin to 80 of turpentine, and if the stone is to be of a clear white coloar, add white lead, zinc, and carbonate of lime-if any other colour is desired, add to the last compound the dyes usually employed by painters.

CLARKE AND VARLEY'S PNEUMATIC PILEDDRIVER.

The pneumatic pile-driver, which has been erected on the premises of the inventors, is of the full working power, being 36 feet high, the air tube a 17 inches diameter, and the monkey weighing 16 cwt . The eagine and

air-pumps at present in use are very insdequate to the proper working of this powerful machine, and the air-pumps are only 10 inches diameterstill, even with these, a vacuam is obtained, sufficient to raise the monkey to the summit in one minute; and, by opening a valve s below the piston b, for the admission of air, it instantly descends; yet such is the perfect control under which it ia held, that it can, by the operator at the valve, be arrested in it descent at any part of its fall. There is no time lost in the descent of a catch, as in the old plan-the chain connecting the monkey with the piston being constanlly attached, and can be, of course, length ened or shortened, according to the height of the fall required. The diameter of this tube being 17 inches, the area ls nearly 297 inches; and thus allowing only 10 lb . pressure to the inch, this diameter of piston, b, would raise a monkey of considerably greater weight,Miaing Jowrmal.

The Art of Glass Painting has sustained a loss by the death of M. . . Frank, who died lately at Munioh, aged 77. He was one of the firat who made experiments for resuscitating several ancient methods of glase stainlng, which had been lost during the lapse of centuries. Thus, he had been called, in 1818, to Munich, to asaist the establighment of the Royel Institution for Glans Patntings.

PROGRESS AT THE NEW HOUSES OF PARLIAMENT.
Orr readers will be giad to know what is the actual posaltion of these worta; and wo are enabled to satiffy them, haviag recently had occasion to nate a basty survey for ourselves. The fittings up of the House of Lords and of the adjacent apartments proceed apace ; and the House itcelf Begins to assame its finished appearance. The details are most gorgeous. No works of modern times can compare with them; yet the impresion is one of uubdued magnificance. The wood-work is nearty completed and Ired, and the heraldic painter is bong. He is now chicely employed in imsertiog the arms of the Lord Chancellora, which are in process of being puinted oo the upper parts of the pannels alons both sides of the chamber. The bleok spaces of the walls, to be hereafter peinted in fresco, are temporarily hang with crimson drapery, powdered with golden crowne, roses, 8cc. The reporters' gallery fronts the throne, and is almost as prominent and ornamental an object as ber Majesty's eeat. The brass railings of the gullery are fitted. This leads into the corridors for Lords and Commons. The many doorways ingenioualy form part of the lower panelling of the jambs of the windows. Mr. Barry seeme to bave heated the rooms withont Dr. Reid's aid. We fonnd them of a very agreenble tempernatare. No strised glase has yet beea permemexty fited. Sone has boas tried;--ed the effect is said to have been excellent. It is, we believe, in preparation by Mr. Hardman of Birminghan. The antechamber of the House of Lords, nest the throne end, is almost completed :- $\mathbf{\infty}$ is the pubtic hall at the opposite end. In the first, the style of decoration is almost as elaborate as that of the Honse of Lords itself. Above a freplace, we observed a large panael of sculptured wood-work, representing Queen Philippa ploading for the burgesees of Calais. It did not impress ns very favourably, on a rapid glence. The poaition of Edward III., with his crossed legs, looked graceless. In the public hall, we were atruck with the magnificence of the foor; on which Minton's Enctantic Tiles-in colours of red, jellow, and cobalt-are in process of layisg down. In the centre is a red and white rose of marble, surrounded by bragawork enamelled: and the berders of the tiles are judicioualy marked by lines of black Derbyshire marble. The outer gates of the House of Lords are visible from this hall. They are of brase,-and very beautifol is their workmanuhip. Here, too, the wiodows are to be of stained giaso-but mone is yet fitted. These are the only parts of the bailding which give an idea of What the whole will be when finished. The Hoose of Commons is very beck ward-not even roofed in. The central tower is beginaigg to be seen above the surrounding buildings; and the groining of the arch of theVictoria Tover is tarned.-Atheniewio.

ExTEBM,

Flome Series of Remilmay Prectice; a collection of working plane and practical detaile of ocnotruction in the public soorks of the moct celebrated engineers. By S. C. Berea, C.E. Third edition, with additional examples. Lendon: Williams \& Co., 1847. 4to, pp. 164. Plates.

Of the former editions of this work we have already given favourable reviews. The present edition bas had its ralue considerably increased by nomerous improvements and addition. It is a thick quarto volome, handsomely printed and illastrated by seventy folio steel plates, which occupy the greater part of its balk. Thece illustrations are not merely showy useless apecimens of steel engravings, but bave beea got up with regard to circot practical atility as weti as clearnese and neatness of execrition.

It might have been of advantage, perbape, to havo made the letter-press explanations more copions. They contain notices of the construction, cost, dimensions, \&c., of the different railway atrectures represeoted. There re 42 drawings of works on the Birminghan Railway, consisting priscipally of bridges, retainieg walls, and details of tunael works. A moog the sabjects of the plates for the Grand Jonction Railway, is the aqueduct for the Bridgewater Canal; for the South Eastern Railway, the timber pier in Folkentone Harbear, and the recorvoirs and tanks at Tonbridge; for the Green wich Railway the large 26 feet turaplate at Greemwich with details.

As anether eories of illnstrations of "Railway Practice" is promised, one or two hints for slight improvements may, perbaps, be allowed. In the present work many of the engraviogs are insutticiently explaiaed, and of several no explanation whatever is given. The apecifications for contractors, from which copious extracts are made, are not always truatworthy, as alterations to the plan of operations sometimes occur daring the progress of the works. At all eveate, it would always be more satisfactory to state That had been actually carried into effect, and the difficulties encountered in the undertakigg, than to copy out the apecification. The later plan is the casiest, but aot the most ageful. Lasdly, there ought to be a good
 reelity, however, these drawbacks are very slight, for the work in indeed admirably illustrated, and quite worthy of the expense and labour bestowed apon it. To the practical engineer, so large a collection precedents of railway comannetion mant be of groat and pormanat atility.

Select Writings of Robert Chambams. Vol. I. Bemay I. Ladon: Ort, 1847. 12mo.

This book does not fall within the scope of our Journal, bat from what we can see, seems to contain some well written familiar and homorons acayy, by the well-known Edinburgh writer, Mr. R. Cbambers. The escay on English ingenaity and eaterprise, in a new point of view, is particularly good.

Alfebra mede Easy. By T. Tats. Lomdon: Loagman \& Co., 1847. 12 mo.

This is a small work by the Matheratioal Master of the National Society's Training Colleze, Battorsee, and is intended to lead the pupil, by nif aesy trasition, from the priacipies of arithmetic to those of algobre, and is the best adapted for the purpoes intended of any that we have soen.

An Introduction to the Preant Practice of Swroying and Leoolling; with an Appeodix. By a Civil Emoineer. London: J. Williame \& Co., 1846. 8vo.

The anthor han treated the sobject in a clear and simple manner ; his method of keepiog the Field book is good. The Appeodix might have bees left out, as it adds to the batk of the work, withoot any adequate adrantage. The methed of getting ap a surves is well exphained. The work is iliantrated with nine plates.

NEW CORN EXCHANGE, BIRMINGHAM.

It ha been deterrised to eroct a naw Cora Exchange in Birmiagtum, inmediately bebind the St. George's Ooech Oriee, in High Street, between Carr's-lane and Castlo-street. The plaps have been prepared by Mr. B. Hemming, architect ; the buildiag will consist of a hall, 110 feet loag by 40 feet wide, lighted by a semi-circular roof, surmouated by a lantern, extendiag the whole leagth of the hall. The room will be 50 feet in height, and will be divided inte side compartments by pilasters, between which stands and tables, intended to be let to farmers and dealern, will be placed. It is to have a glases roof of semi-circular chape, as the beat guited to admit the greatest quantity of light. According to a local paper, this spacious roen will have two doors, one leeding from a veatibale, with columas and ormmented ceiling at the entrance of St. George's-court, in High-street, the other with a atill larger veatibule at the Castle-street entrance. A porch, ormemented with pilasters of the Roman Doric order, will form the Highstreet entrance; that by Castle-street, which will be the principal frout, will be enriched with eight colomns, and ornamental receses leading to the veatibule and to the floor beneath, which it is propoeed shall be appropriated to the exbibition of agricultaral implements. The building is of the Roman Doric order, in cement. The extreme length of the building will be 167 feet, the width varying from 37 to 40 feet. The builder is Mr. Brigets and the cont will be 8,0006 .

MOULDED BRICKS.

"In a ceonty like ours," says a correspondent of the Bury Herald, " where there are no quarries and so many clay pits, and where coasequeatly stone is so dear and acarce, and bricke, both red and white, so common, I rather wonder that brick is not more used for the finer mooldings, in the place of stone. In former times, and it might be equally so now, mouldings of all kiode were highly ornamented, frames to windows, porches, chimaeys, \&c., were made of brick. Besides being much cheaper, and qoite as darable as atono, they had this advantage, - that the most is, tricale patteras coold be mado neariy as cheap as the plainest; and aloothat any coloar might be used, if not in the brick itself, yet on the outatde
and berat ta. White brick round the whedown, or at the corpers of housen, proves a good foil to shaped fints; red brick to white, and vice cerse. I chall metiea cee or twa inrinnoes of the ase of monlded bricks. Westherpo hell, ope of the tirst baildings of this chase, wets ereoted by Beandon, Dake of Safilk, sboat the joar 1600 , who resided there whth his wite, a khy's sinter and widow. Thoanth hardly a remast even of the ruias regains, yet fragments turs up which show the beauty of tbe brict mould. ings They ane of a very hard and compect wlite brick, which retaiss its criginal shafpaens, and rome of them, having the Doke's creat in rolief epon them, still opament a bridge of the came date at the hall. The مher exmaple is Weat Stow Hall, built by the same dake, the gatebonse of Which is a soble specimen of brick building. As at exsmple of the ose of briok mouldingt in charches, I may name Ixworth Thorp; a doorway of which ebareh has ite mouldinge and airealer arch, formed of red brick."

NOTES ON FOREIGN WORKS.

gate of the Gellery of the Lowere, and of French Art in general.一M. Crace, conservator of the entiques of the Prench national gallery, has haty died-a loes moch to be regretted. The count wis the author of the catalogue of antiquities, most valuable also, on account of the fine and mestrata description of the materials (motaln, stone, \&c.), of which the ascients conatructed their buildings and ornaments. It is true, that M. Clarac owed much to the notes of his predecessor, M. Viseonti-still, the digeation and arrangement are his. The French press blame mach the choice of his successor, attribnting it to court influence and his seat in the House. They complain also that no care is taken of securing new acquisitions to the Gallery, and speak of antique bronze Silens, \&c., porchased lately by either millionsires or Englishmen. These general' complaints have become the more pungent, as the works and ideas of Winckelmann neem :0 maquire great infuence in Franes, and the pablic nutorally expect, that persons to well provided for from the pablic purse, abould be those to contimat the researchen of that great German art-critic.-A atill greater oppostion and sohism is observable in the dopartmont of painting, where a acot mediocre catalogue (analogous to that common-ptace todex of the British Maseam), is pleced in Jerta-pealion with that of the lameoted 1. Clarec. The very exhibition of the Royal Aondemy, and still more ith prime decinions, are threatesed with a moet determined opposition; and the ferst painters have resolved on sabmitting no more to each a tribonal, and not to sand any more pictures to the exbibition. It has been a matter of curprise, that mon Like Ary Scheffer, Delacrolx, Decamps, \&e., should have quatled undar the diotates of a secret tribunal; and it is quite nataral that they, and other painters and aculptors, have resolved on forming an archibition of their own-that of the artists of Young Frence. Amongat the most telling members of this opposition is one, of a strong and original mind-M. Barye, the scolptor. Hie groupi in bronze, candelabras, \&cc, aro highly spoken of-and it is mach to be regrelted, that he is not in the position for exerting himself on some larger work, being neither a knight, por a F.R., or H.A.

The Paintirgs and Caroings of St. Bacon, Ghent,-This celebrated ascieat edifice meems to have become, of late, a sort of art-atomes, oot of which angthing was sold to the highest bidder. In consequence of which, the Belgian legislation bave decreed, that no pmblic establishment should be allowed to cell their objects of art! It is said, that a speculator had, at firnt, sold some Vau Eycks to a Gorman moseum for 400,000 francs.Ose of the most celebrated Flemish carvers was Françis Flamand, whose broazea, terra-cottas, and carvings in wood, are admired in many collections. The two famous altar-pieces of St. Bavon are now in Paris. They aleo had become the object of judicial litigation between the sellers and the publio authorities. They resemblo, rather, amall chapels, being 12 feet by 15 feet. They are crowded with ornaments of architecture in the Flamboyant or the Florid Gothic style. The one is of 1504, and represents the Life of the Virgin, in four episodes. Most of the figares are wrorked out in ronde-bosec or alto-relievo. The second altar-piece represents the Life of St. Bavon, or St. Benoit, consisting of sir very complicated compositions. The style of these carvings, onveloped in festoons and garlands of fowers, and thousand-fold foliage interwoven and interlaced, is very interesting, combining the stern style of Catholicism with the more lively forms of the Repaisasce. -The present state of wood carving in France is not encouraging. Except the chair of St. Vincent de Panle, esecated by M. Duseigaears, no other real artistic work of the kind is to be met with. It is not the fault of art, as France possesses some superior stexturies,-but of the public, who have become, it seems, insensible to all but the most timsy and tawdry productions of art.
M. Violet Leduc, the Restorer of Notre Dame, Paris.-This gentleman, to whom the thorough restoration of that huge building bas been intrusted by government, at an expense of one million francs, bas been altacked in varions ways, of late, by the opponents of Gothic architecture. To this, he bas answered in most triumphant way-asserting, very justly, that serry real and genaine atyle of art is good, i/ properly, judiciousiy, and gradly carried ous. The lovers of Gothic architeoture have, moreover, trtely gained another trinmph, in consequence of the manicipality of Paris
having deereed the erectice of the chureh of Ste. Clotide in the Gothie tyle, whose piles are rapidly rising, and promise to be a new ormament to the Freach metropolis.

Corneliur and Humboldt.-It is now certain that M. Cornelive was obliged to decliae the offer of nadertaking the frescoes for the internal decoration of the Houses of Parliament al London; previous engagemeats at Berlin left him, indeed, mo metermative in this respect. He has Just oompleted the stetch of amedal, whicb the King of Proseia intends to preceat to M. Eumboldt as a token for his great work Commes. The drawing represeats the Geajus of Sciense lifting the veil of Nature, personified upder the image of a beaveeous maiden. The diflerent branches of matural maiences are appropriately represented, and to sbow clearly thet much yot remains marevealed, a phynx is seen, to which the Genjus points as the object of futupe inquiries. On the reverse, a likenem of M, Humboldt will be engraven.

Reatoration of the Cathedral of Speyer,-This manmyary of the old German Empire is to be restored, by order of the King of Bavaria. The cathedral, one of the oldeat in Gerramy, bears some treces of the Byzantime otyle, and vies in sise even with that ne phes altre of mediaval baildinge, the Dome of Cöllo. The German press speake highly of the grandeur of the style in which the restoration is coatemplated : the architect to the well known Giutmer, of Manioh. The frescoes are entrasted to M. Schraudolf, who has already exhibited his voostion for werks of high art, in tho St. Boniface and All Saints chapels at Munich. Beside him stands Schwarzmand, for the ornamental decoration of the cathedral. The paintings of the vanlted ceiling of the hage choir are already sketched, and the gold ground of Byzantine style completed; and the rich ornamental work of Schwarzwann showe, how this thinking ertist knows judiciously to co-ordioate himself and his work to the great ensemble to be achieved, The spripg will see the completion of the tower, and the lateral choirs and nave will follow in due successios. The principal painting will repronent the Life of the Virgin Rary, and that in the southero choir the Life of Et. Stepben; the sorthern cholr will be adorned by the deede of 8t. Bermard, who preached, in the 19 th century, is that very same catbedral, the second Crusade! The figures will be either paiated on the gold groond, or be separate freace paintinge. This restoradioc will add much to that wreath of natare eod art beanties, by which the banks of the Bhice are 80 attrective to overy sensible mind.

A New Rudder for Large Ships,-M. Fonque, magaineer of the French nary, has submitted to the minister of marine the plan of a now rudder, which has been applied on board the corvette La Recherche. The commender of this versel having certified to the secretary of stalo, that it was preferable in severnl isstances, and also on accoant of its solidity, to thowe in genoral use, his escellency has fiven orders to apply M. Fooque's radders to two vessels of the Port of Toulon, dentined for long voyages, in order to try their effect under different climes and latitudes.

Faven of Swimemiinads, Prweria.-The goversment are doing overythrog towarde maling this harbour convenient to their own and foreign shipping, as its situation is most advantageons. A large dyke has been constructed, by which the hitherto shallow and sandy omboncbure of the Swine bas been deepened to upwards of 80 feet, and made acceasible even to ships of war. Of late, the bed of this river also has beeu deepened to 16 feet, from Swinemünde to Stettia. Fortifications, elso, in case of war, are com templated.

Gas Lighting at Nüremberg.-We extract the following an a carions specimen of German teoders and contracts: "The gas-manufactory to be completed within the space of a jesr, so as to supply 300 lanterns-fine for each week of delay in completing contract- $\mathbf{e n 3 O}_{3}$. The persons hitherto employed in the lighting of the city, to be retained by the new company. The city will require, in all, 530 ligbts, and a length of pipe of 75,000 feet; the sixth part of the lights to be omployed as candelabras, each to cost $\mathcal{E T}$; the lanterns, $\mathfrak{£ 3 1 0 8}$. Each light for public ase to be calculated to burn 1,400 hours a-year, and 5,000 cubic feet of gas to be kept in reserve. The conduotiog pipes, which will be subject to a pressure of ten atmonpheres prior to being used, are to be calenlated for 6,000 lights, at 41 English onbic feot of gas to be consomed per hour. Each fiame of that size has to poseess (as ascertained by Rumferd's photometer), seven times the strength of a $\frac{1}{\mathrm{lb}}$. waz caudle. Each of such fiames is to be paid for at the rate of $\mathbf{2 8} \mathrm{f}, \mathbf{3 0} \mathbf{~ Y r . ~ (2)}$), for the yearly calculated buroing space of 1400 bours. Private individuals pay for 1000 cubic feet of gas for 96 years, $6 \mathrm{f} .15 \mathrm{Ir}_{\mathrm{a}}$ and quantities of gran are also to be had by the gas meter. If purchased withont comtraot, any namber not exceeding five lights costs 87 l. ; not exceeding ten, 47 f. ; from forty to aixty, 100 fl ., and 30 on." It is said that the burgomaster of Nüremberg is a very good calcylator; and so it would appear from this contraot, of which we bave only given the most important pert.

Over-Zeal of Art Collectors,-A very considerable then of Pompeiiad antiquitics, frescoes, and broazes, has been of late discovered in the Museo Borboniuo, at Naples. This questionable acquisition was destined for the London market, and was already on board ship for exportation. The throng of travelling collectors, however, thronghout Italy is quite astonading, and antiquities are much dearer in Rome and Naples than they are in the Strand or Wardour-street.

The Moving Mowntain mear Unkel on the Rhine, - Prof. Nöggerath, of Bond, has delivered a lecture on this curious phenomenan (ante p. 63);
by which he bas proved that no volcanic agencies-fire or hot vapourshave occasioned the fall of the monntain. It is merely a land-slip, occasioded, however, by very complicated causes, resulting from the upheaving of mountains or hills composed of basalt or basallic conglomerations. Large sections were exbibited by Prof. Nöggerath, which he will, no doubt, pablish.

Neapolitas Railways and Steamboats,-The activity and progressive tendencies of these have been very great of late. Even ancient Nola is now reached by a side branch of the great Apulian line. An eapecial commonication with Calabria has been established; so much so, that the fine gulf of Palicastro, Cosenza, Catanzano, and the bay of Squilace, become acccessible to the curious. All this greatiy advances the commerce of the country, and not oaly taverns and inns, but clubs and feativals, increase; and last but not least, agrarian, historical, and archseological societies, and the lateat works on Calabria by Spinelli, Grimaldi, \&c. are very reputable productions.
Materials of Ancient and Modern Structures.-Ancient: basalt-syo-sito-porphyry-granite-marble - freestone-alabaster-lapis lazuliverde antico-agate - jasper - porzolana - cedar - oak - sycamore Coriuth brass-copper-gold For which the Moderns bave substituted, in most cases-deal-reeds-cons' hair-paper and papier macbé-canvas- qlue - paste-pastobourd-plaster of paris-lealber-glass-loam-sand!-[1kis of Oken.]

NOTES OF THE MONTH.

Gradual Eleoation of the Land at Plymouth.-Attention has recently been drawn to elevations or depressions of the land, with reference to the medinm sea level. "In our own immediate neigbbourbood," says the Plymouth Herald, "proofs of these elerations may be seen. If we land upon the N.E. point of the Mewstone, there is a bank of debris resting upon a stratum of rolled pebbles of all sizes; this raised beach being sholtered from the breakers, remains as an evidence of a change of the relative levels of the Mewstone and gea baving taken place. Passing from the Mewstone to the mainland, and coasting round the Sound, we find a succession of these heaches in the cliffe, about 15 or 20 feet above high- Water mark; they may be seen at Bovisand, under the Hoe, near Redding Point and Cawsand. But we have other evidence of elevations, -submarine limestone rocks are every where perforated and hone ycombed by Pholades. A bont low-water mark and downwards they are every where found alive, but higher up we find them dead; and as high as high-water mark their cells may in some localities be seen. These animals can only live below the mean level, requiring to be altogether under water, or at least covered by every tide. Now, when we find the empty cells of these creatures in the solid limestone rocks under the citedel, but at such a height as would preclude the animals from living in them, we can only iofer that the rocks have been raised, or that the sea level has been depressed. Many of these cells may be seen in our locality. The writer had occasion to land a few days ago near the Blockhouse, and directly uoder the battery at Devil's Point; here he observed that tbere had been a fissure in the limestone, and a portion of the rock had been removed, leaving a vertical surface of the solid limestone exposed to view. This part of the rock is covered with the cells of the Sexicara Rugosa, and above the ordinary high-water level, thereby leaving proof that our shores have been rising slowly and imperceptibly; the place is easily accessible, and anybody may see the spot referred to. If the land be still rising, our barbours will become more shaliow ; the system now pursued of observing aod recording tides and soundinge will ultimately settle the point, if engineers will only have the liberality to admit the possibility of former as well as futare ohservations being made correctly."

Thermagenic Drawing.-A scientific correspondent of the Liverpool Journal bas given the following ingenions mode of transferring the forms of natural objects or the patterna on ribbons to paper:-Saturate common writioy paper with porter, coffee mixed with sugar and cream, or a solution of achill, then place the ohject whose form is to be transferred on the prepared paper and expose them to the action of the ann's rays or those of a common fire. Varions other solutions may be used for the same purpose, as bicbromate of potach, yellow chrowate of potash, \&cc. When figared satin ribbons are saturated with auch zolutions and exposed to the sun's raya, the raised patterns are given in beautiful relief in a lighter tint of the sume colour as the gronnd. The prisciple is capable of a very extended application.

Poucerful Vollaic Battery.-Mr. J. Goodman, at the Royal Society, stated tbat he bad succeeded in constructing a voltaic arrangement of some power by fixing a piece of potassinm to the end of a copper wire, placed in a tube containing naphtha, and bringing it in contact with a small quantity of mercury, beld by a layer of bladjer closing the lower end of the tube, which was itself imwersed in acidulated water immediately over a piece of platinum, and then complating the oircuit by entablishing a metallic conlact between the copper wire and the platinum. This battery acted with energy on the galvanometer, and effected the decomposition of water. A series of twelve pairs of similar plates exhibitod a sensible aufuction of a alip of gold leaf. Thus it appean that the substance which
possenses the highent chemical affinity meoifests also the greatent power of electrical tension.

The Ware of Translation in connexion with the Northern Drift.-Dr. Whewell, in a memoir lately read at the Geological Society, eflor referring to the northern drif, and the canses that had been suggested for explaining its phenomena, and stating the meaning and properties of the wavo of translation, proceeded to discuse some of the resulte of its operation. He assumed for this purpose a certain quantity of material to be distributed within a given area, and showed by simple calculation different expreasions for the amonnt of paroxysmal force that would be needed. He coossiders, bowever, that paroxysmal force is necessary ; but that a movement, although small, will, if sudden, produce effocts resembling those to be acconoted for. He concluded by observiug, that a wave of tranalation differs but little from the débacles ansamed by earlier geological apecalators.
A geod Non-Condmetor of Heat.-Mr. J. Nasmyth stated lately, at the Geological Society, an instance of the low condecting power of clay and sand, in which a thickness of half an inch of such matter intercepted the heat of a mass of eleven tone of white-hot melled cast iron for twenty minutes, without the heat on the outaide of the ressel being pulficient to pain the hand.

Professor of Mechanical Engineering.-The Council of University College, London, have institatod a professorsbip of the Mechanical Principles of Engineeñg, and appointed Mr. Eaton Hodgkinton to the chair.-J. Sowerby, B.A., of Trioity College, hat been appointed to amathematical tutorship in Bishop's College, Calcutta-Robert Thwayles, B.A., of Christ's College, Cambridge, has been appointed Professor of Mathematics and Natural Philospby at Hooghly College, India.

Rowen.-The beantiful ruias of the Abbey which whi built at Jnmiages, near Rouen, by Robert, one of our early Archbishope of Canterbary, it is stated have been latels purchased, for the purpose of preventing their dostruction, by an architect named De Caumont, a relative, we believe, of the M. Adolphe de Canmont, of Cren, who some gears ago bonght the Abbey at Savigny, near Arranches, for the same good purpose.

Aerial Locomotion-At the Paris Achdemy of Sciencen. Feb. I., M. Babinet, in his own name and that of MM. Poncelet and Séguier, read a paper recently presented by M. Van Hecke, of Brussels, on a new system of aërial locomotion. M. Van Hecke formally reaonnces the ides of weekiog for a point d'appui in the air to navigate agriont the wind. His aystem consists, like that of Meusnier, in seeking, at different heights, carrenta favourable to the direction which he may wish to take. Measnier thonght he should be able to effect this by compressing or dilating the sir in his balloon. M. Van Hecke has fonnd a more simple means of ascending and descending without loss of ballast or gas. He has invented an apparatus analogous to wings, and which he has placed noder the eyes of the commlttee. With this he has an ascending or descending force equal to from 2 to 3 kilogrammes ; but witb fonr of these motive powers applied to his car he would have a force of from 10 to 12 kilogrammes,-and with a large apparatus be might reach 100. The report of the committee is favourahle to the principle of the discovery.
New Syafem for Propelling Veasels.-Extract of a letter from Boulogne, in the Herald, announces that "a considerable degree of intereat has been excited here by certain experimenta made upon an entirely new ayblem for propelling vessels; which, if capable of being carried out apon a large principle, mast not only supersede paddle-wheels, bat also the Archimedean serew. It has long been considered a matter of impossibility that the principle of the paddle-wheel could be readered of nay usefal effect when totally submerged. The present invention hat demonstrated to a certainty that such a disadvantage can be overcome. The experiments were effected by hand labour; the motive force belng fitted into the atern of a pilot boat.The principle is based on the well.known properties of the parabola as respects light, and tbe same properties are proved to be true as reapects bydrostatics. Tbe blades are sections of a parabola; and are so constracted ne to impinge on the concave surfice, whereby the water in grasped and compressed to the ceatre of the aris, and thrown off in a direct line with the plane of the veasel's course,-theroby rendering the propulaion superior in efficioncy to the common paddle.wheel, being uniform and continnona withoat draw. back in respect of back-water, Another advantage exista io the ares of trurface as compared with the acrew; as lens than oneobalf of parabolic areas will work more efficiently with the same power."

Hamburg.-Dec. 19.-" Mr. George Gilen, who dnring the last oight years has been actively engaged in constructing the Hamburg-Bergedorf railway, the new rewage and water works, the navigation locks, canals, bridges, \&c., quitted ns on the 16 th insh, to enter on a more extended Gold of professional occupation in Eagland. Previous to his departare, ho had the gratification of oxperiencing the high estimation in which be is held by all branches of our government and a large circle of friends. Our Sooate presented to him a decree of that venerable body, expreasive of their unanimons thanks for his zealous exertions on their behalf; this was accompanied by the large honorary medal, intended as a apecial token of their grateful recollection of Mr. Giles's heroism, energy, and skill in condocting a series of explosions at the dreadful fre of the sth to the gth May, 1832, wisich derastated nearly the ono-fourth part of onr ancient city. Da the 14th inst, a large meetiog of gentlemen, comprising seatore, membern of the boand of works and board of exchequer, the directort
of the Hambarg-Bergedorf railway, ayd several other of onr most inflaeotial eftisens, invited Mr. Giles to a grand dinner at Streit's Hotel, on which occasion they preseated him with a handsome plece of plate, and an addreen, ceatifying their bigh appreciation of his professional and private worth; exprewing at the samo lime their deep regrets at bis retirement tron among them."-Hamburgh Paper.

Eing's College Enginccring Society.-A Society has been institated by Ule atindents of the Department of Applied Scionces, King's College, London, for the purpose of the reading of Escays, the taking in of the rarious scientifc pablicatieas. and forming a library of works connected with the Department. There is at preseot a small library, quite inadequate to the propees, and wo are surprised the Council of the College have not provided the studeals with a better one. The students bave been much assisted in the formation of the Society by the Rev. M. O'Brien, M.A., Dead of the Department, and by the other Profesers.

The Royal Acedeny.- In the Architectural department the Gold Medal and the Disconrses of Reynolds and Went, will be given for the beat design for a Gothic charch, the whole comprised in ooe genernl and regular composition. The design mast be as large as an entire sbeet of dooble eleyhant will edmit, and to oonsiat of a plad, elevation, section, adod perspec. tive riew. A Bilver Medal will be given for the beat fgured drawing of the entrance and interior of the Temple Chorch.

Photographic Portraits,-Continoed improvements are being made is photography. The latest which we have to record is the work of Mr. Kil. burs, who bas openod an establiahment in Regent-atreet, where the specimans on view are among the most perfect that we have jet ceen. The pribelpal jwprovement is in colour, which, in Mr. Kilburn's portraits, has met the prevailing defret of faintnes, bot poscerses the depth and body of a trajed painting. This quality renders a portrait valuable as a work of ert, which is olherwise rarely the case-the likeness being generally the coly recommendation. Indeed, the process of colouring requires the same care and skill as in ao ivory miniature. Nor is this attention ill bestowed, for the distioctsess thus given to the subject bas hitherto been a great deaideratum, the polished aurface of the picture in most cases requiring a pecullar direction of the light in order to diatinguish ite details.-Daily Neces.

Westminster Abbey,-It is atated that the Dean and Chapter of Westzinater have very laudably determined on reatoring to the tombe of Queen Eleanor and King Henry V. the rich old contemporary iron-work, taken down on the recommendation of Sir Francis Chantrey, sold at somuch a owt to an ironmonger in Westmiaster, and sabsequently rebought by the Dean and Chapter, and allowed to ruat in an adjoining rault. This ironwork forms ap integral part of each monoment-the sculptor and smith gueerally workiag, in medisaval times, in the same spirit and to the same ed. Chantrey's reason for recommending the removal of the whole of the troe-work throoghoat the Abbey was, that it too often cerved as ateps or laddars to the Westminster boys to matilate nowes, sco, morely from wantonaes; and to over carious collectors to climb to portions of monnments othervise beyond their reach. In many of the modern monuments the irom-work was erected merely for prolection, and not unoflea disfgured the monment it was placed before. Here the recommendation was judicions, bet when it was extended to medisaral monuments, a piece of barbarism was committed not likely, we think ad trust, to occor agaln.-A paper on the same subject Fras read at a late meeting of the Fremmasons of the Chareb, by Mr. John Brown. He stated that in the Blaize chapel, in the Abbey, is deposited tho iron canopy which formerly sormounted the beau. tifal tomb of Queen Eleanor. Neale, in his "Hintory of Westminnter," zeations that "since the coroontion, a considerable improveroent bas been crected in the interior appearance of the Abbey Cburch, by a general cleaning of the monamente and the removal of the iron-work which screened them." Now, at this coronation, which mast have been that of George the Fourth, the iron-work not only of the tomb of Queen Eleanor, but that of Heary V., were placed in the dark receuses of the Blaiso chapel, where they have been saldom viewed by parties who have visited the Abbey. The toonb of Heary V. is at the east end of the chapel; the head of the Liag, whicb the vergere say was made of silver, was taken away in the time of the troubles. Neale says ${ }^{*}$ all the damage in the Abtey wat not dame in the thate of the troubles."

Oxyruant.

We regret to record the death of the distingrished artist, Willian Colline, D.A., which took place on the 17th alt., at his residence, Devunportatreet, Hyde-park-gardens. Mr. Coilins wus in his 69th yrar. Critics in art aceociate the pame of Colline with everything that is pleacing in rural l16. 4 Children pickiog Hops," "Children gathering Blackberries," aod c Cuidren examiniog the Contents of a Net;" with everything that is comacted with the life of a fisberman on the sea coast, "Hishernoed come ing Acbore before Sanrice," "Fimbermen on the Look-ont," and "FicherEateting ont their Nets." Mr. Collin was the sos of a pictare dealer and deaner-m man of ready wil-but bext remembered by his "Lifo of Moted, the Painter." Bis boa Willion wes born in 1783, and exhibited for
the first time at the Royal Academy, in the year 1809, at the ege of twentyone. In 1815, he was elected an associate of the Royal Academy, and in 1889 a royal academician. A very coasiderable alteration was made by Mr. Collins in his style and manner of painting after bis visit to ltaly in the years 1887 and 1838. Like bis friend Wilkie, he became ambitions of greater efforts, and viniturs at the Academy were surprised to see an ofd favoarite quitting his sea chore scenes, his mascle gaiberers, and shrimpers, for "The Two Disciples of Emmans," and "Our Saviour with the Doctors in the Temple." The latter picture is now at Bowood, the seat of the Marquis of Lansdowne. The bead of Christ is uncommonly poorthe heads of the dootors finely puinted, bat rather volgarly conceived. The colonring is very powerful and harmonious. Bat it is not by his more ambitions efforts that Mr. Collins will be tried; some of his sea-shore scenes are exquisitely true to nature : and his "Rustic Civillty," (boys opening a gate,) and his " Happy as a King," (a boy swinging on the top of a gato, are incidents happily conceired and charmingly painted. His "Fetching the Doctor," in the exhibition of 1845, poseoseses a quiot humeur different altogether from any of his former cfiforts. Mr. Cullins received a large price for hia pictures.

Trent Falley.-The works on this line are fast advancing towards completion. The thamel la driven throagb, and pearly all bricked, and in a fow daye will be Onished. All the cattiogt are dose, at are also all the bridgee, and the whole of the thoe
 the lat of May has been named by the directore for opeaing.

Dundalk and Eneriskillen.-The works on this line are in such a forward state that it will be opeaed for pascegere in November dest.
Londonderry and Ewnisnillem.-This line, between Strabane and Derry, Is nearty completed, and about to be opened.

Commumication between Tricste and the Rhine.-The governments of Anstria and Bararia have come to an agreement for eatablishligg direct raltway commoniAasion from Triente to the Rhine. The agreement is to extend to Selaburs the Hpe from Treste wo Vienos, on whick the Austrian government la actively emplojed, and afterwads cary it es for man Manch.

Cost of conntructing Railucays in France.-The funapial reports presented to the Prench goverawent by the engineer charged with the construction of the three ralware in the centre of Prance, five the following estimate of she expense. Tha mection between Vierzon and the conivence or the Alluer and the Loire, the leagth of which ti 88.194 metret, will coal $5,000,000$ f. or 173,9451 . per filometre. The mection from Vierton to Chateturoux, of the length of 59,091 matren, will coat $8,200,000$ f., being 138.878%. Pof idiometre. The rection from Chateanroux to Lumoges, the length of Whtch 14 ,
 fore
ate.

Railway from the Adriatic to the North Sea.- Extract of a letter from Vlenne: "The estabishment of a rallway from the cosat of the Adritic to the North Sten whil probably mees with no other obetmeles than those presented by the fmmense extent of the une and the nature of the coll. At presens is is dificult to dectide whether thia line will be fiolebed soover then thal frum Marmelley to the Dover 8untia, We, howver, think that the German lise will be the Arst completed, trom the fact that sereril harge seethons are already constricted, Fis. : from Cilley to Bruck, foom Municb to Angeburg, from Brachant to Manhelm, from Boon to Cologree, and from cologoe to Ontend. Boveria displays the greatest metrity in uniting lis rallimgo filh thove α Austria by the froatler of the circte of salibburg.

Amiens and Bomlogne.-Opening of the Abbeoille Section.-Thle line, which will ofter sach faclitioe for intercourse betwrea Pario and Lomdon, as it unltite With the Northern Une at Amiens, is io anch an sdraveed state that the opeaiss of the Ambent and Δ bberille section is axed for the lat fament. This mection is 48 kilometree in leagth, and ls dirided into eeven statlona, Fis. : Amlenn, the polnt of departurr, Ally, Piequigny, Hangest, Longpre, Pont Remy, and Abbevtlic. The company has jurt onb.
 merchandioe, be.

Romen and Havre.-The council of ponts et chawsedes has not yet come to a dacialon reapecting the fortber tenta which are to be applised to the fladucts on this
 maling ective preperations for opeotiog the ilise to the beinniag of this month. The

 may, Barentn, Panilly, Mollivile, Eyvetut, AFmare, It. Romalo, Barleur, and Bane.
London. Brighton, and Sowih Coast.-The Lorde of the Admiralty have piren thetr manction to the proposed alterations is consexion with this Hne at Nemburen harboar. The worts on the line are raptdy progrenaing in everal parte, and the wortio at the harbour will commence immediately.

The Birkenhend and Chacter Extension will, it is said, be opened on the 81at of March.

Reeding and Biangefford.-The branch live of rail from Reading to Auagerford, through Newburg, is repldiy progreadig, and it is expected will be fully cowpleted for the general trafite by the arat of Jupe. The brach time will be 28 nifits in leagth.

Ipswich and Bury,-Ertension to Norwich.-Mr. Locke bas completed e ro-sarvey of this Una, by wich it hat been much improved, and the woit and time for coupletion ina been dimintabed. The centrace for the endre line hes boen let to Mestrs. Brawer. Letive operature npon the beavient pert of the the will corameace kamodil aleiy.

Weterford and Limerick Reilway.-The Treagory minvte has been recelved, nuthortaing the above company to coastraet to milles of earth work. Thas whit

Aberdeen.-The greatest activity prevails at the present time on nearly all the contricts titien of this lipe. From Aberdeen to the conth a commencement hat altready been mede. The cootrectors for the widge so be erected over the Manse of Fellereeso bave alremdy broheve the proond, and a atrong mucter of workmon bave boen pleced on the worka. On the contrate extending from Glennery diatillery to Biack. hill, there are at the present time nearly 200 labourert employed, and four of the cuts are
 there are a great numbor of men acaployed; and, on what is mermed Forby's contrnet, there are ujwarde of 1,000 meen engaged.

Leeds and Bradford Extension.-The raitway between Shiplay and Kelebley la progreading ropidy, with the exception of that part peen Bipgley Churct, called the Bingley Bog. Bixty tons of earth and atovas are cast into this bog every hour of the day. The parth and stonee on the east ead are conveyed by pteam from the Nob-
 drooped into the gulf at both orode by three lities of ralli, allif mallowed up every morning; the heary matier slokiog thus, forceat the lifther up, aod makee a bleck apoogy am. baiknent on both aldes.

German Railway.-The Deutsche Allgemeine Zeitung of the 27th of Jamoarg, containg a rovint of the matatice of German rallways, of wheb the following is man abridgment :-At the comerncersent of the prevert jere, the entro leagth of ai
 milen, of which 22 ars tramilnes, 173 belong to rartove soveramenit, add 419 to private
 vaher more than b; ind Frantort,
 phical mulles, and runs from Berlin to Brealaw, Fith a braneh line when Heneradorf. The

 Lhots and Gtaundon Korse line, $26 \cdot 18$ miles's the Beriln and Stertin, with a branch line
 Fotedam, and Magdeburg, 193 miles; the Vienna and Glogmik, with branch lines trom Moding to Laxenburi, and from Vlenna to Bracts on Lie Leithe, 16.14 malleat the Mas-
 to It,

 585 miles; the Repdeburs and Neumpmeter, fi4l milles; the Dempldoof mad Elberfed,

 and Bergedorf, 2.17 miles; and the Nurembers and Furth, 0.81 nino. Twonty ont of the
 completedy Aninged, and prorided throaghout their entirs length erth dorabla lisean the completay Aniabed, and provided throaghout their entiry Tength erith dorbin lisen- the
 Gerana loes open to eirctiadon are 16, of Which sare on the Rhemigh Ballivy, 2 on North Austrian (between Olsnuts and Preque) il on the Bararlan state line (at ErlanNorth anstian (between Olmuts and Prapue) 1 on the Bavarian atale line (at Erian-

Italian Railuays.-The section of the railway from San Ginliano to Pisa hen hemen opened, ard the whole lline from Fies to Laces Is thas open to tratie. The antrage namber of pacieopers between 8an Ginllano and Flac wes computed at 512 dulty. The company of the Luce and Postoja Railway hald a second general meeting on tha 30hh Oceober. The report of Espdpeer Poblmayes wee rwed, who hat been appolsted by Boloppete company to study the continuation of the Appenatne railway betwren Poretti and Bologia. According to ble report the worke betwe en Lacea and Altopascta, a length of $18,700 \mathrm{metren}$, are in an adranced state, and this section will probably be thrown open

Whitchaven and Marypert Rasinacy is open for goods, and to be opened for paseengor trific on the lat of March.

Garmes Reilway,-On the 6th ult. an experimental train wont from
 Tbe Hoe will be open to the poblice the lit of May peat, The wecton from Hanover io
 opened thin jear. At soon as this the is completed, chere will be rellivay companteationt betwern Parla, Berlin, Bamburs, Brealeu, and the Aumtian frontler.

HIET OF NEW EAYEXTHE.

Willam Brogatod, of the Inner Temple, Londan, Req., for "certain Improvements in rotitory engises.*-Seted January 21.
Frascia Prenton, of Ardwick, near Manchenter, apledie-maker, for " certaim Improvementa in machivery or apparatus to be used io the preperation of cotton and other dbroas zobetapees for spipnidg."- Janvary 28.
 provementa in telegraphle communicailone."-January 28.

 Fy of woollem, cotion, alth, and osher thirter."-Jeanary 26 .
Rlehard Walker, of Hochdale, Lancuster, cotton spinper, for "certain Improvenemta
 are applitenble to the manufeture of other prodects of diatllation. ${ }^{n}$ Japarry 28.

Thomas Webater Hempoll, of 12, Dorset-place, Dormet-Equate, Middleser, cirll arst morep for "I leptommence in the

Peter Armand Lecomte de Fontajnemorean, of 15, New Broed-atreet, London, for "cer-
 productay them, sucb procemen nud apparatus belig equally applieable to the croctures several other sabstancet, and also for the proces.
applicable of all thowe products." - Janu ary 28.
Joho Law, of York-plece, Portman-equare, Middesex, geotieman, for "Improvements In pata and the machinery by which the atme are manafictured." (A commanication.) - Janaary 28.

John Bralthwite, of 59, Bedford-square, Middlanax, cifll epginem, for "certeda Improvemenic in bealing. lighaing, mod ventlialing."-Japaay 28.
 Inf falctanden and in fmeteninge to elestic bends."-Pebracry 1 .
Bichard Albert THghman, of Seotits Yard, Buah Lane, in the ctor of Looden, tore improvemente in the manofecture of certats acida, alkalies, and alrallpe malte."- Peb. I.
Edward Newman Pourdrin!er, of Cheditioton, in the coanty of Slaford, paper meoofacturer, for " lmprovernante in apparatas to be ased for riving and loweriog welatite from minem eod ouber plecen."-Fob. I.
John Thompron Cartor, of Drogheds, ta the conaty of the town of Drogheds. in Im-
 tog finx, hemp, and other tbrous materiale requiling euch treatment."一Feb. 1 .

Marco HeDry Pranzont, of Cerrath, bat now rmalding at Pelham Flace, Broctpton, Mad-

Uriah Clarte, of Lelometer, in the county of Lelowter, and Heary Barber, of he man place, fuller and drewer, for "certain Improvements in the mannfectare of looped and proven fabrica."-Febrary 1.
Willam Pidding, of Bernard-street, Middieser, fentleman, for "r an Improved mode of exbibiting add protectioy certale coloured fabrict, ornamegtal ingeriptloms, and other de. exbibitiog and p
George Grandy, of Manchestor, magager, for "certain Improvemente in farasces, and in floses and tiles used to the constraction thereof." - Fobrume 8 .
Chrimtopber Vmaz, of Frodertci-netrett, Londed, gentleman, for " Improvaneata in storing and muppisite bewr, ala, and porter."-Pebruary 8 .
 chlient for worling mouldingz."-Februery 8 .
Thomes Du Boulay, Eeq., of Sandgate, Kent, and John Da Boaliny, Req, in the conory of Dorset, for "Improvements is rutiog op granaries and warehousea, and of gotidit into condition sed

 metal, wood, or other matarials."-Febreary 8.
John Loach, of Birmingham, braan founder, for a " certaln Improved fmotening, or certain improved finteninge, for windown, shatters, docre, and tables; epplienble aipo as a fastenioy or fostening pemerally."-February 8 .
Alezander Doull, of Furton Grove, Middiceax, difl engiseer, for "certan Improvements in rallway, ateamboat, and other dgrals."- Febrairy 8.
Stephen Geary, of No, 10, Hamilitan-placa, New.roed, Middilevez, for " eertinn Improvements to obtaintig and appifing motive power."- Febrast 8.
Joha Gedge, of 4, Welltogton.streot, Strapd, Middlemex, for " ourvin Improvements

 Improvements in loome for wearing."-February 9 .
Whillam Eaion, of Camberwell, Burrey, engiueer, for "Improversents in meethaery tor twitiling cotion or other shroun mbutiances."- Pebruary. 9
Stepben Moulton, of Norfolk-atreet, Strand, gentleman, for "Improvementa in memp
 (4 commanleation) Pobreary y.
Charies Hascoek, of Groevoor-plece, Middeser, gentieman, for " Improveneate in the pruparation of gatte perche and In the application therionl, alowe, and in conntination -1th othar materiale, to manofacturing purpoeee, which improvemeate are also applicabie to other subtumence., - February 10 .
Alfred Brett, of Bolborn-bara; gentleman, and George IIttle, of Bigh Holborn, dectorb cal engtoper, for is Improvements la cleetric telpgrapha, mod in the nrwaguparte ard as. partuie to be used therrin and therevith, part of which improvemenie are abo appthebie to timo-keepers and other ueeful purpoeen."-Feb. 11.
Egbert Fiedge, realding at No. 7. Howard-atreet, in the parich of 8L Clenuant Daret, Middtesex, pentioman, for "certatn Improvementan in ralle for rallway, and in the manmiducsex, fentioman, ior cert.
 earilu locometion." (Λ commundicetion,)- Peb. 16 .
 ntog fiar and other Abres,"-Feb. Ib:
Francie Heary Waller, of Farriogton-eganre, Middiesex, adrgeen, for ${ }^{*}$ lmprovementa
 16 app
16.
 Robert Surligg Nomelil

 machinery or apparatus for twisuing, twinfng, or manufacturing corda, bands, and other
 16.
 ducta tharefrom."-Febraary 19.
Alexander Bain, of Upper Buker. atreet, Middlesex, electrical engineer, for "Improvements to clocki and dme-kesper, end to apperanis connected therewith."-Feb. 19.
Thoman Breamwell, of Neweatle-apoo-Tyos, manufectartog chemint, for al Imprope
 and certain other cempounde, which improvecueste In ferasone and opparater ravy more be employed for other parponea.". October 8, 1846 - [This palent was apposed by carceat

STRAN ON THE PLATFORM OF A SUSPENBION BRIDGE.

In the following paper it is proposed to examine the natore and amonnt of the strain to which the platform of a suspension bridge is sabjeeted, by its connection with the chains and piera, and a load equally or ubequally distribated throughout Ite length. We shali asume that the platform in rigid, the curve of the chain a catenary, the links iadefinitely short compared with the length of the platform, and the rods indefinitely close to each other and inextensible.

Let O, the centre of the platfora, be taken for origin; the axis of the platform, which we suppose horizontal, for axis of x; and a vertical through O, for the axis of y. Let $d i$ be taken to represent the tension of the rod applisd at point $(x y)$ of the chain; T the tension of the chain at that point; l the weight of a unlt's leugth of chaid,-then we shall have

$$
\begin{gathered}
d\left(\mathrm{~T} \frac{d y}{d t}\right)=d t+t d \theta d\left(\mathrm{~T} \frac{d x}{d t}\right)=0 . \\
\mathrm{T} \frac{d y}{d t}=t+l s i \operatorname{and} \mathrm{~T} \frac{d x}{d t}=c ; \therefore \frac{d y}{d x}=\frac{t+t l}{c} .
\end{gathered}
$$

But in the common catenary,

$$
\frac{d y}{d x}=c^{\prime} s, c^{\prime} \text { being an arbltrary conetant ; }
$$

$\therefore t$ mast $=\mu \mathrm{t}$, where μ is some constant Consequently, the resultant of all the tensions of the rode, attached to any portion of the chain, passes through the centre of gravity of that portion. If, now, the platform be supposed aniformly loaded throughont, and perfectly rigid, it would be impossible to determine whether its weight were wholly supported by the chaina, or wholly by the platform, -or bow it might be divided between them; but as the nature of the materiale we are considering is only no far rigid, that neither the flexibility of the platform, nor the extensibility of the rods and chaids, are aupposed to be sofficiently great to affect the carre which the chains asaume, a very little conaideration will be sufficient to abow that the weight of the platform will be wo diatributed, that the tendency to bend it will be a minimum. When the platform is unequally loaded, if we suppose the load not sufficiently great sensibly to deflect ih, it will be hereafter shown that a prensure will be generated on that pier nearest to the centre of gravity of the platform. In practice, bowerer, if the load were much increased and unequally distributed, the platform would bend, and the curve asoumed by the chaine would be modified; the point where the remultant of all the vertical temaions of the rodu meeta the platform, approsching nearer to the centre of gravity of the platform and load, and, in case disruption ensoed, actually and suddenly coinciding with it.
To find the strain on any point of a platform equally losded throughout:-
Let P be a point in the platform, and $P Q$ vertical thereto; $A P=$ $x ; \mathrm{AO}=\mathrm{OB}=a ; \mathrm{CQ}=\mathrm{S}^{\prime} \mathrm{QD}=\mathbf{S}^{\prime \prime}$
$W=$ weight of platform and load; $T^{\prime}=$ tension of rods from P to $A ; K$ diatadee of the centre of gravity of $C Q$ from P.
Let $T^{\prime}=V 8$, where V is determined from the equation $\mathbf{V S}^{\prime}+\mathbf{V} \mathbf{S}^{\prime \prime}=\mathbf{W}$.
Then the moment tending to turn $\mathbf{A P}$ about P, which measures the atraic at P, is given by the equation-

$$
\text { Moment of straia }=V S^{\prime} K-W \cdot \frac{C}{4 a}
$$

If the loed be unequally distributed,-
Let G be the centre of gravity of load and platform ; S the whole length of the chain

Then a pressure will be exerted where the platform resta on the pler nearest to G. Let $X=$ this preseure.

Taking momente about O, if $O G=A ; W h=a X ; W=X+V S$;

$$
\therefore v=w\left(\frac{a-h}{a S}\right)
$$

And for the strain at P, if $W^{\prime}=$ weight of platform, $A P$, and its load,-
p the distance of its centre of gravity from $P_{\text {; }}$
Moment tending to turn $A P$ round $P=$

$$
W^{\frac{1}{a}} x+V K S^{\prime}-W^{\prime} p=W \frac{1}{a} x+W \cdot \frac{a-1}{a} S^{\prime}-W^{\prime} p_{0}
$$

Deductions from the above formale :-
1st. When the platform is equally loaded throughoat, the atrain will be least when the chain has but a alight depremsions for then, V' S'X will most nearly, costeris paribma, equal $\mathrm{W} \frac{\mathrm{Cas}}{4 \mathrm{a}}$.

2od. The atrain of a load, unequally and unaymmetrically distributed, will alwaya be greater than the atrain produced by the same load equally distributed.

J. H. R.

[In the remarks eppesded to Sir Roward Dondiag's paper in our Ian mamber, it whe
 toforred that chere were edill wide differeaces of oplation (whleh ls not the cene), it may be
 portant of them.]

ON THE MOTION OF FLUIDS.

The discrepancy between theory and experiment in all problems concerning the flow of water has been universally acknowledged. This extraordinary fact has hitherto been accounted for on the supposition of the imperfect charecter of the fluidity of that liquid; whereas, as we shall presently show, it is not the water but the analysis-not mature but the philosop hers who are at fault. In the present paper we shall point out some of the fundamental errurs of analytical hydrodynamics, and endeavour to show how theory and practice can be reconcilad. Some time since, one of the most eminent of living mathemeticians pointed ont to us the incorrectaess of certain analysle connected with the motion of a wave along a canal, in which, as be clearly proved, the hypotheses adopted were inconsiatent \{with themselven; that is, parallel motion and perfect continuity were assumed to co-exist. Our attention has since been more recently directed to the subject, and baving taken Professor Miller's work as a text-book, we were astonished to find the mame two assumptlons vitiating the whole of the chapter on fluid motion.
In section V. of Miller, the first sentence runs thus-
© When an incompressible fuid flows through a tube, the velocities of the fluid at any two pointa, are inveruely proportional to the areas of the perpendicular sections of the tube at those points ; supporing the tube to continue always full, and the velocities at all points in the same section to be equal to one another, and perpendicular to the section."

The two hypotheses with which this paragraph concludes are inconsistent. Let the tube be of variable bore and ita axis atraight, let this axis be the axis of x, and let $x, 0, \infty$, be the velocities of any fluid particle parallel to the axes of x, y, x, respectively; then, by the equstion of continuity for incompressible homogeneous fluide, we have

$$
\frac{d s}{d x}+\frac{d v}{d y}+\frac{d v}{d x}=0
$$

Now θ and $\%$ both $=0$, by the bypothesis; $\cdot \cdot \frac{d u}{d x}=0 . \cdot \cdot u=c$, -which is absurd.

In determining the motion of waterissuing from a cery mall orifice in the bottom of a cylindrical vesel, it is clear that the tabe may be considered of unequal but continuous bore, how then can we find the quantity disclarged from the orifice $\{$ This we shall endeavour to do approximately. We ahall first however reek for the maximum velocity of the issuing stream near the orifice.

Suppose B B^{\prime} the orifice, $A A^{\prime}$ a borizontal section of the fluid above B B', taken at such a beight above B B', that all the flaid beyond $A A^{\prime}$ may be considered at rest. LM the axis of the stream. \mathbf{P} any poitut in L M. Then the motion at \mathbf{P} may be supposed wholly vertical. Since $L M$ is the axis of the stream, if then $L P=x, v$ be the velocity at P, the demaity of water 1, and g the measure of the accelerating force of gravity, and p the pressure at P, we shall beve

$$
\frac{d v}{d z}=g-\frac{d \dot{p}}{d x} \cdot \cdot \cdot \frac{v^{2}}{2}=g x-p+C
$$

Let now A be the depth of $B B^{\prime}$ below the surface of the water io the vescel, the distance between B B^{\prime} and $A A^{\prime}=8 h_{\text {, then }}$ the have

$$
0=-g\{\lambda-8 k\}+C-\pi
$$

because if $\pi=$ atmospheric pressure, $\pi+g\left\{\begin{array}{l}\boldsymbol{L}-8 \\ \boldsymbol{L}\}\end{array}=\right.$ prespare at L

$$
\cdots \frac{v^{2}}{2}=x+g x-p+g\{\lambda-8 k\} .
$$

So far as p is concerned, the velocity will be greatest when p is lenst. Let k be the value of x when p han its lenst value, which is clearly $\pi_{\text {. }}$.

$$
\cdots \cdot \frac{v^{2}}{2}=g\{k-\delta i+k\}
$$

k and $d \lambda$ being both extremely small. This expression becomes $\frac{v^{2}}{2}=$ g A. This, as far as it goes, apparently agrees with the method of finding 0 , given in the books. We may remark, however, that in all demonstrations we have seen, the great error is committed of estimating the motion from the aurface of the fluid, and assuming all particles in the same horizontal section to have the same vertical velocities. Now in fact p becomes discontinious near the orifice, and when the orifice is indefinitely small passes suddenly from $r=g h+r$ to $p=\pi$, and consequently the equal number for δ, which assume the continuity of p, cannot be applied without farther adaptation

To determine the velocity and quantity emitted at the orlice, requires an altogether different kind of investigation.

We shall here suppose that the tube is foll, and that the fluid is vertically at rent within the vessel, even close to the opening; this, although not strictly correct, will be found near enough to give tolerably accurate remults.

Let $A=$ area of orifice. At time t from the commencement of the motion,-suppose that if the jet had moved with a veiocity in all its parallel sections equal to its mean velocity of projection at BB'; it would bave extended to a amall distance, x, from B B'. At time $t+8 t$, let x become $x+8 x$, then an additionai quantity, $A v \delta x$, has been shot out from the orifice in the time δ_{t}. Let \mathbf{R} be the internal force that effected this ; p the presoure on the jet;-then, since the only external force is Agh (negiecting Ag as astremely mall),-
we have $p+R=A g h ;$
and $R 8 t=A 8 x 0$;

$\therefore A x \frac{d v}{d t}=A g h-A v \frac{d x}{d t}$. When the motion is ateady,-

$$
\begin{aligned}
& \frac{d v}{d t}=0, \text { and } v=\frac{d v}{d t} \\
& \cdots v^{t}=g h . \cdots v=\sqrt{\rho 2}
\end{aligned}
$$

This is very near to the results of experiment,-lf Q be the quantity discharged in time h^{-}

$$
Q=A t \sqrt{g L}
$$

To determine the motion in a pipe of uniform bore:-
Suppose the tube inserted into a shallow reservoir of water kept copstantly full; let the tube be straight, its diameter $=d$, and length $=l ;$ let $h=$ height of anface in reservoir above the point of effiux. When the motion is steady, let the mean vertical velocity of the particles in the reservoir, just above the point where the tube enters, be μ times the velocity in the tube. Now, it is found that the resistance of the tube varies as the equare of the velocity, and that this resistance arises from the inequalities of the interior of the tube. \mathbf{H}, therefore, $l=$ length of tube, and d the diameter, the absolute resistance will vary as $l d$; but the mass of fluid varles as $l d^{3}$.

Let now $\boldsymbol{\alpha}$ be the distance of any point of fluid in the pipe from the point where the pipe enters the reservoir; then, by the time that s becomes $s+8 x$,-a mass of fluid, $s \delta x d^{\prime}$, has had its velocity changed from $\mu 0$ to 0.

Therefore, if \mathbf{R} measure the force which accompliaben this-Dt the time of x beooming $x+8 x-w e$ shall bave

$$
\begin{aligned}
\mathrm{R} \delta t & =(1-\mu) v_{0} \pi \delta x d^{2} ; \\
\text { and, } \pi l d^{2} \delta v & =\pi g^{h} d^{2} \delta t-R^{\delta} t-t r l d v^{2},
\end{aligned}
$$

- being a constant determined by experiment

$$
\cdot \cdot \pi l d^{2} \frac{8 v}{d t}=\pi g h d^{2}-(1-\mu) \theta \frac{\delta \pi}{d t} \pi d^{4}-c \pi l d \theta^{2}
$$

Therefore, when the motion is steady, and $\frac{d v}{d t}=0$,

$$
v^{2}=\frac{g \lambda}{1-\mu+e \frac{l}{d}}=\frac{\frac{g \lambda}{1-\mu}}{1+\frac{e}{(1-\mu)} \frac{l}{d}}
$$

If $1-\mu=\frac{2}{\mathbf{8}}$, or $\mu=\frac{1}{8}$, and $\frac{e}{1-\mu}=\frac{1}{57}$ nearly, this becomes Eytelwein's formula.

If the water had firat passed through a tube, length l and diameter d, and then through a tabe l^{\prime}, diameter d^{\prime}, we should have had

$$
v^{0}=\frac{g h}{1-\mu+e \frac{b}{d}+e \frac{b^{\prime}}{d^{\prime}}}
$$

Eytelwein's formula in inches is $v^{2}=233 \sqrt{\frac{h}{1+\frac{l}{67 d}}}$
Earample-Water flows through a 9 -inch main of 5000 feet, and then through a pipe of 4000 feet long and 5 inches diameter, the height of head being 100 feet, what is the velocity of the discharge ?

$$
\begin{gathered}
v=291 \sqrt{\frac{l}{1+\frac{b}{57 d}}+\frac{6}{67 d}} \\
l=12 \times 6000=60000 \\
l^{\prime}=12 \times 4000=48000 \\
d=12 \times 100=1200 \\
d=9 \quad d=5 \\
67 d=81867 d=285 \\
=29 \frac{1200}{1+\frac{60000}{618}+\frac{48000}{286}}
\end{gathered}
$$

$=29 \pm \times \sqrt{4.2}$ nearly; or 47 inches per second neariy.
We may remark that the value wa have obtained for the mean relocity of the discharge at a small orifioe, $\sqrt{g h_{5}}$ is rather greater than the veloeity derived from experiment: this does not arise fromany
fault in our bypothesis of the mean rertical velocity of the particles lo the resel being $=0$, but from the resistance of the sides of the orifice. It is probable, that the mean vertical veloeity juat over the orifice, is some small fraction of the velocity beyond it;-this, if considered by iteelf, would give o romething greater than $\sqrt{g} \overline{\operatorname{L}}$ But the resistance is more than sufficient to counterbalance the effect of the interior velocity: 0 would properly be represented by the expres. sion $\sqrt{\frac{g h}{1-\mu+\epsilon}}$ where C is rather greater than μ.
J. H. R.

A NEW THEORY OF THE EARTH, TRAT FULLY ACCOUNTS FOR MANY ASTRONOMICAL, GEOGRAPHICAL AND GEOLOGICAL PHENOMENA, HITHERTO UNACCOUNTED FOR.

By Olurip Btryre.

Although the sciences of mathematios are coeval with man, and have been cultivated with the greatest avidlty by the greatest minds of every age, in every civilised nation; although their extent and application are at present very great-considered by some to be capable of little further advance-yet it may safely be asserted that they are only in their infancy: as long as we continue to improve, so long wili the bounds of mathematics continue to extend, till all other human inquiries become subject to its simple and unerring principles. The theory which is here promulgated, and which we shall endeavour to exemplify and explaln in the simplest terms possible, is aapable of being submitted to the most exact and rigorous mathematical scruting. Yet in this place we prefer eatablishing it by a general concurrence of faete which are known to almost every obeerver, rather than by an abstrase and elaborate mathematical procems ; because, by proceeding on the former plan, the subject will be understood by the many, while the latter, which is given in the propour's nem work "On the theory of the beavens and earth," about to be published, would only be understood by the few, who at present know enough of the uncertainty and dissatisfaction which bave attended former attempts to establish the point in view by anch a procedure.

By observing the apparent motions of the fixed stars and of the sun and planets, the true motions of the bodies in our zolar system were discovered, -not before the attention of man was for a connderable time engaged by their appearances and changea, and many theories respecting them advanced and confuted : but this, like olber subjects cepable of belng submitted to mathematical investigation, was ultimately set right. The motions of the earth on its axis and round the sun were discovered in the same manoer, by observing the apparent motions of the fixed stars. Seeing that all the stars rise and set in the course of a day, the stars must move round the earth, or the earth must revolve on an axis in that time: the truth of the latter motion was finally eatablished. It was aloo observed that the atars which appeared to set with, or immediately after the sun, gained an advance on him till they were loat in his rays, then appeared to pass bim and return to their former position with respect to the san, in the course of a year. This fact ahows either that the stars moved round the sun, which stood still, while the earth with revolving on its axis would possess a wabbling motion, or what might be called at the present day a great nutation, to effect the change of the seasons; or that the earth stood in the same position revolviag on its axis, while the sun made a circuit of the beavens in the course of the year; or lastly, which was ultimately found to be true, that the sun nearly remained in the same relative position, as well as the fixed stars, and that the earth moved round him in the course of a year, and that also in such a manner, the changes of the seasons were produced.

At preaent here it would be useless, as well an a laborious task, to give even an outline of the several theories and confictiog opinions which bave prevailed, before the true theory of the solar syatem was eatablished. We regret that our present limits will not permit us to give such an outline; as it might at the same time give a cantion to many not to condemn, censure, or approve, before they have inveatigated and understood. This theory of the earth, which likenisa shows the cause of many astronomical phenomena, is not introduced and promulgated for the purpose of confuting any of the well eatablished laws of the solar system. The great differeace between what Is here advanced and other theories, is that only tro of the motions
of the earth are admitted, namely, the annual and diurnal. The other appapent or imaginary motions known by the terms "the precemion of the equipozes," "solar and lunar nutations," and "the decrease in the obliqulty of the ecliptic, or rather, the collapaing of the planes of the equator and ecliptic," are rejected; and the trae cause of such apparent motions subutituted in their stead, which we shall in futare call the right motion or change of the earth's axic. Many, as well as those who propose anythlog Dew, be it ever so true, mast be well aware of the fact, that tuie proposer or inveutor of any Dew scheme, be it ever so important or ueeful, no matter how willing and well prepared he may be to verify his claims, even in these enlightened times, freguently struggles in vain to gaia attontion, much less to obtain beilef: facts, it is true, are stabbora thinge, but prejudices are far more stubborn.

This difficulty mainly arises from the confidence of mankind being so often deoeived and grosely abosed by imaginary improvers and visionary inventorn. However, the inventor or proposer of a new theory, who ean eatablish bis claime by strict mathematical arguments, no matter how uncommon they may at first appear, places beyond all doubt their certainty; and although he cannot induce people to study or think for themselves, yet he defies all effurts to confute one single tittle of anything which may be thus established. Before proceeding furtber we beg to acquaint general readers, that few technicalities are used, and those retained are explained in the simplest manner possible; this remark was considered neceasary, because sobjects of the like nature are too often unnecessarily encumbered with technical terms. Although this theory of the clanges, nature, and form of the earth, is here established without the use of $\mathbf{z}^{\prime} 3, y^{\prime}$'s, Greek characters, or many technioal terms, the reasoning employed is atrictly mathemacal; not that we object to this plan of proceeding, but that the work, as we have before obeerved, may be geuerally understood. To accommodate the profound mathemutician, as well as the general reader, this theory is eatablished by the plan objected to here in the proposed new work before alluded to.

To retum to the leading principle of this theory, which is substituted for what is called "the precession of the equinoxes," "solar and lonar natations", and "the collapaing of the planes of the equator and ecliptic," one motion, which is here termed, the right motion of the earth's axic. In the first place, we shall define or rather explain the meaning of these terms. The points where the planes of the equator and ecliptic intersect are called the equinoctial points; they have a retrograde motion, which is called the precession of the equinozes. This apparent motion was observed long before the Christian eras it could not remain for any long time undetected, as the latitudes and longitudet as well as the right ancensions and deelinations of the stars were reckoned from one of these points,-Aries.
The declinations and right ascensions of the stars are reckoned in a manner similar to the latitudes and longitudes of places on the earth, only the first meridian is suppowed to pese through the equinoctial points; this reckoning conmeoces at the equinoctial point, Aries. The longitude is reckoned from the same point along the ecliptic, and the latiurde on great circles pansing through its poles.

Let P be the pole of the equinoctial $r a$, and P the pole of the ecliptic $r>+5$; r the first point of Aries where they intergect 3 and s, a star. Then $r a$ is called the right ascension, and a a the deolination, of that star; $f b, b$, the longitade of the sume, respectively. If these planes were to intornect at r, the effect would be, that the longitudes of the atara, which are always eatimated from the intersention of the planes of the equinoz and ediptia, or from the first polat of Aries, muat continually increase; and by comparing the longitades
of some of the stars at different times, the mean motion of the equinoetial pointe, or the precession of the equidoxet, may be disoovered. M. Lalapde, in his astronomy, has computed the precesaion by comparing the longitade of Spica Virginis, am asaigned by Hippurchus, with the longitude of the amme star computed in 1750.

> 128 m.c. Longitude of Spica Virginis \quad 5n $24^{\circ} \boldsymbol{o}^{\prime}$
> 1750 A.D. Ditto
> Increase in 1878 years $\quad 0^{\circ} 26^{\circ} \quad 21^{\prime}$

From this it appears that the annual mean precestion is equal to $50^{\prime \prime} \cdot 5=\frac{26^{\circ} 21^{\prime}}{1878}$. By a mamber of like comparisone, the same author fixed the secular precession-that is, the amount of accumalated precession for 100 years-to be $1^{\circ} 28^{\prime} 54^{\prime \prime}$; the mean amanal precemion correaponding to this ia $50^{\prime \prime} .84$: and the amm of moh anmal precession ampunts to 1° in 711 years. If we suppose the precesimin to be $50^{\prime \prime} \cdot 1$, then, in 25,869 gearz $\left(\frac{360 \times 60 \times 60 \times 10}{501}\right)$, the firat point of Aries will have retrograded throngh an entire circle. The guantley $50^{\circ \cdot 1} 1$, which is the mean value of the precession, is obtained from the differences of the longitudes of a great many stars (three or four hundred, for instance), computed at different epochs. This mean quantity may not agree with the mean quantily derived from the observations of a single star, however many, or accurately made, these observations may be. It will be found the case with Pollux, thesecond star in the following table. The differences, however, between the mean quantlites of the precession as they result from three hundred stars, or from a single one, is in all cases very small.

Longitudes.

Stars.		1815.		1756.	$\begin{aligned} & \text { Diffe } \\ & \text { ofLloa } \\ & \text { in } 39 \end{aligned}$		Mean Amnul Increate.
		-	, "	-. ${ }^{\circ}$ "			"
O Ariatis	- 1	5	441	$\begin{array}{llll}1 & 4 & 15 & 3\end{array}$	49	38	50.47
Pollux	- 3	20	3948	3195055	48	53	$49 \cdot 70$
Spica Virginia	6	21	1531	6202620	49	11	50.10
O Aquilse	9	29	$953 \cdot 8$	928206	49	47.8	5080
0 Pegati	-11	20	5431	1120519	49	12	$50 \cdot 10$

Yet the difference which is fourd to exist, points ont some peculiarity in every star. For instance, Pollax cannot be like most of the other stars, apparenuly entirely fixed, but muat have what is called, or what we are obliged to call, from defanlt of a knowledge of its canse, a proper motion. However, the comparison of the longitudes of the stars, compated to the epoohs of 1756 and 1816, estublinhes, an we have before obeerved, the important fact of the precemion of the equinoxes. Becanse the mean longitade of a star fis not altered solely by the precession of the equidozes, astronomers employ the term annual variation, comprehending under it the effecte both of precession and of annual proper smotion.
We shall now compare the latitudes of the stars mentioned in the above table, at the ame epochs.

Latitudes.

Stark		1815.			1756.			Differepce for 59 years.
				"		,	"	${ }^{\prime}$
$\boldsymbol{\sim}$ A Arietis	-	9	57	$37 \cdot 4 \mathrm{~N}$	9	37	$3 \cdot 2$	+ $5 \cdot 4$
Pollux		6	40	18.4 N	6	40	3	+15.4
Spica Virginis		2	2	24.8 N.	2	2	6	$+18$.
\sim Aquild	-	29	18	35.5 N	29	18	44	- 8.5
α Pegasi	-	19	24	44. N.	19	25	44	- 4.0

It appears from this table that the changes of the latitudes are very small, in no case amounting to $0 \cdot 4^{\prime \prime}$ uunually. "The astronomical fact is, ${ }^{n}$ says Woodhouse, "a mirate annual clisnge of latitude, and a consideruble clange of lougitude. With regard to the former change, we may conjecture that it arises either partly from the precession of the equinoxes, and partly from other causen or that it is altogether independent of the precession." Tbe succeeding tables show the eariation both in right ascemsion and declimation of the stam whoes
latitades and longitudes we have juat compared. These variationa more clearly point out the general apparent change produced in the heavens by the right motion of the earih's axis, than those of the latitudes and longituden, as the declinations and right ascensiona of the atare are reckoned in a manner similar to the latitudes and longitudes of places on the earth. Yet they are not in complete accordance with the right motion, as the latitudes of places have been supposed to remain fixed and from the dissatisfactory theory of corrections, of whicb we sball speak hereafter.

> Rigat Auceraions.

Stara.	1843	1817	$\begin{array}{\|c\|} \text { Difference } \\ \text { in } 26 \text { jearn. } \end{array}$	Mend annoal rariation.
-	h. 7.8	h. m. 8.	8.	
C Ariotis	15820.06	15652.67	87.39	+ $3 \cdot 36$
Pollax	$73542 \cdot 09$	734 6.06	96.03	+ 369
Spica Virg.	$131655 \cdot 80$	131553.79	62.01	+ 238
α Aquilae	$\begin{array}{llll}19 & 45 & 7 \cdot 34\end{array}$	194151.05	$76 \cdot 20$	+ 2.93
α Pegasi	$225656 \cdot 64$	223538.95	$77 \cdot 69$	+2-98

Declinatione.

Stars.	1843	1817	Difference In 26 years.	Mean monu al variation.
	- "	- "	'	
α Arietla	N $22434 \cdot 14$	N $223533 \cdot 1$	731.04	+ 17. 34
Pollax	N 282358.81	N 2827 31-7	$332-89$	- 8.188
Spica Virg.	\& 102023.55	S 101266	817.05	+ $19 \cdot 117$
α Aquila	N 82726.37	N $82337 \cdot 6$	348.77	+ 8.779
C Pegaxi	N 142141.97	N 1413 26.0	$8 \quad 15 \cdot 97$	+ 19.075

Of the Collapaing of the Planes of the Equator and Ecliptic.
The angle contained between the plane of the equator and ecliptic is what is denominated the obliquity of the ecliptic; whlch is shown, from repeated observations, to be variable. In this place it will be sufficient to show the results of a long succession of such observations by different astronomers, taken from the "Encyclopedia Metropolt-tana":-

Eratosthenes,		c.,		23°	51^{\prime}	20
Hipparchus,	140	n	"	23	51	20
Ptolemy,	140	A.D.	"	23	51	10
Pappus,	390	"	"	23	30	0
Albatenius,	880	"	"	23	35	40
Arazachel,	1070	"	"	23	34	0
Prophatius,	1800	"	\cdots	23	32	0
Regiomontanus	1460	n	"	23	30	0
Walthe rus,	1490	"	"	23	29	47
Copernicus,	1500	"	"	23	28	24
Tycho,	1587	"	"	23	29	30
Cassini, sena	1656	"	*	28	29	2
Cassini, jun.,	1672	"	"	23	28	54
Flamatead,	1690	"	"	23	28	48
De la Caille,	1750	"	*	23	28	19
Bradley,	1750	"	"	23	28	18
De la Lande,	1768	"	\cdots	23	28	0
Pond,	1816	${ }^{\prime}$	\cdots	23	27	60
"Oliver Byrne,"	1843	n	"	28	27	34

The observations of Albatenius and Arazachel are here corrected fur refraction : those of Waltherus, De la Caille, De la Lande, computed. The obliquity of Tycho is put down as correctly computed from bis observations; also the obliquity as determined by Flamstead, is corrected for the nutation of the earth's axis : thene corrections Lalande applied. It is manifest, from the above observations, that the obliquity of the ecliptic continually decreases; and the "irregularity which here appears," says the writer, "in the diminution, we may ascribe to the inaccuracy of the ancient observations, as we know they are subject to greater errors than the irregularity of this variation If we compare the first and last observations, they give a diminution of $70^{\prime \prime}$ in 100 years. If we compare the observations of Lalande with that of Tycho, it gives $45^{\prime \prime}$. The same compared with Flamatead gives $50^{\prime \prime}$. If we compare that of Dr. Maskelyne with Dr. Bradley's and Meyer'a, it gives 50". The comparisoan of Dr. Maskelyne's with that of Lalunde, whloh he took as the mean of several resaltes gives 6 $0^{\prime \prime}$, as determined from the most accurate obervations. The obserpations of Poud, compared with those of Bradleg, give $44^{\prime \prime}$ for the veriadon of the obliquity in 100 years, or $0.44^{\prime \prime}$ anorually."

Of Solar and Larrar Nutalion.

(See "Woodhouse's Astronomy," page 353, chap. xv.)
The tho inequalities that give title to the present subject are im. mediately, or rather intimately, connected with that of the preceding (on the precemion of the equinozes). Woodhouse say, -" For the purpose of pointing out the connexion, we must look at the physical capses of tbeae inequalities: and, in the inequable action of the cause of precemotion, we shall be able to trace the cause of solar and lunar natationa." The actione of the sun and moon on the excess of the earth-which Woodhouse assumes to be "an oblate spheroid, above the greateat inucribed sphere,"-produce the retrogradation of the equipoctial points, or, as it is technically called, the precession of the equinoxem The natoral circumstances in the production of these phedomena are-the excess of the matter just spokeu of. The other circumatances, acarcely less material, and indeed eseential to the phemomena, are-the inclination of the sun's orbit to the equator, and the inclination of the moon's orbit to that of the sun's, and, consequently, to the earth's eqnator. If the sun and moon were constantly in the plane of the equator, there would, notwithstanding the earth's apberoidical form, be no precession. When either luminary is on the equator, its action in producing precesuion is nothing. Twice a year, chereforo-ndmely, at the two equinozes-the sun's force in causing precemion is nothing; and twice a year-namely, at the colatices-it is the greatest. it mnst, therefore, be of some mean value in the intermediate times. The retrogradation, therefore, of the equinocLiad points, inasmuch as it arises from the sun, camot be equable, aince the canse producing it on no two successive days of the year is exmethy the same. There arises, therefore, an inequality of precession. In eunsequence of sucb idequality, the precestion in right ancenion of α Arietis (taking one of the instances mentloned in Woodbonse's 14th Cbapter, p. 352) on May 20th, will not bear that proportion to the annual precession ($3 \cdot 34^{\prime \prime}$) whicb the nomber of days fetween January 1 and May 20 bears to 365 daya; and generally the precesion for 50 daya, whether it be in right ascemion or in north poiar dintence, will not be necemarily eqnal to $\frac{50}{365} \times P, p$ represent-
ing the preoemion. The exact portion of the annual precrasion (in right accession or north polar distance) to which it is equal, or the correction deceasary to be mada to the mean portion, will depead on t be season of the year to which the 50 days belong. The precession, therefore, after bring nsed as a correction itself, sequires to be co.jrected. This, however, is easily effected by altering the number by which (see p. 849, "Woodhouse's Astronomy") it is necessary to multiply the annual precession, in order to obtain its proportional part Thas, of the star Serpentia, the annual precession in right ascesaion of which is $2 \cdot 985^{\prime \prime}$, the mean proportional precession on April 80th would be $\frac{120}{865} \times 2 \cdot 985=-828 \times 2 \cdot 935$, and 828° would be the multiplier: but this is too large, the actual precession generated from January lst to April 30th being less than the proportional part of the mean. It may be made duly leas by merely lessening the moltiplier, 828 : in the present instance, it would be reduced to 900 , which number, and like numbers in like instances, are furaished by proper tables (see "Woollaston's Fasciculus," Appendix, page 42). This, however, it is to be noted, is not the sole method for correcting the precession. The inequable retrogradation of the equipoctial pointe, or the inequality of the precesios, is not the sole effect produced by the unequal action of the sun on the earth's exeess of matter above its greatest "inecribed aphere. 2 he obliquity of the ecliptie, which, were the precemion uniform, would not be affected by the cause producing precemion, is subject to a semi-ampual equation: ajnce, as in the inequality of precession, the force causing a change is the obliquity arrives twice in a year to its maximum. Thence two effectes one an inequality of precession, the other an oscillation of the plape of the equator, conatitute what is called the solar nutation." "There is aleo, as it may be oonjectured from the argumente just alleged, a lunar mutation. The precesaion of the equiboxes is prodoced by the joint action of the sun and moon. As the sun not being in the equator, cuuses that part of the preoescion whicb is due to his wetion tw be inequably generated, so the moon, coatibually alterling ber declination, lis cuntinually cuusing preceswion with un unequal furce. But the period of ithe inequality of ite action, from an evanexcent state to a state of maximum, is difierent frum the period of inequality of the sun's action It is no semi-anmual period. The lumar period depends, bowever, on principles the sume as those that regulase the solar. When the woon's orbth, which is continuaily ebringing its porition, returnas at the end of any interval, to the sume postion which it had at the beginning the interval so circumutanced
fs the period required. Now, this is regulated by the motion of the moon's nodes. The moon's orbit is inclined to the ecliptic, and its nodes retrogade in sbout 18 years and 7 months. At the beginning; suppose the moon's node to have been in the node of the equator and ecliptic; then, at the end of 18 yeare and 7 monthe, the came node will have desoribed 860 degrees contrary to the order of the signs, and returned to the first point of Ariess and during this retrogradation of the node, the lunar orbit will have occupled every position which it can oceupy relative to the equator. The inequality of the moon's action, then, in causing precession, will have passed through all its vicissituden. But, as in the former case, this is not the sole effect of the inequality of the moon's force. The plape of the equator will be made to oscillate: so that, according to the longitude of the node of the moon's orbit, it will be necessary to correct the mean obliquity on account of lunar nntation." Woodhouse continues to say, in reference to another part of his book,-"We have seed, in pp. 192, 193, that the phenomena of the precesuion can be accounted for, by supposing the pole of the equator to deacribe uniformly a small circle round the pole of the ecliptle in a period of 25.869 yeara. But these new phenomena of precession render some modificatione necessary in the preceding bypothesia. By reaton of the solar nutation, the pole of the equator will oncillate daring hall a year about its mean place in the above-mentioned amall circle, and the retrogradation of the pole will pot be uniform. There will be a like oucillation, and a like inequality of precession, from the lnpar nutation, but for a longer period. From both causea, them, the north polar distance, and the right ascension of the stars will be changed. In order to make the former the true precession, we must correct them both for solar and lonar nutation."

We have in the preceding pages deacribed the cause of solar and lunar nutations. But lunar nutation, which is by far the most cuasiderable, was not fund out from a previous persoasion or belief of the existence of its cause. Bradley, soon after the discovery of aberration of light, noticed it as a phenomenon, and then assigned its canse, and the laws of its variation. But the solar notation has never appeared to astronomers as a phenomenon. It could scarcely be expected to be noticed as auch, since its maximum is less than half a second. Its existence and quantity are derived from physical astronomy; and on such authority, it is introduced as a correction of astronomical observations." Woodhouse concludes this account by eaying-4 It has been proved, in confirmation of Bradley's conjecture, that the phenomena of notation are explicable on the hypothesis of the pole of the earth describing round its mean place (that place which it would bold in the amail circle described round the pole of the ecliptic, were there no inequality of precessions) an ellipme, in a period equal to the revolation of the moon's doden. The major axis of the ellipse is situated in the solutitial colure and equal to $19^{\prime \prime} .29 \mathrm{i}^{\prime}$: it bears that proportion to the minor (such are the resulte of theory) Which the coside of obliquity bears to the conme of twice the obIlquity : consequently, the minor axil will be $14^{\prime \prime} \cdot 364$. These are M. Zach's numbers ; Bradley'n are 18"•16; Maskelyne'a, $19^{\prime \prime} \cdot 10$; Luplace's, 19"-16 (wee 'Mecapique Celente', lib. Vy, P. 351)." Now, the right shotion, or change of the earth's astis, is effected by the combined actions of the sun and moon on the excess of the earth over its greatest inscribed apbere, which excese will be abown bereafter to be in a continual atate of change. Former theorista ascribe to this influence of the sun and moon, upon the excen above mentioned, the effects which we have just summed up from "W oodhouse's Astronumy" and the "Encyciopsedia Metropolitana,"-mamely, "The precession of the equinozes," "Solar and lunar nutation," and "The cullapsing of the planes of the equator and ecliptic." Here there Is but one effect ascribed to this combined action of the ann and moons

(Th of concincied in our mest,

[As far as we can understand the parport of the above paper, it is to nhow that the variation of the angle of the obliquity is not oscillatory, as bas bitherto been supposed, and partially demonatrated by some of the most eminent of modern mathematioians. We trust Mr. Byrne will in the next number favour us with his analysis, and justify the view he has taken of the sobject.]-Editor.

ON THE COMBINATION OF THE TELESCOPE WITE THE DAGUERREOTYPE.

(5rom the Trameetiont of ith Rloyal Socioty of Boinemia, 1846.)

Professor Doppler, of Prague, says, that for the ascertaining of the diameters of fized stars, the telessope bas been bitherto majnly depended apon, and that the instrument han been s far improved as it possibly ever can and will. The susceptibility of the human eye for the minutest objects has been hitherto considered paramount; but M. Doppler asserts, that the susceptibility of the human retina is surpassed many thousand times by that of a prepared (iodized) Daguerreotype plate. Physiological experiments have shown, that objects, which appear to us onder an angte of vinion leas than 80 or 40 Inches, are no more seen in exteneo, but as amorpions simple points. On the other hand, physiological researehea of such men as Müller, Weber, \&c., have thown, that the diameter of one of the nervepapille of the retica is no more than ritse or robo of an inch. But, comparing the susceptiblity of the retina papille wlth the microscopic experiments made with Daguerro's plates, it will follow that the slingle globules of mercory are of such extreme minateness, that they become only visible by a 800 -fotd magnifying power; and, therefore, that on the space of a Daguerre plate, equal to one retina papilla, more than 40,000 single minute globules of precipitated mercury are to be met with. Each of these is capable of producing the image of well defined objects-which wonld merge on the human retina in single, indiscernible luminary pointh. Thence, Prof. Doppler argues, that Daguerre's plates are 40,000 times more susceptible for impressions than the human eje.

Considering, moreover, that a great Improvement in microscopes is very probable, M. Daguerre thinks that lastead of teleseopea,-microscopes will come into use. At the exact point, therefore, where the image of a celestial body is formed before the object-lens of a telescope of considerable length, an apparatus is to be placed, whereby a silver plate (iodized, brome-ludized, or otherwise prepared) can be securely inserted. As the place of the images is the same fur all celestial objecta, a plate of a well defined, constant thickness, can be inserted with great accuracy: In this way, Daguerreotype images of all, pren of the smallest, fized atars can be obtalned, if (as is to be supposed) the light will be sufficient to affect the plates. It is also to be taken into account, that the images of the fixed stars, obtained by an object-lens of from 10 to 12 inches, will possess a light, 10,000 times stronger than they present to the naked eje. Plates thus affected, are to be treated with mercurial vaporrs and laved (havirl \%), and then viewed by a good microscope. As these images will have been magnified (throngh the action of an object-lens-say of 110 inches focus length) to the extent of 14 times their natural appserance; and being again magnitied 1,200 -fold, -the angle of vision under which they are now to be viewed, will have been increased 16,800 fold.

REVYEWE.

Encyclopadia of Civil Engineering,-Historical, Theoretical, and Practical. By Edward Caresy. Royal 8vo. London: Longman and Co. 1847.
Mr. Cresy's long expected Encyclopedia of Engineering has at length made its appearance, much to the credit of its indefatigable and talented anthor, who after three years of compilation has produced a work which forms a vast octavo volume, consisting of rather more than 1600 closely printed pages, and upwards of 3000 well esecuted wood engravings by Branston.

The work is divided into two parts-the one entitled "The History," the other "The Theory und Practice, of Engineering." The first division might with more propriety have been termed tha "History of Engineering and Architecture," as a considerable portion of it is devoted to the description of merely the external forms of edifices.

To the History of Engineering we shall for the present confine our remarks, reserving for another opportunity the cousideration of the second and more practical division. From this our wra of "the railway and the steam-ship, und the thoughte that shake mankind," Mr. Cresy transports us to a period coeval with the first rude attempts of 雨theopian architecture, and starting from that point exhibits, step by step, the gradual progress of structural science. The principle of the arch, which, according to the anthorities quoted in the Encyclopmodia, must have been koown to the eariy Egypliana, is lost sight of in a marvellous manner by the Greeks; ite employment even
by the Egrptian, seems to have been very limited. The trabeate was apparently more consonant than the arcuate style to the severity of ancient ideas of beanty. The repose, the grand simplicity, and odeness of effect of early Grecian architecture are due, mainly, to the exclasion of all curved lines and tracery, and seem to us impossible to be developed in any conatruction that admits the arch as a prominent feature. For our part, we believe that the contrast between the vast simple masess of ancient masonry, and the clear deep unclouded blue of an eastern sky, must have produced an effect infinitely more sublime than the moat gorgeone of English arcuate cathedrals, viewed as they are against the clouded aky, and througb the amoky medium of our dull climate. The vault of Mycens, to which reference has been made in a former number, is a curious instance of the form, without the properties, of the arch.
From Grecian, Mr. Cresy conducts us to Roman architecture, a division of the work containing some highly interesting information, of which we shall proceed to give an analysis. It commences with an account of the wall, towers, and other military defences of the important city of Rome: we have engravings of the wall of Seprus Tullius, which surrounded the entire city; the bold severity of the outlline, the battering of the lower portion of the wall, and the capping formed by an embatilement, show at once its object-aliat of a defensive boundary;-Dext we bave the Aurelian Wall and Gate of St. Paul then the Gate of Spello, of Aosta, approaching in design to our Norman style of architecture. The Gate of Perugia is another example of an early gate, marked by the boldness of its outline. The Gate of Augustus, at Fano, is of a more ornamental character:-

"The lower portions of which are of great antiquity. Panum Fortunse was the aname the city formerly bore, which, from its aumptuous buildiaga, was greatly admired. There are three entrances, tanked by circular towers, which rise to a considerable height, the two upper atories being lighted by semicircular-headed openings, and crowned with a bold projocting cornice, over which is the battlement. Immediately over the three eatrances was a gallery, formed by eeven arches, between Corinthisn pilasters, and surmounted by a regular entablature. The repairs these walle anderwent daring the reign of Constantine somewhat changed their eharacter, and since that period the upper story was deatroyed by a cannonading which took place when this town opposed Jaiins II. Various inceriptions remain amid the several worts of rettoretion."
and lastly, we have the Gate of Autun, one of a triumpbal character.
The work then proceeds describing the materials used in the edifices of Rome. Burnt bricks came into general use for pablic buildings about the time of Augustus, when they were made less than an inch in thickneas, of a triangular shape; sometimes the brickwork was formed of a mizture of red and yellow brick; at a later period a mized construction was formed of brick and tufa, as in Caralla's circus. With the decline of Roman institutions, we are told that the art of construction lost its excellence, and that no cara was taken in the selection of
the materials. Various descriptions of stonen were used,-the tufa of a reddish hue, and of a volcanio production, much need for the interior of walls, and jin reticulated and rubble walle --pepperimo, another stooe much used, also of volcanic production, but harder, and resisting the action of fire and the weather better than the tufa $;$-and the traverline, a stone much used in public edifices, calcareong, hard, and of a yellow tint. The mont ancient edifices of Rome were conatructed of albano stone, put together in squared blocks and united by metal erampe; it was aloo used in conjupction with the travertine stove, which from its greater hardness was used in thove parts of an edifice most liable to injury, as arches, architravet, cornicen, \&eo. Marble of various conutries was also largely iutrodnced in the public edifices of Bome. The Roman devoted muoh atuention to pavemente, whicb-
" When uned for floors, were highly decorated, mach attention befng required to prepare the noil to receive them, and to select the material of which they wero formed. When on the groond, it was earefally examined, and rendered solid throaghout, ettor which it wat spreed over with some dry material. When leid upon a timber toor, walls were. not built under it, but a apece leat between it and the teor, that the drying and setuling should be equal throrghout. Holm timber wat preforred to onk, being lean likely to split sod wapp, and thus cause cracks After the joints were laid, thin bowrda were furtened down to them by two naila, driven through the edges of each, which prevented their rising. Pern or straw was then spread over the whole, to prevent tbe lime coming in contact with the timber, which would have immediately carsed it to docay. Over this was a layer of rubbish, the ctones of which were a large an would lie in a man's hand : on this layer the pevement was afterwards laid. Now robbish required that every three portions should be mixed with one of lime; and old, Ave parts to two of lime. Freoden beaters were employed, which by repented blowt rednced it to the thickness of nine inches. An apper layer, composed of three parte of potsbearse and one of lime, whe apread over this to a depth of atr inchee, on Fhised wan haid the wiabs of marble, stone, or tesuere, care being talken that the whole ahould lie in a proper inclination : it was then rabbed off, and the jotats or edges of the ovala, triangles, squares, hexagona, or other figarea, made perfecly amooth. After rabbing and poliahlog, marble daat wai strewod over ; then lime and send ran into the joints.
Pavements in the open atr had over the Arot fooring another layer of boards crosaing them, properly secured by anik, so that the joists were doobly covered. The pavement frat hivid was componed of two parte of freah rubbiab, ope of potaberde, and two of lime. After the frot layer, a composition was rpread over it, pounded into a mans, not leas than twelve inches thick. The apper layer being apread, the pavement, consioting of cescerse, each about two inches thick, was haid od, with an inclination of two inches to ten feet, to prevent the frout from injuring it at the joints : before the winter it was astorated with dregs of oil. When great care wat required, the pavement was covered with tiles two feet square, properly jointed, having mmall channels an ineh in depth cat in the edge on each side. There, filled vith lime, tempered with oil, had the edgen rubbed in and premed together. The lime in the grooves or channele growing hard, neither water nor anything else would pant through. After this precaution, tbe opper layer wat apread and beaten with aticke; over which, either iarge tescerae or angular thee were hid with the proper inalimation."

Mr. Cresy has given us some architectural descriptions of the publie buildings of Rome. Although they do not strictly belong to engideering, the examples afford data for construction:-we have engravings of the Basilica at Fano, the Amphitheatres of Castreuse and the Coliseum,

For the purpose of covering in the arema of these amphitheatres, and to protect the spectators from the rain or aun, a velarium or covering was used:-
"I Iampridius (in Com. a Militibon, Clasiariis) informe na that the ma. magement of the vele wai left entiraly to sailors, at they were more expert to going sloft amidst ropen, and underatood the thekle which regrated the
apreading of \boldsymbol{H} better than others. There can be no donbt that it required considerable dexterity on the pert of the engineer to keep iteady an awning containing 113,345 superflisl feet, which wonld be required for the amphitheatre at Nismet, and for the magnifeent Coliseum nearly 250,000 supertcial feet, or more than doable ; the weight of which, at only one ponad per foot, comprising the ropes and tackle, would amount to 112 tons or thereabouts. So vact a weight dispowed and upheld by tenaion alone createa our wonder and admiration.
At the level of the attic story are 190 projecting consoles, each having a crrcular bole about 10 inches in diametor, correaponding with a circular mortice of the asme size, and 6 inches in depth, made in the projection of the cornice of the zecond order. The apper opening at the hole in each console has externally a groove 2 inches in height, deatined for an iron collar, to which was atteched a tie, which secured it to the wall of the attic at the level of the top of the concole : the holes which contrised these have some portions of the iron ras with lead remaining.
The whole of each console received a round mant, which, pasiag through it rested in a hole aunk in the cornice below, the iron collar preventing it from acting aguinst the sides of the console and fracturing it. The maste alone vould not be sufficient to support the weight of the vela, extending over an elliptical aren, the axir of which, in one direction, wan 436 feet, and in the other, 331. To aid in the support, other ponts were introduced through mortices about 10 inches in length, pinced opposite each console, at the projecting part of the moulding which crowns the interior of the attic; on each side, 4 or 5 inches from the edge of the attic, are boles otill containing the lead which secured the iron ties that held these latter pousts in thesir places. Under the mortice holes are others, 8 incbes square, and 2 feet in depth, made in the upper step of the attic to receive the eccond posta. The two postes were afterwards necarely braced.

Over the centre of the arena wat an oval covering, permanently fixed, which in the Coliseom wan ornamented with an immense golden eagle. Round the edge of this oval covering wha atteched a large cabie. 120 pair of cords, of equal length, stretched from the musta on the exterior to this cable, were worked by pulleys; thus forming as many compartmente. Bech pair of cords was furnished with rings, to which the covering was attached, 20 that it could be drawn backwards and forwards at plesure. The whole of thene wert called the vela or velaria, and each single compartwent volarium. The diatance between the ropen on which the velarium ran wan greater towards the attic than at the centre; consequently, to make the velarium ran froely on ith ringa, it win neceasary that it thould be of an equal width throoghout : when rpresd, towards the attic it wat atretched, whilat towarde the centre it ingged, and formed an it were a foid. To prevent the sun pasaing through the opening thas made by the asgring, an internal hanging was atteched around the fixed permanent oval."

The Romans devoted great allention to the constraction of batbs which were generally used by all classes of citizens. At one time, there were more than 800 baths in Rome ; the most complete contained six priscipal aparimenta,-1st. The Apodyterimm, for undressing; 2nd. The Frigidarium, or cold batb; 3rd. The Tepidarium, used to prevent, by the temperate air which it contained, the dangerous effecte of too sudden a transition from the extreme of cold to that of heat ; 4th. The Lacosiums, an apartment warmed by a stove, to send forth a dry heat; 5th. The Balnewm, or warm bath; 6th. The Eleothssium, or Onctuarium, where the oils and perfumes used by the bathers were kept.

We now come to tbat portion of the work which may be strictly considered as connected with engipeering-harboura and buildings in water. It will be seen by the construction of these work that the Romana devoted vast talent to their formation and construction. In our Journal for January last, we gave a highly intereating paper on the Harbour of Ostia near Rome, by Sir John Rennie, together with a plan of the harbous. We are now, through the labours of Mr. Creay, enabled to give engravings showing a section througb Claudius' Port, and the elaborate Pharou.

PRAZOA, AT OfrIA.
"The port conatructed by Clandins, in edvance of that of Trujan, was amongat the boldest execnted by Roman engineert : 一筑 oval sheet of water, enclosed from the ocean by broad and spacious moles, affording a affe haven for veasels which narigated the western ahorea of Italy: an artificial fuland lay between the horns of theae two molen, with towers at each extremity, containing machinery and tackle of various kinds, by which the boatmen could at all times enter safely. These conetractions must have been a work of prodigions labonr; their colidity is attented by the writert of the time, particularly by Pliny. In the middle of this island stood a pharos, before Which wan the colosal statue of the emperor Clandina. Fire was placed, at the approach of night, in the upper story of this lofty structure, which could be seen from a considerable distance. Orders of the pureat architectare decorated three of the stories, and ingenionaly-contrived room and staircasea nerved for the ase of the ofincers and men to whom this part of the port was entrusted. Covered galleries and porticoes standing high above the tem, and stretching far into the ocenn, Invited mariners to onter, and produced an imporing effeet to all who navigated these seas.

The port of Clandins united to that of Trajan gives us an idea of the arrangements in use during the reign of these emperurs; maganines for atores of all kiods, docizs, slips, and other baildinga umally found in a modorn port, were here executed in a manner equal to those of the imperial city. Temples, triumphal arches, rostral columas, and trophies, oceupied the spaces not ased by the marisers, and noble roads condrocted the merchandise and warlike stores from thence to overy part of the ampira."

Descriptions and engraving are given of the harbours at Naples, Cuma, Pusevoli, Speszia, Genoa, Ancona, Antium, Tarentum, and

Brundusion, -all of them possosing comiderable intereat; then follows some scoount of the Roman roads and the celebrated Appian wey, which is anceeeded by

The Bridgee of the Romane.

Thewe bridges are. generally constructed with semicircular arches of stone of the hardeat quality ; they were remartably solid and well proportioned, and formed fine specimens of Roman soblitecture as applied to bridge bailding;-the Ponte Sisto and Bridge of St. Angelo are two fine examples. The bridge and aqueduct of Spoleto consisted of 10 Grothle archew, 70 ft 3 in . $\operatorname{span} ;$ the oentre arches stood 828 feet high above the river Moragia.-Trajan'a Brida, over the Danube, the mort magnificent in Europe, built \&.D. 120 , consisted of 20 semioircular arches, 180 ft 5 io spans the springing were 46 feet ebove the river, and the piers 64 feet thick by 85 ft 3 in. wide: the tones used were opormous, bat it was destroyed a short time after its construction-The Bridge near Terni, on the Nern, con. sisted of 17 archen, 131 ft 3 in . span, and 111 ft 6 in bigh up to the springing; the piers wern 27 ft 6 in . thick, and the total leagth of the bridge 2592 feet, by 82 feet wide. The dimenmions of the few examples we have selected show that the Romass were quite equsi to the modern englaeers in the stapendous character of their work. We shall close this gcoount with some particulars of the Bridge of the Trinity, \rightarrow one of more recont date. (See Eagraving, Plate VIIL.)
"The Bridge of the Trinity, at Florence, wat constructed in 1750; by Ammanati, a celebrated architect. This bold work consiets of three archen, nearly elliptical, the curve being portion of two parabolio arches, whome angle at the top is macked by an excatcheon. The spas of the arches is from 87 foet 7 inchen to 95 feet 10 inches; the apringings ure 7 feet 10 incher above low water, and the rise is ono-sixth of the open; the arches are 3 feet 2 inches thick. The breadth of the piers in 26 feet 3 inchen, and that of the bridge 33 foet 9 inches. The facinge of the piars are worked stone, with well executed mouldingt. The other parta of the structure are of rubble; the fonndations reat on a general framawort, morrounded and crosed by saveral rows of piles. A defect which occurred ander one of the piers of the bridge was repaired in 1811 by the elder Gourg."

The architectural character of the Bridge of the Trinity at Floo rence is particularly worthy of attention, because it is a rare intance of pure arcuate construction, executed subsequently to the decay of Pointed architecture. The "Revival" (or as it ought to be called the "Ruin") of architecture had no more hideous or conspicuous characteristic than that of sticking uponarches ormaments of a totally inappropriate charecter. The taste which promoted this fashion was precisely that of the Indian equaw or Afrioan savage, who stick bite of finery in their ears and nostrils. The Florence bridge, bowever, is singularly free from these faults, though erected at a period when the subservience of decoration to construction was utterly disregardedit has not the slighrest vestige of trabeate construction.

Except in the Pointed period, this merit la extremely rare. Pre viously to that period the Romans, and subeequently to it the Revivalists, treated the arch as a thing to be ashamed of. They endeavoured to disguise its real character as much as possible, -absurdly overloading it wth the forms of Greek temple-archite etare, and producing a nonsensical combination which would appearirresistibly ludicrous, had not a multitude of examples familiarised our eyes to the incongrusty. Let the reader compare Blackfriars or Waterloo Bridges, with their foollsh unmeaning columna, with this Bridge at Florence or London Bridge; and then, If he can so far overcome the prejudices of education, eak himself which is she purer and more sensible architectural design.
We now come to a very interesting portion of Roman engineering -that is, the supply of water. The Romans deroted great zeal and attention to the obtaining of a good supply of pure and wholenome water, -not like the Londonern, who are content with obtaining their supply from the poiluted river, because the whole district of the metropolis is under a modopolising combination.

The supply of Rome with water required seven aqueducts, untll the time of Caligula, when two others were commenced. The mont remarkable were, the Aqua Julia and the Tepula, the length of the two being 17,126 pacea, 7,000 of which were above ground, and 6,472 on archea, -The Anio V etus, length 43,000 paces, 221 of which were subterranean, to convey the water from the Anio, above Tivoli ; at a subsequent period, the water was brought from the river at a greator distance, 20 miles beyond Tivoli, for the purpose of obtaining the water of the Anio in a purer state; the length of this last aqueduot was 61,710 paces, 7,468 being above ground, and the remainder sobterranean. - The Aqua Appia, the first aqueduct constructed in Rome, was 11,190 paces in lengit; the whole, excepting 60 paces, was carried underground and arched over.-The Aqua Virgo, 14, 105 pacea in length - $_{3} 12,865$ underground, the remainder above, on 700 araber.

Fig. 3.-begtion thaodge arch-

Fic. 5.-plan of coffbrdan.

Pig. 1.-section of pieg.

Pig. 2-mplan oy pire and youndation.
"The arches which decorate eome portion of this equeduct are not only well proportioned, bu: receive further embellishment from a regular ard-r of Corinthian columns: where the passage is preserved through the line, the elevation is increased by an additional height. The section at the aide shows the channel for the atream, which flowed in the attic, built above the order, eovered in by a vault carefully worked and well tied sogether: here every prectution seems to bave been taken to guard aguinat leakage, which, if it erer happened, would be immediately discovered, by the pouring out of the water at the defective plece; and along the whole line of aqueduct, materials were deposited, that there might be no delay in the work; there wnuld be aiso less to perform than to take up a whole length of mains laid unier a solid and bard pavement, rendered impasable during the progress. Such an inconvenience in crowded streets, the Romans wisely avoided, and continned to prefer the system of raised aqueducts to those buried in vaulto under ground."

aqta tibging.
The engravings of this viaduct, and also of the Gate of Augustus, at Fano, show a combination of the Traheate and Arcuate architectare, so much adopted by the Romans; although it is highly ornate, the combination of the two do not appear to form one construction:the Trabeate looks like an accessory to the Arcuate, and put up after the latter had been erected. This barharism of attaching idle, unmeaning columns and entabiatures to useful, effective arches, is compared by Hope, in his Architectural Essay, to the barbarous treatment of Lis subjects by the tyrant Mezentius, who tied living mep to dead corpeea. Many a modern architect would do well to think over this comparison.
Drainage was also well understood by the Romans, as may be shown by the great drainage of the Pontine Marsbes, 26 miles in length, and the Cloaca Maxima, a sewer 14 feet in width and 32 feet high, for the drainage of the Imperial City. The drainage of the lakes Albano and Fucino may vie with any of our modern works.
We must, however, abruptly terminate our extracts from Rome, or we shall trespass too far for the length of our review; and proceed at ooce to France. It is necessary, however, to make the preliminary remark, that Holland and Germany are briefly dismissed in two pages, without a single illustration : this conciseness is to be regretted, as those countries afford some noble examples of engineering; particularly Holland, in its canals, sea walls, and works of drainage.

Enginerring in France is very fully noticed, with ample illustrations. Mr. Cresy bas availed himself of the numerous treatises on engineering which form so valuable a portion of French scientific literature ;-be has given detailed accounts of all the principal ports and barbours of France. The description of the celebrated breakwater at Cberbourgh, formed by trupcated timber cones, 150 feet diameter at bottom, 60 feet at top, and 70 feet high, is highly interesting. The lighthouses and canals are next given, and are followed by engravings of numerous bridges erected in France, one of which we have selected as a good specimen of French bridge-building:-
${ }^{4}$ The Bridge of Sevres, river the Seine, on the road from Paris to Versailles, wan designed by M. Becquey de Beaupre, and executed by M. Vigoureux; it was finisbed in 1820, and consists of nine principal sernicircular arches, 59 feet inspan, and two lesser 16 feet 4 inches in span for the towing nath. The thickness of the piers is 11 feet 5 inches; the width of the bridge 42 feet 7 inches. It occupies the situation of an old wonden bridge, and the axis is in the direction of the dome of the Invalides. The piers were founded by means of caissons. The arches were constructed on truseed eentres, which did not change tbeir form during the placing of the vonisaoirs.

All the erches were keyed in Jaly, 1815, except the first on the right bank, where there atill remained fousteen conrses of vonsioirs to place, when or-
ders were given to break down the bridge, and the centre of this areh was first set on fire, and the fourth hlown up by two discharges, which caused the rupture of some of the inner voussoirs of the arches, and it was afterwards discovered that settlement had taken place in the third, fouth, fifth. and aixth piers, the greatest of which was 2 等 inches. In 1818, the sixth pier was loaded with 112 tons, withont any movemeat resulting; it was thought fit, however, to discharge the weight by means of arches in the piers. The foundation piles were 3 feet 11 inches apart, and asch carried a weight of 52 tons; the voidinga, however, diminished this weight by about 51 tons. A general foundation was aleo constructed by throwing in rubhle. The settlements are attributed io the effect of the explosions; but they would not, perhaps, have taken place had the piles been less loaded, or the intervala between them heen tilled in with hydraulic masonry to a height of 6 or 8 feet hetween the ground and the tops of the piles, inutead of with masonry laid in common mortar, which does not harden under water.

In this beautiful example, the roadway is kept perfectly level throughout, and the archea are all of the same span; this was rendered neceasary, a the banks on each side of the river were low, and it was not deemed advisable to raise the crown of the roadway. Which might have been done on the Paris side, but towards the town of Sevres it would have been more difficult to accomplish, as the houses on each side of the street, and the entrance to the royal park, would have been equally inconvenienced. The piera, all of the same dimensions, are of groat strength, their width being aearly equal to a fifth of the span of the arch.

The faces of the voussoirs, which are rusticated and munded, increase in depth towards the springing; the effect is improved by this arrangement, and we have an additional strength given where it is mot required. For the piers, abutmenta, and arch stones, the best atone which could be obtained was made use of, and apparently the atmosphere has produced little change upon it : as the stones laid in the quarry, so are they bedded, and their dimensions and proportions are well defined for their respective situations. In the apandrils and wing-walls, there does not appear to have been sufficient attention paid to the backing, and inferior material is aid to have been used.
This bridge, which has a decidedly Roman character, of which fig. 1, Plate VIIL., is a general view, is one of the beat where semicircular arches have been preferred to the elliptical; the same centre would serve for all the arches, and there is sume economy in auch an arrangement; but the piers occapy together apwards of 90 leet. while the breadth between the abatmenta or water-way does not exceed 622 feet : by the adoption of a fiatter arch, fewer piers would have been required, and consequently more waterway would have been obtained: but the whole ia deservedly much admired, and ita deaign seerns in harmony with the aceuery around, and with the character of the river: over a stream where the tide rose considerably, or the navigation was more important, bolder design might have been introduced.

The elevation and section through the piern (figs. 2 and 3, Plate VIII.) show its solid construction, and the form also of us starlings: over the arch are well contrived drains, which lead off the waters that fall upon the roadway, and conduct them behind the spandrils into the strearn below: the blocking course, which forms the parapet, is supported upon a bold block cornice; and the absence of all balustrade and railing greatly adds to the effect of the atructure. The roadway is paved throughout, and at the sides beyond the water-channel is a footway laid with a gentle inclination."

The works of the United States occupy a few pages, but no illustrations are given of the numerous engiueering works with which America abounds.
Engineering in Great Britain next occupies a considerable portion of the work, which we must pass over until next month, giving now only the description of London Bridge, which we may boast as being one of the finest specimens of bridge-building in the world, and one of the noblest edifices of the City of London.
"When the commitlee of the House of Commons had determined upon the erection of a new bridge, Mr. George Renvio; at the desire of his father the late Mr. Rennic, made the design as it is now erecuted; and as the country lont the services of Mr. Rennie by his death in 1821, the execution of this important undertaking devolved upon his sons, and Mr. George Rennie bolding at that time a situation under the goverbment, his brother, Sir John, who was his junior, was named the acting engineer. Messrs. Joliffe and Banks were the contractors, and the coat, inciuding the approaches, amounted to $£ 1,458,3118 \mathrm{~s}$. 118 i . The first pile for the cofferdam was driven on the 15th of March, 1824, and the datn was fually closed on the lat of April the following year, and after the water had been puoped out 29 feet below low-water mark, it was found renarkably tight.

On the 27 th of April the workinen commenced taeir excavations in a stiff blue clay, after which the sills and planking were laid rearly for the found ttions, which were commenced on the 15 th of June: the first stoue laid was a piece of Aberdeen granite, 5 feet 5 of an inch long, 3 ft .63 in . broad, aud 2 ft .10 in . deep, containing 50 ft .7 m . cube, and weighing 4 tons.
The cufferdarn for the second pier was completed soon after, and parmped out by the 24 th of August; in 1326 the foundations on the Southwark side, comprising the abatment and wing-walls, were carried up, and the secoud pier was commenced.

The cofferdams of the first and second piers being no longer required, a
portion of the pllet were cat off on hoth aides, to prepare them for the support of the centres; and after the horiznntal wedges were fixed on the beads of the cofferdam piles, on the 30th September the first rib was set up by means of large shoer poles and powerful boisting tackle, and by the 10 tb November, the whole ten ribs wefe placed.
When the masonry of the recond pier was sufficiently advanced, the centre, which had been framed in the lsle of Dogs, was floated op the river, and being hoisted upon a large double barge, was raised into its place by means of screvs, apsisted by the tide. The cofferdam of the third pier had by this time advanced, and soon aftermards that of the fourth pier, when it became necesary to provide more water-way by removing the pier between the fifth and sisth locke of the old bridge, and forming a wooden tressel frame of whole timbers for the traffic to pasi. This wai performed at the eoat of $\mathbf{y y 0 0 0}$, by demolishing one half of the arch at a time, after which the pier below was taken away 4 feet below low-water mark. By the th of August, 1827, the firat arch was completed; by the end of the year the second arch was keyed in, the foundation of the third pier completed, and that of the fourth laid. In 1821. the water being pumped out of the north abutment dam, and the excavations made, the first pile was driven on the lat of February, and the entire foundationa completed on the lat of March following; the masonry was then carried up to the springing of the arches.
The firt arch turned having now stood the entire winter, the wedges were struck 2 inches beck on each side, and the crown lowered for an linch; the wedgea were driven hack 4 inches on the following day, when the crown of the arch sank another half inch. On the third day they were driven back 6 inohes, when the crown of the whole arch was clear, and shortly after the wedges were entirely driven back, when the soffite of the arch was accurately examined, and found to have precerved its form entire, although it had towered It inch. By this time the centres of all the other arches were placed, and the maconry considerably advanced : in 1829 and 1830 the cenwres of the middle, fourth, and fifth arches were ahifted back, and when released of their loed, the middle arch sank $2 \frac{1}{2}$ inchen, the fourth $2 t$ inches, and the fifth 1 imeh.
The centre arch is 152 ft . span, and rises 29 ft .6 in . above Trinity House water mark; the arches on either side span 140 feet, and rise 27 ft .6 in . above the asme line, and the ahntment arches apan 130 feet each, and rise above the aame line 24 ft .6 in . The entire water way being 692 feet, the total length of the bridge 1005 feet, ite width from ont to ont 56 feet, and ite height abore low water 60 feet. The two centre piers are 24 feet in thicknens, and the two others 2 feet lens.
The general depth at which the foundation of the piers is laid below low water is about 29 ft .6 in ., and the total quantity of atone ased in constructlng the bridge and its ahutments was 120,000 tona ; the number of piles of 20 feet in length under the piers and their abotments wai 2092, and the lotal number fur the cofferdams 7708. There were four sets of timber centres, each weighing on an average 800 tons. The amoant of Messri. Joliffe and Bank's estimate for the bridge alone, inclading an extra set of centres, was only $\mathbf{E 4 2 5}, \mathbf{0 8 1}, 9 \mathrm{~s} .2 \mathrm{~d}$. The bridge was opened to the public on the 1 st of August, 1831, with great pomp, After having been in progreas seven years and tbree montbs.
The engravings are accompunied by the contract specification, from which we make the following extracts (See Plate VIII.):-

The cofferdams of the abutments were of a circular form, and those of the piers of an elliptical form, as ahown in fig. 5. Plate VIlI, composed of two rows of Baltic timber piles, not less than $12 \frac{1}{2}$ incbes equare, five feet apart, connected together by three rows of donble whole timber waleings; the top of the piles 5 feet ahove Trinity House water mark; there was also a third row of piles pisced 6 feet from the second row ; the heads were level with half tides, or 7 feet below Trinity House water mark; tbe apsces between the piling was filled with tough, well beaten clay, thoroughly puddled; the piling, it will be seen by the engraving, was well secured by diagonal truts, besides mrought iron tie-boils.

Fomataion (Fig. 2).-The platforms of the abutments were laid 34 ft . 6 in , below Trinity Hoase water mark in the front, and 34 ft .6 in . at the back ; the two aide piers 40 feet, and the middle piers 43 feet; over the whole arrface, piles of elm, $\mathbf{A r}$, or beech, 12 inches dismeter and 2θ feet long, were driven into the clay 18 feet below the platform, in rows, 4 feet usunder. All the piles were cut off to a level, and a space of 9 inches deep below the pile-head excavated and fllled in with Kentish ragatone, well beat down, and racked in with five parts of sbarp gravel and one part of lime ; after which, sills, 12 inches square, were spiked on the pilesbeads transversely; the intervening spaces were filled in with brickwork, excepting at the extremities, which were of stone. Above these sills there was laid tongitudinally another row of sills, apiked down to the first row of sills with 18 -inch jagged spikea, and the apaces between filled-in level with Bramley-fall stone. On these sille and atoncs was laid a platform of 6 -inch beech, elm, or fir planks, bedded in nortar, and spiked down with 12 inch jagged apikes, and upon this timber platform the masonry was built. Round the ahutment, sbett piles 6 faches thick and 18 fert long, and round the piers, 12 inches thick and 20 feet long, were driven in ; the whole planed, plougbed, and tongued at the edges.

The masonry of the piera and abutmenta is formed on the exterior face: with granite ahlar, 2 ft .3 in .103 feet thick, with headers $5 \frac{1}{2}$ feet long, and the interior flled in with Bramley-full, Painshaw, or Derbyshire stone.

The fioe arches are tami-allipses, the centre arch 152 feet upan and 29 ft.

6 in . rise ; the arch atones are of granite, 4 f .9 ln . deep at the wown, and increasing to 10 feet at the apringing. The two arches pext the coatre are 140 feet span and 27 ft .6 in . rise; the arch stone 4 ft .7 in . deep at she crown, and increasing to 2 feet at the apringlag. The two side arehes are 130 feet apan and 24 ft .6 in . rise; the arch stones at the crown are 4 ft . 6 in . deep, lncreasing to 8 ft .6 in . at the springing. All the atones are 18 inches thick at the intrados, and increase in thicknest to the extrados, and each arch bat four connecting bars of wronght iron.

The centret consisted of eight ribs of Baltic fir, exceptiag the apridgingpleces, which were eim and the wedges oak; the covering of the centre wat of timber 7 inches thick. The spandrils over the piera are flled ap solid to the underaide of the inverted archen, the depth of wblch is 6 feet is the middle of the two centre piers, and 5 feet for the two side plers.

Roadway. -The interior apandril walls to carry the roadway are of brick, three bricks thick, and on the top are stone corbela 18 laches deep, projecting 12 inches, over which are laid 9 .inch Yorkahire landings, and then the whole surface of the bridge is covered with puddled clay 15 inches thick; over this, broken atone 12 inches thick, is hide and then granite pariog, for the footpathe and road.

Next month we sliall resume our review of this valuable work; and in closing our present notice, we mont strongly advise our professional readers to procure the work itself.

A Treatise on the Principles relating to the Specification of a Palent for Invention. By William Spence. London: rogal 8ro. V. and R. Stevens and G. S. Norton.

The abstruct conception of a patent ls perhaps one of the simplest of legal ideas. The jealousy with which property is guarded in all civilised states, aud especially in this country, takes cugnizance not merely of each individual's right of possessiun to his goods, chattela, and estate, but even of his claims of peculiar advantage derived from his ingenuity and contrivance, especiaily when his exertioss tend to promote the general interests of the cominunity. The poet who exaits the moral and intellectual condition of his countrymen, and the mechanist who enlarges their amount of phyaical huppineas, have equally a reward secured to them by the law of the land; the publisher who pirates a copyright, or the manufucturer who infringes on a pateut, are armenable to the same system of legal retribution that guarantees to every man that which is his own.

Simple and intelligible, however, as is this theory of patent right, its application to iodividual instances is beset with innomerable difficulties. The queation immediately arists, what is the nature of those claims that demand the protection of a patent? ls it anffient that the claimant should mesely have discopered some new and nseful principle, or must he, by an actual inveuted mode of application, have shown huw that principie is to be rendered available? To take an example-would the first person who discovered the mechanical power of steam lave been entitled to a patent unless he had likewise invented a steam engiue? To this the reply is easy. A patent is the remuneration which the State accords to an individual for having realised or done sometling uneful-not for baving merely projected it. Fur the man who discuvers a principle without applying it, cannot be said to have benefited his species; so far as he bitaself is ooncerned, his discovery is useless-he lacks either induatry or talent to turn bis knowledge to account; all he bas done has been to enlarge the means of usefuluess of uther men, and to them, nut to him, is the credit due of all that may result frum the oppurtunities he his afforded them. The laws observed by Kepler, in his lands, might for ever have remained barren isolated facta, had not Newton applied them, and thue given value to what previously were worthless details.
It is clear then that patents are only dae for ioventions, whether they be modes of carrying out new and useful principlex, or improve. ments on the metluds of carrying out old and recugnised prinoiples. 'he next question that presents itself has reference to the absolute originality of the invention. Suppose an inpention to have been made and not datinctly announced, nur so widely promulgated as to bave beengenerally knuwn, and suppose that a discerning individual, having by sume means become acquainted with this invention, had discovereu its merit, has he a right to a patent? Or suppose that another individual, without having been aware of its previuus existence, lad, so to speak, re-inveuted that invention, can lie claim a patent? 'l'be amswer to these questions involves all that is complex in ibe law of pateate ; the degree of promulgation necessary to iuvatidute the chaim for the re-invention bwing su difficult to determine, tuat only persons aceuvtomed to the nicenicy of law, and versed in the precedentin of the cuurts, can in any particular instance venture to give ato opinion At a guide for patenteen through the tangled mazes uffthe luw wre krow nu belter work than Mr. William Speuce's Treati, ase of the Speciges-
tion of a Patent for Invention. Mr. Spence has divided bis rolume into two parta, which logether occupy about 180 pages. The firat division treate of the defecte of claims by which a patent is invalidated; the eecood of the conditions necessary to establish the specification secare gainst all attacks. The first division is prefaced by an introdaction, in which Mr. Spence gives the followiog definition of a patentabie invention:-

4 It mast be remembered that every invention has its birth at a given period in the progreas of manufacturea : that it talses up certain defects and yroposes a plan for their remedy. This is the meaniag of a patentable inveation. Ia defining the true acope therefore of a particalar subject matter of a pateat, dae altention most be paid to this its ossential characteriatio. Fia. : that it leeds us a step on the roud to perfection in the branch of mapofactures to which it beloogs. Hence the necessity for clearly determiniag in the specification the exact position which the invention occu. pies in the murci of improvement."

This defioition appears to us too limited, inasmuch as it excludes all inpentions founded on an entirely new principle; a patentable inrention must be either something tangible, or some specified method of manufacture, the object of which is to produce something useful to saciety.
" Public user," is generally the claimadvanced against patent right: on this subject Mr. Spence is particularly clear and copious. In a country like Great Britain, where the minds of men are constantly on the atreteh to perfect the various departments of manufacturing art, inventions the same nearly in substance will often occur simultaneously or in succession to various persons. The question how far an invention for which a patent is sought bas been previously emploged is epasequentiy often extremely difincult to be settied; experiments instituted for the purpose of obtaining a result which another, and perhaps, more lucky individual has at voce arrived at, are frequently so like "public user," that the jury is deceived by their resemblance. Mr. Spenoe has extracted from the Reports one or two invtances of the lind, and his comments upon them are wortby the attention of all patentees. Previous publication in a printed work of general circulation is another disqualifying fact -and the second treated of in Mr. Spence's work. Lastly, previous specification, on which subject we extract the following observalions.
« Bot in applying this principle to practical cases, it is easy to see that the question mainly turns opon the legal sufficiency of the said specification: to that although evidence of public knowledge and public user is not required (as we bave seen) in principle, yet in practice it is found esmential from its bearing opon the question of sufficiency; for if the deacription of an invention contained in an inrolled specifcation be anintelligible or impractieable, there is no disclosure of a perfected invention. Now pablic ignornace and non-user are some evidence of this; inasmuch as they give rise to the sapposition that tbe apecified plan did not answer its porpose, and for that reason did not come into use, nor become publicly known. Hence it usually occurs that when a patent is alleged to have been aoticlpated by a former specification, the patentee reats his case upon bis ovidence of public ignorance and non-user, unless he is quite satisfed that there is no material correspondence between the two inventions, the heler consideration in such case affording ample grounds of defence against mach attack. It is a monrce of increasing difficulty to the patentee that apeoiftations are conatanty boing inrolled which may not attract poblic atteotion ; there are also many in years pat which are not known to the pablice in any practical sense, and are probably by no means easy of refopanoe, owing to the vagueness and nasuitableness of their patents' tilles: and yot these specifiamtions when discovered are to be assamed as pabLishing to the world whatever they contain. According the legislature, ceasible of the discrepancy between the principle of In w that the iarolied spealfication readers pablic whatever it contains, and the actual fact, senEble also of the occasional hardship to which such discrepancy exposes the paleatee, has devised mesares for his relief, with the view, it wonld appear, of maintaining the said principle ln its general applicability, but preventiog it from pressing with undue weight in individual cases. The aseasares for relief specially alluded to are those contained in the uct 5 and 6 Will. IV. c. 88."

In the next division, we find good faith insisted on, as the first and mont necessary qualities of the apecification. As, by the buture of a patent, the public are restricted from benefitting themselves by an invention, without duly recompensing the inventor, it is but just that the exact extent of the invention should be clearly known, lest the inventor be rowarded for more thau is his due. There is another reason, too, why the specification should be clear and accurate-and that is, that the public may not be deceived as to the value of the ding protected, and thas be deluded into combining with the patentee to earry ont an useless project. The nezt point to be observed is the order of the specification;-un this subject; as a remarkable instance of the perspicaity of our muthor, we shall quote, from p. 78, the following passage:-
"But we come bow to that part of the epecifention which is a sense may
be mid to be the most important of all : the part referred to is the olaim. It is here that the essence, prinoiple or spirit of the invention is stated in the moet diatiact terms. The whole of the furegoing matter is here sammed up and resolved into its one idea. All the previous description of circamstance comes now to be seen only as affording a clue to the right interpretation of this fiaal definition of the essential character of the invention. The claim rightly understood is in fact the specification: but then in order that it may be righlly understood refereuce must be bad to the antecedent matter: and it may indeed be said that the intelligibility of the whule specification greally depends upon the particular interpretation of the claim which is soggested by such reference. It would be comparatively easy to discover what construction to pat upon the claim provided all the former portions of the specification plainly referred to the main idea contemplated by the invention, hut such construction becomes a difilicult matter when inconsistencies are found to exist on a comparison of some statements with others. So far as dificalties of this kind can be overcome, they are sometimes obviated by stating the claim first in a negative form. It is well to calculate upon overy objection being raised to the specification that homan ingenuity can derise: and accordingly it may be foreseen that the true, distinct aature of the invention is lef open to misconstruction by a mere statement of what it is, since it may appear to he not only that, but something more also, (prohably of a prejudicial character) unless guanded from such constraction by a suitable negation. This avurse is partionlarly advisable when the patent is for a new combination of materials or processes, which in their separate form are old or not open to be claimed. Crane's patent is a case in point. It is described as consiatiag in the appliantion of anthracite or stone-coal, combined with a bot-air biast in the amolting or manafacture of iron from iron-stone, mine or ore.' Now the patentee in this case, feeling that the groand to be occupied by his invention is anrrom, proceeds in his specification very carefolly to lay such a foundation as will lead to a right spprehension of his real subject-matter. He showt, that is, the importance in a commercial point of view of using the stone-coal in the manufacture of iron : and thence infers that the abandonment of the article after use (which be cites as a known fact) was owing to some imperfection in the means employed to adapt it to the purpose. He accordingly gives inatroctions as to a practical mode of applying it to this use, the essential featare in which is the adaptation thereto, and combination therewith, of the hot-air blast. And after describing the mode by which be had actuaily cocomplished his parpose, he says:-4 I would have it understood that I do not clain the using of a hot air blast separately in the smelting aod manufacture of iron, as of my invention, when uncombined with the application of antliracite, or stone-coal and culm : nor do I claim the application of anthracite or stone.coal in the manufacture or smelting of iron, when uncombined with the using of hut-air blast. But what I do claim as my invention is the application of anthracite or stone-coal and culm, combined with the nsing of hot-air blast in the smelting and manufacture of iron from iron-stone, mine or ore, as ahovo deacribed.'
"The claim being in thia form anticipntes any objection that might be raised on the ground of interference with the hot-air blast patent of Neilson, except that Crane must take a liccnse from him to use that part of the combination. It also avolds the ubjection of including what was known to be old in the manufacture of iron, so far as a series of (it would appear onsucceasful) efforts to wake stone-coal a railable for the porpose coufd render it so. But it likewise sets at rest all uncertainty as to the real subject-matter of the patent by the positive form in which the claim is atated. So that the whole effect of the claim may be stated as follows:-- Although the patent is not fur the nse of bot-air by itself (that is Neilson's) bor for the application of anthracite or stone-coml without the use of hot-air blast (that has been tried and bas failed), yot it is for the application of anthracite or stone-coal combined with the use of hot-air blast for the manufacture of iron.' And the only question that arises on the claim so stated is whether the subject-matter of a patent can stand upon such narrow gronad. To this question the Court of Common Pleas answered in the affirmative-such opinion, in this case, resting upon the fact that the balance of ovidence at the trial showed a substantive effect to have resulted from the combination, viz., an improved quality of iron at a diminished cost of production. It would seem that before the date of this patent the application of anthracite os stone-coul to the manufactore of iron was felt to a desideratum, but one which was not attained : the patentee, however, sacceeded in producing better iruu at a cheaper rate by the use of this article. To what cause then is his success attributable? The essential difference between his modo of operation und that practised by bis predecessors was, that whereas they used stone-coal uncombined with a hot-mir blast, he used it in combination therewith, und this being the only essential distiaction between the two moden, to such is ascribed the difference of result."

The next two cbapters, on the language and description of the specification, have reference to subjects of scarcely less importance than that on the order of the specification. We shall conclude our notice of the work by quotiog from the final and recapitulatory chapter, the following admirable piece of advice, which all patentees would do well to consider:-
"The argament of the section of good faith is as follows: the general form and constitution of society, with its laws and orders, have come down to as through past ages with the authority of divine sanction; it is therefore the duty (as well as interest) of all who enjoy the protection of the law to uphold ita integrity by honent compliance with its enactments in the
spirit as well as the lefter-departure from which principie for private eods ts wrong, and, because wronk, inex prdient in the long ron.
"Un this gronnd it is coniented that those who purposely exagrerate or dimtnish, or otherwise distort the real fucts which are proper to be iotroduced into the specificution defeat the own ends and greatly injure themselves by blunting their seuse of rectitude."

Trealise on Mechanics. By J. F. Heather, B.A. London: John Weale, 1847 ; royal 8vo. No. I. pp. 48.
To detect and expose error-no less than to supply correct information on all subjects connected with mechanical science-is the constant endeavour of the conducturs of this Journal; and in no lestance are we more forcibly reminded of the responsibility of our position, than when called upon to analyse the merits of educational works professedly adapted to further the ends we have in view. Mr. Heather's treatise is peculiurly of this character; -his claims on publio attention rest mainly on a profession of elementary preciseness of style, as will be seen by the following quotation from bis prefacewhlch will likewise serve to indicate the general nature and plan of the publication:-
"In putting forth a work in parts, it is not usual to make any prefatory remarks, until the whole be completed; bat as I shall introduce into the treatment of the subject, in its earlieat stage, some new enunciations of important principlet, and shall endenvour to show that considerable improvementa can be made upon the manner in which this sobject has been handled, by even ite greatest mastern, I have thought it more courteons to my readers, thas early to call their attention to the infuence which these principles will exercise tbrougbont the sulject.

My endeavour bas been, in the first place, to sttempt, with what succens my readert must judge, to give clear and distinct definitions of the terms thereafter to be employed; and, in the next, to confine tbeir use, on all oceasions, strictly to the sense in which they have been originally defined."

In reply to all this, we are sorry to be compelled to state that tha sucress of Mr. Heather has been in aninverse proportion to his pretensions, that his definitions are not clear and distinct, and that he has lamentably tailed to prove-so fur, at least, as he himself is con-cerned-that "considerable improvements can be made upun the manoer in which this subject has been handled by even its greatest masters." We do nut deny that Mr. Heather may be capable of clearly apprehending plivsical principles; but we dó most pusitively assert, that he is utterly incapible of putting forth his conceptions either correctly or in a manuer intelligible to those among his readera who may have taken up the subject of mechanics for the first time. His phraseology is inaccurute in the extreme;-terms constantly occur to which no definite meaning las previously beeu assigned;his definitions are either uld and well-known forms clothed in a new and loower garb, or when original, generally incurrect.

Lest, however, we be accused of undue severity, wh proceed to give extracts from the number befure us,-pointing out the various paccuracies and failacies as they occur.

The firat four paragraphs of the introduction being purely metaploysical, are, perlitpy, nut strictly within the province of a physical critique. We musi, licwever, ubject to the assumption of the immutability of the law of nature, as derived from the immutability of their Divine Author. The sume face that wus smiling and beautiful at fifteen is wrinkled at fifty;-the same leaf that was green in June is brown in November; - the universe is in a continual stute of change. Why, then, should the laws that guvern this varying world be themselves unvarying? Why might tot the purposes of Cireation demand that they too should be subject to time, aud that by an im. inutuble decree of the Creator?
"While a certain determinate point with respect to a body, always preserves the anme distances from the objects which surround it, the body is asid to be at reat; and, when these distancea undergo succesaive variations, it is said to be in motion."

This definition is neither new nor complete: it is incomplete because it is purely geometrical, and excludes all idea of the mechanical consequences of motion. Suppose the earth the only budy in spaceueither sun nor planets existing, to which to refer its mution;-them, according to the above definition, uny point on its aurlace may be said to be at reat. But the variation of gravity at that point (supposed neither of the poles), arising from the centrifugal force, demonstrates that there must be a mution of rotation of the earth about anazis, and, consequently, that the puint in question is abolutely moving, though, relatively to the other parts of the earth, at rest.
*Bodies, however different in volume, upon which the ame force pro-
duces the anme effects, are said to contain the ame quantity of matter. The quantity of matter in a body in called its mass. Also, the greater the mase of a hody, the greater the number of particies it is anid to contain."

This definition is sheer nonsense. What are we to understand by the word effects? Are atatical or dynamical effects bere alluded to ${ }^{*}$ If statical, beliuld the consequences of this certainly new definition. Suppose one puind of coals supported by a scuttle, asd another by the surface of the earth;-then the weight of the coals " produces the same effects" - that is, the same pressures-on the acuttle and the earth,-Ergo, the mass of the scuttie is equal to the mass of the earth. What Mr. Heather probably means is this:-Any two bodies are said whave equal massen, when equal velucities are generated in them in the same time, by equal, single, and invariable impress d forces, where by equal impressed forces we mean forces that would cause the budies when at rest to exert equal pressures againat fixed phane surfaces perpendicular to the direction of the forces.

From this definition of the word mass-combined with the fact, that the dynamical maasure of gravity is the same for all bodieswe in'er that the masses of bodies vary as their weights. As this definition cannot be understood by the ty ro until he be cunversant with the various measures of force, and the third law of motion, it ought to be deferred until those are explained. In the next number of ithe Journal, we bope to lay before our readers a short account of the meagures of force, the laws of motion, -and the meaning of the word mass, or quantity of matter. At present, we sball cuntent uurselves with stating where we believe Mr. Heather to be incorrect, without any attempt at emendaliun-from which, iudeed, the limits of a cursory review preclude us,
"12. Any two forces which are in equilibrium, when applied to the same material particle of any body, io the same right line, in upposite directiuns, are called equal forces.
13. A force which produces the same effect as two equal forces, applied at the ame point in the ame direction, is and to be twice oue of these forces: a force which produces the same effect athree, is mid to be three times one of them; and so on.
14. We are thas enabled to measure all kinds of forces, by units selected frow the effecte produced by forces of any one kind; and is is found most convenient to select these units from the effects produced by the attractiun of the earth upon bodies near its aurface. We tind, in fact, that all bodies near the surface of the earth bave a tendency to fall towards its centre; and when they do not so fall, we are enabled, in all cases, to trace ous a safficient cause which connteracts, and thus bolds in suspension, the effeet of this tendency; but the moment we remove the counteracting cauce, the body begins to fall, and continues to do so, until it meet with some new obstruction.
15. When this effect is entirely uncounteracted, the anme velocity is always generated in the sawe time in all bodies, whatever be their figures, volumer. and masses. This furce, then, is called gravity, and is measured by the velucity generated in a secund of time; and this weasure is taken for the unit of measure of all other forces which are not in equilibrium, and when our object, consequently, is to find the relations between the torces and the motions produced.
16. When, however, we apply a force to a body in the opposite direction to gravity, so as to be exactly in equilibriun with it, and thus koep the body at rest, in which case it is alad to support the body, we fiad that the force so applied must be in exact proportion to the mem of the body. The effect, theu, of gravity in counteracting the effects of the olher furces appliod to a body, when it is kept at rest, is called the weight of that body; and, in the investigation of the relations anbsisting between the magnstudes and circusbstances of action of forces in equilitritum, the forces are measured by the weights of the budien which they will support."

This is a jumble of inextricable confusion;-the explanation of measures of force-a subject of the first impurtance-is dispused of in about forty lines. Une kind of force is described as produciug effects two or three times as much as anothet; while the uature ci the effects, and their susceptibility of measurement, are left entirely to conjecture. T'bere are many causes followed by effects, whach are not capable of being measured. Alcoholic liquors produce effects which are not capable of beug measured. We camaot say that A is three times as druak as B.
"Gravity, in fact, must be considered as acting apon every particle of which a body is composed, and generanog in each of these partuclea, in the same tme, precisely the atione volocity; and this these particlea nether accelerate nor retara the motion of one another."
-Another instance of the inuccuracy of our author, This assertion, applied to sotating bodies, is absolutely untrue.

We bave now arrived at the end of the introductory clapter;-ti.e remainder of the number contains nulhing very ornginal or very in currect. Tbere is a fierce uttack, ueur the conclustul, ou Yoiseub, fuunded on mimapprehemion of bus menoug; and an inprovement
on the second part of Dachayla's proof of the parallelogram of forcel- which consists in omiting it. On the whole, we think we bave folly justified our opinion of Mr. Heather's merits as an author. We think it possible, as we have observed before, tuat it is to Mr. Heather's inability in writing-not thinking-that lis deficieucies are dup;-to whaiever cause, bowever, they be asaigned, we shall eabelade by colemnly declaring, in old-lady-phraseology, that-A Treatise on Mechanice, by I. F. Heatber, B.A., is a very improper wort to pat into the hands of goung persons.

Tis Great Brilain, Allantic Steam-ship. Twenty-five folios of Engravings. London: John Weale, 1847.
Mr. Weale has at length produced this long* promised work, but not in the state be at first intimated: his reasons for not doing so he gives in bis preliminary advertisement. "The outhor," lie says, "had undertaked to provide accurate drawings, with a descriptive text, which he bas totally disregarded, although repeatedly urged, during a period of two years." For our own purt, we are at a loss to know who bas the right to be called the autbor, or who the pngineer of this vessel. Perbapa Mr. Weale can bereafter explain,-or we may be induced to suy a wurd hereafter.

Tbe plates are got up in Mr. Weale's usual good style, and possess officient interest to make it a work desirable for the engineer. We bave views of the enginea, the boilers, the screw, and sume portions of the iron-work of the vessel, showing the joinings of the iron ribs and plates.

CHAPRL OF JRSJS COJ.LEGB, CAMBRINGE.

The following account of tha recent restorations in this beautiful edifice in piven by a correspondent of the Athenews, with the subscription "D.S." The fellows of the College bave done wisely in entrasting the reatorationssot to a mere mason-but a very competent architect (Mr. Salsin), and it is to be boped tbat no alteration will be nade in the arrangements :-
"It is now more then a twelvemonth since I transmitted to you an acconnt of the discoveries which have been made, during the last year or two, is the Chapel of Jesus College, Cambridge; in the progreas of which so mach of the beautiful architecture of the ancient Church of the Nuns of St. Bhadegund, which had been concealed for the latt 350 yeara, has beed once nore exposed to the sdmiring eyes of the lovers of ancient Art. Since that time, further research bas brought more of the original fenturen of the church to light ; so that, at the present time, sufficient data have been obthined from which to determine the plan, and in great meapure the architecteral character, of the entire huilding ss it stood hefore Biahop Alcock (thereby setting an example followed, a few years later, by Wolse; at St. Prids swidea, Oxford) pared off the excrescences 10 adapt it to the more anoderate requirements of a College chapel. This interesting work has been dose, with his masulability, by Professor Willis. It is asid of Cuvier that, 'give bim a single bone, and he would reconstruct the akeleton;' and those -ho bave heard or read the Professnr's Lectures on the Cathedrala of Canterbary and Winchenter will at once have discerned the same talent in him. Give bima few feet of original walling here-a broken shaft there-the fragment of a base or a bit of a string.course in anme out of the way coran, where no eye leas keen-ajghted than his would have diacovered it,-and is due time he will show jou what the whole building mast have been. The realita of his investigations in the present inatance have been laid before the Cambridge Intiquarian Society, -and will appear as one of the oumbers of thers Trinactions. Meanwhile, 1 may state that this, which till within the last two years seemed to be a plain crose church withont aisles or chapels, now proves to bave been origibally a spacious and magnificent edifice-an eample of the purest early English atyle. The nave, which is oow short and perfectly plain, is shown to bave had aisles, the piers and arches of Which were biailt up into the present walls, and are now partislly uncovered; and to heve extended much further westward, into the Master's lodge-one of the piers being actually discovered in situ in Dr. Freoch's oven. The trancepta had aisles or chapels opening eastward; and the gable wall of the morthern trausept was lighted by a large round-headed triplet, which has been blocked by the Coilege baildings ahutting against it. On either aide of the choir, were two arches opening intu aisles or chapels; and the east wall wat pierced by a triplet of lancet windowa with hlack pannels between. The shattered remains of the original architecture are of snch exquisite hearty, that even had Bishop Alcock's alterations been in the purest taste of bis day we could scarcely have forgiven him the act of mutilation; but when we glasce at the meagre, low-browed windows, flattened ceilings, and other inclegacies perpetraled by him, it mnat be admitted that the good prelate waslmost at wach devoid of taste as any whitewashing churchwarden of the lant fifty yeart. Of cource, it is rain to hope to rostore all the falien florim of the chereh of St. Rhadeguad. We cunnot expect that the Master
should give up his house and his oven to reconitract the nave-neelons as it would be for the purposes of the chapel of a by no means large callege; nor, however gladly we should watch the reatoration of 00 intereating an architectural monument, cad we denire it. Still, it is cheering to see that what is practicalle is being done, and that more is in contemplation. The eastern aisle of the nortbern trassept and the nosthern aisle of the choir bave been rehuilt under Mr. Salvin's directions ; and the arches opening into them-which were discovered hailt up in the wall with scarcely moolding injured or a point of the dog'c-tooth broken-carefully reatored. More beautiful eariy Buglish arches than those in the choir it wonld be hard to discover; and the pler anpporting them is a most graceful combination of four cylinders, contrasting very remarkably with the siordy little dwarf column brought to light in the transept. When the no less beautiful arches on the south shall be alno opened (a work which I truat in only deferred for a short time), the present poor fat cetling be replaced by the original highpitched roof, the wiry Tudor tracing of the east window make room for the triple lancel-both of which latter alterations will, it is underatood, take place in the course of the ensuing summer - and the paltry fittings of painted deal shall have given way to the rich oak stalla which are already being carved after the original model (one having been, fortunstely, preserved in the Lodge when the chapel was 'repaired and beautified' in the dreary last century),-1 know not where we shall be able to find a moreexquisite example of the pure and gracefal architecture of the thirteenth century, or a college chapel (with the exception of King's as beyond all comparison) more beantiful and interesting. By the munificence of the Master, Dr. Prench, the four lancets to the north will be filled with stained glase by Wailes,-and the eastern lancets will be similarly decorated. The glase in the present esst window will be removed to the lerge window in the south transept, which is well calculated to receive it, It is alao gratify. ing to be able to state that the apirit of improvement has extended from the fabric to the tervices of the chapel : an individual member of the College having offered to present an organ, and to train and endow a choir, which will be accommodated in the aisle recently constructed. The asme generons benefactor has presented the college with a statue of Bishop Alcock,-which now fills a niche in the tower over the great gateway. The improvement, both in effect and in meaning, is immense. 1 truat that the college will carry on the good work of restoration hy baniahing the sash windows and replacing the mullions, at least in the tomer windown, if not in the whole front. It is too much to hope for the restoration of the original proportions of the fagade by the removal of the upper atory;-which, as may bo seen from Loggan'a View, is a later addition, sadly interfering with the dignity of the tower gateway. Much, however, has been effected in a most praisemorthy manner ; and it in to be hoped that those to Whom their college is an object of affectionate pride will come forward to aid in the completion of a work 80 intereating ats the reatoration to it original dignity and beanty of the chapel in which Cranmer and Pearson once worahipped."

CANTERBURY CATHEDRAL.

At the Archaological Inatitute, March 5, Prof. Willis delivered a lee. ture "On the Conventwal Buildings attached to the Cathedral at Canterusury," when that bemutiful edifice was the church of the Benedictine monastery there. He had given, he aaid, to the Cathedral, on another occesnastery there. He had given, he andirely separate examiuation; and it waa not his intention to allude to it at all, but he should confine the observations which he had to offer to the remains of the couventual buildings. Thene were interesting, though, onfortunately, concealed, for the most part, in the gardens and privice apartments of the canons; bot every opportunity had been uforded him for making a careful survey of what remained. The result of his ex. amination was now before them; ynd, though iutereatiog in itcolf, heabould out bave eagaged the attention of the meeting on this occasion, but for the curious elncidation which the existing remains receive from an ancieds drawing in a Palter pieserved iu ''rinity College, Cambridge. This drawirg was engraved, but not very well engraved, in the second volumo of the " Vetusta Monumenta." 1t has hitherto gone withont a name (for none is given) ; but the result of his researches would show that it was meant tur the Benedictine monastery at Canterbary, and made some timo between the death of Anselm and the fire dencribed by Gervase the Monk, In 1174. Of this drawing he had made an enlarged and wecnrate copy; and his object was, to ahow the extreme fidelity of the drawing and the interesung illustration which it receives from the scattered ruins that still remain. It would be observed, that the drawing in the Psalter was a kind of bird's-eye view; and that the monk by whon it was made was no grest master of the rules of perapective-for some of the buildings are drawn upou their heads, and uthers upon their sides; but still, it wus eass to upderataud it. Here, in the monk'y drawiog, is the church of the monastery; -here the outer walls und priucipal entrances; --here the chapter-house, cluisters, refectory, durmitury, necessariua, kitchen, brew-house, bakehouse, granary and iutirmary ;-here the prior's house, the apartments of the guests, the hall or refectory for guents, the cemetery and tbe castellum aques,-by far the most curious part of the whole drawing, because it informs us of the ingedious and admirable contrivances of the monks fur the thorough aupply of the whole monastery with water. The Normangato-
way, the priacipal entrance to the monastory,-ropreseated in the drawiog of thn monk-still remains : and he did not know a more beautiful exernple, thoagh somewhat altered in the opper atory and disfgured by minor odditions. The gate of the cemetery no longer oxists. The cloisters in the drawing are Noman, though now Perpeadicular, and with some traces of their Norman origin. The dormitory ruaniag from the cloisters Tas 145 feet by 80 ; and the Normas piers of the sabetructioas, with some of the Norman windows, still remain. In a private garden belonging to one of the canons is a Norman cloister, very little keown, bat a beautifully simpls plece of architeoture, more like an Italian church or one of Wren's or Iaigo Jones's constructions,-and a curious erample of the slight separation between the Romanesque and the atyle from which it was immediately derived. The necensarium (now the site o! the bouse of one of the minor canons) was 180 feet long, with fifty stone reats on each side, and a drain ander each of the aisles. The place was most logeaionsly drained aad ventilated ; for the monks were in advance of the rest of the world not orly in learning, but in the conveniences and comforts of domeatic life. Of this decessarium certain Norman traces remain. Of the refectory, only two sldes are at present standing; but traces exist of a fine oclagon kitcheu, of a browhonse, bukehonse, granary and infirmary. The infirmary was a building complete in itself; having a chapel, hall, refectory and necessarima. This was generally the case; and be would remark, in passing, that the whole establishonent of the sick at Ely has been called the early church of the Cathedral,-when, in truth, it was oothing more than the infimary of the sick.

Of the prior's bouse every portion has been awept away except a cloister under the prlor's chapel. This house would appear to have been so ingeniously fitusted and contrived that the prior could soe from his own house the principal altars of the church. Of the rooms set apart for the guests a Norman gateway still remains; and the bull, or the refoctory for the guests, has been floored and futed up as a residence for one o? the minor canons of the Cathedral.-He would return to the subject of the distribution of the water; and woald firat direct attention to the namber of atraggling lines running about the drewing of the monk-sume green, some red, and some yoliow. These were wrater-courses -for the drawing would appear to have been made to show not the elevations of the monestery, but the machinery ased for the distribation of the water. The canons of the Cathedral are still supplied by wooden pipes from the reservoir in use When the drawing was made. The reservoir was abont a mile out of the towa; and the water-course led to a circular building at the end of the beantiful Norman clolster to which he had already referred. This circular building has hitherto been called the baptistery-but it really is oothing more than the castellum aquat of the drawing ; and on a minute examination he discovered, on clearing the rubble out, the hollow pillar in the centre (ropresented in the drawiug) by which the castellum aque was eapplied with water.

REVULSION IN THE MANUPACTURE AND TRADE OF COPPER.

The copper mines of Cornwall and Wales have, bitherto, yielded 16,000 tons of copper annually; for which, however, 170,000 tons of ore were required, as they do not yield more than an average of 9 l lb . per cwt. These mines will no longer be able to compete with those of other countries, discovered or even worked at the present moment. We allude chiefly to the South Australian mines; the more so, as their riches seem inexhaustible, and lay so close to the surface, that their working will require littie akill and expense. In 1845, the tirst year these ores were brought to Eagland, their value scarcely amouuted to $£(6,000$, while last year it had extended tw $\mathbf{£ 1 0 0 , 0 0 0}$. It would, perhaps, have far oxcoeded this sum, had not the simaltaneous discorvery of gold diverted attention and capital therefrom. It is to be expected that the great infux of emigration to that quarter in general, as well as the aid of German (Freyberg) minors, will aoon eqable the colonists to have their own furnaces, and supply the markets of lodia and Chins, which bitherto have been partly supplied with copper from Eugland.

The mines of North Amorica are aext to be alluded to, which were known even so far back as when the Jesuit Charlevoix visited these places, where (the north-west lakes) he says copper was made into canilleaticks and other church inmplements for the use of the missions. In 1773, a British copper-mine company was formed, but the succeeding revolutionary wars and territorial disputes rendered it ineffective; but, of late, more than a hundred mining oompanios have been formed ou Lakes Huron und Superior. The American press is full of the prases of the riches of these parts in silver and copper; large masses have arrived at Boston, where extensive smolting works are being eatablished, which will make this place the Cornwall of New England. In other parts of the United States also, as in Now Jersey and Missouri, vast layera of copper have been discovered, at which latter place, the mine of Backeyo yields already 15 cons of ore daily, containing 87 lb . per cwt. of copper.

The prospects of Caseda are equally cheerful, and the strate of this part of Lates Haron and Superior are very profitable, and companies have been formed both in Montreal and Quebec, whose surveyors were very active last season. The Quebec society heve began operations at

Maimases, and the first samples of ore yielded a groas average of 50 Jb . per cwit. of copper. The society of Montreal have begon the conatruetion of furoaces and pounding engives on a large scale. Their aurveyors beve fonnd large lamps of copper, one of which woighed two tons, and seame of that metal 60 feet wide by 70 feet deep. The ore is conveyed throgeg the lakes and canals to tie St_{l}. Lawrence, and it is inteaded to cat a new canal at the Sault Ste. Marie, where the commuaication between the Horou and Saperior takes place. As the mine district is a very barren oae, proflable employment will thue acarae to the samounding corn-growing lands.
J. L—T.

THE CENTRAL 8UN.

Althongh it has been known that the sun is merely the central bady of our placetary systen-yet, it seems that it is Mädler's discovery, which will bring us somewhat nearer to the elucidation of the form, exteat, and the stratification (altogether-organisation) of our whole cosmic system, -sach, at least, as it is accessible to human ken, present or future. The discovery of Mädier has already done so much, as to afford us some fixed point from which the furm, extent, and stratification of this hage symen of star-molecules can be ascertained, measured, and laid dowa;-mithough it is obvinus, that $i f$ any one bad, by means of mere speculative induction, begun to extead the hitherto calculation or construction of our gompon orreries-that is, constructed an orrery of all the known fixed stary-the central sun in the Pleiades would have been arrived at, ipeo facto. Bat, Prof. Mädler's central san is (by bis own statement), mol the real central sun, as he cxcludes from his system the Magellanic clouds and other numerons star-nebuls. Then, therefore, only when these vast acen mulations of milky ways will have been properly observed and stadied, the true central star of the commos will be ascertainable. But, even now, the calculation and construction of a world's orrery is becoming n great deside. ratum. The scale, certainly, as we have to deal with $84,000,000$ of parallaxes of the sun-will be a dificult task; still, it is not so mach the laying down of single stars (evanescing in such apaces), than the configura. tion and stratification of what Mädler calls "rings and layers" of stars, which will be the most important. It is impossibie, in viewiog these sabjects, not to thiak of the macro-cosmon of the macients, or still more of what Pliny conjectured on this huge world-system, in saying-" Mundeus -seu quod alio nominc Deum nuncupari fast est." Lib. II. 1 .
J. L-TM.

THE RECOVERY OF THE SPHYNX STEAM SLOOP.

The recovery of the Sphynx stoam-sloop from the fute which was generally predicted for her, has reflected much credit on Captain Austu, C.B.. Commander Caffin, Lieatenant Thompan, of the Victory; Mr. Bullamy, asaistant master attendant of Portsmonth Dockyard ; Mr. Biddlecomb, master; and Mr. Mallard, second master of the SL. Vincent, and the officers and men of the royal nary, and Mr. Watts, assistant master shipwrighi, of Portsmouth Dockyard, to whom was entrusted the task of recovering this fine steamer from off the coast at the back of the lsle of Wight. where she stranded in February last, during a fog. It is imponeible to commend too bighly the exertions of all engaged in the arduous task, and the cheerful manaer in which they endured all sorts of privations. Commander Caftin, of the Scourge steans stoop, was first sent to ussist in getting off the Sphyns. He at once saw the necessity of mechanical help, and immediately applied to the Portsmouth dackyurd, when Rear-Admiral Parker ordered Mr. Watts to go to her, taking 50 mechanics of differeat departments; and no time was lost in consulting on the beat means to be adopted. It occurred to Commander Caftin that they shoold avail themselves of the paddle heams and franiog to upply buoyant vessels of eome kind undernesth, and Mr. Watts thought a raft of casks or of tanks might answer the purpose. The difficalty, however, of lashing or uniting them together sufficiently securely to withstand the immense force of the rollers and breakers, so common off that part of the island, was seen, and Commander Caffio then sugnested the London barge, decked over and applied as cumels underneath the paddle-boxes. On this the framing was imanediately planned, and Mr. Walts's designs were received at Portscoouthyard, where it-together with the barges-was prepared. In the fist attempt with these barges they failed, in consequence in part of one of them having received iujury for want of sufficient security. Uafortuantely it forged abead, and the pump, which projected up through the deck, came in contact with one of the bearers of the framing, and ripped op a portion of it, which caused it to 61l. But even if this accident had not happened, the change of weather would have defeated them. They profted by this experience, and Cummander Caffin having left, Mr. Waits went to work to remedy and improve on the first atlempt; and Captain Austin having arrived, determued on carrying out the plans agreed upon. The burget were found not to possess sufficient booymat power, and consequently they were raised upon so as to bring them up 10 about 140 tons. Mr. Watzo found that the noes of the vessel, instead of being lifted over the roof of
rocke or banks, was rather forced into it by the downmand sotion of the cables whea hove upon; to obviate this he had a thind barge or camel prepared, with a framework at the oxtreme ead sufliciently high (as shown in andexed eagraviag), that when the cables, hawsers, \&c., were earried over it, this downward action, insteal of deprescing the vessel, should predace the contrapy effiect. To accomplish this he placed at the oppostte and of the caroel, firmly wecured to tis deck, two stroag pieces of timber; kept andiaienily asunder for the stem of the veasel to pass between them, mot that forked the stnm. Attacbed to the stem, immediately over this fork, was a otrong cleat on each side. By the depressing of the end on -bich the frame was placed the ead next the vessel was raised, and an upward pressure on the cleats resaltsd therefrom. Beyond this a great portion of the buoyant power of the camel came inlo operation. The nudalations of the sea also coatributing to increase its effect.

The Sphyax, cleared of everything except her engines, drew upwards of het feet of water; and the reef over which she was altinately carried had oot more than air feet on it at the time. She had twice before beed broaght up to this point, and could pot be got over it ; but on the 8rd alt., by the jotnt effects of the camels under the paddle-boxes-the one against the stern, nicknamed the dromedary, and the two liers of casks (alias bolls), noder the bottom, and maln strength in heaving, she elforted the pasage. The outer aboal or reef, on whirt there was only about six inches aore water than on the inuer, brought her up again. The purchases haviag been perhaps prematurely detached from the vessel, not expecting that they would be further required, they impeded the progress of the ressel ora the intermediate fat, and would perhaps have prevented ber reaching une outer reef in time to get over in that tide, so that the result would have bepo the same in either case; thus she was not got entirely over these reefs before ten o'clock on Thursday morning, the 4 :h ult.
The "recovered" Sphyax was then taken into the Angle Dock at Portssoath, on Saturday afternoon, the 6th ult., when it was atated that the resel wes moch strained, inasmuch as the bed-plate and condenser of the regioss were both broken, the former in several places. The kelson bolts were also several of them started up by her thumping on the rocks. The eogioes and boilers have to be entirely removed to repair the injuries suslaned by the keel and bottom planking. The lower part of the knee of the bead was carried away on the 14th of February, by the chain cable, vien the vessel went broadnide on the shore. -The Sphynx was afterwardy brought round to Woolwlch, wher she is undergoing repair, and the enrises are in the hasds of Messrs. Pean, of Greenwich, who recently consutcted the engines, which are of the oscillating priaciple.

THE NEW PLANET.

At a meeting of the Astronomical Society, Febroary 12,-Capt. W. H. Soyth, R.N., President, in the chair, -The Report for the past year was prescated by the Conncil, and read.-On the motion that it be adopted, an ameadment proposed by Mr. Babbage, and seconded by Dr. Fitton-That thin meeting express their deep regret that the Council have not awarded the Society's medal to M. Leverrier, for his pablication of the greatest astrosomical discorery of modern times-was negalived. A second amend. meat proposed by Lieut. Raper, and eeconded by Capt. Bethune,-That it the opinion of the meetiag that the unprecedented discovery of a new placet by theoretical researches, and the acknowleifged title of M. Leverfiet to the honour of that discovery, demand tor him some special mark of the approbation of this Society ; and it be recommended to the new Coungil to convene a Special General Meetiag of the Society, on as early a day 4 may be convenient, for the purpose of suspending Articies 2, 3, and 4, of Section 16 of the Bye-jaws; and that the printing of the Report be delerred till the sabject ahall have been brougbt under the consideration of mech Special General Meeting-was negatived. A third ampadment proproed by the Rev. R. Sheepuhanks and seconded by Mr. Drach-Thint a lapecial Geperal Moeting be called to consider the propriety of granting a medal to BI. Leverrier, for his researches respecting the planet exterior to Uraban and a medal to Mr. Adams for his researches on the sume suhject -wa alio pegatived. A fourth monendment proposed bs the Astronomer Hoyal and seconded by Dr. Lee-Tbat a Special General Meeting be called miter the ordinary Meeting of Marct 12, to consider the following rendutions:-That so moch of the Byelan as relates to the number of malals whith may be adjudged in any one sear, the time of giving notice
of the propoeal for a modal, the time of adjedging the medal, and the time of presenting the medal, be suspeaded pre hac tice; That the Council be authorised to award two (or more) medals, if they shall deem it expedient to do eo: That the awand of the Couacil be commenicated to the Society, and that the medal or medala be presented at the ordinary meetiog of A pril 日-was carried.

BUDDHIST ARCHITECTURE.

At the Royal Asiatic Society, Colonel Sykes read an extract from a letter recejved from Captain Kittoe, who bas been making some recent aotiquarian researches about Gyah, anciently one of the seats of Boddhism, deacribed by Dr. Buchanan Hamilton, in the aecond volume of the Society's Transactioms. Capt. Kittoe states that he has found and copied a namber of inscriptions, some of which he promises to sead to Col. Sykes; and that he has heand of others, some miles inland, never yel soed by any Enropena, which he inteads examining. He was unsuccessful in his search after remuins of Buddhist architecture, having met with but four or five fragments; but he found a great number of small scolptured stones, which he tbought were miniatore chaityas or shrines, a sketch of one of which be forwards in bis letter; the base being a cube, the upper plade surmounted by a bemisphere, from the apex of which rose an obeliak. In each of the four vertical faces was a compartment, containing a figore of Buddhe, the figures in different attitudes; and be atates that such stones are found, not in Behar only, but in Cottack alao, where he has seen several. He remarks that they resemble closely the pagoda at Rangoon, where five hairs of Buddha are kept as relics. Many of these are of elaborate workmanship; and some have images of Buddha in rarioas postures in the different compartments; generally sitting with the hande folded, but sometimes erect ; and a few seated on a bench. One of them, which be has in his possession, is inscribed with the usual Buddhist formula, yedharma hetx prabhava, which is decisive of its appropriation. Col. Sykes ubserved that these chaityas in all probability are representation, or the identical thrices soen by the Chinese traveller, Fa-hien, at the beginning of the sth centnry of our era; and afford a valaable attestation to bis truth respecting the then existing beliof in tho four Buddhas, the predecestort of Sakhya.

Captain Kittoe believes the present temple at Gyah to be leas than 600 years old, and to hare been built for the joint worship of Siva and Buddha. He thinks he shall be able to trace the amalgamation of the sects by their sculpture; and he is preparing to make drawings of the most intereating of these relics. Captain Kitioe atates that be has discovered another of Asoke's pillars, at Bukrowe, the site of an ancient city of the Boddhists, on the banks of the Lilajon. It was hroken, many years ago, into three pieces, one of which was brought to Gyah by Mr. Bodham, and aet op in the bazaar, where it goes by the name of Bodham's Folly, an apt illustrition of the light in which the natives of India, and too many of our own countrymen, regard the preservation of such remains of past ages, from which alone the recorery of any portion of the ancient history of the country can be expected. The Raja there suggested to Captain Kittoe that he should make rollers for the roads of the fragments of the pillar! One piece of the pillar, the base, is almost entirely buried beneath the surface. Cap'ain Kittoe is about to dig it ont, with a view to its preservation.

Colonel Sykes remarked that this discovery affords another proof of Fahian's trustworthiness, as it has brooght to light another of the pillars mentioned by him, but which had hitherto escaped notice.

LITHOGRAPHIC STONE IN ARABIA.

At the Royal Asialic Sociely, the secretary read a paper which had been furaished by the Hon. East India Company, containiag an account of the discovery of a quarry of good lithographic stone on the southern coast of Arabia, which will be available for our presses in Bombay, and other parts of Iodia, which at present import a considerable quantity of that kind of limestone from the quarries of Germany. The discovery is due to assistant-surgeon H. J. Carter, who is employed in the survey of that coast. In the course of bis duties, to the N.e. of Aden, Mr. Carter found that much of the land was of calcareous formation, of various series; the limestone was of a very fine grain, which induced him to gather some specimens, and forward them to Dr. Buist, of Bombay, for the parpose of trying their quality in lithography. The stratum composing this finegrained stone lics three or four miles inland, and close to the summit of a descent, down which the blocks might be rolled, with very little trouble, close to the water's edge, where they might be immediately shipped. The inhabitants of the country, though somewhat fierce, are easily managed by proper treatment, and would readily protect persons employed to work the quarry; and Mr. Carter suggests that means should be taken to ascertala the quantity of produce the quarry is capable of yielding, - an investigation which his duties on the survey did not allow bim leisure to pursue.
The repurt of Dr. Buist was very favourable to the quality of the stone. It was repeatedly tried, with some disadvantages, upon the native presses, and found to take the drawing with perfect facility, and to priat with a purity not surpassed by the very best stones imported from Munich. Dr.

Baist gives some account of the native presses, of which there are above a dozen in Bombay alone; with details as to the expense of quarrying and froight, and the probable price aod consumption in India ; and is of opinion that the stone might even be advantageously carried to England. He conclades with recommeading the Iadian goverament to direct a few luas to be brought to Bombay for the purpose of naking the experiment on a larger scale, by the first vessel in their service which may chance to be in the neighbourtood of the rock.

COPPER MINES IN ARABIA.

A paper from Mr. Carter wae read at the Aaiatic Society, "On the Cop. per-mimes in the island of Masteera, on the coast of Arabia," which he had been induced to search for in consequence of recuiving information that the Persians had formerly wrought copper-mines la the isinad. He had made several attempts to fad the mines, but without suocess; the nativen denied all moowledge of their existence; and he was about to relinquish the search, when, landing one morning in the month of February, 1846, on the westernmost part of the island, he accidentally fell in with some patches of hlue carboaste of copper, -a specimen of which was laid opon the table. Mr. Carler, now confident of success, at once proceeded to search the neighbonrbood. He soon fell in with some old smelting places; and im. mediately after found the vein itself, with the mineral in sitm. After describing the aatore of the mine, which appears to have been litule worked, Mr. Carter states that he aftermards found copper in other places; and that the inhabitants, fioding coacealment no longer possible, discovered to hlm, of their own accord, other veins and smelting places, which they said had been built by the Feringhees. Mr. Carter states, that the inhabitants, though at first fiercely opposed to the landing of the surveying party, were soon conciliated; and that the utmost goodwill subsequently prevailed moog them duriog the whole time the vessel remained in the neighbourhood. They are very steady and industrious; and their habits are in decided contrast with those of the Bedowins on the main land; and he is quite satisfied that any attempts to work the mioes would meet with every essistance in the power of the natives to efford.

TYRE AND SIDON.

A paper by Capt. Newbold was read at the Royal Asiatic Society, "On the monntainous cumntry between the coasts of Tyre and Sidom and the river Jordan," a part of Paleatine hitherto almost a complete blank jo our maps. Captain Newbold proceeded in 1845 from Tyre to Banias, and returaed from Hasbeia and the castle of Shukif to Sidon. He thus traversed the country in two direcions; and bronght back with bim a copious list of geographical names in the origival orthography, most of which ure wanting in Mr. Smith's valuahle catalogue. The country is divided into the districis of Esh-Shukif and Beshareh; it comprebends an area of 408 square milea, being about 26 miles from north to south, and 18 from east to west. The shore district is the celebrated Phoonician Plain; it rarely exceeds two milea in width ; and in many parts the monntains come down close to the sea in bold precipices. The maritime tracts are undulating, and vary in elevation from a few feet to 100 yards. The inland portion is about 200 feet high; reaching in sonse places to near 4500 feet, and geparated by very narrow valleys, which are extremely deep and precipitous. Two rivers, the Litani (the ancient Leontes), and the Lohrani, pass through it to the sea ; and a nomber of amall rivulets, ronning to the Jordan, draiu it towards the west. The principal rock is the marine limestone of Lehanon, penetrated by extensive dykes of busalt, accompanying lines of fracturt, which appear to be connected with the fearful earthquakes of which the country has so frequently been the theatre. The crater of an extinct volcano, with its steep and rugged sides of lava, and evident traces of former action, were seen by Messrs. Robinson and Smith, and described in their work. Much of the conatry is cultivated; wheat-fields are namerous; and the vine flourishes in the volcanic soil : cotton also grows, but the staple productions are wheat, millet, beans, tobacco, and lentils. The popalation amounts to 15,000 , -about thirty to the square mile; and is composed of Greeks, Druses, and Arabs. Captain Newbold examined the cavities in the cuast which have been talen for the dye-pots of the Tyrians, and found them to be nothing more tban natural rock basios, excavated by the action of the tide. He says they occur all along the coast of Syria, from Gaza to the Orontes. The old city of Tyre is buried under the sauds; and forms an ineshaustible quarry wheace materials are drawn to build and enlarge the cities in the vicinity. Captain Newbold saw a brautiful marble torso of Minerva, as large as life, recently found among the ruins, and now in the possession of a native of Tyre. He communicated the circumstance to our consul at Beyrat, with the hope of preserving it from forther injory. Some interesting accounte of remarkable spots in the interior, which were visited by Captain Newbold, coocluded the paper.

OP THB SUCCESSIVB PHASES OR GEOLOGICAL SCIBNCB.

Abstract of lecture delivered at the Royal Inetitution, March 5th, by Prof. Ansrad.-The lecturer stated that he proposed to give something of a paychalogical view of geological history, tracing the successive idens that seem to have chicfly contributed towards the advancement of the ecience.and pointing ont how far these ideas involved trath, and how far errors of exaggeration, althongh they were usefol an saggesting cew viewa and observations. After reviewing the philosophy of the ancients and the cosmogony of the Middle Aget-which latter be diacribed as without the true aspect of philosophic inveatigation-the lecturer referred to the discoveries of Werner as being the firat which diatinctly created geological science. He stated that thene discoverie induced three importent asumptions:-first, that the whole crust of the earth bad beea deposited mechanically from water; econdly, that the newer deposite were generally borizuntal; thirdly. that there was an invariable order of superposition of similar mineral types. The idea thus involved was that of "the universality of formations," and a perception of order in the arrangement of the materials of which the eartb's crust is made ap; and the idea was described aseful and soggestive, although the conclusions were in many important respecte ansonod. White Werner was thus laying the foundation of geology by observationa and speculations on mineral structure, William Smith, the father of Bnglish geology, had obtained an Insight into an important fact concerning the distribution of fossil bodies ; and at the asme time Dr. Hotton, in his "Theory of the Earth," bad recognised a auccession of worlds and a bistory of the nature of the succession by the agency of causes dot different from those still in action. The idea involved in the discovernes of Smith was, that " fossils are characteristic of formations;" Wbile Hutton firat appreciated the importance of existing causes. The next step in geological discovery was described as the result of Cuvier's investigations in palmontology, and the establishment of the law of the adaptation of atructure to habit in all animala. This law, however, is combined with another, also of great import-ance-that tbere is in all nature a permanence of typical peraliaritiea. Modified and brought to bear on fossils in this way, the "law of univeraal adaptation" wat described as the auggestive ides in this step of geological progress;-while the law afterwards made out coucerning the representation of apecies in time as well as apace wat mentioned as affording important accessory aid in applying palmontology to the determination of geological problems.-After referring to the aubject of geological clasification, and describing it ts the resolt of the working out of these various laws, the lecturer briefly stated tbe actual resulte of observation in descriptive geology, and the natare of the most remarkable speculations in physical geology ; -but the latter were rather indicated in allusions to the desiderata in that department than dwelt upon or described directly. Avoong thewe desiderata be particularly referred to the condition of knowledge with regard to metamorphic rocks,-and their relations with rocks of distinctly igneous origin, on the one hand, and the fossiliferous stratified rorka on the other. He stated that uuch yel remaina to be done in connecting the present with the immediately antecedent condition; but expressed grounds for belief that investigationa actually in progress may lead to some satisfactory and fixed conclusions. The making comparative ohservations on a large scale was mentioned as an important means of advancing geological science : and in conclusion, Prof. Ansted spoke of the necessity of distinguinhing in all casea the true objects of geology-and stated his firm conriction that geo. logy wonld soon occupy a very important place as an inductive science, lead. ing to great practical results.

RAISING AND SHAPING METAL BY STAMPING AND PRESSURE.

Abstract of lecture delivered at the Royal Institution, March 19, by Mr. Carpmagl.-The lecturer's purpose was to show how objects of extreme perfection of workmanship and of great use in daily life are produced by simple manipulation. Having adverted to the old proceas of stamping sheet metal, and remarked that this process generally required that the article slamped should have a fange or rim, and that the process was inapplicable to any ornamental work which required undercutting in the sculptured part, Mr. Carpmael proceeded to describe the improvement lately introduced by pinning (i.e. burnishing to form), whicb is perinrmed by fixing the object in a latbe and pressing its surface with a blunt tool ; and explained bow, by means of a divided mandril, uadercut forms could be obtained. He then pointed out that this burnishing to form could be alternated with earfing, and that the fiange was rendered unnecessary in the casting process-the metal being driven througb a conical mould much on the principle on which pipes, \&cc. are drawn: the difference being that in the process which be wes describing, the object was forced through the gradually-contracting aperture by the blow of a lieavy weight falling on its lower surface. Mr. Carpmael preanted an example in a tea-pot, made of tinned iron plate by the joint process of casting and burnisbing to form. This article, which is of the best fabric, is sold (wholesale) fur 1s. 8d. Mr. Carpmacl also exhibited the macbines by which tin is sbaped into boxes and bottles for holdiag colonnt perfumes, \&c., by squeezing a small ingot of this ductile metal by a powerful pressure.

HISTOLY OF ENGINEERING.

By Sir J. Rennig, Pgesident of the Ingtitution of Civil Enainebre.

(Continued from page 81.)

Railways.

Whilat the tarnplke road and coach system was rapidly advancing towreds perfection, numerons active and inventive spirits, aspiriag after better things, were basily employed in racking their braias to inveat a mode of travelliag, or locomotion, which should far exceed its predecessors ; great difficalties howrever preseated themselves-and amongst the agents which were thought of, oont appeared so well adapted for the object as stram, the success of which, in the hands of Watt and others, had proved notriomphant, wherever it had beed applied; but, io order to attain the wished for velocity, a different kind of road was required to that which had hitherto beea ased: and at length the railway system was introdoned.
Hailways, formed with wooden rails, or parallel pieces of wood, with earriages having wooden wheels to run upon them, had been in use at Nemeartle as far back as 1681, for the purpose of conveying coal down from the unines to shipping-places on the baoks of the Tyne ; Labelye, in 1743, described improved carriages, used by Allen in stone quarries at Bath, having wheols with fanges of cast iron, adapted to ran on wooden edgo.rails; being an improvement opon those at Newcaste; afterwurds, the woodea rails were plated with iron, which made the carriages rua more eaily with a greater load ; cast iron rails, or plates, were brought into ueo for the first time by Reynoldg of Colebrook Dale in 1767; and more completely by Curr at Sheffield, with wagona having cast iroo wheels withont fanges, the rails being in the form of tram plates ; and io 1769 Edgeworth introdaced throe or four wagons drawa in a traia, by one borse. These iron tramways, laid npua stode blocks, with the carriages ebove described, having smooth-tyred wheels without flanges, came into general ase, for drawing coals, stone, and other minerals, from the mines and quarries onderground, and al short distances from canals; bat no lines of any great leagth were made for general trafic. The first line of any any extent, it is believed, was that at Loughboroagh, by Jessop, in 1789 ; aloo between Cardiff and Merthyr Tydvil, the act for which was obtained in 1794; this was followed by the Croydon and Surrey ruilway between Wandsworth and Merstham, in 1804: for the periods, all these were coneiderable works of the kiod. About this time railways were used by the coarractors during the execation of great works, at the Condon, the East, the Weat India Docks, and other places, where the tranaport of vast masses of materiale was required; when the works were completed, the ruile or phates, which were made with side Alanges to keep the wheels ln the places, were generally sold, and were occasionally uned for coastructiog short lines to canals and shipping placen. The only power upplied to draw the wayons was that of horses. Those ruilways were considerod inferior to canals, and were seldom ased, except when the traffic was chiefy deacending, so that the empty wagons could retura with facility.
Locomotive Engines.-The application of stean power to the pmpulaion of carriages might, it would seem, have natnraliy commenced with carriages on the common roads ; but so many difficalties intervened, that the attempt was not made until after it had been effected on railways. Dr. Robioon proposed it to Watt in 1769, and Durwin mentions it in 1790; bat the application of Newcomen's or Watt's engines, for propelling carriages, conld not be attempted with any probability of success, as they required copioas and constant sopplies of cold wuler for condensing the ulen, which would have readored the machine so cumbereone aod unwieldly as to be anmanageable. Watt's practice was to condense the zemu at a comparatively low temperature: for although he tried it in almoot every state, from high to iow presaure, he oltimately, uader all circraslances, preferred employing steam at abont 3 lb . above the pressure of the atmosphere. Amongst his earliest investigations he made a model of a bigh-pressare eagine, which acted very well; and he described a highpresure locomotive engine in his epecification of 1784 ; but he considered ream at such a high presanre to be ansafe, and did out make any use of it. His ascistant, Mordoch, afterwards made a working model of a loconotive eagine which acted very well, but he did not pursee it further. Leupotd bad proposed a bigh-pressure engine in 1726; and one was made by Cagoot af Paris in 1770 for propelling a carriage, bat it fuiled entirely, and mas bever used.
Trevithick and Vivian obtained a patent in 1802. for high-pressure en. gines, in one of whicb locomotion was to be produced hy the adsesion of the wheels, propelled by the engine workiug on the road. They also proposed ribbed wheels with nails or bosses, for the purpose of enabling the engine to ascend steep places. In 180 t they made a locomotive engine, whieh travelled apon the Merthyr Tydvil railway; It consisted of one bighpresare cylinder, with a fy-wheel, and four bearing-wheels, two of which were tarped by the sction of the piston, and produced a velocity of ive miles an hoor, drawing after it several wagons, contaning a load of about 15 tom. This locomotive worked by adhesion alone. The experiment wat sot continued, because tbe weight of the engine, with its cust irun boiler, was considered tor great for the rails, and might have occasioned conaiderable demage to them, and if the weight of the engiue had been radand rufficieatly, it would have been too light, and the wheels would have
slipped opon the rails. Thus we eec, that the great princlple of adhesion, for producing locomotion, was clemrly anderstood at the outset, and was ooly abandoned in consequence of the cast iron plate rails at that time in use, being onfit for carrying it into effect. In addition to the objection on the score of the weight of Trevithick's lucomotives, more serions opposition arose against them in consequence of one of them having exploded in 1803. This objection was made to all J'revithick's locomotive engines, although ultimately they cane into use. He bud made an attempt to propel carriages on common roads by steam in 1806, and constracted a carriage worked by stemm, which was oxhibited publicly, In the noighbonrhood of Bethlehem Hospital. To that ingenious and able man the origin of the locomotive system may be ald to be due. In 1811 Bleakinsop took ort a patent for asing rails, having teeth like a reck io them, into which wheels, having corresponding teeth, were worked by the engiae, thus securing the engine against the chance of slipping. This was brought into use for conveying coels frum the Middieton Colliery, near Leeds, which may be said to have been the first praotical employment of locomotive engines; bat the expense, friction, noise, and slowness of the motion, which scarcely exceeded four to five miles an hour preveated it from being generally adopted. In 1813 Bruaton took out a patent for producing locomotion by levers, worked by the engine, resenbling a good cieal the motion of a horse. This however failed, and a serious accident occurred by the explosion of the ongine attached to it. Chapman followed, and pateated an invention for producing focomotion by means of chains laid along the line of road, passing roand the wheels of the locomutive, and thus travelled forward. In 1813 Blackett resumed Trevithick's original plan, and constructed an ongine which worked by adhesion alone, upon the rails at the Wylam Colliery, at Newcastie.

George Stepbeason in $181 \&$ Improved apon all the former locomotives, sad took out petents in conjuoction wlth George Dodd in 1815 , and with Losh io 1816. The locomotive, in his hands, so00 hecame sufficiently perfect to be brought into general use on ruilway, for drawiog coal wagons at a greater rate than could be performed by hopses. The weight of the engine was sustained on the asles of the curriagen, by means of small pistons working in cylinders, sopplied with water from the boiler, which acted like so many springs. Two steam cylinders were employed, and all the fuar wheels were impelled by them; the engine was followed by a tender carrying water and fuel. Here was a grand epoch in the history of railwaya, which were destined at no very alatant period to effect anch a completo revolution in the whole system of international communication, and to realise such extroordinary results, as oven the most sanguine miods oever anticipated. Jamas, who had examined the machines, published a letter in 1815, proposing railways as ageneral system for travelliog. The general introduction, in 1816, of the cast iron edge rails, and the fanged wheels, which are said to have been invented by W. Jessop, long before, on the Loughborough railway, instead of the cast iron tram-plater with which the earlier railways had been laid, was anon followed by the intro. duction of wrought iron rails, in long pieces, at Girst, in plain molled bars, and afterwards rolled with projections on their upper edges, in order to give breadth for the wheels to run opun, as well as to incrense the strength of the rails and enable them to boar greater weights without yielding. This was the pateat invention of Birkensham, who made them in 1820. The above were great improvements in the syatem, and by degrees, all the details were wrorked out more effectaally at the different collieries near Nowcastle, and in the North, until the locomotives were 80 far improved, as to enabie them to travel at the rate of seven to eight miles per hour, drawiag considerable louds behind them. The Hetton and the Stockion and Darlington railways, by Stepheason, which were opened about 1825 , contained all the improvements made op to that time; and the last act of parlimment of the latier line authorised the ase of loconotive engines.

The Liverpool and Manchester Ruilway Company obtained their fint act in 1826, under the Messra. Rennie, but the kind of tractive pow or to be employed was left open for future determiagtion. The railway works, however, proceeded, and considerable progress was made before it was decided what puwer should be employed. The company employed Messrs. Wulke: and Kastrick to investigate the different means employed in the North as tractive power on railwags, and to report which, in their opinion, they considered best adapted fur the railway $\&$ upon the whole, they reported in favour of using stationary engines to draw the wagons and oar. riages. Siepheuson and Rennie were in favour of locomotive power. The dirictors took up the matter with considerable spirit, and offered a reward of tive hundred guineas for the best locomutive engine. The competitors for this premiual were, Stephenson, Braith waite and Ericson, and Hackworth aud Brandreth. The weight of the engines was restricted to 6 tone, inciudug tue water in the boiler, and the load was limited to three tianes that weight, to be conveyed at the rate of at least 10 miles an hour. A trial of the entines of the three competiturs was made una part of the Man. chester and Liverpool railway, in 1829, and the extraordinary speed of between 20 and 30 miles an hour was realised by Stepheason's engine 'Rocket': So long as the motiou upon the rails was produced by the rack and pinion, the greatest velocity attuined scarcely exceeded 4 or 5 miles an hour; this was only adapted for the transport of heavj goods, aud the expensr, except in few siluations, precluded it from being extensively brought intu use; but the priuciple of adhesivo being established, and 7 aud 8 inites an hour obtained, the success of this gremt invention becume evideat, aud it was predicted that ite edoption would be general. Still, bowevar, duubt and prejudice provailed with many, and awongat them
were some men of no ordinary ability and experience，and it was not until the triumphant suocess of the great experiment in 1824 ，that the most scep－ tical were convinced of the application of the aystem eventually becoming maiversal．The scientific world beheld with amazement this extraordinary result，the conseqnences of which could hardly be foreseen．8pringing at once from a velocity of travelling of 10 aiiles，the greutest speed of coaches， to 25 miles an hour，so far exceeded even the most sangnine expectations of its promoters，that they saw no bounds to its exteasion．
Stepbenson＇s engine for the competitiop was apon an improved plan； the boiler contained cumerous small tabes，through which the fame，or rather beat，from the fire－box or furaace，was made to pass，thus oxposing a greater surface of water for the heat to act upon，and increasing its powers of evaporution．Booth，the indefatigable secretary to the company，bas the oredit of this great improvement，which is now universally adopted，not ooly in locomotive，bat also in marine boilers．The engine had two cylin－ ders which impelled the wheels，and the waste atean from the cylinder was discharged through a small tube or blast－pipe into the chimney，with a vertical jet，thus increasing the draught of the fire，and enabling it to produce the desired heat in the fire－box．This blast－pipe was a most sim－ ple，ingenious，and important invention，which has contributed very mate－ rially to the improvement and perfection of the locomotive．The merit of this is claimed by both Stephenwon and Hackporth．Tbe boiler and ap－ paratus were supported on tbe frame by springs，in the amme manner as in ordinary wheeled carriages，thus preventing the concussion to which the different parts would otherwise have been subject，and enabled the machine to work with greater effect．The＇Novelty＇by Braithwaite and Ericson， was also a very ingenionsly contrived engine．The＇Sans Pareil，＇by Hack worth，was an improvement opon previous engines，bnt did not fulfl the conditions required so well as that of Stephenson，to whom the premium was awarded．Looking back at the result of these experiments．and what has occurred since，it appears injudicious that the weight and size of the engines should have been thus limited；for inasmuch as the power of traction of a locomotive engine depends upon the force of adhesion，which could only be produced by weight，and its capability of generating steam by incressed dinensions，by limiting these two elements the power of the engine was necessarily reduced．Upon reflection，however，we cannot be surprised，for nothing but experience could have pointed out beforehand the present extroordinary results．
The Mancheater and Liverpool railway was opened in September，18s0， with great ceremony by the Duke of Wellington，Sir Robert Peel，Mr． Huskiston，and an immense concourse of spectators；bat unfortanately this great event in the mechanical，commercial，and social world was clouded by the death of tbat great man，Huskisson，in consequence of a locomotive engine passing over bim，thus becoming one of the tirst victims of that extraordiosry invention，of which he entertained so high an opinion． The first engines for this line were made by Stephenson，after the plan ot the＇Hocket，＇but improved；and in other engines made soon after，he in－ troduced a better arrangement of the parts，giving a greater number of wbes to the boiler，and adapting cranked axles to work the wheels；the first of tbese was the＇Planet；＇which aftervards served as a model for the locomolives on othor railways．Great improvements have sioce been made；heavier angines，weighing from 18 to 90 tons，capeble of evaporat－ ing 200 to $\mathbf{3 0 0}$ cobic feet of water per hour，instead of $\mathbf{6 0}$ cubic feet，as in the early engines，with tebders capable of carrying 1000 to 1500 gallons of water；straight axles，whit ontside cylinders，like those of the＂Rucket；＇ have been again introduced，in order to increase the power and to obviate the objections raised against the cranked axles，as to thoir luability to break；engines，with six wheels instead of four，are now generally ap－ proved，as being safer；and those with coupled wheels have been made to iocrease the adhesion on steep planes．Improvements in the slide valves and working gear have been made for using the steam expansively in the cylinders，and rendering the enyines more manageable either for back ward or forward movement．The increused size and power of the engines have enabled them to ascend planes of 1 in 37 ，as on the Gloucester and Bir－ mingham railway，drawing after them heavy loads at considerable veloci－ ties，whicb，at the first introduction of the locomotive，wonld have been im－ possible．On that line，at the Lickey incline，engiwes made in America were at first used．

Laying the Raila，－The mode of making and laying the rails of the per－ manent way has also pariaken of the improvements in the engines；the eriginal rails of the Manchester and Liverpool line weighed only 30 lb ．per jard，of the form termed＇fish－bellied，＇and，for the most part，were laid upon stone blocks，after the plan of the colliery railways，on which the speed rarely exceeded 2 to 5 nulles per hour，but when it was increased to 80 or 30 miles per hour，greater strength was necessary．The concuasion produced by snch heavy engives and trains，weighing from 50 to 300 tons， travelling at the rate of 20 niles and upwards per bour，soon deranged the light rails，and the concussion produced by the stoue blocks rendered the employment of some more elastic medium desirable．Accordingly，heavier rails，parallel in depth，with a rib at top and bottom，were adopted，after the form suggested hy the experiments of Professor Barlow，with as mach weightan the art of rolling iron could give，until it reached 76 lb ．per yard； isstead of stone blocks wooden sleepers have been preferred；heavier and improved chairs for supporting the rails，with side keys of hard compreased wood to keep them in their places and resist the concusaion，have been adopted；in this latter department liansome and May bave introduced great changen；the aleeperi have been steeped in preparations from the pa－
tents of Burnet，Kyan，and Bethell，for the purpose of securing greater dorability．A variety of plans for making the rails and laying the perma－ nent way on improved methods，have been propowed and triod，auch，as the bridge or hollow rail screwed down to longitadinal sleepers，which apain are serewed to transverse sleepers below then，as adopted on the Greas Western railway；the solid rail secored by sorewe to longitudinal sleepers alone，as adopted on the Greenwich and Croydon lines；the parallel rell fixed to transverse sleepers，as adopted on the Dublin and Dragheda lise， aod others，all of which require the test of experience before any correct opinlon can be formed as to their respective merits．Rails of prepared wood，patented by Prosser，have been proposed for insuring the adhesion of the wheels on steep inclines，but have not been moch adopted．

Stone railways or trams，which have been in nse in the streets of Milan for a long period with considerable advantage，were employed at the Dart－ moor railway，to bring down granite from Dartmontb to Flymonth，a dis－ tance of 20 miles；aleo one of 12 miles in length for a similar purpoes from Haytor to Newton；and a more perfect example was completed by Walker between the West India Docks and London，on the Commercial－ road，distance of two miles，in 1896 ．The tramway is composed of blocks of granite， 4 to 6 feet long， 16 inches wide，and 12 inches deep， nicely nquared，bedded，and jointed，and laid in a bed of concrete；it ha⿱日⿱一龰⿱丆贝⿴囗⿱一一廾彡 been found of considerablo service io reducing the friction，and enabling horses to draw heavier loads with facility，in ordinary cases．

In addition to the adoption of wooden sleepers，it has in some casee， where great speed is employed，been considered advisable to introdnce a layer of india－rubber，or elastic felt，betweed the rail or chair and the sleeper，in order still farther to reduce the concusuion，and to reader the motion more easy ；for now that the extraordinary speeds of 40 to 50 miles per boor have been effected，and are daily employod on the Great Weutera und otber railways，too much care cannot be laken in constructing the works of the railway，and particulerly in laying the permanent way；and until this be done it is scarcely prodent to exceed the present bigh velo－ cities．

Gange of Railhorys，－Before leaving this subject，it may perhape be neceseary to make a fow remarks apon the width of gauge．This impor－ tant question comprehends so many elements，that the determination of it is involved in considerable difficulty，and experience alone can afford it satisfactorily．Stepheamon，who bas taken such a prominent part ie the introduction and extension of the railway syotem，adopled the gange of 4 feet 81 inches．Messrs．Reanie proponed 8 feet for the Madehester aod Liverpool railway before it was commenced；this，contrary to their advice， was afterwards made 4 feet 81 inches．Brunel proposert，and carried isto effect， 7 feat on the Great Western．The Eastern Counties was origimany laid at 5 feet 6 inches，aod nfterwards altered to 4 feet 8 inches．The Doblin and Drogheda is 5 feet 8 inches；and the Ulster lines are laid at 6 feet 6 inches．Cubitt now proposes a uniform width of 6 feet throagh－ out the kingdom；the object of all being to ensare the greatest perfection in the engine ；as to speed，power of traction，economy of working，and safety in transferring pascengers and goods．Taken in the abstract，a broad gauge would appear to afford the means of making more powerfal engines，which can draw greater loeds with greater apoed and safoty than a narrower gage；but then it involves a greater first outiay，and a com－ mercial question arises，is this neceseary，when already，uput the marrow gange，a speed of 60 miles an hour has been obtained with a tolerable load i A greater velocity appears not to be advisable，until the mode of making the road has been improved；and in the mining aed manufuctur． ing dietricts，the narrow gauge is stated to be more conveniens and less expensive．Uniformity of gauge，however，is geberally admitted to to deairable，in order to aroid the delay，expense，and inconvenience of a change of carriage for both passongers and goods，and it is to be regretied that a broader gauge had not been adopted on the Mancheater and Liver－ pool railway，which might have served as an example to all suberqeeat Jines，and have prevented the difference of opinion which has sioce pre－ vailed．The gauge of the Great Western is probably greater than is necessary；but as it has already been adopted to a constderable oxtant， and has certainly realised very extraordinary results，and as it is impots－ yible to foresee what further improvements may result，so as to obviate any inconvenience arising from break of gauge，it would seem not to bu desiruble to stop the progress of improvement by altering it now，when it may be the nieans of creating farther improvements in itself，we well an in the narrow gauge syatem，which might otherwise never be thought of．

Progress of Ratisoays．－The trafic on the Manchester and Liverpool railway far exceeded the most sanguine expectations，and the passenger traftic，which was scarcely reckoned upon as a sonrce of revenue（goods alone being relied npon），increased to such a degree，that it soon supers seded every other conveyance between Liverpool and Mancbester，and produced a large additional revenue．Notwithsianding，however，its bril－ liant succeas，the great cost of the rallway，and the remoants of old pre－ jodices against innovation，combined to keep alive the doubts and fears as to the profts which might be expected from other reilways，less favourably situated than between two such large manafactoring and commereial towns，depending so entirely upon each other．Hence the numerous pro－ jects which were first brought forward met with a great deul of oppoal－ tion，and did aot receive that encuuragement which subsequent experieace has proved them to be entitled to．

After much delay，several acts of parliament for new lines of railwey were obtained，notwithifunding the most strenuous opposition of the ex．
isting intarests of cenals, roade, land-owners, \&c., which was oaly overcone titeoormous coats. Amonget the firts of thene may be mentioned the Londen and Birmiogham, the Grand Juaction, the Great Weatern, Britol and Exeter, Bouthampton, Brigton, Dover, Leeds, Yark, and others. The prejudices against them have now vasiahed, and the mania for cetr limen has of late exoeeded all formor precedeat. 1901 miles have boen already exeouted on the narrow grage, 874 on the brotd gauge: 614 rites aro is progrese of conalruotion, and projects for 20,687 miles were metarily istroduced into parlimment last sestion, representing a capital of 2750,000,000. Of these projecta, acts of parlianent heve been pussed fer 8578 miles, requiriag a capital of $£ 189,220,767$.

Io noot parts of Europe, milways have already been constructed, or are in progress, or in contemplation, after the plan of those execated in this coantry. The following names must be borne in mind us associated wht the invention and propagation of the railway syatem,-Barnes, Birkoohew, Bidder, Bleokensop, Blackett, Booth, Brandreth, Braithwaite, Brasel, Buck, Buddle, Cubitt. Curr, Dodd, Erioson, Giles, Good, Hackworth, James, Jesop, Leather, Losh, Locke, Lembourt, M•Neil, Rastrick, G. and J. Renaie, Reyoolds, G. and R. Stephenson, Trevithick, Vignolles, Vivian, Watt, Walker, Wood, and many others.
Stequ Caaches. - Great efforts have been made to perfect steamcoschen, so as to easble them to travel opon turopike roads, but hitherto whort much success. The idea was suggested by Robison to Watt, in 1759, and Watt patented it in 1784. Symingion proposed it in 1786. Trevithick's patent of 1808 was the first bigh pressure engine that was cetually made, and patents for improvements upon It have been numerous. Bramah constructed a steam-coach in 1822 for Griffiths, which was not esceensful. Gordon tried one in 1824, and Gurney, who was more succespul, constructed some with boilers, baving very small tubes; he attained aspeed of 10 miles an hour on good turapike roads, and asceaded the eteepest hills aear London; he went from London to Bath and back, in 1831, and his steam carriages ran for four months between Cheltenham and Goneester ; but it was extremely difficult, and too expensive, to keep them in order. Hancock constructed several with boilers composed of thin metal chambers; they ran for some time, with apparent auccess; hat there were so many difficulties that thoy did not get into use. Dance, Field, Hill, Macerone, Russell, Cayloy and others, also attespled it, with maried saccess; but the system is inferior to that of railway travelling, and it is now generally given up as hopeless. It has been proposed to eaploy highly compressed air in place of ateam for propelling locomotive eagines, first by Medburst, in 1799, and since by others, but without any trials being mado beyond mere models.

Fabt Caral Boats.

Attempts were made by Grabame, and ofhers, to accelerate the pasiagebonts on canals; the mode was extremely ingenious, and at one time was brought into use on the canals in Scolland, the north of England, and other places. The mode was as follows:-A beautifully-constructed boat, whose length was about ten limes is great ts the breadtio, and drawing wry litule water, was drawn by two horses, commencing at a trot, and 000 increasing their pace to a gallop; the boat once put in motion required very little effort to maintain its speed, which was 10 miles an bour, and formed a considerable improvement in canal navigation; increased expedi tion was also given to the boats for goods, and general speed and economy α charges and improvement in management provailed. All this, borever, came too late, for although it would have been readily acknowledged at an arlier pertod, and might perbapa, for a while, have retarded the railway syitem, yet when once the latter was estahlished, its superiority becamo manfest, and its progress became irresistible. The railway aystem also pave increased atimalas to improvement in steam-boats, which had been provionaly in use, and which I shall presendy notice more at length.
Taken simply at the velocity of $2 \frac{1}{1}$ miles per hour, the resistance or friction offered to the tractive power by a given lond is in favour of the canal; bet as this reaiglance increases with the velocity at a far greater retio on the canal than on the railway, the advantage with increased velooity becomes decidedly in favour of the reilway, and inasmuch as the value of time in everything has become more important, so railways must necessarily increase in superiority; besides, as in any case baving a large profitable traffio in passengera, which a canal canoot have, the extra power for oanveying goods is comparatively very litule, so that the competition even in beary goods, in many cases, is in favour of the railway also. Some ongale are now being amalgamated with, or converted into railways, being namble to withstand the competition with the railway.

Stationary.Emgine System.

Of the numerons other aystems or projects, in addition to locomotive algines and borses, which have been suggested for propelling carriages along railways, two only worth mentioning have been brought into operation, vie, traction by ropes wound round drums or cylinders, worked by atabionary or ficed steam ongines, and the more recently introduced atmo. mperie sjatem. Traction by ropen up steep planes had long been in use It the collieries in the North, where what are termed self-acting planes were eatablished, apon which the doscending loaded wagons attached to a rope, passing round a pulley-wheel, drew up by their superior gravity the anpiy wagoas attached to the other end of the rope. The aame principle was applied by Reynolds to transier canal boals from une level to another, in the cenec of the Kelley Planes, on the Shropabire canals in 1788, also ia
the sohterradean portion of the Bridgewater canal at Woraley, is 1797, and at other places. The systen of rope-traction by stationary oagines was adopted in the collieries of the North, the steep ondulating datare of the coontry being well adapted for it. Thumpanapplied the reciprocating syatem with great success to the Seabain and Durbam Jupction, and ather railways, the lines being a series of succenive planes, eztending over 8 or 10 miles, without interruption, having ised eagines with ropes actuated by them, so that the trafic was transferred from one plane to another, taking advantage of gravity in the desceats. The rope and stationary-engine syster was applied to work the steep planes on locomotive railwaya, which were considered at the time too steep for the locomotives to travel upon; bot recently locomolives have been so moch improved, and rendered so moch more powerfal, that they can ascend planes at considerable velocities and with tolerable loads, where formerly it was considerod impracticable. Examples of these may be meationed; -the inclined planes of Euge-hill and Rainhill on the Manchester and Liverpool railway, the Lickey plane on the Gloacenter and Birmingham, the Euston-square inclioe plane on the Birmiogham railway, and other places. The most remarkable and succeseful application of the rope aystem is the Blackwali railway, by Stephenson and Bidder, in 1840. The lise commences at Fenchurch-atreet, and terminates at the East India Docks, Blackwall, being about 31 miles long; it is carried upon brick arches above the atreets, and at each end, or terminus, there are powerfal fixed steamengines, turniog large drams or cylinders, round which the ropes for drawing the carriages are wound at the rate of 25 miles an hour. Each pair of engines at the Loodon terminas, huilt by Mandslay, is 224 borse power whilst eaeh pair at the Blackwall end, huilt by Barnes, is only 140 horse power, the line deacending all the way to Blackwall. The plan of accommodating the intermediate trafic is very simple and ingenious; it is effected by attaching the carriages to the rope, by a clutch worked by a lever; this is readily detached by a man on the carriage, whilst the rope is in motion, and answers perfectly. The planes belween Fenchurchstreet and the Minories are worked by the momentum of the carriages one way, and by gravity the other. This system bas its advantages and disadvantagen, and is more particularly applicable when the load is regular and constant, so that the full power of the ongine may be employed to advantage. The wear and tear of the ropes is very expensive, but bas latferly been auch diminished, by the sabstitution of wire ropes for those of hemp.

Atmobpheric Railwayb.

The atmospheric system has been the subject of moch discussion bere and elsewhere. It was first proposed in 1824, by Vallance, of Brighton, where a working model was constructed of sufficient dimensions for the carriages to be introduced at one end of a tunnel, and the air being eshausted by a steain-engine at the other, they were propelled forward, by the pressure of the atmosphere. It was oven proposed to adopt the system for the speedy transmission of letters; the system, bowerer, was necessarily so imperfect, that except for the ingenuity of the idea, it wat of no practical atility. It was afterwards improved hy Medhorst, in 1827, and was brought forward by Pinkus, in a more complete form, in 1884, by making the carriages travel outside the tube; and in 1839, it was far* ther improved and patented by Clegg; since that period it has been hrought into operation by Clegg and Sanuda, who tried an experiment upun a working acale, in 1840, for about a mile in length, at Wormwood Scrubbs. This experiment showed that a load of 6 tons could be propelled at a velocity of 30 miles an hour, with an atmospheric tube only 9 inches diameter, and iaduced the leading proprietors of the Doblin and Kingstown railway, to adopt it, for extendiog that line to Dalkey, a distance of abont If mije, where the conatry was difficalt, and not well adapted for locomolives. That extension was opened in the latter end of 1843 , and has continued working ever since. The line is singie; the rails, although ratber lighter, are laid upon the ordiaary plan, and in the centre between them there is a tube about 15 inches in diamoter, having a slit or opening at the top, which is closed by an elastic valre; a piston, fitted to the fore. most carriage of the train, is inserted into the tabe, which is connected at the apper ead with an air-pump, worked by a steam eagine, which exhauste the air from the tube, and the piston attached to the foremost carriage is then urged along the tube by the pressure of the atmonphere, and draws the train with a velocity in proportion to the perfection of the vacunm in the tabe: as fast as the piston adrances, the valve in the slit of tue tube is opened, and is closed again after the piston has passed, and is rendered tight and impervious to air by a composition of fatty matter placed in the groove into which the edge of the valve falle. The planes of this line are extremely steop, being in places 1 in 60 , and the curvos are very sharp. The highest racunm obtained has been 26 ifches, with a speed of 86 milips an hour. The train returos from Dalkey by gravity alone. For a first experiment, it has been tolerably snccessful. The syotem is being tried upon a larger soale upon the Croydon and the Sonth Devon railways; a portion of the former has been opened, and aspeed of 60 miles an hour has been obtained, with a vacuum in the tube of 97 inches; and a traio, consisting of 10 carriagen, weighlog 60 tons, has been propelled 6 miles in 84 minutes, or at the rate of 35 miles an hour, the berometer iadicatiog a vacuum of 85 to 28 inches. The engines are 8 miles apart, and a power of $\mathbf{3 0 0}$ borses is employed for the whole distance. The tube ts 16 inches in diameter, and the ajr-pump 6 feet 3 inches diameter; the meepest plsne is 1 in 50. The Sonth Dovon line has not yet been tried.

Considering the recent introduction of this rystem, and the new cen-
trivasoes required in all its detaile, moch has been dove ; with further experiesoe, it is mot improbable but that much more will be offected. Pilbrow, in 1844, patented a modificmation of the syatem, which is togenions, but has not yet been suflicientls rested by experieace to prove its meris. Hallette proposed to fopprove the valve on the top of the atmospheric pipe, by means of two meall inflated elastic tubes, fxed in grooves oo each wide of the opening oo the top of the pipe, throagh which the rod attached to thr piston should allde between the tubes, and which abould close the orifice as the piston moved. This ingenions iden requires the test of experience.

Stram Navigation.

The extrmordinary improrement in the mode of commanication, which has been effocted by steam power and railways on leod, had been preceded by equally aurprising and imponant effecte produced by the application of steam to sea and river anvigation. The vast increase of personal intercourse between people of different nations separated by the oceah, which has reanited from this great discorery, and which is still angenenthg, hus operated more than any other invention on recond (oot even excepting printing, which bas been greally extended by steam) towards realislag what whe once considered Utopian-the bringing of the varions antions of the world together, and noillng mankind into one great family, working barmonionsly together for their common good. The steam engive, in its varions and numerous applications, may justly be styled the grand in. prover and civiliser of the age. It is a gigantic yet docile labourer, equally well adapted for eztracting fuel and other minerals frum the bowels of the earth, as for performing all kiods of toilsome, complicated, or delicate operations, whether for forging the ponderons anchor and cable to preserve the gigantic ressel of wer from shipwreck, or for weaving the moat delicate web for a lady's garment. Its power can be increased to alnost any extent, and it can be made to perform, with a degree of celerity, economy, and skill, every operation which formerly conid be executed by the homan hand alone, and an almost infinite variety of others, which withoot it could never have been attenpted. It may also be employed as a meens of conveylog me, chandise und travellers from one place to another, whether for businese or pleasure, with a degree of certainty, expedition, convenience, and economy attainable by no ofher agent. The increase of commerce, pational industry, and wealth, as well as greater personal intercourse between nations, serves to dissipate prejadices, and to create reciprocal good feelinys towards each other, and thus to promole peace; but if, unhappily, war should ensue, then by the increased facility afforded for attack and defence, steam woold equally serve to shorten its duration by reodering the results more deciaive, and making mankind less willing to embark in it.
The origin of the application of steam for propelling ressels is claimed by several individuals of different pations; but it is generally admitted that to Greut Britain is due the merit of having introduced and eatablished the succesafal practice of the present age. The application of wheels to propel boats dates as far back as the ltomans; in 1682, Prince Roper's barge was propelled in a similar manoer, and tug veasels, with wheels worked by borset, for towiog ressels against wind and tide, were proposed. Papin proposed, in 1690 , to propel boats by racks and pinions with pistons working in steam cylinders ; Blasco de Garay, a Spaniard, is said to have made an experiment on propelling a vessel in the presence of the Emperor Charles V., at Barcelona, ln 1543. The experiment is reported to have succeeded, and received the approbation of the emperor, Who paid all the expenses. The invration, if it existed, died with the inventor, and nothing further was heard of it, until afler the introduction of steam uavigation, when the statement was made in order to claim for Spain the merit of this great invention. Had this claim been brought formard earlier, and published to the world, it might perhaps have been allowed; but appearing at this time, it could have no infloence, and must olearly be regarded as in no way interfering with the title of Great Britain to the discovery. Jonathan Hulls, in 1787, poblished a amall pamphlet, wherein be gives a plate representing a boat with a wheel altached to the atern, drives by a steam eogine to propel the boat, and tagging behind ber a vessel of war. This is clearly the first representstion on recond of a steam buat. He took out a patent for the invention; but experienced so much oppoaition from prejudice, that be does not appear to have prosecoted it efterwards. Hulls proposed to apply Newcomen's engine for propelling the wheel, but es it was very difficalt to produce rolatory motion with that kind of engine, thal may have been one reason why it was abandoned. Bavery proposed, in 1698, to apply manual power to the capatan of a ahip, by the interrention of a wheei and pinion for turning paddle-wheels attached to the sidea of the vessel; und, at a later pertod, Captain Burton propnsed a similur plan. All idez, however, of bringing the jnvention to bear appears to have been laid avide until 1765, when the mechanlcal and acientifio world had again turned their attention towards the improvement of the steam engine, and Dr. Robieon, of Ediuburgh, proposed to Watt to apply steam for propelling vessels un land and by sen. W alt, however, at that time had not mude aufficient progrees with his invention, to enable him to take op and work out the idea wilh saficient prospect of sucress, as it is evident that he could not have considered Newcumen's engine at all calculated for the purpose; Walt, thertfore, confined his views to perfecting his englne, foreseeing, no doubt, that when once that end wis ecoomplished, other important results would folluw.
The subjeot of stemm boats sfill lay dormant for a time. Is 1788, the

Marquis de Joaffrot is alid to heve made a steam boat, 140 feet long and 15 foet wide, which was tried on the Beipe at Lyons, but it was not socceseful. About the year 1787, Watt had so far perfected bis stoem-angive, and reodered it capable of producing rotatory motion, as to enuble it to turn mills: he had thus overeome one of the principal dificulien, and prepared the may for the introduction of the modern system of stean bavigalion; but althongh numerons attempts were made with imperiect engiows for propelling vescels, even after Watt had obteived patents for bis iseproved eagines, yet it was eot ontil after the expirution of his pateut for the rotatory eagiee, is 1800 , that it was applied to steam vemsels.

About the year 1788, Fitcb and Rameey, of America, and Serratti, of Italy, appear to have tried some experimeats, and thas they lay claim to the iovention, bat upon this point there is no accurate ioformation. In the anme year, Aliller, of Dalswinton, constructed a donble boat, av feet long, with two peddlo-wheets in the centry, to be moved by munual labowr, in onder to race with another boat propelled by oars in the usaal manner ; it was tried upon the sea near Leith, when Hiller beat bis cumpetitor, sad the effect of this experiment convinced him, that power ouly was wanting to bring the invention to perfection. Taylor proposed to apply the steam engine for this porpose, and he then applied to Symiagton, a practical engineer of the day (who had provionsly proposed some improvemente in Newcomen's engipe, and had made a model sbowing bow it aight be app ied for the porpose of propelling carriages), in order to assist bim in applying the slemen engive for working paddle-wheels. A steam engine with two cylioders, 4 inches in diameter, each of abort one-horse power, was accordingly made by 8ymington and Taylor, and was applied to drive the paddle. wheels in the centre of the double boat, employed for pleasure on Dalswinton Lake, in the middle of October 1788, when it atinined a velocity of about $\$$ miles an hour. The success of this experiment was complete as fur as it weat, and establisbed beyond doubt the merits of the discovery; it therefore induced the ingenions and persevering projectors to prowecute it farther by making another veseel of the same dimonsions as the former ooe, to be worked by an engine on a larger scale. The engine was made at Carron, and was of a peculiar construction, in order to a void infringement on Watt's pateat; it had two atmospberic cylinders of 18 inches diameter, the pintons of which were connected with a lever actiog alternately and by means of chains; polley-wheels and rachets torned two paddlo-wheels, one being placed before the other, in the apace between the two parts of the double boat. This machinery, it will be observed, was similur to Holls's plan; improved, however, by having two cylinders. The boats and eagines were completed, and the experiment was tried on the Forth and Clyde canal, on the 26th December, 17s9, and was still more snccesefol than the first, having atlained a velocity of 4 or 5 miles an bour. An account of thls esperiment was published in the Edinburgh newspapers of the day. The signal success of this second steam boet readered farther experiments unnecessary, and it now ooly remained to bring it into practical operation. Mesars. Miller, Symiagton, and Tajlor had proved to the world the merits of the discovery, and not wishing to incur further expense or trouble in combating the prejudices and opposition of mankind, which invariably obstruct the introduction and prosecution of every great invention, did not prosecute the subject further, but left it to others to work out and develop the powers of their extraordinary favenLion, which was destined, at no distant period, to produce such a wonderful rovolation in the social world. The eugines and machinery were accordingly taken ont, and deposited at the Carron Works, and the boet, which was only a pleasure-boat, and fit for no other purpose, was transferred back to the lake of Dalswinton, and mgain applied to its original purpose. Mr. Miller returaed to bis agricultural pursuits; Taylor to uis profession of a tutor; and Bymington to bis profession of a prectical ongineer.
In 1748, Ramasy made some experiments for propelling a vessel by forclog water out of the stern by a steam engine: this does not appear to have adawered.

In 1795, Earl Staphepe, well known for his mechanical geolus, tried an experiment for propelling a vensel, by means of a propeller in the form of a duck's foot ; and about the same time Smith fitted a hoat with no almoepheric rogine on the Sankey Cenal; none of these experiments, amidst several others which wern tried, appear to have been very snccessful; the great difficulty seems to bave been lo producing the rotmory motion by the steam orgine employed for the purpose, and it is singular that mone of them tried Watt's engine, which had then become generally known, and Bonltan and Watt themselves were $t 00$ bnsy in making their engines for the numerous milis and waterworks then becoming daily more geaeral, to turn their attention to fresh speculations, the issoe of which was at that time doabtful, and which did not promise to be so lucrative.

In 1801 , Lord Dundas, who took great jatereat in mechanical pursaite, omployed Symington to constroct a sleam boat ; this was propelled by an ongine on Watt's plan, baving one cylinder placed horizunailly, and the piston, with a atroke of a feet in leogib, was juivted at the extremity, and attached to a counecting rod, with a craok at one end, turoing a paddlewheel, placed in a well-hole at the stern of the vessel, which bad two radders, one on each side of the cavity in which the paddle-wheel wes placed. This was the trst practical working steam vessel with an engine on Wat's sy stem, and wus culled the 'Charlutie Dandas;' it was employed for tow. ing vessels on the Forth and Clyde canal, and answered its purpose completely, but the proprietore of the canal objected to lts being continned, is conseqtience of the agitation of the water prodaced by the paddlo-whenes, which they alleged woold jajure the banke of the canal.

In 1802, Folton, who had been some time in England, hearing of 8ymtogton's attempts, went to Scolland, visited bim on bowra his boat, and requested to see it tried. Symington accordingly got up the steam, made several iripe up and down the cunal, and fully explained to Folton every part of the boat, ateam eogine, and apparatus. Folton made notes of everyibina, obeerving at the aame time, that the objection of injoring the banks of the canale and small rivers might apply in England, but thet in Amerion, where they were opon a marh larger scale, this inconvenience could not be felt, and be thought the applicmion of steam boals in that coantry would be of immense pablic and private advantage, and stated bis intention of introducing them there. After this viait to Symiagton, Fulton proceeded to France, where he constructed bis first stean boat, and tried it on the Seine, at Paris, in 1808, and proceeded to America soon atherwarde. It is rather singular that Napoleon, who was then Firat Consal, and who usaally was alive to all great improvements, and carried them through with a degree of energy and talent which overcame all opposition, shoold not hare appreciated the merits of the atean boat, and abould have allowed such a fine opportunily of benefiting France to bave nipped through his bands; bat perhaps the same mey be said of England, as being atill more extraordinary, for the advantagea of the steam engine and machinery bad then become naivermally acknowledged. Fulton, bowever, impressed with the importance of the invention, and beiag thoroughly convinced of its altimate succest, pursued it with ungemitting perseverance and energy, and in 1805 he applied to Measrs. Boulton and Watt to make a steam engine for a boat which he was about to construct in America: this boat was aecordingly built in 1807. Watt's meam englae reached America in 1806. The veseel was pamed 'The Clermont.' from his friend Liviogntone's residence; the wheels and machinery were on 8ymington's plan, propelled by Watt's engine; the boat was tried un the Hudson river, and orly ettained a speed of 5 miles per hour. This whe the first ateam bont ased io America, and Fulton and Livingstone then took out pateats for introducing steam boats in various piaces in America, and built several obbers apon a larger acale, for carrying goods and passengern, employing Memars. Bonlton and Watt to make the stean engines, which were sent from Englaod, esch aucceeding engine being larger than its predecescor. Although it was generally known that the steam boats had succeeded perfeedy in A merica, and that their employment was daily increaning, yet Fitule or no altention was paid to the subject in Eggland. The ides of esploying ateam boats on the ocean had never been conceived, and the objections raised to the agitation of the water by the paddle-wheels on the Porth and Clyde canal were considered so atrong, thit donbse were genesally enterinibed as to the success of the syatem anywhere but in large rivers, such as those of Amerlea. In 1812, bowever. Henry Bell, of Glagow, who was well acquainted with, and had deeply consldered all that had been done by Symington, determined to try once more whether the inveation conld not be applied on the Clyje; be accordingly cansed a siall boet of 28 tons burtben to be huilt at Port Glesgow, by Jubn Wood, who bas since become so well known as a sbip-builder; it was 40 reet loag, with 10 feet beam, and in it was placed a steam engine of $4 \mathrm{~h}, \mathrm{p}$. , on That was termed the bell-crank principle, introduced by Watt; the boiler was placed on one side of the vessel and the engive on the other, with foar paddle-wheels worked by the interyention of apar gear ; the wheela consiated of detached arms, with paddles or flouts at the ead, whlch, how. erer did not answer, and the complete wheel, according to Symington's plap, was anbsequendly adopted. This stemm boat, which was called the 'Comet,' began to ply for goods and passengers on the Clyde, between Glagow and Helensburgh (Bell's native place), in Japuary, 1818, and athioed the apeed of's miles an hoor. The 'Comet' succeeded so mell, that Bell determined to baild another vessel of larger dimensions and power. Namerous other parties, seeing the success which had attended Bell's exprtions, determined to follow bis example, and several other boals were built doring the succoeding jears of 1818 and 1814 ; they were howover, still very imperfect, antil Cook, of Glasgow, in 1814, constructed the fourth veseel, the 'Glasgow,' with inn engine of $16 \mathrm{~h} . \mathrm{p}$. The machinery of this vessel was so moch more perfect and powerfol than ony which had been previonsly constructed, that it served as a model for many others; und from this period steam boats for river anvigation were completely matabished.
Many of the engines employed for the above-mentloned ressels were opon the bell-crank prineiple ; which, from their simplicity and portability, stasdiag apon an independent frame, with the condenser forning part of it, were well adapted for steam boats, and wero contequently genernlly ased. The bell-erank levern, receiving the motion direct from the piston, communicated It by means of a onanecting rod and crank to the main shaft, turning the paddle-wheels on each side of the vescel; the engine was placed on one side of the vessel and the boiler on the other. The boilers generally ased were opon the principle proposed by Allen in $\mathbf{1 7 8 0}$ and by 8 meaton in 1765 , having an internal furnace and ene, surrounded by the water. This form of boiler was first brought into ose by Trevithick in 1803, for high-pressure engines, and for low-presenre angines, aleo, is one of the earliest stesm-dredging borts. employed at Yortsmonth dockyand, onder Bentham; but the exterior shell of this boiler was of wood, as proposed by Brixdiry in 1758; in steam vessels the external shell of the boiler was uade of wrought iron. All the steam vensels above men. tioned were worked by one engine orly. In 1814, Boulton and Watt first applied two eagines, connected together, for working a small boat on the clyde.
Is 1815, a suall vessel, with a side-lever engine of $14 \mathrm{~h} . \mathrm{p} .$, by Cook of

Glagow, made a voyage from Glasgow to Dublin, and round the Land's End to London; it then ran between London and Margete with pasengert with considerable sucess, and this led to others being eetablished in verions places; the Scolch boat serving as a model.

In 1816, Maudslay made a pair of combined engines, each 14 h.p., applying the power to the paddle. wheel shaft by the crank, instead of by cog-wheels, according to the previous mode.

In the same year, the late Mr. Baird constrocted a stemm boat at St. Petersbargh, with a boiler set in brickwork; this boat worked for some time on the Neva.
In 1817, Boulton and Watt purchased a small steam boat called the 'Caledonia,' which had been built in the Clyde, with very defective engines. James Watt, jon., having constructed a Dew pair of combined engines on the side-lever principle, of $14 \mathrm{~h} . \mathrm{p}$. each, made a great nomber of experiments with the 'Caledonia,' and went with it to the Scheldt and otber places; the arrangement of the engines, as improved by Watt, served as a model for several orher vessels.
In 1816, David Napier caused the 'Rob Roy;' of 90 tone burthen, $t o$ be built by Denny at Dumbarton, with an engine of $80 \mathrm{~h} . \mathrm{p}$. , with whicb he successfolly established a regular communication between Greenock and Belfast : this may be said to be the frat time that a regular communication by steam boatg, between two distant sea-ports, was established, apd it set the example to every other placr. Boulton and Watt, after the success of the 'Caledrnia,' made a great number of marine engines of increased power, and with varions new improvements, sucb as introdncing wrongbt iron inatend of cast iron for several of the moving parts; and in 1821, a great step was made, by establishing steam boats between London and Leith. Two of these vessels, the 'James Watt' and the 'Soho,' with engines of $120 \mathrm{~h} . \mathrm{p} .$, by Boulton and Watt, were the largeat which had been made, and anawered very well.

In 1819, the 'Rob Roy' left the Belfast station, and was tramforred to the Englieh Channel, to run between Dover and Calais. About this time Napier beilt the 'Talbot' of 150 tons, with two engines of $30 \mathrm{~h} . \mathrm{p}$. ench, Fbich ran regolarly between Dublin and Holybead. In this year also, the late Mr. Rennie, who had for some time previous watched the progress of this great invention with considersble interest, foreseeing that it woold altimately supersede all others, proposed to the Admiralty to une steam vessels for towing vessels of war into and ont of harbour against wind and tide ; being perfectly satisfed that if once it was introduced into the navy, it could not be long befort steam vessels of war wonld follow; great donbts, however, as to its success were entertained and expressed by many of the official subordinates. Lord Melville and Sir George Cockburn, however, overruled all objections, and, es a first experiment, ihey cousented to allow the 'Hastings' a 74 line-of-batle ship, to bo towed from Woolwich by the 'Eclipee,' a Margato steam boat of $60 \mathrm{~h} . \mathrm{p}$. The 'Eclipse,' bowever, proved too wrak, and after towing the 'Hastings' a few miles, it returoed, and the 'Hastiogs' went to Chailham with her sails alone; the experiment was thas not guite so succesafol as could have been desired; nevertheless Reanie atill determined to peraevere. Oliver Lang, the mas-ter-shipwrigbt of Woolwich Dockyard, entered fully into Rennie's views, and warmly assisted by every means in his power the introduction of steam vesaels into the navy, contrury to the upinions of many of bis superiors. At length the Admiralig, at their recommendation, ordered the 'Comet' io be built according to the draft and plan, and under the superintendence of Mr. Lang; she was 115 feet long and 21 feet wide, drawing 9 feet of water, and a pair of engines of $40 \mathrm{~h} . \mathrm{p}$. each, were ordered for her from Messrs. Boulton and Watt: this was the first steam vessel in the navy, and it is still in ose. By degrees several others were built.

In 1820 a steam tug was huilt by Manby, for Messrs. Smith, for the purpose of towing their barges upon the Humber; and in the same year, Maudslay and Field applied the expansive action of ateam in the cylinder, which was a great improvement; also escape valves for the water, which' might boil over into the cylinders. In that jear also, steam packets were introduced on the post-office station between Holyhead and Howth; and the 'Britannia,' with oacillating engines, and several other steam packets, were built by Manby for the Dover and Calais atation.
In 1825, the General Steam Navigation Company was established by William Jolliffe, who buitt two of the largest vessels which had yet been tried, called the 'George the Fourth' and the 'Dake of York;' they were between 500 and 600 toms burthen, and lad engines of $130 \mathrm{~h} . \mathrm{p}$., furnished hy Mesurs. Jessop of the Butierley Iron Works : these two vessels were intended to establish a regular communication between London and Cadiz and London and St. Petersburg; they accordingly slarted in September 1827, and answered extremely well, notwithstanding the heavg storms which they encountered in the Bay of Biscay and in the Balic. The General Bteam Navigation Company, considering the ideas of Jolliffe too oxtended, parted with the two vesmels (which were afterwards porchased by the Government), and limited their views to the British Channel and the German Ocean. A bout this period, the 'Enlerprise,' of $\mathbf{5 0 0}$ tons borthen, which was built by Gordoo, and had a pair of combined eagines of 120 b.p. constructed by Maudslay and Field, made the voynge from London to Calcutta, by the Cape of Gool Hope. The advantage and superiority of steam vessels, in every respect, for both river and sea navigation, having been now tburoughly established, their employment became universal; und the size, power, and oumber of the vessels increased daily ia every part of the empire.

From this period nothing remarkable appears to have occnrred, until the construction of the 'United Kingdom,' Which was by far the largent ia
size and the most powerfol that had been made. Sbe was 160 feet loog, 261 feet beam, and $200 \mathrm{~h} . \mathrm{p}$.; the vessel was built by Steele, of Greenock, and the engines by David Napier. As deep-sen oavigation by ateam advanced, it became an object of considerable importance to aave fuel, and to obviate the inconveaience of the incrustation of the boilers by the deposit of salt, and other sediments occusioned by the use of sea water; David Na. pier therefore introduced the system of surface condensation, the condenser being made of a series of small copper tubes, throigh which the steam, after being used, passed from the cylinder to the alr-pumps, the pipes being surrounded by a constant supply of cold water, so that the steam was condensed and the water was ruturaed directly back into the boiler, to be again converted into steam, withont the admlature of salt water according to the usual plan, thus employlog the same fresh water over again, whereby the above-mentioned incoavenience of incrastation of the builers was in a great measure avoided. Hall afterwards tried the same syatem with oertaio modifications, and it was omployed in several vessels; bot like Watt, Cartwright, and ochers who had tried it, he fond the condensation was not so complete, and the weight, and cost, and difficulty of keeping the apparatos in order, baa hitherto prevented it from being generally osed; for although it possesses advantages in many respects, still opoa the whole they do not counterbalance the disadrantages, and the old aystem of condensation by jet, with the aid of the brine pumps, is more generally employed. The brine pamps and refrigerators were lovented and patented by Mandslay and Field in 1825, and were aged on boand the 'Eaterprise.' After the 'United Kingdom,' numerons ressels of slmilar and even greater nize were constracted, to ply between London and Leith, Glasgow, and Liverpool, and elsewhere.

The next great step in advance was the crossing the Allantic. Thia had long been in agitation, and was freely discussed by oumerous enterprising minds, anxiously bent upon working out the fulfilment of such a desirable and important object ; but the great practical difficulties involved in the execution were not so easily overcome.

To constract a vessel of sufficient size, with ongines of adequate power to propel ber through the storms of the Atlantic, and carrsing with ber sufficient fuel to keep the engines in motion, was considered by many (and among them were very competent authorities) to be extremely doubtful, bot by the world in general the task was considered to be wholly impracticable. To Bristol is due the origin of this great undertakiog, and a company of enterprising iodividuals, with Branel, as their consolting engineer, was formed for that object; it was, however, with difficulty that they found engineers to carry it into effect, some of the first constructors of the day baving declined to undertake it. Measrs. Maudalay and Field, however, who had already taken such a prominent part in the prosecution of steam navigation, saw their way, and boldly engaged to construct engines of the requisite power, well wdapted for the purpose. Accordingly a vessel, called the 'Great Western,' was designed by Paterson, and built hy him at Bristel; and the engines were completed and fitted on baard in March, 1838. The vessel was 810 feet long, and 38 feet beam, drawing 15 feet when laden, being 1240 tons borthen, and capable of carrying 500 tons of cosis, which it was calculated would last twelve days. The engines were upoo the side lever principle, each of $210 \mathrm{~h} . \mathrm{p}$. , with cylinders 73 inches dismeter and 7 feet stroke, making 15 strokes per miautes; they were fitted in cast iron frames, with the latest improvements. The boilers were constructed with the fiues over the fires; they were called double-gtory boilers, and have been since much used; they bad brine pomps, and were worked under a pressure of 5 lb . per square inch; the total weight of the engines and boilera, including the water and the paddle-wheels, was abont 420 tons The vessel wus completed with her engines, and made her first trial on the Thames in March 1838, realizing 12 miles per honf. On Sunday, 8 th \mathbf{A} pril, she started on her first voyage from Briatol, onder the command of Captain Hoskon, with seven passengers, and a cargo of 50 tons of goods, besides 500 tons of coals, and reached New York on Monday, 23rd April, a distance of $\mathbf{3 0 0 0}$ miles, in thirteen days and tea houra. Herarrival created the greatest interest; the quays were crowded with spectators, anxiously waiting to give a hearty welcome to the enterprising and succesaful adventurers, who had thus so triumphantly solved the grand prohlem, and had brought the New World within a few days' eail of the Old. On ber return she left New York on the 7th May and reached Bristol on the 23 rd , with 70 passengers; performing the vogage in 15 daya. The success of this voyage across the Allantic having exoeeded the most anguine expectations of its promoters, and indeed of the whole world, there seemed no bounds to the extenslon of steam navigation; other companies were projected and aumerons larger and more powerful vessels were designed, in equal confidence of success ; then followed the 'British Queen;' hy Napier, of 500 h p., the 'Liverpool;' of $500 \mathrm{~h} . \mathrm{p}$. , and the 'Presideat;' of $600 \mathrm{~h} . \mathrm{p}$. , whose melancholy fate served for a time to damp the ardour of spoaulation. The practicability of stoam commonication across the Atlantic having thus been established, and its superiority over the old sailing system boing clearly proved, time only was aecessary to reader it perfect. The line from Liverpool to Boston was then dealgred, and carried into effect by Cunard, for conveying the mails; it consisted of four fast vensels, the 'Acadia,' 'Caledonia,' 'Hibernia,' and 'Cambria,' of about 1000 toal and $450 \mathrm{~h} . \mathrm{p}$. each. This was followed by the gigantic project of the Royal Mail Company, for carrying the maila between England and the Wost Indies, consisting of twelve vessels, oach of about 1200 to 1300 tons burthen, and $480 \mathrm{~h} . \mathrm{p}$. The engines of these vessels rasembled very much those of the 'Great Weatern,' whose complete anccess Induced their being
taken as models for others. The great weight and apace oceupied by thene engines, being upoo the average about a ton for every borse-power, readered it difincult for them to earry my gremt amonnt of cargo beyod the paran. gers, and thus the profis as a mercantile speculation were materially lessened; it beoame extremely desirable, therofore, to ascertain whether angines, equally eficieot, conld not be made of less weight, and to oocupy oonsiderably less space.

In order to effect this object, engloes were iavented, by which the power was applied directly from the piston to torn the paddie-wheel abaf, without the Intervention of aide lovers ; theme were oulled direot.acting engines, and at first great objentions were made to them in coosequence, as was asserted, of the loss of power arising from the obliquity of the action of the piaton-rod upon the creak on the paddle-wheel shaft. Messra. Beapards were among the first to introduce this system lato the 'Gorgon;' and notwithslanding the objections above stated, it has been improved by thom and by other engineers, and has materially gained groand. The obliquity of action of this system, conpared with that of the side. lever syatem, ean only be considered in the light of a little extra friction, which is fully, if not more than compeasated for, hy the reduction of weight and space. The modifications of the system by Miller, have been very sucoeseful, and ovenbioed with the forms of vessela aclopted by him, bave enabled great epoed to be attained both by sea going vessels, and his boats on the Rhiae and other rivers. Evon the objection of extra friction, however, if cepable, is obviated by the vibrating cyliaders deseribed in Trevithick and Vivien's patent in 1802 ; patented by Witty in 1813, and by Manby lo 1891, by whom the Grot eagiaes of ibe kiod were constracted; subsequently iznproved by Maadslay end Field, and Spiller; and now exteasively mapefaetured by Penn, Millor, and others ; Maudslay and Field's double cyliader engines, so arranged that a long connecting rod is obtained by its boing enabled to deacend between the cylinders; the Truok engine by Hate phrey ; and the modification of the concentrio oylinders by Joseph Mandslay; as well as other varieties of this syatem by different makers. The sohatitution of wrought iron for oast in a large portion of the frame and condensers; the tubular intead of the common flue boiler. first proponed by Blakley in 1764, and afterwards improved in the lecomotive boiler, end introduced into steam vessels byMaudalay, Bpiller, Bramah, and others about the year 1829, as well as the use of ateam of higher temperatace and increased expansive action, have comblned meteriaily to increase the effeet of the engines, and reduce the oonsumptien of fuel; so that the space and woight occupled by them is now reduced to nearly one-half what it was originally, or in other words, engiaes of dooble the power now only ocerpy the sama space and tonnage in the ressol ; thas a material advaatege has been grined in enabling veseels to carry a larger quentity of fael, by which they oan extend their voyage; and greater power is reodered disposiable for propelling the vessel through tha water. As economy of time beconnes daily more important, overy means whicb can effect it are brought into oparation, and thas the power of the engines has been cuntinaally angmeuted, in order to produce greater speed and shorten the duration of the voyages. Referring to the navy, wo find, that in 18y2, $80 \mathrm{~b} . \mathrm{p}$. was the largett ; in 1887, $160 \mathrm{~h} . \mathrm{p}$. ; in 1828, $200 \mathrm{~h} . \mathrm{p}$. ; in $1830,2 \geqslant 0 \mathrm{~h} . \mathrm{p}$. ; in $1888_{\text {, }}$ $440 \mathrm{~h} . \mathrm{p} . ;$ and in 1845 we have the 'Retribation' and 'Terrible,' with nearly 1000 h.p. in each, and it is nol improbable that, ere long, greater power will he employed. Whilst the royal team navy has been making usch rapid progress, the mercantile steam navy has not ooly kept pace with it but has even led the way; for the enterprising. commeroial spirit of this coantry is ever on the ulert; every improvement is seized upon with avidity, and the greateat inducements are held out to make new discoveries, in fact nolhing but constant progress can satisfy the resuless apirit of im: provement. In the infancy of the art, we were satisfed with 5 or 6 miles per hour, now, when we have attained above 17 miles per hour, we ere confdently looking to a still greator remult.

Whilst the improvemente, above described, have been making in the ongines and in the mode of applying them, various attempts have been mede to ohviate the inconvenience and loss of power occasioned by the ooncuesion of the floats of the ordinary paddle-wheel entering the water, as well as the heary drag or back action of the water when the flomes leave it; numerous experiments and inventions have been tried for constructiog a wheel, of such a form that the floats shall always enter the water in the most adrantageous manner, and havlog effocted the object, shall leave it again with the least resistance. To describe the namerous inventions of this kind would be foreiga to my purpose, and would occupy too much of your time ; it will suffice to mention that of Buchanan, by which the doats al wraye enter and depart from the water perpendicularly; those of CavG, Oldham, Morgan, Perkins, Seaward, and Baraes, which are modifications of it, differing chiefiy in the angle at which the floats onter and leave the writer, and the mechanism attached to the wheel by which the motion is communicated to the float-boards; the principle of this inveation is extremely good, bat in practice it has unfortunately been found, that the wheels of this constroction, after a little use, are liable to get out of order; it is not thersfore geaerally arlopted, although, whilst they are in order, coasiderable advantage is doubtless gained. To obviate this inconvenience, es woll as that of the common whoel, Field invented sphat is technically termed the Cycloidal Wheel; this consists is dividing esob float-boend into several paris or aarrower boards, and arranging them so nearly in cychoidal curves that they shall all enter the water ut the same place in immediate enccession; as the acting force of each board is radialing, it propels whilat

[^17]pasaing under the water in the ordinary way, and when it emerges, the weler eacapes simultapeovsly fron each narrow board; this pripciple was mot followed np by its inventor, and was afterwards patented by Galloway, since which it has been very generally adopled. The principle of reefing the paddle-wheels is also used, so that when the ressel is deeply im. merned, the leverage of the paddles can be shartened, and when light, it can be leogthened, and can thus be alwaye adjosted to the power of the engines.
As ecomony of fuel is an object of the greatest importance, 30 in long royages it is advinable to employ the wind as a moring power, as much as pomible, when favourable: it became therefore desirable to comtrive a simple mens of detaching the paddle-wherls from the eprites, so as to allow them to turn round with the motion of the vessel through the water, and thos to prevent them from impeding ler way; varioss contrivances of this kind bave been invented but one of the mort simple, and n hich is now much employed, was invented by Braithwaite and Milner; it consiats of a friction clateh altached to the paddle-sheft, which, by means of keys and acreves, can be tightened or slackened with facility, and thus the paddlewheel is attached or releared at pleasure. Numerons attempts have been made to introdace the rotative engine without piatonf, but they bave bttherto not been successfal.
The great results rendered by stenm navigation indaced the mechanical morld to torn their attestion towards the extension abd improvement of it; Boalton and Wrtt, Maudalay, Field, Robert and David Niapier, Jessop, Giynn, Barnes, Miller, Havenhili, Girdwood, Manby. Spiller. Scoth. Sin. elair, Ceird, Todd, Fawcelt, Bury, Forenter, Seawrard, Mend, Fairbairn, Ban, Rennie, and numerons other able men devoled their minds to it, and bave prodoced some spiendid esumples of engines and mechanism in that department. When we look back to Symington's original eugine, in 1788, it appears to bavo been 80 changed as scarcely to be recognisable as the asare, and from a speed of 5 to 6 miles an hour in smooth water, we now fiad that a spend of 8 and 9 miles an hour against a heavy gale and head wiod in the Atlantic, and above 17 miles in etill water, has been obrained, Whilat improvemente are in progreas which lead us to anticipate at no very diatant period far greater resuits; much of this, no donbl, is due to the perfection of the workmasship, as well as to the more correct proportions ad adaptation of the various parts of the machioery, compared with whut was formerly done, and which it was impoesible to accomplish with the lender and inefficient means then at command; for this we are greatly indebted to the improved self-acting tools of Whitworth, Fox, Lewis, Shurpe, Roberts, Nasmyth, and others. The improvements in the form and conatraction of the vessels have also contributed much; and in the investigation of this difficalt subject we are much indebted to John Wood, Oliver Lang, Fearaull, Finchum, Ditchbarn, Symonds, Rule, Seppings, Scotl, tasell, Edye, Patterton, White, Pasco, and othera.
(To be continued.)

REGISTER OFNEW PATENTS.

PAPIER MACHE ORNAMENTS.

Caarlas Fridrbict Birlmmad, of Welliogton-atreet, Strand, papler maehe manufacturer, for "Improrements in the making moulds, or dies, used in the manu facture of papier mache ond other mattere, and in moulding or forming articles from ceriain plastic materials."Granted July 14, 1846 ; Earolled Jan. 14, 1847.

The invention relates, first, to improvements in making moulds or dies used in the manufacture of papier maché and other matters, and to improvements in moulding or forming articles from certain plastic m aterials. Secondly, to moulding or forming mouldings from certain plastic materials on wood.

The first part of the invention consiats in the application and combination of certain matters hereafter mentioned, for making moulds or dies used in the manufacture of papier maché and other matters, by moulding or forming them therefrom. The materials are us fol-lows:-tanogeletin, sulphur-balsam, gum-thus, and gutta-percha, with a mitable solvent of gutta-percha, preferring Venice turpentine. Gurn-thas and gutta-percha are matters imported into this country, and are well known. Tanogeletin is prepared by mixing a solution contalning tannin with a solution of glue or animal jelly, of about 36 parts of cannin and 64 of gelatine. Sulphur-balsam is a preparation of a solution of sulphur in fixed oils, mostly prepared with sulphur and liuseed oil, and usually consists of two ounces of fluur of sulphur and eight ounces of liusecd oil, mixed, beated, and stirred, till the sulphur diasulves. In making the moulds ur dies above mentioned, mix, dissolve, or combine tanogeletin in Venice turpentine; to this solation add cuttiugs of gutta-percha, and nuelt them by meeans of beat, preferring to use a pug-mill heated by an external ateam bath for sucli purpose. These materials so combined may consist of variars proportions of the ingredients, depending on the manner the
combinations are to be nsed in making monlds: the followint proportione are preferred, nine parts by weight of tanogeletia dissolved in eighteen parts by weight of Venice turpentine, adding four to five parts of gutts-percha; this produces a plastic mixture which, whilst It remaing warm, may readily be faabioned by placing it on the form from which it is desired to make a mould or die, or it may be pressed intoa hollow fgure to take an impression therefrom, or made into piece moulds; and when the combined matters have been allowed to remain till they have become cold, the combination of materials will have become bard, and may be used for various purposes, for dies or moulds, for making articles in papier maché and other materials. By udding a small quadity of glycerine, eapecially where little or no salphur-balsam is employed, it will be retained longer from becoming bard. For very bard moulds or dies, capable of sustaining considerable pressure, mix with such combinations fine iron filings, using as much as possible so long as the combinations will retajn a plastic state, and allow of being readily used, by being pressed into moulds, or into figures or models. Wbite and red lead, and oxides of come metaly, such, for instance, as oxides of iron in the state of powder, may be used for giving bardness to the compound, taking care that they are not added to such an extent an to destroy the plastic materials of the combination. Gum-tbue and sulphur-balsam may be combined with gatta-percha without using the tanogeletin, by meapt of beat, and the effects of combining these two ingredients is, to produce a very plastle compound suitable for forming moulds or dies (by pressing them on or into suitable dies, surfaces, or models) for various purposes, and the same will be hardened and modified by using other ingredients, as before explained. And sulphur-balsam may also be combined with gutta-percha by beat, and will produce a plastic com. pound more or less fuid when hot, according to the quantity of sul-phur-balsam nsed, and the same may be employed in taking impressions from models or surfaces (by presaing the same on or into suitable surfaces), and auch impression will be applicable as moulds for making articles from other plastic materials preased thereio. And such combination of aulphur-balsam and gutta-percha may be combined with the other materials above mentioned for bardening them.

When mixing the above mentioned materials, aided by beat, it will be neceasary to heat or grind them by machinery, to make them blend intimately together. The first part of the invention also consiats in employing the above mentioned combinations of materials as plastic preparation, to be moulded or formed in order to produce articles therefrom in any suitable moulds or dies for architectural and other ornaments and other utes; and owing to the peculiar properties of auch plastic preparations they will be found highly useful, for they will take and retain very abarp impremions, which, when set and dry, will not be readily injured, and moisture will not have to prejudicial an effect on articies moulded from such compositions as on many other plastic preparations monlded into articles for like porposes; and such combinations, particnlarly where it is desired to give tenacity thereto, will be benefitied by having paper-makers' rag dust, or other fibrous material, ground or mixed therewitb, and where pliability is desired to be given to the combinations above mentioned, glue may be mixed in quantities according to the degree of pliability desired to be obtained for the particulur parpose to which the combination is to be applied.

The second part of the ivvention consiats in forming mouldings for architectural purposes, by apreading gilders' preparation (glue or size and whitening) by means of gauges, on to wood, and then subjecting the same to the pressure of dies iv emboss them. In making mouldings, it has been usual to prepare the wood mouldings to the contour desired, and to lay on a succession of coating of the gilders' preparation, and then by rubbing the surfaces thus prepared, the adme are rendered smooth. In place of this process, the gilders' preparation is to be used somewhat thicker than heretofore, so that it will be suitable for making a mubstantive conting at once, and is then to be laid on to the wood moulding by means of a gauge. In performing this process, a sheet-metnl gage is fixed on a bed in such manner that a prepared wood moulding rasy paga under it, leaving a space between the gauge and the wood moulding, according as it is intended to have the preparation spread more or less thickly; and on one side of snch gauge there is a hopper containing the plastic preparation usually emploged by gilders, or printer's composition (glue and treacle) may be mixed therewith, to give elasticity or slight pliability to the surface. The wood mouldings pass under the hopper, which is beated by steam to keep the plastic material in a working state, the wood moulding being caused to olide on a long bed, by which it will become cuvered with the preparation. The woud mouldings being thus coated, are, when dry, to be sabjected to the pressure of dies to emboss the surfaces thereof, and for this purpose the use of the roller dien is preferred.

In carrying out the first part of the invention, the plastic materials may be rolled out into sheets or strips, and then embossed and moulded into suitable forms for mouldings, or such plastic materials, or after having been first spread on wood mouldings in the manner described in respect to gilders' preparation, may be subjected to dies in like manner to be embossed.

LOCOMOTIVE BNGINBS.

Beijab Garrowat, of Buckingham-street, Strand, Middleaex, engineer, for "Improvements in locomotive enginea."-Granted April 18; Barolled October 18, 1846. With Engravings, Plato IX.

In conatructing locomotive engines for railways, it has heretofore been usual to give motion to two or more of the wheels which carry the engine and it has boed proposed to apply a central rail to a railway and to employ rollers on either side, pressed towards eachother by a hand lever, and motion was communleated to one of them from the axis of two of the carrying wheels. Now one of the objects of this invention is no longer to ase the carring wheels es driving wheels. Another object of this invention is to apply the power enployed to both of two wheolis placed on either side of a central rail, and to obtain the requisite holding or bite on the eentral rail by caasing such two driving wheels to be preased towards each other, and consequently against the rail, by means of spring and apparatus suitably arranged for cansing the two driving wbeels (on each side of the central rail) to preas the rail more or less, according as more or less holding to the rail is required from time to time.

The driving wheele of the locomotive engine, shown in the engraving, Plate IX. are applied boriznatally on eanh side of a centre or middle rail, and are pressed towards each other by means of aprings, the pressure of which can be regulated by adjusting screws, or by any other convenient means, 20 that they may be pressed towards each other with any degree of force the aprings will admit of. The pressure, therefore, of these wheels is exerted simultaneously on each side of the middle rall. By sach an arrangement it will be evident that the bite or adbetion necessary to propel the traln is independent of the weight of the engine, and as the adheaion can be increased or diminished exactly according to the amount of force with which the driving wheels are preased againat the rail, thls system obviates the slippiag of the driving or propelling wheels apon the rail, heretofore consequent on making the driving wheels also carrying wheels in a locomotive engine.
Fig. 1, is a side elevation, and fg. 2, a cross section of a locomotive eugine and fig. 3 , is a plan, with the boiler and sach parts omitted as would interfere with the view of the same. a, c, are the driving wheels worked by cranked axes. Each wheel is worked by a pair of cylinders, the one above the other, the pistona of which operate on the ares in mach the same way as the engines of the present locomotive. The slide valves may be at either side of the cylinders, and worked by eccentrics placed on the ares. To secare the necestary bite on each side of the middle rail, the lower bearinge of the eres are at liberty to move for a limited diatance horizontally, in mortices or alots for that purpose in the horizontal frame, b, b; thase bearings are pressed towards each other hy the spriogs, c, c. To effect the desired adjastment of the pressure of the springs, the rods are connected to the centre pieces, e, e, one of which bas a right and the other a left-handed female acrew through it, the threads of which fit the right and left-handed serewa on the rod, f, f. On one end of f, f, there is bevel wheel g, working into another bevol Wheel h_{1} the axis of which is carried up in front of the fire box, se seen dotted in fig. 3, and has a handle accessible to the engineer, so that the presure of the spriags on the driving ares, and consequently the bite of the diviog wheels on the middle rail, can be adjusted at pleasare when the engine is in motion.

The claim is for the mode of giving motion to locomotive engines, whereby two actuated wheels, a, a, are used; and the cansing of two wheela to be pressed towards each other and to a central rail.

THREE-CYLINDER LOCOMOTIVE ENGINES.

Grorgr Stapernson, of Tapton House, Chesterfield, in the county of Derby, engiveer, and William How 8 , of Newcastle-upon-Tyne, in the county of Northumberland, mechanic, for "an improvemenl in locomotive elean-engines."-Granted February 11; Eurolled August 11, 1846.-(Reposted in the London Journah.) (Wils Engravings, Plate IX.)

The ordinary kinds of locomotive engines are, as is well known n, constructed with two horizontal, or nearly horizontal, steam-cylind ers, disposed parallel to each other, either between or outside the wheels of the engine; the present improvement consists in substituting for one of the said steam-cylinders two smaller steam-cylinders, with suitable valves, \&c.; the smaller cylinders being of such dimen sions that the contents or eapacity of the two together will be equal to the cantents or capacity of the larger cylinder for whlch they are substi-

[^18]tuted. The two small cylinders are placed one at each side of the central line or midule of the breadth of the engine, and at equal distances from that central line; and the remaining large cylinder is situated in the anid central line, instead of at one side thereof as usual. The crank-pins belonging to the smaller cylladers are arranged parullel to each other, and pointing in the same direction; and the crankpin of the central cylinder is 30 placed, that the direction assumed by its radial line will be at right angles to the direction assumed by the radial lines of the other two crank-pins.

The object and effect of this improvement is to counteract or nentralise any tendency that the oblique action of the several conaectingrods on their crant-pins may have to produce a lateral vibration ur rocking motion of the engine upon its supporting aprings, when travelling very rapidly; because the oblique direction in which each connecting-rod acts, when the piston is near the middle of its course, causes the exertion of a force either to lift up or press duwn the guides which retain the juint at the end of the connecting-rod and of the pise ton rod in its intended rectilinear motion; and in the common locoe motive engines, with two steam-cylinders, this force operates alternately at opposite sides of the central line of the engine, and consequently tends to produce the lateral vibration or rocking motion above mentioned. But this tendency to produce lateral vibration will be wholly counteracted or neutralised in locomotive engines constructed according to this improvement; because the central steam-cyllader, with its connecting-rod, is operative al the middle of the breadtb of the engine, and therefore the lifting or depressing force resulting from the oblique action of that connecting rod will act equally on buth sides of the engine; und further, as the pistons of the two suall cylinders act simultaneously, and in the same direction, the lifting or depresaing forces which may result from the oblique action of their connectingrods are equally operative at the sama time, and in the sam= direction, at opposite sides of the said central line, and at equat distances therefrom, and will therefore have no tendency to produce lateral rocking.

Plate IX., fig. 1 , is an elevation of an improved locomotive engine ; Gg. 2 , is an end view, partly in section, of the three stean cylinders, with their valves and accessaries, on an enlarged scale; and tig. 3, is a corresponding horizontal section and plan of the same parts. The ordinary parts of the locomotive engiue being well known, auy description thereof is unnecessary. $a_{\text {, }}$ is the central steam-cylinder, situated beneath the boiler. b, is the uppermost of the two guides for directing the motions of the joint by which the end of the central pistonrod is attached to the forked end of its connecting-rod, the other eud of this rod is secured to a crank at the centre of the axis c, of the driving-wheels. $d_{y} d^{4}$, are the two small steam-cyinders. e, e, are the guides for the joints of the piston-rods: each joint is connected by a rod f, with a crank-pin g, on the nave or boss of each drivingwheel. The requisite distribution of steam to the cyliuders $a_{3} d_{1} d^{4}$, may be performed by means of sliding-valves, and working gear, in the usual manner, but so that the valves of the two cylinders $d^{4} d^{2}$, will always be moved simultaneously in the same direction, which uag be done by the working gear, without requiring any other eccenurics on the main ahaft c, than is usual. In Gg. 2 , the valves are represented as sliding ygainst vertical surfaces at the sides of their respective cylinders, in order that the valve-rods may point directly tu the central line of the main ahaft c; which arrangemont of valpes (as well at the arrangement of all the wherla A, i, j, beueath the cyliudrical part k, of the boiler) forms part of certain improvements in locumutive engines, deacribed in the specificution of a patent obtained by Rubert Stephenson, June 23, 1841 ; but although that arrangement of valves (and of the six wheels) is suituble for engines constructed accurding w the present improvement, the valves may be caused to slide agalust horizoutal surfaces, and the wheels may be arranged beneath the engine in the usual manner. b, (figs. 2 and 3,) is the steam-chest or valpubox containing the slide-vaive m_{1} for the central cyliader a; and n_{1} is the valve-rod, which passes thruugh a stutting-bux in the end of the steam-chest. $o_{\text {, }}$ is the steam-chest containgug the slide-valve p, for one of the small cylinders d; and g, is the valve-rod. The steam. cheats l, and o, form one space for cuataining steam, which is cunveyed from the boiler into it by the pipe $r_{\text {, }}$ and is altermately admitted into one or other of the cylinders a_{1} and $d_{\text {, }}$ by their slide-vaives. is is the steam-chest of the cylinder d^{2}, which is supplied with steam from the boiler by the pipe t_{i} and u, is the rud of theslide-valve belonging thereto. The waste steam is carried off from the cytinder a, by the eduction passage n, and from the cylinders d, d^{1}, by two passages m; these passages are continued by pipes, also marked v, and n, iuto the smoke-box x, where they are turned upwards, itu urder to discharge the whole of the waste steam up the chimuey, as usual. The two ateam-pipes r_{1} and $t_{\text {, are }}$ branches of one cumanon steam-pipe, tu Which, they are united in the amoke-buz; and tua supply of wteam

throogh this pipe is regulated in the ordinary manner by a valve, the bavdle of which is seen at the end of the boiler within reach of the engipe-man.
The working gear for moving the three slide-valves is of the ordisary kind, and is actuated by four eccentrics on the main axis c; one pair of eccentrics being used for working the slide-ralve of the central cylinder, and the other pair for working the slide-valves of the two small cylinders.
The locomotive engine sbown at fig. 1 , is derigued to ran opon narrow gange railways, and for that purpose the two small cylinders are fixed ontside the framing; bat when this construction of engine is required for broad gauge railways, the amall cylinder may be placed within the framing; and in this case the connecting-rods of the two wall cylinders, instead of being attached to crank pins on the driving wheels, are connected to cranks formed on the axis k, within the framing. In place of one central steam cylinder, two small cylinders may be substituted; so that there will be four small cylinders, the pistonrods of which are connected by rods with four cranks on the main axis; the cranks of one pair of cylinders being fized at right angles to the eranks of the other pair. The present improvement is also applicable to locomotive engines mounted on four wheela, and to locomotive engines baving four or six of their wheels connected by rods in the ordinary mode of coupling.
The patentees, in conclusion, state, that their invention consists in the improvement, hereinbefore described, of applying the steam cylinders, with their pistons, piston-rods, connecting-rods, and crankpins, in a locomotive engine, so that there shall be two steam cylinders, connecting-rods, and crank-pins, disposed at equal distances on each side of the middle of the breadth of the engine (or of the rails Whereon it is to travel); those two connecting-rods acting on the said crank-pins with like motion, in the same direction, one as the other, at the same time, to urge their crank-pins onward in their respective circular orhits. And ulso, that there shall be one large steam cylinder, with its piston, piston-rod, connecting-rod, and crank-pin, sltuated at the zaid middle of the breadth of the engine, or of the rails, in the manner of what has been liereinbefore termed a large central steam cylinder. Or otherwise, in place of auch large central cylinder, two small steam cylinders, with their pistons, piston-rods, connecting-rods, and crank-pins, disposed at equal distances on each side of the said middle of the breadth, but as near theretu as conveniently can be. In order, by snch application of the three or four connecting-rods, and corresponding crank-pins, as aforesaid, to counteract or neutralise all tendency that the oblique action of the several connecting.rods, on their respective crank-pins, may have to produce a lateral vibration or rocking motion of the locomotive engipe, fren side to side, on its supporting springs, when travelling with rapidity.

STEAM BOILER FURNACES.

Anbrose Lord, of Allerton, Chester, toll collector, for "Improvemeats in furnaces and the fues of steam-boilers, for the purposes of consusming the smoke and economising the fucl."-Granted June 24 ; Enrolled Dece mber 24, 1846. (Reported in Neroton's London Journal.) (Wilh Engravings, Plate [X.)
This invention consiats in the application, to one boiler, of two furmeces or sets of fire-bars, which are to be fed or supplied with coal alternately; and also in arranging or constructing the flues and regnlating the dampers in such a manner, that the smoke, gas, and other moconsumed combustible matters evolved from the fire which has been last fed shall pass under and through the other fire when at a clear red heat, and be thus consomed. When the fire which was last fed bas attained a red heat, so as to give out no smoke, the dampers are to be reversed, which will reverse the draught. The other furnace or fire-place may then be led or supplied with fuel, and the smoke and gas from it will pass under and through the clear red fre, and so on altemately.
In order more clearly to explain his invention, the patentee bas abown two modifications, one with moveable grates, and the other with stationary grates. In plate IX., fig. 1 is a vertical longitudinal rection, and fig. 2 , is an end view of a cylindrical boiler, with the improrements applied thereto. $a_{1} a_{3} a_{3}$ is the brick-work, supporting a boiler b, b, which has two oval Gues c, c, and d, d, extending through it from end to end. The lower flue c, c, is provided with rails e, e, upon which the moveable grates f, and g, run, being provided with wheels $h_{1} h_{1}$ for that purpose. It will be seen that the boiler b, is provided with a water-space i, i, about the centre, extending acrons the upper lalf of the flue e, c, and forming a bridge to direct the course of the smoke (or a bridge formed of brick-work may be med); and the flue c, c, is provided with cross-bare k, k, from which
hang swing-doors $h L$ When shat, these doors serve to direct tha passage of the amoke and gasen, and they may be opebed for the purpose of removing the ashes. m, and n, are two npright fluen, each leading to the chimney; and 0,0 , are the fire-doors provided with air-valves, for the parpose of regulating the draught. When it is desired to beat the boiler, both of the moveable grates f, and g, are brought towards the fire-doors, and the fires are lighted. All the dampers are then opened, by placing the levers p, and q, (which work the dampers) in a perpendicular position; bat as soon as one fire (say g,) bas attained a clear red beat, it is puabed along the rails e, c, as far backwards as the bridge i, i, and the lever q, is pulled outwards, whereby the damper r, will be opened, and the damper a, closed; and by means of the connecting-rod t, and lever p, the damper u, will be opened and the damper v, closed. T'be apparatus will then be in the pusition shown in the drawing, and the smoke and other combustible gases proceeding from the grate f, being guided by the swing-doors i, j, and the bridge i, i, will pasa under the furnace and through the clear red fire on the grate g, and thereby be consimed and converted into pare heat; thus effecting a great economy of the fuel. When the fire in the grate f, has burnt clear, and the furnace requires a fresh supply of fuel, the grate g, is drawn forward towards the firedoors, and fed with fuel, and the grate f, is pushed backwards close to the bridge i, i; the dampers are theo reversed, by means of either of the levers p, q, thus altering the direction of the current or draught through the dues, and causing the smoke, \&c, evolved from the coal upon the grate g, to pass under the furnace and through the clear fire in the grate f, and so on alternately. If it is desired to reduce the beat of the furnace, this may be readily dune by drawing both of the grates towards the fire-doors, and opening or withdrawing al the dampers.

Fig. 3, is a horizontal section, and fig. 4, an end view of a cylindrical boiler, showing the application of the invention with two stationary grates. $a_{1} a_{n}$ is the brick-work, and $b_{1} b_{1}$, the boiier, which has two flues c, c, and d, d, extending through the same from end to end, on a level with each other. These flues c, c, and d, d, contain the two stationary fire-grates e, and f, one at each end of the boiler. It will be seen also that at each end of the boiler there is a flue $\mathrm{g}, \mathrm{g}^{\boldsymbol{*}}$, connecting the rods of the two flues c, and d; and that the fire-doors $h_{1} h^{*}$, (which must be furnished with air-valves) are fixed in the flues $\mathrm{g}, \mathrm{g}{ }^{+}$. These tlues also communicate with the vents $i, i \neq$, which lead to the chimney; and these senta i, $i \neq$, are connected together by a flue (which is not seen in the drawing) pussing under the boiler. Now, supposing the fire-grate e, to bave just received a fresh supply of fuel, and the fuel upon the tire-grate f, to be burning at a clear red heat, then the damper k^{*}, in the fiue j^{*}, must be opened by means of the lever l^{\dagger}, which, at tbe same time, will close the damper m^{\bullet}, commanicating with veut i^{*}; and the damper n^{*}, in the vent i^{*}, leading to the chimney, must be closed. At the uther end of the builer, the dampe m, must be opened, and the dampers k and n, closed. The smokr from the newly-fed fire e, will pass through the flue c, c, along the flue g^{*}, under and throngla the clear fire in the grate f, by which i^{e} will be consumed and converted into pure heat, which the draught ot the chimney will cause to pass through the flue d, down the vent if under the boiler to the vent i^{*}, and thence to the chimney. When. fresh fuel is supplied to the fire f, the dampers must be reversed, and of course the draugist; and, consequently, the passage of the smoke and heated air will be reversed also.

The patentee remarks, that although the flues, in which the firegrates are placed, are described us being oval, and also shown in the drawing as such, yet he does not contive binself to that shape, ulthough he would preler ita use, ns allowing a greater width of firebars in the saine circumference or area; nor does he claim the use of two fire-grates to one boiler; but he claims the application to one boiler of two separate or distinct fire-grates or furnace (whether moveable or stationary), which are to ue fed or aupplied with fuet alternately, and which are to be conaected together by flues, regulated by dampers in such a manner that the smoke and other products of combustion evolved from the furnace or fire-place which was last fed or supplied with fuel, shall be caused to pass under the other furnace or fire-place, and upwards through the bire of the same, for the purposes of consuming the smoke and economising the fuel.

EXCAVATING MACHINE

Thomas Symas Pridraux, of Suuthampton, gentleman, for " I_{m} provemente in machinery for excavating."-Granted July. 15, 1846; Enrolled Japuary 15, 1847. (With Engravinge, Plate IX.)

The machine consiste of a series of cutting instraments or buckets placed on the end of arms, made to rotate in such a way that after
they have excavited the eurth, the buakets will, es they descend, divcurge the contente futo a weries of buckets on an endless band, and then discharge thom on to a trowh s and agnin the ourth is transferred from the trough on awother weries of endleas bucketa to a moveable skid or wagon The macbine appears to be complex; but, if the prinoiple was found to answer, might, we think, bn simplified.
The following description, by reference to the engravings, will exphain the machine. a is a mooden frame supported on fange wheels b, that ran on iron rile e; on the fore part of the frame in bolted another fimme of trond, for carrying a shaf a, upon, which the revolving anmsf, are fred side by side of esch other, and on the ends of thest ants are fxed the catting inetroments g . For working this machine, stean or other power is applied te a crank i, keyed on to a driving ohall i, upon which is a bevelled wheel for giving motion to a corresponding bereffed wheel k, and connectiong rod l, thence by another correiponding bevelled wheel to a bevelled wheel keyed on the sbaft m, which carries a chain wheel n, for tranferring the anotion by an endless pin chain 0 , to another chain wheel p, leyed on to the shaft e, before explained; g, is an endless chain of buckets revolving round the rollers $0,0^{\prime}$, to receive the earth from the cutting instrumente when in the position g, and carries it on to the trough r, from which the earth is again removed by awother series of endless buckets s, that pass round the rollers t, and o^{\prime}, and discharge it into the hopper u. These endless chains are set in motion by an eccentric o, keyed on the driving shaft i, from which motion is transferred by the connecting rod o', to a crank or crank-pin on the wheel t, fized on the shaft that tuns with the roller over which the endless buckets 8 , revolve, and thence motioe is given to the lower roller σ^{\prime}, that sets in motion the first endleas bucket q. There is one other motion on the driving ahaft i, which causes the connecting apindle m, to revolve, and with it the endless screw x, that takes into a pivion y, fixed on the axle of the Aanged wheek for propelling the carriage as the work advances, and which may be regulated to any desired apeed. The hopper or wagon t_{5} is either tilted over by tuming the handle z_{1}, or removed on to a platform for conveying it eway.

FURNACES FOR COPPERS, \&a.

Joempa Morilland, of Uldnatreet, Middlemen, copper and atill mamancturer, for "Improwmente in setting and fxing cappers, stills, and boilers, and in the conotrwetion of furnaces."-Graated June 29; Enrelled Dec. 29, 1846. (With Engraving, Plate IX.)
The improvements relate to the arranging the side and bottom air prssages of the furnaces, and the application of hollow fire lamps. a a, shows a copper, still, or boiler. b, fire-place under same. c, furnace bars. d, bearing bars supporting same. e, ashpit. f, line of stokehole. g, farnace door and frame, k, apron plate or mouth plate. i, bridge of furnace. j, opening parallel with end of furnace bars et bridge, through which the heated air passea, and meets the apour or gases arising from the burning fuel, and whereby a supply of usygen in a rarifed state being given it, or them, combnstion take place. k, valve or slide with handle to the same, and communicating with the front at door-frame for regulating the neceseary amount of rarified air to be admitted in at the bridge of the furnace, which must be opened immediately afler the fuel is thrown on the furnace, and to be closed when the combustion of the coal has taken place; holes or pins to be provided in the handle of the same, to prevent its being opened any wider than is absolutely necessary for the comb ustion of the fuel. l, fiame bed or butt formed of fire-tiles or other incombustible waterials, to cover the air-flue or oren, through wbicli, by flame passing from the furnace, beat is communicated. $\mathrm{m}_{\text {, }}$, door and frame, through which the dust and cinders may be removed, which will necessarily fall through the air opening, j. n, cast iron plates at bottom of ashpit, covering the air-fues, upon which the heat from the furnace and fire-place is reflected, and communicated tbrough the same to air passing through flues underneath, and which plates are to be kept free from accumulating ashes. 0000 , air-flues for the atmospheric air first passing under and along the centre of aslopit, and dividing itelf right and left under same, then passing on each side of, and in, the ashpit wall, and continuing on through the hollow fire lumps which line the furnace; after which, continuing on right and left under flame bed or buth, where it then meets and descends to the valve or slide at $k_{\text {, and passing through which, it then }}$ enters the furnace in a heated and rarified state at the opening at bridge of same, i. pp, hollow fire lumps for the lining of fursace, through which the air is continued frum the lues of ashpit. r, entrance for the admisaion of the atmospheric air to flues, which is to be asisted and increased by the use of a fan or blower attached to same.

The darte or arrowe show the direction whioh the atmotpherio air takes in ite progreve to the opering at bridge of furnace at i. Abor the faint lines on ground plan show the construction of air-fioes ander the line of atokebole end sebpit. Aloo, the dettors f to b, and b to f, shown in the arom rection, meno respectively froat to back, and back to front. And also, the dark dothed circle abown an the grousd plan, is the bottom of copper, atilh or bailer.

IRON AND BRASS MOULDS,

David Yoolow. Strwart, of Montrone, Scotland, iron-founder, for "Improvements is moulding iron and brase."-Granted July 14, 1846; Enrolled Jaut 14, 1846. (With Engraving, Plate IX.)

Fig. 1 is an elevation of the machinery and apparatus, and fg. 2 a vertical section of some of the parts; a, cylindrical mould bori, preferred to be made in two parts and connected together, as ebown by bolts pacsing through the straps b_{0} and keyed up by wedges. At the lower end is a step to receive the lower end of the pattern c, which is preferred to be of metal d a proaser, to press the mand into the mould-box $a_{\text {a }}$ around the patfern a. The presser consists of a tube of thin sheet metal, with a projecting flange d, or portion of a screw; the worm or flange not passing completely round, but it leaves an interval between the two ends. f is a projection, there being a similar one on the other side. These projections loosen the sand above d. The tube d revolves round the pattern c, and keeps it upright; and as the presser d revolves, it rises by the inclined surface $d^{\prime \prime}$, that wurface continually feeding ia the sand, and pressing it down upon that immediately below it, thus causing the sand to be compactly pressed into a mould. On the upper end of the tube d, is fixed a $\operatorname{cog}^{\circ}$-wheol e_{i} and the upper and of the tabe d ravalves in an opening formed in the oross-head g, auoh crose-head being guided in its upwurd movemest by the guide-bar h, and the revolving square-bar or azis i, which turns in bearings at $j j$. On the upper end of the axia i, is fixed a bevelled toothed wheel k, which receives motion from the axis h by means of a bevelled toothed wheel fixed thereon; and such axis h receives motion from a steam engine or other power, by a strap acting on a fized drum m, as is well understood, or by other convenient meane n is a pinion which alides on the revolving-bur or axis i, but turns therewith.

SOCIETY OP ABTS, LONDON.
On the evenings of the 3rd and 10th alt., thin Socisty, for the fratt time, attempted to establiah an Exhibition of British Manufactures: although it Fat not very exteuaive, it contaised eeveral interesting objecte of art. The specimens of Carving by Machinery attractad attention. Those by Irving's patent were distinguished for clearneas and precision of form; eapecially in mouldingt, for which, indeed, this process seems best adapted. There were also some productions by means of heated moulds, which, thoagh good, were ecliped by thome from Jordan's patent, which were very fina. A Bunch of Hope and Brace of Partridges were worthy to hang by the aido of Grinling Gibbonats works. A portion of the Ghiberti Florentine Gate wes also very swocesoful. The machinery employed accomplishes precisely the tark assigned to the sculptor's ascistant. It clears sway all the aperanities and prepares the object for the final touches of the artist, -no matter how high the relief, or how low and intricate the undercutting. Another featore connected with it, is that aimultaneovaly several copies can be exccoted. The impetas which tbis machinery is calculated to gire to intemal decoration capnot be too highly estimesed. It multiplies artistic power without limit; only stopping short of that perfection which maket the artist's last touch and approval necescary. This machinery is applicable alike to marble, alabaster, and wood.
The exhibition of Glate was not extensive. The specimens by Meart Riohardson, of Stourbridge, proved that wo are already chomists onough to peint what colourn we plese on glase, as on china. This is quite a novelty. Some of the forms of the vases are very elegant-chiefy based on ancient examples.
The apecimens of Motaln were few and not very satisfactory. The Coal. brookdaie Ironworks, hough thoy have executed some pretty good castings, sent nothing to this Exhibition. Mr. Smith's specimen of chasing on sheet tilver was interesting : it supertedes casting, and economisea two-thirda of the precious metal. There what only one specimen of electro-gilding.

The show of Pottery and Porcelain illustrated tont branch of English mannfactures, and enabled any one so disposed to become acquainted with ${ }^{2}$ te rise and progress. The specimens were clased chronologically,-begin-
aing with the batter-pots and many-handled "tyge," or drinkiag cups, of the time of Queen Blimath, and eading with the pettery of the present period, showiag how the manafacture of Bnglish pottery bas advanced step by step, antil it has resched that perfection by which it commands a preferwese throughont the world. The mazufacture at Delph is almoet pat down by it, and the best porcelain now to be met with at Dresden and Paris is of Eaglish manufacture, not withatanding duties alroast probibitory. So far as raccesaful inisation is concerned, Inglish pottery has accomplished all that cin be desired. It has superseded, owing to its superior make and cheaprens, the originals which it imitated. The old native Delph plate is not to be compared with the modern Buglinh specimen. Wedgwood in many pointa surpassed the Etruscan vases; while the best specimens of Sevres reses and Drenden figures are equalled by us in goneral execution, and in many features of workmanship, -ihough inferior ta some klads of colour and in the "glazing." In respect of price, Bnglinh manafacture hat in af ames epormors advantages.
There were some noble sperimens of Statuary Porcelajo exhibited by Momrs. Copeland and Gerrett, and in "Parian" by Mesarn. Minton. From these apeciment it appeara that tho works of the sculptor may bo placed within the reach of malimited numbers. The material or "body," in both anm, in very beautiful, and hat only to be capnected with good Art to prodre a perfectly succearfol naion. Tha morktan, it is true must have an deyvate knowledge of the human form in order to be able to unite, witb proper feeling, the separate parta in which the figure is necesaarily casto Theme also tome beantiful Porcelain Monaics of Mears. Minton.
Sona enamplat of Block Printing for paper-hanging, axbibited by Mr. Horme of Greceehurch-itreat, were good; one Fas a copy, on a large acale, - Murilo's "Rotgar Boys," in the Dulvieh Gallery.

Fio bope dext year to ane a large number of articlea in cant jrome hram, and breaze, adapted for oranamating the intarior of editeen; likewise gotes
 Hady sean, manofoctased is thit coumery, are quita equal ta the Prooh.

ROYAL SCOTTISH SOCIITY OF ARTS.
Fob. 28.Groncs Wrmon, M.D., F.R.B.E, V.P., in the Chair.
The following commnnications were made:-
Dr. Wrison experimented on the "Noise of the Eleotric Spark is difforent Cmon. os a means of illwatrating the pewer of Elantic Flwids to condurt sene."-The two aerial fluids experimanted on by Dr. Wilmon wera comman atmoapheric air and hydragen caw. When the electric spark was pand from one conductor in the interior of a glass globe, filled with hydrage, the noise of the spark was excendingly fooble, being nearly drowned If the noise of the spark taken outside from the prime conductor. On the contrary, Fhon the globe was emptied of hydroged and tilied with common air, the noiee of the spark in the interior of the veasel was louder than the enterior apark, having a metallic ringing mond.-He, therofore, suggeated this at a simple method of illustrating the power of elastic fluids to conduat comad. Thanks voted and given from the chair.
By perminglan, Mr. Pownall, onhibited Nott's "Paseat Electre-Marmatic Tolegreph." The talograph wes abown in action, and was desoribed by Wilan Alexander, kieq., F.R.S.E., F.R.S.S.A. The Electro-Magnotic Tolegraph inveated by Mesars. Nott hat a hasd, sirailar in appoaradoe to the bade of coamon clucks whiot whit the bour; this baed ia looger on one ade of the pirot or axle on which it moves thas oa the olber side. The loeger eod poinds to a circle of four alphabets which amrronads the dienplate, and the shorter ond to a sirole of figures which is at a short distance from the cemtre of the dialoplate. The haod (or hasds) moves with what in termed a doad-boat escaprenont, the motive power beins the cleolric Buid acling upon a toolhed wheel with pallets and stops, by which the utgost resalarity af movement is obtaibed. When tbe hund is to be put in motiun, a toy, manathigg similar to a key of a pianoforte, is pressed, and the pressere remored when the hand pounts to the letter necessary to spell a word, or tea figure ocoesanry to exprese a signal, as the case may require. Thus Frods are spelled with unerring sacurecy, and signals pointed to without the posability of mistake. No magrotio meedles move an the dial-piate and by thrir defections indicato ubo lelters, or words, or aigns, neceanary, in the magnetie folegraph bitherto in uee, to form a sentence. There is no atarnm used, but a bell is used, the number of atrakes struck on which indiation oertain thiggs to be commuaionied fros one station or tarminus to mothor. There is bat ane wire employed, and the coot of the apparalus, therian, \&c., is mot anuck more than hall the coet of the mode now in use. The greet advaptagen of this iarention are stated to be its simplicity, its cocariay, the ease Fith whicb it is worked and uaderalood, and the almost imponibility of its matainiag tajury, unloca from great violedce; there is mo intrionte machanistm, no apriggs or weights, and oaly oge wheel. It Whetand that it had bees sdopted betweer Northamplan and Blisworth, when it aswars edmirably; and that it had been faroorably reported Eon My Mr. Faraday and Major Brandreth to the Adairahy; by Mr. mande and by Profomor Backhantiver;-that this latior gentloman bas miredeend it in a ecurte of lectares, at the Polgteobnic lagtitution. It was mand to be a mont important improvemeot on the rapidity and accuracy - Elegraghio commpeodrace, and a norelify in the application of the prindiple of electric communication.

Mareb 8.-Davis Maclacan, M.D., F.R.S.E., President, in the chair.
Experiments were exhibited, showing the perfect safety of the patioet from Explosion doring the administration of the Vapoar of Swiphurite Ether ; and a description given of the forms of the Inhaler. By Mr. Arohidald Young.

Mr. Young concluded his series of experiments on the inhalation of etherial vapoor by showing that the etherised contents of the lunge would oot explale; from which he conceived he had demonstrated the perfect safety of the patient from buraing or explotion. A discussion followed, is which Dr. Wiison, Mr. Glover, Mr. Huater, Dr. Douglas Maclagen, and Dr. Eoberta, took part; in which, although it was admitted that there was liule or no risk to the patient from interual explosion or buraing, yet that, as a volume of vapour of elher, when mixed with 35 volumes of commor air, formed an explosive mixtore, persous using ether should not do so rashly, as, in certain circamstances, instances of which wrere given, exploslon had taken place in the apartment ; not, howerer, fatal ooes, nor did they occur during the administration of ether by inhalation.-Mr. Young shoped parious simple forms of the inhaler, some with valves and wome without them, and very portable, made of japanned tioplate, as anggested by Profossor Simpang.

Description of en Impreoed Kinmard-Grete, combining more parfeet Radintion of Heat, with a provialoa for the adonisaion of Air and returaina it Warmed ist the apartmept. By Mr. Jame (Jasy.

This grate, whoce heatial power wes staned to be mach superior to the eem nose forth of the Rimadill-Grate, is ln appearance ibe very reveret of the common kiad. Is place of retronting backwards, it protrudee ivie the apartmeot 23 it were, by which mean the fire is braight more forward with lem rigk of dagore by the overteaties of the beak brick. It also re. diates heat more perfoctly iata the apartment ; asd a proviaion is aloo nade for cold air to pase up aloog the meated brich wort of the building, and along the lop of the covering of the grate, which issues therefen by piereed aperturos plenametly warmed inte the reen. Mr. Aray atated ihat this grate had given much antiofection to thow whe had tried it. In appeans anev it is as elegent, if mot more so, as the commea Kinsaind-Grape, and not more expeakive.-Referrad te a compintot.

HOYAL INSTITUTR OR BRTISH ARCHITECTS.

Jan. 25.-S. ANorlt, Eaq., V.P., in the Chair.*

A communication from W. Beonict, Esq., reapecting oae of "the Arehem of Upton Church, is Buckinghamehire," was read; and a akotoh ty that gontlomas exhibited, showing ite priscipal featore, viz. a corved weodan archivolt, the mouldinge of which are the dog-took alteraatiag with ment rouads,-the outer moulding adoroed with a moried of diagonally-net trid leaves of a more antique character than Gothic ornaments commonly ase.
"A deacription of the Remaine of the Atacicnt Nurman Refoetory in the Bishop': Palace at Heraford," by J. Claytan.-There are fow oxintias examples of Noman architectore which propeat the timber-work is ameh excallent proservation es that at Heroford. Thin great Hall is eer of the earliest examples of the clase of buildiage to which belong the Halle of Westminster and W inchester. It was priginally divided into one ceatro and two side compartments, by two renges of columas of four each, from which sprung the arohes oupporting the roof; and the peeultarity of this example coosists in these pillam and arotes biog entirely constructed of timbers. The original dimensions of the HaH were 110 feet bs 88 feet: agd ons half of the roof now eervee to ahelter the priacipal apartineets of then present episcopal reaidesoe, epected upwarde of a eeatury age, Above these apartments, which ase of eacestory anly, ane seen the uppar portione of the pillars, the arches, and the roof; the lewer parta of the columes being coocouled in the division walle of the moderm rooms. The priseipal arches, vic. those over the eestre complerment, were of 48 feet apan; and each formed of two pieces only, out in the arched form froan the solid tim-bar-which must mecessarily have been of vat dimensions. Thls onk, akhough whitened by age, is perfectly mand. Drawing of the detall were exhibited; an iso ane convoying the writer's idea of a restoration of the interior of the Hall-showiag that the original buildiag must bave bed an impoaing appearanoe, net produced by mabiplicity of perts or riehmese of dosign, but from an massive graudeur, the peculiar charucteristio of this earty ofyle of archibecture. A few particulars were given of the cily of Herefond prior to the ervetion of the rafentary in question, whioh was probably soon witer the Conquen.-The Hall at Oakhan whe then doseribed by Mr. Clayton as a mont beantiful specisea of the Norman briluings of this chass. It does net puness the peenlierity of being come posed entirely of tiaber, nor has it the magritude of the examples at Hereford; but remains ia at oweellent state of preservation. It Gopmod part of the ancipat cavicia sad is mow uaed as the county courts for the ahire of Rutiand.
"Oherrvations on the Anerimt Roaf of the Cherch at Aded, in the West Ridimg of Yorh.'F by H. D. Canntabll, Eeq.-Ampong the peculiaritiea, particularty aHuded to was the eorbel table, whinh had evidently been adzed out of the solid timber, havios projecting pieces which atted is between the oxiling joiste, or rather beame. Mr. Chantrell was of opinion

[^19]that this roof was originally open, like the cradle roofs of the 18th cem. tory, many of which coenr in the churches of Yorkehirt. The south door was mentioned as exbibitiog one of the fineat specimens of Norman sculptore in the country. The capitals of the principal pillars of the chancel arches are in the best preservation. That oo the sortb has a groop of Ggures reproseuting the Baptian, and the other the Crucitixion. It was meationed that the same character and rouping oecur above the door of the Baptintry of the Church of 8t. Batil at Brugen, known as "La Cha. pelle du Saint Sang," which edifice way certainly founded in 1089. The kile-shaped abield used in the time of William the First, and ofher pecaliarities of style which occur in the sculptured figures of one of the sonthern capitals. are additional reanons for assigning the date of the 1Ith century to this baildiog.

Merch B.-S. Anorll, V.P. in the Chair.
Mr. J. Bcort Roasell read the concluding portion of a paper "On the Interier Forms of Building: with respect to the Later of Somad." After recapitulatiog his firat ead eecond principles, he weat on to examine the thind canse of bad qualities in the construction of a room. He showed that in a large square room, of the usual form, the reflexion of the same sound was carried to the speaker's ear by different paths, and in different periods of time; the result of which was the confusion of ancceseive sounds and ayllables with each other-and 80 a prolific cause of indistioct bearing. It required another principle to afford the remedy of these evils, and that was the fourth principle - which be believed was quite new. He might ventare to call it the principle of the non-refiexion and lateral accumulation of the soond ware. It had originally been auggested to him by the observa. tion of a similar phenomenon in the wave of the first onder in water. This wave be considered to be the type of the sound roacs ; and on examination he had fonnd experimental evidence of the same phenomenon in the latier wave. He had observed that at angles below 45° the sound wave was no fonger completely reflected from the aurface on which it impinged; and that when the obliquity of the wave to the surface was 60°, a phenomenon followed of total mon-reficxion-aod the wave continued merely to roll along the eurface in a direction parallel to it. This fact farainhed a ready means to remedy the ovils so often produced by the reflexions and echo and interference of sound in public buildings.-W herever it was possible to place flat or corved surfaces at sach angles that the direction of the sound ahould be very oblique to the surface, it might be barmolesaly disposed of, and prevented from injurious reflexion.-This was exactly what the stalls of a choir, the side chapels of a cathedral, and the partitions of boxes in an opera bouse, did so successfully for buildings of a large class. The asme priaciple enabled bim to explain the Whispering Gallery of St. Paul's (which is circular) and another equally celebrated, mentioned by 8anoders, Which is perfectly straight. The same priaciple also explained the conveyance of sound along the smooth surfare of a lake and over the liat surswoe of a sandy desert :-as well as the extraordinary reverberation or accumulation of sound in some portions of a building, The ffth principle was that of the polarity of the human voice. Mr. Russell showed the rapid dimioution of intensity of sound on both sides of the axis of the month;-mand that instead of extending in a circular wave round the head of the speaker, as had been supposed, the line of hearing-distance was an elongated oval exteading forwards from the mouth.

March 22.-Mr. C. Fowler in the Chair.

Mr. James Bell read his eseay "On the Adaptation and Modification of the Orders of the Gresks by the Romans and Moderns," for wlich a Medal of Merit had been awarded :-

The order, in Grecian architecture, constituted the chief feature, and contributed its character and proportions to the entire edifice. The colamn, on the introduction of the arch by the Romans, lost its importance, and together with that, ite extreme delicacy of Inish and proportion; in place of which, luxuriance and richness were aubstituted, to as to barmonise more thorooghly with the sentimenta of the Roman people. This change gradually led to a complete debasement of the style; the arch, after the Constantine era, gainiog in importance more and more until the Pointed style arose from the rains of the Classic. On the revival, the Italians by the stody of the antique, eadeavoured io restore it to its primitive purity, and many of them were eminently succesaful in the atlainment of their object, although the painter-architects introduced many flagrant abuses both in composition and detail. In the north of Europe, where the Pointed atyle had obtained a firmer footing, the change was produced by the graf. ing of Classic details on a Gothic oulline, constituting the Elizabethan and Renaisance; and, at the mame time, an incressed jntercourse with Italy led to the moption of the new style in all its purity, for much of which we are iodebted to Sir Cbristopher Wren, in whose school it was thoroughly naturalised. Since the middle of last century, the study of Grecian remains has led to the further porification of the Romua, together with a duc appreciation of some of those delicacies of form and proportion which were proviously either misunderstood or altogether overlooked, although the feeling of the age, so far as regerds detail, teads rather to imitation than to modification. To the Germans, however, was due the merit of the most complete appreciation of the works of the Greeks,-a result which might have been anticipated from the analogy between the habits of thought and feeling, and oven language, which may be traced between the two nations.

INSTITUTION OP CIVIL ENGINBBRS.

Fel. 28.-Sir J. Renner, Preaident, in the Chair.

A anpplement to the papers on "the Helder or Greut North Holload Canal," by Mr. G. B. W. Jacyson, was read. It contained a description of the harbour and works at Nieuwediep, which might be considered as legitimately connected with the Helder canal, inasmoch as they wore corstructed with a view of affording shelter to vessels of war and merchantmen navigating the North Sea. The banks or shoals situated at the month of the Marsdiep chaonel act in a peculiar manner; they narrow the eatracee, resist the undue influx of the tides, thus preventing injurg to the coast of the Zuyderzee; they oppose dificulties to the entrance of hostile fleets, as the navigable channels run within range of the protectiog forts; and they assist in maiataining the velucity of the currents which keep the channels at their naual depth. On ihe coast of Holiand the ebb-tide continues to pass off along the Noorder-gat a full boar and a balf after the tide bas commenced fowing up along the Schulpen-gat; this can only be accounted for by supposing that the tide runs up from the south-west, and enters the Schalpen-gat, whilat the ebb still continues, in consequence of the draft of the tide northward along the coast. The Schulpen-gat and Landsdiep may therefore be termed the flood-channels; whilst the Noor-der-gat may be considered the ebb-chanael. Upon these spots, whose preservation was of such conseqnence to the country, the Dutch bave lavished their best care, and exercised their ingenuity.

The shore-works consisted chiefly of groynes, composed of timber plles and fascines, with stone covering. The average length wis two huadred yards, with slopes of abont one in eight or ten. In consequence of the report of the commission appointed in 1780, the engineers, Bronnings and Goudrai, were inatructed to proceed with the formation of a warping beale of fascines, 7860 feet long, with douhle planking guard to accumelate the sand, in order to fill up the interstices of the fascines, and thas preserve them from decay. A breakwater also, 1850 feet in length, 73 feel wide, at 3 feet below high water, with slopes of one to one. This was also formed of fascine beds, weighted with 8000 lb . of stone, and 4000 lb . of tiles upon every superficial mrea of 144 square feet. The upper surfince was covered with matting, and made convex, the contre being oue foot and the sides three feet below the level of high water. Hurdling was then used, and the whole was covered with blocks of stone weighing from 1500 lb . to 1800 lb . each. An additional length of 2080 feet was sobseqneatly built, the warping bank being completed, and by means of these works the ebb-stream was increased to such an extent as at once to deepen the channel eighteen inches, although the bed was of clay. In 178s, dredging was resorted to, and, with the action of the stream, a depth of aineteen feet was arrived at. The whole length of the proposed barbonr was then dredged to a depth of seventeen feet under bigh water level. Another warping bank of 8675 feet in length was then constrocted, with numerous groynes to arrest the sand and preserve the const. A quay- Wrall and jetty were then added; the piles composing the latter were covered with sheet lead between high water level and one foot below the groand, in order to preserve them from the ravages of the Teredo Navilh, which, however, it is the popular opinion, may be also prevented by driving the piles through fascines. A portion, sixty feet in length, of the breakwater was torn away by a storm; this slip was alled up with large stones, but thes were ineffectual, and fascines were ultimately had recourae to for ropairing the breach. The depth of the channel was thus increased to neariy thirtg-five feet, so that frigates could pass with anfety. In 1769, one hundred and finy-one vessels were lyiug there at anchor, fourteen of which were men-of-war, and four were East Indiamen. The basin is 1892 feet long, and 646 feet wide, with large storehouses, dock buildings, fortifications, \&ac., of the most solid description, and thoroughly complete for a naval arsenal. The details of every part of the works were given. A special vote of thanks was passed to Mr. Jackson for the paper.

Remarks.-An inferesting discussion ensued, in which the highest cosspliments were paid to the author for the paper he had presented, and the mander in which it was illastrated. A description was given of Dymchurch wall which defeads Romney Marsh, an extent of 24,000 acres, and also of several other sea-defences ut the mouth of the Thames, and eleowhere, in which fascines were exteosively used. The Neme embankmeats were also described. Specimens were shown of the Armado Aremeres, a coarse grass, whose roots exteod cometimes to a length of upwards of thirty feet, and which is emincatly useful in securing the sand of the coest from being blown or washed away.

Among several cases of the failare of protecting-walls, one wats partionlurly described of a nearly vertical sea-wall, whose foundatiops were suak down full tive feet below the shingle of the coast ; the wall was built with great care, and with first-rate materials-it wns, however, exposed to the action of a heavy sea in North Wales. During a severe atorm, the wares were thrown up in a mass fall forty feet above the wall, aud folling from that height with the force due to such a distance and mase, very apeedily deatroyed the whole wall. In quite as exposed a situation, a slope, whick enabled the waves to expend their streagth, and broke them up into form, did not suffer at all. Numerous deduotions were drawn from these and many other instances, all unfavourable to the theory of vertical see-wells, which it has recently become fashionable to recommend as a theoretionlly even more correct form, in opposition to the well tried plan of eminent civil engineers, who bave almost unirersally adopted slopes for raminting the ection of the sea.

Parch 2-This ovening the diboumion opon Mr. Juaknon's paper was renowed, and was metended to such a leagth as to precinde the reading of any paper.
The comparative ad rantages and dinadvantages of vertical and sloping sem-walls were disouseed, and isstanoes were given of the effect of seas upon the former when walls of a certain better or carved face surmonnted by en overhanging coping of such extent as to deflect the curling wave oatwards, and throw it back opon itself rather than allow it to fall bodily inmerds, as in the case of the Penmacomawr wall mentioned at the last meeting. The manner in which the waves were driven up long glopen, acquiring force as they travelled along, was contrated with this. On the ofler haod, the action of the rarions kiods of waves was shown apon sec. tions of the beach at Madras, where the surf was so notorionsly bad, and wherp it appeared that by the clawing off of the waven the beach was washad away into natural slepa, of a level and then a small slope of 46°. A break water had been formed off that beech by throwing in loose massos of rock forming their own slope; this, when carried up to within ten feet of the wrater-level, stood well.

In Knootka Sound the same effect of the drawback of the waves was soticed. Sections of the Mole of Venice were shown. That mole, which is nearly 16 miles in extent, had a section of a sloped foreshore with a mearly vertical wall, then a slope at another angle, and above bigh-water mart soother nearly vertical wall. When the seas rolled in opon the mole they partinily curled over against the first wall, and were projected with angmented force against the upper oue. The consequence was, that the male was partiully destroyed, and in the repairs, which had been oxecating for eome time, it had been reduced to one uniform sloped face, at an angle of aboat 15°. The destruction of the eearly vertical walls of Port. patrick wat also noticed. Thone walls, although constructed of the finest Angiosea limestone, well dressed, dove tailed, and tied down verticully and horizontally by iron chain-bonds, were completely overthrown; and, until the thickness of the wali was increased to 80 feet of solid material, it could not be made to stand. The situation was extremely exposed, and the sea frequently aprung 50 feet above the top of the light-house, which was juself 60 feet above the level of high water of apring tides. The eances of the peculiar action of the draw-back of the waves, as oxemplifed by the removed shingle from the beach when the wind was on shore, and ite accumalation when the wiad blew off the chore, were also disensed; and it appeared to be the received opinion that, in these cases, the apper part of the waves being acted apon by the wibd, a pecnlar roll. iag motion in a convter direction was imparted to the lower wave, which acted upon the shingle in the manner alluded to. This action appeared, however, only to extend to a depth of about aine feet, which it seemed to be egreed was the ultimate depih of detrimental action of all waves. The forts of Bonlogne were given as furtber examples of the reflection of waves froe nearly vertical walls; but it was shown that the darting over of the wares there was caused by their falling within the re-entrant angles of the fortification.

The effect of advanced groynea in protectiog sea-walls wats exemplified by the concrete walls at Brighton and Dover, which were extended merely tor retaining walls; and such was the effect of the grosnes, that sioce they had been pat down the shiogle had acoumalated to such an extent that the sue did not appronch injurionsly to within 100 feet of the base. Our lisits will oot permit a greater detail of this interesting discussion, which चill, however, appear entire in the proceadinge of the Institution.

March 9.-The paper read was "On the practical forms of engineering works exposed to the action of the eanocs of the sea, and on the adrantages and dieadrantages of certain forms of construction for breakwaters and sea cells." By Mr. John Scott Russell.
Although agreeing as a general proposition, with the trath of the obserration, that it was impossible to lay down any one nodeviating rule for a form of sen wall which should suit all cases,-the author had, from long and careful experiment, and examination of various localities, endeavoured to classify certain forms of artificial constractions, and to adapt them to certain cases, haring reference in each case to the action of the wares to which they were to be exposed. His f it process was to examine the action and claracter of the several kinds of waves, deducing as a given axiom, that,-First, the common form of waves is cycloidul. Second, the motion of the waves in a disturbed state is circular, and in a vertical plane. Third, the water near the top of a wave moves the same way as the wave itelf. Fourth, the water in the bollow between the waves is receding. Fifh, the power of a wave is exactly in proportion to the beight of its crest above the hollow between the waves. Sixth, the greatest power a wave can exert in at the moment of the crest breaking over into the hollow. Seventh, waves in the British seas have rarels been seen of a greater leight than 27 feet above the hoilow, and 32 foet may be takeu as their grealeat unbroken beight; thuse of the Atlantic being atated to range Ligher. Eighth, wares have never been seen of the fuil dopth of the water forming them, bonce it is deduced that the greatest force waves can be expeeded to may be determined by the depth of the water they are placed in, Niolh, there two or more classes of waves,-wiod-waves, short, bigh, and meporficial; and atorm-waves, which are long, low, and deep. Tenth, the depth of agitation caused by a wave is in the ratio of its height and length comjoiatly. Reasoning upon these data, the paper then proceeds to ex. arive two claseet of hydraulio works. Hirst, thowe which aro designed to at upon the waves; and, second, thote whoee structure are exposed to
the sea withont any deaign of confrolling it, bat only to gaido it ander particular circumatarces.

Of the first clase are sea wralls, piers, and orber sea defences intended to restrain the aotion of the waves; for the forme of which a number of dealgas were given, ranging betweon the fiat slope, with a foreahore, and the vertical wrall. Of all these the preforence wes given to a mall having a concave or oycloidal curved face, to carry the ware up without breaking; overhanging coping carved on the anderside to retarn the wave upon itself, and a receseed parapet on the outaide to prevent the wave from being thrown inaide. For breakwaters, whose object it was to reaist the weves and produce atill water within side, the bent mode, voder all circumstancee of locality, variety of materials, and cost appeared to be the depositing of the large and small materials, and allowing them to find their nataral slope under the action of the waves.

Of the second class, are works designed to direct the scour at low water, bet which are quite covered at high water; the fonodations of lighthouses, \&c.-the object being to oppose the least ponsible reaistance to the waves, and to suffor the least from them. Groynes, embankments, and other works intended to be under high Fater, also coming nader this elase; the best form is the parabola with the foot curred outwards on each side- the apex boing raised or lowered, and the base proportioned to ita application. This form being extended upward approximates to that of the Eddyetone, Bell-rock, and Skerry-vore lighthouses, whloh have withstood the action of heavy seas so succesafully.

The vertical wall was condemned for many satiafactory reasons; the cost of workmanahip, the expeasive character of the materiala, the liability to destruction, if a breach be made, and the unsatisfactory action in consequence of the waves maklag a clear breach over them in heavy weather.

In the discussion that enswed, many interesting illustrutions were given of the trith of these poeitions, derived from the works of Whitehaven, those on the Sonth Devon Coast, and those at Hartlepool, in which latter cate the strong red marl, dry punued, mingled with small stone, and faced with pitching, had been satisfactorily employed at a very amall cost for the construction of piens.

March 16.-The paper read was "A deccription of the method adopted in Proparing the Foundation, end in Building the Bridge over the Polderoart, on the line of the Anafordan and Rotterdars Railway." By the Chevalier Conrad, M, Iuet. C.E., compiled by Mr. C. Manay (searetary), from documents furnished by Mynaeer Wencesbace.

This bridge derived its importance from the pecnliarly treachorous naeture of the ground upon which it was constructed, for, although in Holland bad foundations are the rule rather than the exception, the dificulties wore in this case so peculiarly great, as to demand particular notice. The Poldervaart, is a canal encompassing and conveying away the waters from the Polders, or spots of drained land in the commune of Kethel. The railway, traversing it at a considerable angle, renulered a skew bridge, of three openings, necemary-the centre one 13 feet apace for the navigation, and the two side arches 21 feet space each, for the drainage water. The proceedings were commenced in the naual manner, with the intention of havlog separuto fouodations for each pier; this was by shooting in large quantities of aned, to form dams, within which, when pamped dry, the fonadations would have been excavated. After a length of about 70 feet of sand, dam 10 feet deep had beea flled in, withont exhibiting any signa of sinking; a heavy thunder-storm occurred, during which the whole mass of sand dam was suddenly engalphed to a depth of 29 feet; whilat there arose simultancously, at a short diztance down the canal, to above the water level, a mass of bog-earth, of an area of 4499 square feet-this mags increased at sabsequent periods of the proceediags to the area of 9628 square feet. It was evident, that an extensive subterraneous shifting of the bog-earth had occurred, and there wes reason to fear for the safety of the adjacent dykes and other works. Piling and fascine works were tried without success-piles of 70 feet in leagth, when driven and tied together by waling pieces. awerved bodily from their position, and became useless; fascines equally failed in producing stability. The engineer, therefore, determined, after directing the canal water into a side cut, to surrond the site of the intended fundation with mounds of sand, allowing for their subsidence into the galph below, and then squeezing up the bog-earth around and within the spot. This was at lengith completed, and the foundation pit was enabled to be pumped dry. It then became necescary to remove all the bog-earth from within the space for the foundation, which was accomplished by digging out spaces of a yard square, and Giling them in with sand as they proceeded, until, by commencing at the exterior, and working inwards to the centre, all the bog-earth was removed, and a bed of and had been formed in its place. The piles for the ordinary foundation, used in Holland, were then driven throngh the made ground, and the structure was completed with perfect success-the sand dams, and the masses of upraised bog earth outslde, being subsequently dredged up in the ordinary manoer, to rentore the canal to its original bed. In this description, the circumstance mont deserving attention, appeared to be the sudden rising of the bog-earth during a thunder-storm. This is, however, of frequent occurrence in Hollaad; and it would appear as if the adhesion of the masses of bog-earth to the bottom was so slight, that the vibration commanicated to the water by the thonder, sufficed to destroy the equilihrium, and the bog-turf, which, from its slight specific gravity, will fioat even when wet, instantly roee to the surface. When, therefore, as in this case, a heavy mase of mand was placed in the vicinity of such bog-arth,
 it to break through the crust, being engulphed amidat the lighter material, whiteh it foreed up in the dirsotion of the lrat reaistance. The paper treatod at some length oa all the preeantions aecemary in this and similar cmatructiose is Holland, where such bad foundations are of very constant creurremet. Is the discuasion which enesed dacriptions were given of the simpler methede omployed in aimilap situations in Bngland, where bidiper of groeter weight and appee were oenstructed upon foumdations of menty 13 treechmons matures-for inctance, on one of the brencben of the Merfalk Railway, for a bridge of which the awinging portion meighed 100 toen, a contas of 10 piles, driven 60 feet doep fato the ailt in 12 frot matar, empported a cetcoivon kirh, apon which a pam-iroa cloco-joipted oylipder
 and bad stood perfectly. Other inatances of raft, or teating foondations, comaon in Libeolochire, were adduced, showing the simple meen by

NOTES ON FOREIGN WORES.

The Ruscian Pompeia.-The emperor of Ramis hae ondoned that the foncions, which beve been made for several years past, mear the town of
 This town had been the capital of Tartar Chans of the golden tribe, derios their 990 yeers domination in Rusgia. Some ruios of houmes have been already discavered, in which divers atensils and 4000 Tartar coing have been found.

Grem Admring of the Banke of the Rhime--Several of the ald cactles, eacting their chadowi an the wateris of the Rhine, are abont to be recomatracted, whiah will spread an nocommon lustro over theon fortile and beantiful lands. Thus, Priace Frederick of the Netherlands has paro chased Cagtle Fürsteoberg, between Niederheimbach and Baberach, and will have it cempletely reetered. The ceatle in its proeent atate detes from the eloveath eentury, bot a Boman poet-lower previonsly exinted on this thr-sighted clovation. Pripos Abreobt, of Presola, has parohesed Cante Sobdabers, mear Oberwesel; and the Prince of Pruadia, Rheinfle, mear 8t. Goar; all of which aro to be roboilt in an actique and mon splandid atyle. [We wish something aimilar wers done vith some of oar Eoglisb and Scolah rartian.]

Monine monatein in Italy.-From the embouchore of the Tronto up to Ferme (near Grottarnare), extande a moge of hills, of tertiery formalion, mp to the abores of the Adriatis, and is montly cowored by olive and orange proves. Some there ago, oDe of these hilis moved to the extent of 185 pacee, and pacsed iato the sea to the extent of 95 pacees. There were 30 ether phesomens obervible, seve the uprooting of cone trees; bot a chayoy substance fowed from the banks of the sea, and eren, at times, from the orevioss of the soil; and it appeared that as inward upbeaving forea, eating tremeverely upward, had canned thie phomomenoa. Comat Nomonl, who observed it most accurately, ihinks that it bas beos oaused, IHe the onrthelipa on the Rhine, by some more or lese diatuot earthqualse.

Cutting of the Iothrus of Shuz.-As Austrin is deternioed on the prosecution of the Trieste overland route, the above project bas been added as an uccessory stimulus. Austrian engineers have vlaited the locality and raported thereon. The canal is to be navigable for threo-masters. $\mathbf{1 5 0 , 0 0 0}$ francs have been already subscribed for the stuly and survey thereof, and English and French engineers consulted. No shares to be made accessible to the gambling of stock jobbers.

Reargazieatian of the Sculpture Galleries of the Lautre,-The King of the Frepin has ordered that the late denise of Messrs. Clarac and Dubois ghonld be made instrumental in re-orgavising the direction of the above Gelleries. The collection is to be divided into the departruents of classic and oriental antiquos, for each of which a separate director has been ap-pointed;-for the former, Count Laborde, the well-known travaller is Drabia ; and M. Longperrier, hitherto of the Royal Library, for the department of oriental antiquities. This new sweep blds fair for further improvement, and it is to be hoped that those treasures, hitherto stored in the vaults and cellars of the Lourre, like the great Egyptian antiguities, the Magnesias marblet, \&c., will once more see the light.

Romet of the Humat Voics.-On eccount of the speeches of Xerion, and others, addrwaed to whole armies, the question has beon mooted of Inte, anoogst antiquarians, how fur the human voice ean reach. It has been protty correolly aecertained, that a man may make himself heard by $\mathbf{9 0 , 0 0 9}$ persone- very tidy number, io many respects. And thas, takias inte cossideration the edolusure of valls, the acoustio osestruction of domes, vaults, \&c.-8t. Panl's, asd oven St. Petor'm, might be filtod out by a buman voico-of course, a strang one, in overy reapeot

St. Peteraburgh.-March.-Since Poter the Great's time, the character of everything structural or material the Rusaian Government has attempled -has been ooe of greatness and splenduyr. Thus, the huge St. Petersburgh and Moscow railway will be open for trafic in about 18 montha; and at the great festival which the city of Moscow is about to celebrate In September next-viz., the seventh centenary of its foundation,-parts of the lide will be available to the poblio,-Amoagat the huge boildiege,
pablic and privete, lately ormoted at BL. Pelarhungh, we may mention the pew addition to the pelace of the genemil staf (hore goards), a atructore of gigantic proportions; - the palace for the officers of the minioters of justice and the Imperial domios ; - the completer robuilding of the marble palace, and the Eramitage adjoining tha Imparial winter palace. The pew stow Neva bridge is searly ready;-and to conclude, the gigantic chureh of St. Isaac (entirels of granite) is now baing internally adorned, in a eplendid atyle, which will employ the artists of St. Petersburgh of overy lind for a conaiderable tione.

Cologen Cathedral.-The latett acceopts atate that this structure has risea nobly deriag tho last year. Both the north and south porch beve considerably advanced; the nave begins to be cevered with fellerian and the worts of the monemacems are praimed ne some of the richet and finest imagioable. The number of worknam empleyed is 500. The reatorntions of this mational boiking bas excited so mach taterset, that an especial Jompal-the Domblatt (the cathodral genatte)-is disengaing ite prognent. In this we fisd sevenal atriotures on same lale proosedinge of tha compittee, which we shall mention, for the sake of provines the correctoen of the old: "Iliegin peccetur in marin." The Dombhatt says that 16,000 dollars are to be diverted from more legitimeto parposes for paving the Cahedral evea cow, -itthough, suroly, this will be injured by the prosgreee of the worke, \&ce. A bove 90,000 dallart are to be amplayed for roofigg the whole extand of the Calhedral in a temporary mancer. This, certainly, in a large sum for the proriont deare of acoing at ance the whole expanee of thin mamonding building. The paintiog and gilding of the choir alee (the spece where divine चorahip is hitherto performed), is objacted to.
At a Mocting of the Arohalagict of the Grand Duchy of Beden an irterethes aseay was read by M. Xell, mimiatorial oonocillar, on two Bo man faseriptions lately found. The firat wes aftagent of the inecription over the publio guidd-houe of the toade of cappentert (ligmerif) is the Roman calony, which existod under Cartallh, 1700 yoars age.

What is Sityle P-by Goethe;-
Style-ta art, and oderwize-
of wither pen, of bruik, of tool.
Too spooh.... nor too Hithe neither.
Wilt thou know how dinicult thin be....
TryI

- Bpent thog of the divelifye of Diturh Kteqs

NOTES OF THE MONTH.

French Institution of Civil Enprincers, \rightarrow We are happy to hear that a edmilar institution to the Loadon Institution of Civil Engineors is eboot to be formed in Paris, uader the auspices of the French Govern meat. 15. Dumon, Miainter of Publio Warks, has devoted bis ettention to its formes tion. We most heartily winh it anocts.
Shakspeare Cliff.--A large silp of this iscerenting loeality took pleee ee Monday, March 1, when a surface of chalt 34 fet ia height, and 353 tect in length (about 48,000 tons), was predpitated to the bothom. Ancther fall of about 10,000 cubic feet have since occorred.
St. Poter's, at Reme.-The two statust of medimenal design, meant for Peter and Panl, standing on each side of the asonding alopa before the portico, but which are two blocks of shapeleas travertipe, are to be removed. They might have harmonised with the Byrantine taste of the old basilica to which they belunged, but were a palpahle eyesore in fuxtapooition with the sculpture prevalent throughout the works of Leo X. and his succentorn. Their limbs are atiff, their attitude awkward and clamsy, their antiqufty undenjably venerable. Like many other of our time-honoured respectanklifies, they have received notice to quit, and will be immediately replaced by two marble statues of somewhat different taste, from the ahisels of Fabris and Tadolini, the one director of the Belle Arti, the otber a sobolar of Canova. These modern productions are on a colossal scale; each figureis nearly twenty feet in vertical height, thongh a single block from Carrara. Each cost 12,000 dollars, and both are now ready to be transported from the morksbop.
New Orford Street. - By order of the Commissioners of Metropalltina Improvements, the thoronghfare from the east end of Oxford-street and Tottenham-court-raed inlo Holborn has been thrown open to the poblle. The huildings, with some few exceptions, are conpleted, and many of them opened for business. The roadway is macadamised, and abuut 70 foot in width, with a foot pavement on each side 19 feet in breadth.

Elphixatome Colleyr, India,-Mr. Orlobar, profesear of antronomy, and Mr. Pole, profaseor of engineeriog, have both reaigoed. Indispasition is, in esch case, is asoigned as the remean of retiremant. The charge of the Observalory has devolved on the dreftamen of the Indian navy.

Bien th the Soll of Eyypt.-During the course of the cendatral opmatious Intely ordered by Mehemet Ali, it was shown that the soil of Egypt in ricins each year very parceptibly, in ceawequeace of the contincod depoit lufs by the Nilo. This olovation is caloulated at 90 feet during the laet centary for protiaen adjoinias the river.
 greph. that the secret official trial to acertain the effect of a continuous eveltition of mtense gas in projecting shello or shot from a tube, resulted, cos everage, in throwing tweaty-ive six-pounder shot to the diatance of
 would far exceed the range of eormmon ertillery. Anotber important ad. vatage is and to acerno-menty, that the continuous rush duting their easistion would prove much leas injurions to reasels projecting such misailes tham the shock or reeon of siagle discherges. We Jetm that Lord Daydoeald's ingrediants predoces as chatic emiesion, like that whioh would be evelved by kindling the end of a hawser or aible formed of berd twisted gu-beatica.

Somer remeriks on the Air and Weater of Toums, by Dr. R. A. Smith, read at the Chraical Eoviety. January 4.-Haviog given some attention to the inquiry inte the bealth of tewrea, the awthor was anxioos to find what tho real evil in the pallutod mexpephere of towns coseisted of; and in farthernoee of the objeot cenmewced a cories of examinations on the watar used in the town of Manchester for ordinary purposes. Rain-water, collected in efaterars, wes fint examioed; and on beatiog the solid matter obtained by eveporation, it burnt, giving the odour of fat, and a strong souell of aitropenised orgeaio matter. Rain collected in a clean porcelain dish, and treated in the tame why, geve iodicntions of a similar kind, but in a smaller durte. The mointure condeened frous the breath contained orgenic matter is large quandties; and when collected from the windowe of orowded
 when the solid residue whs heated, it gave the odour of burving fleab. Water from a great number of wells situated in Manchester was sub. mithed to examination, and is all similar resulte wrere obtained. Dr. Bmith fieds also that the water of riverband canals becomes contaminated io this way me woe as it matres a town. The proportion of nitratere fs abo in mavis casoe remarkable, arising from the rapid oxidation of these altroseaised ingredients. The anthor ooncludes by staling that he is pursulag this invertigation at various seasons, ∞ as to make a more complete exemi. antion of the subject; and the whole of the analytical resolts whll thes be nvens

THE OREAT BRITAIK STEAM-8HIP.

The following reports were read at a meatios of proprietore of the Grat Britala, held mely at Brimet.

118, Duke-atreet, Weatinlater, Feb. 27, 1847.
 4rib Eay, during the time that be hat been engeged In formint the brentiwater or prowethoo to the ahlp, In the manper recommended if me. Notwitintanding the ereat dymbonies dead on thore nearly the whole of the month of Jnnuary, and corsequently pre-

 proceding Arte fild down; he hey, in fact, been obliged to edapt hle plans to bls meana of coecrition, and alanot from day to day to deriee modes of proceeding with only the exupo which he fept me dally laformed; and simple as my plen might have appearad to

 Wheie my friend Captaln Olexton nudertook the worit, and the remalt has folly confirmad

 of the memaremente and date which he has collected, it whis neales to atempt it.

I am, gealiemen, your obedient servant,
"1. K. BRUNEL."
${ }^{4}$ Great Brtain, 20th Pebrowry, 180.
\cdots Ders Braoch, The chmos in the wiad youtday, and the appearance to-day of more

 met jour withes, and embody, it concisely at I end; the wubetabce of my varioas com-
 and I had the bepeft of his endatance in tring to complete the foumdation untll Chitatatedap, after whieh the tides for aome dape did not quit the work, and the time of the crop end fapounis wes endroly occupled in laghlng the fagots together, in hoisting them at board whemever the water left the shlp's bown sumcteochy, in collocting chaina and edphte, apd preparing the bolding down rode. On the 29th I inceeeded lo baying bact tie rivelet, a you bebedi it, bet which, in the very wet weather, proved to be a rapid lod toll-butied strem, and which we greatiy annoging of by choosing the ship's bed tor It aurse; on that day the tide ebbed sumelentiy to enable me to go on with the wort

 "Aboed tiventy onodias of sepold brebe sway, but, as was aflerwards the cace, they when oned ap ater the tide receded, and secured in piace. On the bth I found, on ert-
 had diven the whole body nome feet forward. Ont the 6tb, sull fonding it moving, i memenicated with you reapectiog spars, and gave orders for preparing holding-down tehtin, and such ipart a belonged to the ihip, over forty feet in length, to be got ready. Ot the 7 th, it being illl imponalble to 80 on the wort for apy proficible purpore, the

 througt the foundetion, with bindine chains to thetr hoets, at an ande of ebont 76 daposy

 and set a fiv more apars in place. On the l6th found the larger lot cecired hetween the

 lected and put bact, and the alr pump cover pot upon them in midition to the ofler

 had been made to quarry ind cart, we dared not put lurge quantity-fond what we

 Mad mot copepper the inclipation of the whole ment to nowe forward, which by admaneriey

 fagt to the sechors out astern or on the fort quarter, all the epent befor acteched to each other with chaing. On the 20th we had a goed tide, many fagots were lajd, and seperal liehter spart were lathed laterally to the upitghta, and six more beech trwe were orteted. 3Itt, both tides happeaing in the dark, and the wenther betng ertrinely serete, nollilot wat done be,ood lating at daylight lateral ipart is low at the comint ofo dide permitoted On that night in heav gule commeneed from S.8. E. Which only occaitonally moderaltoy
 tions, we wer enabled to get the reit of the sparis ondered to place. For a few montet on that dey we were ensbled to exmmine the work一not i fly ot hud bintien ewry, althounh they wre grod deal jambed together-not sapar han moved from the berth, and the ormard laciloation was found to have ot opped, althoosth the text breakwater had been, up to that pettod, put to. On the 2 gith the wind abinod to the
 udee excelleat for onr obfect. kivery exertion was made to get on with the fegroting and placing Ahsen more beech sreet, which had been ordered and deltrered, when it appeared 0 wneertain as to when we thould be able to get on with the fugecs. On tho 7 th, the whole of the tigoen erdered, 4,000 bnadies, wers in plece.
"The weather rewaloed Get, and the waver moolh, untl the 18th of Februarf, whon

 cerew and spars, or not londed, simitarly to those on the foundation, broke ropes bot the mate remafned firm, alhough found to have eottled or ahrunir, or to beve been beat
 and their spare whis almoat altogether to do awry with the etrolte from the ses, and the men were enabled to Ure on board with comfort. On the 14th lt asaln came on to blow with the hood-tde from the S.W. and consinued to do so with gremt violence until the
 of the memorahie one which mo eltered the ship's poettion In November. ithe poles,
 about and settled down, the latter had well done their worts. I aot the crew upon replacing and rececung the tew fagote which had broke away, and landint then with the beat bower ceble, which was unghakled from the auchor, fild ont, and got on boterd for the purpone-preparatory to the trials which may be loorted for bafore the March equil

 efill mone violent charecter
"Your whole plan would have been eanly carried out If the weather batwean the 284 of Japmary and fith of Pebruary, could have beth mbettreted for that of a whole month after the 50 Lh Deceraber; 10,000 bundles of Darote might have baw recaral aceerding to your plan, with moch greater enve than we were entbled to brild and necure 800 bundie anter the completion of the foundation, on January 7, which taelf conlaioed about 1,200 bandies, and which frept 80 wril cogether, that no one fit a doubt at to the efiect of the remander, If the tides and the wenther had permitied va to go on. It wate extremely tex-
 Ing the fagots in place, an it was not natil the $28 t h$ of that month that we fitriy got to

 mot only mave clme and money, but form en onter protiredion, which wha of the atment service afterwards, and befort the baguta were high up. The sea eon frat etrlate thromet chis barifer of beech trees and lateral poles, the former, in some plecen, three deep, the enture number 70 with the ship's apers, the whole fired in the foundation of hagot, cialpad together at the heel, and hove light down from their heads with tackle-about 150 apers are lached lateratly and diagonally outade of thete from the and to the chip't gan. ware-the frots, with the exception of the fonndation, are all bolit wilhth thete, retins agalast the ehtp's side, fllitg the bollow of the port quarter, and es the zeat forced,

 but, althengh the eprey la throwe up to tho helght of the foocel over the apengent, there If de eboet whateret to the thip.

Yours traly,
C. CLAETON,*

HIBCETHANTM.

Buepention Bridge, Lambeth.-Sir Bamuel Brown, the constructor of Eiacmertmith Bridge, Brighton Pier, \&uc, has offered this own expense to construct
 be can obtain the enthority of Parliament and permindion to eattblinh a toll. An inquiry

 of the Thal Harbour Cummisolopers. Tbo etionated cost, inciading structare, approsches, and the purchene ol property, is 90,0001 . ; but thit entumete hen been minde on granite-abd the material is now intended to be eitber iron or swane. the midth of
 It ha intended to have two pler, each of which will intercept it feet of

Jets of Fater.-Bome experimeuls were lately made at Liverpool by the Harrington Watmortz Compary, in presence of the Goveroment Comminaloners of Inquif ralative to the wupply of water to ithe town, ad is thos doncribed by the ' Liverpopl
teched to a stand－plpe from the main and from one up to four of these branches were pleyed for ripwards of an hour，－the addition of one，two，or three，to the Arst appearing to make intle or no difierence in the reapective power of any of them．The quantity of medter which the projected was rery great and continueun．It completely haned une eas emd of the charch，and not only weat ciear over the blockioga above the cornice，and on to the roof in heavy volume，but at timee asended to the top of the figg－staf，a height， we mhould think，utlle，if at ill，short of 80 feet．The plap，which combinet hydruile pretsure with eogine power，it docidedy much more enective than hand－worked engines aod，if adopled，whil aford great and rapl

Woolwich，March 10．－Sixteen 24 －ponnder gon carriages，with traversing platrormsand aquipmenta complete，have been shipped from the Rogal Arsenal on board oue of the Ordnance sloop：for Pembroke，to be erected on the batterios for the defence of that zeaport．Captaln TurDer＇s comp any of Royal Artillery，oth battallon，will lenve Woolvich next weet for the sume place，to take charge of the gung，and to mount them for use．In iuturs，a company will be regularly malnialned at Yembroke，so as to place the batieries in a state of complete defence．

The New Military Prison，erecting in the Royal Artillery Barracks， near the Riding school，is nearly comploted；the maln body of the bullding hat been coverod th．The prison，howtiver，will dot be approprinted for the recepllon of prisoners thl about May next，as tume must be allowed for seanoniag the cells．In connequenee of the great demand for labour to complele the const defencet， 110 gunners were enterod ately in the Roval Arsedel as labourers．
The Coest Defences．－Northern District．－The following is the return of the number of guna mounted on the northern coant of England，from Hall to the conal of Scotiand，excluding the guns ordered for the defence of the Humber．Hull citadel， meven 18 ．pounder guns on common carriages．－Tynemonth Castle and Cuford＇s Fort，five 12 －pounder guns，and six 9 －pounder guns on common carriages，and one 8 －Inch mortar， total 12 gans．－Perch Rock Battery，alxteen 32 －pounder guan on traveralng platforms and two 18－poander guns on common carriages ；total 18 guns．－Scarborough Castle，alx 18－pounder guns，and foar 12 －pounder carronades，on common carriages；Lotal 10 guas －Carisle Cantle，two 6．pounder guns，and one 12 －pounder carronade on common car－ riages ；total 3 ．Grand total for the diatict， $5 u$ guns．

Lowesteft Harbour and Railuay．－Tbe timber works of the north pier， 1,800 feet in lengith，with the pier head，are completed，and the soath pier， 1,250 feet long，is progreaning rapidly．By the end of June，the harbour，it is conidently expected， Thill be availtble for shipa to take refuge in drawing 15 feet water at an average tide． The work commenced last May，and there la now 2，000 feet of pler．Work Gialabed．The rallway works are aearly completed，and the line will be open for goods trafic on the lat pertod of the tide，a depth which exteorls 100 yards within the entrace．

LIBT OF NEW PATENTR

granted in bngland from frbruary 20 ，to march $25,1847$.
Sis Months allowed for Barolment，undess othervise expressed．

Joseph Clinton Robertion，of Fleet－street，in the Cliy of London，Avil encineer，for －certaln Improvementa in dintillation and brewiug，and certain applications of the mate－ riale used in，or suitabie therefore，to other manufacturiag purpones．＂（A communica－ riala used in，or suitable th
tlon．）

Edward Brown，of Adam＇s Court，in the Cliy of London，gentleman，for＂certain car－ bonic compounds，formed of earth，vegetable，animal，and mineral rubbish，fecal mb etances，the waste of mapafactories，and certatn ecids and alrelles，which compounds are applicable at manares．＂－February 20.

Wlulam Pidding，of Bernerd－atreet，in the county of Middiesex，gentieman，for＂an Improved procesa，or Improved processes，for preparing certain vegetable extractis，and aloo for preserviag the aroma of certain vegetabic aubstances from the atmosphare．＂ February 24 ．
Charles Heard Wild，of Mortimer－atreet，Cavendish－square，civil engfineer，for＂Im provementa in constructing parti of rallways．＂－February 24.

Charles Fox，of London Works，Blrmingham，for＂a method or methode of welding， or aniting pieces of metal together，and of preseing or forming pleces of metal tato forme or ahepes．＂－Februery 24
William Baylite，of Bliston，In the connty of Stafford，chaln－maker，for a machine for fiattening and turning iron links for fat wood alub chaina．＂－February 24.
George Hussell Dartnell，ataff－surgeon of the first clasis in her Majesty＇s army，now ata． doved at Chatham，in the county of Kent，for＂an Improved truss for inquinal hernia．＂ －February 24．Tro months．
Alpbonse lo Mire de Normandy，of Bethnal－green，Middlesex，anulytical chemist，for ＂Improvements in the manulacture of alnc．＂－Febriary 24.

Prederick Walton，of Wolverhampton，japanner，and ta－plate worker，for＂an Im－ proved mode of coating or covering，or of conting，corering，and ornamenting the aurfacey of articiea which are，or may be，made of wrought iron，or of other metsl or metala，which improved mode may be used in substicution of japanning，tinning，or other motes now in February 24 ．

Juan Nepomuceno Adorno，of Mexico，in the Republic of Mexico，gentleman，for＂Im－ provempata in mannfacturing cigera and other almilar articles，＂－February 24，
John Lowe，of Manchester，engineer，and Jemea Slmpson，of the game place，jotrer，for ct certain Improvements applicable to carriaget to be used upon rallways，part of wbich improvements may aleo be used upon other roads．＂－Febracty 24.
Whllam Todd，of Holcombe Brook，near Bury，in the county of Laneaster，for＂certaln Improvements In the method of sising and dreesing yarna，and in the machinery or appe－ ratas for performing the same．＂－February 24
Frederick Rameome，of Ipswich，engineer，for＂Improrements in working coke and ther kllan，or ovens．＂－Februmicy 24 ．
Robert Bnowden，of Nu．7，City Rosd，Middlewz，tea．dealer，for＂Improvements in treating or dreasing coffee，to render it more wholetome for nae．＂一Februspry． 26.
William Eccles and Henry Brierly，of Walton le Dale，in the county of Lancanter，for Improved machinery to be used in mpinning．＂一March 2.
John Wood，machlne meler of Leeds，in the county of York，for＂certaln Improve－ ments in mechinery for apinning fbrous subatances．＂March 2.
Andrew Croase，of Broomiseld，in the county of Bomerset，for＂Improvements in treat． Ing fermentable and other liquids，to to to cauce impurities or matters to be extracted or precipltated．＂－March 2.
Gamuel Hunton Towneend Bishop，of Hackney－terrace，in the county of Middlesex，for 4 Impropements to the construction of the upper part of chimpeys．＂一March 2 ．

James Napler，operattve chemiot，of Shackinwell Lane，Mddienax，for＂Imqueverrenth In amelting copper and other ures，＂－March 1.

Charles Stewart Duncan，gentleman，of Lombard－atreet，for＂Amprovementa to certio rebicles．＂－March 3.
George Tontick，eaglae－bullder，Thomen Hackworth，engloe－ballder，and Thomas Elliott，Euperintendent of locomotives，all of scockion－on－Teen，for $*$ certind Improve－ ments in locomotive and other boilern．＂－March 8.
．Rlchard Roberta，engtneer，of Manchester，for ${ }^{4}$ I mprovements in machinery for panch． Ing and for perforating metale．＂一March 5 ．
Richard Roberts，engineer，of Mancheater，for＂Improvernents In miehtaery to per． form the proceased celled beehing，mangling，and the life．＂－March 5 ．
 meatu in steam engines．＂－March 9 ．
Mathew Sproule，enginetr，of Liverpool，for＂certals Improvemente in stean endinen，＂ －March 10 ．
Jamen Stevens，engineer，of Darilngton Works，Southwark－bridge－rond，for certato ＂Improvements in apparatus for conveying signals or commurications between distant places，parts of which art also applicable to lamps and burners．＂－March 10.

Kailmir Vogel，manofacturer，of Salat Paul＇s Church Yard，London，for a mer an nutacture of Wesvers＇haraess，and for machinery for the prodaction of the mame．t－ March 10.
John Imanc Aawlint，elvll engineer，of Liverpool－street，Kloga＂croes，for＂certin Im－ provementa in hulding together or fling latters，mude sheeta，niwapapers，and othar do． cuments．＂－March 18.
Edward Johnson Coale Atterbary，merchant，of Leeds，in the county of Yorty fin wer． taln Improvements In getang machinery．＂（A commonication．）－March 10.

James Murdock，of Staple Inn，Middlesex，for＂an Improved mode of preparthe and emplofing certain colours and miteritis for palntiag．＂（A cormmunication．j－tareh 10 ．
Louis Nicolas de Mecirenhelm，mechiniat，of Birmingham，for a＂certaln Improvement or certaln improvementa in machinea to be uned in the manufacture of nilm，merew． blanks，rivets，bolts，and ping．＂－March 10.
Willam Newton，civil engineer，of Chapcery Lade，Middlewex，for＂certain Improre． menta in enginen to be worked by get rapour or stem，either separately or in combias－ thon．＂（A communication）．－March 10.
Henry Fleteher，manufmeturer，of Over Darwen，in the county of Lavenster，for in Imo provement in apparatus for ascertaining the diatance which locomotive engines and car． provemente in apparatins for ascertaining the diat
ilages linve travelled upon rallway．＂－ 10 arch 10.
Thom Wisterhouse，of Edgely，in the borough of Stoekport，In the county of Chester， for＂certain mechaolcal lmprovementa spplicable to rallway engines and tenders，and to ralluray carriges of varlous hinds．＂－Merch 10；two months．
Sampson Lloyd，engineer，Old Park Iron Worka，Wednesbury，in the eonnty of gaf－ ford，tor＂Improvements in the mannfucture of tyres or hoops，or wheels or other arti－ elme＇to be made of tron or steel．＂－March 15.
Charles Pox，englacer，of Trafalger Squase，Weatmingter，for＂Improvementa in the conitruction of prenaes．＂－March 15.
Jean Joseph Hazard Petit，chemiat，of Eing＇s Road，Chelees，for＂Improvememes in the manafacture of oits，and in apparatum for diafafecting and purifylng olve，and cher
 infl
Joseph Heary Tuck，geatleman，of Parls，in the Iringdom of Prance，Pror＂Improve－ ments in apparstus for ventlating balidingi，carriages，chimneys，and other plages where a change of alr is requilred．＂－March 16.
Willimen Newton，civl engineer，of Chancery－lane，for＂Improvementa in engines to be worked by gas，vapour，or team，etther eeperately or In comblation．＂（A comemai－ cation．）－Narch 16.
Charles Temnant Dunlop，manufacturer，of Glagow，tor＂Improverrents in the mant． facture of alkall and chlorl，and is the application of tbe products remulting thememen．＂－ March 16.
Robert Scotthorn，engineer，of Somer＇s Town，in the county of Midilemex，for＂Im－ provementi in engiven，for obtaining and applying mollve power．＂一March 16.
Jamea Wilis Wayte，of Leeds，in the county of York，printer，for＂certain Improve－ ments in self－feeding furnaces，adapled both for land and marine purposea，for the better prepention of amoke arising from fires used in wuch furnaces．＂－Mifrch 18.
Peter Britus Coson，of Lenton，Nottingham，machinist，for＂A new method of en－ bosajng，ralsing，aud forming ornamental figures and designs on certaln intertwoed tex－ tile fabrtcs．＂－March 19 ．
John Lealle，of Conduit－street，Hanover－square，one of the tallors to ber Mafety＂s Merch 22 ．
Charles Fox，of Trafalgar－square，Charing－cross，engloeer，for＂Improvementa in the permaneut way of railway，and in carrisgen to be employed on rallways．＂（A commoni－ permanemb March 20 ．
Henty Kempton，of South－street，Pentonville，IIddlesex，gentleman，for＂Improve－ monts in copylug presses．＂－siarch 23.
Henry 3 mith，of the Grm of H．Bmith and Co．，of Stamford，agricaltaral implement makers，for ${ }^{14}$ ceptain Improvements in machinery for cuuling and separating regetabio rubstances；aloo improvemente in the conitru ction of machines for dibbling，and sowiog teed，and diatribating vegutable substance ind manure over land，part of wheb lam－ provements is applicable to wheel carriages in genera．＂一 March 28.
William Bullock Tlbbits，of Brauaston，Southampton，gentleman，for＂certion Im． provementi in obtalaing and applying motlve nower．＂－March 23.
Henry Heycock，of Mancheater，merchant，for＂certaln Improvements in rotery ets gines to be worked by toam，or other power，which asid improvements are aleo applica－ gines to be porked by toam，or oher power

Morris Lyons，of Birmingham，chemiat，and Wiliam Miliwerd，of the same plece，allow Morris Lyons，of Birmingham，chemist，and Wiilim Imivard，of the same place，siver
operator，for＂certain Improved alloys of mitain，and Improvements In the depoaition of operator，for＂certain
metale．＂－March 28.

George Fergusion Wison，of Belmont，Vauxhall，Surrey，gentleman，for＂Improve－ ments in the production of light，and In the manufacture or preparation of materials ap plicsbie thereto．＂－Mareh 23 ．
Benry Hatcher，of the Strand，civil engineer，for＂Improvements in electric telegraphs． and in apparater connected therewith，and also in electic clociks and ame－kepers：＂－ March 23.

Francols 8tanilas Meldon de Suscex，of Millmall，Middlepex，manufacterieg chepelst， for＂s improvemeats in meiting copper and other ores．＂一March 23.

Willian Broce，of 4，Eanex－court，Tomple，and of Pinntiv，near Pembroke，barri ety． at－law，for＂Improvements in constructing piers，breakwaters，and other gebearim st．law，for＂improvenents．
works of stone．＂－March 26.

ON THE MEASURES OF FORCE AND LAWS OF MOTION.
H a body be disturbed from a state of rest, or if the rate of a moving body beaccelerated of retarded, the canse of the motion in the frat inatance, and of the acceloration or retariation in the second lastance, is called Force. When a material particle, acted on by only two forces to opposite directions, is kept at rest, the two forces are said to be io equilibriom and atatically equal. The material particle, last considered, is said to be kept at rest by the pressures of the two forces. The notion of pressare, seems to arlse from the peculiar sensution experienced in the muscles of the buman frame, when the limbs are supporting a beavy weight or thrusting against an opposed obatacle.
By pressure, as manifested in the sense of touch, we are acquainted with the forms of all objects within our reach and grasp. If we had no other means of communicatiag with the outer world than by contact, our knowledge of it would be extremely limitel; we could have oo cosception of colour, and but very little of distance; the extent of a boodred miles would be as difficult to imagine as a million with the sid of vision. These deficiencies in the sense of touch are compen. sated by the sense of sigbi-hat is, by the consciousness of the presence and relations in space to each other of external objects, -as eridenced by vibrations in ether, which are communicated through the optic perve to the brain. Hearing is excited by vibrations transmitted through the air or any other elatic matter, and which, in many inatances, are so iatense, as to be senalbly felt. Wibiows are froquewly broken by the report of artillery, -and thander, when close, shakes the walls of the otoutest buildings. We observe, then, that all our experience of the phenomena of the universe is derived from force.

Foree aequaints us with the existence of matter;-nap, more, we might, with perfect proprinty, consider matter as composed of geometrical points, the loci of radiating forces. In by far the greater musber, however, of investigations which require the aid of mechanical science, it is sufficient to consider the properties of matter, without any reference to its iltmate constitution. Thum, having previonaly by experiment determined bow far elusticicity, rigidity, Lexibility, \&ec, infuenoe the circumstances of atatical or dynamical pirnowera, we are enabled to solve problems involving these considerations, without any further enquiry into the nature of internal or molecalar forcen.
Before, however, we can apply mathematical reasoning to determioe or predict what happene when any number of forces act upona body, it is pecessary that some of the effecta of force should be susceptible of numerical comparison. In order to render our meaning clearer, lat us, by way of analogy, consider the method uscally adopted to measme beat. Heat is evidenced by many effects; among others, by the senation of warrath,-by the impetus which it gives, when developed within certain limits, to the growth of plants, 一and by its interferenee with the laws of chemlcal affinity. Yet none of these efects are snfficiently definite for the parposes of measarement. We canoot be certain that the same source of heat will always, under the mame circomatances, excite the same sensations;-nay, we cannot be eritain at any two times that the sensations of hot or cold we experience are the same. Still less can we avail ourselves of the effects of heat on vegetable life. While, as to the changes occasioned by a high temperature in the chemical constitution of bodies, they are iarolved with 80 many accompanying phenomena- 0 complex and discontinuous-that they could scarceig be compelled to furnish a ceale of mesurement.
There is another effect, bowever, of heat, which we have not yet soticed, and that is-its power of expanding the volume of bodies. This effect is rendered the more valuable by the fact, that whatever phenomem of heat are due, at any one time, to a particular tempera-ture-that in, to a particular amount of expansion of the iiquid of the thermometer-are likewise due to the same temperature at any
other time. Here we have a class of effects which are always the same for the same causer, and are sasceptible of aritumetical com-parison-the two qualities neoessary for a measure. Consequently, ternperature is univereally adopted as the measure of beat; and in thermotics, all the symbols and numerals lave reference, pot to beat, bot temperature.

To return now to the effects of ordionry forces: among these, weight-or the statical effect of the force of gravity-auggests itself as an appropriate measurn, not only of the gravity of different bodies, but of the pressures occasioned by any lind of forces whatooever. By comparing the weight of bodies with the force of a spring. belance, it is fruad that the weight of the same budy, at the same place on the earth's surface, is always the same-and lndependent of the position of the body in space.
Again, if we take a prismatic body, homogeneous throughont-say a cylinder of lear-mand divide it into two equal parts, we aball find the weighte of the two halves equal. Almo, if we divide the cyllinder into any number of equalyarte, we shall find the weights of ali these equal parts equal each to each, and the sums of their weights equal to the weight of the undivided cylinder. Let the weight of the oglinder be represented by the number n; then the weigit of an nth part would be represented by $\frac{n}{n}$, and the weight of ρ (equal parti) by $\frac{p w}{n}$: but, as we have shown the weight of a body is not altered by dividing it into parts-consequently, the weight of a portion of lead, of which the volume is equal to the volume of the p parts, would be represented by $\frac{p w}{n}$; and its volume would be $\frac{p}{n} \times$ volume of the undivided oglinder. Heace we infor, that the weights of homogeneous substances vary as their volumes. If now we take the weight of a specified volume of a given homogeneous substance as the unit of measurement, - force which would make equillbrium with a weight r times the apecified weight is denoted by the number r : and all formale in atatics concerning the relations of forces in equilibrio, represent each force by the number of times the nait of force must be multiplied in order to make equilibrium with it.

When we have to comsider the motion of bodies, it is more convenient to employ another measure of force, the nature of which we now proceed to explain. We must first, however, define velocity. The velocity of a moring body, at any time t, is the space which the body would pass through in an unit of time, supponing the rate of the body niform and the same as at the time f. As for example, if 1 foot be taken as the unit of apace, and 1 second for the unit of time, a body moving uniformly at the rute of 8 feet a second is said to have a velocity expressed by the namber 3.
Now, it is found by experiment-First, $"$ that if a body be at rest, it will continue at rest until acted on by some foroe; and if it be in motion, and aoted on by no extraneous force, it will continue in motion with an uniform velocity, and in a straight line." ${ }^{\text {F }}$ Secandly, if when a body is in motion, it be acted upon by an invariable force, in the direction of its motion, the quantity by which the velocity of the body will be increased or diminished (acoording as the foree is accelerating or retarding,) will always be the same in the same time ; and is quite independent of the initial velocity whioh the body porsessed before it was subject to the influence of the force.
This latter fact at onoe furnisben us with a convenient dynamical measure of force, known by the name of the measure of accelerating force. Professor Whewell well observes that the measore of the accelerativity of force would be a much belter term for it. This measure of acoelerating foroe, which, for the sake of brevity, is frequently simply designated "accelarating force," is the velocity generated in a moving body, during an unit of time, by an invariable impressed force. If the force vary with the time, the measure adopted for any time t, is the velocizy which would be generated in an unit of time by the force if invariable, and the same as at the given time t : thul

[^20]gravity scoelerates the velocity of a body falling in vecuo by 82 feet a second; taking feet and seconds as units of apace and time, the accelerating force of gravity is represented by $32 \not$.

Oar pext object must be to endeavour to discover some law conpecting the statleal and dynamical measures of motion. We are conecioun, from every day experience, that the velocity we can commonicate to a large and heavy obatacle by throating against it with all onr strength, is much less than the velocity we could communicate in the same time to a smaller and less ponderous obstacle. We know that the same presure will not alwayn communicate the same velocity to different bodies in the same time. Let us now define all bodies to have the same masses in which the same preasure would oreate the same velocities in the same time. This definition of the word mass will save; much unneceseary explanation in the following experiment.

Suppose n equal balls made of the same material, quite amooth, and capable, by some mechanical contrivance, of being fastened to each other at pleasare, and thus forming of or any number of solid bodien.

Let $n-1$ of the balls bel fatened together and placed on a mooth horizontal table, let the remaining ball be tied to one end of a thin inextensible atring, and the other end of the string attached to the $\bar{\pi} 1$ balls. If now the e single ball be allowed to hang down beyond the table and descend, dragging the other balle after it on the table, and the velocity at a time t from the commencement of the motion be measured, and if the experiment be again tried with $2,8,8 c$., balls banging down, and $n-2, n-3$ balls, \&c. on the table, the velocities at the end of the same time t will be found so be proportional to the numbers $1,2,3,8 c$. ; but the pressures communicating motion were the weights of the one, two, three, equal balle, $\& e_{0}$, and the mass moved is invariable-namely, the mass of all the balle ; conequently, we learn that when the mass is constant, the velocity acquired at the end of any time is proportional to the pressure causing it-the pressure not varying with the time. Moreover, we infer that the velocity generatod in a given time, and therefore in the unit of time, is proportional to the premare when the masa is constant.
Next suppose that the n balls are all united, and an one mase, compelled to move by the gravity of n, other equal balls; in this case, we shall find that the velocity geperated in an unit of time is the amme, Whatever be the value of n; consequently, when the velocity generated in an unit of time is constant, the pressure varies with the mass; and we have already shown that when the mass is constant the velocity generated in an unit of time varies as the pressure;-sherefore, when both the mass and velocity vary, the pressure varies as the product of the masas and velocity generated in an unit of time. It is not necescary in these experiments that the balks should be made of the same materials, provided they be of such a magnitude that any one of them, when attached in succession to each of the rest by the ineatensible etring above alluded to, should generate in them all the same velocities at the zame time. Since the dynamical measure of the force of gravity is the same for all bodies, it foliows that the weight of bodies varies as their masses. It is sometimes assumed that the masses of bodies varies as their weights, which of course leads to the same results.
If m denote the mass of a body, g the accelerating force of gravity, the unit of mass is so chosen that $m g$ shall $=n$, where π is the weight of the body. The property of matter by which it apparently resists a force tending to move it, in proportion to its mase, has sometimes been called the vis inertie,-an uselesa term, since it expremes nothing more than ls expressed by the word masa. If o be the velocity generated in a body in an unit of time, 0 is the measure of the accelerating force acting upon the body: $m \times v$ is called the measure of the moving force, or more frequencly the moving force, where the word force is transferred from the cause to the measure of the effeot.

Consequently, when pressure, which does not vary with the time, aets directly on a body, the moving force is proportional to the pressure. In obtaining the above relation between the statical and dyas-
mical measures of force, which is known by the name of the third law of motion, we amoumed that the same prewure would generate the same velocits in any material oystem, provided its mane were conatant, and ite parta so connected that they must all have the came velocity. We asmmed, in fact, that the premure of the hanging balls produced the same velocity in the whole number of balls as it would have done on a single ball of the same material and equal in bulk to all of them.

Thia, perhaps, ought previously to have been demonstrated by experiment; although, in proving the third law of motion by means of Attwood's machine, most writers take the aame principle for grant-ed-as we think, most unwarrantably. Newton stated the third law of motion thue-sction and reaction are equal and opposite: on this Professor Whewell observes, "since, in virtue of the equality of the action and reaction bewteen two bodien, the momentam gained and lost are always equal, the momentum gained and lost are cometimes called action and reaction, and the third law of motion is then expressed by saying that in the communication of motion reaction is equal and opposite to action."

By momentum is signified the product of masa by velocity. If we are to underatand by action and reaction only the momentum loat by one body in transerring motion, and gained by the body to which motion is transferred, we do not think that there in any conveotion betreen the proposition of Newton and the third law of motion, as is is stated by modern phllowophers. But in fact by the equality of sotion and reaction, is meant that force, whether measured by the pressure exerted or momentum lost in the body communicating motion, is productive of momentum in the body to which the motion is como monicated, equal to the momentum lost, and proportional to the pressure exerted.

The principle of the equality of action and reaction is of the greatest importance : takigg the atatement in ite most extended meaning, it enudciates not merely that in the communication of motion, the momentum gained and lont are equal, but that the internal forces connecting the different parts of a material syatem-provided the connection and relation of those parts continue the ame-are likewise equal and opposite. We lave now briefly described the various measures of force and the first and third laws of motion; the second law of motion is generally given in the following words: when a foree acte upon a body in motion, the change of motion in magnitade and direction is the same as if the force acted on the body at rest. As an example of this,-If a body in vacuo were projected borizontally, it would arrive at the surface of the earth in the same time as though it had been simply allowed to fall from a atate of rest. All the lawa of motion are auggeated by ordinary experiments; which indeed orly prove them approximalely, owing to the utter Imposibility of excloding all forces but those the effects of which we are examining : pevertheless, in proportion as we remove disturbing causes, so do we find the results of our inquiries tend to coincide with the limiting statement of these fundamental laws. A far moreaccurate test, bowever, is furninhed by astronomical obeervations:-the orbite of the beavenly bodies, calculated on the supposition of the truth of the laws of motion, are found to cuincide with their observed orbite so nearly, that any difference may fairly be ascribed to errore of observation.
The only planet that could not be made to keep to ite tables, was Uranus; the differences of its observed and predicted places were always, however, extremely small;-yet, from such data as theme, Mr. Adams, previously, in England, and afterwards M. Leverrier, in France, computed the orbit of the new planet, long before its existence was announced by the telescope of the observer. In conclusion, we beg to state that we have not endeavoured to give any new definitions, or to vary the statements and terms usually emploged to express the relations of force, motion, and matter ; our uim has been to explain, to persons not accustomed to the terse style of mathematical worka, the fundamental principles of mechanical science.

A NEW THEORY OF TEE EARTE, TRAT FULIY ACCOUNTS FOR MANY ASTRONOMICAL, GEOGRAPHICAL AND GEOLOGICAL PHENOMENA, HITHERTO UNAC. COUNTED FOR.

By Onfer Btral.

(Continued from page 101.)
The following illustration will show, in a very simple maner, bow differeat effects may appear to be produced by inveatiguting caneen separately, that act jointly.

Let a material point P, be acted upon by two uniform forces at the rame time, in the directions $P A, P$, and let the lines $P A, P B$, re. present the magnitudes of these foroes. It is well known, by what is techasically ealled the parallelogram of forces, that it will not obey either of these forces, bat the combined effect of both, and describe the diagonal P C. Now the point P, would arrive at C, in precisely the same time, if the causes of action be inveatigated separately, even if at every alternate instant the forces alternately act; yet the path described by P, would be very different from the true one, which the joint actions of the two forces cause it to deseribe. The rigzag path $P, 1,2,3, \& c_{\text {, }}$, will be at beat but an approximate to the true one PC. This illuntration of combined action, viewed jointly and sepazetely, aimple as it in, compared with the joint actlona of the sun moon, and the other bodies in the solar system, on the excess before mentioned, shows how astronomers, by continually correcting a false bypothesis, lave distorted the true motion, which we shall continue to explain. In stating that the earth's axis changes its position, we do not consider the mass moveable with it ;-no; the cbange of the axis, which is to be understood by what is termed its right motion, changes the position of the equator, and, therefore, the latitudes of all placea. It may be necessary to remark here, that the right motion of the earth's autis is very slow ; so much s), that scarcely any perceptible difference in the latitudes can be observed in 100 years,-chiefly on account of this motion not being recognised in a proper manner, which ham tended to baffle the theory of corrections, now so disaatisfactory. For the pazpose of exemplification, we shall show how this motion of the earth's axis would cause the phenomena of a precestion of the equipozes. This may be shown by simply allowing the poles to change their position in two opposite circles. It may be neceseary also to remark that this supposition is made merely for the purpose of illurtration, for the right motion of the earth's axis is not in a circle, but in a looped spiral curve of double curvature, the nature and properties of whicb are given in the proposer's new work on the Theory of the Heavens and Earth, before alluded to. However, when thss supposed plain motion is understwod, the right motion of the earth's

wit (which at once effects these apparent motione, reoognised by the corms precession, nutation, and the decrease of the obliquity of the
eoliptic, can readily be oonceived. If a right line $P \rho$, be supposed to revolve about its middle point O, in such a manner as to describe a circle AP P'; the other point p, will describe an equal circle, whose plave will be parallel to that of the former circle. The lines $\mathrm{P} p, \mathrm{P}^{\prime \prime} p^{\prime \prime}$, \&o., will have the same inclination to the plane passing through $\mathrm{O}_{\text {, }}$ parallel to the planes of these circles. Now, if a plane be supposed to pass throogh O, perpendicular to $P p$, and internect the plane $E B e$, in E^{e}, when the point P, moves to $P^{\prime \prime}$, the plane perpendicular to $P^{\prime \prime} p^{\prime}$, paming through O, will intersect the plane $E^{\prime} E B$, in $E^{\prime} e^{\prime}$; so that if $P \rho, P^{\prime \prime} p$, \&c., be considered consecutive positions of the earth's axis, the plane of the ecliptic to be E B c, and the variable plane pansing throagh O, perpeadicular to $P p, P^{\prime \prime} p^{\prime}$, \&zo, the plane of the equator, then the consecative points E E, \&o. show the precession of the points where the planes of the equator and ecliptic intersect, and how their positions are changed with the motion of the poles P p. A motion similar to this, but of a more compound nature, eauses what is technically termed the precession of the eqinozes. Now, the spiral motion, or rather change of the earth's axis, above alluded to, which is chiely caused by the influence of the sun and moon on the excest of the earth above ite greatest inscribed sphere, is what we have deaignated the right motion, or change of the earth's axis. The nature of this motion can be readily conceived from the apparent phenomena of precession, nutation, \&c. Hence, this exposition showi that the earth has but three motions; namely, one round the sun, one on its axis, and a change of that axis; the nature of this last motion or change is something similar to that which is observed in a globular budy splaning on an horizontal plane. However, the change of the axis in this globular body is only calculated to give an idea of the uniform change of the axis of the earth, caused, as we have before obeerved, by the constant and commanding influence of the non and moon. As the poles shift their positions on the surface, so does the fquator and the protuberance there; and, in fact, every particle of which this globe, if we may so term it, is composed, endearours to accommodate itself to this motion, so that the earth's true form is that which may not be improperly termed an exvoluted spheroid, continually, but slowly, changing its relative position. To guard against any misconception, it may be necessary to stute, that the change of the protuberance at the equator, or rather the change of the excess of the earth above its greatest inscribed sphere, is not a sliding of that excess over the inscribed sphere, but the establishing of another and another excess in different positions, in consequence of the change of the position of the earth's axis, which is cootinually beiug changed by the infiuence of the sun and moon on the excess existing at any time. Every particle, internal and external, natural and artificial, is influenced by this motion. The sturdy edifices of man soon moulder down, or their foundations are depressed or elevated: the true cause is never assigned. When no local cause can be tromped up, all is left upon what is commonly termed the ravages of ofd time, which lets nothing alone.
The cbangeable protuberance or excess is ald to be about 34 miles more in diameter at the equator than the diameter through the poles;-this slow and constant change of the excess of the earth above its greatest inscrlbed sphere, has done more in baffling the observatione of man, and all his inquiries respecting the nature and figure of the earth, than any other circumstance whicb might be named. If the earth were composed of one uniform substance, ready to accommodate itself to the behaviour of this change of protuberance, the true motion of the earth's axis would have been discovered long ago. The heterogeneous substances of which this planet is composed, and which are more and more changed with respect to colour, pliability, and form, with their varier positions by the influenoe of heat and cold in the great laboratory of nature, must in a greater or less degree, in every instance, point out the existence of this unerring law. The change of this protuberance, or rather the change of all the particles with respect to the imaginary line about which this planet makes its daily revolntions, althougb very slow and gradual, effects a change in the whole heterogeneous mass, every instant, more or less, according to the pliability of the several parts; those parte which do not inatantly change, from the rigidness of their nature, ultimately feel its sway: so that the earth would become, from what we have termed the right motion of its axis, a figure whose nature and proportions could be readily determined, were it composed of one yielding and unlform substance; but on account of its beterogeueousness, and the rigidity of some of its component parts compared with otbera, this figore, which we shall here designate an exvoluted spherold, becomes in parts more or leas slightly indented or elevated, according as these parts and those surrounding them are more or less sensitive of the constant diaturbing cause. Not only a change in the inanimate kingdoms is effected by the right motion of the earth's axis, but also a constant change in the animate: it is not asserting too mact to say, that the
gradual deeline of nations is majnly to be attributed to the same cause; for this change, by ita powerful infuence, leaves places more or less suitabla for the habitation of man and other animali. In the words of the justly celebrated Dr. Charles Hutton, " a mid all the revolutiona of the globe, the economy of nature has been uniform, and her lawe are the only things that have resisted the general movement. The rivers and the rocks, the seas and the continents, bave been changed in all their parts, but the laws which direct those changen, and the rulea to which they are subject, have remained invariably the same." The following fucts and atatements may tend to illustrate this theory. The gradual change of the fixed stary, eapecially that whlch is termed the north pole atur, (Ursa Minor) with respect to the apparent north and south, showe that the axis of the earth is continually changing its position ; this fact is not disputed, but the parallels of latitude on the sarface of the earth are supposed to remain fixed, which is by this theory controverted. In the "Boundeheach," a work containing the cosmogony of the Parser, and supposed to bave been written by Zoroaster, it is said that Ormusd furmed the light between the heavens and the earth; that be made the sun, moon, and stars, and divided the latter (probably those near the ecliptic, into trelve conatellations. Each star in the zodiac is said to be secooded by $6,480,000$ smaller stars, and all these are represented as soldiers, reudy to make war on the enemies of nature. Ormusd, it is added, has also placed in the four quarters of heaven, four sentinels to watch over the stars ; of these Taschter guards the east; Sateri, the west; Venand, the south; and Haftorang, the north. There is said to be, also, a great star Mesclogah, in the midst of heaven, for the purpose of giving further protection to the south when the enemy comes in great numbers. Now it is imponible to form an opinion what can be meant by this enemy so myateriounly announced; but the designation of the stars seems to correspond with the Host of Heaver, which is used in the scriptures, and with the attendants or guards of the Supreme Deity, which is the denomination applied by the Egyptians to some of the constellations and planets; and it has been attempted by modern astronomers to prove that four of the principal fixed atars were really situated in, or near, the four cardinal points of the horizon about the year 2200 b.c., which is the period assigned to the first Chaldean observations. D'Alembert remarks that the longitude of Aldebaran, at that epoch, was $11^{\circ} 20^{\circ}$, and its latitude $5 \circ 30^{\circ}$ south; and as Antares differs from Aldebaran in longitude by six signo, and has $4^{\circ} 30^{\prime}$ south latitude, it follows that these stars were then very nearly in the pointe of the rernal and autumpal equinoxes; consequently, one of them would be seen to rise near the east aboat the time that the other was setting a little to the porth of the west. Now, it has been alleged that Taschter aigniges the genins presiding over rain, and we know that the heliacal rising of Aldebaran was considered by the ancients as an indication of approaching storms; bence it is, with some proprety, inferred that this atar and Antares were two of those alluded to in the Persian story. The other two stars are lens certain, the right motion of the earth's azis not teing recognised; D'Alembert supposes they miglat be Fornalhunt and Regulus, which were then nearly in the plane of the solstitial colure, and the former would be visible in the south at an altitude of about twelve degrees above the horizou of Babylon, Wbile Antares and Aldebaran were respectively rising and setting: but Regulus must have been 34° below the dorthern point of the horizon, suppusing the axis not to change; consequentiy, according to this theury, Regulas would be visible at the same hour in that latitude. If, therefore, continues D^{\prime} Alembert, it was meant that the four stars were at once seen in the situations just mentioned, we must look for some other stur having the same longitude as Regulus, but baving at least 34° of north latitude; -the *r in Ursa Mrjor is so situated, and it is possible that this might be the star in quention. M. Bailly observes, "that the notinu of the four stars quartering the heuvens seema to bave extended to China, for in the History of the Astronomy of the Celestial Empire, it is said that there are four apirits wisich preside over the four seasona, meaning probably the quadrants of the Zodiac, and it is likely enough that this kind of observations would be made by any people umong whom astronomy was in its infancy."

This general apparent change of all the fixed stars, in pointing out the motion or change alluded to, is much baffed from the dissatiafactory theory of corrections, from the rise and fall of all places in accordance with the change of the excess before alluded to, and from the very alow motion of this excess: another thing culculated to leud the observer astray, is the fixed opinion that the latitudes of places are never altered. It would appear that all astronomers and philosophers of every description had made up their miads to change everything before they would allow the latitudes to change, although such a change is ahown to exist, whether the subjeet under conaideration be astronomical, geologiesl, or geographical.

The latitudea of ordinary places may difer from time to time, in a greater or lesser degree, from the inaccuracy of instruments; obervations, or measurements; but it ought to excite a suapicion to find the latitudes of observatories changing, where oversights have no possible chance to enter into such a simple problew as the determination of the latitude. Now, it is a noted fact, that every astronomer in Europe counts his observatory to be in a different latitude from that of any of his predeoestors, if such have had a predecessur; even astronomerm called Rogal, in enlightened England and France, differ reapecting the latituden of their respective observatories given by their several predecessor, but their differences are sure to be saddled upon any caceot except the true one-the actual change of the place with referenoe to the poles. These facts are no well known that it would be oselese to give a list of the latitudes in which the several observatoriea have been said to stand.

It would likewise be useless to atate the different latitudes which bave been given to the same remarkabie places on cosath and elsowhere; these were changed without the slightest compunetion, as time could not be apared for them to undergo the like cookery whieh the latitudes of observatories have undergone.

Not only the change of the latitudes of objects and places abow this change in the earth's axis ; but among many other observed facts, we may here mention the foundation of all our old churches, which were laid out due east and west, and due north and mouth, have shifted to comply with the right motion of the earth's axis, and that too in direct proportion to the dates of their standiag. One of the most remarkable instances of this kind that has fallen ander our notice is that presented by the position of the city of Philadelptris, in the United States of America. The surveyors under the direction of William Penn, the founder, laid out Market-areet and Broad-street, crossing each other at right angles, due east and west, and due north and south; but now they point in different directions, accommodathog themselves to the universal law which is here for the first time shown to exist.

If we are to admit that the partlcular positions of the temples at Denderah and Esneh, in Egypt, were really given by design, we alall hardly be able to avoid concurring with Dr. Stukely in that part of his bypothesis concerning the Druldical monuments at Stonehenge and Abury, in Wiltshire, which relates to the direction of their longitudinal axis. The former of these is well known to consist of a great number of prismatic stones, placed on end in the peripheries of four ellipses, whose major and minor axes are respectively in the mame right lines ; the entrance is supposed to have been at one extremity of the major axis, and opposite to it , within the area, is a stone which seems to have been used as an altar. The doctor's opinion is that the founders of the monument intended to place it in a direction tending from nearly the south-west to the nortb-east, and to place the entrance opposite the lutter point of the horizon, in order that it might receive the first rays of the rising sun on the day of the summer solatice; it being, he observes, the cuatorn of the ancienis to celebrate their great feativala at that season. The principal part of the work at Abury consists of one great range of atonem, enclosing a circular area, within which are two donble circular rangea, respeo tively concentric with each other, but neitleer of them having its ceptre coincident with that of the former and containing circle. A lide joining the centres of the two double circles is also supposed by Dr. Stukely to huve been intended to coincide with that joining the noritheast and south-west points of the horizon; but he observes that in the temple at Stonehenge, the axis deviutes 8 or 9 degrees southward from the north-east points ; and in that at Abury, the line of the centre lies about 10 degrees northward from the sume point. Now these different deviations, which are by Dr. Stukely supposed to have resulted from the employment of a mariner's compuss to determine the directions of the axis of the temples; the ueedle being subject to a variation which is different in different ages, and the priests of the country being supposed to have considered, erroneousiy, that it coincided in direction with the true meridian of the place.

We conceive it undecescary to offer any argument to disprove the latter opinion, that these monuments were orionled by means of a mariner's compaas, it being lighbly improbable that such an instrument would be used for that purpose, when the heavens present so many phenomena by which the end might be gained with much more ease and accuracy. Among other objects which can be submitted to actual measurement, may be mentioned sun-diuls of iong atanding, especially lorizontal ones, as they partake of this motion in a twufold manner-that is, with respect to the elevation of the goomon and the gradual change of the horizontal plape. Many instances of this kind are on record:-sun-dials excavated from the ruins of Pom. peil and Herculaneum do not now tell the hour in the hatitudee la
which they have been found ; ff any person would take the trouble to compare the time n lich rech dials now show, with that time which they ougbt to ahow, thry will find that the earih's axis muat change in the manger which we have described. It may be supposed, because the beariags of natural ohjects, such as the tope of mountains, do pot change in exset mecordunce with the motion of the earth's axis, like the lonndatione of ehurches and other structures of man, that such a law has dot au rqual influesce over them: the fact ja, that the rigidprem of the materials of which they are composed not only prevents them lmmedistely yielding to thls motion, but also leaves them eleTated or depressed, either gradually or suddenty, above or belum the seat of the surrousding matter. This theory is borne out by many phemermena, but it is our intention frot to test it by those whieb are capable of being submitted to actual measurement.

It is borne out by actual measarcments which were instituted in difierent places, in order to delermine the figure and magnitude of the eartb. For this purpose, the lengthn of amall arcs were measured io difirrent places on the surface of the earth, with the grenteat care; tut for wadt of a true theory of the earih, their meacuremente, for the purposes for which they were instituted, were almust veeless, and led to reiy diseatisfactory concluajode. Although these meaburements disoppointed the measurere, in pointing out the form which they supposed the earth to be before they commenced their operations, jet Their resolts are of the greateat nse in sapporting what is bere promalgated. We cannot avoid remarking here, that the plans upon -bich all onr great measures of the earth proceeded were very in-judicioun-that is, first smpposing the figure to be one form while they were carrying on their operations, and when finiahed affirming it to be another: besides, they give way as much as posoible in all their meanoremend and calculations to their preconceived opinions, deopite of all the matural ezponents which pointed to the contrary. The values of the degrees of latitude found at different places on the earth's surface differ from rach otber more than might be expected, considering the great attention that has been paid to ascertain and male allowance for every known cause of error. In Prance, the lengths of the degrees were found to g° on diminiahing from north to conth, but dot in a regular prugreasion in England, on the contraty, they were found to diminish from south to notith: so that if the figure of the eatth were to be deduced from the degrees in the former of these countilies alcop, it would appear to be oblate; if from the degrees in the latter, it would appear prolate. As might be expected, the lengths of degress measured in the northern hemisphere of the rarth deviate, within certain small limita, from the values they should have on the surface of any conjectured figure, except the one which we have described. The degrees meanured in corresponding latitudes in the opposite bemispherea also diagree;-this fact, as a matter of course, munt necessarily follow. The proportions between the equatorial and polar diameters of the enrth are, pecessarily, atated to be various; the comparison of the are measured in France with that in Peru (in which last, it should be remarked, the ubservations of Bougeer were made use of, gives, for that proporticn, 884 to 333 ; Bralembert, taking a mean of the obeervations of Bougaer and La Candamine, afterwards found it to be as $309: 308$. The length of a degree in India, compared with that in England, showed the ratio to be as 829 : 328 .

$$
\text { The ratios }\left\{\begin{array}{l}
318: 317 \\
314: 813 \\
289: 288,
\end{array}\right.
$$

289:288, and many others, have been given at different times from the same sort of measurements. The differench in those ratios inatend of showing that they are all wrong, shows the eact contrary,-that they are all very pearly correct : which increases the number of observed facts that support the phisico-dynamical demonstration.*

That the earth is allghtly iodemted or exdented in different placer, a ppeara at once from the differont magnitudes which actual measuremepts point outs if it were otherwise, no matter whether it was supposed to be apheroidal, ellipsoidal, or any other solid, formed under a unfform law, except the form which we bava bere designated "an indented and exdented evoluted apheroid," the difference could not have been so great ; -80 that, although the right motion of the earth's axis, or rather the slow but constant cbange of the porition of the excess of this phapet above ite greateat inscribed aphere, exercise its infleses on all the particles of which it is composed, yet some of

[^21]them for a time remain unallered, from their rigidness, - but, ultimately, all must give way, or be covered by the ocean, which is always ready to obey this general law of natore.

The late trigonometrical aurveys show, either that the latitude of places have changed, or that they were greatly miaplaced by former surveyorn Now, it is more likely that the places have changed their positions with respect to the true north and south points, than that errora of such magnitude could be committed; one of the principal objects of trigonometrical surveying being to determine the geographical position of principal or noted places, whether on coasts or inland, in islands or on continents, in order to give accursey to maps, and for the purpose of accommodating navigators with the true latitudes and longitudes of principal promontories, lighthouses, havens, and porta. If is well known that these have, till lately, been requirements eren in this country: the positions of some important points, as the Lizard, not being known within seven minntes of a degree ; and the last survey found the beat country mapa in many cases to exlibit differences of more than three miles in distances of not more than twenty or thirty milen. The late surveyors may attribute all this to blunders made by their predecessors ; but this is not at all likeiy, as the radeat idstruments or the most careless observations could nos ω_{0} far mislead: in one hundred years from the present time, the same apparent blunders will be again detected. There is nothing. which might be pamed that baffles the ubserver more, in determining the longitude either on land or at sea, than the erroneous opinion that the latitudea of places remain always unchanged. The whole face of nature points out this universal change;-geologists not haviug recognised it is astonishing : their conficting and contradictory theories respecting the formation and structure of the earth, by this theory are set at reat for ever.
The chemical influence of beat and cold, combined with the gradual change of all matter, at once account for the several observed pheuomena attributed to so many causes. By the right motion of the earth's axis, or rather the change of the exceas so often alluded to, we have, among others, the following natural consequences:-Rivers appear to bory themselves in the earth, or rather, the places rise through which they flow. Mountains, which do not immediately give way to this change of surface, from the rigidness of the substance of which they are composed, ultimately, often without the alightest warning, decrease in altitude many feet. As this protuberance shifts its position, it only disturbs the particles, but in a very slight degree changes their respective distances;-for instance, it is not to be Imagined that the particles of one valley co-mingle with those of another. In the ocean, islands appear and disappear from the same cause. Continents, as well as islands, are increased in some parts and diminished in othern, and that in such a regular manner that the influence of this general law is at once recognised. The structures of man, as well as those of nature, are often instantly elevated or depressed. Countries, , hich were once fruitful and thickly inhabited, have become barren; and, on the contrary, those which were barren, become fruitful. Tlis motion not only changes the beds of rivers, but those of oceans and seas, so as not to show the same levels in places only a few miles distant-that is, with respect to what is erroneously called the mean level of the sea. Mr. Whewell has fallen into errors in his account of the theory of the tides, from bis not haviog observed this gederal law of nature. In faet, the true cause of the motion of the waters on the sorface of the earth, is mainy to be attributed to this motion. The sea-worn pebble obtrudes through the caverns of the deep and appears on the surface of the earth many miles from the sea, mixed with marive substancea and remains of sheli- fish. Fossil remains are found many feet from the surface, und in different climates from those to which they belonged,-often imbedded in substances which are evidently deposita, assuming different appearances from pressure, position, and being submitted in the great laboratory of nature to the different obanges of temperature, and other local causes. It is not difficult to conceive how tranaformation can take place, for in the laboratory of the chemist the most durable substance is easily made to pass from a dense to an aeriform state, and the contrary;-water on the surfice of the earth affords un daily a familiar instance of this, in its three separate states of rock, fluid, and vapour. The varying spinning motion of the earth on its axis, which is continually changing the excess so often mentioned, has this effect on the purticles ibuit compose the ocean ; they are daily and bourly obliged to accommodate themserles to the bebaviour of this motion, and also to the constant change of the less pliable subatances over which they are compelled to move: therefore, to imagine that the ocean can bave a mean or uniform level, as Mr. Whewell and many others do, is abaurd. But this is sutiffactorily shown by a comparison of the observatione made on the tides in different ports and places. Slow an the right motion of the earth's axis appears to the abortaightedness of
man, yet, were it to ceasa, the earth would be sbortly deluged. Not only the particles of the oceam, but of the air, are subject to its in-Guence,-the magoet acknowledges it, and every particle composing and surrounding this heterogeneors mana. If geographers geologista, and aetronomers look at the constant changes which take place on the surface of the earth, and in the appearance of the beavenly bodies, in accordance with this general law of nature, they cannot for a moment queation ite exiatence.

ON THE MEASUREMENT OF WATER DELIVERED THROUGE LARGE (OR WIDE) ORIFICES.

By M. Morin.

(Communicated to the Academit des Sciences, Paris.)

In experiments on hydraulic cantive powers, the most delicate portion, and that most subject to error, in the measurement of the quantity of water expended. Local circumstances, forms, or shapes, the urragement of flood-gates, exert on that quantlty great Influence, which, as ynt, has been too little stodied, and the inexact appreciation of which has frequently led the most conscientious observers into serious errors, to which may be attributed, very frequently, the manifest exaggeration of certain results anoouncod with the most perfect sincerity.
In order to avoid sach errors, and to eatablish with some certainty, or at least with a sufficient approximation to it, the ratio of aseful effect produced by the motive powers sabmitted to experiment to the abolute amount of water expended, I endeavoured to determine upon a mode of measurement beyond the reach of controveray, which was somewhat difficult.
For this purpose, I firnt refected whether I could measure, with sufficient exactness, the quantity of water supplied by an overshotwheel sluice fixed at the head of a channẹl or race, in which the motive powers to be subjected to experiment were to be placed.

This sluice is equal in width to the head-race, constructed of masonry; it is jaclined from above downwards at an angle of above 65 degrees to the horizon; its upper edge has an acute angle up-stream, and is rounded off down-stream; it is 3 inches thiok. Two racks, each of 2 inches wide, reduce the clear width to 6 f .7 in.

In order to estimate the volume or quantity of water that passed over this sluice, the tail-race, which was constructed of masonry, with a rectangular section, was closed below by a vertical dam of plank, in which were made three openings; to these were fitted sluices of about 0.300 m . (1 foot) square, of thln sheet iron, of aboat 0.005 m . ($\frac{g}{50}$ in.) in thickness, slidiog in front of the orifices, which were formed with sharp edges. These iron aluices were, by means of ecrews, worked by band; rods with marks showing the level, were placed in front of the overahot-wheel sluice and the iron sluices, in order to show and to verily the invariableness of the levels.

From this short description, it may be readily conceived that by making simultaneous observations at the overshot-wheel slaice, and at the regulating orifice, the supply, or quantity delivered by the two kinds of orifices, might be caloulated, by means of the very precise reaults of the experineents of Mesars. Ponoelet and Lesbros, and which were evidently applicable, with all desirable exactuess, to the case in question.

Bat these experimente, undertaken on canals of great dimensions, which had rast Dasins, subject to the effects of the winds, and whose level it was difficult to regulate perfectly by means of an ordinary mill slulce, could not possess a degree of exactness comparable to that of experiments made under more fuvourable circumstances. In order to examine into the whole together, and to disengage the results from accidental infuences, we have re-produced them by a graphic construction, taking the valuas of the charge (or head of water) H, on top of the sluice, as abscisas, and those of the co-efficient of the supply or delivery as ordinates.

In examining the table of the results, and, above alh, the curve Which represens them, it is seen that the values of the co-efficient of the supply or delivery increase rapidly with those of the charge H , on the ground-sill of the orifice, from $\mathrm{H}=0.03 \mathrm{~m}$. (12 inches), and 004 m . ($15 \pm$ inches), up to $\mathrm{H}=0.10 \mathrm{~m}$. (4 inches), a term beyond which they still continue to increase, bat more and more slowly.

If, to compare thene results obtuined with a sluice of $6 \mathrm{ft}, 7 \mathrm{in}$. in width, equal to that of the head-race, and piaced in the before-mentioned circumstacces, with those which relate to a slaice of 0.20 m .
(neariy 8 inches) wide, to complete contractlon, we determine, by meani of the figure, the values correaponding with the chargee observed; in this last case, the following table may be formed, which is limited to the chargee with which we have operated:

Width of Orifices.	Values of the conefficient m, of the formule $Q=m L H \quad \sqrt{2} g H,$ Yor the ralues of H equal to					
	0.04 m.	0.06 m .	0.08 m .	0.10 m .	0.15 ma.	0.20 m .
$\begin{aligned} & 0.200 \mathrm{~m} . \\ & 2.017 \end{aligned}$	0.407 0.264	0.401 0.355	0.397 0.418	0.395 0.448	0.393 0.469	0.390 0.488

It is seed that for small charges, this sluive of 0.08 m . (8 inches) thick, produces a notable diminution in the supply or delivery, although the contraction may be nearly anaulled on the vertical sides of the orifice. This effeot is analogous to that observed by Momra. Popecet and Lesbros on small overfalls passing through a shote. We know, in fact, that, in the cases in which the contraction is nowrly null on the siden, these observers found the following values of m :

Charges on the upper					
cide of the overfall.	0.04 m.	0.06 m.	0.10 m.	0.15 m.	0.21 m.
Valuen of m.	0.246	0.271	0.308	$"$	0.324

These values, which, for small charges, made a very near approach to those we have obtained, show that the diminution of the sopply or dellvery depends, in both cases, on the same cause-on the resistadce of the side or wall of the sluice, or of the shate. We notice, in fact, that insmall charges, the luid vein wete and follows the sarface of the sloice; but in proportion to the increase of the charge, this inGuence of the sides or walls dianinisher, and soon, fodeed, the fluid vein detacbes itself completely from the upper edge, which is sharp up-stream, and the resistance of the surface of the sluice ceases to be felt, whilat at the same time the suppreasion of the lateral contraction continues to exert an increasing influence on the augmentation of the supply or quantity delivered; whence it resulta that the co-efficiedt of the supply or delivery increases.

Such is the natural and simple explanation that may be given of the smallness of the values of the co-efficient of the aupply or delivery fur the small charges; and of their magnitude for the large charges observed in our experimenta.
Notwithstanding the care taken in the execution of these experiments, the local causes and circumstances mentiuned did not permit us to approximate nearer than $\frac{1}{1} \mathbf{t}^{\text {th }}$ or $\frac{1}{\text { g foth; }}$; but the aketch shown nevertheless, by taking them as a whole, the gradual and continual progress of the increase of the co-efficient of the supply or delivery, and, until new and more precise researches are made, Ithink we may, in applioations to andogous cates, adopt with sufficient acearacy for practice, the values deduced from the sketch, for the co-efficiens of the supply or delivery, viz: -

Charges on the Sill of the Ouorfall,-in metres.
$0.04,0.05, \quad 0.08, \quad 0.07, \quad 0.08, \quad 0.09, \quad 0.10, \quad 0.18, \quad 0.14,0.16,0.18,0.28$,
Falues of the Co-efficient m_{n}-in metres.
$0.204,0.818,0.835,0.390,0.418,0.437,0.448,0.485,0.467,0.42,0.47,0.480$.
Thase valuen, which, for charges exceeding 0.10 m . (4 inchen), are much greater than those which have been, up to this time, adoptod for similar cases, show that sluices, arranged like that made use of by us, which is the case with many horizontal wheel, deliver more water than is generelly admitted to be the case; and that, in experiments on hydraulic motive powera, we are liable, for want of a good method of measurement, to estimate the supply or delivery of water at onesixth or one-seveath below the real amount, and, on the other hand, very mach to overvalue the useful effect.

Eaperimonts on an Orifice rith the Charge on the Sumonit

Although the encemble of the results obtained with the avershot water-wheel sluice, enables us to determine with sufficient exectnese, at least for practice, the amount of water actually supplied or de livered in the experiments proposed, on hydraulic motive powers, I bave thought it best to make use, for this purpose, of an orifioe with the charge on the summit, so that the height, and, consequeatly, the
area of the orifice remaining the tame, the clarge on the centre, being alooe exposed to slight errors of measurement, enters into the calculation of the supply or delivery, but as under a radical of the second degree, and the inflaence of these errors diminishes when the charge increases.
For this purpose, 1 caused to be made on the same race or canal, an orifice of 1496 m . (4 ft . 11 in .) In width, the vertical sides of which were 0.16 mo . (6.8 linches), and 0.185 m . (6.5 ipehes) from the sides of walls of the capal, and as the movemente or risings of the sluice were very dight, when compared with these distanoes, the contraction might be comoldered as nearly complete on thene siden, as well as on the upper abd lower sides.
The determinatlon of the actual anpply or delivery by this orifice, was made, as has bera before explained, by means of a small iron strice, whose greateat opening was 0.300 m . (12 idches).
The examination of the results obtained, and above all, their graphio representation, show that the greatest deviations did not amount to more, and were almost ulways less, than ath of the ordinates of the enrve which represents them. And as, for experiments on hydraulic motive powers, sueb an approximation is quite sufficient, we have been able, in the ulterior calculations of the supply or delivery of mater, to adopt the values of the co-efficient of the supply or delivery dedaced from this very curve.
We wish it to be observed that, In our experiments, the charges on the summit of the orifices having been comprised between $0-050 \mathrm{~m}$. (2 trebes) and 0.180 (7 inches) at farthest, and that this dimension, agreeably to the experiments of Messrs. Poncelet and Lesbros, produeing an inflinence, at most, of only the the variation ul the co-e moiente ben scarcely depended on any thing ezcept the height of the orifices.
We have therefore been emabled, in aecordance with this remart, to serk to compare the values of the co-eficient of the supply or doHivery which we beve found, with those which have been determined for equal heights of orifices of 0.20 m . (8 inches) in width, by Mesers. Poocelet and Lesbroa, and we have thus formed the following table:-

Nature of the Orifices.	Values of the co-eflicient of the theoretical upply or delivery for height of orifices of		
	0.20 m.	$0 \cdot 10$.	0.05 m 。
Oritice of 0-200 m. Wide, 1.496 m . frertase owing to the angmentetion of widch, Or,	$\begin{aligned} & 0.592 \mathrm{~m} . \\ & 0.675 \mathrm{~m} . \end{aligned}$	$\begin{aligned} & 0.611 \mathrm{~m} . \\ & 0.679 \mathrm{~m} . \end{aligned}$	$\begin{aligned} & 0.630 \mathrm{~m} . \\ & 0.727 \mathrm{~m} . \end{aligned}$
	$\begin{gathered} 0 \cdot 083 \mathrm{~m} \\ \cdot 100 \mathrm{~m} \end{gathered}$	$\begin{gathered} 0.068 \mathrm{~m} \\ \cdot 100 \mathrm{~m} . \end{gathered}$	$\begin{gathered} 0-097 \mathrm{~m}_{\bullet} \\ \cdot 100 \mathrm{~m} \end{gathered}$
	8.130	10.000	7.530

It is seen that the width of the orifioe appears to have had a conaderable influence on the supply or delivery, and that the incrense resulting from it for this supply or delivery has varied, in the cases in question, frum si: z to to
These resulte prove how necessary it was to verify beforehand the emetsess of the furmula to be made use of for the measurement of the supply or delivery of water, since differences of this kind might resalt from it.
We will moreover obsesve that these result, giving amounts of mopply or delivery much greater than might bavo been calculated agreeubly to the rules generally admitted, the useful effects obtained from the motive powers studied in the experiments of which we bave to give an account, will be diminished in the same proportion, and that, in this point of view, our resulte will be less favourable to them than If we had been content to follow the ordinary rules.

[^22]ON M. BRUCHHAUSEN'S NEW THEORY OF THE TELLURIC FLUCTUATIONS OF TERE BEA.

By Profemor Madlen, of Dorpat.

Our globe presents an abundance of evidence, that its present cons dition is one which did not exiat in times anterior. It is the purport of the present time to establinh these facts and their corollarle, hirtorically and empirically, and to frame the way for their genitic elucidation; while the parport of the fatare will be to penetrate into their genesis, and to elucidate, io an inconteatible manner, the firat causea, -whereby the existing effects and results may be proved and demonstrated to perfect evidence. We do pot intend, by aaying vo, to discredit all present endeavours to arrive as these first canses of our globe-pature;-every endeavour in this respeet is meritorious.

This apology we have to premise to our review of M. de Bruchhausen's (of Luxembourgb) theory of res-motion, first communicated to the congress of scientiales at Bremea, and subaequently developed in an especial work. Its general features are as follows:-

1. If masses of iee become fixed on the bottom of the sea, they cause a preponderance of that hemisphere whose pole they form,and, in consequence of that preporderance, the centre of gravity of the globe must change its place.
2. Iee masses of this kind are fixed as well at the sooth as at the north pole, but are not immutable, but increase and decrease alternaively.
3. The fact, especially, that in a cycle of 21,000 years, the poles, bave their sumsoer in the perihelium and aphelium (by which, also a' difference in the daration of seasons is given)-causes a disparity in the proportion of evaporation and precipitation, and consequendly, a greater increase of the polar ico-masses on that pole which possemes, then, the shorter summer; an well as a decrease of thoee masses on the opposite pole.
4. In conseqnence of the shifting of the centre of gravity, cursed by the increase and decrease of thene maser, the sea must move to that pole where the bottom-ice is increasing, -food the lead there, and lay dry those on the opposite pole. Thepce, so little land existen now on the southern hemisphere, and such breadth of land porecta towards the pole on the porthern.

Thest condensed statements will suffice for texting their plawsibility. M. de Bruchbamen himself, considers the third argument the. weakeat, at the obeervations of Herschel (whose correctness is not disputed by M. B.) have proved, that the sum of the temperature of summer, is not changed by the difierent position of the Apside line. Still, the dintribation of heat over aingle seasons is, certainly, some-what-albeit, not meoh-different; and could, possibly, be the cause of an imperceptible tacrease of the polar ice. We say posaibly, becanse such a complionted phenomenon demands the moat socurate physical inquiry,-Wbith M. Bruchbausen has not mede, but endeavours to prove his position by induction.
In this place already, the objection can be raised, that an alternate increase apd deorease of ice-mauses (at least, as their llmits are concerned, takes place every wintar and summer,-as, naturally, the winter pole will have more ice than the summer pole. If this difference were of sufficient quantity to act in the way put down by the anthor,-then, during every summer, we should oberve a flowing from the north hemisplere southward; in winter, one in an opposite direction. The elevation of the continente and islands of the temperate and frigid zones, would be different in summer and winter. As, however, such a periodical change of the level of the sea (every year) is, surely, not observed,-then, also, the atill lesser difference of aphelic and perihelic summers, is also incapuble of producing sucls astonishing difference of the level of the ocean, which the author estimates at 20,000 feet. This diffioulty cannot be obviated, even if the effect of this action be extended to several thousand yearm.

The same result will be arrived at by a simple calculation. Let us asuume the extent of the polar ice, at an equal distance from the pole, at merely 15°; and as Weddel has sailed up to 74 ${ }^{\circ}$, and Ross even to 78°, south latitude, we might anfely consider it eveo as more. Let us further consider the curve of its surface (independent of the curve of the globe) as being parabolic: let un take the density of the polar ice at $\mathrm{U} \cdot 86$; the density of the globe, according to Bailly's latent experiments, at 5.69 ; and let us express the thickness of the bottomice at the pole by x;-then the shifting of the ceptre of gravity of the globe thereby produced will be:

$$
=t \frac{0-86}{6-69} \cdot \sin ^{9} 15^{\circ} . x=\frac{1}{894} x
$$

Whence it results, that for shifting the centre of gravity of the globe only one foot, a mans of ice will be required, which bas a thicknees of

894 feet at the pole, and reaches (on all sidea) up to 75°,-being fixed at the bottom of the sea.
As, however, the opposite poie does not loose its bottom-ice, which (according to M. Bruchbausen's theory) is merely diminished the ansumed aifting of $\Rightarrow x$ is obviously too great; and if the two masses of ice are in the ratio of $1: 2$, it is to be reduced one-half. At any rate, even supposing these masses to be of the utmost thickness, the atifting will turn out to be quite imperceptible, and inadequa:e to prodace auch phenomena as the antlior wishes to explain thereby.

After saying so much, we hardly wish to loqnire whether there really ba ice-masses of the kind ut the poles, or whether they be sabject to sach great changes and variations. The new antarotic continent, discovered by recent travellers, which rises with its volcanic peake to the height of 12,000 feet, does not seem to allow of the assumption of such mighty masses of ice-and the same seems to be the case in the north. Bat even abetracting from these landls, the theory of M. Brocbhausen will vainly endeavour to point at any possible alifting of the centre of the globe's gravity.
In regard to the phenomena which the author endeavours to explain, it is eany to perceive that they do pot tally with his theory. He refers to some uphearinge observed on some littoral parts of the northern bemisphere. But this is quite a locsl occurrence-for while the coast of Sweden is rinling; no soch thing takes pluce on the shorea of Denmark, England, or even the Prussian or Ruasian territories of the Baltic. Againat this upheaving in one part-depressions, at no great distance, are observable-as, for instance, the whole coast of Dalmatia is descending, and the once market-places of several cities, like that of Zara, are now flooded by the sea. In other parte-such where cities three thousand years old are to be met with-all has remained in stalk quo. The triangle of Sicily has been the same since remotent anliquity, all the old ports of the Mediterranean are the same; although, since their first foundation, nearly one-third of that period has elapsed in which the poles change their position - as far as the Apride line is concerned. All this proves sufficiently that the eleration of Scandinavia and the depression of Dalmatia, as well as other phenomena of the same kind in other parth, are merely of local character; and it is not the level of the sea which has changed, or ever can change, -bat the land which, from epoch to epoch, is shifted like the scenery of some huge theatre. If there were really any such cause or agency, as the author supposes, a slmultaneous elevation of one hemiaphere, conjointly with a depremsion on the other, would take place, whose extent would only depend on the Sinus of the latitude.

We think that this simple statement will convince M. Bruchbausen and other investigatore, that his labours have taken a wrong direction -as will those of any one, who will attempt an explanation of geoiogical phenomena by astronomical agencien, both being perfectly dis-tinct-at least, only confuent on their extreme limits. Because, while satronomy has to deal with space and matter of immense and hugest extent, geology is the doctrine of a thin crust of one of the most puny pointa in the great syatem of the Conmos.
J. L.

Bridge ouer the Rhime at Bidale.-M. Edouard Kraft, a young ongineer, Who has distinguished himself by the buiiding of several cast-iron bridges, and especially by that of Aspach, near Muhlbausen, has mado a proposal to the corporation of Basle to build a new bridge, instead of the present old one, whose ciumasy and ansighty form diagrats every beholder. M. Kraff proposes to obviate the great difficulties which present themselves, by iatroduciag improvementa in the laying of the fonadation, hitherto only resorted to in mines. The priacipal improvement proponed by M. Krafl consists in placing the piles in the bed of the river by means of immense bells of sheet iron, of the shape of the piles, into which a stoam eagine would constanally pump alr. This wonld eoable the workmen to execulo, even al a depth of 10 matras below the level of the river, all the operations of excavation, the ramming in of the piles; the laying of the belon, and the masonry. The bells, whose apper part woald be higher than lowwator mark, would be cat at that height, after they had boen filled up with masonry, and would remain (eerving as a case for the latter) in the water. This work would sapersede the cofferdam aystem (1), aod save. 20,000 francs per pile, besides offering an bitherto ouprecedented degree of safoty. The corporation of Bacle hat purchesed M. Kraff's plao, which bids fair for isa altimate exeoution.

sanitary regulations of the metropolis.

If anything more worthily distingoiabes the present age-notwithotandiag Coningaby's outcry about the age of tiosel and brash-motwithstanding the abarge of Mammoa wormbip and the impatations of celfinhiess-it is the apirit of practical improverneat, exemplifed not merely in undertakings which are reproductive to the commanity and profitabie to the conductors, but in those daily and long-oontinned exertions of the Governmeat and the edocated claces, for the amelioration of the condition of all members of society, and in particular of the condition of those who, from watat of intolligence and want of meana, are least qualifed to holp themaelvea.
It is well to assame the autitede of hamdatores teanporis ecti; to apeak of the good old times; to beolish virtue to the aonale of antiquity ; and, in denying modern merit, to lament modera deprevity. That is an old rice; it is aptly characterised by the Sage of Joden and the Poet of Rome; and it is one so tritely known amoag onrselven, that it mast agge soma confdence in the extent of public crodulity, to try it on any large scale in our times. Have wo all forgotten the classic acene in the "Speotator," where the sbrewd observor takes down a book from the shelves of his library, and reads to the grambler an awful dencription of the depravity of the times? "How true," says the grambler, "how accarate-bow minute!" And yet the page of the moraliat did not refor to the time of Queen Anne, but to that of Heary the Eighth. In the time of Queen Victoria, a large echool, with the Coming Man at their bead, and Pogia for their Michael, ory oat on .the worthleasaese of the present day, and aigh for the middle agen, the forms of whiah they wonld fnin revire among ns. To copy the merits of our forefathers, to catch their noble spirit, is well worthy of our ambition;-bat to adopt thair aystom bodily, and to esebew all the merits and improvements of the preseat day, woald be as insane in practice as it is antic and fantastic in saggention.
If, howerer, there be one party who would drag us beck, body and soul, to the middle ages, there is another who, for self interest, would oppose overy improvement in the present day: so that no suggention can be made for any practical mensore, without its being met by the most violeat oatory and miarepresentation. Such is the fate which has besot Lord Mo rpeth's bill and the eanitary arrangements.
None can have a more superatitions horror than we have of Government Interference-sone bave been more consintent in their opposition to any unjustifiable attempt at extension of power and control. On the 8toam Vescels questloa, our humble exertions were sufficlent to frastrate the objectionable designs of the Board of Trade. On the proposition of the Buildings Act, we co-operated in obtaining the ramoval of the obmoxious clauses; and we cannot charge onrselves on any one occuation with moglenting the interests of the pablic or of those profescional readers who favour us with their confidence. We cannot, however, go so far as to object to all Government interfersace, or to deay that it can be properly exercised; for we have ourselves, on many previons occesions, in reference to this present question of the sewage and sanitary arrangements of towns, exercisod what influeace we poseess in the exposare and correction of the very serious aboses which are still so greatly prevalent.
We might sympathise with thowe who objected to the Goverameat obtriaing the soie control over the senitary arrangements of the metropolis; bat knowing what we do of the sewage, drainage, paring, cemeteries, asd eupply of water in the metropolis, and haviag so often had occasion to write in terme of disapproval, we cannot connintently say that the prewent syblem requires no alteration,-for we mast sey that it requires a grees deal, and that Lord Morpeth'a bill to that reapect erre ooly in not going far enough.

We defy any reasible man to look at the wretched and confoned mode of adminiatration, the number of confieting iocal board, the host of usoless and lnefficient fanctionaries, the oppositlon and antagonism shown in the details of arrangement, and the miserable and contemptible resalte,we defy any man, we aay, to consider these things, and not feel ashamed that in the greateat metropolis of the worid, and among the most practical and busineselike people, acch a diagracefal atate of afficts should exiato whereby the pablic money is wasted, the public wants are negleoted, and the pobiic health is endangered.
On this point all oplaions ought to agreo-that the local boarde should be abolishod, and the adminituration aimplified : common conce requiros thin, if economy and pablic justice did not imperativoly claim the reformethon of the present abases.
This point conceded, an efficient working mant follow, whlch is maialy prevented not by the want of capecity of the local officers employed, aot
by their want of professional skill, bat by the want of power to oarry out the mant eswatial improvemente and the best conceived dealgor.
If we look at the state of the sewage of the metropolis, we are sure all meat agree that ite present coodition is bed, and that oves the worst Gorerment boerd conid sot be worse. The metropolis is aplit up anong wreral irresponsible boards, exerolsing indepeodent jarisdictiona, and ecting to the mont discordant prinoiples. While the aplapd is under the Fimbury and Holborn Commienion of Sewers, the outfall la under the City of London Comminsioners. The Tower Hamlots Commisaion take charge of the East of London, sending nome of their drains into the Finsbary difision. The western parts of Loodon are delivered over to the Westminater Commission of Sewers, who have the Crown Commiscioners for Regent-street and the Regent's-park interfiriog with them thronghoot. The noathern subarbs belong to the juriediotion of the Sarrey and Kent Commiston.
The result may be anticipated : as there is so coutral anthority, there are repeated conalicts botreen the jarring fanotionarien,-for the divisioas enbracing districts of andulating anffece, have not, in all cases, the com. maed of their own ontfall, or have not the command of the natural outfall. Hence, circuitons lines of cewer are adopted, to the great inconvenience of the poblic, and to the great loss of the rate-payers. The Regeat-atreet and Regent's-park diatriet, which is ander the Woods and Foreste, runs right up in a narrow strip through the Wentminater divinion, from Sootiand Yerd to the Regeat'epart, and has ite own main eewer and its own ceparate outfall. The conseqnesce is, that the Westminster Commissioners, manead of nending some of their northern drainage into the Regent-itreet mis newer, have recourne to a long detour, by a sewer of two milles in leagth, to join the King's Scholars' Pond Sewer, higher ap the Thames.
Proceedings of this kind are fraught with mischief and injastice; for not ooly have the Westrinater Commisuioners to contend with a very slight frelioation, and a very bed oatfall, through the Kiag's Scholars' Pond Sewer, bat a great deal of money is whated in the original outlay for the circuitone sewer, there is always a difficulty in keeping it in order, and there ia necessarily a much henvier charge for its repalr. The Regentstret rewer is oue of great capacity; it is carried to a considerable depth, and is safficient to drain all Westminster and Maryiebone,-and yot a new and seediens sewor has, onder the prosent aystem, boea made.
There is also, from the nature of the boandaries, some difficnity in socuring the proper cleansing of the sowers by duching; for the Westmaster and the City of Londoo divisions of eewres have not within thelr diutricte accose to a sufficient supply and head of water. Under a combined aystem, reserroiss of water would be formed at Hampstead, Highgive, Horosey, and on the nortbern range of hills, and would be applied to properiy tuaning and cleanoing out the cewers and drains in the lower divisioas of the City, Holborn, Wentminater, and the Tower Hamiets. In the filoborn and Fiasbary division, the Aushing pian is woll carried out ; bot there is do reason why, by proper arrangementa, the same facilities doald not be generally and economicaliy applied.
It is also very weli known, that antil a very late period, from want of a proper control oa the part of the pablic, and from want of exertion on the pert of the fonctionaries, the greater part of the sewrers in the metropolis were constructed on improper principles, and in a wastefol and insuficient manser. This was particularly the case in the Westaninster Comminaion of Sewers, and we believe we may ciaina some part of the merit-as having been to a considerable extent effected by our exertionsthat the new sewera are being earried out in a manoer, mach more economien, much more officiont, and much more salisfactory. The prosent marreyor has doae a great deal to leseen the expeane by leying down oval sewers, and by giving eowers of a amall size to courta and alleys ho bas axterded the accomworiation withoat incroasing the oullay. Indeed, alosost as mach has been done as perhaps can be done, by the formation α small oval draina and the introduction of pipen, to make the construction of sewers as cheap as it cau be,-so that our objections are not made oe that groand. It is with regard to the propar direction of the mewers, and their proper application, that the greatent deficiencien are felt; and thene are so serious, and have lasted so long, that we can place no consdence in the present aytem for their efficient and final remedy.
Wo have already said to much on these polnts (particolarly in oar Joaral for 1843, vol. VJ., p. 43), that we are almost disinclined to say any more,-wexcept that being obliged to go over the same matter foor yean afterwardn, and to contend with the same opponenta, we cannot canpe the repetition. Those who will refer to Vol. VI., p. 48, will find that we bave gone as minately into the aobject as we can, and particnlarly
in reforence to Mr. Doaaldeon's defence of the Westminater Commiasion of Sowers; which, bowever, furnished us with ample ovidence as to the defects of the preseat aystom, or racher wat of aystem, and the necesity for its entire rpform.
We cenoot recapitolate all that we then eaid, but we may usefally avail eurseives of some of the evidence which we then adduced. We showed, on the autbority of Mr. Donaldson, thet in consequence of the want of onity of action, very large sums had been expended in rebailding the maln sewers and deepening the outlets. Thus, the Eisex-streot mewer, between 1816 and 1830, was lowered throughout a length of 5890 feet, or upwards of a mile. The eastern branch of the Hartshorn-lase sower, likewise in the Westmiaster Commiseion, between 1831 and 1839 was lowered throughout a length of 4900 feet; and anotber branch of the mame sewer, between 1820 and 1837, throughoat a leogth of 2400 feel. The whole of the King-atreet sewer was, before 1838, lowered on a length of 1200 feet, and the Wood-street sewer, the College-ntreet sewor, and the Horseferry-road sewer, were also lowered. Thus, in one division-the Westminater division-the great extent of 21 , 450 feel (or 4 miles) of new main sewer has been constructed. Of this we ehonld not of itself com. plain, if the whole aystem were not fanlty, and if, instend of merely reetifying old errors, the now works did not, us we have already shown, involve farther errors.

The wrorka on King's Soholars' Pond Sower are $e 0$ beavy and so extraordinary, that Mr. Donaldson and othere look apon them with a groet degree of pride, as involving the application of mach skill and ingenaity to overcome the difficulties with which the surveyors had to contend. Thos, the driving of the new sewor, for 850 feet in length, and at a considerable depth, was carried on from withizside the sewor, and an invertod arch was constructed, and the old obstructions removed; the works being carrted on ander buildinga, and having been considered imprecticable by John Rennie, Jessop, Chapman, and others. In some perts of its courne, this sewer was driven ueder courte narrower than itwelf, and frequenty below the foundations of contigrous baildinge, withont lafloting injury apon them.

It is scarcely credible, that works 50 expensive and $e 0$ difficult ahould bave been undertaken withont any adequate necesalty; and yot auch is the fact, for, as wo have alroady shown, the Regent-dreet sewer is amply sufficient for the driange of the district; and, by the ase of $i t$, the enlargement, or rather reconstraetion, of the King's Scholarn' Poad Sewer might have been avoided, and the drainage carried to a shorter and more offective outfall.
The works in the City of London Commistion have been, to a great oxtent, of the same character as in the Wentminster Commission, having beon directed to the formation of now outfalls, not for their own drainage, but for that of the opland diatricts. Under a proper aystom, the expense of the outfalis would fall on the whole district, and the ootfalls would be properly adapted to the extent of duty which they have to perform.
The Wentminster Commisalon, among othera, long persisted in the use of fat sides to their sewers, thongh frequent failares occurred in their application, and they were expenuive and combrous in construction, while there was adequate experience that the oval form of sewer adopied in the Regent-street and Holborn divisions was of greater solidity, was less expensive, aod better calculated to secure a quick drainage. Naturally, the great object in sewage is to get rid of aoxions waters as quick as poseible; not to keep them penned ap, festering among the dweilings of the people, bat to discharge them with the atmost speed. This, the W'estminster form of eewer was not calcuiated to effect; while the oval form was perfectly competent, as the investigations in our Journal, and the snbsequent adoption of our viewa, have faily proved.

A comparison of two clesces of newers, in the Westminster and Holborn divisions of newers, noder the old plan, will show how wastefal was the expenditare under the former sydem.
In these calcalations, the cost of materials and labour being taken as the same in each oase, at 18. per foot reduced, or $£ 1812 \mathrm{~s}$. per rod of brick work, and 1s. per cabic jard for digging, atratting, and $101 i n g-i n$ or removing the surplas ground; the top of the sewer beang taken an six feat below the sorfuce of the groasd.

Wentmiaster first-olase sewer: 17 feet brickwork, 17 s .; 3f yards digging, 3s. 4d. ;-total
203. 4d.

Rolborn and Finsbary first-cless sewer: 12 feet briakwork, 12s. ; I yards digging, 8s.;-total

15s. od.

Thin shows a difference of 5s. 4d., or more than 80 per cent.

Westminster second-class sewer: 15 feet brickwork, 16s. ; 8 yerde digeing, 88. ;-total 188. od. Holborn and Finsbury second-olass newer: 0 feet brickwork, 9s. ; 2t yarde digging, 2s. 4d. ;-total . . Ils. 4d. This shows a difference of $68,8 \mathrm{~d}$, or between 50 and 60 per cent.

A Holborn first-class sower used to cost less than a Weatminster first or second class-being, in fact, 20 per ceat. cheaper than the Weetminater second-class sewers. It is, therefore, scarcely conceivable that the monmitrons waste of money involved in carrying out the Westminster mode of construction should have been so long persevered in.
The worts feature, however, in the presant administration of the sewage is, that it is virtnally inacessible to that class of hooses which most require dralnage ; and it is no exaggeration to eay, that the dwellings of the lower classes in Londou are left withont dralnage. Very expensive and very well constructed main sewers and secondary sewers are laid down, but so far from being applied to drain the dwellings, it is as mach as they do to drain the surface of the streets and roads. This arises from the commissioners of sewers carrying their laboars no further than the streets, leaving the householders to make the communications with the sewers.

We were going to say that the commissioners left the householders to make the commonications at their 0wn expense with the main sewers, bat that would scarcely represent the true state of the case, for the fact is, that the bonseholders cen only make a commanication by exposing themselves to beavy pains and penalties. The regolations of the commissioners in most districts require as mach expense to be incurred in carrying a drain up to a house, as in laying a sewer in a small street, and the result ls that sewer drainage is a loxury unattaidable by many of the middle classes, and the majority of the mechanics and of the poorer classes.

A most expensive main sewer may run within a few yards of a hoose, but the ontlay required for running a drain into it is so large, is $t 0$ disproportioned to the necessity of the hoase, and so exorbitant in reference to the means of the landlord and the extent of the rental, that the idea of incurring such an expense is given up as hopeless. The conseqnence is that numbers of houses have cesspools, and in the closely crowded houses jn the small coarts and alleys, it may be taken as the general rule that there are no water closets, that fetid waters are kopt on the premises, that noxions miasma is as it were hoarded op, and all the applingces of fover are held in readiness to tell with fatal effect among a population, whose careless and improvident habits readily predispose them to the attacks of infections disease. For soch a state of affairs, so fatal to the poorer classes and so dangerons to the wealthier, the commissioners of sewers must be held acconntable; and no remedy can be considered effectual until such a system is adopted, as will make it incumbent on the officers of sewers to provide adequate drainage for every house, rich or poor, and give medical men and officers of health the efficient means of removing evils which they may deplore, but cannot prevent.

We have already stated in the pages of the Journal that the charge of the Westminster Commission of Sewers acted as prohibitory on fourth-rate honses within their jurisdiction, the charge being 10s. per foot. This charge of 10s. per foot is made on the length of the fronlage of the house for permission to be allowed to enter one of the commissioners' sewers, built at the expense of the public; and If it be a corner house, the commissioners will not allow it to be drained at all into the sewer, although there is a public one within 12 feet of the house, and will compel the party to build a new sewer along the front of the house, and be at the expense of an expensive connection with the old sewer. The whole expense of forming this sower and a drain for one fourth-rate honse woald cost at the least 152 . to 201 ., being 10 per cent. on the cost of the house, which might be done for about 2l., if the commissioners would allow the house to be drained foto the existing sewer. This is not a supposed case, but ove which has actually occurred within the Westminister district, 80 that parties coosidered it their duty to construct cesapoole to aroid an exceasive ontlay. By requiring each house to have separate drains, at whatever distance the house may be from the sewer, the charge of a heavy drain is seriously aggravated, whereas in many cases one drain would be sufficient for two or even for three houses. In fact, what is the difference between allowing such a practice, and ranning an inferior sewer up a small court into which many chort drains are allowed to be made \boldsymbol{f}

We wish some member of the House of Commons would move for a return of the length of all the sewers which bave been built; rebuilt, or repaired at the expense of the public by the commission, their cost, and the acteal number of hones on each side of the sewer which drain into it, and
the number which do not, dislinguishing coorts ; if we are not very mach mistaken, this return alose would upset the present commission, and would show that theee commisuions do their utmost to obstruct the drainge of the metropolis, and consequently to injore the health of the inhabitante. What we conteon for is, that if the commissioners are obliged to conatruct - sewer for pobic purposes, that all the houses on each side shonid be allowed to enter it, for, generally speaking, where the commisaioners do build a sewer, it is through an old district which has been paying aower rates for many years: for instance, a sewer has been built in Higheatreet, St. Gilen's, by the commissioners, and although the houses on each side have been paying rates these 50 or 60 years past, they are not allowed to drain into it, withont paying a fine of ten shillings per fout frontage.

If the management of the sewage in the metropolis present sach a otate of affairs, what can be said of the paving boards? It is bad enough to have half-a-dosen commissions of sewers, each of which embraces a large borough or many parishes; bot the paving boards in many cases bave not even the juriadiotion of a parish or a borough, but some parishes are split op among a score paving boards, each separate eatate having its own paving and lighting boards, its own set of commistioners, and its own set of officers to take charge of the paring, lighting and cleansing of a narrove confintd district. The paisance prevails to such an extent, and the want of orgenization is so strongly felt, that it is most extraordinery that it should have been submitted to so long. If Lord Morpeth should let the commissions of sewers alone-though we do not see why be should-there ought at any rate to be a consolidation of the paring boards, either into a central board or boroegh boards. At present, the City of London is the only district having a consolidated boand, which is also that of the commissioners of sewers, and nothing has occarred in the working of that boand to show its inferiority to the labours of the score or more boards, who mismanage the affalrs of districts not greater in superficies, nor of more importance in extent of traffic.
It is stated, thut besides the City of London Commission and the Begentstreet Commission, there are no less than 84 different boards having the management of the paving in the metropolis. In the parish of St. Pancras alone there are no less than 16 different boards. In Kensington there are ten boards, in Lambeth there are seven boards, in Newington Bulte six, in Whitechapel six, in Bermondsey five, in St. George's, Southwark, four, in St. Andrew's, Holborn, four, and in Shoreditch, foar.

Some boarda have only the management of the bighways, some oaly of the lighting.

Altogether there is such a coufusion that the commisaioners themselves in some cases scarcely know what they are about.

Of course, each of these boards has it own commissioner, its own clerk, its own surveyor, and its own rates, and it is easy to determine what must be the consequences,-that while the ratepayers are overcharged forsuch an establishment, the officers are inadequately remunerated. Instead of liberal salaries being given to partiea of competent abilities, miserable stipends are allotted to those who now discbarge the offices, while the public are not thereby benefited.
That it is requisite to have eighty-six clerks to boards and their subordinates, we cannot conceive that any one will take the troable to affirm; while their reduction would leave a well-paid staff, and effect a large saving.

The survejors and assistants attached to eighty-six boards would, no doubt, be reduced in number, though perhaps not to suoh an extent as the clerks, while the ro-appointments would secure a la rge and effioient body of officials, with a graduated acale of liberal salaries ; giving a atimulus to merit, and holding out an adequate reward for long servioes.

We are sure that the surveyors of the City of London, of the Woods and Forests, and of St. Marylebone, are not worse paid than the sarveyors of such petty districts as Ely Place, the Saffron Hill Liberty, Tothill Fielda, the Brewer's Estate, the Lucas Estate, or the Harrison Estate.

Under the present state of affairs, it frequently happens that the commlasioners of sewers or of paring are restricted in their powers of useful action, or imagine themselves to be so, und as the cost of amending a local act for a small district is considerable, they are often virtually debarred from the official discharge of their duties. This is one of the many eircumstances consequent on their small and limited jurisdictions. Some of the commissioners of sewers consider that they are not empowered to de anythlng else but to repair old sewers,-ail concur that they bave no effective powers to make drains to honses, or to take neceasary meameres. for the preservation of the public health.

There in nothlng in the management of these paving boards, which onn
beconsidered at all favoorable to their pretenaions of falalling thetr duties. They are virtally irrespunsible in the diseharge of individanal dutios, and individuals are poweriess against them; while being appointed by popular, and often by party election, they will take no measures, which by lacreas. ing the ratea, may secure a better state of affairs, but endagger their tenure of oflice.

It in scarcoly posaible to walk down a main street withoat seeing the verious tustes of these gentlemen exhibited in the shape of apecimens of sranite, macadam, wood, or asphalte, in every variety of form, often mo bedly coastracted as to endanger the lives and limbs of passengers and cattie, and always in such a fithy condition as to be a serious and objectionable acisance. By the dirty state of the stroets and roads, the houses are beapattered with mud, and shopkeepers are deterred from adopting lifbe and expensive paintings and decorations. The dust created is blown into the bonses to the deterioration of books, linen, and farniture, and in the case of tradesmen, to the very considerable injory of their stock. As to passeagers, in sumber their eyes, montha, and nostrils are filled with dried borsedong under the name of dust, and in winter their clothes are upoiled by the accumalations of mad; whereas, under a proper aystem, it has been practically shown, there is no reason why even the most crowded thoroughfares should not be kept clean, summer and winter.
Upon the waste of manure which takes place in the metropolis, we will sot dilate. It suffices that it is diagraceful to a practical country like this, that such large resources shoold be lost to our agriculture.

Wo must say, that if an amalgamation of commissioners is to take place, we can see no reason why it should not inclade the metropolitan roads and the county bridges, which should certainly not be separated from the jurisdietion of a competent authority.
We are free to admit, as we have already said, that it may be a matter of question how far Government control should estend, but we do not think, oa a fair and impartial investigation, there can be any douht that a consolidation should take place under one body of the jurisdictions for draining. paring, lighting, and cleansing the metropolis.

Whether that should be under a Governmeat board, or whether under as elective board, we are not prepared to determine, though each would have its advantages and disadvantages.
A Goverament board would be virtaally irresponsible, and would inrolve the disposal of a considerable amount of patronage, over which at the present time no effectual control could be devised.
An elective board might want unity, might court popalarity by avoiding the discharge of disagreeable duties, and might dispose of its patronage if not for political porposes, at any rate for jobbing porposes.
Bome of the evils of an elective board might be readily cared by making the election, not annual, but for a period of four jears, thereby secoring a certain degree of permanence of character in the board, and at the same time leaving each member at a proper period to anawer to his constituents for the diecharge of his duties. At present, the commissioners of yewers are irrespunsible, and no Goverament board conld be so bad in that respect.
An amalgamated board might be formed from representatives of each great division of the metropolis, those from the City of London being mamed by the corporation, and those from the large divisions, as st. Pancrabend St. Marylebone, being named by the vestries. There coald be no more difficulty in electlag members of such an admlaistrative and representative body than in electing guardians for poor-luw boards, and we hnow of no objection to the adoption of such a course.
Under such circamstances, the distribution of putronage would be leas obnoxious, and would most probably be faithfally complied with.
If such an elective board were formed, there should be no controlling power on the part of the crown, for that would destroy the energy and reapoasibility of the board without transferring it else where. We ahould, however, be disposed to allow to the Crown a complete power of inspection, which for all practical and aseful purposes would be quite as effective as control, and would bring the proceedings of the board withit the cogaisabce of parliament.
At all events, whetever may be our views as to the parties with whom power should be intrasted, we have no doubt it is for the intereat of the pablic, and for the interest of architecte, engineers, and survejors, that the groeral priaciples of Lord Morpeth's bill should be adopted and carried oot.

THE ROYAL ITALIAN OPERA, COVENT GARDEN.
One of the most important architectoral ovents of the season has been the reconstruction of Covent Garden Theatre, as the Royal Italian Opera. This has been executed under the direction of Mr. Benedict Albano, hitherto better known as an engineer, in which profession he has already acquired mach reputation among ns. The transition from fiax-mills, steam boats, and railways, to an Opera-house, is a sudden, perhaps a violent one, but Mr. Albano has shown that in the fine arts and the aseful arts he has equal powers of design and execution.
Covent Garden was previously known as one of our largest theatres, but it did not afford the extent of accommodation required hy the new lessees, and Mr. Albano therefore laid before them three plans, one by which it would have been trassformed into the largest theatre in the world, surpassing San Cario and La Scala, a second smaller than those theatres, and a bird which, though it gave additional tiers of private bores, left the theatre of its original size. It is the second plan which has been adopted, though we wish, for Mr. Albano's sake and our own, he had been allowed to eclipre our foreign rivals, and redeem os from Byron's old reproach of inferiority to theatres which will each accommodate nearly 4000 persons.
The old Covent Garden Theatre, it will be remembered, was constructed by Sir Robert Smirke, after the fire in 1808 . He, also, wished to have a larger theatre, but was overruled by Joha Kemble, who was fearful that if the thentre were larger nobody would be seen or heard. Sir Robert's object was therefure to coastruct the amallest possible interior or auditory within as large an available exterior as possible. His interior stood againat fire and harm during the long theatrical generation of nearly forty yeara, but has succumbed at length, before the hand of Mr. Albano, to no unhappy fate, that of the destruction of works, which is likely to attend Sir Robert Smirke, as it has Sir Jobn Soane. Sir Robert modelled his building, according to his statement, on the Parthenon at Athens, and the exterior possessed considerable merit.

We mast now proceed to give what sketch we can of the building, though we cananot go into any detail, in consequence of our engravings not being complete for the present number, which prevents us fiom making the necessary references to illustrate our description.
It mast be observed that the great denign has been to convey the idea of grandeur and imposing magnitude, and this has beea moat akilfuliy carried out ; while all that constructive skill could do, and all that attention to comfort demanded, has been completely effected.
The plan having been sellled, Mr. Albeno proceeded to pull down the whole interior of the audience part and parts adjoiulng, and to re-arrange it. He has thus been able to get an enormous anditory, and ia grand range of saloons with suitable approaches.
In the grand front, be jond what we have already noticed, the chief alteration is the carrying of a carriage-way beneath the portico, whereby visitors are asved the annoyance of getting out of their carriages in the wet, and the atreet approaches are widened.

On entering by the grand front, a magnificent ball and staircase attract attention. Theso are decorated with columns painted in imitation of Sienna marble, and lighted from lofty broaze candelabra.

At the head of the staircase is a range of saloons level with the grand tier, and 130 foet in length. Preceding these is the Bhakepeare room, with a statue of the poet; the next is the anteroom communicating with the saloon or crush-room, forming three compartments by means of Ionic columos, and with a quantity of large mirrors on the walis. As the walls are papered with green, the gilding produces an exceedingly good effect, while comfort and lurury are consulted in the ottomans and couches.

On entering the theatre, it is seen that its dimensions are on a very large scale, as to height and breadth. The breadth between the boxes, 60 feet diameter, is particularly striking, and also the extreme height of the hoase. The pit has been sank, and the tiers of boxes now rise six in number, forming a colossal amphitheatre of unaccustomed proportions.
The dimensions of the house are 80 feet from the curtain to the froat of the boxes, and 60 feet in breadth between the boxes, and the width acroms the stage between the colamas of the prosceniam 46 feet.

The ceiling is one of the attractions. Its dimensions are 70 feet by 62 fect. Prom the centre depends the enormons chandelier, one of the largest in England, and which is almost the only source of light to the bouse. It consists of several ringe of light, and twelve clusters of twenty to five-and. twenty jets, producing the most brilliant light, while the refection and polarizaticn of the drope and pendants increse the pieturesque effect. The
ceiling itself represente the aky, and is of peculiar form, partly elliptic and partly hyperbolie, so as to be in cosformity with scoustic principles. It is also coved all round. We may note, too, that the proscenium form a splajed arch, 80 as to throw the voice iato the centre of the house. All that could be dose to make the house a good hearing house hea been effected.

The ceillag is in reeping with the decorations of the house, of whlch the leading colours are white and gold, here and there aet off with a slight turquoise blue. The relieved ornamente are all in the canvahic componition, which edmits of the gilding being highly burnished. The whole effect of the decorations is chaste and picturesque, while, by the boldness of the proportions, grandeur is preserved.

We may noto that the ventilation has been the subject of the special care of the architect, and in which he seoas to have attained much auccesa.

The approsches to the houso have all been re-arranged, separate entrances being provided to the royal boxes, to the hoxes and atalla, to the pit, and to the gallery, with fire-proof staircses. The details in every part are aleo so arraged as to give the grestent comfort, and to enable largo audience conveniently to ait through a long performance, at wrell at to hear perfectly. This is really as great an advantage to the actor as to the hearer, as, withont It, due attention cannot be paid to any represontation, however stilful.

While we cannot withhold our teatimony to the colidity of the constraction, heving inspected it in detail, we are bound also to notice the rapidity with which the elterations were completed, the old interior having been pulled down, and the new one erected from the foundationa, within four months. This is a great feat, performed by Mr. Albano; and wo most stato that great credit is due to Mr. Holland, the builder, and Mr. Ponsonby, the decorator, for the rapid manner they have executed the work. The brilliancy of the gas also, it is to be observed, is due to the ute of Mr. Low's petent for aapthalizing 8.

STATB AND PROSPECTS OP FRBNCH RALJWAYS.*

One of the greatest advances that has yet taken place in the progress of Buropean civilisation is slowly but arely approaching in the comprehensive syatem of railway in courae of conatruction in Prance. The object of the following review is rather to glance rapidly at the present ponition of Prench railwaye than to dwell at any length on the reftections that naturally preant themeives on entering into the consideration of anch a subject.

Poris to Rowen. -The firat line that comet under our notice is that from Paris to Rouen, opened for traffic on lat May, 1843, being the firt of the Prench railways, in chronological order, which was completed to the north of Paris. It is eigbty-four Bnglish miles in length, and was constructed from the plans of Mr. Locke, the engineer of the South Western Railway. The present net returns are about 8 per cent. on the capital, and the receipts which were 8,832l. from pastenger traffic, and 3,722l. from goods traficic In January, 1844, were respeetively 10,038 , and 14,6934 . in the same month of the present year. The extension of this railway, 57 miles in leagth, from Rowen lo Havre, is completed, and opened last month: it has occopied a long time in construction, from the numerous works of art necessitated by the uneven character of the country throngh which it ruas: among others, six important viadncts, one of which-that at Barentin-fell down shortly after it whs completed, about fourteen months sgo, and has since heen rebuilt. There is elso a bridge over the Seine, at Roven, about 1.200 feet long. This line will complete the railway communication between Paris and Havre, which is the port of the capital, as far as its maritime trade with countries out of Europe is concerned, and where it will commualcate directly with extensive docks now building. The termions of the Roven railway, at Paris, in common with that of the short lines from Paris to St. Germains, and to Versailles, by the right bank of the Seine, opened in 1837 and 1839 reapectively. In 1840 another railway was completed to Versaillos by the left bank of the Seine. Neither has proved very profitable; but it has been proposed for the two companies to amalgamate, and from a jolnt station at Fermailles, to extend their lines to Chertres, Rennes, and Britanny.

Poris to Orkene.-Going weatward, the next line we meet is that from Paris to Orleans, completed at the same time as that from Paris to Ronen, in 1843. The length of this line, including a branch to Corbeil, is 93 miles; the share capital $1,600,0001$., and the net returos about 10 per cent. It not only onites Paris with the fourishing city of Orieans, hut also is extended theace in several directions; 1st, by the Orleans, Tourt, and Bordeanx Railwey, 300 miles long, now in progress throughout, and aiready opened from Orleens to Tours, distance of 69 miles; 2nd, by the Tonrs and Nanten Uailway, a branch from thin to the principal centre of commerce on the weat coast of Prance, 120 miles in length, the works of which are in a very for. ward atate for about 65 miles, from Tours to Angers; 3rd, by the central railway from Orleans to Vierzon, Bourgen, and Chateauroux. Prom Orlesna
to Boarget by Vierron, a dintance of 70 milat is complated, and mey be opened for trafic as soom an a bridge over the Loire at Orlases is faished. As the construction of such a bridge Fill require a considerable time, a tamporary bridge is about to be thrown over to connect the two railwags in the interim.

Parde to the Mediterraneen.-The neat grand trank line leaving Paris in that to the Mediterranean, the first section of which, from Paris to Lyoms, will be about 800 miles in leogth. It is in progreas throughous, but will not be completed zatil 1849 at the earlient. About 45 miles from Difon to Chaloas, situated half-way between the two extremities of the line, are nearly completed, and might be opened in the course of the present year. From Lyons there are rallways already open so St. Etienne, Andredienx, and Roanne, remarkable at being the first lines of any length completed is Prance. The total length is abont 90 miles, and these aford communicetion between the valley of the Rhone and Loire, and pase through the Loirecoel fields. The great line to the Mediterranean is continued from Lyons throngh Avignon to Marseilles ; that part from Lyons to Avignon, 195 miles in leegth, including a branch to Greaohle, is not jet bogua, although in the hands of a company; from Arignon to Martoilles, 65 miles In langth, is nearly finished, and will probably be opened in the present year. A railway, which will branch from this at Taracicon, and rans to Nimea, Montpellier, and Cette, a rising port on the Moditerranean, with a branch to the mineral divtriot abont Alais, is finisbed, as also a small line in the neighbourhood of Bordeaus. A junction railway from Bordeanx to Cotte through Tonlouse has been proposed, and a company has been formed to construct it.

Paris to Strashury,-A company has elco taken the railway from Paria to Strasbarg, the length of which, Incieding branchen to Rheima and to Mets and the Prustian frontier, in nearly three handred and sirty milen. The worke are ln rapid progrese, and a tunael under the Vonges, 2,800 yerds in length, completed. The greater part of the line will be finished in 1848, and the rest in 1849, with the exception of the section from St Disier to Nancy, which cannot be complated before 1850. A line from Straiburg to Bale, the cotal length of whioh, including the branch from Mulhonse to Thann, is 95 milet, was opened in the summer of 1841 ; it has not enjoyed much trafic, and cannot until exteaded from Strashurg to the more important towns on the lower part of the Rhine. I the distrist enclosed between the Paris and Lyone and Paris and Straborg milwayt, one railway is in progress, via., a branch from the former line to Troyen, and another is proposed from Dijon to Mulhouse, naiting the two. One from St. Dizier to Gray, the point where the Lotine becomes narigable, has also been apoken of.

The Northern Lime frow Parts.- The next line we arrive at, purning our course round the French territory, in the Northern Ine from Paris through Amiens and Arras to Dousy, where the milway in continued la two directions, one branch procesaing through Lille to the Belgi an froutier, where it meets the Belginn atate line from Ghent, and the other reaching the frontier pia Valenciennes, whence it la continued by the Belgian goverament line to Bratsels. The total length is 204 miles, and the railway whas opened throughout on the 20 h Jane lask. Brapehes from Criel (on the main line) to $8 t$. Quentin, and from Lille to Donkirk and Caleis are in progress. This line is of great importance, as convecting Paris with Belginm, Hulland, and the North of Europe, and of atill greater from the fact tbat 90 miles of it, an far as Amiens, form part of the approsching railway communication between London and Paris. The reat of the railway from Amiens to Bonlogne, 75 miles in length, is in a very advanced state, and will be completed in lees than a year. 28 milea from Amiens to Abbeville bave been finished for some months past, and are expected to be opened for traffic in the coarse of next month. Wheu this in acoomplished the journey betwoen London and Paris will be comfortably made in 17 hours ; and in 12 hours when the rail. way is open to Boulognc. To complete our survey of Prench railmays, we have only now to notice the brapches from Ronen and Harre Railway to Dieppe and Fecamp, for the construction of which a company has been organised.

The hasty eanmeration we have made of the various Prench railways completed, in progreas, or andertaken by companies who have already obtained their acts, appear muficient to justify the assertion, that when ficiahed, they will not only furaish ready commanication between Paria and the varions centres of population and induntry througbout the Prench territory, but also with the adjacent countrien; and litewise afford great facilities on several lines of transit which already enjoy considerable traflic, both in pasengern and goods, and some of which are indeed the high roads of Burope : such as tbose from Londou to Bwitzerland, the Mediterranean, or Spain, through Paris, from the United States to Switzerland, vic Havre (a ronte taken by a large amount of goodu-trafic). \&ec.

Little remains to be said in addition to this almost tabolar vien of the Freach syatem of railwaye; but it would be incomplete without a few remarks on the rillway legislation of Prance. All the Prench railway, with one or two exceptions, are only conceded to the companiet who have undertaken their construction, for a term of years, so that the companies have to provide for the reimbursement of the capital at the expiration of the leade by means of a sinking-fund, varying according to the length to which it ex. tends. The railways from Paris to Roven and to Orleane were oonoeded directly to the companies for terms of 99 yean; and that from Rouento Havre for 97 ; their agreements with the govermment baving been efterwards submitted to the Chamber for ratification. After 1842 the govern. ment began to work on the own scount on eeveral of the great lines of rail.
way, the exact directions to be taken by which were settied by the Clumbers in zhat year ; and aince that period, the greater part of the new liven have been pat op to amection, and conceded to the company offering the greateat redaction on a maximam term of concension fxed by the Chembera. Por some, the goverament has been reimbursed by the companiet for any outley expended or the line corpeeded to them; for othern, it contiraes to pay all the expenses of the earti work, leaving the company only to provide the rails and wortiag otoct - the length of lease of coume varying, at one or other of these alternatives has been adopted. Among the lines in the latter position, are those from Orleans to Bordenax, from Orieans to Vierzon, from Tours to Nantes, from Arigaon to Marseilles, and from Paris to Strabburg; and in the former, are the Northern Railway, thowe from Bonlogne to Amiens, from Peria to Lyons, and neveral other important undertakings. The leagth of the leasea has varied moch, according to the time at which the concersion took place. The Boulogne and Amiens Resitway, conceded in October 1844, before the excitemont of 1845, wat taken for 99 yeara, although of great vilos, as commading the tratic between London and Paris; the Northern Railway, taken daring the heat of that excitement, and the greht advantages of which hed been greally axaggerated, bun only a lease of 38 yearn; the Parfe and Lyoas, taken sabeoquently, has one of 41 . The Lyons and Avigmon is conceded for 45 yeart, the Bordeanx and Cette for 66 . Among the Ginen, part of the outlay for which is borne by the goverument, that from Arignoa to Marseillea has a leace of 33 years, doring which it is calculated it will produce 10 per cent. per ananm to the obareholders, while the less luerative line from Orleans to Bourdeanx bas only one of 28 years. The Paris and Strasbarg Railway is conceded for 44 yearn, and that from Toars to Nanter for 34. By their acts, the variona railmay companies have a certein masimum taris imposer upon them, wnder whicl they may make any ahteration, but which they cannot exceed. These rites are $1 \cdot 66 \mathrm{~d}$. par mile for a firt-clasa panenger; $\mathbf{1} \cdot 24 \mathrm{~d}$. for a second-clasa; and 0.91 d . for a thirdclase pamenger. For gooda, the maximum rates allowed vary on each line, and are generally much higher than those actually charged on lines already at work. Freach railway leginiation is confased, and, in many instances, faulty; While po one can now be blind to the evils of reckless competition, indaced by the aystem of patting the leasea of railways up to auction. On the other mand, the sboence of parliamentary expensea, and the recognition of the principle that the frat thing when a rialway is to be made in any particular district in to get a decision from the Cbambers reupecting the exaet roate to be taken by it, so that no sarvegs need be andertaken by the company antil this in determined upon, cuatrast favourably with the coarse of proceedare adopted in this conntry. On the whole, bowever, many of the strictares on the Freach system of railway legiolation made by Mr. Darid Salomons in the lacid and foteresting comparison between that aystem and the one partued in this country, contanined in his recent pamphlet, will be found to be correct. We bave now entered into all the details it was our intention to touch at in the coarce of this brief inveatigation, bat the whole subject will be probsbly rendered elear by a tabular view of the share capital of the various Preach railway companiea, which we sabjoin :-

Name of line.		Paid-up capital.	Capital not called.	Total share capital.
Andratieur and Roanne			-	
Avigoon and Marseilles	.	\& 800,000		\& 800,000
Bonrdeaux and Cette	.	1,120,000	¢4,480,000	5,600,000
Teate		200,000		200,000
Boalogne and Amiens	.	1,350,000	150,000	1,500,000
Central line ..	.	660,000	660,000	1,320,000
Dieppe and P6camp	.	288,000	432,000	720,000
Grand, Combe	.	640,000		640,000
Lyons and Arigron	.	1,200.000	4,800,000	6,000,000
Monterean and Troyes	.	560,000	240,000	800,000
Montpellier and Cette	.	120.000	..	120,000
Malhonse and Thana		104,000	\cdots	104,000
Northern of France		3,200,000	4,800,000	8,000,000
Oriean and Bordeanx		780,000	1,820,000	2,600,000
Paria and Lyons		3,200,000	4,800,000	8,000,000
—_Corleans		1,600,000	4,800,000	1,600,000
- Romed		1,440,000	-	1,440.000
- Scesux		120,000		120,000
- Strasbarg		1,250,000	3,750,000	5,000,000
Tours and Nantea		400,000	1,200,000	1,600,000
St. Germain		360,000		360,000
Strabbarg and Baple	.	1,176,000	504,000	1,680,000
Veraillea (Right Bank)	.	$\begin{aligned} & 440,000 \\ & 400,000 \end{aligned}$,	$\begin{aligned} & 440,000 \\ & 400,000 \end{aligned}$
Total	-•	21,408,000	827,636,000	849,044,000

Or a hittle more than $49,000,000 \mathrm{~L}$. Beaiden which, the soveral companies beve reised hy loan about $2,400,000$.

RICEARDSON'S REVERSDNG WATER-WHEEL.

This wheel is desigued for the purpose of raising slate from the Coombe Valley Quarry, and is proposed to do the work of a steam engine, without its attendant expenses-the chief object being to throw all its available power into direat action, without the intervention of gear-work. Ita projector, Mr. Richardeon, saje, that to cause rotary machinery to reverse, it is usual to introduce bevelled gearall gear-work creates friction-friction loss of power, wate of time, and money. To save time is the great desideratum in condocting the works of a public company; for if this important point is neglected, the profite expected to be derived can never be realised.

The following description will explain the method of its working: -A and B represent a front elevation of the whed; the buckets on the side A, are placed in an laverse direction to those on the side $\mathrm{B} ; \mathrm{C}$, is an over-shot launder, or water-course, flowing on to $\mathrm{B} ; \mathrm{D}$, a backshot launder, conducting the water on to A , which acts in a reverse manner to that of $B_{;} E_{\text {, }}$ a reversing gate, hung on a centre, and having a hollow quoin, similar to a common navigation lock-gate. F, a lever, attached to the axle of the gate, E , which, with its connecting pulleys, H and I , is made to torn the water alternately off and on to the overshot and backshot laundera, C, and D; G, the stopgate. H, the overshot pulley; I, the backshot pulley. J, the stopgete palley, having a graduating plate, \mathbf{K}, attaohed for the parpose of regulatiog the feed. Ly feed-head, or reservoir. K, the water way of backshot launder, D: when the wheel is set in motion, the lever F, is
polled over, and the gate G, raised; the water then flows on to the overshot section B. Onthe signal being given to stop, the gate G, is shut down; and the water in the lannder C , is just sufficient to drive the wheel half a revolution, when it stops for want of its propelling power. On the signal being given to start in a reverse direction, the lever F, is pulled over; and on the gate G, being raised, the water flows on to the backshot section A, and thus alternately. Thus, nearly the whole of the gravitating force of the water is applied in a direct manner, and must save, independent of the cost of construction, and liability of breakage in gmar-work, a great amount of power, which, where water is scarce, is a considerable advantage.-Mining Journal.

REGISTER OF NEW PATENTS.

GAS IMPROVEMENTS.

George Lowe, of Finsbury Circas, civil engineer, for "Improrements in the manufacture of, and in burning gas, and in the manufacture of fuel." Granted October 8, 1846 ; Earolled April 8, 1847.-(Reported in the Patent Journal.)
This invention relates firstly, to preparing peat in combination with resin, plich, oil, fat, or other bydro-carbonaceous matter, and making gas therefrom ; secondly, to a mode of arranging apparalus for purifying gas; thirdly, to improvements in making gas from coal and other matters rich in carbon, by introducing steam highly beated into the retorts used for that purpose ; fourthly, to improvements in Argand gas-burners, whereby the gallery or apparatus for supporting the chimney is made to rise on a screw, so as to adjast the admission of the air to the fame; and ffity, to certain meaus of manufacturing fuel from peat by causing dry blocks of peat to be saturated with pitch or other hydro-carbonaceons matter: the peat being prepared and dried, is piled in a square iron vessel, about eighteen inches deep, till within two or three inches of the top; a quantity of resin, tar, or other hydro-carbonuceous matter, bighly heated, is ran into the vessel till the peat is entiroly covered; beat is also applied to the bottom of this vessel. in which the peat is kept for about an hour, in order to induce the bydro-carbonaceons matter to enter the peat ; it is then run of, and the cakes of peat thus satnrated are placed on shelves or racks, and allowed to drain the unabsorbed matter from the surface thereof. A method which the patentee considers preferable to the foregoing is, instead of placlng the dry peat in an open ressel, he introduces it into a close ressel, similar to that used in the well-known method of treatiog wood in which he forms a vacuum by steam or otherwise, and then allows the heated matter to ran in, and afterwards forcing it in with considerable pressure; the peat is permitted to remain in this atate for about half an hour, when it may be withdrawn, the unabsorbed matter heing drnined from the surface as before. Where tar is used the pateatee prefers mixing with it about from five to tea per cent. of quicklime in a state of powder.

The second part relates to an apparatus for purifying ges, and which consists of two chambers placed one above the other, Gilled with coke, through which the gas passes, in a similar manaer to that which is known as the scrubber: the chambera containing the coke are divided by a space containing an apparatus for distributing a weak ammoniacal liquor on the coke contained in the lower chamber; this apparatus, which forms the Duvely of the invention, consints of two or more arms, placed on an axis, on which it revolves horizontally, each arm being perforated with a number of holes on one side, at different distances from the centre or axis; the holes in one arm being on a diferent side to that of the other, any liqnid being allowed to pass into it causes it to rotate, and thereby diatribute the liquor over the coke. The principle of this will at once be recognised to be the same as Barker's mill, and will be readily understood. The upper chamber is furnished with a similar apparatus, which supplies it with water, or water slightly acidulatod with muriatic or salpburic acids, in a similar manner to the other; the weak ammonincal water, or acidulated water, are contained in reservuirs above the chambers, the fall propelling this apparatus as before described. The coke in the apper and lower chambers is sustained on gratings, allowing the gas to pass freely through, which enters from the condeaner by a pipe at the bottom, and passing through the chambers of coke, escapes from the upper chamber, partially freed from ammonia. This operation may either be conducted before or after the usual process of parifying gas, but he prefers that it should take place after that process.

The third improvement, for the method of fatrodacing highly-beated steam to retorts during the production of gas or other matters, rich in carbon, is as follows:-Steam leing generated in a suitable boiler, is allowed to flow froely into the retort, at a point forthest distant from that at which the gas escapos; the atoam in its passage from the generator to the retort is passed through pipes, beated to a great degree, in a similar manner to that employed for obtalning the hot blast, ased for amelting iron and

Oher purposen ; it is well known that this method of beatiag stoum does not materially interfere with the pressure at which it may be generatert, and which shoold not be greater than that at which the gas is prodiced, as it would cause too great a flow into the retort, neither should it be allowed to flow daring the whole time of one charge, and, therefore, the pipes muat be furvibbed with saitable atop-cocks, and each retort furoished with a gas-burser, so as to enable the workmen to judge when the jet of steam should be discontinned, which will be when the gas begins to loee colour, the regulation being easily acquired by a little experience.

The fourth improvement consists in constracting the gallery which carrien the chimpey, so that it sball he adjastable, in order to regulate from time to time the beight of the point at which the air sapplied for combastion shall be made to impinge on the exterior of the tame: the method shown in the drawings atteched to the specification, is by culting a screw on the inside ring of the gallery, and on the outside of the burners; it will, therefore be apparent that on turning the galiery ronnd it will either raise or lower it, and at the same time the contracled part of which for defecting the air will either be brought nearer to or farther from the jet of the burner, according to that which may be considered the best position, and will be regalated in some measure by the exteat of dame required; when the air is deflected by a cone inside the chimney, it is altached to the gallery and moves ap and down with it; other means besides the screw may be employed for raising and lowering the gallery, and thereby regolatiog the admission of air as before explained.

Fifth and lastly, this invention relates to the treating of dry peat and bydro-carbonaceous matter for fuel, in the same way as that described under the first head of this apecification. Having described the aature of his invention, and that which he considers the best means of carrying the same into effect, be wishes it to be understood that he does not confine himself to the precise details berein described, so long as the principle of eilher part of bis invention be retained; hut what he claims is-first, the mode of treating blocks of dried peat for the manufacture of gas by placing them in an open vessel and immersing them in bighly-heated resin, pitch, oil, fat, or other bydro-carbonaceous matter, and also the saturating block: of dry peat, by placing them in closed vessels. Second, the application of revolving perforated pipes to distribute the purifying liquor in apparatus, such as before described. Third, the application of highly-heated ateam introduced into retorts when making gas from coal or other mattors. Fonrth, adjusting the admission of air to the outer fame of Argand burners by means of a screw or otherwise. Fint and lastly, the salurating blocks of dry peat, for the parposes of fuel, with resla, pitch, oil, fat, or other bydroccarbonaceous matter, by means of an open ressel and beat, and aleo by means of a closed vessel, as hereinbefore described.

GUN COTTON

Johm Taylor, of the Adelphi, gentloman, for "Inprotements in the manyfacture of explorive compounds."-Granted October 8,1846 ; Earolled April 8, 1847. (A commanication.)

This improvement relates to manafacturing an explosive substance, ty the application of nitric acid or nitric and sulpharic acids to vegetable matters. The specification describes the converting of cotton into an explosive substance, as the patentee considers cotton the mest available substance.

In preparing cotton, take nitric acid of sp. gr. from 1.45 to $1 \cdot 50$, and anlphuric acid of sp . gr. 188 , and mix the acids in the proportions of thres parta sulphuric acid, and one part nitric acid; they are then allowed to cool down to between 50° and $60^{\circ} \mathrm{Fab}$, and then rough cotton, previously freed from all extraneons matters, is to be immersed in the mined acids, in a snitable vessel of glazed earthenware, in as open a stato as possible, occascionally stirring it with a glass rod; the excess of acid is to bo druwu or poured off, and the cotton pressed with an earthen. presser, lightly, so as to separate the principal part of the acid. The cotton is then covered and allowed to remain for one hour; it is then preased, and thoroughly washed in ronning water, to divest it from all free acid until it does not in the leant affect litmus-paper; afterwards it is to be partially dried by pressore, and to insure its freedom trom free acid, it is to be washed in a dilute solution of carbonate of potass, made by dissolving one ounce of carbonate of potasa in a gallon of water, and put under a press, and the excess of carbonate of potass solution pressed out, which at the same time renders the cotion nearly dry. It is then washed in a solation consiating of one onnce of pure nitrate of potass in a gallon of water, pressed and dried in a stove or room heated by steam or hot water to the temperature of from 150° to 170° Fah. The nitrate of potass seems to increase the explosive force of the cotton, but it is not absolutely necessary. In ouing cotlon prepared as abore, it must be borne in mind that to prodace the same effect, much less must be used than of ganpowder, that is, in about the proportion of three parts of the yrepared cotton to eight parts of Tower proof gunpowder.

Explosive cotton may be propared by using nitric acid only, but the patentee prefers using the above mixture of nitric and salphuric maids. In using colton prepared as above for the purpose of propulsion, as it is of a fibrous nature, it may be rammed at onve into the gan, or if made slightly moist and pressed into a mould, it will, when dry, rotain its form, and thas may be made into cartridgen.

The patontee does not confine himself to the specille grevity of the anids above meationed, aeither to the exact process herein described, but what be claims is, the converting vegetable matters into explosive subetance by means of nitric acid.

FILTERING APPARATUS FOR BTEAM ENGINES.

Nichols Harviy, of the Heyle Foundry, Comwall, engineer, for "Improcements in fillering of scater for steam engines and bailers."-Granted September 3, 1846 ; Enrolled March 3, 1847.

These improvements relate to the introduction of a filterer in connection Fith steam engines and boilers, for the purpose of preventiog incrostation, by packing in a veasel a, compressed sponge b, or other filtering medium, between two perforated plates c, as shown in the annexed figures. The aupply of water is forced through the sponge by the action of force pumps, and during the passage of the water, the mud or sediment is deposited in the vessel f, from which it is occasionally removed.

Fig. 1, is a vertical section of the apparalus, a is a cylindrical case, b the sponge or fitering medium compressed between two perforated plates c, the pressure on the top plate being regulated by the weights d; the sediment is deposited on the fannel-shaped diaphragm e, and then passen through the apertare in the bottom into the veasel f; at the top of the vessel in a fancel g, with a cock for the parpose of introducing water to cleanse the sponge or fitering medinm; h is the feed pipe for supplying the filterer with water, and ithe feed pipe to the boiler; j is a pipe for drawing off the sediment from the vesself.

Fig. 2, shows the apparatue connected with the hot well, and is similar in principle to fig. 1.

FLATTENING GLABS KILNS.

Henry Deacon, engineor, of Eccleston, Lencashire, for "Imptovements in the conatruction of fletiening kilns."-Granted September 26, 1840; Earolled March 26, 1847.

These ifaprovements relate firat to the introduction of a moveable bridge, or partition to close the aperture between the flattening kiln and the piling hiln, Esed in the manufacturing of glase, and in the application and arrangement of wheels and rails to the floors of the kilns, and to the fattening stone. The bridge is similar to those generally adopted by iron maters, engineers, and smiths, for furnace doors, by constructing a frame of wrogght or cast iron, to cover the opening between the kilas; this is filled full of fire-bricks, and suspended from the and of a rod passing through the roof of the kiln, and attached to the ond of a chain, which after passing over pulleys, hes a connter-balance weight altached to it, in a position for the workmen to open or close the commanication between the kilas.

The petentee states that this moveable bridge is very usefui in bending glase for tiles, or for roofs of conservatories, \&c. The mode of manufacture is a fallows: having placed the monld on which the glass is to be bent on the flattening stune, the glass is inserted through the posh bole, where, after it is properly heated, it becomes the shape of the mould; the commonication between the kiins is opened by rajsiag the bridgo or partition, asd the monld is pusbed back into the piling kila, where it is removed from the mould by suitable instruments used for thal purpose, and may be piled there, eitber on ite edge or on its side; the bridge is then
closed, and the operation of preparing another article is commenced as before.

The second improvement relates to bailding in the floor of the spreading and piling kilns, and faraishing the spreadiog stone with suitable raila, to run thereon. The wheels employed for this parpose are of cast iron, about 17 inches diameter, by an inch broad in the rim; they are built in the floors of the kilus in two rows, each row about two thirds the breadth of the spreading stone from the other, and the wheels from centre to centre, at a distance in proportion to the leagth of the stone; the floor is built close up to the sides of the wheels, till nearly on a level with the periphery; any dast or broken giass falling down into a chamber below, from whence it mey be drawn by moitable instraments. The rails on which the spreading stone is supported is straight along the lower edge, or that which comes in contact with the wheels; the upper edge has several raised clipping pieces which are reduced until the stone is fairly bedded thereon; and furnished with lags at either end to embrace the stone and keep it in a proper position with the raila. One of the rails is furnighed with a groove in the direction of its length rather wider than the periphery of the wheels, which guides the carriage as it traverses backwards and forwards on the circumference of the wheels, from the apreading or fiating kilns, to the annealing or piling kilns.

TUBULAR BRIDGES,

Whisam Farbairn, of Manchester, civil engineer, for "Improvemente in the construction of iron beams for the erection of bridges and other structures.'-Granted October 8, 1846; Enrolled April 8, 1847.

P8. 1.

These improvements relate to the construction of iron beams or girders, for bridges and other structures, by the use of plates of metal united by rivets and angle irou. Fig. 1 , is a side elevation of part of a hellow iron beam, or girder; and fig. 2, a transverse section,-u, side plates; b, botiom plates; c, c, interior vertical angle or T iron for connecting the plates, $a_{1} a_{1}$ Trith the covering plates, or styles, d, and rivets. The side plates are to be put together with butt jointa, and rivetted in a similar manner to boiler making. The top of this hollow beam is formed of two or more rectangular cells, composed of plates f, and angle irong, fastened by rivets, and attached to the side plates a, by the angle irod i. The bottom of the hollow beam or girder ls formed of iron plates of, fastened by means of covering plates over the cross joints, and rivete attached to the side plates by angle iron. The top of the hollow beam, or girder, may be constructed of cast or malleable iron, either cellular rectangular, as shown in fig. 2, or of an elliptical or any other suitable form, to prevent the top giving way, or puckering from compression; or other methods may be employed, such as thick metallic easting, or lighter iron plates, arranged so as to form bollow cells. The bottom of the hollow beam or girder may be also constructed of a series of plates, b, either of single or double thickness, rivetted together; the plates are united to each other by alternating or breaking joint, and by a peculiar mode of riveting, called by the inventor chain-riveting, as it forms on entire chain of plates throughout ; and the struciure so unites the covering plates over the joints as not to weaken or otherwise injure the plates by rows of transverse rivet holes, but to form a connecting link to each jolnt, by a series of longitudinal rivets or pins. The drawings attached to the specification show various forms of girders to render them applicable to factorien, warehousen, dwelling-Louses, \&c.

IMPROVED WATER CLOSETS.

Josept Bunnett, of Deptford, Kent, engineer, for a Improdements in mater closets, part of which improvements is applicable to other ueeful purposes." Gramted April 15; Earolled Oct. 15, 1846.
75.1

Fis. 2.

78. s.

This invention relates to an improved form of water closet, for shipping, and which is alyo applicable for dwelling-houses, where the sewer or outlet may be above the water closet. Fig. 1 is a section, and fig. 2 a side view, of a water closet with the improvements. The basiu is supported upon a flanged elbow piece f, and bolted to a horizontal pump or piston barrel G, terminating in a delivery piece g. Within the elbow piece f, there is a valve, opening towards the piston barrel, which valve is fitted and dropped into its place upon a seating, as shown in the drawing, previously to the basin being fixed. Within the piston barrel G, there is a piston, furnished with a valve, opening towards the delivery end of the barrel ; this piston is worked by two horizontal piston-rods, pasaing through stuffing-boxes,-only ove is seen in fig. 1, but the ends of buth are shown in ig. 2. On the upper part of the delivery piece g, there is a valve, opening outwards towarde the second delivery piece \boldsymbol{h}, upon which an union screw is
cut, for the attachment of a soil pipe, which may be taken to the most convenient point (either above or below the water-line), for delivering the matters ejected by the piston. L is the bandle, working through a slot in the seat of the closet, by which the action of the closet is effected, through levers and connecting rods, working the horizontal plston-rods, and also for giving motion to a rod Which opens and closes the cock B; this cock communicates with the water on the outside of the ship by a pipe on its nnder side, and with a reservoir or cistern pipe (A) above, and also with the basin of the closet. On raising the handle L, motion is given to the cranked levers, which causes the piston with the valve to traverse in the barrel G, as shown by the dotted lines (fig. 1), and expel whate ven substances have passed through the valve. The motion of the levers will at the same time open a communication with the pipe A, the contents of which will ruah down into the basin. On pressing down the lever, the piston will retrogade in the barrel G, and whatever substances have passed the valve f, will be forced through the valve in the piston, into the piston barrel, and be ejected by the nezt motion of the piston. The connection with the external water will, by the same movement, have been opened, and the pipe A will become filled, ready for rinsing the basin on the next movement of the pump. In order that the pipe A, may perform the office of an elevated reservoir or cistern, it should be from two to three feet higher than the top of the basin; it is fitted with a floating air-valve at its upper end, which is closed by the rising of the water when the pipe is filled, but opens and admits air when the pipe is discharging its contents into the basid. The pipe mast be of snch capacity as to hold the quantity of water required for the use of the basin. The patentee prefers a small pipe (say $\frac{3}{4}$ inch diameter), and leads it in a convoluted or sigzag form, as shown in the engraving, so as to maintain a head of water as lung as possible, to give the necessary force to the jet passing through the fan. If the watercloset is to be fixed in a ship, so that its seat will at any time be less than two feet below the level of the external water, the water will not rise high enough in the pipe A, to acquire sufficient force by its gravity to cleanse the basin. In such canes the supply of water is to be drawn by means of a small forcopump or pamps worked by the lever, as shown in fig. 3 ; these pumps drive the water through a pipe carried up one foot or more higher than the level of the external water itne, so as to guard against any undue influx of water through the pamp valven.

LIFE BUOYS AND BOATS.

Aetrur Howe Hocdsworiz, Eeq., of Brookhill, Dartmouth, Devorahire, for "Improsements in broys, and in giving buoyancy to boc/a."-Granted August 29, 1846; Enrolled February 29, 1847.

This invention relates to the employment of india-rubber for tubes, aod resaels, prepared as described in the specifications of patents granted to C. Hancock and A. Parkes.

The life-baoys are tubular vessels of prepared india-rubber, filled with air, like those described for boats; each when thrown into the water will constitute a life-buoy, and cords may be attached to them, to admit of a person securing himself thereto. "Watching baoys" mar be made of any form, hut the patentee prefers a globular shape, or a cylinder with hemispierical ends; the buoys arn enclosed in a met of strong cord, and the mouth secured to a ring, to which the maoring chain is to be fantened.

For the purpose of giving additional buopancy to boats, tubular versels of prepared india-rubber are filled with air, and attached by cords to the raisings under the thwarts, from the head to the stern, or placed across the boat, beneath the thwarts, and secured thereto by cords. Apertures five by three inches are made in the sides of the boat (the bottom being level with the thwarts), and each furnished with a valve, opening outwards, so that water may be discharged but cannot enter through them. When applying this invention to the quarter boat of a large ship, four apertures in the sides are made with valven; to each side of the boat are attached six tuben, six feet long and six inches in diameter, four being reeured to the raisings below, and two to the raisinga above the thwarts: each tube is capable of sapporting from 74 to 80 lb . when immersed in the water. The reason for placing the tabes at the side, rather than across the boat is, that she may be more readily reatored to an oven keel, if, in being lowered from the ship, or from any other cause, she should be thrown on ber side and suddenly filled with water; when this happens, the buoyancy of the tubes causes the boat to rise and the water to flow from it throagh the apertures, until the gunwale becumes elevated to a heiglat above the surface of the sea, corresponding to the difference in leight between the apertares and the gunwale-the crew can then easily throw out the remainder of the water. Boats intended to be used colely as life-boats, have six or eight apertures in their sidea, and in addition to the ordinary raisings under the thwarts, ons or two more are fixed below them, and to these additional tubes are secured.

The annexed figure is a transverse section of a boat, constructed according to this invention. $\quad a_{1}, a_{\text {a }}$ are the side and bottom planks; b, b, the ribes c, c. the thwarts; d, d, the internal bottom boards; $e_{1} e_{1}$ the raisings or rails under the thwarts; f, one of the tubular vensels attached thereto ; g, g, the additional rails; and $h_{1} b_{1}$, the corresponding tubular vessels. i, is a tube connected to the under side of the thwart by cords, for which purpose the raila j, are applied; $k_{1} k_{\text {, are }}$ the valves or doors for closing the apertures in the sides of the boat; they turn on a hinge at the upper part, and are farnished with weights to canse them to close readily, and be kept closed, when required, by meace of cords.

BRICK MACHINE

Friderict Ransomb, of Ispwich, engineer, and Johm Crabi Blatr W ararn, of Little Horksley, Essex, clerk, for "Improvemente in the manufacture of bricke, tiles, pipes, and other articles composed of plastic materials, and in the preparation of plastic materials to be used for mell pwrpoese."—Granted Jaly 6, 1846 ; Enrolled January 6, 1817.

The first part of the invention consists in mixing in the pug-mill, with the clay or plastic materials, of which bricks, tiles, and aimilar articles are usually composed, vegetable, bituminous, or other substances that are susceptible of being destroyed by fire, or burnt out of the bricks, \&c., when burning.
As the sole object of adding these destructible ingredients is to render the article porous, the addition of one-tenth part by weight, more or less, of the destructible to the indestruatible or plasicic ingredients. will be found to effect this object.
Tiles, bricks, and pipes made in this manner will be found to be exceedingly porous, and, when employed for draining, will allow the water from adjacent earth to percolate or filter freely through them into the hollow space within, but at the same time effectually prevent any sand or extraneous matters from entering the drain.
The second part of the invention consists of an improved apparatus for forming bricks, tiles, pipes, and other articles, of elay or plastic material.

Fig. 1, is a side elevation of the machine, partly in section, to show the interior construction; and fig. 2, is a plan, also partly in section. In this arrangement two horizontal fixed cylinders are employed, furnished with dies at their nuter ends, and doors on the upper part for the admission of clay, which is forced out through the dies by the action of pistons working within the cylinders, in the manner commonly practised. The peculiarity consists in the mode of working the pistons. a, a, are the horizontal cylinders, secured to a bed-plate; b, b, are suitably-formed dies, bolted to the outer ends of the cylindera; c, c, are doors hinged to the cylinders with a bult d, for securing them; $e_{,} e_{1}$ pistons, attached together by a piate f, f. Upon one face of this plate are pins g, g, into which a pinion h_{1} takes alternately on the upper and under side thereof. i, i, are semi-circular guides attached to the plate f, f, and intended to keep the piniom, when it has arrived at either end of the series of pins, still in gear therewith, in order that the traverae of the pistons may be contiouous. The pinion h_{1} is mounted in a slotted bearing $k_{\text {, and }}$ its azle may be provided with a winch-handle, for communicating a rotating motion to the pinion. The cylinders a, are filled alternately with clay by the door c. When the cylinder is filled, the door is closed, and the rotation of the pinion A_{1}, will then bring forward the piator, and cause the clay to find an exit through the die b. While this is being effected, the other cylinder is ready to be charged with clay, which in its turn will be forced out by the retarn motion of the pistons. It will now be understood that the continuous rotation of the pinion $\boldsymbol{k}_{\text {, }}$ in one and the same direction, will force the pistons alternately forward in their respective cylinders, and cause them to press the clay contained therein through the dies attached to the ends of the cylinders. In some cases, instead of flling the cylinders by hand, as is the plan generally adopted, the patentees propose to attach a hopper to each cylinder, whereby the clay may be fed in by the rotation of "sweepers" or arms, set
radially from the central shaft, and at an inclination from the perpendicular. When these hoppers are used, it will be pecessary to stop tbe supply of clay as the pistons advance to press it tbrough the dies: this may be done by a sliding-plate, or a valve, opening inwarda, being made to close the bottom of the bopper; or the pistons may be provided with a shield to shut out the farther supply of clay as they advance. In aither case it will be requisite to stop the rotation of the sweepers or arms of the pug-mill.

INCRUSTATION OF BOLLERS.

Maximilun Fruncois Josepi Delpossr, of Regent-street, Middiesex, for "Improdemen/s in preventing and removing inerustation in sleam-boilers."-Granted August 25, 1846; Enrolled February 25, 1847.

This invention consists in adding to the water used in steam-boilera a mixture which acts on the precipitable matters in the water to prevent them forming any incruatations on the interior of the boiler, and which will also remove any sucrustations that may have been previously formed. This mixture the patentee has named the "antipetrifying mixture ${ }^{\prime \prime}$ it is composed of dry tannic or gallic extract, hydrate of soda, or soda deprived of its carbonic acid, muriate of soda, and subcarbonate of potash. The proportione will vary according to the impurity of the water, and to the boiler being stationary or locomotive. If the boiler be atationary, and fed with fresh water, the amount of antipetrifying mixture for 336 bours consumption per horse-power may be made by mixing together 12 oz of mariate of soda, 2 i os. of hydrate of soda, 2 drachms of dry tannic or gallic extract, and or of subcarbonate of potash. For locomotive boilers, travelling on an average about 140 miles each day, the quantity of the mixture per horse-power is increased one-fifth. If the water be brackish, or a mixture of salt water and fresh (such as the water of tidal rivers), the muriate of soda is omitted, and imstead 6 on, are used for $2 i$ oz. of hydrate of soda, and five drachms instead of two of the dry tannic or gallic extract; the mixture is alco prepared in this manner when sea-water is used in the boiler. The patentee prefers introducing the mizture into stationary boilers in quantitien sufficient for two, three, or more days; but locomotive and marine boilers are to bo supplied daily with a portion of the mixture, corresponding with the amount of duty to be performed.

IMPROVED RAILWAY CHAIR AND SLEEPER.

M. M. Beasas-Lamégie and Henry, of France, propose to combine the ordinary railway chair and the sleeper, by forming them of castiron in one casting, as shown in the annexed figure; a is a cast-iron plate, and $b b$ the chairs, which are kept at the proper gavge by an inch round wrought-iron bar d passing through the chair, and secured thereto by vertical pins e; the underside of the plates are grooved or ribbed to prevent them slipping.

HISTORY OF ENGINEERING.

By Sin J. Renmie, Prebidant of the Institution of Cifil Enginebas. (Concluded from page 119.)

Irox Vagance.

The very important improvement in the introduction of iron for the conitruction of vessele, enables ns to combine lightness and elegance of form with strength and durability. For this valuable addition to marine architecture we are indebted to Aaron Manby. In 1820.21 he constructed at, Horreley, near Birnmingham, a wrought-iron boat, called the 'Aaron Manby;' 120 feet long and 18 feet beam, and when laden drawing 3 feet 6 incbes water; it was propelled by Oldham's feathering paddle-wheeli, worked by a water; it was propelled ay and was built for the purpose of plying on the river Seize. The boat was completed in 1821-22, and was navigatod across the

Chennel by the present Sir Charles Napier, who was deeply interested in the ondertaking; it wan not only the fint iron vessel that ever made a sea vorage, but alvo the first that conveyed a cargo from London to Paris direct, withont transhipment. She continued plying between Paris and Harre for several years, antil smpenseded by other more powerful and improved boats: the ball in jet in existeace, and is still used with new enginet on board, as are three othen, which were bailt about the same time. In 1832 Mavdaley and Field built four iron veasels for the Eant India Company, for the navige tion of the Ganges, and Atted them with oscillating engines, of the anited power of 60 horses; they were 120 feet loag, 24 feet beam, and drew 2 fees water; they were co successfal that air wore were ordered ahortly afterwards. The uee of iron, however, did not make moch progress nntil recently, on account of the prejudices and obatacles which generally, if not invariably, impede the progreas of all great inventions. At present, iron is much eraployed for vesels, and promises in many cases to supersede timber. Objec. tions against its general employment have been urged, on account of the bottoms of the vescels being liable to become foal on long royages, and for the parposes of wer, the aplinten of the iron when struck by shot are said from recent experiments to be more detrimental than from wood. The art of building iron vescels is, however, in its infancy, and it in vary probable that further experience and investigation will, in a great measare, obviste the evila. The atrength, lightness, and other qualiiea that have been mentioned, give it great adrantages for the construction of fant-aniling pasagevesels, and the water-tight bulkheads constructed with it, give great additional secority in case of secidents ; these water-tight bulkheade are now almost aniverally adopted; but the preciae date and origin of their intron duction is not very clear. Captain Enans, of Holyhead, proposed them for timber vessela in the year 1826, and moon after that time they were ased in an iron vesuel conurrected by Grantham for C. W. Williams. Examples of their importance have frequently occurred, demonstraling the neceasity of their intredaction into all vessels, whether for river or sea navigation.

Scriw Propslling.

Great an has been the reault of steam narigation under the paddie-wheel system, atill at perfection is approaching, it cannot be denied, that it hat several disadvantages when applied to sea narigation during storms weatber, which it is most deairable to obriate. Paddle-wheels act to the greateat advantage in omooth water and upon an even keel. The unequal immersion of the paddle-wheela during the rolling of the vessel, in a heavy sea, preventa that uniformity in the action of the engines, which is necebsary to insure their greatert effect, and although tbis may be leasened, to a certain degrob, by the une of mechanical or feathering wheela, as I bave already stated, the complexity of their construction in objectionable. The refistance, offered by the paddle-boxes to the wiad, in addition to their top weight, has a aemsible infuence in diminishing the speed and effect of the engines, and in ships of war, the great space occupied by the wheels on the broadsides of the vemele materially interferea with the efficiency of the batteries; moreover, the wheel, at the principal propelling agent, being constantly axposed to shot, is under very considerable risk of having its efficiency impaired. The idea, therefore, of anbstitating for it some other propelling agent, had long bean a favourite object of inventigation amongt engineern. The origin of this, like every other great invention, in very difficalt to be ascertained with accrracy, as the same idea not unfrequently occurs at the same time to different individauls, totally unconnected with each other. The first idea of steropropelling was very probsbly suggested by the movement of fishes, whose chief propelling power exists in the tail, as aleo from the common and ancient practice of scolling a boat from the atern. A rude idea of stern-propelling is attributed to Duguet in 1727, bat it was so totally differeat from the aystem now employed, that it can scarcely be called the same invention. His system consisted of two boats, connected together by two crosk beams with a screw, inserted between the boats; this double boat was moored to : poat in the river, and the corrent, acting upon the screw, turned it round, the motion thus generated, was communicated over pulleys, to which were attached the vessels to be drawn along; this plan may be likened to the effect of a water. wheel, or any other fixed fint mover; atill there is an iden of the screw, which, if paraued, might have been converted into acrew-pro pelling. In 1768 Painton proposed the pteraphore to be applied to the bow and stern and sides of a vessel horizontally, but does not describe now it was to be moved. Lyttleton also proposed a screw-propeller in 1794. The first practical experiment, however, appeara to have been made by Shorter in 1802, with a propeller like the sails of a windmill, applied to the ntern of a vessel in the Thames. He afterwards tried several propellera, particularly in the 'Superb' lineoof-battle ship in Gibraltar Bay, worked by a screw by the intervention of the capstans, by which the vemsel wat moved through the water at the rate of about 2 miles an bour.

Shorter does not describe the kind of propeller used in this experimeot, although Napier, who afterwarda proposed a similar plan without knowing what had been done, when he accidentally found Shorter, had from him na account of his experimenta, and saw a large collection of propellers applicable to the bow, stern, sides, and every part of the vessel: Napier acknow. ledged and admitted that Shorter had conceived almost every possible kind of arrangement, and that his models and plans comprised most of the systems since made public by different parties; Shorter also exhibited several experiments with different propellen, and attributed the beat results to a propelier whi a single blade projecting from the axis. In 1824 a work was publithei ander the direction of the Prench governmeat, describing the several modes
of propaling in nee in Americs, on the principle of the ecrew; one plan wat so hav a holiow in the bottom of the vessel nearly as long as the venel itself, with a serew revolving in it to produce motioo forwards or beck warde; asocher form of this ryatem was to have a double screw between two boate. Is 1825 a company was formed for applying Brown's gas racuam engine to naty-ating boats on cansla, and a preminom was offered for the beat invention fop propelling boats without paddle-wheels. In 1827 the ingenious and inThatigate Tredgold, in his work on the steam engine, described and inves. tigated the theory of screw propelling; about the same time, or perhape rather before, Brown, the inventor of the gas vacuum engine, proposed to epphy a propeller, consisting of two blades placed at an angle of about 90° to each other and 45° to to the axis ; this was intended to be placed in the frose of the bow of the reasel, and attached to a shaft working through a cterfar-box, which could be raised or lowered at pleasare. He outained the preninm of the Canal Towing Company for thia, and they determined to prosue the mabject further ; in fartherance of this object, they bailt a vestel A Rocbenter with gas vacuam engine of $12 \mathrm{~h} . \mathrm{p}$., which was applied to working Brown's propeller by means of bevil gear; the resalt of this experiment does not exactly appear, although it whe considered sufficiently satibfatory for Brown to continne his investigations: be accordingly built auother boet with aimilar engine and machinery, and made several experiments with it win the Thames, near London, when he is said to have attained the velocity cferen miles an hour with it.

8 otwequently, Cameron, Woodcrof, Lowe, Ericaon, and othera paraned the sebject and took out patente for varions modifcations ; nothing, however, was materially effected unill 1836, when T. P. Smith obtained a patent for the application of a screw to propel vessela, by placing it in that part of the stern of the vesel called the "dead wood." He accordingly boilta small reasel, and made armerous experimente with her on the Thames; this little vessel was 34 feet long, 6 feet 6 inches beam, and drew 4 feet water; in it he placed a anall high-pressure engine, with a cylinder 6 inches in diameter, and 15 inches atroke, which was applied to working a acrew 2 feet diameter, having a pitch of 2 feet 5 inches. With this reasel he obtained a apeed of from 7 208 miles an hour; he then tried ber on the cea between Ramugate and Lomion, and the anawered very well in driving againat the wind in a heavy men Upon the succeas of this experiment a Company, called the Ship-Propelling Company, wat formed, Smith being their adviser, and under his directions a vessel, called the 'Archimedes,' of 232 tons hurthen, was hailt fa Loadon by Whimshurst; she was 125 feet long and 21 feet 10 inches bem, having a dranght of water of between 9 and 10 feet; she was proprated by a pair of engines of the united force of $80 \mathrm{~h} . \mathrm{p}$. The engines and seschinery, Fhich were made by Measrs. Rennie, insteed of being placed trasversely in the vessel as was usual in paddle-wheel steam boats, were phaced longitadinally; these engines were upon the direct-acting priaciple, and their power wis applied to work the uhaft upon which the propeller was pheed, by meana of two apnr-wbeels with teeth of hornbeam wood, and two Alsions with iron teeth working into each other, the motion of the propeller that being $5 \cdot 33$ to 1 ; or, in other words, when the engine made 25 strokes, the propeller made 133.3 revolutions. The propeller, which was in the dead wood, was united to the shaft, by means of a water-tight stuffing-box pasiug through the atern of the veasel. The propeller at first consisted of a singlethreaded screw; but this not answering so well, another screw was employed, with two threads opposite to each other, 5 feet 9 inchea diameter, and 8 feet pitch. The "Archimedes' obtained a velocity of 9 miles per hoar through the water, and proved berself an admirable sea-boat, going bead to wind in a heavy sea, and she eatablished beyond all doubt the success of the inven. tion, and ite superiority over paddle-wheels in many casen ; still, however, moch remained to be done before prejndice could be overcome, and before the system coald be broughs to such perfection as to compete in velocity mocessfully with paddle.wbeels, which had so long and so completely engrossed the public attention as scarcely to leave an opening for any other jyten; latterly, however, screw propelling has made considerable progreat. In 1842, the 'Bee' was constructed by Maudslay and Field for the Goverament; she was worked by a steam-engine of $10 \mathrm{~h} . p \mathrm{p}$, adapted for driving either the screw or the paddle-wheel in the same vessel, and thus to try tho comparative merits of the two systems. From the triale and axperiments made with the 'Bee," it appeared, that upon the whole the paddle-wheels had an adrantage as to speed under all circumatances. In 1840, the ' Dwarf,' of 210 tons burthen, which was the first screw vessel ever commianioned in the British nary, wes constructed by Messri. Rennie; the engines, of 120 b.p., apon the direct action principle, were attached to two epar-wheele, with two pinions for working the screw upon the propeller shaft, on the mame plan as the 'Archimedes:' The ' Dwaff' proved herself an excelleut sea boat, and atsained a speed of 121 miles per hour through atill water. The 'Rattler' was the second screw propelling vessel introduced into the nery. Sbe was 176 feet long, and 32 feet 8 inches beam; drawing 11 feet 3 Inches water, carrying 20 gnns , and wat about 888 tons harthen. The eagines, of $200 \mathrm{~h} . \mathrm{p} .$, were by Mesars. Maudalay and Field; and her acrew. which was 10 feet diameter, and 11 feet pitcb, was driven by cog-wheels; the cerew made 103 revolations per minute, being in the proportion of 4 to 1 of the opeed of the engines; her velocity throngh atill water wat 91 miles per hoor, sod she proved a good sen boat. All these have been surpased in apeed by the Royal yacht, the ' Pairy', bailt for her Majesty, by Ditchburn, Wh engines by Pann; she is 260 tons burthen, with two oscilleting engines The anited force of $125 \mathrm{~h} . \mathrm{p}$., driving one spur-wheel and one piation; the eanw cominta of two bledes, and maken 250 turns per minnte, being in the
proportion of 5 to 1 of the moving power. The apeed of the ' Pairy' is 15 ? miles per hour through the water. The merits of the screw aystem have now been so completely tested, that the Government have determined to introduce it more generally into the nevy, particularly for guard ships; theso vescels are to be of two classes, line-of-battle ships and frigates; the former having combined ongines of $550 \mathrm{~h} . \mathrm{p}$. , the latter $350 \mathrm{~h} . \mathrm{p}$. ; the cylinders of the engines will, in some casen, be applied horimontally, and the pistone will act directly opoo the propeller shafts, by cranks, without the interrention of wheels ; the propeller shaft will make from 50 to 60 revolution per miuute, and the opeed of the ressels will be from 5 to 7 miles an hoar; this relocity will be sufficient to enable them to command their own position; and with heary guns and the free uniaterrupted ase of their batteriea, they will be fully equal to cope with any veasels of their class. The 'Amphion' frigate in also being fitted with a screw propeller, to move with a greater valocity than the guard-abipa. She is 1290 tons, was originally bailt for axiling, and carries 36 gans; she is propelled by a screw of two hledea, 15 feet diameter, and 21 feet pitch, driven by a pair of engines of $300 \mathrm{~h} . \mathrm{p}$., making from 45 to 50 revolutions per minute; her speed on trial was 7 tnota an honr, and promised more; the whole was detigned and executed by Meart. Miller and Ravenhill. To Miller the conatructive portion of marine engincering owes mach; the forms of framing, the gracoful proportiont, and scientific combination of strength with lightness ; the arrangement of the meveral working parte of the engines, so to diminish the weight, and increate their compactness, without impairing their efficieacy, have produced the natural consequencen, not only in the fast river boate on the Thames and the Rhine, and other rivers where peculiarities of construction werespecially demanded, but also in the sea-goiog vescels, for the mercantile as well as for the Royal Navy and the Poat-office aervice of both France and England.

Mach discossion has already taken place, and is still going on, as to the beat form and dimensions of propeliers; nothing, however, but careful and well-conducted experiments can determine this important point. In these inveatigations Rennie has taken a leading part; Smith, Lloyd, Snnderland, Barlow, Gappy, Branel, Airy, Maudalay, Meld, Miller, Barnea, Pann, and others have also done a great deal. Up to the prement time the doublebladed propeller has produced es good a reanlt as any other form. In the Arat application of steam power to screw, or stern propelling, cog-wheels were usually eraployed to drive the propeller; then itrapt, or bande, workIng apon wooden or iron cylinders ; and in the 'Great Britain,' endleas chains were amployed; in tbla case, bowever, the chain had claw, resembling teeth, attached to it, which fitted into corresponding recesses or cavities, on the drum, and to a certain degree, prevented the stretching or alipping to which chains of the ordinary description are liahle; adhesion rbeels were also tried hy Messra. Rennie, bat were not found so good as cog-wheels. Latterly the system has been much simplifed, by applying the piston of the engine to act directly apon the propeller shaft, and a succeasful result appears probable. Whilst upon this aubject, the 'Great Britain,' the largeat reasel constructed in modern times, must not be omitted. She in 322 feet long, 50 feet 6 inchet beam, draws 16 feet of water, and ls 3444 tons burthen. She is propelled by the screw, with a pair of engines of the united force of $1000 \mathrm{~h} . \mathrm{p} . ;$ there are four cylinden, inclining at an angle of 00°, and parallel with the keel ; the pistons eet by means of cranks upon a large wheel, which turne the drum with the chain and propeller shaft; the dia. meter of the serew is 15 feat 9 inches. She left Brintol on her firat trial on the 8th Janatry 1845; and on the 23rd of the same month, for London and Liverpool,-for New Yort on the 26th July, 1845, and reached that city on the 10th Auguat; left New York on the 30th Augant, and reached Liverpool on the 15 th September. This vessel and her machinery may be considered as a great oxperiment, from which useful resulte may be expected. She has already made two vojages across the Atlantic; and, notwithatanding the prognostications of many as to her failure, according to the report of her able and experienced commander, Captain Hosken, has anawered well as a sea boat. Since then her engiset and machinery have undergone certain modifications, and some trifing alterations have also been made in the vetsel, which experieuce hat proved to be necesary, and which from the novelty of the constrnction, and the great scale upon which the experimeni wes tried, might have been expected, and for which every allowance should be made. Theec alterations have improved her materially; and it is greatly to be deaired that so much labour and expenditare should be attended with complete success. This gigentic structare, which has had the advantage of Bruael's asiatance, is certainly bold, original, and in the risht direction ; for nothing but proportionahle mass, power, and correctness of form, are calculated to contend with the heavy swell and gales of the Atlantic. It is by these and other well conducted experiments, that we may look forward with confidence, at no very distant period, to the voyage botween America and Europe, mach as it has alrondy been shortened, being still further reduced. The same may be said of the voyage between India and Burope, the importance of which eannot be too highly eatimated.

The advantage of steam, as an anxiliery to sailing vescels fin long voyages, the steam power being only applied in calms, or when the whad is nnfavourable, is beginaing to be generally felt; and numerous veatela are now being fitted ont opon this principle. For this purpose the eerew propeller, witt the means of taking it out of the water and replacing it when required withont stopping the veasel, appears peculiarly well adapted; for whilat it enablo the veasel to retain all her sailing qualities, as well as hor capability for stowing cargo, it still gives ber the advankeg of steam power when neces.

be compressed into the smallest practicable space, still to at at the ame time to give the greateat power : in order to effect this, tubular boilers of the moat improved constroction and power of evaporation; direct acting engivet, in which wrought iron is substituted for cant iron whenever it is prac. ticable, using aofficient steam of a greater density, together with ample atowage for fuel to last for the average probable time that steem power may be required, must be esed. By the judicions combination of beam with aniling, the time of long royages may be materially reduced, and at the amme time considerable eaving may be effected in the transport of merchandiae.

The Blectrical Telzorafy.

Connected with, and forming a most important adjunct to, the locomotive syotem of communication, may be mentioned that extraordinary and useful invention, the Electrical Telegraph.

The invention consists in directing a current of electricity through a wire or a series of wires connecting together the intended points of commanication. The galvanic or electric current may be produced, either by a battery or by employing the mafural electric currents of the earth. The telegraph in worked by handles, which set by means of galvanism opon peedles attached to the wires at the other end of the telegraphic line, through which the galvanic carrent is conveyed, and deflects them to points on a dial-plate, having symbols (according to Cook and Wheatstone's system) or letters or numbers to represent the intelligence to be commanicated. By this meana intelli. gence is conveyed from one point to another along the line of wires, almost an coon as conceived, and thne, independent of the advantage as a means of conveying intelligence from one point to another unconnected with the railway, it is of great importance in the working of the railway itself, by preventing eccidents ; or in the event of an accident anfortanately occurring, enablivg asaintance to be deapatched withont loss of time to remedy the eril and elear the obatrnction. Several persons claim the merit of thin javaluable invention ; it is diffealt to decide with accuracy upon the chaims of priority like most other inventions, however, it has been perfected by degrees, and each party in entitled to his due share of credit. About the year 1819, Mr. Ronalds, of Hammeramith, is atated to have applied electricity for the porpose of eurecting telegraphic commanication, and succeeded so far as to complete a current through eight miles of wire. He also employed electricity as a means of commonicating motion to a series of wheels. This apparatns, however, whe too imperfect to be of mach oue, but it fo evident, that the idea once propounded and partially carried into effect, to a certain extent, establisbea Mr. Ronald's claim to the merit of the discorery. In 1830, M. Ampere pointed ont the meana of deflecting magnetic needles by a current of voltaic electridty, for the parposen of telegraphic communication, and the principles of this discovery have, it in said, been applied to many of the modern electrical telegraphs. The trat plan employed was so very complicated, and so liable to get out of order, that it was 100 n abandoned; bot Wheatatone and Cook so completely improved upon it as almost to make it a new invention. Their syatem conaisted of a dial-plate with aymbola, to which the dedected needles pointed, when moved by electric agency. At Arst it was considered that it wan necesang that the wires for conducting the current of electricity should be kept entirely isolated in iron pipen; subsequently, however, this wat found to be unnecessary. They are now stretched between a series of poste placed at given intervals apart, beside the railway, and a dial apparatus is pleced at most of the principal stations, as well a at the termini. The first telegraphic line upon Wheatotone's plan was eatablished, in the year 1839, upon the Great Western Reilway, between London and Siough, a distance of 18 miles, and since that time it has been so much improved that it is now generally adopted. It is already complete on the South Weatern Line between London and Portsmouth, and is being laid down on the North Western and on numerous other lines.

A company, called the Blectrical Telegraph Company, has been formed for cerring out the plans proposed by Wheatstone, to whom great credit is due for the perseverance and ability with which be bas worked out bis system. Bain alio claime a right to the invention, and, in addition to the means of electrical telegraphic communication, has invented a mode of printing by it at the same time, thes affording the means of secrecy, and preventing sistakes; for the apparstus being kept locked in a room or box, no one can have acces to it but the person to whom the communication is made. Other modifcutions of the aratem have been introduced, but hitherto without being extensively employed.
Another valabile application of electricity to engineering operations consists in blauting rock and other materials above and onder water. The firat effective application of this principle to blasting, may be alaid to be due to General Pealey, who employed it for blowing up the wreck of the 'Royal George,' sunk at spithead, in the year 1782, and which, by its own bulk at well is the alinvial deposit aceumnlated round it, formed a serious obstruc. sion in that important roadstead. Pasley, at the request of the Admiralty, pondertook to remore it, and commenced bis operations on the 29th August, 1839, by sonding down divers, in order to ascertaia the exact atate and position of the wreck; having done this, he proceeded to place pnwerful charges of ganpowder in waterotight tin cares in those parts of the vessel where they would have mont effect, and they were axploded by an electrical carrent conveyed throwgh them, by means of wirea attached to them, and connected with a voltaic battary pleced in a boat floating near : the explosions were in. stantancous and almont anfaling, and a grent effect was produced: in thin manner be ancoeded perfectly in romoving the meck in about $\$$ wro anm-
mert. The atame gytem wea afterwarde puraned, in removing the wreck of a vesel in the Thames, and in now generally adopted in similar ciscam. stances. It was applied by Cabitt, at Roand Duwn Cliff, for the parpoee of removing a large mass of the cliff on the line of the South Eantern Raiway, between Dover and Folkestone: the portion operated upon wan eeverai hundred feet long, and between 200 and 300 feet high; the charge of powder onnsisted of $18,000 \mathrm{lb}$., disposed in several cells in the line of the intended explosion, and property tamped with aand : the explotion toak place on the 28th January, 1843, and was perfectly auceesaful, removing abont 250,000 cohic yards of chalk rock ; its succeas was of great importance to the railway operations, inammeh as it materfally expedited them, and consideribly seduced the cost of this difiecult portion of the line. This method of blesting upon a great scale is now generally adopted, and enlargee the aphere of ope ration in this department of civil engipeeriog, as well as in the reasonal of rocks uader water ; for which it wha used by Remnic many years niace. A very auccesaful application of gunpowdor, for fecilitating eagineering operstious, has recently oceurred in the removal of a number of marl rock shonls in the bed of the River Severn, execated by Edwarda, for Griseell and Peto, onder W. Cubitt. Martin Roberts also lays clalms to the invention; be esshibited his experiments at the Craig Leith Quarries, in March, 1839.

Thompaon has proposed to effect the blanting, or racher the ignition of the powder, by means of common electricity, produced by an apparasus enclosed in an air-tight box, so to prevent the admission of maisture; this apparatus is said to be more simple and leas expensive than the galvanic battery.

Crocrs.

Connected with the correct working of the rallway sytem, nothlng in more important than accurate time-keepers ; for upon these depend the regular starting and arrival of the trains, so that one train may not interfere with the other, and collisions be prevented.

The introduction of clock: into Great Britain took plece about the year 1288, and, in 1326, Wallingford is said to have conutructed a clock regalated by a balance, which was put in motion by weighte, but whose action wat extremely irreguler. The great improvement of the pendulum doee not appear to bave taken place until about the middle of the 17 th century, and the narae of the person who frat employed it for this purpose in not accuratily ascertained. About 1641 Richard Harris is anid to have conitracted a pesdulum clock for St. Paul's church, Covent-garden; however, as Huygenc, in 1658, was the firat who explained accurately the motion of the pendulam. the chief merit of its application to clocks may be attribated to him. The application of the spiral spring to the balance in due to Hooke in 1658; and the introduction of the compenaating mercurial pandulam by Graham, in 1715, was the pext great atep in improvement; by means of this valuable invention, the anequal expanaion and contraction of the pendulam from change of temperature, which readored impracticable the tocurate measarement of time, was obviated. Graham also suggeated the idea of employing different metals, baving different propertiee of expansion, so that the ome should neutraline the other; his idea was afterwards carried out by Herrison, in the construction of the gridiron pendulum. For the going fusee, the compenation curb, and other improvements, be recaived a Parliamentary reward.

The scapement, which commonionten the suataining force to the pendolum or balance, demands the greatest skill and aceuracy, and varions forms have been attempted; amongat othert may be mentioned the original scepemeastwheel, with its teeth at right angles to the plane of the wheel; the auchor scapement, invented by Clement in 1680 ; which was improved by Graban, $s 0$ as to render it more isochronous; the duplex meapement, which does not require such extreme accuracy in the teeth, whilat at the aume time it performs equally well: the deteched scapement, by means of which the teeth of the scape-wheel always reat on a detent, except when it fu unlocted to impel the pallets, is empioyed in chronometert where great acewrecy is sinquired; these, and many other improvementr, too numeroms to mention, are worthy of notice.

The art of clock or watchmaking, termed horology, may be scid to be principally composed of four parts. 1. The moving powor, which is geaerally a weight for clocks or Axed time-keepers, and a spring for watchent or moveable time-keepers; in the former case, the line suspendiag the weifht ahould be equal tbroughout its calibre, and the cylinder on which it in coiled should be true; in the latter case, the form of the spring should be auch that its force may act as equable as posisible. 2. The scapement, which communicstes the suataining force to the pendulum or balance: the conetrection of this demands great skill; there are various kinds, the common crown wheel, the anchor, the duplex, the detached, \&ec. 3. The means of comomunicating the power to the minute, seconds, and hour hands, which it effected by a seriea of wheels niceiy proportioned and adjusted to each other, having many of the axes or centres working upon diamonds or rubies, to rt duce the friction and diminish the applleation of oil, which is objectionabla on account of its being acted upon by the temperature. 4. The regulator, which is effected by a pendulum in clocks and by a balanes in watches. The otriking (being merely a secondary part), is easily effected, when the other great points have been determined. The perfection of the art conaista in the proper proportions, adjustmont, and adaptation of the various parti to asch other, and the combiantion of the several improvements above deacribed; thin has now bees 80 completely attained that time can be marked so as not to very the fraction of a second in a day : for these important and viluable
troprovements fin thia mactal and indeed tidispeasible art, in Ragland, we are indebted to Wallin ford, Huygens, Harricon, Greham, Hooke, Cusoming, Madge, Ellicoot, Satherland, Barashaw, Armold, Valliamy, Dent, Frodsbam, Perkinion, Prench, Kater, and othera.

Mineralogy and Geolocy.

Miceralogy, geology, and mining may be said to form an important traseb in the profestion of a civil enginoer. Without some knowledge of those, the engiveer will, in many cases, and bimpelf unable to carry on his eperalions with that degree of certainty and oconomy, which is necessary to engure mecesta, and independently of their value in this reapect, there are fow deparimeale of knowledge which have contriholed more to the admencensent, comfort, and civilisalion of mankind; whilat on the other hand, mo clam has contriboted more to the advaccement of them than the civil eagineer, so that ench departmeat is ensentially allied to and dependent apon the other. Geology enables the engineer to obtain a proper knowledge of the various strata throogh which he has to carty his operations; if Sor a cuttiog or embankment of a railway, it is ensential to know the clopes at which the earth or rock will atand, the valoe and applicability of the materials excavated for his bridgen, culverts, and viaducts, and their eapectry for water, \&c., in order to form a correct estimate for working through them, whother for his cuttings or his tannels. If for a canal, the eame will apply, with the addition of the knowledge of the sonrces from whence hes supply of water caa be oblained: this latter will also apply to waterworks, in which the knowledge of the various qualities of water ap. phicable to the ecourmy of mankind is so essential. In the construction and maintenance of harbours, it is most important to have a thorongh knowlodec of the geological strata, and of the antore of the coasts where the harbour is to be situated, in order to render it easily accessible to vessels, -hether for commerce or refoge, for its construction in the most economical manoer, or for its maintenance, in ordor that the ullovial matter held in mechanical suspeasion by the adjecent waters shall not fill it up when zade. In the management and improvement of rivers for drainage and narigation, in order that they may carry off the soperfoous watera from the low lands and marahes, and at the same time maintain the chanmele In the most efficient atate for navigation. In the formation of embankments againat the ocean, in order that natore hernelf may be rendered cubeervient, as far as is practicable, in affording the requisite prutection; in thene as in the operations of smelting the minerals of the precious or the zuore useful metals, geology and mineralogy are of essential service to the engineer and deserve his pecullar attention.

Munne.

Mining appears to have been known and practiced in Great Britaio from the earliest periods of our history, for the Carthageniens are said to have convesed tin to Tyre, from Cornwall ; bot in thowe early daya the operations mast have been rade, and merely conffoed to the sarface. This invalunble art mado little progress antil the knowledge of chemistry, and the invention of machinery, enabled mankjnd to extract from the bowels of the earth Nature's rich trensures, to inveatigate their different propertion, and to apply them to the parposes of life; the steam engine, which enabled the miner to extract the water and enlerge the field of his operations has been of invaluable service when the ore was raised from the mine, as almo alding fin its reduction and the oxtraction of the metal in its most refined state. Bome of the Cornloh mines have boen axtended 10 a depth of more than $\mathbf{z a 0}$ fathoms below the surface. As regards cosi-mines, they also bave been worked to as extreordinary extent, as in the case of the Cumberiand coal-fieide, which have been wrought above a mile beseath the sea. The tetal quastity brought to the surface and consomed annually amounts to maneer $80.000,000$ and $40,000,000$ of tons. Withoot the steam engine shese operations would be eatirely paralyeed, and muat cease. The total a ampal value of the British mineral prodece is said to amonat to about $\mathbf{5 0 , 8 0 0 , 0 0 0 1 \text { . In this valuable department we are much indebted to the }}$ antablinbment of the Museum of Economic Geology, which will be the means of extending the ksowledge and use of minerale, wo well as the best zoode of obtajning them. Neither muct we forget the raluable services of Bir H. De la Beche, Marchison, Sedgewiok, Greenough, Buckland, HorDeer, Lyell, John Taylor, Grifithe, Buddle, Sopwib, Philips, Wood, Alkisson, Bald, asd otherh, who have coatributed so largely to the adrancement of this important branoh of science.

Vemtilation.

Connocted with miniog may be mentioned the important aubject of rentimetios, the ralue of which is now so universally appreciated, not ouly for toen but for pablic and dwelling thoacen. The art consiste in conveying velames of fresh air throagh aparimentes so that the air ahail be always as searly as precticable in the proper atate for respiration; but in effecting this, it is deairable that the temperatare sball not be redaced too low, otherwhee incoovenience may be produced in other respects ; whilst rentilation, therefore, is of great inportance, the arthicial warming of apartments is of equal consequence, and to combine both effectoally is the great desidera. tum. Heat is the great mediam for prodacing circulation, as in the example of colleries and mines, and on oxtraordinary occusions mechanical power may be applied. The common fre-place is the most wastefal of fuel, bot poscesses many advantages; aod, althoogh the stove may produce a more equable temperatare, a proper combination of both seems best edapted to uaite the adrantage of a chorongh circalation of air with the requited degree of temperatione; warm water and ateam conveyed through
pipes bave been employed in many casen ; those syatems are bowover the beat whereby a large body of air is raised to aboot 100° by pacing botween cases filled with hot water, and is entibled to tow freely into the apartments, expelling at the same time a corresponding bolk of vitiated air ; thus rendering rentilation an integral portion of the ayatem of warming; by such a plan, warm water may also be sopplied to any part of the building for donestic purposes. When atoves are uned, they should be upon the principle of slow combustion, and be mo contrived as to avoid producing any disagreeable odour ; for this reason porcelain is mach employed, and It is essential to have a thorough circulation of pure air where stoves are employed. Upon this Important subject, mach information bis been elicited by the hate Parliamentary Reporth, and by the labonrs of Sylvester, Tredgold, Arnott, Reid, Hood, Price, C. Manby, Perkina, Haden, Stephenson, and others.

Eneimbrimo Abobitmotiks.

The pursuits of the engineer are intimately connected with architecture, not merely as regards constraction, but in teate also; and, although it is not necessary that he should be so thoroughly cooversant with all the details of ornament, as to be able to practise at an architect, still he shonld be so far acquainted with them as to be able to carry out the leading principles with effect, whenever it becomes absoiutely necemary in the course of his practice. The works of the enginear, ansociated as they are for the moat part with the greal operations of nature, sbould be designed and constructed so as to harmonise with them. They must strike by their general mass and proportion rather than by trifing details or minutie of ornament, which as a matter of tante, woold be miaplaced and onoecessary, and wastefal as regards expenditure; consistently, therefore, with their first grand ubject of filnene for their parpose, they shoald be simple, and in the few inetances where ornament may be peceesary, it should harmonise with the structore and be apariogly used.
In architectural masonry, the ancients have left os admirable models which cannot be too mach stadied, and many be generally followed with great effect and advantage; brt the adaptation of limber and iron to modern architectore requires a different treatment. The massive propor tions and dimenslons which soited well the character of atone are no longer necessary, and woold be miaplaced when applied to the more solid and tenacions properties of iron; bere equal atreagth is obtained with much smaller dimengions, which, at first sight, from their lightness and apparent weakness (antil the eye becomes accuatomed to them), produce a feeling of insecurity which can only be overcome by time; bat this feeliog soou ranisbes, and the great convenience, aconomy, and secarity introduced ty the employment of wrought and cast iron, has caased it to be generally adopted whenever practicable. In order, however, to ensure success, great care most be taken in the selection of proper materials for its ditferent applications, and much depends upon the mode in which it is manufactured; the right understanding of this and of the diferent processes of converting the ore into the several statea of cast and malleable iron and steel, all of which possess very different properties, and require different proportions and dimensions in their application, demands no ordinary skill and experience.
The application of heated air for the purpose of redacing iron from the ore (commonly called the "hut blast" system, invented by Neilron, in 1626), bas produced a considerable revuintion in the character of the metal, as well as in the economy of manufacturing it, and the comparative merits of hot and cold blast iron is still a subject of controveray, which requires to be duly considered in its application to construction. Cast iron, from the rigidity and britleness of its lexture, is not so woll adapted to resist concuasion, or any sudden atrain, as wronght or malleable iron, and when employed, it is necessary to make greater allowance to meet it; bence the euployment of malleable iron has become more general, and has, in many cases, superseded the ase of the former, as while it contribntes equal strength with less weight, it gives warning provious to fracture, and enables a remedy to be applied, which cast iron does nol. For these reasous it in now almust universally employed for all purposes where it is required to resist tension and sodden irregalar strains, and to combine strenglh and lightness; whist cast iron is only nsed to resist compression, and to connteract by its mase and rigidity any teadency to movement or alteration of furm. By thas carefully studying the diferent properties of both materials, we soou acquire a knowledge of the best mode of adapting them to their different purposes, and giving to them those architectorni forms beat suited to their respective qualities and the objecta for which they are employed. Dne of the great adventages of wood consists in the first economy and the facility of converting it to the several parposes where it can be employed, and hence, natil the properties of iron and tho mode of working it became better understood, wood ulone was used in conjanction with stone and brick, both for engineering and architectaral purposes; and, notwithstanding it has been altogether superseded for many purposes by iron, devertbeless it still poscosses advantages in the construotion of bridges, roofs, and other works where the first outlay of Iron or stone would bo too great. Bnongh, I trust, has been said, to show the intimate condexion of the professions of the civil engineer and architect, and, withont the one usarping the province of the other, it is muoh to be desired that a barmonious underatanding shonld be cultivated between them, as it mast tend to their mutoal advantage, and nothing can contribute to this desirable object mure than the meetings of this Ingtitution, to which it is gratifying to fad so many architects have attached themsolves.

Ageicultuer

Nelther mast we forget the comparatively reoent adaptation of engiveering knowledge to the advancement of agricaltare, and the varions imploments connected with it, for ploughiug, drilling, threshing, \&ce. Blace the improvement in the working of iron, the machines for conducting these variocis operations are constructed with a degree of portability, economy, and efficieacy which render them of the greatent importance to the farmer, and enable him to caltivate the soil, as well as to convert its various products to domestic purposes, in a matich more economical and expeditions manner than formerly, and to derive a greater profit from his oxertions. In the construction of agricultural implements, Messrs. Rassome, May, Cottam, Stration, and others, have greatly distingaished themselves.

In modern agriculture, ander-draining forms an important and valuable principle; stagnant water generally has been proved to be iqjurions to agriculture, and it is, I believe, now voiveraally admitted that without thorough drainage it is Impossible to cultivate the soil effectually; for this purpose small drains formed by tiles laid from 1 foot to 4 feet below the surface, are generally adopted; the tiles are made by machinery in vented by the Marquis of Tweedale, Ainslie, and othera, at a trifing cost; the surface water is thus conveyed from the land into the adjacent main drains and thence to the rivers. Water is the grand natural fertilising agent, and any amount of care in its proper distribution ls well bestowed : it is, therefore, worthy of consideration, whether in hilly conntries and districts sabject to alternations of dry and wet seasons, it wonld not be advisable to establish large reservoirs for water, to be used during dry seasons for irrigation, in the manner adopted by the ancients; by thia means, districte might be cultivated with advantage, which now are comparatively storile.

Sopveytng.

Land and Maritime Surveying form an essential department in the profession of a civil engineer; without a correct knowledge of the former, it is impossible for bim to lay ont and determine in the best manaer the proper lines of commonication in a district, whether by canal, railway, or common road; and without a knowledge of the latter, it is equally diffcalt for him to decide upon the beat situation for a port, and the most advisable means of improving and maintaining it. In these valuable departments much progress has been made. The great Trigonometrical Sarvey of the British Islands, which is now very dearly completed, is the greatest work of this kind over undertakon in this conntry, and sorves as a model for minor works of this nature. It was commenced by General Roy in the year 1783, under the direction of the Ordnance Department of the gorernment, and has been subsequeatly carried on, with equal ability, by General Mudge and Colonel Colby, of the Royal Engineers, under whose direction it now is. This great work, 80 far as it has proceeded, has already proved of essential service to the civil engineer, inasmuch as all the towns and villages, the chains of hills, valleys, and rivers, being laid down trigonometrically, his labours, as well as the expenses of his employers, are materially diminished, in tracing out the best lines for railways or other internal commanications; instead of having to surrey the whole district of bis operations trigonometrically, be has only to take the leading points, and to fill in the detail of felds, buildings, \&c., to a larger scale; and even before incorring this labour he can, with one of the Ordnance maps in his hand, determine in a great measure the general direction and course of his line; notwithatanding this, it is essential for him to have a thorough knowledge of the use of instruments, the theodolite, sextant, and transit, the most accurate mode of menaaring bases, and to see that those employed under him are competent to their task, and omploy the aeoessary means to onsure accuracy in their surveya. Connected with surveying, we must not omit the important department of levelling, for simple as it is, nothing reqnires greater accuracy, -in fact, upon this being properly done the success of the whole scheme or undertaking in hand may be said mainly to depend; tou moch attention, therefore, cannot be paid to it ; the instraments employed should be of the best construcion, slmple and sabstantial, easily adjusted, and kopt in good order; the levels should be referred to one datum and proved in various ways, and recorded in a plain intelligible manner, so that they may at all tomes be easily referred to.

Maritime Surneying requires an intimate knowledge of the general laws which govern the tides, the set of the currents, the prevalence and direction of the winds, the sonndings, anchorage gronod, \&c, ; these should be regalarly observed for a given period, in order to ascertain every possible rariation, and regularly registered and referred to the same datum. For this purpose, self-acting tide-ganges, with a clock apparatus attached to them, for marking the time of high and low water, if placed in proper situations, are extremely valuable: that at 8 beerness dockyard, by Mitchell, and the improved one at Ramsgate harbour, are here worthy of remark.

Hineral or Undergrowad Surveying differs from the above in its being necessary to ascertain the dip or moglo at which the eeveral strata lay, their general direction and thickness, their quality and value, and the best mode of working them. For laying down the undergronad survey, the magnet and circumferenter are much employed.

In the investigation of the laws which govern the tides we are much Iadehted to the raluable scientifo resourches of our honorary members Labbock, Whowell, Alry, and othors. Connected with the rarions branches
of surveying, the constraction of philosophical instraments is eatitled to an important station; as without accurate jantrameats it is impossible to make correct surveys, and for the construction of these we are much indebted to the labonts of Ramsden, Tronghton, Dollond, Carey, Biames, Watkins, Jones, Elliott, and others.

Drawing.

Drawing and modelling, although minor, form valuable, and, in fact, indispensable departments in civil engineering; for naless the varions projects proposed to be carried into effect, are in the first instance correctly delineated upon paper, it is impossible to conver a just idea of them, or to form a correct estimate of the cost. Drawing may be classed under three beads:-mechanical or geometrical drawing, is that whereby the plans and sections are sjmply represented as they would appear on a plane sarface; perspective draving consists in representing the objects as they appear when coen from a given distance and height; this kind of drawing, although vory useful, a od iadoed indiapensable, to the architect, in order to represent the true effects of light and shade of his different compositions, as they would appear when carried into effect, and apon a trae perception of which, the success of his building will malnly depend, is not of that importance to the ongineer, whose works are of a different kiad. and much more extensive. so that to represent them perspectively would in many cases be impracticable; bat inasmuch as in detached portions of his works, such as important bridges, viaducts, machinery, \&ce, perspective drawlog may be omployed with great advantage, it ought to be stodied. Landscape and topographical drawing is alto nseful, in order to convey to onsciontific persons an idea of a particalar locality, in the manner they are accustomed to Fiew it, where works are proposed to be executed, and thos to remove fancied objections which otherwise might be orercome with difficalty; and this is still more successful with the application of colours when applied us seen in nature. These different kinds of drawing sbould be carefully studied and practised with accuracy, as they will be found essentially to forward the views of the engincer, and give atisfaction to his employers.

Although drawing, however, is most valnable, modelling in many cases is essential; for in the former case the objects are merely representod upan paper, assitted by light and shade and perspective, which, to persons in come measure acquainted with the subject, conveys a tolerably correct iden of what is proposed to be done, but a model represents it (althougt upon a roduced scalo) exactly as it is intended to be, with the different places, dimensions, and surfaces; hence, nothing, except the work itself, gives such a perfect idea or representation as a model; it also enables the engineer to detect many imperfections which otherwise wonld escape his notice; whenever, therefore, models can be conveniently adopted or enployed, it is advisable to do 80 ; and it is gratifying to know that the art of modelling has made considerable progress, so that now they can be obtained at a moderate coat in wood, card-hoard, plaster, and clay, and will thus be more generally employed. In this department Salter, Deigbton, Day, and others, have attained deserved celebrity. Working modela of machines are oxtremely useful to give an idea of the action of a machlne, but we should be cantious in drawing conclusions from the results, for it too frequently happens that a machine succeeds extremely well whes tried in a model, but fails when put in practice; we should, therefure, merely conader the results of working models as guides to be worked out practically.

Meteozolocy.

The priaciples of this scieace, as far as they have yet been determined, claim our particular attention. Without a knowledge of the winds, and the quantity of rain falling in a particnlar district, we cannot determine with precision the proper form and dimensions of moles or piers to resist the action of the sea, or of drains to carty off waler from extensive districts of marsh land, or of the extent to which it may be necespary to improve the channels of rivers; or in earrying linen of rallway through a coontry, to design the works in sucb a maoner that they may withstand the shocks of the elements; neither can we select the proper kind of stone or other materials for construoting bnildings, anless we know the vicissitudes of climate to whicb they may be exposed, or the extent to which they may be acted upor by il.

In the investigation of the phenomena of this difficult science, we are much indebted to the late Professor Dapiell, and to C. H. Smith, whose report upon the qualities of the different kiods of stone, as regards their teaacity, hardness, capability of resiating moisture, and durability, for the parpose of selecting the best material for the now Houses of Parliameat, forms an important and aseful example, for which the ongineer and the architect are much indebted, and the same course should be followed, as far as is practicable, previous to commenclog every great work, and indeed, for the want of it, we now find many magnificent buldiags partially decayed, which otherwise, would have been in excellent preservation.

Patents.

The improvements in manufactures, machinery, and other braschos of art, resulting from a great number of curious and valuable inventions, aecessarily geve rise, on the part of the successful inventors, to a desire to secure for thomselves and their posterity, as far as is practicable, the bepefite of their labours. The Goverament, perceiving and duly eppreciating tho advantages which not only the inventors themselres, but the nation of large, derived from them, wisely resolred to give every possible eacon.
ragement, by securing to them the exclusive right and title to their inven. tion for a certain nomber of years, and to enable them to recover, by legal process, severe peoalties against any person attempting to ase their inventions, without the previons consent of the inventors themselves. Hence arove the Law of Patents, or a privilege of the Crown to grant letters pateat, conveying to the persons mentioned therein, the sole right to use or dispobe of any new invention or discovery for a limited period, which is generally aboot foarteen years. It is difficalt to fix the date of the first assertion of this privilege of the Crown, but it was irst defined by atatote in the reign of James I. The law has at various times andergone certain alterations and modifications, so that it now forms a branch of itself, Which, with its various complicated relations, demands a pecaliar study. Ever since the reign of Anne, parties bave been compelled to apedify in detail the particulars and natare of their invention or diecovery, previous to obraising royal letters patent.
The great nomber of iaventions, which bave maltiplied considerably of Lave years, has given rise to an important class of professional gentlemen, atyled patent agents, who devole themselves exclusively to the study of inventions and the pecalar laws relatiog to them, in order to secura to inventors their just rights and pravent them from boing infringed apon by abers, Amongst these gentlomen we may mention the names of Hober200, Newton, and others, to whom inventors are much indebted for the skill and attention with which their interests are goarded, as also to Gods00, Holroyd, Hindmarsh, Roteh, Webater, Farey, Carpmael, and others, who have devoted themselves to the atody of the Patent Laws, and have writlen ably opon them.

Theory and Practice.

In the preceding pages, my remarks have been almost exclusively confinel to the notice of the various works which have been carried into afect by civil engineers since the time of Smeaton; and although prac. tice, upon the whole, is mont important, nevertheless, we should not omit the stady of the theory or principles npon which that practice is, or ought to be, foanded, and without the due study and comprehension of which, we may frequently be led into great errors in practice. Our junior membera should, therefore, previous to commencing their professional career, be well rersed in arithmetic, algebra, mathomatics, mechanics, and the priacipies of natural philosophy in general, and the mode of applying them to practice. They should coltivate a patient and equable tetnper of midod, in order to enable them to investigate, with rigid impartiality, the priaciples so beautifully illustrated in natare, and upon which the great operations which may hereafter be intrusted to their charge as civil engi. neers depend; and once having found out, and thoroughly understood, these principles in all their varions applications, they should never depart trom them; always bearing in mind, that mature will submit to assistance asd gidance for the benefit of mankind, but never to opposition with impuaity; her laws are immutable, and we may be assured that, either for good or evil, the same causes will produce the same effects: if, therefore, we wish to command success, we mast adhere to her laws, and when we once thoroughly understand them, we ahall be amply rewarded for all our toil; difficalties will vanish, and success will invariably attend our efforts. Previons to commencing practice, onr junior members should not neglect the workshop; on the coutrary, it would contribute materially to their adrancement to undergo an apprenticeship of some years in that departmeat; for inasmech as the success of many of the works in which they may bereafter be ongaged, particularly the mechanical, depend in a great mensore upon the oorrect application of the principles which can be ouly thorogghly learned in the workshop, that is the place in which they mast beandied; moreover, it will imprint indelibly in thoir minds the principles which thoy acquire from books, and induce a degree of eccuracy of thought and execation which cannot be eoquired elsewhere; hence we find that some of our greatest engiveers, both of the past and present age, have there aeguired a considerable portion of their edecestion, and owe a great degree of their celebrity to that invalaable narsery for engineers. Nothing, therefore, can be more erroneons than to suppose that theory and practice are incompatible with each other, for they are intimately convected with asd dependent upon each other. Without a thorough understanding of the theory or principles upon which engipeering is founded, it is impossible to carry them into practice withont endlens failares and wastefal expenditwre of means ; and withont the axperience derived from practice, the principles acquired from theory will be of little avail; both, therefore, mast be carefully stodied and comblned in order to produce a good engisetr. Finally, composition, or the art of putting ideas into simple, clear, and intelligible words, should be stadied, in order to convey to the world jert notions of the measures proposed; also an intimate knowiedge of the valne of materials and workmanahip, in order that he may be enabled to sake correct estimates, upon which the success of all commercial uadertanges so materially depend.

Continamtal Enctineras.

In meking the foregoing remariks, I have ondenvonred to confine myself Wriety to what hae been done by clvil engineers in England during the pat and premeat centuries; bat in so doing, I should be extromely sorry to be conijdered as detracting from, or underreting in the least degree, the great aerits of conthental engineers, or the progreas which has been made by them also darfag the rame period, and wo are proud to namber many of them among the members of this Institution. To attempt to enter apon thin equally intermetiog and inatroctive enbject, would compel me to tres-
pass much longer upon your patience, which I fear bas been already tried too mach; but I cannot omit remarking, that the greatest credit is due to our professional peighbours on the Contipent, for the example whicb they set in the infancy of the science, when it was so little known in this country, and for the great progress which has sabseqnently been made, and the numerous inventions which have emanated from them. In Italy, we have only to mention the barbours of Genoa, Venice, Ancona, Civita Vecchia, Leghorn, and Naples; the canals and silk machinery of Lombardy; and the names of Leonardo da Vinci (said to be the inventor of the pound lock , Gugielmini, Frisi, Manfredi, Martinetti, Fazio, Miliani, and numerous others. In France, the mole and docks of Cherbourg, Tonion, Brest, Harre, Boulogne, Calais, and Dunkirk; the canals of Languedoc, Burgundy, and Picardy; the embankments of the Loire; the bridges of Neuilly, Bordeany, the Dordogne; and the names of Belidor, Papin, Ganthey, Rondelet, Dupin, Perronet, Prony, De Cessart, Lambarde, Beibel, Sganzin, Frissard, Hallotte, Navier, Jacquard, and others. In Switzerland, the Alpine ronds of the Stelvio, Mont Cenis, St. Gothard, the Splugen, the Brenner, the Simplon, \&xc. In Holland, the magnificent embankments for defending the conntry from the sea; the great Texel, and nomerous other canals. The system of drajnage, although perhaps too complex and artificial, is also meritorions and worthy of remark. Throughont Germany, the ayatem of managing the great rivers Danube, Rbine, Elbe, the bridges across them, the canals convecting them together, as well as the roads and mining operations. In Sweden, the docks of Carlecrona, and the Trohlbatta canal. In Russia, the docks at Cronstadt and Revel, the extensive inland navigation, roads, \&cc. In Spain, the moles of Malaga, Alicant, Tarragona, and Barcelona; the docks at Ferrol, Carthagema, and Cadiz, and the Arragon canal ; and the railway system, which owes its origin to this country, is now making rapid progress everywhere on the Continent. Neither must wo omit to mention the ingenvity abd vigour of our transatlantic brethren, the United States, to whom the world is much indebted for their many splendid public works and useful mechanical inventions and discoveries.

Conclusion.

I have thos endenvoured to take a rapid earrey of the different departments which conatitute the profession of a civil engineer, since the commencement of the last century, or rather, from the time of Smeaton, down to the present day. Imperfect, however, as this survey bas been, I fear it has treapassed too much upon your valuable time, although the interest and importance of the subject justly entitle it to an extended notice, and would amply repay the perual, if it had been treated by an abler hand, at oven moch greater length. Looking back to the hamble goal from which we atarted, a little more than a centary since, and then adverting to the exalted pinnacle npon which we now stand, what almost immeasurable space have we traversed-what triumphant progress bave we made! In how great a degree have both poblic and private prosperity, and the civilisation of mankind, been promoted by it. Within a fow years onr profession was comparatively onknown, and the great and beneficial results which have sprung from it were never anticipated; now it is univeraally in the ascendant, and it may be 80 with reason, for without presuming to undervalue the merits and importance of other professions, that of the civil engineer may be said to embrace everything which can tend to the promotion of the comfort, the happiness, and the civilisation of the human race, and to be established opon principles of the very highest order.

Comparatively speaklog, only a few years have olapsed since Great Britain, as regards engineering works, was in a very back ward state: she had neither roads, canals, harbours, machinery, nor manufactures worthy of being compared with those of her neighborrs on the Continent. Let the comparison be made now, and we find that if we do not aurpass every other nation we are inferior to none. And to what may this extraordinary change be attributed, but to the progress of civil engineering? Notwithstandiag, however, we have edvanced thus far, much still ramains to be done. Great as has been the result, we may be said scarcely to have passed the threshold of improvement. It is true wro feel the influence of our position, bot this can only be majntaiged by future advancement. To stand etill is to retrogade; our career most be onward; and what has been done shouid only serve as a stimulns to greater exertions. We bave still a very wide field before us; let ns, therefore, by our exertions, cultivate it to the very utmost; lot ns never rest satisfied so long as anything remains to be done.

Much yet remalns to be discovered in the formation, construction, and maintenance of harbours, in order to afford the greatest facility of ingresa and egress nuder all cironmstances, without at the same time diminishing the necessary protection and depth; -in the improvement of rivers, so as to enable them to drain and carry off the floods effectually from the adjacent marsh-lands and valleys, and at the aame time to render them capable of navigation to their utmost extent ; to point out the most effectual mesas of eoabling them to discharge their fresh waters into the sen or estuaries, and to receive the tidal waters withont cansing them to deposit the alluvial matter held in susponsion by their wators, in such a manner as to form injurious bars or shoala;-in determining the best form and construction of vessele, so as to render them capable of giving the least resistance in their passage through the water, and conveying the greatest burthen or cargo with the utmoat safety and velocity; -in determining the best form, dimensions, and construction for locomotive engines for any gauge, so as to comBne the utmost capability of producing steam, with the least guantity of
fuel, and drawing the mazimam load with the greatest velocity, combined with the greatest safoty aod econony ;-in determining the proper width of gauge which shall eatisfy all the required conditions of safety, e00nomy, and speed; in determining the wost expeditions, safe, and economical monns of transforring goods, passengers, and carringes from onc line to another, whenever a break of gange beoome becomary ;-in determining the beat and most economional mode of conatructing and laying down the permanent way, in such a manner as to enable the trains to travel with cafoty, at the greatest speed the engines are capable of prolucing, with the least wear and tear either to the permaneat may or to the engine and carriages;-in determining the renistance of railway trains; in devising moans for obviating tho leakage by the valve in the atmospheric system $;$ in discovering a aubstance for sealing the valve which shall preserve the desired consiatency ander all degrees of temperalure; and in generaliy investigating that systom of tration, in order to remedy any practical defecte which may exiat, and to ascertain whea it may be applied with the greatest advantage; in the improvement and adaptation of machinery to many new objects in the arts and manafactures, and in the application of chemistry aud geology to our operations.

These, and a variety of other improvements, are to be desired, and are worthy of our partioular atteation and study. The steam eagine itself, improved as it is, and wonderful as have been the resuits produced by it, Is capable of further improvemeats. Its bulk and weight may be further diminished, both in the form and conatruction of the boiler as woil as in the engive itself, and thas, in effeot its power may be increased; or it may be recerved to as to discover the means of producing and readering aub servient to our purpowe some other power which shall surpass stomm, or perhape, to substitute for it that all-powerful ageat electricity, which Jaoobi has already attemptod to apply to navigation. Obscure and difis. cult as the subjeot may appear now, it may still be realised. Our indefuligable and enlightened honorary member, Faraday, has pointed out the way, and is still proceeding in his distinguisbed careor with remarkable success, and we mast not lose the opportanity of profting by it : in fact, by well-directed and combined oxertions, it in imposaible to foresee the results which may yot be arrived at.

This Institution, whioh but a few years ago was searcely known, has now taken its station amongt the first scientific societies of the kingdom; and as its objects are second to none in importance, whether as regard their pabilio or private atility, 60 mast it continge to fourish and increase in importance if those objects be only legitimately and steadily prosecuted. In order to effect this we mast not relar in our exertions, there must be no echism among ourselves; the Iostitation must be our rallying polnt ; we annst all work for the common good. We must contribote to its adranoement, as well as that of our profession, by every means in our powerwhether by papera, by verbal disenssiona, by contribations to the modelroom or the library, or by the construction of works which shali earve as examples worthy of being followed-in fact, in every practioabie manner, each acoording to our several opportuaities.

Let the seaior members, both by their precept and example, and their forbearance, courtesy, and asistance towards oach other, with liberal and right minded zeal, for the honour of themselves and their profession, point ont to the junior members the true road to eminence; and as they, by the common lot of mortailty, must qult this transitory scene, let them be succeeded by othera fully competent to fill their piaces, and to enlarge the boundaries of their profession.

On the other hand, let the juaior members look up to thoir soniors as friends, and as sure guides to follow, and from whom we may with confidence ceok for mssistance in the hoor of need; and, banishing all jealonales or other ignoble feelings, let them rally round and support their seniors under all circumstances. Let the chair of this Institution be an object of hooonrable ambition to the youngest graduate, as a goal to which he may look forvard as one of the rewards, and that not the least, of his anocessfal exertions in his professional career.

By thes parsuing steadily, with one vigorons and sure effort, this grand object-the elevation and advancemeat of the profession-we shall have the proud satisfaction of finding that our exertions wili be crowned with saccess ; that the Institution, as well as ourselves, will flourish; and, what is a fer nobler achievement, we ahall find that by removing, or, at least, diminishiag, as far as may be practicable, all phyaical obstacies by sea and by land to the free commanioation of nations with each other, and by the invention of new machinery, or other means, to supply their mutual wants, we shall ultimately understand our true Interests. Prejudices and national jealousies will vanish, and instead of oxterminating ench other by that greatest curne of mankiod-war, we shall become bound to each other by the tios of peace, mad naited like one great family, striving together for the bepefit of the bromen race.

A Great Bridfc.-The new milroad bridge across the Sasquehanna, at Hárrishurg, is an immense structure. It is about 4,000 feet long, bailt upon the improved double-latticed plan. There are 28 spans, averaging 173 feet each; and two arched viaducts, one 53 feet, and the other 81 foet long. The eatire cont of this immense structure is short of $\mathbf{1 0 0 , 0 0 0}$ dol-lars.-Americum Paper.

ROYAL SCOTTISH SOCIBTY OP ARTS.

March 92.-David Maclagan, M.D., F.H.8.E., Pronident in the Cheir.
The followisis communications were made :-

1. "On the Principles employed in the Decoration of the Room for the Mectings of Proprietory in the Commercial Bunk of Scotland, Edinburgh." By Mr. D.R. Hay.

Mr. Ray showed that there is a demonstrable troth in ornamental dosign, whioh constitutes Its beauty, independently of any fenoy or whim is the individual to whose inspection a work of this kind is presented, and without any reforence to what are oalled the styles of oramental design; and that this truth was of a mathematical natare, and so far toachable, as to enabie the decorator to produce perfoct symmetry of form and harmony of coionrin almost Infalte variety, without copying or even imitatias the works of others. Thus proving that we might have a style of docorative ornament belonging exclasively to our own country and our own period. He showed also thitt the beauty thus prodacod differed from pictaresque benaty, in so far as the former is teachabie, whise the latuer is oxclasively the proviace of genine. In doing this, he reforred to the immense quantity of counterfoit high art produced at the present day, and the bad offects of ingrafing this conaterfoit apon ornemental design, instead of ineoleating the first priaciples of symmetry of form and harmony of colonr. He pointed out what he concelved to be the fallacions proceedingt of the Goverament Schools of Decign in these respects.

Mr. Hay next referrod to the appropriateness of various kinds of orma mental design, and held up to ridicule the egregions biunder comenitied by the German decorator, Herr Bang, in the piaza of the Royal Exchange, London, who, instead of following up the architect's idea of masajve atreagth, or referriag to the ase of the edifioe, has bedeoked it with a species of (ornament!) at once meaningleas, fimey, and fantastic. He thea proceeded to show that the docorntor ought, on all oecasions, to endearour to follow up the original idea of the architeot, and impart the same foeliag by bls colouring, that the latter had imperted to the geveral coastruction and architectaral decorations, which, althongh now geverally faished in lath-and-piaster work, imltated, in their confguration, either the marble employed originaliy in the olasaical stylos of architecture, or the wood employed in those of the middle ages. He thea shoved that the imitating of marbles and woods was cionely allied to high art, and the prejudice agriost these species of imltative art arose from its being often employed in ohurcbea and other public baildinga, which are generally painted at the lowent estimate, and conseqneatly erhibit this branch of the decorntive art as performed by the lowest grado of artists.

In respeot to the prinoiples adopted in the style of decoration employed by Mr. Hay on the ceilligg and wails of the room appropriated to the meetings of the propriotorsfor the Commercial Baak of Scotland, be showed that it depended for its beanty simply upon a combination of geornetric with chromatio harmoay, being the practical application of a theury which had met the approval of Sir David Bremstor, who had aiso suggested ite application to the decorative arts. Mr. Hay, in referring to the great hall of the Sooiety of Arts in London, where he had first introdaced this new atyle of decorative painting, said, that its being in that case necessarily confued to the ceiling, did not pat it fairly to the test ; but that the walis as wrell as the oeiling of the propitotorn' room in the Commercial Bank baing de corated in this way, that a partment might be mald to be the first in which this new atyle had been properly exhibited.
Mr. Hay exhibited two Enished specimens of the work, with five enplasatory dravings. The first opeoimen was that applied on the cailiag paneis, and aroee ont of a diagram in which the equilateral triangle and circle were harmonionaly combined. The second specimen was that of the pattern appied on the walls, which he showed arose from the combins tion of eiliptic bands. Both these apecimens represented mosmic or iniaid work, composed of lapis lazuli, gold, giallo-antico, and rosso-antico, white the five expleatory drawiags showred the simplicity of their countruction, and the anture of their harmony. Mr. Hay referred to a work apon orammental design, whiob he published some years ago, for more ample detilis, and conoluded his paper by reforriag to the orammental decoration of the title-page and dedication of the Art-Union Journal, as examples of the low state of that art in the metropolis, and how mach still remained to be done for it even there.

1. "Drawinga of a Padent Atmospheric Railway Faboe"" By Paren Fairbaikn, Eeq.

This valve seemed to be admitted to be perheps the mont perfect of the kind get invented. There is no hinge and no necessity for grease to 6ill up the chinks of the valve. The valve itseif conaiste of sirnth, 10 to apeak, of differeat subetiocea: -1 its, iron, strong but gently fexible, oocupjiag ibe lower portion and filing peatly the longitudiaal cavity of the exhanatias tube; sad, vulcanized indim-rubber, a litile larger, at as to overiap the iroe 3rd, mood, to prees down apon the india-rabber, but ioaving the sides of the latter free; 4th, strong leather fting the top of the flange of the tabe, which in ground fint, to receive the eides of the leather, thos giving aloes with the indim-rabber a duuble socurity to the vacuum; and $5 t h$, a band of Iron agala, broader than the loather, and bending down at the odgen was tu
protect it. The inger and onter bands of iron are the portions of the valve of which the wheels act in opening and closing it. The whole valve is bined ont of its seat by the inner wheels during the passage of the piston, and is again replaced in it by one of the onter wheals. It was stated that ibe specifeation had been earolled in October last.

2. "Improcemente im Railway Carriages." By Mr. James Wıort.

Mr. Wight exhibited a full-sized drawing of his proposed carriage wheels, having the tire at an angle of 45 degrees to the rails, entirely obristing the robbing and sbearing friction of the present wheels, while the load is suatained by the second set of spokes couverging at the opper joursid of the axle, perpendicular to the rail. His proposed conical form roquisite for the periphery of the driving wheels was also exhibited, adapting theselves to the curves over which they pass, and moving freely round withoat any slipping of the wheels, or twisting of the azles, resulting from their present form; and entjrely dispensing with the clamsy artifice of wheriag the rails from the locomotive, designed to assist their sliding when compasing a curve,- property the reverac of which is of the otront importhoce to the otiliin of the locomotive. He also suggested an improvement in the mode of traction, by appending the drag hook at the bead of a single botier rod imaning from the centre of each carriage, in place of one froe each aide as at present, the end of each rod beiog made to comprohend two convex spriggs, which are placed under the centre of the carriage, nothut either in the trection or propulsion they are compresmed simultamoonly, and the concuselon is sustained at the ceatre of the carriages without the slightent tendepey to throw them off the raile.

> April 12.-Geosoz Tarr, Eeq., V.P., io the Chair.

The following commonications were made:-

1. "New Mefhod of Fentileting Public Brildinga, Churches, Schoole, Dwelling-housen, \&c., by means of Hot-Wator apparatos placed at the mof of the boilding, for extracting the exhaled air ;"-nuccenafolly onsplojed to ventilate varions buildings. Dealgred and applied by Mr. Robent Ritciale.
Mr. Ritchic gave a short acconnt of the methods which bave been maally employed in ventilating buildings, and showed that, as the object wis to iodace a curreot from a difference in temperalure, the plan he had is previons commanications suggested (1843-4), of making ose of the heat from hot water or steam, afrorded a safo and eficient meditum for extrect. tat the exhaled air from apartments. He had since bad several opportanitien of carrying bis vlews jato effect in large baildings, and the resolt has bee quite sucoessful. He then described the method he had adopted at the Jonticiary Court-house, Glasgow, and elsewhere. A powerful hot Water apparatus of patent tubes-raised to a high best, and supplying themolves with water-is placed in a small chamber at the roof, and is beated by a furnace placed at the basement of the building. The apparatus acts at an artificial fre, and from the rarefaction of the air within the chamber the exhaled air from the apartment to be veatllated is drawn tomards it, through the ventiducts formed over the ceiliag, and rieos or is expelled througb an elevated chimney or shaft into the atmosphero-the beated corrent being protected from the action of the wind by means of tuncaps of screeps.
Mr. Bitchie showed the arrangements be bad provided for the regulation at eoatrol over the velocity or movement of the air in the room. He pointed out, amongst other advantages of this mode of ventilation, that it was free from all rink of fire, as the forance might be 50 or more feot from the beated chamber at the roof; that the air within this chmmber admitted of ample menns of increase; that there was no risk of the refux of the ahaled vapours, and, even were it so, these could, by no possible means, be mised with the prodeets of the combustion of fael : that the apparalus Wisiaply managed, and the oxpease not greater than other plans in use. He likewlee ahowed the necessity of combining, with every plan for ox: matisg the exholed air, an adequate sopply of fresh air-that buildings, Whether beated with or without open fires, ahould have the means affordod lor straining a conliseed supply of moderately warmed air in winter, to tripuce that which is vitiated by respiration aad gas, or which goes off by ctambeys. He ahowed the plan he had adopted for warmiog the Courtbane, Glaggow, and the Commercial Bank, Edinburgh, with simple hotmater apparatos, which afford sapplies of fresh air, duly regulated in tempenmare and hamidity. He concluded with pointing out that the principhof the veatilation described was equaily applicable to domestio as to probic buildings; that a great many rooms might be ventilated with the am bot-wnter apparatus placed at the roof, and heated at the basement; that the architect (W. Niron, Eeq.) for the New Police Buildings, Edinargh, had adopted this plan for extracting the exhaled air from the ceile adother roome ; that whole tenements (so important to salubrity) might tuas be veotilated; for the capabilities of the patent screw joint apparatus mench, when combined with the ingenious as stems of continuous circukioch, that an mach 6000 feet of pipe can be heated with one small fire.
2. "Improved Chimmey Cau or Fumi-Expulwors," for the Cure of Smoke ed Blow-downs in Chimneys. By Mr. Jayes Btewart, jou.
The principle on which these chimney-cans are lavented, is to prevent the isconventenes of amoke being sent back into apartments by high winds
or by change of wiod; and to have the construction of the chinney-cans such as to improve the draught, and to present so obetacle to the free egress of the smoke, nor to the.cleanisg of the veat; while, in ordinary circumstances, no undue acenmulation of soot can possibly arise. The cans being stationary, are leas liable to go out of order than the moveable ones in common use. Mr. Stewart, stated that their operation had been quite succesaful, and. that they had cored of amoke rooms which before had scarely been habitable. These cans can be made in galvapised iron from 28. to 80s, or in clay for 109. 8d. The ralre is fired on the chim-ney-top or can, to prevent back amoke or down-draoght, and is operated upon by a wire or chain from the fire-place.
3. "Self-acting Cart-Dras or Break," which is worked by the Horse itself. By William Rutrigpord, lapd-stewand to the right hooourable Lord Douglas.

This break can be fitted op on any iwo-wheeled cart or coech, with shafl, at a very moderate expense, from the suplicity of its machinery. It consists ouly of the following parts:-Two wooden rubbers, applied in front to the rims of the wheels, are connected with each end of a crosebar of malleable iroa, $1 \frac{1}{1}$ inches deep and $\frac{1}{4}$ of an inch thick, placed at right angles to the shalts, and horizootally, below the body of the cart in froat of the wheels. This crose-bar is held in its place by keepers of iron attached to the outside of each shaft, leaving aboat $8 \frac{1}{3}$ inches of apace for the crose bar to move backwards and forwards, so that the robber may be easily withdrawn from or applied to the wheels. To the croan-bar are altached two iron rods, ths of an inch in diameter, ronniog each below a shaff, and parallel to each other. Two keepere retain each rod below its shafi, and allow it to move freely beckwards and forwards. A book it attached to each rod abont two inches from their ends, 50 that when the horse is yoked by the shoulder and beck-chains in the nanal way, the backchains are attached to the hooks. The borse has thus the power, when urged by the load behind, on a steep incline, to preas back the rubbers opon the wheels, and retard their progreas to any extent desirable. When the rubbers are not required to act, such as when the horse is polling forward on a level, or going up an incline, the break is kept from tonching the wheels by a spring fixed behind the croseb bar to which the rubbers are atlached, and presaing that bar forward. Finaliy, two small keepers and hooks, at the eads of the rods, are need for the purpose of preventing their motion wheo backing the cart.
4. "A new Regulating Imdex for the Pendinlmon." By Mr. Jame M'EWAN, watchmaker.

The bob of the pendulum is made in two balves, being hollowed in the centre, 80 as to admit a contrate wheel, carrying on lts arbor an index-band which points on a dial-plate in front of the bob to the words fast or alow; the uut at the bottom of the pendulam being torned, it acts on the wheel by a pinion, and thus any person who bas vecasion to regulato the beat of the pendalum can see by the index-hand how far he raises or lowers the bob. Of conrse, Mr. M‘Ewan intends this merely for common domentic clocks, and not for fine time-keepers, whose rate would he affected by the mere motion of the index-hand round the dial-plate of the bob.
5. "An Akrolar Himerthage Comprest" for suppreasiag undre Bloed. ing, reaulting from the Extraction of Teoth, constrected by Dr. Bobert Arid, dentist, was echibited.
6. Specimens were exhibited of Mrs. H. Margaza'a "Patent Intonaco Cexicnf," the inventor stating that althongh only half-an-inch thiek opon the lath, its capabilities of resiating fire were very great, and iudeed, might be subjected to a triai by fire for a considerabla time, while the lath behiad it, sad in contact with it, wouid scarcely be sioged.

A ist of Prizes to be offered for Sesaion $1847-8$ was submitted by the Council and approved of, and ordered to be printed and advertised as nanal. (See Advertivement.)

SOCIETY OP ARTS, LONDON.

March 31-WM. Polg, Esq., F.R.S., V.P., in the Chair.
M. Rioardo, Esq., gave an nocount of bis "Indicator for accertaining the Speed of Railvay Trains." The machine consists of a pair of govern. ors, to which motion is given by means of a band worting on a horisontal wheel, attached to one of the carriages ; as the speod of the trair increases, the governors fly open and pall round a hand, which points out, on a gre. duated disl, the number of alles per boar at which the truin is truvelling: The governors are prevented from ilying open with a jert by two pieces of volcanized india-robber, which leagthen gradually as the speed of the train increases.
The Secretary read a paper by Mr. T. R. Caaypton, "On the working of his large-wheel narrosp gange Locomotive Engine, the "Nanmr," for the dearga for which he lant seasion reocired the Sociery's Gold Isis Medal. The anthor having made some remarks on the statement put forth by him last year, as to the edranteges poceseced by an eagine built on his priaciple over thote on the old plan, proceeds to give the following acoonst of the Numur:-

The Namur is a six-wheeled engine, with the whole of the working parts outside.

Diameter of the driving wheels . . . 7 f. 0 in.

$$
\text { do. sopporting do. . . . s } \mathrm{R} . \mathrm{iv} \text {. }
$$

Distance betwoen ceatre of tho extreme wheels 13 R. 0 in
Diameter of cylinder 0 n. 10 lo .
Leagth of atroke 0 f. 90 in.
Number of tubes
Length of ditto
Diameter of tubes, outside
Leagth of fire-boz
Breadth of ditto
Area of fire-grate
Surface in fire-box
Surface of tubes, inside
Total surface

182
11 n .0 in
0 ก. 2 io
4 ก. 3 in.
8 ก. 5 in
14 f. 6 in.
62 f. 0 in
927 ก. 0 in
980 ft .0 in .

This enginc is constructed for the Namar and Liege Railway, and has ruy on the Loadon and North Western Railway, with every variety of train, a distance of 2300 miles. In the conrse of the experiments the following speeds have been reached :-With a train of trucks londed with cokne, and weighing 80 tons, exclasive of ongine and tender, 51 miles per hour on a level; 一with a train weighing 50 tons, 62 miles per hour was attained, between Tring and Woiverton. But the most severe test an engine can be pat to is when it has no train behiud it: an experiment of this kind was tried with the Namur, -Capt. Addington, inopeotor general of railmays, and Capt. Simmonds, his assintant, being on the engipe at the time, with which a speed of 75 miles an hour wres attained on lovel ground, going ronnd a curve between Loodon and Harrow. The speed was taken by Captains Addington and Simmoads, and both were perfectly astisfied with its eteadiness at that rate of apeed. A second eagine is bnilding for the North Western Railway with 8 feet driving wheels. -The author conclades by offering, at an oarly date, to furnish an acocont of the expense of working the engine, and the conenmption of coke, water, \&c.

Mr. Hasding observed that Mr. Cramptou had doas perfectly right by increasing the dimensions of the fire-grate, for while the beating surface of the ordioary engines has been quadrupled, the fire.grate has not been increased 30 per cent. He considered that the experimeote, as far as they bad gone, were quite ealisfactory.

Mr. M'Conngll considered that the angioe had performed very well,and that Mr. Crampton might congratulate himself on having lowered the centre of gravity, and incroased the area of the fire-bars and the sise of the driving wheel.

April 14.-Thomas Winewoarf, Esq., in the Chair.

The secretary read a communication from Mr. W. C. Fuller, on his "Vulcanized India-Rubber Buffers for Railway Carriages." The invention consiate in substituting a series of ringa of india-rabber, separated by iron plates, for the ordinary spiral spring. The buffer-rod passes through the centre of the rings, and is protected from being bound by the india-rubber when compressed, by menns of a conical flange affixed to the iron plates. The advantages which this Invention appears to possess over the ordinary eprings are-great redection in waight-leas liability to get ont of ordergreater facility of increasing or decreasing the power of the apring -and its ready applicability to carriages already constructed, withoat increase of cost.

Mr. Ricardo wished to know what would be the compression of the buffer ender ordinary circumstances-sapposing the length of the indiarabber employed to be 8 feet ?

Mr. Foller stated, that the length of stroke required for the haffer is from 10 to 13 inches; that the ordinary strength of the present springe is from 3 to $3 \frac{f}{\text { toos ; that }} \mathrm{is}, 3$ tons renaces the cirealar spring to a flat, while the India-ruhber ls capable of reaisting from 8 to 50 tons.

The next commanication read was by Mr. Philip Palmer, "On the Application of Crown Glast Metal to the Manufacture of variowe Donestis and olher Articles."-The muthor commenced his paper by stating, that he did not intead, on the present occasion, to claim the attention of the Society to works of art in glass, but to such as are of recent mannfacture, and have arisen out of the repeal of the duty on that material. Before the re peal of the duty, crown glass was only used for glaving windows and for prints, while the rarious articles for the table were made from fint glass. After desoribing the difference of manafacture employed in the crown and tint glass, he proceeded to enumerate yome of the articles which are 00 w being made of crown glass, and which were never before made of glass; among them were the following:-A glass dairy pan, for setting of cream; the advantage of osing glass, instead of sinc, tin, or lead, is its producing a larger quantity of cream-equal, it is staled, to from 30 to 50 per cent. The next articles enumerated wore propagating glases, for horticultaral purposes; these eopersede the use of metal frames, bee and grupe glasses, cucumber tabes and seed protector, pantiles for roofiag, and for domestic purposes, glass pipes, pickle jars, rolling-pins, pastry pans, jugs, \&ro.
The author having also shown the upplication of crown glass for coloured railway signal lampa, conaladed by stating-" That the sucoess which has attended the asortions of the tint gian manafacturers, and eanbled them to prodace their brilliant aperimens, will (be foars) make these humbler sam. ples appear dall and anjuteresting, antil their cheaposas and applicability how in what their advantage consists."

April 21.-Dr. Roast, Secretary, V.P., in the Chair.
"On the Mantuacture of Shell Cameos." By Mr. Gray. Six specimens of shells with the cameos cut apon them were exhibited.
The author commeaced by stating that the ancienta formed cameos by engraving fguren in low relief on difforent kinds of sillions stones, and geocrally selected for that parpose thone which had layers of differeat e0lourt, to that the figures, or different parta of the sarne fipures, were of divert colours. Such cameos are now made in Sonthern Europe and in Prance, where this art has lataly been attempted to be revired; but the hardness of the materiale require $s o$ much labour to be employed in their fabrication, that they are too expeusive to come iato general use.

Numerous attempts have been made to subatitute various materials, auch at porcelain and glasa, for the ancient cameos, but their great inferiority ha cansed them to be neglected. The beat, and now most nsed, substituten are sholls, several kinds of which afford the necessary difforence of colour, and are, at the aame time, soft enough to be worked with ease and hard enough to resist wear. The shells now ased are those of the fesh-eating Univalre, which are pecalin as being formed of three layern of calcareous matter, each layer being a perpendionlar lamina, placed vide by aide. The earnoo cutter selects thone shells which have the three layers composed of different coloura, as they afford him the means of rolieving his work; but the kinde now employed, and which experience bat tanght him are the best for his parpose, are, the Bull's Month, the Black Helmet, the Horned Helmet, and the Queen Conch-the two first are the best shells. After detailing the peculiarities of these shells, Mr. Gray proceeded to give an socount of the progress of the art, which wat confined to Rome for upwards of 40 years, and to Italy within the last 20 years, when an Italian commeneed it in Paris, and now aboat 300 persons are employed in this bracch of trade in that city. The number of shells uced annually, thirty yearn ago, was aboat 300, the whole of which were sent from England, the value of each shell in Rome being thirty shilings. To show the increate of this trade, the number of shelle used in Prence last year was nearly as followe:-

The average value of the large cameos made in Paris is about six frabes each, giving a sterling value of $\$ 32,000$, and the value of the small cameos is about 58,000 , giving a total value of the cemeos produced in Paris, for
 omployed in this trado.

The thanks of the meeting were presented to Mr. Gray for hia commonication, and to Mr. Jobn Turner for two specimens, which he presented to the Society for its masenm.

The second commanicstion was "On a meant of rexdering Sewiptured Sanditione impereions to the effects of our changeable climate and humid atmosphere." By D. R. Hax, Beq.,

The anthor, after stating the natare and atructure of the variocs aasdstones, the causes which operate upon them and separate the particias, and the plans wally resorted to for proserving manon' work from the injorioas action of the air, asid he had found that the ordinary process of asturating the aandatone with linseed oil wat ineffectanl, and having occationally ased beet-wax as an ingredient in paint, and knowing from experience that it it impervious to the blanching or oxydiaing infuences of the common atmo aphere, be considered that if applied to asndatone, it would reader it very darable. "I believe (observes Mr. Hay,) that it has been uned by the ancients in securing their fresco paintinge, by rabbing it apon them, and fe cilitating its absorption by the application of hot iron, and a similar spplication has been recommended in modern times in respect to sculplared marble; bat snch a process most be very oncertion es to ite efficiency, in as much as the absorption muat be very partial and unequal. The plan I would recommend is applicable to attitore, rates, and all sculptured architectaral decorations-anmely, a trough of suitable capacity munt be built of brick, with a faramce nader it, and the troagh filled with and; plece among the aand, at one ond of the trongh, a vessel made of tin or copper, and of the requisite capacity, into which put spirits of turpentine or naphthe and bees wax, in the proportion of two or three ponade of the latter to a gallon of the former, according at the stone to be asturated is more or leue poroas Keep the farnace burning until the aand hat become anfiniently hot to discolve the war amongt the oleaginoun or bitaminous spirita in the tio or copper veacel. Place the stone to be salurated in the unoconpied part of the trough natil it becomes of a temperatare equal to that which has disookred the wax, and if the capacity of the veasel edmity, let the coulptared utove be immediately removed from tbe and and dropped into the adjoining ressel, when, in a fow seconds, it will absorb a sufficient quankity of the wir, held in aolation by the spirits, to prevent the hamidity of the atenoophere ever actag upon it."
An interesting diacussion took place after the reading of the papar, in which Mr. Ray, Mr. Tenanat, Mr. C. H. Smith, Mr. Crace, and several other scientific gentlemen, took part.

ROYAL INSTITUTB OR BRITISH ARCHITECTS.

April 12. - The followingpaper on the important public quention of "Den. tindion," and how far it may be rendered compaicory by legislative enactmente, wras read hy Mr. J. Tornare.
The anthor commeaced by stating, that the reault of the extended investigationn, so long conducted by the medical profession, into the astare and treatment of disease, demonstrated that the great dusy of every man was to earry out preventive measares. Englisb people seemed to be bat little aware of the large amount of disease by which man at the present time is athicted ; and yet the details in Lord Morpeth's recent speech, the returns of the Ingintrar. Gencral, sad statistics from various sourcea, showed that among them divense wath the rale, and health was the exception. Let it be continally repeated, and never be forgolten, that one-foarth of the children born in Rngland die hefore stey reach their fifth year; and out of 49,089 people who died in London in the year 1846, 22.275 were carried off hefore they reached the fifteenth year; and only 2,241 died of old age, which Bobenare stated to be the only disease nataral to mav. In addition to this, it must he known that, as a general rule, when the body is examined ater death, whether of a child or adalt, one or more organs is found in a mase of dinease : a fect which induced a physician to tate that he looked upeo every adult he met in the atreets of London as a walking museam of morbsd anatomy. If the causea of the 49,089 deatho in 1846 be examined, it will be found that the enormons proportion of 14,368 was from diseaces of the orgass of respiration. Now it has been shown that the great sonrea of these diseases what the reapiration of impure air. To suggest mensures for the removal of this great evil, and to prevent some of the most distress. ing diseases to which mankind is subject, was his object in responding to the request of the Society that be would deliver the present address.
Mr. Toynbee then proceeded to consider the subject in itt varions bearinga. In proof of the neceasity for ventilation, he stated that it was of greal importance that air should be continually in motion; for, like water, wheo stagnant, it became offensive and injurious. This was accounted for of the fact, that the air alwayi contained a large quantity of animal and regetable matter in the form of the ova of infusoria and the teeds of the lower vegetable organisms. But the act of respiration was the great cause of the deterioration of the air. The air in the lunge was exposed to $170,000,000$ of cells, having a surface equal to thirty times that of the body; so that during respiration the air wat deprived of oxygen, and became boaded with deadly carbonic acid gas, and wat rendered totally unfit for a meond respiration, being in reality no longer atmospheric sir, but a poisonous gas. A second cause of the deterioration of the air is the combustion of lampe, gailights, candles, \&c. A siogle candle is dearly as injurious to the air as a baman being : two fourteen-hole argand burners consumed as mach air as eleven men. A third source of atmospheric impority is the nopor, londed with animal matter, given off from the lunga and the akin: ench of these parte pours out an ounce of fluid every hour; so that, in a chareh containing 500 people, twelve gallone of noxious fuid are given off in two hoors. A fourth source of bad air in towns is the large quantity of decomporing animal and vegetable matter left to give off itt enavia; and the difbealty there is in the renewal of the air in towns by means of the winds, on account of the ricions mode of their conatraction and their large wize. In reference to the imparity of the air of London, Dr. Mantell states that varioos clases of infusoria, which he was in the habit of keeping alive in his bouse at Clapham, all died in London; and it is well known that seareety any plants will live in London.

It was then atated that certain diseases were distinctly traceable to the abseace of rentilation-asmely, fever, consamption, scrofula, deafness, and that mont fertile origin of namerous diseases, the common "cold." It was shown that 120,000 people in England and Wales are alrays alowly dying from consumption; that there is double the amount of this disease among ia-door than there is among ont-door labourers ; that it was more frequent among women than among men; that in 1839, out of 33 milinera who died is London, 28 died of consmmption.
Mr. Tojnhee then declared that, ap to the present time, the subject of reatilation hed been entirely neglected in the construction of rooms, housea, towna, and cities; that the greatest injury had been inflicted upon mankind by this neglect; and, as the popalation increased, and towna became larger, the evil moat become greater, unlest remedies were at once carried into theat. Under theat circumstances, uatil society shonld be sufficiently in. formed volantarily to secure its well-boing, it was the hounden duty of a government, the enlightened guide of its people, to tuggest measures, and tee them carried out, to prevent the large amount of mieery that the absence of veptllation was prodocing. The important question, then, was-How far ceadd Goverament interfere with edvantage in enforcing plans of ventilation by legialative enactments?
Mr. Toynbee thea submitted the following propositiont, for the adoption Goverament, to the consideration of the Institute :-

1. That no living, aleeping, or work room shall contain leat than 144 supertieial feet, or shall be leas than 8 feet high.
2. That mach room shall have one window, at leat, opening at the top. 3. Alvo an open fireplace.

4 That in every living, sleeping, or work room erected in future, some method shall be edopted of allowing the foul air to escape from the apper pirt of the room.

He then polnted out the practicability of carrying out this provision, either by the introduction of Arnott's valve into the chimney, thousands of which were at this time in operation, and which might also be adapted to existing chimneys, witbout fear of smoke, by the addition of a simple contrivance which he deacribed; or a dintinct channel might be made for the purpuse.
5. That every such room erected in future shall have some means of continually admitting fresh air.
6. In every pablic huilding in which gat is ased, to insiat apon the use of plans to carry of the products of combustion, and not to allow them to eacape in a room. Various plane having thia ohject are in operation in hundreds of shops, and may be seen in many shops in Regent-street; by their use not only are the goods in the shop saved from iojury, but the health of the people is improved. He was happy to hear that in Corent Garden Theatre not a particle of the products of combustion from the gat was allowed to enter the theatre.
7. That all churches, schools, theatres, workhops, Forkhoaset, and other public buildings, shall adopt such methods of ventilation as are approved by the Medical Oficer of Health.

Mr. Toynbee pointed out how these desirable objects were to be effected, and showed that every house and room must be so arranged that it can be supplied with fresh air, to replace the vitiated air which has beed removed. Prof. Hoskiag had carried ont these plens in every part of his house; and until they were general, the dieesses dependent upon the want of ventilation must be a coarge to society. He observed that in all the stables now erecting, admirable plabs of ventilation were adopted. Having given this sabject deliberate consideration, he had arrived at the above concluaions; in which, among many othert, he was supported by Dr. Sutberiand of Liverpool, and Dr. Guy of London-two of his many fellow-labourers in the public-bealth canse, whose ealightened intelligence was ooly equalled hy their benerolence.

In conclusion, he stated that the varions Health of Towns' Associations were at work heart and soul, instructing the masses of the people as to the best means of promoting their physical nelfare-a labour in which every enlightened man should join. And he felt that if government would lend all the aid in its power towards carrying out sanitary measures, not only wonld an enormous amonnt of misery be saved, but an extent of happiness would be gained of which we had at present only a faint idea.

INSTITUTION OF CIVIL ENGINEERS.

March 23.-Sir J. Rennie, President, in the Cbair.

A paper was read "On the Fentilation of Mines." By Mr.J. Ricrabdson. If dwells at some length ou the present methods of ventilation and the objections to them, illustrating the positions by quotations from the best authoritios on the sabject; all of which went to show, that in spite of all the care and attention that had been given to the queation, all the skill of the engineer, and the introduction of the safely-lamp in 1816, the loss of life had been greater since that period than it was in a corresponding period previoos to its introduction. This mast not be charged eatirely to the lamp; for although it might have rendered men bolder, and induced them to trast too mach to it in venturing into those parts of the mines which formerly woald have been abandoned, sill it mast be borne in miad, that as the coal was got at greater depths and distances from the shafte, the rentilation becomes more difficult; and, from the greater number of persong emylojed in one mine, if an accident did occur, the loss of life was greater in proportion. The anthor then entered into calcalations, shuwing that the dimensions of the "upcast shaft" shoald in all cases be increased, in proportion to the augmented volume of the air from the er. pansion of the bigher temperalure at which it leaves the mine after tra. versing all the presages; and if this were atteaded to, not only would the general veatilation be better, but in the event of an accident ocecarriag by an explosion, or the derangement of some of the air-passages from falls of the roof, \&c., an extra power could be applied, which would at any rate prevent a portion of the frightful loss of human life which now occurs. The conclusion drawn, however, was, that in almost all cases it was the culpable aegiect of, and not the want of means of prevention, that caused the destruction of health, life, and property in the mining operations of the kingdom.

This opinion appeared to be participated in by all the apeakers, in the discussion which ensued, and in which the interference of goverament by legislative ensctments, with respect 10 methods of reatilation, was severely deprecated. It had become fashionable now, whenever a difficulty oc. carred, to recommend " legisiative eanctment" as an oniversal panace: as if a committee of the house, or a body of commissioners, none of whom probably possessed any practical knuwledge of the subject, could at once fall by inspiration opon the methods of preveation or cure which had so long eltoded the careful investigation of acientific and practical men, whose time, talents, and fortunes, had been all devoted to the subject, from that great incentive to exertion-self-jatereat. When the example of foreiga conatries was quoted, it should be at the anme time shown in how beokward a state they were in engincering, in mlning, in commeroe, and, in fact, in everything with which the goverament interfored, as compared to the high state of perfection arrived at in this conntry, where there was nothing, for-
tunately, bot competition to urgo manufacturers and miners to bring their prontuce to market of the best quality and at the cheapest possible rate.

March 30, and April 13.-The discassion on the above paper was continued through both these meetings, to the exclusion of any other subjects. The methods of ventilation in ase in the mining districts were fully described, and their peculiarities digcussed. The causes of accident by explosions, and the consequent choke-damp, were inquired into ; and the fitness of the attempted methods of prevention or cure was debated upon. The method of exhausting the air was contrasted with that of forcing it forward into levels by means of bellows and pipes. The system used in the north of placing a furnace at the bottom of the up-cast shafl was insisted upon as that best calculated for the extensive coal-mines of that district; while the method introduced by Mr. Gibbons in Staffordshire of exhaurting the foul air, by air-heads cot in the lop of the coal, connected with a channel in the side of the shaft, terminating in a chimney on the surface, was received as a decided improvement upon the ordinary system in use in that coal-basin, where the extraordinary thickness of 30 feet of the vein of cosl renders a peculiar plan indispensable. Varions methods of attempting to carry off the foul air fron the 'goof,' whether by additional shafts or by bore-holes, were proposed, and shown by mining experienca to be totally impracticable, and calculated to be rather prejudicial than useful. The interference of Government was strongly insisted upon, and as decidedly objected to by those miners whuse long experience and good judgment entitled their opinions to deference and consideration. It was ahown that the foreign mines which were ander the constant superintendence of Government engineers, far from being exempt from accident, were not only more liable to the effects of deficient ventilation, but that the actual loss of human life was greater than in Eagland; and that if our mines were subject to the same annoying trammels, the price of fuel must be unduly raised, without any corresponding advantage, or any immunity from danger. There could be an objection on the part of the coal-owners to the formation of an association for regularly inspecting and reporting opon the states of the various mines, and the communication between the various districts of the methods found to succeed best under the attendant peculiar circumstances; but reasons were given why such a power should not be placed in the hands of Government officers.

The subject of safety-lamps and their uses was also discussed : Dr. Reid Clanny's first invention of the lamp in 1813, which necessarily failed from its cumbrous form and general inapplicability for working purposes, and the recent form he had adopted, combining portions of the olher lamps in use, so as to show a bright light and yet be free from danger: the extraordinary coincidence of inventive thought between Sir Humphrey Davy and Mr. George Stephenson, the one acting upon purely chemical theory, and the other upon mechanical knowledge and practice, and yet both simultaneously producing lamps which were almost identical, and which still remuined very generally in use under the names of the "Davy" and the "Geordie."

April 20.-" On the Defects in the Principle and Conatruction of Fireproaf Buildings." By Mr. Fairbaian, of Manchester. The paper commenced by insiating strongly on the danger of making nse of cast iron beams of large span, withont intermediate supports, unless the dimensions of the beams were very large, and poiatiag out the treacherovs nature of a chrystalline metallic body, such as cast ison, when applied to support heavy weights in the construction of buildings. After some further remarks on the importance of a thorough knowledge of the laws which govern the use and application of cast iron as a material in building, nader the various strains to which it may be subjected, the author proceeded to investigate the circumstances connected with the fall of Messrs. Gray's cotton mill at Manchester. This buildiog was stated to be about 40 feet Jong, and 31 ft .8 in . wide, and to consist of two storeys in height, cuntaining the boilers below and the machinery above, over which, instead of a roof, was a water cistern, covering the whole extent of the building. The first floor was composed of large irod beams, of 31 ft .8 in. span, without intermediate support; on these beans brick arches were turned, sustaining the whole weight of the npper part of the building. The author then demonstrated, that these large beams were totally inadeqnate to support the weight of the superincumbent mass, especially as the whole pressure was opon the centre of the beams, which were of a form ill calculated to bear the pressure; added to which, the wruaght iron trussing was so badly applied, that the breaking strain was arrived at before the truss rods were brought into a state of tension. The consequence of this was, that one of the lower beams broke in the centre under a less weight than it had previously supported, both under preliminary trial, and when the cistern was fuller than at the time of the accident. The paper closed with some remarks on the delicate and invidious duty of reporting on such accidents as those in which the reputation of gentlemen of high professional acquirements may be involved; and the author expressed his reluctance in condemning the construction of the building in question.
In the discussion which ensued, it was argued that, if proper proportions of material had been observed, the accident ought not to bave occurred. It appeared evident that the wronght iron truss rods had been so put on, that they allowed more than the breaking strain of the cast iron to be arrived at, before they came into operation. The instances of the trussed-benm bridges, extengively nsed by Mr. Stephenson, and other engineers, on ruilways, were quoted to show, that by a judicious employment of wrooght iron trusses upon cast iron beams, large spans might be cressed with safety; and even, in some cases, where, from unseen defects in the metal, a beaw
had fractured, the brass rods had sufficed to sopport the stractare, and enabled the traffic to be contioued across the bridge until the repairs coold be effected. In all cases a strength of not less than foor to one stould be employed, and for such uses as the iron beams of pumping engioes, which were exposed to great vibration, and sadden shocks, from the sudden inefu of steam below the piston, or the accidental breaking of a pump-rod, the proportions of seven or eight to one should be obsarved.

CHEMICAL SOCIETY.

March 15.-Lieut.-Col. P. Yonse in the Chair.

"On the Decomposition of Waler by Platiaum and Black Oxide of Iron." By Dr. G. Wilsun.--The interesting reseurches of Mr. Grove, on the decomposition of water by white-hot platinum, lately made public, have necessarily led to many conjectores concerning the cause of a phenomenon so extraordinary and unexpected. Certan remarkable peculiaritien possessed by platinum, and in a less degree by others of the noble metala, have thrown some doubt on the powers of mere heat to effect the decomposition of a compound of such stability as water. The repetition of the experiments with other substances not open to the same objections is, however, a matter of areat difficalty. While reflecting on the means of mocomplishing this, the attention of the anthor was accidentally called to the evolution of small bubbles of gas from the fosed globules of oxide of iron, produced by burning iron wire in oxygen gas, falling into water. Ia the hope that this might afford some clue to the phenumenon in question, arrangements were made for performing the experiment in sucb a manner that the gas evolved should be collected and preserved for examination. This was easily done by directing the fused globules of oxide, by means of an isclined plane of tin-plate, from the jar in which the wire was buroed, andor the edge of an iaverted fannel entering a test-tabe immersed in the water of the poeumatic trough. The quantities of gas disengaged by the globules were very unequal ; some gave none at all. Generally, globules from the thickest wire produced most gas. The gas on examination, however, wh discovered to be pure hydrogen, merely sullied by a trace of atmospheric air; and its origin was at once explained by an exumination of the globules themselves, for very many of theye latter were found to contain in their center a kernel of fused metallic iron, which had escaped oxidation when the wire was burned in the gas, and which in a bighly beated state coming in contact with water occasioned the decomposition of a portion of the latter in the usual manner. The black oxide of iron does not appear to have the power of further abstracting the oxygen from water. This experiaent is, therefore, valueless in elucidating the fact of the decomposition of whter by beated platinum. It is probable, too, that the temperature of the melted globules of oxide of iron is really much inferior to that of plationom in the state in which it is employed iu Gruve's ex periment, namely, just at the point of fusion.

Dr. Wilson then argues, that the decomposition of water by a white bent may be referable to the mechanical disruption of the particles in direct contact with the heating body, and not to the decomposing power of heat alone; as the atatement that water can be produced by the same procewes that dipunite its elements would be tantamount to affirming that galike effects may flow from the same cause, without any alteration in the quat. ties or conditions of the water.

R2visurs.

Encyclopedia of Civil Engincering,-Historical, Theoredical, and Practical. By Edward Cresy. Rojal 8vo. London: Longman and Co. 1847.

[SECOND NOTICE.]

We paused last month in our notice of Mr. Cresy's book, at the interesting subject of engineering in England, of which we only gave one extract, that relating to New London Bridge.
Docks deservedly occupy a considerable space in Mr. Cresy's book, for they are works in which the English huve peculiarly distiog uisted themselves. Indeed, the tidal phenomena of the English cousts bave had as much to do with the extension of this class of work as a0t commercial demand, for whereas in the coasts of Holland and the United States, and in many parts of the world, the rise of tide is little or nothing, on the English coasts it is in all places considerable, and particularly favourable for all kinds of docking operations. In Frabce docks and basins are chiefly for naval purposes, and in the Mediterranean there are no tides, so that England stands almost alone in a class of works which demand great scientific resources, and which are frequently on a seale of colossal grandeur.
Mr. Cresy in taking up this subject prefaces it by a description of the natural featurew of euch river and harbur, which is easential to a proper appreciation of the engineering worke. In the Thamea, Mr. Cresy states that there are not only the commercial docks in the Loo-
dow district, but Govermment docks at Deptford, Greemwich and Woolwieh, whicb, with the numerons small basim belonging to shipbailders and merchants, present an accumulation of works of this kisd, not elsewhere to be met with, though the area of the Liverpool docks is mach more considerable. Another very numerous clans of works in the Thames are the landing piers, some on a considerable scale. Mr. Creny notices the Gravesend piers, but not that at Southend.
In adrerting to the east coasta of the laland, the author describes some of those harbonrs which have given so much trouble to the engineer, on account of their shifting channels, and the silting up of thoir basins. Of Wells harbour he gives a very curious illastration.

It may very well be conceived how well a review of the harbours and ports of England is calculated to bring under the notice of the profesional reader a number of works which, however weli known in their rempective localities, are not familiar to distant engineers, and the particular value of a work of this kind in, that in this way it enlarges the sphere of professional observation, and in so far of professiomal experience. This is particularly desirable in the present state of engineering, when an engineer from the south may be sent to exeante hydraclic works in the north, or an engineer from the east be derpatched to the west, and so forth. Were this experience more difused, we should not see cases, as we have recently done, of steep stone malls being run up as sea walls, under the idea that with strength of material, good masonry, and plenty of concrete, the engineer lad done all that was required of him, and that the sea would not tumble it down.
In the present day, railway engineerling and surveying employ many members of the profession, whome chief experience is in connection with earthworks, so that when they come to be employed either generally in bydraulic engineering, or are required to execute works of that class in the cunstruction of a railway, they are very apt to find the want of a more extended experience. Hydraulic engineering is $s 0$ different in its charncter, and in its application-it varjes so much in its forms, according to the localities in which it is practised, that it is mell calculated to bewilder the uninitiated or the inattentive. If an eagineer runs up a railway embankment, or a viaduct, all be has to care about is that it be made of anfficient material, and with sufficient workmansbip, and he bas no need to think about it again, for it will rand for ever. Not so if he puts a pier in the sea, or builds a quay wall; in such case, it will require something more than bricks aud mortar to secure the efficiency of the work, for thongh lie may lay down wat he considers a very strong and aufficient work, it may be tbat the stronger and the more rigid his materials, the more certainty of its being swept out to sea. Hence the very serious complaints that we hear of the unsatisfactory mature of so mavy of our hydraulie works; for if in our railway works we are as it were spotlem, and withont blame, our harbours are perpetual sources of annoyance and complaint. We are therefore particularly glad to see a work like Mr. Cresj's, which carries out on a large scaie, and in a comprehenlive manner a design, which in the puges of the Journal we have only been able to do piecemeal, and in a very imperfect manner.
Mr. Cresy gives plans of most of the docks in the Thames, with sections of the entrance locks, and also describes the docks at Sheermess. The Hall Docks are given in great detail ; Spurn Point affords the suthor an opportonity of describing the old lighthouse, built by Joho Smeaton Hartlepool Docks are also described, and a plan is given

Mayy of the Scotch harbours have of late years been improved at a great expense, and the present work contains plans of most of them. Among them we may notice Leith and Dundee. There is also an ace count and engraviogs of the Slip at Dundee. Gourdron Harbour, by Telford, is a specimen of a small fishing harbour among rocks. Aberdeen Harbour is accompanied by a plan and engravings, represeating the mamonry works. Peterhead is another specimen of a harbour constracted among the rocks, and which was partly executed by Sweaton. Erazerburgh and Burghhead are also represented in plans.
Findhorn, Avocl Harbour, Cullen, Fortrose, Malomac, Kirtswall, Kyle, Rhea, Tabermory, East Tarbet, Small Isles Pier, Feoline, Corran, Androssan, are some of a multitude of works constructed on the Seotch coasts. Of all those mamed, plans and vother engravings are given in the present book. Of the wosks in the Ciyde we do not buwever notice such anple details.
Liverpool, of course, gives an opportunity for lengthened description, but in this case also we think Mr. Cresy's detuils might have been given fuller witl muclı advantage. His subject ls huwever so extenuive, bis space limited, und the amount of intormution he has giveu so great, that we camnot quarrel with him even about Liverpool.

Holyhead Harbour is described, and we may observe that this
encyclopedia will be found a work of easy reference for plans of docks and harbours.

St. Ive's Harbour and Plyenouth are the chlef illustrations on the West coant, but the Breatwater and the Eddystome Lightbonse come in for an ample share of deacriplion. Many of the courses of the lighthouse are shown, so as to exhibit the manner in which the work was tied in by dovetailed and jointed masonry.

Dover and Ramsgate are the plans given on the South-east coast, with a copious account of the works. The Bay of Dublin, with Kingetown and Howth, serve for ezamples of lrish works. Jersey Harbour and St. Aubin's cloes the list of harbours.

Among the lighthouses, of which numerous examples are given, we notice the omispion of cast iron lighthouses and screw-pile lighthonses, which are recent additions to the reaources of this department of engineering.

As exemplifications of ancient art. Mr. Creay gives some of the old gates and castles dispersed throughout the country, and thence he proceeds to bridges.

We are not quite disposed to concur in his dictom that no bridges of any consequence in this country were erected previous to the Koman invasion, for we think he has given evidence to the contrary in the case of Old London Bridge. Anciently, bridges were ereched of timber in preference to stone, because timber was the material at hand, the cheapest and the most available, as it is used for the ame reasome at the present day in many parts of America and Europe. Mr. C'resy gives a history of bridges in Eugiand, of which we slall avail ourselves of some extracts.
" Bridges, -Wo have ao evidence of any bridges of consequence being erected previogs to the Norman conquest, and the names of vur principal towns on the banks of rivers, having the word ford attached to them, seems to confirm tho opinion that none existed. Following the conrae of the Watling Street, or great Roman rond over the Medwray, we meet with Aylesford ; over the Dareat, Dartford; the Cray, Crayford; the Raveasboarne, Deepford; and so with moat other rivers in England. The capital in all probability wrould firat have a bridge in preforence to a ferry, which is noticed over the Thames. We have an account of a timber bridse constructed by Etheldred in 1002, which lasted many gears, and also of another built in 1165.

The first stone bridge was begun in 1176, by the celebrated Peter of Colechnrch, who continued the work during the reigns of Heary 11., Richard 1., until the second yeur of the reign of King John, when he died, and was baried in the crypt of the chapel orected over the centre pier.
It appears to have been the custom with the society called the Brotbers of the Bridge, when any member died during the superintendence of any important work, to have his remains entombed within the structure; and as all great bridges were provided with a chapel and crypt, every means was afforded for the performance of the annal rites that were neually instituted. The great bridge at Avignon, when built by \mathbf{S}. Benezet, or Johannes Benedictas, the fint brothor and founder of the order, had sach a chapel, where he was boried in 1224.
This stone bridge was 926 feet in length, 15 feet in width, and 60 feet in height above the level of the water. It contained a drawbridge, and nlaeteen broad pointed arches, with massive piers, varying in solidity from 25 to 84 feet, reised opon strong elm piles, covered with thick planks, bolted together.

Timber bridges of very simple construction were logg made ase of over the wide civers in England, but no skill was exhibited in the framing, mor any further mechanionl principle than that of atrength; trees merely squared, were laid side by side, at right angles with the stream, supported on a aingle row of perpendicular piles, or several rows parallel to each other, capped and cross braced, and sometimes plaoked over to the height that the water rose, tho space between being filled In with stomes. The roadway was crose-planked, covered with chalk and gravel, and frequeatly required repair, in consequence of the air not being admitted to the upper side of the planking.

It would be an endless tank to enumerate all the bridges erected io Eagland by the freemasons of the middle ages; many were built, as bas been observed in the same manner as the vaults of the chapter houses and ca. thedral churches; after the piers were carried above the level of the stream, ribs of stone spanned the opening from one pier to the other, and aupported a rubble construction laid above them, an urrangement combining both economy and coavenience. In subsequeut instancea we see one or more rings of voussoirs spanning a river, upon which slabs of stone are laid, and the bridge completed; but it must be borne in mind thut anch ribs only serve tho purpose of centres, and cannot have the strenglu of our undern bridges, where a wedge-like form is given to every portion of the stone.

Afler the reign of Ilenry VIII. bridge-building underwent a considerable change; tumber constructione again becane very common, and nome of the priucipal livers were crossed by them. In the year 1636, Loigo Jones erected a bridge at Llanwast in Denbighshire, alter the muthod pracetised in Ilaly, which was the mudel for some of the succeeding structures.

It was formed of three segrmental archet, the middle spanning 88 feet, Whith a versed sine of 17 , and the breadus of the soffite of the arch 14 feet. - The depth of the voussoirs, measured on the face, was 18 joches, the plers
wope 10 feet fa thelsess. The poinied arch was mo locger uood, and ive defences of towers and geteways were unnecensary: the panage wat mads mere conveniont, apd the readway approsehed a horimotal lise, in conegracace of the substitution of vehiclea for the pack-horse for the tranait of merchardiso.

At the comsencement of the sighleeoth century wo find evidences of as attempt to improve the bridges throughout Eagland, but there ia no account of any principles by which the engineer could be directed, oor are there any names upon record to whom sach constractions were particulariy entrested; what had been done in Italy does sot seem to have foupd many imitaters lere, mod though Newtoo had discovered the priseiples apoe which mechanical science was based, it was lopg befere the equilibriane of the arch eceapied the consideration of prectieal men. Dr. Heako had, however, driwe attention to the fgere which a hoavy chata or rupe asanmes when enspeoded at the two ends, and sbown the properties of the calewaria ; but it was not then applied to the construction of bridges."

The expmplifications of the larger bridges of modern times will be found very mefol, as they ipolade details of every important work. In moat cases the construction of the coffer-dams, centering and arsiliary works in folly shown. Copious extracts are also given from the specificationa, particalarly valuable in illustration of the wortmanchip, The railway bridges give so many examples that a very good tastance is show of the ealarged field of practice in the present day. This affords Mr. Cresy the opportonity of deacribing skew bridges.

Cat iron bridges form a aection of themelves, and are fullowed by sespension bidges, both of which are amply illostrated.

The Ancient World, or Picturesque Sketches of Crealion. By D. T. Ansted, M.A., F.R.S., F.G.S., Profestor of Geology in King'a College. London: Van Voorst, 1847 ; 8vo. pp. 408; woodeute.
Some years ago, the readers of French literatare were entertained by 詋 absidged verion in that language of a work bearing the truly oriental rhyming title, "Takhlis vlabriz 6 talkhisi Bariz"-The purifcation of gold in the description of Paris. The author was a young atudent, the Sheikh Refaa, sent to France by the Pagha of Egypt to complete his edacation. The original work was published at the Arabic press of Boulaq, in Exypt.

The Sbeikh Refan, thongh a Musulmsp, resided is Paris, for the purpoes of learning the plitosopby of the Cbristians Impressed with the wonders of European civilination and the magnificence of the city in which bis education was completed, be became ansious to overcome the prejudicen entertained by his conntrymen againat the arts, sciences, and institutlons of the Franks. The chief dificulty which he experienced was in reconciling the Newtonian system of astronomy with that of the Koran He remarka that the former is altogether irreconcileable with the account given in the books accounted sacred by the Christian as well as the Koran; and that the orthodox of both creeds will have to exercise great caution in reading the modem scientific treatises; for they are Written with such logical precision and mathematical accuracy, that nothing but the strongest faith is proof against their conclusions,

Here was the testimony of a sensible man, whose reason drew him one way and his prejudices another. This state of incertitude was not, bowever, peculiar to him. A great continental mathematician thought it necesaary to preface his investigations with an apology for the discrepancies which did violence to his faith, and made an excuse which meant, as far as any meaning can be attached to it, that he did not see any way of escaping the conclusions of modern science; but if he must assent to them, it was againat bis will. The thunders of the Popes (who, until the present, have always preferred dogmas to proofs) have frequently produced recantations, ezpressed in a similar spirit.

A nomerous and sealous sect existed in our own country not many years sltace, who denounced the doctrines of Newton as blasplemous, and attrihuted to the credence they had obtained the temporal calamities of the country. Many halfotaught entlusiasts lave attempted refutations of the Principia,-and with perfect success, if it be a sufficient criterion of success that no one has replied to them. Even within the last twelvemonths, the Quixotic attempt to enter the lists with Newton, Lagrange, and Laplace, has been renewed by a Mr. Isaso Frost: whose chivalry we should bave deemed somewhat too late for the times, had we not read the reviews of his essay. These convinced us of that which otherwise we should bave deemed im-possible-that Mr. Frost might yet find disciples. It is difficult to decide whether be or his reviewers display the most ludicrons ignorance of the subject with which they imagine themselves acquainted. Why sloould Mr. Frost despair ?-Johanna Southeote was eminemily succestful in her day, and even now has followers.

Geology is in the same predicament an astronomy-it is noanswerable, but heterodox. It is true, thet various dispatants have appeared, and amosg thew those of whose edocation better reaults might have been anticipated. For example, the Dean of York pubfislied long letters in the Timet, in which be demolialied geology to his own perfect satisfaction. Had be kept to the question of hetero. dosy, he would have been iaexpugnoble-cuigne in aud arte credendwm eft. But when he descended from the mountain to the plain, wisen be attempted to discuss mechanicul principles, he admittod the rights of buman reanosing and put himself upona leval with his opponents. This was the fatal error of his tactics. He illustrated the motion of plapets by the whirling of a pail of water-it was but too evident that he had tried the experiment, and been made giddy by it. He treated of the congelution of igneoss vapours-and in language which plainly indicated that he had incautiously exposed himself to their fomes. The good doctor's zeal was worthy of a better cause. An excellent theological library was turned into a bad laboratory, and the Schoolmen and the Fathers were displaced by crucibles and the three mechavical powers.

The philosophers of this achool seem to forget that the simple denial of the theories of modern geology is not sufficient; if they reject theae, they must substitute others. A vast nomber of natural appearances bave been recorded-the skeletona, ezuvie, and veatiges of by-gone races of animala-the traces of violent disturbances of the materials of the earth,-and those ancient records to which the Pyramids are ephemeral gousip, are written in so large and legible characters that it seems impossible to dispute their meaning. If, then, the juterpretation given by geologists be rejected, bute they not a right to demand that a better be supplied? You dispote-may they-our explanation of the facts; the facte themelvea cannot be disputed;-bow then do you explain them ?
To this question no reply has been even attempted. But lest the student of geology should feel himself in the same anomolous position as the Sheilh Refaa with regard to astronomp, let him be assured that neither soienee need, in reality, ofiend his scruples. The subject has been to hotly deboted that, at the risk of appearing to discuss topics not atrictly within our province, we will endeavour to show how the discrepancies in question may be recanciled without resorting to eeeptlcism. The view which we take may be best explained by an illustration. Suppose that an eminent writer on the laws of commerce and navigation were in the course of his writings to make incidentally a mistuke reapecting the construction of steamers or sailing vessely; wonld that mistake invalidute the whole of his treatise? A wise reader wonld discrimlnate between the two kinds of knowledge, and allow that his author might be thoroughly verned in politleal and 6nancial economy, and yet be ignorant of engineering and shipbuildine. In the same manner, when David speaks of the "round world" being made "so fast that it cannot be moved," are his aspirations of thankegiving the lass worthy of reverence becanse he erred in thinking the worid a flat circle inatead of a apheroid, and was ignorant that the spot where he indited was moving with a velocity which the swiftest arrow never attainad?

What would be thought of the wisdom of a judge who opposed trial by jury because the Jews had no such institution-who adopted the severe penal code of the forty years' sojourners in the wilder-ness,-and passed sentence of death where subsequent experience has proved a milder puniahment to be more efficacious? Could an English mariner adopt the rules of seamanship practised when Panl navigated the Archipelago;-or a furmer adhere to the Levitical rules for fallow lands;-or an architect imitate the construction of the temple of Solomon? Must modern physicians adopt Hezekial's plaister of fige, of astronomers prefer his sun-dial to their own ohronompters? Must we disbelieve in the existence of America, and suppose Gades the extremity of the world, because the geographical knowledge of the inspired writers was imperfect ? Must England imitate " the freest nation on earth," (the United States) and sanction slavery because it is recognized in the Pentateuch ? Such, indeed, is our absurd position, if we suppose that their commission extended to purely secular objects; if, in other words (for the whole of the recent confusion on the subject may be referred to this) the same respect be demanded for their incidental remarks as for their primary doctrines.

Can anythlng be more unreasonable than this? Men of every creed admit that when the Queen appoints Royal Commissioners for a particular investigation, their authority does not extend beyond the objects of their commission: and yet those who carry out the analogy. in matters of bigher import, are reviled for impiety, blasphemy, and scepticism!
One more observation on the question as it affects geology, and we diapise the subject. The Mosaic account of the creation, like that
of Elesiod, was in all probability nothing more than a record of the betief geserally prevailing among the contemporaries of the writer. At all events, there is not one word in the accounts which asumes to them a bigher character. But however this may be, one thing is certain-that the Mosale account would be lnconsistent with itself if interprsted literally. The sun was not created till the third "day;" therefore, during the previous days, there were no means of marking the period of twenty-four bours-the interval between sunrise and sumrise, of sunset and sunset. We are, therefore, forced to a conclusion which no sophistry can elude,-that bere, as elsewhere in Hebrem, the day is an indefinite period or epoch. Lastly, be it remembered, that if the Biblical student reject the conclusions of geology, he must do that for which in many cases he is not preparedextend his scruples to atronomy also: both sciences are equally at variance with the Monajc conmogony.

Of Professor Ansted's Ancient World the establisbed reputation of the anthur readers a critical examination uneceseary. The prineipal object of this work is to present to the uninitlated reader u serien of picturen or descrlptive. representatiops of the appearance of the earth at different periods of its transition, from the chaotic condition, to that in which it became duly prepered for the babitation of man. With this object in view, Professor Ansted has generally confined himself to the statement of the results of observation, and bas frequently deemed it unnecessary to detail the steps leading to those rasults. In a work intended, not to proce the science of geology, bat simply to lay before those who are about entering upon its uudy, a general description (an outline chart, as it were) of the route they wre to take, the minutonesm of logioal induction would be tedious and unnecesuary.

The great merit of the work is its fidelity and vividness of deseription. The wooderfat story of creation is not told as an old atory; but the reader is put in the position of an actual observer of the phenomena, and is transported to the very scene and time of their occurrepce. This method of realising the results of science is bedeficial to the student, by the strong impression it makes upon his memory; it is profitable, also, to the more advanced in knowledge. The advantage of clearly tracing out the results and actual applications of science cap only be duly estimated by those who have experieseed the benefit of this kind of study. The remark applies to both the induotive and eract sciences. The philosopluer who contente himself with understanding a particular "law," and the method of proving it, is content with knowing half a subject. He must derelope the consequences of the law under all the variations of cirenastances to which it can be applied-in other words, he must trans late it into familiar, untechnlcal language-before he can be said to bave apprehended the whole of its meaning.

Altbough the work before us displays geology in a new light—not as a description of the fosails of a museum, but as the datural history of animated beings,-although the dust of ages is wiped away from these records of the pre-adamite world, we are not to suppose that the author bas given license to his imagination at the expense of scieotific accuracy. He exhibits the ancient inlabitants of the earth as living creatures, ezhibits their form and size, their habits and manner of lising their relations to coeval animale, their means of securing their prey, and of resisting or eluding bostile attacks, -but nothing is represented or described without authority. These Sketches of Creation are not fanciful sketches. On the contrary, they are drawn with scrupalous adherence to known facts, and in many cases, are even left somewhat obscure, because more precise representations of the subjects could not be given without the hazard, at least, of inaccuracy.
The opponents of geology are aniformly ignorant of its facts; but those whose prejodices are not too strong, nor intellects too weak, to allow them to learn truth, may acquire the rudiments of the science pleasanlly enough from the present treatise. It is sufficienty precise and methorical for a lecture room, and yet far more entertaining than nine-tentlis of the new novels. 'The author has practised an inoocent artifice-a pious fraud-upon his readers. While they seck mere amusement, they are being instructed. Correctives of error and wholesome truths are administered as pleasantly, and swallowed as nomspectingly, as the dosed cakes given to fractious children, who resist medicine in its more palpable furm-the unconscious victims laney they are indulged, while in reality they are being physicked.
It would have perbaps added somewhat to the interest of Profestor Aarted's wrork to the general reader, if the accounts of fossils had been lems detailed, and the information respecting the changes which hare taken place in the strata composing the earth's crust more smple. When, however, we consider the knowledge which has been monderfally, but securely, attained from the fragmentary remains of ancient andmals, we can scarcely feel surprise that one of the most
realous students of palsontology sboald desire to confine allention to its reanlk. A striking iestance does this new and woaderful atndy present of the value of acoumulated knowledge. By co-operation and unanimity of purpose, by the willingeess of each labourer to pursue the task where his predecessor left cfit the steep rugged road of knowledge has been made sn mooth, and carried so far, that the labours of indlviduals are almost insignificant compared with the whole work accomplished.

It is no ordinary contemplation to see creatures that perished ages before history-our history-began, reanimated by this Promethean flame of science which exhibits them moving freely on the face of the earth that has so long hidden their remain. "Can these dry bones live !" For uncounted cycles of time, their mepulture luas been undisturbed. Earibquake, flood, tempeat, and volnano's fire have prased over, yet not effaced, them. The rough hands of the miner and the delper reveal these sacred hieroglyphics, and the patient resoarches of men of ecience expound them. The one exbibit the world as the reponitory of the skeletone of nations: the other pemetrate the mysteries of the great charnel-house, and unfold one page more of that blazing scroll whioh records the benlficence and power manifested in the works of creation. The dry bones are dry no more: reclothed with fiesh, renewed with life and atrength, they add yet another testiunony to the potency of that voice which is u mighty in operation," and the Vision of the Valley is fulfilled and interpreted anew.

Engineering Field-Notes of Parish and Railnay Surveying and Levelling. By H. J. Castle. London: Simpkin and Co., 1847.
This work, which we receatly noticed, luas already attuined a second edition, and which has been improved by adopting some of the suggestions we gave in our review -one of them, adding sketehes to the field-book.

The Baronial and Ecclesiastical Antiquitien of Scolland IMretrated. By A. W, Billings add W. Buan. Part L. Quarterly. Edid* burgh: Blackwood and Sons.
If we may judge of the example before us, this work promises to be one of great intereat to the architect and the antiquarian. The present part is illustiated by four well executed engravings of Glasgow Cathedral, which we see are from the drawinge of Mr. Billingt, a gentleman well known to the Profession for his zeal in promotiog works on Gothic arehitecture.

MR. WARNBR'S INVENTION.-THE BALLOON "LONG BANGE."
Extracta from the Journal of the Proceedings of the Committee (Captain Chads, R.N., and Lt.Col. Cralmze, R.A.) appointed to ingwire into Capt. Warner's Inventions, by the Board of Ordnance.
13th August, 1846.-Capt. Chads and Ltw-Col Cbalmer repaired to the official reaidence of the firat lord of the Treanury, where they met Lord J. Rusell, the Marquis of Anglesoy, Viscount Ingentre, and Captw Warber, to settie preliminary instructions.
"Much converiation took place on the subject of the course of experi. ments necessary to test the practicability of the 'Lag Range.' Capt. Warner stated that he fonnd it imposaible to come to a proper understanding without he was persoitted to disclose a part of his secret, which be proposed to do, and which was assented to by the commitlee, under the anction and ceutian contained in paragraph g° of the mater-genaral's inetruetiona
"Capt. Warner then produced five drawingt, showing that him mode of operation is by means of an air-balloon.
"The committee submitted to Capt. Wermar the following axperimeat, requeating from him an entimate of the cont of carrying it out, vix., that be should construct a balloon capable of carrying 45 projectilen; that he should deponit 15 of these at 4 miles; 15 at 41 miles; and the remaining 15 at 5 miles." [At a subsequent meeling, held 10 th Septr, it was agreed "that the number of projectiles should le 30 , instend of 43 , and that each projectile should weigh at least 101 b ., and that 10 should be subatituted for 15 at the distancea agreed apon; and it was further agreed upon that Capt. Warser should be in communication with Lt-Col. Chalmer, with the riew of relecting a spot anitable for the experiment, and that he will endenrour to be ready in all respects by the first week in October."]

[^23]15th August.-Capt. Warner dellvered in his estimate for the expenses of the trial proposed to be made to test his "Long Range," amounting to s1300. On the 12 h Sept. this amount was advanced by the Treasury and paid into Capt. Warner's bapkers.
28th Sept. to 9th Nov., the Journal shows wes occupied by Capt. Warner in seeking a suitable aituation for the experiments.
" 9 th Nov.-Lt.-col. Chalmer proceeded to Stafford, having previously received notice from Capt. Warner that a auitable situation for the experiment would be found on Carnock Chase.

10th Nov,-Lord Ingestre met Lt.-col. Chalmer at Silkmore, uear Staf. ford, took him in his gig to Haywood-park, and was kind enough to lend him a horse for the parpose of eurveying the Chase; they rode over this for some hours ; Capt. Warner had previouly seen the ground, and approved of it, and had selected a place at Haywood-park cuitable in all respects for his operations; and at there wat a clear unioterropted space of many miles, Li,wol. Chalmer consented to the aituation for trying the experiment, and, on his retarn to London, reported accordingly to the Marquis of Angleney, to whom the Chase belonged, who most readily gave his consent, directing at the same time that every assistance should be given by his keepers; and Capt. Warner wha informed to this effect, and requented to proceed with his preparations for the experiment with as much haste as possible, on account of the advanced meamon of the year.

4 20th Nov.-Letter from Lord Iogestre, stating that everything was progreming as fast as poasible, and expressing hopes that all would be ready for Monday (23rd), and requesting Capt. Chads and Lt.col. Chelmer to sleep at Birmingham ou Sundey night (22nd), where they should find a letter detailing the movements for the next day.
" 22ad Nov.-Capt. Chad and Lt.-col. Chalmer left London by the mail train at 8 h .45 m . for Birmingham, where they fonnd a letter from Lord Ingeatre, atating that the experiment would not take place the following day.
${ }^{1} 23$ Nov.-Lt.-col. Chalmer and Capt. Chads took a chaise from Stafford to Haywood-park; the day was very wet, fogey, and unfavourable, so that Jittle was to be seen; they went on to Ingeatre, having received the honour of an invitation from Earl Talbot.
" 24 th Nov.-Lord Ingeatre drove Capt. Chadu and Lt.-col. Chalmer over to Haywood-park-farm, where Capt. Warner wat located, in a wood near which he was preparing his machinery for the experiment. Lord Jogeatre went out to seek Capt. Warner, who came to the farm-house by another ronte. Lord Anglesey rode up to the farm abont oze o'clock, expecting to find as all there, but Lord Ingestre was not present.
"Captain Warner was asked when he conld act? he replied that he must have a northerly wind to give him the necestery range; that be would act from the place on which his machinery now whs, as it was not necessary that he should see the apot be was to act againat. It was mentioned to Capt. Warner, that we ought to see that all was fair, and that no one went up in the balloon. He objected to our seeing his operations, and, as to any peraons going ap in the balloon, he stated ' that would be impossible,' as, when the last fight of missiles took place, the balloon would be burnt; that he should drop many more balle than apecified as the balloon went along the range, 0 of of them having amall fage that they might be the more readily found and seen. Ope of the bells he showed us, made of copper filled with lead, about the size of a 12 lb . shot.
*The Fair Oak, a large old tree, about tbree miles distant from the atation thay wood-park, in a S.S.W. direction, was fixed upon as the mark for the fighs of shot, and there Capt. Chads was to be stationed, and Lt.col. Chalmer wes to be near the machine. It was pointed out to Capt Warner that be should place the same confidence in us as in those who were sasisting him; fusther, we did not wish to pry into his secret.
"Lord Anglesey met Lord Ingentre after the meeting, and told him what had passed.
" 251 h Nov.-The following arrmogement was agreed upon between Lord Ingentre and Capt. Warner, on one part, and Capt. Chads and Lt.ocol Chslmer on the other:-
"1. Capt. Warner to send orer to Lord Anglesey as early as posaible on the morning of the day on which he means to operate.-2. The time of operation to be as near noon as convenient.-3. A pilot to be sent np half-an-hour precisely, and another five minutes before the operation commences. -4. Capt. Chads will place himself as near the Fair Oak as be judges con-renient.-5. Lt. col. Chalmer will be at the starting point.-6. Lord Anglesey will place himself where he thinke proper.
"Capt. Ched and Lt..col. Chalmer left Jogestre Hall for Beau Desert, having received the honour of en invitation from the Marquis of Anglesey.
"27th Nov.-Capt. Chads and Lt.-col. Chalmer addreased a letter to Capt. Fiarner, representing to him the inconvenience the detention occasioned them, and pressing that he should remore to a site from whence be would have greater cbance of operating; or that he would inflate the balloon at its present atation, and remove it so to a position proper for its ascent, so ss to command the necesatry direction of range. Mr. Warner replied, that if the wlod atood as it then was, be would be able to operate in ibe course of the next day, and that he would send over to Bean Desert early in the morning to let as know whether he would be able or not.

428 th Nov.-The morning appearing fine, with the wind at north, geve us resonable hopes that the long-expected experiment would now take plece. Lt.-col. Chalmer lefi Beme Desert at half-past ten o'clock, A.M., for Haywood-part 1 when rithin a mile of that position he fell in with a men.
seager bearing a letier from Lord Ingestre to the Marquis of Anglesey, dated Haywood-park, Nov. 28th, 11 A.M., requeating thal Capt, Chadi and Le.-col. Chalmer might be at the four cross roads on the Chase at two n'clock, 'evergthing being ready.'
"Lt.col. Cbalmer went on to Haywood-park, where he met Capt. Warner, and shortly afterwards Lord Ingestre, who both stated that the experiment would take place at three o'clock.
"Capt. Warner stated in Lt.-col. Chalmer that be had despatched a pilot halloon at It o'clock A.m, and that its course was as desired, and that he considered that the whole distance of tire miles and the three deliveries of sbot would be accomplished within 10 mioutes.
"Lord Ingestre stated to Lt.col. Chalwer that be was deputed by Cept. Warner to convey to him that it was ohjected to by Capt. Warner's friends (or committee) that he (Lt.-col. Chalmer) should be stationed at or near the balloon, as had been arranged.
"Capt. Warner took Lt.ccol. Chalmer into another room, and there sthowed lim the frame, and the method of auspending the shelis, and expressed his regret that he conld not exhibit more of his plan, or thow him the balloon. As Lt.-col. Chalmer conld not be permitted to take up the ponition as signed to him, he preferred returning to the open Chase, and joining Lord Anglesey there, to taking up a position at the gate of Haywood-park, as proposed to Lim by Capt. Warner.
"Lt.col. Chalmer left Haywood-park at half-past.two o'clock; Lord Ingestre left about a quarter of an hour afterwasds, passed Lt.col. Chalmer on the road, and conveyed to Lord Anglesey and Capt. Chads the jotelligence that the experiment could not begin till half-past three o'clock. and that a pilot balloon would be despatched ten minutes lefore the large one as a signal.
" Jord Ingestre and Capt. Cbads took up their station at the Fair Oak, Lord Angleaey and Lt.cel. Chalmer at the crows roads to the eantward of the Fair Oak, and about a quarter of a mile nearer Lisywood-park. Halrpast tbree o'ciock had arrived, and all parties waited in anxions expectition, directing their attention towarde Haywood-park. At a quarter-past four o'clock, Lord Anglesey left the ground. The ann had set, it was growing dusk, and we gave up hopes of the experiment taking |place, when at 20 minutes after four o'clock, Lt.-col. Chalmer perceived the balloon at sone height coming from Haywood-park, and, as he thought, directly towards hin. He called out londly, which soon brought Lond Anglesey back to his old position. The balloon continued to approach, its eleration increasing considerably, and it continued visible to Lord Anglesey and Col. Chalmer for more than twenty minntes, taking a more easterly direction (many points wide of the Fair Onk), till it diasppeared, from its great elevation. Neither Lord Anglesey or Lt.ccol. Chalmer could distinguish anything to fall from the belloon, and they had donbu whether it was the pilot or the lerge balloon they had seen.
"Lord Ingeatre and Capt. Chads had given up all hopes of seeing the balloon that evening, when their altention was callel to it by the sbouting of Lt.-col. Chalmer ; it was at a considerable height, drawing on towards sonth-east, and rising quickly, till lost sight of by them. When moving on to join Lord Anglesey, they heard a sudden rusbing noise to the castward of them, but nothing was perceptible; and Lord Ingestre and Capt. Chads bad also their donbts as to whether the balloon seen was the one containing the shot or unly the pilot one.
"Capt. Chads and Lord Ingestre rode to Haywood•park, and there ascertained that it was the balloon with the shot that had been seen; and it being now late, and too dark to make search for the projectiles (or abol), the party left the Chase and returned home.
"20th Nor.-Capt. Chads and Lt.-col. Chalmer left Bean Dezert at nine o'clock for Haywood-park, to meet Lord Ingestro and Capt. Warner, for the purpose of ascertaining where the shot bad fallen the pre. ceding evening; on their way thitber they examined the ground to the eastward of the cross roads, without tinding anything. Near the farmhouse they met Lord Anplesey's keeper, who had leen present at, and assisting Capt. Warner in his experiments; he told them that the balloon bad been found last erening half a mile short of the village of Rugeley, which is about three miles distant from Haywood-park, and $1 \frac{1}{1}$ to 2 miles to the eastward of the Fair Oak (the object marked out).
" Lord Ingestre and Capt. Warger joined at Haywood-park-farm, and the whole purty rocle in the direction Capt. Warner pointed out as the most probable line for finding the shol, and after three hours' gearch, without success, it was abandoned. During a part of this time, Lt.-col. Chalmer separated from the party, and rode over the ground a seoond time, to the eastward of the position he had occupied during the experiment, but found no shot.
"At about four o'clock, Lord Ingestre proposed to drive Capt. Chads and Lt.-col. Chalmer in his chaise, through Hugeley, on their way back to Beau Desert, and haring ascertained that the balloon had been conveyed to the Bell tavern, they stopped there to obtain information.
"On going into the town, they were nuot by a person whom Lord Ingestre appeared to know, and who informed him that the balloon bed fallea about half a mile short of Rugeley the preceding eveoing (near the forr cottages) ; that some labourers bad got hold of it, and had given it up to a gentleman for a guinea : that be (be person who addressed Lord Ingestre) had claimed it as his own, on which disputes arose about it; and some alarm had apread over the village, as some powider, and nine of the shot, were found allached to the balloon, and there was also a supicion that some ooe bad gone up with the balloon, and had berakilled. The polieg
were soot for to take charge of the balloon, \&c., and directed by a magistrate to retain it
${ }^{n}$ Lord Ingestre toid the police that be was a magistrate, and that there whe mothing improper intended, and to give the balloon up to the person chaieing it, and that he (Lord 1.) would be responsible for their so doing ; to which they amented. This person then weot with Lord Iagestre and Capt. Chats to a stable; showed them the balloon, and explained the cireamatenees of its ascent, and was quite conversant apon the subject. On It.col. Chalmer's entering the stable, he recogniced this person to be one of the Mears. Green (the eeronants), and who stated that the balloon was his property, and named the 'Albion.' Mr. Green was passing onder the mame of Brown, in order to keep all proceedinge as to a balloon being in the neighbourhood a secret.
"Lord Ingeatre said that further search shonld be made by the keepers for the ehot, but that then wo coold do nothing mare. We left Rugeley for Bean Dosert, and on arriving there wo all had an audience of the Marquis of Anglesey, reporting what wo had seen and hearl, Lord In. getre ackpowledging that he considered the experiment a failure, in which Capt. Chads and Lt.col. Chalmer fully coincided. 1

Capt. Chads and Lt.-col. Chalmer took leave of Lord Anglesey, and retorned to Birningham that aight, on their way for London, considering they had now ouly to make the official report of the experiment.

Lord Anglesey directed his keeper, Mr. Cockayne, to make diligent search for any of the shot that had been dropped from the balloon in its coorse from Haywood park to Rugeley. Reports were reccived from Mr. Cockayne, dated 8th, 9 th, 10th, 11th, and 12th December, 1846, and 10th Jasary, 1847, showing the number that had been recovered, the direction in which they were fount, and their penetration into the ground; he also eot op two diagrams, exhibiting (from the positions the shots were found in) the tortuons course of the balloon, which twice crossed the tornpike rod from Haywood to Rugeley.
"Mr. Cockayne reports that 18 shot had been recovered: five within 100 yards of where the belloon fell ; eight at about three miles from Hay-wood-part ; and five one mile from whence the balloon started (Haywoodpark). The penetration was from one to fonr feet, in hard gravelly soil.
(signed)
"H. D. Chads, Captain, R.N.
"J. A. Chalmer, Lieutenant-Colonel, R.A."
[We propose gext month to give an analyais of Sir Howard Douglas's tecount of the proceedings of bimself and the other commissioners appointed to consider Captain Warner's claims.]

RIGITAET ANB TATAT BEGINTBEEIDG.

LIEUTENANT ROBERTS'S MORTAR.

Some experiments were recenlly made at Potrmouth, to test an improved mortar, saggested by Lieut. Julins Hoberts, of the Royal Marine Artiltery. The mortar tried on board the Curfen, a 10 -gun brig, was a 13-iach, weighing 5 lans. It was suspended between two cheeks or brackets by a wrought iron spindie or bar of 0 inches in dianseter, being alleched to this bar by two wrought irou shafts of 5 inches diameter to the truanions, and a short shackle chain under the muszle, by which the eleration is altered or maintaiaed to 45 degrees. The brackets above. meationed atand firmiy bolted to a circular ouk plutform 13 inches thick, having a square bole cut through it, which pluiform is placed to revolve orer a circular hatch or bole ou the deck with sufficient beariags for sup. port, and a cumbing round it, in which two oppusite key bults are alluwed to work to prerent the plutform rising. The square hole in the platform being immediately uver the circular one iu the deck, the mortar, by a siagte 6 -inch rope, paused for the purpose, when banked over the bar and houked to a chuck and ring placed into tise muzzle, is lowered, muzzle dowawards, at a moment's notice, into the hold, and so secured there, by which the enormous weight of five tous is instantly reanued from off the upper deck; the sane rope ay easily returning it to its mounted position, the mazale chain being oushackled, or shackled when raised in position fur use. By the rery simple means of its suspeusion, the shock, on firiug, by the mortar recoiling to it, is greatly reduced, and a conseguent reduc400 of streagth and weight of deck, supports, and fitiogs is likewise rrected.
The plan of fiting her supports is admirably arranged for lightness and strenth, there being eight upright "struts," or pillars, where the Siourge ad olber mortar vescela require from 18 to 22, besidea additional beans bedween every one, and fore and aft beams of cnormous strength (frum 15 to 18 isebes square) condecting the whole; saving therchy, in the fitings of Lient. Roberts's mortar, about 20 tons of this material alone, supposing the mortar in both cases to be the aame height from the keel. The jumphy up of the mortar, as usually fitted, on firing, is almost as destructive to the ressel as jis dowuward slock, and this was strikingly exemplified In the trials of the mortar fitted to the Scourge steam-sloop, where the bolt menring the mortar to the deck beams was forced upwards with its keybot troogh an iron plate jato the beams, the ant requiring screwing up orty time, and the muzale requiring to be laghed down also every time每pervent the mortar jumping back wards. By the principle of Lioutenant

Roberts's plans, these evils are entirely remored, the mortar ljing harmlessly and only seeking to return to its inert position on the recoil. The platform traverses on an iroo bull-ring, and works mont easily with two single tackles. It occupies no more room on deck than the present moptar beds; by being suspended as above deacribed, it cao be fired to the greatest oicety, the direction of the object fired at being simply taken by Iwo small iroo pickets ja live with the axis, instead of that awkward and very nocertain method, whon a ressel is in motion, by a plumb-live. The mortar just tried is fitted oo a ressel in no way calculated to atand any cencussion, should any have taken place. These many and very important advautuges over the old mortar vessels are bodied in 20 simple a coastraction, as to render Lientenant Roberts's mortar available for any clase of vessels.

ARDAMENT FOR WAR STEAMERS.

The Lards Commissioners of the Admiralty, after considerable expertence of the power of the various steam frigates and other steamera in the Royal navy, as repards their capabilities of bearing heary armaneots, have resolved to fix the following as the armament of each partioular steamer. Vesseis of similar, or deaply similar, tondage aad borne-power, are to be arranged in classes :-

Steamers Propelled by Paddles.

Steam Ships.-Terrible, $\mathbf{1 , 8 5 0}$ toas, $\mathbf{8 0 0}$-borme power; main deck : four $56 \cdot$ poupders of 97 cwt ., 11 feet in length; favr 8 -inch gans of $65 \mathrm{cwt}, 9$ feel; the 56 -pounders on pivot alides, and carriages ; the 8 -inch ganw on common carriages-upper deck : four 56 -pounders of 97 cwt., 11 feet, on pivot slides, and carriages ; four 10 -iach guns, 85 cwt ., 9 feet 4 inches, ou common carriages : lotal guns, 16. Penelope, 1,616 tons, 650 -horse power; main deck : eight 8 -ipch gans of 05 cwt . 9 feet, on slides aod carriages ; two 68 -pounder carronades of 36 cwt ., δ feet 4 inches. on Hardy's compressor aurriages-upper deck: two 68-pounders of $95 \mathrm{cwt}, 10$ feet, on pivot slides and carringes ; four 8 -inch guas of 65 cwt ., 9 feet, on slidee and carriagen : Lotal, 16. Retribution, 1,64t tous, 800 -horse powar ; main dect, none (but it is arranged that all steam ships which do not carry an armament on the main deck shall, if possible, carry four $\mathbf{8 2}$-pounders of $\mathbf{5 6}$ cwi., for head and stern firing)-upper deck: two 08 -pounders of $05 \mathrm{cwt}$. 10 feet, on slides and carriapes to pivot; four 10 -ibch gans, $85 \mathrm{cwt}, 9$ feet - inches, on slides and carriages : Lotal, 6.

Steam Frigatis.-Class 1. Avenger, 1,444 Lons, 650-horse power; and Birkenhead, of 1,400 tons, 500 -borse power. Upper deck : two 68pounders of 95 cwt ., 10 feet, on slidea and carriages to pivot ; fonr 10-inch guas, 85 cwt ., 0 feet 4 inches, on slides and carriages; total, 6 . At prosent the Aveager carries, by way of experiment, two 32 -pounders of 65 cwt., instead of two of the 10 -inch guns,-Class 2 (A). Odin, 1,326 toos, 500 -horse puwer. Main deck: 82 -pounders, 56 cwt., 9 feet 6 ioches, on common carriages. Upper deck: two 68 -ponoders, 05 cwt ., 10 feet, on pivot slides and carriages ; foar 10 -inch guns, 85 evt., 0 feet 4 inches, on slides and carriages; total, 12. The steamers also belonging to this class are the Sidon aod the Leopard.-Class 2 (B). Gladiator, 1,210 tons, 450 Lorse power; Sampson ($450-\mathrm{h} . \mathrm{p}$.) ; Ceataor ($540-\mathrm{h} . \mathrm{p}$.); Dragon (660. h.p.) ; Firebread ($\mathbf{4 0 0}$ h. p.) ; Vulture ($\mathbf{4 0 0}$ h.p.) ; and Cychops (320 h. p.). Upper deck : two 68-pounders, 95 cwt ., 10 feet, on pivot slides and carriages; four 10 inch guns, of 85 cwt ., 0 feet 4 inches, on slides and car. riages ; total, 0.
Steam Sluors.-lat olass. Gorgon, 1,111 tods, $\mathbf{3 2 0}$-horse power ; Bulldog (600), Fury (515), Iaflexible (378), Devastation (400), Sphynx (500), Cormoraut (300), Thunderboit, situce wrecked in Algoa Bay (300), Virago (300), Eclair (287), Driver (280), Geyter (280), Growler (280), Siyx (28V), Vixen (280), spiteful (280), Strombuli (280), and Vesuvius (280). Upper decks : oue 68 -pounder of 90 or 05 cwt ., 10 feet, and one $10 \mathrm{inch}, 85 \mathrm{cwi}$., 9 feet 4 inches, on pivot dides and carriages. Four 38 -ponaders of 42 cwi ., 8 feet, on Hardy's alides and carriages. Total for all vebeels of this olass, 0.-2nd class: Medea, 835 tons, $\mathbf{3 5 0}$ horse power, Salamander (220), Hydru (200), Hecate (240), Hecla (240), Hermes (220), and Trident (350). Upper deck: two 10 inch guns, 65 cwl , 9 feet 4 inchen, ou pivot slides und curriages. Four 32 -pounders, 25 cwt ., G feet, ou Hardy's compreacor carriages. Jotal, 6.-3rd class: Ardebt, 810 tons, 200-Lorse power, Alecto (200), Pulyphemus (200), Prometheus (200). Upper deck: one 32 -pounder, $45 \mathrm{cwh}, 8$ feet 8 inctes, on pivot slides and carriages. Tutal, 3. A apecial exception is made in thim clase of the Janus, 768 tons, 220 -borse puwer, which curries only two 10 inch guns of $85 \mathrm{cwt}, 9$ feet - inches, ou pivol sides und carriages.

Homb Steamers.-Scourge, 1,124 tuas, 420 -horse power; upper deck, one 68 -pounder, 05 cWl . 10 feet, on slide, and carriage to pivot; one 18 inch mortar: total, 8.

Steam Gun-vesseln.-Class 1. Firefly, 050 tona, 220hborse power, Hlazer (120), Tartarus (136), and Flamer (120). Upper deck,one 88poonder, 42 cwt., 8 feet, un alide and carriage to pivot. Two 82 -puander carronades, 17 cwt ., on Hardy's carriages.-Class 1 (A). Grappler 559 tuns, 220 -horse power. Pluto (100), Culombia (100), Overon (200), T'riton (260), Antelope (260), Acheron (170), and Voleano (140). Two 82pounders, 66 cwt ., 9 feet 6 inches, on slides and carriages to pivot; two 38 -poonders, 25 cwt ., 0 feet, on compressor slides and carriages ; total, 4. Clase 2 (A). Spitfire (432) tons, 140 -horse power. Porcupine (189), Lucifer (180), A von (170), Gleaner (180), Shearwater (160), Kile (170), Lighting (100), Meteor (100), and Coniet (80). Ope 18-pounder of 8θ
cwt., T feet, on slides and carriages to pivot ; iwo I8-poupder carronedas, $10 \mathrm{cwt} ., 7$ foct, on Hardy's compreseor carriages; total, 3.-Class 2 (B). Torch 845 tous, 154 -hurse power, Locust (100), Hanpy (200), Jackal (150), Lisard (150), Bluodhound (150), and Dyrmidoa (150). One 18. pounder guu of 92 cwt., 7 feet, on pivot slides and curriages, and two 18. pounder curronades, 10 cwt., I feet, on Hardy's carriages.

Steam Packets.--Wildíre, I8B tons; Fearless, Dasher, Monkey, and Dwarf. Two 6 -pounder brase guas of 0 cwi.

Tugs-Echo, 205 Lons, 140 -horwe powor, African and Coafdence. Two 39-pounders of 56 cwt ., θ feet 6 inchen, on pivot alides and carringes.

TROOP-ships.-Rhadamealhas, 818 Loos, 820 -horse power, Dee (280), and Alban (120). Four 32 -poundars of 42 or 56 cwh., 8 feat, on common carriages.

Steamers Propelied by Screws.

Steam Frigates, -Class 1. Simoon, 1,05s toos, 780-horse power. Main deck: twelve 32 -pounders, 56 cwt ., 9 feet 6 inches, on slides and carriages. Upper deck: two 68 -pouoders, 95 cwt ., 10 feet, on pivot sliders, and carriages ; forr 10 inch guns, $85 \mathrm{cwt}, 9$ feet 4 inches, on slides aad oarriages. Total, 18. Valcan, 1,747 tons, 700 -horse power. Main deck : eight 32 -pousders, 56 cwt ., 9 feet 6 inches, on slides and carriages. Upper deck : two 68 -pounders, 95 cot ., 10 feet, on pivot slides, and carriages; four 8 -inch guns, 65 cwt ., 9 feet, on slides and carriages. Total, 14. Termagant, 1,556 tons, 020 -hurse power; Dauntless, 520 ; Euphrates and Vigilant, 620 . Main deck : eighteen 38 -pounders, 66 civt., 9 feet 6 juches, on common carriages. Upier deck : two 68 -pounders, 95 cwrt ., 1θ feet, on pivot slides, and curriages; four 10 -inch gans, 85 cwt., 9 fcet 4 inches, on slides and carriages. Total 24.-Class 2.-Megara, 1,391 tons, 566-horse power, and Pegasus (510). Main deck: four 82 -pounders, 56 cwt., 0 feet 6 inches, on slides and carringes. Upper deck: two 68. ponaders, 95 cwt ., 10 feet, on pivot slides, and carriages; fuur 8 -inch guns, 65 cwt ., 9 feet, on slides and carriages. Total, 10.

Steam Sloops.-Class 1.-Con』ict, 902 tons, 400 -horse power, Desperate, Niger, Enchantress, Falcon, Bakilisk, and Florentia. Upper deck: one 68 -pounder, 95 cwt ., 10 feet; one 10 -inch gun, 85 cwt ., 9 feet 4 inches, both on pivut slides and carriages; six 8 -inch guns, 65 cwt ., 9 feet, on slides and carriages ; lotal, 8.-Class 2.-Enconnter, 895 tons, $\mathbf{3 6 0}$-horse power, and Harrier. Upper deck : one 68-poander, 95 cwt ., 10 feet ; und une 10 -jnch gun, 85 cwt ., 9 feet 4 inches, both on pivot, slides, and carriages; four 8 -iuch guns, 05 cwt ., 0 feet, on slides and carriages; total, 6. Class 3. -Ratiler, 888 tons, 200 -horse power; and Phonix, 260 ; one 8 inch gun, $65 \mathrm{cwt}, 9$ feet; one 32 -pounder, $56 \mathrm{cwt} ., 9$ feet 6 inches; four 32 -pounders, $25 \mathrm{cwt}, 6$ feet, on plvot slides, and carriages, or otherwise if necessary ; total, 6.

Stiam Gón-boats.-1st Class.-Rifieman, 483 tons, 202-horse power, Sharpshooter, Archer, Parthian, Sepoy, and Coszack; one 68-pounder, 95 cwh., 10 feet; and one 10 -inch gun, 85 cwt ., 9 feet 4 inches, on pivot slides, and carriages ; two 32 -pounders of 25 cwt ., 6 feet, on Hardy's carriages. Total, 4.-2nd Class.-Teazer, 301 tons, 100 -horse power. Minx, Boxer, and Biter; one 8 -inch gun, 65 cwt , 9 feet, on pivat slides, and carriages ; one brass 6 -pounder. Total, 2.

Steam Goard-bhips with Aoxiliary Power,-Edinburgh, 1,772 tons, 450-horse power. Ajax, Blenheim, and La Hogue. Lower deck: Twen-ty-six 42 -pounders, 66 cwt ., θ feet 6 inches, on common carriages. Quarter deck : Two 50 -pounders, 87 cwt., 10 feet, on pivot slides, and carriages; four 10 -inch guns, $85 \mathrm{cwi} ., 9$ feet 4 inches, on slides and curriages. Forecastle : Two 56 -pounders, 87 cwt ., 10 feet, on pivot slides, and carriage. Total, 56 guns.-Eurotas (fr.), 1,168 tons, 350 -horse power. Horatio, Seahurse, and Forth. Main deck: Twenty 42-pounders, 66 cwt ., 9 feet 6 inches, on common carriages. Anarter-deck: One 56 -poander, 87 cwt , 10 feet, on pivot alides, and carriages: two 8-inch guns, 65 cwt ., 9 feet (or two 10 -inch gans of 85 cwt ., 9 feet 4 incbes), on slides and carriages. Forecastle: One 56 .pounder, 87 cwh ., 10 feet, on pivot slide and carriage. Total, 24.

Stram Frigates with Auxiliary Power.-Arfogant, 300-horse power. Main deck: Twentytwo 82 -pounders, $56 \mathrm{cwt} ., 9 \mathrm{ft}$.6 in .; und six 8 -inch मuns, $65 \mathrm{cwt}, 9 \mathrm{ft}$, on common carriages. Quarter-deck: one 68 -pounder, 90 or 95 cwt ., 10 feet, on pivot slide and carriage; sixteen $\mathbf{3 2}$-pounders, 32 cwt ., 6 feet 6 inches, on Hardy's carriages. Forecatle : One 68. pounder, 90 or 95 cwt ., 10 feet, on pivot slide and carriage. Total, 46.Mnphion, $\mathbf{3 0 0}$-horse power. Main deck : Fourteen 32 -pounders, 66 cwt., 9 feet 6 inches, and six 8 -inch guns, 66 cwt , 9 feet, on common carrizges. Quarter-deck: One 08 -pounder, 90 or 95 cwt ., 10 feet, on pivot slide and carriage ; eight 32 pounders, 25 cwt , 6 feet, on compresaion carriages. Forecastle: Une 68 -pounder, 90 cwt ., 10 feat, on pirot slide and carriage. Total, 30.

This return does not incinde the numerous packets that ply as mail steamers on the various stations round the coast and in our colonial possessions.

Niagana Wirc Bridge.-It is atated in the Rochester Danoerat, thet the Niagara Saspension Bridge Company will shortly proceed to the erectinn of a wire bridge across the Niagara river-the Queen's assent having been obtained. The whole of the stock, 200,000 dollars, has been taken-one hall in Canada, and the remainder in New York.

NOTES ON FOREIGN WORKS.

Munich Art-Union.-Audiatur et altera part.-The Mudich Unjon is on the decrease, evidenced by the reports both of 1895 and 1840 . Surely an association which possesses an annaal income of nearly 40,000 norips (a large sum of money at DIunieh!), -might, all other adruntages combined, have done more. The public taste, to mention one incident, does not seesn to go upace with higher art-tendencies, for amongst 127 pletures open to prizeholders, only three hislorical ones were chosen;-here also the mere huatiog after portraits and genre painting. Compared with this decline of the Muoich art-anion, even that of the Düsseldorf art-frieuds does not bear a comparison-which latter have had painted an altar-plece for the Cathedral of Cologne, adorned the guildhall of Elberfeld with Greacoes, and provided similar embellishmenfs for the Emperors' hall of Aix.laChapelle. Even the Art-Union publication (Veretnsblalt), which might casily have been plevated to an organ of real art-value, very beldom rises beyond the sphere of ephemeral art, and labours under a mere hopting after external appearances and picturesque effects. Tbis year's exhibition, also, does not afford any very cheerful prospects, altbongth the king has sent to the exhibition some Dutch painings of hls own private gallery. In the department of sculpture, l. Bcbatler bas exhibited a St. Bernard in bronze; and the model of a Penelope, by Brugger, zala be also mentioned.
The Valley of Chamonix has been the scene of an awful event. By an avalauche which fell from the Aiguilles-Rouges, and filled the bed of the Arre, the small village of Des Prats on the banks of the rivolet, was completely buried in debris of rock and snow, with some considerable loss of life. Another avalancbe which came down lately from the crags of the Eisenstein, in Tyrol, buried several persons who were on the retarn bome.

Road oter the Alps.-The Surdinian governmeat bas given orders to repair and open the gigantic road, which leads from the south of France (Briancon) to Italy. This road over the Mont Gendrre was coastructed by Napoleun, in a most solid and custly manger, but has ance been neglected and got oat of repair and use. It will be of great importance when Turin and Yignerol are connected by a railway.

Public Works in Senegal.-Captain Grammont, R.N. of Frasce, the governor of the above settlement, in opening the legislative assembly, adverted, at some length, to the public works to be executed in the colony. Amongst these, a regulation of the harbour of 8t. Louis, embankments of the river, and draining of its banks are conspicuous. His excellency very properly observed, that by such improvemedts the native (Negro) workman will be formed, and the process of material civilisation of Africa advanced.

Legislation of Rivers and Watercourses.-The French Cosgres Agricole, presided by Prince De Cazes, have diacussed the above subject at great length, when Messrs. Toucqneville, Beaumont, and others, were heard. The first fact resulting from thes debates is, that there is in France an act of the Legislature relating to these subjects-riz., that of 14tin Floreal on XI. Some, however, thought that thin law is rather for preveuting the brak-people (riverains) availing themselves of the hydraulic advantages of their position in the improvement of their lands. The congress, in fine, emitted several opinions, which will have some weight on the legislature and the government. Amongst these, was the guggestion that the government would watch the execution of the laws relating to the curage (fowing) of water nut available to navigation-lakes, poods, and brooks; that the former usages, lucal regnlations, \&cc. of each county, relative to this subject, be collected, and laid before a board of magistrates and proprictors, for bringing them in concert with the general legisfation of the land. The congresa recomniended to government the appointnent of regular officera of the cour's d'cau. It was also suggested, that the forced participation of proprietors interested in the execution of public workslitherto merely restricted (by the law of Sept. 16, 1807) to the dykeing of the sea shore and the banks of rivers-should be extended to all works relating to the managemcut and distribution of water. The congress likewise requested, that guvernment shonld direct its attention to the umelioretion of bogs aud marshes, by the cutting of great druining canals (forstes d'assainissement), to allow the escape of the waters and moisture of whole districts-on which account, no legislative enactment bas been bitherto inade. (C'est tout comne chez nows.)

Navigution of the Scine.-Important works have been begun at Paris for improving the navigation of the river. At la Rapée the basin (port) is dredged of stone. Nearly at the emboucbure of the canal of St. Martin, a jetty is building for the discharge of goods, for which the Boalevard Contrescarpe will be sacrificed, and all its houses demulished. The whole quay on the left bank, from the Pont de l'Archeveché to the Petit Poat, is taken off, and is tu be rebuilt with an inclined road.

Strange Inauguration of a Public Building at Conatentinople.-The foundation stone of the branch building of the College of Medicime, which is to be erected near the cemetery of Pera, has been laid with much ceremony. The work has been for some time delayed, because the chief astrologer (Mynedjim-Buchi) of the sultan bad declared, that no olher day than the $20 t h$ February would be propitious for that parpose. 8till, the atmosphere did not concur with the right reverend gentleman, as whe oe-
motery presented a lake of mud, caused by the inceacant rain motery presented a lake of
which foll daring the day.

Craina of Rome.-M. Canina is one of the most active and, we may say, most sterling Itarery oharacters of modern Rome. Scarcely has he brooght out his great work on general architecture, than "Le Basilicho Chriatiane di Roma" (a work of older date) appars in a second odition. It is hardly eredible bow sach a performapco- 145 coppar-plate engravlage and 101t pages of text, in folio-could be completed in so short a period. At the same time, Cavaliere Canina has published a second editios of "Foro Romano." and has nearly completed a description of all the Etruscan antquities, which either have been discovered on Roman ground or are preserved in its mncenms. And, therefore, witle others are fumbling apd sholdering how and what to produce, this man grasps at once at everything worthy ubout him-verifying the uld axiom, auderesapere. Tbe "Basilichs," mereover, ure a work of great practical usage, coulaining a mese of aptistic and profesefonal information and hints, which it mould, no doubt, have taken most other mon years to fiad out and collect. The taxt dwells montry on the statement and elucidation of facts, which none but a practical architect of M. Canina's stamp could give due justice to-he, who has pased all his life anongst the grandeous remaias of Nome, and bas searched for and studied those traditions and rules of conatruction, which have been current there for many canturies past. We trust these fow hints will suftice to fix atteation to the deep study and research of this last prodaction of the Roman architetlo.
Polytechnice in Avatria.-The emperor of Austria has ordered the establishment of polytechnic lostitutiona, at the charge of the state, at Ling, Brüan, Lesbach, and Inspruck. They will comprise the usual course of a three years' (mostly gratuitous) tuition, and be provided with cluenical laboratories, polytechnic and indostrial collections, libraries, \&c. By this addition, each of the chief county towns will have its central polytechnic institution; while agricultural schools, which are now to be estublished throaghout the kiogdom, will serve as the necessary complement of national education.

Berlin Society for the Improvement of the Working Classes,-When the great Industrial Exhibition of 1844 had led the minds of Prossian philanthropists and statesmen towards this subject, the oxperience in the machanism of auch huge associations was so little developed, that a great many obstacles presented themselves, which are now, happily, overcome. Last month, a genoral meeting took place, when the statutes of the Society were confirmed by the home secretary of state. The main dificalty hinged in the wish of the committee to establish branch Societies ibrough. oat the country, which would have made them a kind of corresponding society. This has been so changed, that these branches will be uncon. nected with the central body at Beriin.
Hall of Liberty, in Bararia.-This atructure, whose name (Befreywngs Halle) we seem to have traly rendered and translated, is now occupying the chisel of guhwanthaler. Your of the splendid eycle of Victory atntoes, before noticed (anle p. 34), which have to adorn the Hall, are already modelled, and will be reproduced in marble by other artists, as their nomber will amonnt is all to thirty-two. It has likewise been previonsly mentioned that they will stand on a continuous circuiar stylobate, every two holding a shield, \&e. It has become known, of late, that the original idea of forming a wreath as it were of statues, placed wiluin the oxpanse of an immense rotunda, belongs to Kiag Ludwig himself. The relievos of the metopes, for the Hall, in marble, are aiso nearly completed, as are likewise the four statues fur the gable of the building, which will repre. sent the four tribes of the Bavarian mation, Another work of M. Schwantheler is now completed-pamely, the shield of Heraclow $;$ it is cast in broase and gilt. The original is destined for the Emperor of Ausirla, and four copies for other sovereigns.
4 wew Theatre at Viemad.-The foundation of a grand new theatre near the Körathmer.Thor, at Vienna, has been laid. The theatro is to bear the name of the National Theatre, and is to be fitted op on a acale of great magrifeence. It is to be finished in two years.
Railoay in Switzerland. - The projact for a railway ranaing from the Meditarranean, through Switzerland, to the North of Germany inciudes two gigantic works of art, that by most of those who have been consulted are deemed imposslble of execution. These are the pierclag of Mount Lakmanier (the Locws Magnus of the ancianis), to gain aooess from the Valley of the Tesain to the Valley of the Mbine-and that of the Aipe for the line which will link Sardinis with France in the portion comprehended between Oaly and Modane. The engineer Ricci, however, to whom the Sardinian goverament has intrusted the work, and whom the Swiss and Bavarian goverament have adopted for their respective shares in the na. dertaking, after a oareful atudy of the ground is of opinion that the boring of theee granite masses is practionble; and has invented a mechanical apparatus for the oxcavation of the huge tunnels, which has bceu approved by the Committee of Public Works, and is to be put into immediate operation.
India,-The Ganges Canal, on which $\mathbf{2 2 0 , 0 0 0}$ annually has hitherto been gradgingly bestowed, is now to be proceeded with at the rate of $\mathbf{~ 2 2 5 0 , 0 0 0 ~ a ~ y e a r ; ~ i t ~ w i l l ~ b e ~ c o m p l e t e d ~ b y ~ 1 8 5 1 . ~ I t ~ w i l l ~ i r r i g a t e ~ 8 , 0 0 0 , 0 0 0 ~}$ of acres now comparatively barren, and save $2,000,000$ of people from the periodical visitations of famine. Another canal, leading from the Sutiej, 00 miles into the Bhutte country, is beiog surveyed.

NOTES OF THE MONTH.

The New House of Lords-Mr. Barry has gived ns what may be called the first instalment of the new Palace at Westminster, in the openias of the House of Lords. Of this building we have engravings in preparation, which we expect shortly to lay before our readers, when we shall proceed to give a description of this great work. In the meanlime, we may say that it has been received with much applanse, and is considered as justifyigg the time, labour, and money expended upon it. It is one of the mont supert halls in the world, becoming its parpoee of the throne and seat of empire of the mont powerfal and moat wealthy nation in ancient or modera timen.

Army and Naby Clab,-There were 69 designs ment in for competition for the New Clab Room. We anderstand that doring the last month the members of the club were regularly benieged with onnvaseers for favour; such a practice is highly diagraceful to a professlon like that of architecture, and ought to be denounced at the Institute as most diahonomrablebut will the Institute stir in the uffair? Mr. Tattersal is the succosaful conipetitor for the first promiom, and Messrs. Fowler and Fisk for the second premium. The desigas will be exhihited to the public by tickets, to be obtained of the aecretary, until Thuraday, 6 th ingt.

The great engineering achievement of the last month is the opeaing of the Biricenhead docks, which was colebrated by a sumptuous ceremonial.

It seems now to be decided that the railway from Calcatta to the Upper Provinces of India is to be graranteed by the Government.

The Great Weatern steamer has been sold to the Royal Mail Steam Packet Company for 25,0001 , exclusive of her plate.
In the course of the last month, the new entrance of the British Mnseum was thrown open to the public. It is on a large scale.

It is understood that Barry has executed for the Baron de Goldamid a grand ball-room, which no stranger has yet aeen, and the opening of which will be one of the attractions of the season. It is sald to be one of the best pieces of decoration in this way yet erecuted, and to be in the most magnifcent style-worthy of the great capitalist and the great architect.
Royal Botanic Garlens.-The winter gerded of the Boyal Botanic Society in the Regent's Park, which is neariy an aore of garden ander glass, has, daring the spriag, assumed a picturesque appearance, and has been so successful, that with the rednction of the price of glass, this kind of construction is likely to exten. At the present moment, howerer, we have only the Regent's Yark speclmen by Decimus Burton, and Marnock, to eat against the large winter gardens at St. Petersburgh and Berlin.
Kew Gardens.-The great palm-honse at Kew, by Decimus Burton, is getling on. The ground part constitaten a hot air vanlt or chamber, over which is laid an acre of gratiog, on which the tubs and pots containing the plants aro piaced. The design is grand and novel.
A vole has been carried throagh the House of Commons for the completion of the base of the Neleon column.
The foundetions of Miss Burdett Contts's church in Westminster have been laid.

Among the novel anggestions for the improvement of architecture lately promolgated, is one from New Jerasalem by Mr. D'Israeli, who saye in his "Tuncred"-"What is wanted in architecture, as in 50 many things, isa man. Shall we find a refuge in a committee of taste? Escape fron the mediocrity of ooe to the mediocrity of many ? We ooly maltiply our feeble. ness, and afgravate our deficlencjes. Bul one saggentlon might be made. No profession in Eaglend has done its duty aotil lt has farnished its victim. The pure administration of justice dates from the deposition of Macolesfield. Even our boasted navy never achieved a great victory until we abot an admiral. Suppoec an architeat wore hagged ? Terror has its inspiration as wrell as competition."-The snggestion is povel, but we must leave the profesion to decide on its practicability. Perhaps, next time, Coningaby will auggeat who is to be the first vietim.

Olitwary.- It is with deep regret that we have to record the death of Mr. Charlea Holtzapfiel, of Charing-cross, aged 41, which took piace on the 11th ult. His works on "Tnrning and Manipalation," we spoke of at the time they were publlshed, as most valuable books, and we repeat they are such that no engineer's library ought to be without. Mr. Holtzapirel was a member of the Conncil of the Institation of Civil Engineers, and chairman of the Committee of Mechanics at the Soclety of Arts, and atood pre-eminent as a mechanician of Inventive ingennity.

Copper Ore.-M. Dofrénoy presented to the Academy of Sciences, in the name of Messrs. Eivot and Phillips, ongineers, a paper relative to a new mode of operating on copper ore. It consists of a precipitation of the copper by iron, and applies principally to the salphuretied ores.

Water Test.-M. Dupasquier commanicated to the Academy of Sciences, a new mode of testing watar, in order to ascertain the quantity of organic matter beld in solution. He puts into a giass globe from one to two onnces of water, to which be adds a few drops of a solution of chloruret of gold, sufficient to give it a slight yellow tinge. He then boils the water. If it contaios only the ordinary quantity of organic matter of potable water, the yeilow tiuge remains as it was, even if the ebullition be prolodged. If, on the contrary, the quantity of orgadic matter be in excess, the water becomes first brown, and then assumes a violet tint, which announces the decomposition of a galt of gold by the organic matter. By
prolonging the ebullition, the violet tint becomes deeper and deoper if the quantity of organic matier be considerable. But the mere brown tint alone serves to show that the quantity of organic matter exceeds the ordinary proportion.

Flax Adrlteration,-At the Academy of Sciences, Paris, M. Boussingault read a report of a committee on a paper by M. Vincent, relative to the means employed in detecting by a chemical test the admixture of phorminm tenax, or New Zealand flax, with the hemp and flax of Earopean growth and preparatien. The phorminm tevax does not passess cerfain qualities essential for naval cordage, and it was considered important to diwcover the means of detecting its presence. M. Vincent has found that if the phormium tenax be immersed in pure nilric acid, its fibres, owing to the presence of nome azotic sobstance, take a blood-red tint; which is not the case with the hemp and fiax admitted for use in the navy. Thos it is very easy, by sabjecting a rope to the action of oitric acid, to discover whether there has been any admixture of phormium texax. The report of the committee confirms the statement of M. Vincent.

Manures,-At the Academy of Scfences, Paris, a paper was received from M. J. Persoz reiative to the influence of certain manures on vegetation. He states that a mixture composed of potass, dried blood, and goose duag was found to have great effect upon vines. He also mentions a manure for hortensias, composed of potass and borat bones treated with mitric acid.
Railway Abattoir.-At the Trowse station, Norfolk, an abattoir, consiating of two sets of slanghter-houses, has been bnilt and fitted up with every convenience for slaughtering 100 beasta and $\mathbf{3 0 0}$ sheep daily. The buildings and yard are enclosed within high brick walls, and the yard has been divided into compartments or pens for the beasts and shoep. Adjoining the slaughter-house, there is a large tank to supply water. Close to tbe open end of the houses there is a siding to and from the railway, on which the trucks run to be loaded with carcases.

Iron Bridge Rails, -Mr. Wood, of the British Irod Company's Works, Abersychan, has succeeded in rolling bridge-rails weighing 90 lb . per yard, 30 feet long.

The Admiralty Electric Telegraph,-The lords of the Admiralty have at length directed the extension of the South Western Railway suinterranean electric telegraph to the Admiralty at Whitehnll. It will branch off in the Strand vear the compans's present offices.

The "Prince Metternich" Steam Vessel.-This splendid steamer, of 600 tons, and 200 -horse power, Gitted with Morgan's patent wheels, made her trial trip on Thuraday, April 1st, for the purpose of ascertaining ber dranght of water and average speed, at the standard mile in Long Reach. This vessel and her machinery are the joint production of Mpssrs. Ditchburn and Mare, of Blackwall, and Messrs. Penn, of Greenwich; she was bailt for the Danube Steam Navigation Company, and constructed expreasly to navigate between Galatz and Constantinople, and it is intended she should combine the properties of a sea.going and river steamer, as far as these qualities can be united. The contractors swere bound by special agresment to produce a vessel that should reulise an average speed of 15 miles per huar, and not to draw more than six feet water with 120 tons of dead waight on board - which she more than realised. At the trial trip she pasced up and down the mile six times, with and against the tide, at an average speed of $16 \frac{8}{3}$ miles per hour.

Important Saving in Draining.-A correspondent of the Nottiagham Mercury states that an enormons saving is to be effected by the use of pipe-tiles mude by machinery, inatead of horso-shoe tiles made by hand. "There are at this time," he cays, on the authority of the chairman of Ex. cise, "in the counts of Noltingham, 97 brick and tile-yards, making in the year, by hand, not leas than $8,000,000$ drainage tiles." The cost of $8,000,000$ horse shoe and $4,000,000$ flat tiles is about $\mathbf{£ 1 6 , 9 0 0}$, while 8,000,000 pipe-tiles-with which dat ones are not required-may be made for $\mathbf{£ 6 , 0 3 4}$, or at a saving of $£ 10,866$. The writer adds that last summer he made 500,000 pipe-tiles at from 10s. to 19s. per thousand, by a machive whlch cost him no more than $\mathbf{4 3 5}$. The superiority of pipe-tiles is very great. "They are stronger and less liable to break, both in carriage and in use. They require no fiats; they lie more evenly and securely in their bed. No vermin cau get into them. They form a better channel for the water, and scour themselves clear of silt. They are much lighter and more portable."

Durham Cathedral.-The inappropriate wooden screen which separated the pave from the choir, and which was placed there by Prior Wessington, between the years 1416 and 1443 , together with the great organ immediately above it, has been renoved. The organ is to be placed on the north side of the choir, immediately opposite to the bishop's throne, where it will remain permanently if the situation on trial proves suitable. The end stalls will then be thrown back, su as to make more room in the choir -a change long wanted-and a temporary iron railing will be run across to separate the choir from the nave, which railing will be replaced by a permancat acteen, when it shall have been deternined what description would te most appropriate. A low atuve Gothic screen is contemplated. The visitor, on entering the cuthedral, will now be struck wi'h the uninterrapted and magnificent view which he obtains of the interior from west so enst.

HIST OF NXW PAYH2Tr

ganted in england thom marce 27 , to apeil $22,1847$. Sis Monthe allowed for Ehrolment, whles othermiet aspreasi.

Charles May, civl engiaeer, of Ipwich, Buffolt, for "Improvements in rallway ehaira, the fateninge to be used therowith, and In trepalis."-Sealed Mesch 27.
John Henry Griesbech, of Cariton Villas, Maida Vale, for "Improvementa in the eonatruction of rallway, and in englies and carriages to rua thereon."-March 29.
Alezander Morton, of Morton-plece, XIlmarnock, Ior " Improvemente in pilutions warpa."- March 29.
John Finher, the Younger, mechankian, of Radford Workw, Nostogham, for "Improvemonts is the manuficture of laet or weavings."-March 89.
Bemuel Hardsere, machlnist, of Mancbetter, for "cortaln Improwementa in machinery or apparetus for opening and for carding cotion and other fbrous aubatapces, and for grinding the cards of carding engines." (Partly e commonication.)-March 20.
Henry Woodfall, paper maker, of Footscray, Kent, for ${ }^{* 4}$ certala Improvememts in paper-mating machinery."一March 22.
Samoel Millbourne, paper-miker, of 8aint Mary's, Cray, Kent, for "Improvements in Samuel Millbourne, paper-miker, of
the menufucture of paper."-Mareh 29 .
[The above two petenta belag opposed at the Great Sen, were not mealed till the geth
 oppoaitlon been entered by order of the Lord Chancellor.]
Robert Jonet, hot preseer and finisher, of Wardour-atreet, Soho, for "certiln Improve mente in dresting or finishing goods or fabrict."-March 29.
George Robert Stene. Eeq, of Bedford, for "Improvemente in maling and refining infuing and decoetions. ${ }^{\prime}$ - March 80 .

William Philljpa Parker, gentleman, of 48, Lime-atreet, in the City of London, for "en Improved mode of manufecturing cigars." (A commuvication.)-Aprll l.
Benjamin Trucker Stration, agricultural machinfit, fop "Inprovemente in rall wa phe and in wheels and other parts of carriages for rallways and common roads; parily apph. ceble in the conatruction of ehipt or other reapls, and fapprovementa in the machinery for manuincturing certala parta of the anme."-April 6.
Charies de Bergop, of Arthur-street, weat, In the City of London, enginees, and John Coope IIadden, of No. 11, Upper Woburn Place, In the county of Mddlesex, civil enghneer, for " Improvementa in whreled carriagen, and in panels and apriagt for carrigete and other purposes."-Aprif 8 .
Whliam Tharge Steventon, of Upper Boker stret, Ldoyd-square, Whideser, peatioman, for "Improvements fit regulating the getieraing of steam in tesm-boliert."man, for
April

Darid Nupier, of Gleahelligh, Strachen, Argyleshlre, for "Improvementa In steam. es gines and steato-reatele:"一April 8 .
Stephen Moulton, of Norfoik. street, Sirand, Mhilenex. gentlemen, for at Impeovemente In the conitruction of bridges." (A commuoleation.)-A pril 8 ,
Patrich Molr Crane, of Yulecedwry lron-woris, near Swanee, for "Improvemente to the manoufacture of Iron." - Apdl 8 .
John Blollett, of Austin Priarn Patage, for "Improrimente in Are-arme and in cartridges." (A communication.)-A pril 16.
Peter Olauseen, of Lelcenter-aquare, Niddiewex, gentleman, for "certaln Improvements In wearing machinery, and In the preparation of the materials employed in weatig." (A communication.) -April 16 .
Charles Minori Collett, of Chancery-lane, gentleman, for "certain apparatua and ar-

James Bobson, of Dover, engincer, for "a new and improved Inatrument to be nuad in crushing or expreasing ofl from regotable and otber aubitancen, and in matiog ofl eathe, and which Iastrumeto it applictble to the moulding, preming, and mannfacturion the asme and other articles from plastic materials."-Aprit 1%.
Stephen White, of Wincheater-row, New-rosd, clerk, for "anew means of produclag gas, both as to apparatos and matertala, from which the gis le produced."-April 16.
Alfred VIncent Newton, of Chancery-lane, mechanical draughteman, for "Improved Alfred Vincent Newton, of Chancery-lane, mechankel draughtaman, for
apparatus to be applied to steam bollers." (A commualcation.)-April $\mathbf{1 6}$.
Bennuel Chllde, of Earl'o-court-rosf, wax chaodler, for "certain Improvementa in the manufacture of candlew. and in preparing and comblalng certaln animal, regetable, and mineral substancen, appllcable to the mazufacture of candies and other nees."-April 15 .
George Holworthy Palmer, of Surrey- equare, Old Kent.rond, clill engibeer, for wan Improved method or mode of producing inflammable gases of greater purlty and hisher Iliomiasting power than those in ute, and abo in the arrangement of the apparaita anployed for the purpoee, and whilch apparatus may be applled to other stmilar perpome" ployed or
Jcseph Woods, of Bucklerabury, englneer, for "certain Improvemente la spioge for oupporting heavy bodiea and retating sudden and contauoun prestore." (A commani. supporting heavy
caltion.)- Aprll 20.
Osmon Giddy, of Hereford Lodge, Old Brompton, centleman, for "Impaovements in apparatus for sweeplige and cleanalas chimnegs and fues."-April 20.
Phllip Hurnard Ayres, of Holland-ntrees, Fitaroy-square, doctor of medicloe, for ${ }^{\prime \prime}$ eertaln plans and lmprovements in preparing putreacent organle mattert, such as night-soll, the matter In suaponion in the water of sewers, and other samiler matterts, for the pur: gose of manure or for other purpoes, and for apparatur for the same."-April $\boldsymbol{w}_{\text {; }}$ four month.
John WValirer, of Crooked-lane, englneer, for ar Improvementa in certain bydratile and preumatic machinet, and In the opplleations of steam or other power thereto."-April pre.

John Fisher, the youngef, of Redford Worta, Notingham, mechandicin, for ${ }^{44}$ Im. propemente In arrenging or folding certain narrow fabrice.t-April 20.
Stannel Kenntct, of Handevorth, Stefford, Iron founder, for "certiln Improvementa in preparing or forming moulds for cating metala."

G, orge Wiliam Roaley, of Weibeck-atreet, Cavendiah-square, gentleman, for * Ia. prorements in the construction of carriages, ead in apoaratus to le used whith omabuse and other carriages."-Aprli 20.
Thomas Brown, of Muscory. court, Tower.hlll, for "Improvements in machinery for ralaing and loweriug welghta." (A communicatlou.)-Aprdid.

ERRATA.-In the article "Combination of Telescope," \&e., in our last number, page 102, line 29 , fur "instead of teleacoper-microscoper will cone into use," read-" justead of microscopes-telescopes."

glance at some of the attributes of ARGHITECIURE.
 By Frederice Lusie

0 noble Art 1 to honour whore anste,
Beauty, with Grapdeur and Simplicity.
Aod brisht-chect'd Colour, lovely ctlid of Uyht
Lankd by the filry hand of Bymmetry.
0 noble Are 1 how much we owe to thee,
Of rale and holy thought, of feelloge high,
When lo nome eptendid plle ihy power we dee:
Whether the bromd-brow'd tower that daree the shy. The ball by Commerce, or by science trod,
The paline home of iflyet, of solema horese of God.
anne A. premont.

Semaibe of the infuence of the beantiful, all highly civilised mations have surrounded themselves with it as much as possible. The Greeks continually placed before their eger the atatues of their mont famous sculptors and the cseations of their most fumous painters; art and mature reciprocally acted npon each other:-the lover of art, quick in his perception of beauty, grew inwurdly like what he beheld; whilat the natural symmetry of the sons of Greece, the grace of the female form, and the proportions of their athlets, filled the sont of the artint with those vivid conceptions which we see emp bodied to a great degree in the Apollo, the Venus de Medicis, the Giadiator, and other weil known statues of untiquity; and in the highest degree in the works of Phidias. So Michael Angelo imbued his mind with grandeur by the incessant contemplation of the renowned Torso;-so the pictures of the Venetian mantera seem as though steeped in their city's rosy twilights and splendid sunsets. Still beauty will not incorporale itself with the feelingz of man, nor shape his work, if. he be insensible to its oharme A country has bonated the finent productions of art, whilat ber people remained anezcited by an admiration for them. At a period when Italy, for instance, was in possesaion of her exquisite monnmente of taste, and sbounded in all the luxaries of its climate, her people sank deeper and deeper into barbarim.

The ion of the advantages derivable from magnificent scenes, owing to a perrerted temper of mind through which they are regarded, is eloquently described by Sterne:-"The learned Smelfungus travelled from Boulogne to Paris; from Paris to Rome, and so on; bat he set out with the jaundice, and everything he saw was discoloured and distorted: when he returned, he wrote an account of his truvele; bat 'twas nothing but the account of his miserable feelinga." It is not unusual to meet with those who presume to be critics, but show themselves to be only cynics. These are man with hearts too anch hardened, and with eyes too much blinded, to enable them to reoognise the intriasic greatness of an object. But the beautiful camot be justly appreciated, if the mind be not in harmony with it. We can only form a judgment of a work whilat we are in aimilar disposition with its author; and in possession of the same, or a soperior, taste and iotelligence to that which it displays Criticisuf, as it relates to the fine arts, requires the exerc se of the finent, the kindeat, the most generous, and the most exalted sentiments and metribates of our nature. It depends upon a knowledge of our intermal nature,-apon a habit of turning the mind inwardly upon its own operations, with a fruquent observance of exterpal objects. The socient metaphysicians threw great light on the theory and practice of art,-grounding it on the philosophy of the buman mind, as the moderne-especially the Germans-have done;-and a theory that would repose in security, muat reat upon such a basis. Our notions of what is good in art are to be built upon certain great truths, and upon onchangeable principles: for the proof of the goodnew of all pripeiples consists in their durability ; and such laws and elements of beauty can we only consider fixed and settled an are deducible from, add conformable to, the nature of the human mind.

Trudh-Utility-Adoptation.-Truth is defined the stendard of He. 117.-Fom X.-Jone, 184%
right reason, the perfoction and the end of mind. It is a4 important in art as it is in morals. We prefer real to fictitions materials, the evidence of a pure taste to what is only the semblance and affectation of it, because "true and just things are in their nature better than false and onjust.'" Rochefoucault says, -H La oerite ent le fordement et la raison de la perfection et de lo beautt; une chose, de quelque nature qu'elle soit, ne scauroit tire belle et parfaite, ai olle n'ent veritablement tout ce qu'elle doit atre et ai elle n'a tout ce qu'dle doit avoir." [Maxim 294.] Truth and beauty do not differ bot conour in one; the real and the ideal, of which they are types, supply the one the means and materials to a work of art, the other the spirit which informs it ; the former selects what is most suitable and appropriate to its purposen ; the latter gives to the production the atmost perfection of which it is capable.

It was always considered that whatever is useful in architecture, should be rendered pleasing, and what is beautiful should be necessary. The uses of a building must be studied before its ornaments; and ornaments, however small or subordinate, must contribute to the general effect, and arise out of, or be grafted upon, the conmeruction itaelf. Beauty of architecture is greatly dependent upon construcu tion. The figures that give such sublimity to onr churches and all our vast edifices, are vaulto and domes; and these, at the same time, confer upon them their most essential and most noble attributes. A building may admirably fulfil its intentions lo respect of atility, but it would be cold without the additional charms of painting and sculpe ture;-yet these arts, and all decoration, should never screen any imperfections, bot should beighten the general character and mark its destination. It requires for ite perfection the introduction and union of all the arta; add such a skilful management of these, that the effect of one shall not impair the effect of another,-but each aid the other and add to the great impression of the whole. In a perfect cathedral, we see the most auccessful achievement of the grand requirements of architecture-the profound significance and meaning of everything-the bigbent utility and beauty combined;-materials invested with all the magic bues of poetry, and in their forms and colours so beautifully aymbolling forth the religion, as to be called by Culeridge "petrifactions of Christianity."
The architect first adapts the plan and design to its site, and to other circumstances; because the want of good arrangement, of conveniesce, accommodation, or of stability, and other important requisites, can never be compensated by any pictorial effect. Vanum eat quod non ad fnem oalet. Besides, these defecta and deficiencies always betray the absence of the necessary qualifications on the part of the designer. Without the fulfilment of the first requisites of art-without that knowledge of statics which is essential to the security and duration of a structure, the character of durability can never be impressed upon it. What makes the churches of Sir C. Wren so beautiful but their poetry? -he proved himself nevertheless to be a great master-builder. Whatever may be the atgle of architecture, or however various the treatment and execution of its materials; whatever perfection of furms it may exhibit; whether it present itself in the manly simplicity of the Grecian, or the rich profusion of the Gothic; its ciaims upon our admiration will be in proportion to its durability;-eternity being its sovereign attribute. What would be the long colonnades of antiquity, and the groining and aisles of a York Mioster, if the great stones were not indissoluble and the arches in perfect equilibrium? This is their principal source of sublimity. But every work of man that is feeble and perishable suggenta feelinga similar to those we experiencie in looking on a baman body that in consuming away, and in that' prbe ess indicating a dissolution of that symmetry and harmong in ifo fabric which is the cause of its health and strength.
Symmetry-Proportion.-Symmetry produces at regular or proportioned distunces of an edifice a anity of features, maintaining order and congruity, amidst, it may be, the greatent variety. The rules of
proportion, as applied to the entire design as well as in the minotest ornamenta, are observable both in ancient architectare and in the Pointed atyle of the middle ages. Alberti, Cicognara in his work "Sull Belio," and others, give examples of arithmetic and geometric proportions for halls, apartanenta, sce. Different proportions belong to different edifices; and one of small dimensions, if its parts are symmetrically disposed, will affect the mind with a greatness of manper which impresses us with an idea of something superior to works bulky in themselves, though ill-contrived. The art of adjusting quantity to rarione circumstances is noticed by Hope in his "Historical Essay," ${ }^{-4}$ The Greeks reserved to themseives the right of giving to each, forms more restricted or multiplied, more simple or rich, and proportions more sturdy and delicate, according to the peculiar exigencies of the edifice or situation. To so great a degree was this their practice, that in these respects, between each order and the two others, an almost insensible transition exists, and that every individual instead of uniformly maintaining a vast interval between itself and the two others, such as all extreme specimens of every style present, borders closely upon the next in succersion, and almost apprara amalgamated with it."
In great works some disproportions far removed from the eye are not discernible; because la grand' aria mangia. Without this exaggeration, small parts are swallowed up by the erial perapective, and no grand effect is produced. Hogarth in his "Analysis of Beauty," refers to the marked variety and relief given by Sir C. Wren to his spires, especially that of St. Mary-le-bow, as proofs of his superior akill on these points. The ancients, and also the medieval builders, enhanced the importance of their works, and made them at once striking and eloquent, by the care they bestowed on certain features; the power of which spoke immediately to the soul, and excited not merely admiration, but wonder. Yet thene thinge were dictated by optical considerations. "Objects do not appear as they are in reality, therefore the architects endeavour to make their works appear not in their true proportion, but in what they should appear."-(Ancient Maxim.) In our obeervations of ancient constructions, we must have remarked the various artifices bad recourse to for increasing the effect of the ornementa; of boring deep holes by a drill in some parts in order to give them a more decided character when seen frum the point at which they would be mostly viewed; of making certain masses stand prominently in advance of the groundwork, and the habit of working the ornaments on their plain blocks in the places they occupy in the building.

Novelty-Variely.-We eatimate an architect according to the taste he evinces in forming new and pleasing combinations, -combinations in which we see the feelings which characterise the poet-which bespeak an imagination analogous to that of the poet: the goodness of the originality is the criterion of their talent. Mens hominis aoida novitatis est; and a necessity forces itself upon the artist to supply this want,-a power of invention which does not imply a neglect of what our predecessors have done, but on the contrary, a profound atudy and love of their best works; as there was scarcely, for instance, any one so versed in, and so thoroughly pervaded by, the spirit and principles which animated the ancients, as M. Augelo; yet no one so independent of them-always their equal, often their superior. It is in the command of beautifal forms-in breathing new life and vigour into the marble, that man shows his sovereignty as a poet. The attempt at novelty will often yield more delight than anaffectation of taste which is foreign to us; for it is an evidence of the exercise of thought, a desire to create, and a disdain of mere imitation. The mind sometimes embodies ideas which are nothing less than mental phenomena, or the effects of a pecoliar organisation; which the reason finds it difficult to account for, and the judgment to approve; yet they are valuable on account of their power of awakening curiosity and stimulating reflection. Stewart in his "Philosoply of the Human Mind," speaking of the power of Imaginatiou as connected with

Fine Art, sayn:-" Without taste, imagination can produce only a random analysis and combination of our conceptions; and withont imagination, tante would be deatitate of the faculty of invention. These two ingredients of genius may be mixed together in all poosible proportions, and where either is possessed in a degree remarkably exceeding what falls to the ordinary share of mankind, it may compensate in some measure for a deficiency in the other. An uncommonly correct tante with little imagination, if it does not produce works which create admiration, produces at least nothing which can offend. An uncommon fertility of imagination evea when it offends, excites our wonder by it creative powers and shows what it could have performed, had its exertions been guided by a more perfect model."-Art that is the result of this uneontrolled imagination, must be tested not so much by rules and precedents to which it does not profess strictly, if at all, to udhere, as to the feelings or impressions which its effects make on our minds. Uur attention must not be drawn to little errors, but to the prevailing beauties which atone for them. Small blemishes are excusable in a gruad bulid-ing-though of course the fewer the better; yet a building, fuulty in parta, the great effect of which is imposing, is greater in art than one whose only praise is, you do not see any fante, neither do its beauties impress you. We must adjudge an architect's place in the rank of artist, by virtue of the quantity of sound intellect and true taste which be displays. On this subject Sir C. Wren says:*—"An architect ought to be jealoas of novelties, in which fancy blinds the judgment; and to think bis judgen, as well as those that ars to live five centuries after him, as those of his own time. That which is commendable now for novelty, will pot be a new invention to posterity, when his works are often imitated, and when it is unknown which was the original: but the glory of that which is good of itself is eternal."-Hence the necessity of referring to and studying those principles of grace, harmony, and proportion which exist in the human mind, and making thew the foundation on which we proceed in ail matters of design.

- "Parantalia."

HISTORY OF ARCHITECTURE IN GREAT BRITAIN. A Brief Sketch or Epitome of the Rise and Progress of Archilecture in Greet Britain. By Jangs Elmes.

"Epitomes are helpfol to the memory, and of good private usc." Siz Henay Wotron.

Although the ancient Britons may have dug caves in their hill sides and built huts in their woods for dwellinge, like most aboriginal people, and formed temples frum the interlaced boughs of trees in their groves-all of which are types and prefigarations of styles tn architecture; yet its first approach to the dignity of a Fine Art in Britain must be attributed to its Roman discoverers. This great and powerfal people carried their arts into every country they subjugated, and civilisation followed their eagles among the remotest barbarians of the North. When Casear landed in Britain, he found its inhabitante in as rude a state of barbarism as we did the New Zealanders or the inbabitants of Tahiti, on onr first viait to thoen places. The aewly discovered country benefited greatly by the arte, learning, and civilisation of their invaders, who, wisely appreciating the natural wealth and resources of the country, planted it as a Roman colony, -to the reciprocal benefit of both people.

From the period of the establishment of the Romans in Britain to about the middle of the fourth centory, the arts of civilised life made rapid progress; domestic architecture bronght comfort and taste into tbeir dwellings; and the sister arts of painting and aculpture added taste and elegance to the most wealthy. A Roman army always brought in its train a body of artists, artisens, literati, and prieste. Their cemmanders, who were alwaye liberal and well educated men, of the equeatrian order, were often, like

Jalias Camar, their own hictoriorraphers, or were accompanied by historian and poats to celebrate their achiovements. In addition to the Roman and matio writers, Britain farnishes in every cormer of ita islapd architeotaril and sculptoral remains of much graodenr, whilst tesselated pare. mants of exquiate deagas, pottery, arms, and other relice of the Roman pariod of British bistory, attest their accorncy.
The aame style and taste in art, and that love of convenience, comfort, and spleedour that was found in the chief provinces of Itals and Gaul, which full ehort only of imperinal Rome Iteelf, pervaded the palaces of the Roman geaerals and the British chieftains-their coadjutors and allies; and Roman Iuxeriea in architecture, such as hot, cold, and vapour baths, with gymaasia, hyppodroases, theatres, and amphitheatres, were to be fonad, as their rains testify, in every Romano-British city or station in the island. Britain abounded at this time with well-bailt villages, towns, forts, and fortified stations; and the whole conntry was defeaded by that high and strong wall, with its numeron towers and interreaing cantlen, which reached from the mouth of the river Tyne on the east, to the Solway Firth on the west.

This spirit of improvement that distingoinhed every spot wherson the Romans formed a setllement, so much adranced the taste and increased the nomber of British artists and artificers, that in the third century this island wes celebrated for artistical knowledge. When Constantius, the father of Constantine the Great, was about to reboild the city of Autnn, in Gaul, in the jear of Christ 296, being well acquainted with Britain, of which country his wife Helena was a aative, he procured the ablest of his workmen from there, which, according to Ensebius, greatly aboanded with the bent artifcern.
After the abandonment of Britain by the Romans-whose attention was called by insurrections against their imperial authority in atates nearer boes to think much of this distant colong. Which bad been severely ravaged by the Picts and Scots-the classical taste in archltecture gradoally decllaed, and was socceeded by varions, and in some instances depraved, atyles. The coontry, although divested of Roman armies, had been thoroughly Homanised by the ealightened conquerors; and if no Roman geaeral or person of inferior rank remained behind, the Britons who had been introsted with command had become half Romuns by edncation.

The earliest city recorded to have been built by the Romans was on the site of our present metropolis, near the spot on which 8t. Paul's Cathedral now stands, as proved by the remains of a Roman temple discovered when digging for its fonodations by Sir Christopher Wren, and others more re. eently fonnd in taking downa part of old Lond on wall, at the back of the honses on the south aide of Ludgate-hill. This city was founded as early as the fifteentb year of the Chriatian era, and was called Camelodnnum; it wes deatroyed abont eleven years afterwards by the Britons, in revenge for the cruel treatment received by Boadicen, queen of the Iceni, from the Bomans. It was at that time said to have been a large and well built town, embellished with statues, temples, theatres, and other publle strucsares. From the clrcamstance of this rapid destraction, perhaps by fire, it is probable the priacipal baildings of that city were of timber; till the tiae of Agricola, who finally established the dominion of the Romans in Beitain, from which period may be dated the first construction of pablic buildings in the British capital of brick, stone, and other incombnatible eaterials. Agricola governed the colony during the reigns of Veapasian, Titas, and Domitian, with equal conrage and humanity; bis residence and reat of government being the new city of Camelodunum, then as now the aretropolis of the conntry.

These points are of some importance, as proving that the Roman style of erehitectore preceded every other in this island-the but and cabin alone excepted. The Homans not only erected a great number of solid, convenient, and magnificent edifices for their own ase and accommodation, but instructed, exhorted, and encouraged the Britons to imitate them.

At the time when the Eaxon domiaion was gaining ground in Britain, and before the distorbed times of Hengiat and Horsa, public and private dwellinge are related to bave been constructed with strength and magnificence. In the year of our Lord 480, Ambrosius, a British commander, of Roman descent, who bad assumed the regal government of Kent, built for his residence a splendid palace at Canterbary, which be made the metropolis of his small kingdom. Daring the Saxon heptarchy, domestic and cacred architecture continued to fiourish, and boildings of both derromiontiona were erected in the meat popalons parts of the meven kiagdorus. The monke,
who were the orly architects of the times, and who travellod in fratoralties from place to place, at their servioes were required, were a apecies of operative Freemasons, keepiag their akill and craft within the circait of their own lodges. In their travels they visited Bome or Roman citiea, and the leart skilfal of them carried away the types of their art in their memories oaly. From their works amsee the style called Saxon, whioh, as its earliest efforts prove, is a corruption of the Roman style-perhaps provincial, and therefore nut in the porest tate,-made by memory, or rude aketches by outanght artists. The Saxon style was called by the monkish writers of those days "Opus Romanam."
The elements of the Saxon atyle are too well known to the readers of this Joaraul to need description,-but a reference to the orypt of Lastingham Priory, in Safolk; the remaias of Borgreve, Cbureh, near Chichester, Sassex; Waltham Abbey Charch, in Essex; among many other very early specimens of this style, andoubtedly well known to our archseological readers, bear witoess to this hypothesis. In these eremples will be found rude imitations of bad specimens of Toscan, Ionic, and Corinthian capltals, with or withont entablatures, and with or without archirolts, as seemed besk asited to the architeot's purpose or his erratic fancy. Bound by fewor rules then the architecte of anoient Rome and Greece, the bailders of these atructures, by giving way to their own picturesque faccies, choosiag or rejecting what they had seen at plessare,-following bowever the best constructive rules, mong which "a liftle atronger than atrong emough" was not among the least, 一they erected buildings which are atill in efficient use; and created a style which is at once picturesque and, with certain effeots of natoral scenery, worthy the living architect's attention, from its majeatic simplieity in some portions, and its singular richness of sculptural embellishments in others.
This native Angio-Saxon atyle is well saited for entrance lodges on a large scale, or prompeot towers appertaining to an extensive demesne, where the scenery is grand and majestic. Its preponderating, massive, and gigantic featnres, if well applied, accord with such purposes; particularly where the malerial is solid and durable, and of rather sombre bue in lts colowing tints. A saxon cactelluted entrance tower and portale of dark blae limestone, so common in the mountainons districts of North Wales and the central parte of Ireland, would form an appropriate adjnnct to any of those romantig spots with which these islands abound.

As excellence is always advancing, so did archltecture and its sister arts advance with varied ateps in this country. Its vicisitudes may be arrunged into epochs or eras in somewhat like the following manner, and will be so considered in this inquiry. Namely, from the splendour of the Augustan age-an emanation of which bad reached us daring the administrations of Claudius, Antoninas, and Agricola-Lill the declension of pare taste by the expalsion of the Romans, and the substitution of other arts, literature, and cnstoms, formed by the association of the ancient Britons-their Sayon colieagues, which completely established the style called Saxon.

Next arrived that state of transition in which the art continued from the pure Saxon times till the rise, progrean, decline, and fall of that eminontly beantiful atyle called Gotbic. This style is so varied and so expansive, that it is nearly impossible to catch it within the limits of a definition-it almost elades description, and hae occasioned more schisms among writers on art than other style of architecture extant. It has rules-but they are so discorsive and ideal that no true code, like the Vitruvian or the Classical styles, has yet been formed. Some admirers of this style object to the epithet applied to it as derogatory to its importance;-but the Society of Friends scarcely ever object to the title given them originally in derision, and are not offended as being described as the people called Quakera. However objectionabie the title may appear, it bas become too general now to be altered; and the friends of the atyle are bound to receive it as an honourable distinction. Perhaps a more satisfactory title may be obtained by calting it the Anglo-Germanic style. The late Sir John Sonne used to tell us stadents of the Royal Academy, in his lectures, emphaticly that Gothic architecture was any thing tbat was not Grecian. Wren unfortonately called it "a grose concameration of heavy, melancholy, and monkish piles." But Wren was blind to the beautiful details of Gothic architecture, although be appreciated those of its scientific construction and its general forms, as bis well known reverence for King's College Chapel, Cambridge, which he declared to be inimitable; and bis clamsyimitation of York Minater in his west front of Westminster Abbey; his pzendo.Gothic of St. Mary, Aldermary; his almost beautiful imitation of Magdalen Tower, Orford; in that of St. Michael, Corabill, tacked by the way to a Doric interior; and his singolarly beautifnl spire of Sl. Dunstan in the East, although disigured by Roman mooldings,-abordantly testify. Nor mast the

Gothic construction of some of the coonealed parts of 8t, 1'auls Cathedral be omitted in this category of Wrea's blindaess to the beauty of this style, or of his willingness to be tanght by such an enemy to the taste he revered. It is painfol to speak thus of a man like Wren, bet his fame as a mathematician, and as the greatest constructive architect that Engiand has prodaced, beaides his many other eminent qualities in the bighest branchet ef learaing and scienoe, will mors than coenterbalance this defect, althougb not a small one.

An eminent liviog architect and writer on his art, has, on the oontrary, pronounced his fiat ex caltedra (that is of his own chamber) that Grecian, Roman, By zantine, or such like architectare, ased he eoclesiastleal edifices is Pagan asd unchristian ; as did Taylor the Platooiat declare, io as dictatorial a manoer, that all who did not believe in the religion of the Platonic echool were infamons, dariog, and Galilean. What mays the anathematizer of Pagan and ancbristian edifices, to the "APagan and vachriatian" style of the (80 called) Cuthedral of the Christian world, the tbrone of gods, vicegerent opon earth; whence in by-gove days were falminated the anathemas of tho head of the Christian church against all heretics and uobelievers ? or, of any other of the Christian churehes in that self called captal of the Chrisiian world \boldsymbol{f} or, of the beantifal Christian churches of Mlehel Angelo, Raffaelle, Bramante, Palladio, Bcamorai, and other Chriatiad architects of the Medicean period of Italian art,-to say nothing of the more recent Christian charab, deaigned and execnted by the catholic and tasteful Capore ?

Willinm Haslitt justly compares the correctneas and chantened rules of Grecian architecture to those of the Greek tragedians, and the elements of its atyle to the parity of their incomparable laugaage. "A Doric temple," observes this discriminatiog critic, "differs from a Gothic cathedral, as Sophocies does from Shakspeare." The principle of the one being simplicity and harmony, governed by severe rales; that of the other richoess and power directed more by fancy and taste than by too rigid an observance of scholatic discipline. The one relies on form and proportion, the other on quantity and variety, and prominence of parts. The one owes its charm to a certain noion and regularity of feeling, the other adds to its effects from complexity and the combination of the greatest extreme. The Classical appecis to sense and habit, the Gothic or romantic strikes from novelty, strangepess, and contrast. Both are founded in easential and indestructible principles of human nature.

If the Gothic style be considered as a gencs la architecture, it may be divided into three apectes:-the robust, the ormate, and the florid. Uader the term robatt, may be claswed all the varieties of Saxon or Early British arrbitectare ; vader the ornate, the Anglo-Norman or English; and nuder the florid, the gorgeously embellished works of the Plantagenets and Tudors, which romantic species flourished reaplendentiy till it reached its meridian grandeur in those agen, and may date its decline from the intro. doction of elassical literature in the reigns of Heary VIII. and Elizabeth, when Romen, or rather Italian, architectare begas to mix iteelf with our pative 8azon and British atsles, an its words did with our langaage; and we were then, Sbakxpeare and Bacon excepted, pedants in both.

Various hypotheses have been formed apon the origio of this beantifal and original style. The learned German critic, Dr. Mölier, pribcipal architect to the Landgrave of Hesse, in his Essay on tho Origin and Progress of Gothic Architectare, traced in and dedaced from the ancient edifices of Germany, with reference to those of Engiand; and the English Archseolo. gist, Sir James Hall, in his profound work on the same subject, derived them from a aimilar source, aamely:-

1. From the aecred groves or thiokets of the ancieat Celtic nations.
2. From hats made with the entwided branches of trees.
3. From the etructore of the framing in wooden balldingm
4. From the pyramids and obelisks of Egypt.
E. From the imitation of pointed arches generaled by the internection of semicircles.

Holbein, and other painter-archltects, whoffourished is the last Henry, and hin daughter Elizabeth, introduced the mongrel atyle affectedly called Elicabethan, which is neither pure nor classical, but a rambling picturesque style of shreds and patches.

Palladio, the father of that style of architecture which wes introduced joto England by Inigo Jones, read his Vitruvins in the trne spirit of its author; and delinented reatorations of rains of ancient Rome in a parer style than perhaps existed in some of their originals. The atyle of domestic architecture which this great Italian master formed from his study of these splendid raiss may be gathered from the onmerous Roman villas and palaces with which he stadded almost every part of his malive Italy. Two

Gae specimens of his inmediate atyle may be gathered from laigo Joses'a adaptation of his quadritrontal villa at Amesbary, in Wiltahire, and Lord Burlington's little gem at Chiswick, now belonging to the Doke of Devonshire; which Lord Chesterfield declared was so pretuy, although not large enough for a chimney ornament, was too large for an appendage to his watch chain. Both are masterly imitations of Palladio's ville, which be erected for the Magnate Biaggio Saraceno at Viceaga, and prove, with 8ir Joshua Reynolds, that skilful adaptations are not always plagiariams.

Had Palladio's views been directed to Greece instead of Italy, and had he studied the ruias of Athens, sach as they were is his time, instead of those of ancient Rome, and had delineated restorations of the Propyleium, the Paribenon, the Theseíum, the Agora, the triple temple of Minerva Polias, and other gems of that spleadid city, with Vitruvius in his miod, instead of the temples of Fortuna Virilas, of Concond, of Peace, the Theatre of Marcellus, and such like coarse imitations of the Grecian style, -or the ruins of the Greek theatres, instead of the Roman,-be would have formed a school of arohitecture, founded on those structures whence Vitruvius drew his rules, and as much superior to that called Palledian as are the works of Ictious, Callicrates, and Pbidias to the Coliseom, the Amphltheatre at Verona, the palace of Dioclesian at Spalatro, the Golden palace of Nero at Rome, and the other canons from which Palladio formed his style.

The Roman style of architectore was more sucoensolly cultirated in England in the reigas of James 1. and Charies I. than in any proceding time aince the oceopation of Britain by the Romans, both of whom were liberal patrons of Jones;-it perished, as did atl the tantefol arts, through the fory of the Iconvelasts and Roundheads of the Commonwealth;-roee again ander the fostering patronage of Charies II., who possensed some of the taste, If not the virtues, of his father;-was eclipsed by igrornoce and bigotry io the reign of James II. ; -and from that period till the reige of George III, a mere blank is presented in the history of the art.

Among the best specimens of our earliest domestic architecture, Hampton Conrt, in Herefordshlre, affords a good example. It is cited, from having come nearer our times in an onaltered state than many othera of like antiquity. If was erected in the reign of Richard II. (about 1380), by the Dulke of Hereford, afterwards Henry IV. The mansion was thoroughly repaired, or rather restored, about a century aga, by Lord Coningeshy, it having been the baronial seat of his ancestors. It contained, after the re-inatatement, seven very noble apartments of state, richly faraished, and nomerons convenient dwelling rooms and chambers, with suitable ofices for a large retiane of servants ; extensive gardena, well planted and laid ont in the formal atyle of the times ; a large park, and noble demeace; a well stocked decoy, for चild fowl; and every ad. vantage both for pleanore and couvenlence.

The foreiga wers, and civil commotions at home, left the Engliah kiags, nobles, and people little time for the cultivation of the Fine Arts. Therefore, do great progress was made in architectore, except in fortified residences for the aristocracy, and ecclesiastical buildingy, ereeted or eelarged by pious dovotees and profligate soldiers,-who componoded for thelr sina committed abroad, by erecting or andowing eocleajastical buildinga aod religions sarvices at home, for the good of their souls. This state of foreign warfare and domestic insecurity continued doring the relgas of the forth, fith, and sixth Hearies, till the succeanful establishment of the EarI of Richmond as Henry VII. gave security and much-required peace to the conntry. Before the time of Richard III., however, Crosby Hiall, which has been recently beautifully reatored, wat erected; it is a splendjd specimen of this style, and was in its day a samptuous motropolitan residence. The same golded age of Engllsh architecture produced that delightful miracle of tastefol and scientific construction-Kiog's College Chapel, Cambridga; and other sacred edifices, that do hoooar to their avthors. Heary VII. completed what may be considered the perfection of the Florid style in his mausolenm at Wentminster, now called Henty VII. Chapel,-and bronght over to this conntry Tortegiaus, the rival and combatant of Michsol Angelo, to executo his magnificent tomh of bronee, for the reception of his mortal remains.

The mixed anomolous stgle that was introduced into Engiand atter the sun of the Tudor style had set, by ormamental and scenic painters from Flanders and other parts of the Low Countrios, oblained the patrosage of the rich for fachion gake, and in fmitation of the bad tacte of the court from the middle of the reign of Heary VIII. till the time of James I.; Holbein, Zacohero, and their royal mintrese, Elizaboth, may be eateomed its sponsors; and it revelled in bold misrepresentations of Palledian purity, Erafted upon a Flonich ctalk; and aboueded is order epen
arders, bowh, niches, greteeque imagery, and foliago-u gorgones and bydras and chimeras dire," thrown about with all the redundancy of pictorial waptonsess;-half-timbered houses of divert colours ; " black spirits and white, blue spirits and grey," grinning borrible defance to good taste, in this pedantic style, which alike infested oor language and our architec. tare. It clowed-io show what height architeotural abenrdity may reechis the portal entrance of the sohools at Oxford, where the Ive orders of Italian architectore, caricatured in the wort taste, are piled one opon the other-the brawoy Tascan at the bottom, almost crushed by the mperiacambent weight, and the lanky Composite at the top.
Thia aberration-for atyle it cannot property be called-chanka be to the improwed tinde acquired by Prince Charies and his gay companions, who rebbed of their pedantio rant by coptiaental travel, a better style in art proviled;-Vandyke soperseded Holbein, substitutiog nature for dry afoctation; and Jones threw the namoless and irresponsible arohitects of the monstrosities of the Elizabethan period into that obscurity which ail the endemvonrs of the elegant pencile of modern dranghtumen have not been able to revire.
The Roman or Italian style of architectare, adapted to domentic ecosony, whe first introduced with classical purity into this country by Inigo Joces, who flourished in the reigne of James I. and his son Charles, and died seglected in the tasteless times that socceeded the beheading of his rojal patroa. The most distingaished works of this eminent Euglish architect, are the before-mentioned mansion at Ameabory, in Wiltabire; that on the northern side of Greenwich park, which now forma the central building to the Royal Naval School ; and at the eame time, an appropriate ceatre to the Royal Hospital as viewed from the river; Shaftubury House, is Alderagate-streot, formerly the town mansion of the nobleman of that same, and now subdivided into a series of shope and the establishment of we Gewernl Diapenamy; some town houses on the southern side of Long. ecre, the pilablers and Corjntbian capitals of which are still in existence; nome masion ou the west side of the square called Liocoln's-inn-tids, the growod plot of which he set ont the same size as the largo Egyptian pyramid; and the grand piazes of Covent Garden, which is fant disappearing ander the haods of the building ionovalom. Among his most alebrated town mansions, may be mentioned that of the Doke of Bedford, on the north side of Bloomsbury-square, which, wlth its gardens and pleasore grounds, occopied the whole areas of Rassell and Tavistock vquarti, almost op to the New rond. It was taked dowa to make way for the prodtable improvements by building speculators of that brown brick saburb of the metrepolis. It was a perfect Italian villa, carefolly sdapted to our climate, and contained among its state apartments an extemive picture gadlery. Amoog its pictores was that ino set of copies from the eartoons of Rafraehe, made on canvas in turpentine colours by Str James Thoratill, and presented by Francis, Dake of Bedford, to onr Royal Acedemy of Arts.

For the satisfaction of auch of our architects who bave net yet learoed to deapise eld "Iniquity Jones," as Beo Jonson called him in one of his matirea, Harcont House, on the west side of Cavendish-square, stiil rewains in almost its pure pristine state, for their contemplation. But let them be quick aboot it, for it has already been looked at by the arshitect of an innovating Joint Stock eompany, for the parpose of converting it into acries of clab chambers, like those of the Albany, Piccendilly. It is not an opholeterer's manion-all carpetiog, fook papering, gilt papier mach 6 , and gewgams ; tut a solid sobstantial structure, of sound brick ad stove, marble sculptares, and fine oak carvinge; bnilt for ages and for the cecrpation of a noble English family, who could boast, like the Italian notables, that It was bailt by their anoestora, geaerations ago, and had sever been occupied bat by their own race. The noble founder, to do jestice to his architect, has placed his bust in a conspicnous part of the priscipal front.

Ameag his works that ere atill extant is the Dormitory, we Wentminster schoel ; its exterior is stroagly marked by the prevailiag cheracter of his atyle-a correct manly aimplicity, and a just proportion of the component parts charscteristic of its use; the interior of the upper atory is weh enongh for the ase of the soions of aristocracy who occapy it, and is annually aned at the theatre for the performance of the Latin playa by the Westminater weholars.

In ecumerating the works of Ioigo Jomes, his vast and splendid portico to the old cathedral of 8L. Panl, that was deatsoyed by the grest fire of Loodon, mast not be forgotten. Its proportions and dimensions may be enes in Eent's publlcution of his works; but the vatnese and grandenr of shis otrapendows portico, 50 far soperior to any other in Eagland, and per.
hape is Errope, can be better imagined thav deserited. Of the propriety of adding a Romas portico to a Gothic cathedral, moch canvot be uid; but perhaps the architeet contomplated the completion of t Chrictan cathedral in a similar style with his portico. It has boon compered to a penaiongiven by a profigate king to a paraitical favourfte, at baing a good thing ill applied. Lord Burlington said of it, os viewing the new calledral-"Whea the Jews mew the woord tomple they mept."

These works, and some anexecuted designs, published by Kent the expense of the Earl of Burlington, show the fertility of this architect's mind, and the skill with which he adapted the best styles of Romen architectare to the domestic convenienoes required by an English family in our variable climate. His chareh of St. Paul, Covent Garden, which be built for the paramonions Dake of Bedford, who desired a mere barn for the ans of his Covent Garden temants, and was informed his desire should be complied with it, bat it should be the finest barn in Enrope, also shows the dexterity with which Jones conld ase the plainest materials. It produced the desired effect, and stands alooe as a masterpiece of Fradal architecture, proving how the mind of a man of genins cen overcome difficulties. It is the only apecimen of the true Vitruvien Tusen ever known to have been executed. The late Mr. Hardwick diaplayed becoming reverence for the master mind of his great prodecessor, by attempting no improvements apon this singolar example of church anchitectare, when he repaired it after a destructive fire.

Heriot's Hospital, vear Edlaburgh, an early work of this arehitect, before he had matored his taste by foreign travel and the stady of the great Italian masters, has little to recommend it, excepting the simplicity and aptitude of the plan to ita porpese. The architectural world is indebted to Mr. Goldicutt for some tauteful etchinga of the plan and details of this boilding. The only other work of Jones io Gothic architecture is the Chapel in Llacoln's inn, and proves that nether he nor Wree compre. hended the spirit of thls beantiful atyle.

His greatest work, bowever, was the magoificent palace which he designed for James I., the Banquetting Houme, Whitehail, now used as a military chapel, being the ooly part executed. It was to have covered an immense plot of gronad, ertending from ©Charing-cross on the north, to Richmond-bnildings, Parliament-street, on the sonth ; and from the river on the east, to the Parade in St. James'mpark on the weat. Four such buildings as the present chapel were designed: one opponite to it, near the site of Melboorne Honse; the other two, one in line with li, dear Scotland-yard, and the other opposite thereto, on the site of the Admiralty, -and wero to be ased as a banquetting room, a royal chapel, a throneroom, and a hall of andience. They were to be connected by a variety of state and domestic apartmente, ofilial residences, spacions court for air and light, and every accommodation for a rogal palace, suited for the greatest monarch in Enrope. The circular court anrrounded by an areade supported by statues, thence called the conrt of the Caryatides, was obe of the finest coneeptions that ever emanated from the mind of any archi-lect-macient or modern. The whole design, which, thanks to the liberality of the great Earl of Burlington, has been published, with aumeroms and ample details of all ite parte, is a perfect school in itself for an architectural atudeat : the masterly akill wlth which the architect has conquered the dificult arrangements of the atate and privale apartments, without unnecessary interforesce with each other,-the manner in which he bas arranged the varions conrts for light and air, -and the andergroond apartmente for domestic ase, and conoplete drainage necesary for the malnbrity of soch a vast assemblage of buildings, combined with consummate skill into one perfect whole, should form, with hie mensions and vilias, the atady of every aspirant to arcblteotaral hooonrs. These works of Inigo Jones would alone furnish a series of lectures on the skilful adaptation of architectural grabdear to domestic comfort end internal conveafence, worthy the talents of the greatent master of the present day. This great English architect and his worthy soccessor, Bir Chritopher Wren, are, to onr national disgrace, bottor underatood and more highly appreciated in France and Germany than in their netive England.

The only executed portion of this maguificent deago-mancly, the mititary chapel or banquetting house - ia, like the part from which it is dotached, grand in style, bot nnequal in come of its lees important details. The conception of which, considered as the amall part of a mighty whole, is in itself ooble; its primary divisions are fow and simple; it opesings large and handsome;-bot as a whole it is unequal io composition and in style. The play of light and shade prodoced by the breaky over each colamin is, in a minate taote, the very opposite to grand. The Ioajc speci-rep-the torention of which is athiluted to Scamoseri, bat is really a
corroption of the angolar eapitels of the tomple of Minerva Polias-is one of the worst and the most impare that he coold have selected; the modillions do not belong to the order, and approech too nearly to thone of the Corinthian. If one order upon another be ever admissible, the Corinthian sboutd not have beea excloded for the porpose of introducing the Conppoite.

ON THE SCREW PROPELLER.

In the following paper we propose to examine theoretically the beat angle for the worm of the screw-propeller-taking for granted the theoretical formule for the resistance of Aulds. At some future opportuaity, we propose to investigate the problem in a more practical manner, and to supply conditions for the best form of the serew itwelf, with reference to strength and osefal effect.

Let BED be a small plane rectangular lamina of rigid matter, attached by means of a rigid rod AB, without wright, to an axis A L, which is horisontal, and sboot whiob the rod AB can revolve in a vertical plane. Lot the rod A. B be in the plane E B D and perpendicular to the side ECD; also, let the amall lamina E B D make an $\angle \theta$ with the vertical plane in which A. B rotates; and let the area of the plane E B D $=k$.
If the axis A L be fixed to a vessel floating in water or any other Anid, and the point A be at such a depth below the surface that E B D will always be in the fuid, and A.B be made to revolve rapidly in the direction $\mathbf{C d}$,-the resistance of the fuid upon BED, resolved in a direction parallel to $A L$, will canse the vessel to move in the direction $A L$.

Now, the wrorm of a screw, having $A(f$ for its axis (the plane of any element of the worm being supposed to contain the line A B), may be supposed to be made op of an infinite number of amall elements, similar to E B D. The rotation of such a screw would, therefore, cause the vessel to move through the water. If the propulsion were caused not by one unbroken wrom, but by several portions of the same worm, symmetrically and oppositely disposed about the axis, the resolved parts of the resistances perpendicular to the axis will destroy each other, and the motion of the vessel will be steady and in a straight line. When the vessel is moving with an uniform velocity, the resistance of the water to its motion will exactly equal the resistance to the screw, resolved in the same direction; and the sum of the moments of these two resistances about the centre of gravity of the vessel will be zero.

To return to the consideration of the single element EBD, supposing the vessel moved has a velocity \mathbf{v}, and the resiatance to its motion is R, let us determine the value of the $\angle \theta$, when the amonnt of moving power expended is a minimum. Let ρ be the density of the finid; $r=$ distance AB; m the angular velocity of EBD. Let Fr be the moment of the pressure about AL, EBD exerts when moving with an angular velocity 1 ; then, if the moving power be constant, $\frac{\text { Fr }}{\text { mill }}$ we tbe moment of the
prosence exerted by EBD when moving with an angular velocity m. Consequently, the resolved part of the velocity of $E B D$ perpendicalar to E B D is ($m \mathrm{r} \sin . \theta-0 \cos \theta$); and the resistance egalnst E B D
 pared with AB.
The renolved part of the resistance parallel to $A L$ is

$$
\frac{1}{} \rho k\left\{(m r \sin , \theta-\theta \cos \theta\}^{2} \cos , \theta=\mathbf{R}\right.
$$

since 0 , the volocity of the vessel, is by hypothesia vuiform. Aleo, since the motion of AB is uniform,

$$
\begin{aligned}
& \text { if } k\{m r \sin \theta-v \cos \theta\}^{2} \cdot \sin \theta \times r=\frac{F r}{m} ; \\
& \because \frac{R m}{F}=\cot \theta ; \cdot \cdot m=\frac{F}{R} \cot \theta ;
\end{aligned}
$$

* We here suppose that no part of the pnwer of the eagine is expeaded in overcoming the frection and realatincte to motion of te servial parts.

$$
\begin{aligned}
& \cdot \theta \text { p.k. }\left\{\frac{\mathbf{F r}}{\mathbf{R}} \cdot \cos . \theta-\theta \cos . \theta\right\}^{2} \cdot \cos \theta=\mathbf{R} \text {; }
\end{aligned}
$$

In this expresoion, it is clear that F is least when cos. θ is greatest-that is, when $\cos . \theta=1$, and $\cdot{ }^{\prime} \cdot$ a $=\alpha$. The interpretation of this apparently paradoxical result shows that the smaller the aogle of the worm of the screw, the less is the power lost in transferring motion to the remel. There are, however, certain practical coasiderations which cannot be nogleated in determining the best value for θ. In the irat place, we bave supposed the lamina E B D to be indefinitely thin, and that all the resist. ance is perpendicular to E B D; this, in practice, is not the case:-the reslatance against E B D being very considerable, if follows that-in onder for the material connection of EBD with A L not to be deatroyed by so great a strain-E B D mast be of appreciable thickneas.

Let the area of edge of $\mathrm{ECB}=\boldsymbol{A}$; then neglecting the effect of the mass of EB D and its weight, we should have the following equations:
 and, $\frac{1}{2} \rho k\{\operatorname{mrgin} . \theta-v \cos , \theta\}^{2} \sin . \theta+\frac{1}{} \rho h(\operatorname{sar} \cos . \theta+\theta \sin . \theta)^{2} \cos . \theta=\frac{F}{i n}$
In these expressions we find that \mathbf{R} is diminished, while \mathbf{F} in increased; consequently, there is a double loss of power. F must be increased to balance a resiatance which not only does not accelerate, but nctually retards, the motion. Also, the now terms introduced rapidly increase by dimin ishine: a value of $\theta=20^{\circ}$ wrould probably make F neurly a minimom.
The whole theory of resistances is, however, so little to be depended opon, that the results we have obtained can only be regarded as a rough method of approximating to the truth. In a future number of the Jour al we hope to be able to continue the subject, founding our inventigations on dala of observation and experiment.
[In the nomber for April, in the article "On the Motion of Flaids," p. 98, for "the equal number for 0 ,"-read, "the equations fur $v ;$ " and, p. 08, col. 2, for the "mean vertical velocity of the particles,"-read "the nean velocity of the particles in direction of the tube."]

SBWAGE AND DRAINAGE.

Since our last number, we have seen with the deepest regret, that the Go. veroment bave agreed to leave out from their sanitary measures for the present year the metropolitan districts. It is most painful to reflect that two milliona are left exposed to the evils of a most inefficient aystem of aanitary administration, at a time when the scarcity of food is sure to produce severe disease, and when there is every likelihood of the Asiatic cbolera spreading througb Europe to this conatry.

If there be one fact that admits of no doubt in the public mind, and of no doubt in the minds of any but aldermen and commissioners of sewers, it is that the sanitary adıninistration of the metropolis is most shamefully molsconducted, while it is imperative that the administration should be concentrated and carried on with vigour. Whatever puperiority we may have over other countries in such matters, it is nevertheless true that we are miserably behind-hand, so far as our own ealightenment is concerned. We want no facts to prove this beyond the experience of every individual, though the reporte of the Registrar-General and of the officers of sewers are convincing.
One great good we expect from the abolition of the present aystem-or no system-is full scope for the exertions of able and intelligent engineers and sarveyors. Iadeed, it is by such only that any amendment has been effected, es the laboars of Mr. Roe, in the Finsbury Dirision, sod lately of Mr. Phillips, in the Westaninster Division, fully show. We have now before un a report of the latter gentleman, to which we shall direct attention in preferonce to any other branch of evidence.

This report is produced in parsanace of an order of the commissioners of sewers, on the lat May, 1846, and ordered to be printed 16th Aprii last, to accertain the condition of a part of the eastern diviaion of the sewers north of Ozford-street, and east of Portland-place and Regent-street. This dintrict (called All Souls) contains an area of about 130 acres, with a population of 27,000 persons residing in 3000 tenements. The density of the puputation is not great, considering the extent of the district and the namber of houses inhabited-being on an average nine persons to each honse. Mr.

Pidiripe say, that the situation of thin district, althongh not quite wo airy end salabrions athert in the parish of St. Marglebone, is fur from boing clove and unbealthy. The housen generally are large, being chictly thindrac, and narrow streets, courts, and alleys are not anaspons. The atreete isdeed are mont of fir width, ranning in atraight lines north and south, and east and west, asd commanicating with other wide otreets runaing la those directions; and having therefore currenta of air ronning freely throagh them, and keeping up good ventilation. The diatrict ia, farther, eeventy-foar to eighty-three feet above the level of Trialty high-wnter datum in the Thames. The paring is generally in good condition; and being weli applied with gally drains, the sarface water is carried of apeedily. Nearly all the public ways have sewers running ander them.

The above description appears to be that of a bealthy and comfortable district, but Mr. Phillipi gives foll proof of its real state, and of the operat. iag easses. He contraste it with the neighbouring district of Cavendishquare, and he finds from the return of the Regiatrar-General in 1845, that wheress in Cavendish-square the mortality was one in finy-nine, in All Sonle it wat one in twenty-eight, or more than twice at great. The rate of mortulity per hondred stands thus-

Cavendiah-square	1.7
All Souls
	3.6		
Excena on latter	1.9

The excess of mortality in All Souls district is more than equivalent to that of a healthy district ; so that, literally and truly, the Cavendiah-square people have twice the health of those of All Sonls. The nomber of pernons murdered in All Souls district cannot be calculated at less than 200 pernons yearly, whereas it is very likely 500. The average per centage of mortality is the parish of St. Marylebone is one in forty-four, or $\mathbf{8 - 2 7}$ per boodred, which average, of course, is made up by such districts as thoes of All Souls. The fact that the population of All Souls is of a poorer clase than that of Cuvendish-square, ls not enough to acconnt for the gretter mortality of 520 persons yearly, or 10 weekly.
The cacse of this wholessle murder is the aeglect of the sewers hy the Weatmiaster commissioners. The sewers appear to have been built between seventy and a huadred years ago, and are all built with flat paved bottoms and upright sides, apanned by half-round arches. They vary from 4 feet to $b \mathrm{f} . \mathrm{t}$ in, in height, and from 3 feet to 4 feet in width-being of ample size; but all the junctions are formed at right angles, many of them being brokea through the side walls and not made good. The materials used in their constraction are the worst of their respective kinds, being place bricks, and mortar composed of chalk lime and loemy pit sand. They are bow, Mr. Phillips seys, "very much dilapidated, considerable lengths of the side walls being now in rains, and the remainder falling fast to deeay."
As at appendix to this, Mr. Phillips states that-" It would appear the court of sewers exercised little or no a athority over cither the arrangeaent or construction of these old sewers; as the only record respectiog them that I can discover in this office, is the report of a committee, on view in Aognst, 1786, atating that the side wall of a sewer at the north end of Norton street had bulged for a length of ten feet; that the sewer at the sorth end of Titchfield-atreet had been bailt with place bricks, that the arch had fallen in in several places, and that a great quantity of rubbleh whe in the sewer." Thas, what the sewers were sixty joars ago they are now; and daring that period, at least, their neglect by the commiasioners has been consisteat-whlch is the most corteous term we can employ. We canot, however, fod that the inhabitants have been exempled during that time from sewers rates-that would be too much to expect. Indeed, when we look at the further evideace, wo cannot but thint that the inhabitante would have been better withont sowern, and that they ooly paid for being poisooed. In Lishon, and other nabealthy cities, they have no sowernand yel the mortality is not higher than in All Sonls, Marylebone, where the sewers cad ouly be regarded as what Mr. Phillips in ove place calls long and narrow cesspoole.
Mr. Pbillips informs us, that for many years past, the lobabitants have complained of these sowers being choked up and stopping their drains, and of noxions exhalations arising in the streets and honses, and that they etill contlave to do so. Mr. Phillips confros these complaints-haviag, in order to acquaint himeolf with the extent of the evils, on numerons ocasions paseed throngh the sowers. In doing this, he waded and crawled, sometimes in darknese, through vast acoumulations of balf-liaid black metler, and his health sufered greatly in consequence.
It seems, that from 1884 to $1844,185,058$ cubic feet of coil or poison
were taken ont of the sowers, and carted away, at an averago ananal cont of $\mathbb{E 1 1 8 9 8 , - b e s i d e n ~ c o n t i n g o n c i e n , ~ w h i c h ~ p e r h a p e ~ d o a b l e d ~ t h e ~ o u t h e y . ~}$ The rellaf, however, was bet temporary, and the disburmement of this trampery pittnoce did not abete the evils.
Thees sewers are desoribed as containing, throughout, an immerse accomalation of detritus and decayed animal and vogetable matter; and they are thus becoming worse every day. From their bottoms beiag fat and broad, and the fall bat little, and that irregular, directly they aro cleansed they begin choking up egain. Thin, Mr. Phillipe says, goes on increasing backwards, until the surface of the woil forms an artificial fall, whereby the water gaias sofficient foroe to preveat any further deponit from taking place. This is in obedience to a naternl and well-known law, and it illastrates the futility of laying down sowers with too little fall-for if the fall be not given to them, they will make it for themselves. On account of this "grading," as the Yankees call it, of the mala sowern, the soil in many of them is now on a lovel with, and io others it is above, the mouths of the house drains, which are in consequence fast choking up, many beiog stopped already. This is the atate of affairs in a large and wealthy parish, paying a large sam to the sowers rates-and certainly willing to pay for health and lifa.

The hoose drainage, as may be oxpected, is moet defoctive. Ceaspools and common privies abound. Some of the cesapools have no overtlow. drains, wo that the more fowing portion of the matter soake away through the neighbouring ground, choking it with filth, and leaving the solid matter to rot. Those having overfow drains are always full of moil, and send forth soch pestilential exhalations as almost, in many instaceen, to prevent any one from going near the privies. The aide drains from the hoeses are large, and have fint bottoms, so that the small quantity of water flowing from the houses cannot keep them washed out; and they consequently choke ap, requiring often to be broken into so that they may be cleansed --thereby causing outlay and anooyance. As often, however, as they are cleaned, voids are formed, which are again and again filled up.

Mr. Phillips, wo are glad to see, agrees that it is needfol that house drainage should be a part of the entire sewerage, -and says that "the cooner the legialature place house drainage and sewerage under the same control, the apeedier will be the removal of many and glaring evila. A skilful combination into one aystem of hoase and atreet drainage, conjulatly with a fall and efficieat supply of water, would ensure the remoral of alth and waste water into the sewers, nearly as fast as produced, instond of being detained as at present in the drains and cesspoois in and about the honses, for mooths and years together." Certainly until this is done, nothing is done; and uniform eowerage is quite as important as uniform postage. To the wealthy, it is easential that the housea of the poor should be drained, for in them are the great seats of fever and disease;-sewerage is not a laxury for an individual, bat a duty towards the community; and as the expenses of communicating with sewors are about the same in the case of a poor house as of a wealthy house, none would domar on the whole charge being thrown upon property.
The cleansing of the sewers in All Soals district would reqnire the removal of 50,000 cuhic feet of soil-and then only temporary and inadequate relief would be obtained. The sewors are, indeed, in such a shameful condition, as is well known to the officers and workmen ensployed, that when called opon to make examlationa and to wort in them, they show great dialike, from the feeling of danger thes have. They are fearful when entering them, at every step they take, of setting fire either to explosive gases generaled from the soil or escaped from the gas maine in the streets, or of being overpowered by the heat and foulness of the atmosphere, " which, from want of ventilation, causes great dimness of sight, giddiness, and sweating, and also makes breathing very oppressive, as from experience 1 can teatify," says Mr. Phillips. It is right to observe, that the parisb and other authorities have complained of sach a state of affuirs.

Some carions illastrations of the Figorous adminiatration of the commissioners are given incidentally. The great wewer in London-street was rebuilt in 1828, nearly twenty years ago, more than two feet lower than the present one in Cleveland-street, in anticipation of the line of outfall boing lowered-and it now contains an accumalation of soll nearly four feet in depth. The sewer In Newman-passage was likewise rebuilt in 1899, between two and three feet below that ia Newman-atreet, for a like reason, and is so foll of soil that parties who have obtained leave to lay draiss into it have been nabale to do sol

Mr. Phillips justly observes, that no temporary expodient can be applied in such a atate of affairs, and he proposes to rebuild all the sewers and to
improve the outfall through the main Hartshorn-dase cewer by a work of considerable laboar, which Fill need 1,300 foet of taneelilis. Upon this, We canoos belp obeerving, as we did last month, that it is really a pity to see the waste of money and the infficient meacures, which are the resalt of the present aystom. We then pointed ont that a large eewer, bolongiag to the Begent'r-park and Regent atreet commicalon, runs through the centre of the Weatminater district; and yet, that for the latter, distinet outfalls are songht and the chanoels coastructed, at an enormons expeace. If as arrangement were now oatered into between the two commisaioes, for the purpose of ellowiag the sewers in the viciaity of Regent-atreet to comang. nicate with the Regent-street eewer, a vact outlay would be anved in rebuilding the sewers, no doubt, by partly raising and party lowering the botion of all the sewers on each nide of Regent-street, to the distasce of 500 yards. The accumalation of the 6lth in thoee sewers might be got rid of, particularly if a new bottom were made to the severs of a circular shape; in fact, this latter arraggement could be dose to mont of the ald equareboult seworn.

In the present casa, Mr. Phillips canvasces the propriety of communicatiag with the King's College Pond sower; but be alas bot one word of the Regent-atreet sewer, which rans through his district. The draisage of Devomhire-street, which lies on the latter eemer, is therefore proposed to be carried through several beods and at rightangles, down to Broad-itreet, Bloomabary, a diatance of many thousand fert-when the Regent-atreet sewer can be ontered at the bottom of Devonshire-itreet. We say notbing as to the aeoesaity for improving the Hartshorn-lane sewor and oatfall; but we do erge, 00 far as the streets in the oeighbourbood of the Regentstreat sewer are concerged, that the Weatminster Commisaioners ahonld have a confereoce with the Comminsioners of Woods and Poreste, and come to some arrangement.

Mr. Phillipe estimates that his plan will require the rebuildios of $\mathbf{2 5 , 1 7 6}$ foet of eewer, at a cont of $\mathbf{£ 2 0 , 1 4 0} 16 \mathrm{~s}$.; but be does not dare to recommend the immediate execution of his plan and the disbursement of this sum,4 bat proposes, as a first instalment, the outluy of Et,067. Supposing this to be ooe year's outlay, and that the saring of homan life should be in proportion to the average of Caverdiah-square, and to the gradual extension of the sewers,-the namber of persons deatroyed during the gradual execotion of the plen would not be mach more than 1,539 , or the population of a good sised market-lown; whereas, by the immediale dis. bursement of about $\mathcal{E 1 3}$ a-head, the destraction of 50 many human beings might be averted. Supposing the money borrowed at 3 per cent., for the purpose of making the immediate ootlay, the medditional charge for this woold be about thirty shillings per heed on the whole number of individuale propoeed to be murdered. Perhape the Homane Socisty, or some orher Society, might think it worth while to adrance the money as a gift, and theroby save so many human lives.

The pablic have been greatly scandalised by the promulgation of the fact, that the mortality in parts of Whitechapel and the enstern districts is I in 84 yearly;-but we believe they were not propared for a mortality of 1 in 97 in Marylebose-and that mortality, as a public officer has shown, eaused by the shamefal state of the mowers alone. It is in the presence of such facts, that Lord Morpeth has taken on bimeolf the reaponsibility of withdraviog that measare of legialative rellef, to which the inhabitants of the metropolis have so long looked forward; and he has thereby taken the further responsibility of anctioning a syatem of admlaistration which the medical profossion, the ongineers, and the press have jostiy prononnced a aystom of wilful murder.

After the engineering profemion have so long exerted themelves for the improvement of the atate of the metropolis, it is quite diabeartening that they should be deserted by the minister of the department which professes to take charge of the subject. So long as there was a prospect of a Government job la employing military engimeers to make a metropolitan survey, to auperintend civil works, and to recelve the emoluments of civilians, the government were sealous enough; bat when this inducement is taken away, the commicolosers of sowers are allowed any ropriove they choose to olaim.

If the remoral of the filth of the metropolis be an important object, the asving of the valuable manure which is now wasted is no leas deserving of cousideration : but we are afraid this also la likely to meet with the fate of other measures of improvement. The Metropolitan Sewage Manare Company hare this cescion applied for a new act to enable them to lay down a receiving sewer, which shall cot the sewers at a mean distance of 690 jands from the river, invoiving very expensive works. To this, Mr. John Martin, the founder of the company, object, and propones an alternative
plan, for receiviog the contezts of the severs mear their outfall, which certaialy apperst the more ratioal plab-avd we can conedie, from saet evidence as we bave belore ug, no reasoos for the compery's pian. 620 feet would be great distance from the river, bet 620 gards meeans mostrons-for thereby the large interveaing district it left uewrought.

We may here obeerve, that wo look apon the asefal application of the manare of towns at agreat boon, which engibearing huowledge will confor apon the tillage of this islaed. Prom a cown popelation of four millioas, and with the great body of borses employed by them, a quastity of valuable masare is obtaised, which canoot be reckosed at lese thas equivaleat to the prodection of half-a-million of quarters of corn yeariy, or the jearly food of halfarmillion of hamas beinge. When it the considered how the refuse of the dustyards of Loedoa is ecomomised, it is etrage that the produce of the eevers shoald be wasted. The old metale, the broken pote and pans, called pickings, the rage, boocs, ciodert, sanall coal of the dact bins, are all saleable; the produce of the cesapools is made a locrative branch of basinens, and maoures are made from it in Loadoa which are seat ont even to the sugar piantatioss in the West Iadies-but the greater part of the manore of the metropolis is mept into the Thames to pollute its waters.

MEA8URES OP FORCE AND LAWS OF MOTION.

8it-In your lat number, you stale (page 189) that-4 1 f whea a body is in motion, it be acted apon by an invariable force, is the direction of its motioa, the quantity by which the velocity of the body will be increased or diminiabed (according as the force is eccelerating or retardiog,) will always be the anme in the aame time ; and is quite independent of the initial relocity which the body possessed before it was subject to the infoence of the force." Forther-
-4 This fact at once farnishes us with a convenient dynamical measare of force, known by the name of the measure of accelerating force."
"Thas gravity accelerates the velocity of a body fulling in vacuo by 3st feet a secoud; taking feet and seconds as ouits of space and time, the acceleratiog force of gravity is represented by 32个."-This is all perfeolly true; but there is coasiderable danger of an orroaeous inference of great practical importance being drawn from it, which it is well to guard againet. Suppose a heavy body to fali from a height so as to occapy soverll ae. coods in falliog ; the effecte may be tabulated thus:

Seconds occupied in talling.	Space faller through in each second.	Total spece fallen through by the ead of each second.	Acecleration duriay mal necoed.
1	$\begin{aligned} & \text { Peet. } \\ & 16 \end{aligned}$	Feet. 16	from 0 to ${ }^{\text {Pt }} \mathbf{3 2}=32$.
2	48	64	from 32 to $64=38$
3	80	144	from 64 to 96-83
4	112	256	from 96 to 128=38

Now, as the amonnt of accelerution commanicaled to the falling body by gravity in any one second is precisely equal to the amunat 80 communicited in any and every other second, an anguarded reader may cavily fall into the error of supposing that the amount of gravitating force expended (if I may 20 torm it) apon the fulling body in any one second is, in like manaer, precisely equal to the amonnt to expeaded in apy other eecond.

In fact, not only ungoarded readers, but also very able writers, appear to have fulien into this error; imbodying it in the antrue docirive, that the momentun ${ }^{\circ}$ of a moving body is as its weight (or mass) multiplied by fis velocity. The truth being that the momentom is as the weight multiplied by the square of the velocily; a truch of the greatest importance in questions concerning the effects of hammers, 1y-wheels, urdnance, \&ce.; and of winda, waves, and curreats of water, -the resistance of water to the pesssage of vesseis, \&o.

If it be necesaly to prove this truth, a mere inspection of the foregoisg table is onough, as respects falling bodies; for it is therein seen that while a fall of 16 feet prodocet the velooity of fil feet per second, a fali of 64 feet, that is four times the fall, only produces doable velooity; sine times the

[^24] sured.
fill $=144$ fret, ooly triples the velcelty; sistimen times tha fall, or 288 feot, modecere only a foor-fold relocity, \&c.
As to ocher moving bodien, Smeatoo's experiments apon dies, prove beyrad all doabt, that they are subject to the aame laws-vis. : that to double the apeed of a given fy, requirea the expenditure of four times the pewor, which prodoeed the original apeed; while to triple the origisel speed, ree gaines the expenditare of nime times the original power, \&c.
Sabeeqnent experiments have chowa that a fy, rusoing round at a gives epmen, prodeced fuar times the efeat (in rolling loag atrips of lead) which it would prodace at half the apeed; aice times the effeot it would prodroe at a third of the apeed, sec. In ebert, if we take anits of time, and subject a body to the ectios of an lovariable impresed force darigg one, two, three, tom, Ece. of such portion of time, we shall find that the speces traversed by coch body in these times will as the equaras of the ammbers denoting cech times. While, if wo take uaits of spact, aod subjeot a body to the acsion of an inveriable impreseed force, while it moves through ooe, two thee, foar, ko. of such portion of spece, we shall find that the times eccnpied by anch body in traveraing euch apeces will be as the square roots of the nuebers depotiog sach speces.
In retation to mechaolice, I think that the oorroot mode of measariag Gerce is that last-nagod-vis: to take the apeed through which a giveo promare acta, as the monaure of the force expeaded; beoance all power which is ander our control, ts meturally so measured.
To wind ap a given weight, 16 feet, requires a given power p, whether andal or mill power, and whether the weight be wound up slowly or with eoderate rapidity. Release the weigtt and it fallitin one secoed of tlese, obtaining an acceleration of 32 feet per second, whioh call 4.
To wind up a like woight 6 f feet requires $4 p$; release it asd it falle in two seconds, obtaining an acceleration of ia ouly.
A like weight wound up 149 feet requires $9 p$, and will fall in 8 seconds, obtaining 3 a ooly of acceleration.
The time occupied in the fall of the weights being respectively 1,8 , and 8 , and the amount of acceleration being aluo respectively 1,2 , and 3 , while the power expeoded in ralsing the weights is respectively as 1,4, and 9 , It is clear that neither the time nor the acceleration affurds a measure convenient for mechanical purposes; bat the apaces traversed, vis. : 16 feet, 64 feot, and 144 feet, are in the same propurtions of 1,4 , and 9 , as the respective quanties of power expeoded; therefore, the length of the space tre. versed by a body wbile acted upon by a given power is the true mousure of the power expended by the mover; and with a freely moving body it is dso the true measure of the furce which is absorbed by such body, and which that body will discharge wyon any obatacle which sball stop its pro. grese. A falling budy, for instance, must discharge apon the earth just the power expended in wioding it np; and it is obvious that this charge and discharge (if I may so term it), can be repented at pleasure, and shat the puwer firat communicated and then discharged is precisely measured by the vertical apace through which the weight is first raised and then cllowed to fall.
A bammer of a given weight being wielded with dorble speed will trike four timen as bard a blow.
A bullet beiag shot off with triple velocity will penetrate wlth pine times the force.
An eggineer wishing to quadrople the power of his ty may oither procare a wheel fuur tines as heavy, retaining the present speed, or he may duruble the speed of his preseat ly without adding to its weight; is either care, bis object will be equaily attained.

Upwo a future uconsion, I propoec to adduce instanoes in which the want of utcention to theso principles has occasioned lamentable waste of valuable time, exertion, aod of movey.
$1 \mathrm{am}, \mathrm{Sir}$, your obedient servant,
E. Hill.
[We have much pleasury in acknowledging the receipt of the above letter, from Mr. E. Hili, in which, as wili be seen, the writer animadverts on certain statemeate mad definitions given by as in a paper "On the Laws of Mution," that appeared in a late number of the Journal. In reply to the objections urged by Mr. Hill, we beg agaio to state that momentum is a term ased to denote the product of the mass and velocity of a body; and, moreover, that there is no doctrina involved in it. It is an arbitrary inchnioal expressiun, and to object to its signification is to dispute about nords-not about principles. Mr. Hill evidently confounds momentum with what is called by engineern "power expended," or sometimes "work dosen_which no doubt varies as the square of the velocity, as we will imaedintely show:

Let m be the mase of a body cansed to move from reat by a preasure which is X, at the diasace x : theo if 0 be the veloclty acquired at the distance x, we aball have $m e d v=X d x$, by the equation of motion.

$$
\text { Consequenty, } \frac{n^{2}}{2}=\int^{1-x} X d x
$$

but $\int^{0-2} X d x$ is the 4 work doce"-whioh, therefore, varies as the square of the volocity. There is considerable coafasioe manifosted by Mr. Hill in the ase of the word "foroe": he talke of a bellet peperatiag with nime timen the foree, instend of aine times as far ;-in this instance, Mr. Hill uses "forve" to mean what he misconcoives by the torm" mo-mentano"-vis. $\mathrm{X} d x$, of "power espended." We are sorrowfully willing to concede, that mooh time and money havo been wasted in engiveering matterm-mol, however, as Mr. Hill woold insinuate, from a too rigid regard for the laws of motion and measares of force, but from gross ignoranoe of both. Uafortanately, the confased ideas of mea asacqualnted with mechanical principles, by jumbling together force and its offects, and giving blrth to vague and useless terms, such as "livlag foree"-and "power oxpended"-and "power abworbed," and the like-bave done coasiderable mischief to the science of eagineering, by divesting it of ite simplicity, and besiog it upon enything rather than what it ought to be based upon-aamely, the six equations of atatical equilibrium, and the six dyonmical equations of motion.]

ARMY AND NAVY CLUB,

We do not think it needfal to sate any lengthened remerks on the conspelition of designa for the Army and Navy Club, or to eater into any detail with regard to them, as the desigas were, according to onr viewn, far below the proper standard, and we are glad to percelve that the Committee bave had the good seuse not to carry out those which received the prisen. Su far as the competitorn were concerned, the whole affair must be cunsidered highly derogatory from them, for they came before an irresponsible tribunal, they subjected themselves to the consequences of a ballot, and they resortri to canvassing-some of them, we believe, seoding round bills and testimonials, like the Morrison's pills or Holloway's ointment sellers. It is in perfect keeping with these proceedings, that some competitors resorter to false perapective views and other tricks to eatch the anitiated. Thus ended the lottery at the Army and Navy, or Derby, Club, with the loss of time and money to between sirty and seventy architects.

Pradent mea among the architectural professlod of course refrained from engagiag io a competition which depended apon the votes of a number of members of a miscellaneous clob, passed throngt the dark ordeal of the ballolling box. The Cummittee Club, we presume, indalged the members in this mock election, as the cheapest way of getting rid of the clamonr of those ultra members, who wro sticklers in priaciple for competition and vote by bailot, because of course it could have ooly one result-the utter impossibility of getting a good and feasible design. A first rate competition is not to be got by such haphazerd proceedings, for neither old men of talent, or young men of talent, like to expose themselves to the chances of defeat before an incompetent tribunal, wbile they are really to afford at their own expense the materials of their own overthrow. A paiatiog executed in competition for a prize, if unsuccessful in gaining the prize, mas be ex. hibited and sold elsewhere; bnt a design for a clab, which bas cost weeks of laboor and eotailed much expeose, canoot be réchauffé for an almsbouse, a theatre, or a church-thougb io the paucity of ideas the same Ionic portico, or Italian campanile are made to figure as the atock of all and aundry the compositions of some of our inspired arlists.

Southampton Docke.-The Dock Company have, we underitand, conIracted for and commenced the onostruction of a serond dry dock, to be completed is November mext. Messrs. William Cubitt and Co. were the successful competitors, the amount of their conder being a little above $\mathbf{£ 1 7 , 0 0 0}$, whitst that of Mesars. G. Baker and Bon, the contractors for the new cuatom-house now so near completion, was we believe near $£ 18,000$. The dock is to be 250 feet in length upon the blocks, and hold two 800 ton ships at once, or one of all but the largest of the gigantic ateam- ehips w familiar to onr waters, and one salling ahip of 800 tons barthen.

THE ROYAL ACADEMY EXHIBITION : ARCHITECTURE.
The competition for the Army and Navy Club-house, and the desigas having to be seat in only a week before the receiving-days at the Academy, no donbt bindered some architects from prepariog anything for the Exhi-bition;-bot that there is this year any deficiency as to quantity, there being no falling off from the usual oumber of architectoral aubjecte-and as usoal, too, a good many of them might, as far as seeing them is coacerned, jost as well be away. There is, however, leas variety than usnal, or thas ased to be the case some seasoms ago-sioce designs for charches greatly outammber the aubjeots of any other clase. One very ononmmon circomatance is the extreme pancity of designs for domestic buildings of any kind-that kind excepted whleh consists of houses produced by wholesale, onder the somewhat dabious tite of "Improvements." One resige (No. 1077) shows us after what fushion the Castle Hill, at Dover, has just beg口n to be improved; and another (No.1111). Dover Court new town, near Harwich-as to which last we cannot speak, not haviag noticed the drawing, wherefore it is perbaps lackier than the other. Chorches alone ercepted-and of them there is a full quota-there is very little to show uf what has lately been done in architecture, or what boildings are either now in progress or about to be commenced. Even among the church subjects, too, we miss one that we should have been glad to meet with here; for the edifice is intended, we presume, to be superior in taste to most of the modern ones in the metropolis-to be a monument of its architect's skill as well as of its founders munificence. The charch we allude to is the one which Mr. Ferrey is now erecting, in Weatminater, for Miss Hordett Coutts. Therefore, supposing the design to be, as we have no reacon to cloubt, a worthy one, it would have been no more than a suitable compliment to that lady to have exhibited it. Like a good many others, however, Mr. Ferrey somm to have quite cut the Academy's exhibitions. There is a growing reserve on the part of those who either rank, or would be thonght to rank, bigh in their profession, to contribute anything whatever to the Exbibition. This year there is not a single drawing by the Academy's own professor, or any of the other professors of architecture; aod ooly a very fow by mombers of the Institute. This is not exactly what ought to be, nince it beapeaks indolence or apathy, if not contempt; and is, moreorer, attended with one injurious consequence-namely, that the number of uninteresting and mediocre subjects can hardly fail to produce an unfavourable impression as to the actual state of the art among us.

It would be a monstrous untrath, were we to say we had come idea of being favonred by Mr. Blore with a peep at his design for the alterations at Backinglam Palaos, That gentleman seems determined to carry on his operntions with the utmost secresy, and to keep out of harms way that fa, out of the way of criticism-as long as be possibly can ;-a species of wistrust that coatraste very atrongly with the anquestioning confidence the public reposes in him. To nothing else than perfect confideace can wo attribute that universal silence in respect to the Palace, which contrasts so very remarkably with the universal fuss made abont a comparatively insignificant matter at the other end of Constitution-hill. We must, therefore, wait with patience till time reveals to us what neither Mr. Blore bimself, nor any one of those wbo pratend to be in the secret-at least, to have seen "a sketuh" of the design-chooses to let us kaow-analy, into what sort of a building the Palace will be metamorphosed. Architectura ${ }_{1}$ transformations seem to be just now the order of the day, for while Bairy, who is now operating apon the Tremeury Buildings, is, it seems, about to undertake the transformation of both the Horse Guards and Treasory Mr. Sydney Smirke is not only ealarging the Carlon Clab-house, but cbanging it into quite a different piece of architecture, at may be seen by the drawing of it at the Exhibition (No. 1109), which shows what the entire façade will be-and that the east front, if not the south one also, will be similar in design to the Pall-mall one. The change caunot fail to acquire for the Carlion considerable architectural rank and reputation, whereas the preseat club-house never had, notwithstanding its rank as such, any reputation at all as building. The new structare will most essuredly add very greatly to the architectural character of Pall-mall; but it is not so certain that it will be altogether favonrable to its veighboar, the "Beform"-it being, apparently, intended to eclipee the latter. At all events, the Carlton will present the larger façade of the two, and will be in a more florid atyle of Italian-in lact, a particularly florld one, the spandrel-spaces over the arches of the zecoud order being entirely filled in with figures in relief-both a degree and a species of ombellishment which
we $2 s$ yet poseses no ezamples of in town. The apper or Ionic order is also n peculiar example in itself, at leest as regards its extablatore, whoee frieze in annsually deop- 10 greally exceeding the eatablished proportions, that it would sonadaliso the slicklert for such matters, and briag dowro their ceesures apos Mir. Bmirke, had be not sheltered bimeolf under the anthority and precedent of Sansorino, whom he has on this occasion chosen to follow pretty closely for the whole deaign of his exterior. Were is eot for the drawing we have just been speaking of, there would be nothing in the Exhibition to show any bailding (besides churohos) either erecting of or abont to be erected in the metropolis,-lf we except No, 1294, a very tiny model of the new Coal Market which is about to boilt in Lower Thames-street, at the corser of St. Mary-at-Hill. It will have two ubjorm fronts, on two adjacent sides, with the corner noonded off in the two flower floort of the beilding, above which that portion will be carried up as a small insulated circular tower or cagapanile, that will be receseed withir the re-entering angle, cut out there between the two froats. This promises to be a novalty, bat the model ittelf is auch a mere toy as to sime -as is, indeed, the ease with all the models this goar-that it is impoesible to jodge of more than the general shape of the structure. The iden of roondiag off the oorser of a building in such a manner as to reader it an important-at any rate very ornameatal-featore in the composition, is also diaplayed is No. 1234 (E. Chriatian), a deniga for the now Imperial Is. surace Office, to whlch the second premium was awarded. Tbere is aleo another desige (No. 1198), by the same architect, for the same buildiag ; but we do not fisd bere the design for it, which is to be execoted; nor that for the Musenm of Geology, in Picendilly.

While anusual dearth prevails this season in regard to fresh subjecte, representing actual buildings, there is the naual show of "old familiar faces"-familiar even to staleness-things that are known by heart: the Temple of Erectheus, the Arch of Titus, the Bridge of Sighs, the Temple Chorch, with suadry et catcras, whose titles in the Catalogue spare us the trouble of looking at them. We might, perhaps, bad we observed its tille at the time, have looked at No. 1190, "Edinburgh from the Soath,"一if ouly to ascertain whether, as an architectural view, it was more satiafactory than No. 860 . Roberts's large oil-pictare of the Northern Metropolis, which has obtained from the critics a degree of laudatory admiration perfectly nonaccountable to us-it being, in our opinion, neither good as a pictorial composition nor displaying any particular beauty of execution. On the contrary, it is heavy and opaque in colour. To our eyes, the architeotore -for the most part very queerish in reality-looks very slovenly execated in this representation of it, and more like the work of a mere lasdecape painter than of one who hus exercised his peacil chiefiy upon subjects more or less atricily architectaral. But we are playing the truant, so let us return to our owa proper subject.

Next year we shall, in all probability, find here several of the designs for the Army and Navy Clab-house; in the meanwhile, No. 1121 (W. A. and J. W. Papworth), has got the start of any of the others, that drawing being a coloured copy of the perspective view sent in by Messrs. P. to the competition. We canoot say that we at all approve of the design itself, any more than we do of the license taken in regard to scale, the Club-house being represented two or three feet bigber than Winchester House, which innocent (?) species of antrath is contradicted by the proportions of the Pall-mall front-the latter being limited in width tosixty feet; consequently being, in that design, little if at all higher than it is wide-instead of being loflier, it would be about fifteen foet lower than Winchester House. Really, architects seem to be as little scrupulous abont scales at they are abons estimates. Thelrs are not always the scalea of justice, or of judgment either. Apropos of estimates-there was wonderful harmony in that respect among the competitors for the Club-house in question : even the estimate for one of the Gothic designs-which certainly looked as if it would cont double, or more than double, some of the others, it being atudded all over with stalues, canopies, and pinacles-was only $\mathbf{\$ 3 0 , 0 0 0 , ~ a l t h o u g h ~ t h e ~ t w o ~}$ fronts and their ofnaments were to be, not in papier mache, but in real Caen stone!

No. 1129, "Study for a Portal," appeart to be a stody for that in his design for the Club-house above-mentioned. It is not very favourably placed, being put over the door, where, though it is a ratber large sized drawing, it cannot be fairly seen-and yet seems well worth looking at, the general composition being very happy, and manifesting both originality and gusto. That subjeot, however, is not the ouly one that is disadvantageously placed, while many others, that ure of comparatively little merit or interest, are perked just in our faces. Nos, 1199 and 1218, for instance, both of them iwo admirably executed interiors-the only ones of that clase in the room-
sre buag together, at right asjles to emoh other, quite in a corner, and that an obecurv coe- -10 moch, too, below the eye, that they capnot be iaspected withoot tooping; and the ove and the other is $e 0$ full of elaborate detail, that If once assomed, the atooping pontare is likely to be prolonged to weartmes. No. 1199, "Desige for the Decoration of the Oid Billiard. room at Stapleford Hall," (J. Dwyer), would have been all the better, had the figares introdnced in it been omitted- naless the artist had employed some one more amfationgure-drewing than himself, to pnt them in: but in hit own depertment he is edmirable. The other subject, No. 1218, (L. W. Collman), which is aimply styled "View of a Library," represeats a roen which has lataly been decorated in a higely reoberché manner by Mr. Oellmas bismelf, whoes taste scems to be far more reficed than that of Seng. This drawing bas tho adrantage over the other in bariog so figures; thorgh we would at any time readily tolerato poorly drewn fgures, for the sake of similar subjects-whioh, being apartments in privte residenoes, candot be generally seen, or even known of, except they are portraged by the pencil. Right glad, therefore, should we bave been to see bero a drawing of the Ball-room which Mr. Barry has just fitted up at SL. John's Wood Lodge, for Sir Isaac Goldsmid, and which is reported to be a fine specimen of the Cinquecento style. Of that style there ls a specimen bere, vis: : No. 1202, "Ceiliog by Pietro Perugioo, in the Bala di Combio at Perogia," (D. Wyatt),-nen exquisite drawing, that requiree to be looked at ascoly as the illominiated arabesque and borders of some precions manuecript-yet hore hang where it is bardly obeorvable. A somewhat imilar fate attends No. 1988 (J. Thomas), a componition for a magnificent chimeey-piece, forming, uplike those of these degonernte days, atately mans of scolpture.

Churches-both old and new-form the areat mase of architectural anbjecte; nor do they display much variety, or attempt at orfginality-for they all affect to adbere most literaliy to the medizeval character, and to mediaval ideas, as if the aim was to resist all further progress in art. At any rate, so many subjects, ail of the same kind, gives a great sameness to this part of the Exhibition, 一the appearance of much greater sameness than there pertape really is; because, where so many drawings are so much alike in their seneral subject, one effeces the recollection of another; -with which romark we will bid adiou to our own subject, if not finally-as may prove the caso-at all ovents for the present.

THE TUSCAN " MAREMME"-AND THEIR IMPROVEMENTS.
These, geologically speaking, recent abodes of, or upheavings from oot, the ocean, have of late claimed much of public attention, and many intereating memoirs have been published thereon, in the Transcetions of the Academia dei Georgiofil, and elsewhere. The most characteristic of the Maremme is the north-west part on the sea shore, where the river Cecina, descending from the hills of Volterra, reaches the Mediterranean. Those, as well as the Piombino Maremme, were once Sienese territory, and remained deserted and most unwholesome for centuries past. The lower Maremme were atill more so-also for the reason, because there are no large swampa worth of the lake of Piombino. Beyond that lake and the promontory of Populonis, the land assumes a leas frightful character, and the awfol devastation decreases gradually if we pass the Cecina. The tier of mountains, which south of Leghorn extends close to the sea (the Monte nero), encompasses the flat sea-shore lands, as by a semiare; and the river Cecina descends, bifurcate, into the sea; along the coast, water stagnates in numerous bogs, while the more depressed parts are filled with forests. The land of the Maremme belongs, mostly, to a small number of proprietors. It is here where the greatent improvements bave taken place. Government having made the necessary arrangements with them, the land was divided into saccale ($1=6,300$ square mètres), the forest, or rather sbrubbery, cut down and the land put under cultivation. The worst part of the sea-shore was to be drained and dried by government itself. The dense forest, montly covered with underwood, and completely in its primeval state, und whicb, on the slighty inclined terrain, had greatly contributed towards the enbogueing of the land,-was cut down. The soil which thus was made to appear, proved to be mostly alluvial earth, resting on a stratom of grit, rich in fossil shells-and has already yielded the finest crops of wheat and maize. Drains of all sizes have completed the work of dessication.
Somewhat differently the long seam on the sea shore was to be treated-but bere, an elevation of the terrain was to be effected,
which was done by using the slime and silt of the Ceaina; an ezpedient which luas fielded triumphant results in the Valley of the Chiana and elsewhere.* On this sean, the forest has not ouly not been cut down, but even completad by aystematic plantations, for opposing a bartier to the sweeping of the sea breeze. A number of vicinal ways have been opened-all to converge into the splendid Via Maremma, a hine of road undertaken at the especial command of the Graod Duke of Tuscany. It traverses these swampa in their wholeextent, and abuts at one side at Leghorn, and on the other extende to Florence and Siena-and the Roman road by the southero valleys of Tuscany. The air, most deleterions hitherto, has, on account of the many drains, dykes, and other hydrautic workn, of the many fires and other domestic operation, improved moet wonderfally, and will no doubt, improve atill more. The projected railway from Legborn to Civita Vecchia will greatly increase the importance of these new lands.

The products of the Maremme, bitherto of little valae for want of communication, consiat of timber for construction, charcoal, potash, iron, sulphur, borax, ulum, \&c.; and the number of ships employed on the coast increases rapidly. The harbours of this const, bowever, are In a deplorable condition, as there are none of any importance beo tween Leghorn and Civita Vecchia. That of Plombino is full of sapd and slime, but it would be possible to correot it. The embouchure of the swamp of Custiglione della Descaja, hitherto merely used for small coasting vessels, could, no doubt, be also improved. The southern part of the Maremme has three small harbours-Talamone, famous in antiquity, now blocked up with and and slime, with the pestiferous air resulting therefrom, und Port Ercole. Morn important is Port St. Stefano, founded by Gishermen on account of its Lealthy situation, which, by the aid of a few judicious constructions, could become very important. The improving of these sea-outlets would much increase the industrial resources of the Maremme, whose mineral riches may be shortly adverted to. The iron stands in the Girst rank, but the making of borax in the hills of Volterre is alsu of great importance. Timber of all kinds also abounds, as the forests of the crown alone extend over 10,000 bectares. The clearing of the terrain began here at the end of the last centary-first, with the nearer hills, then the slopes of the Apponaines. The destruction of these forests was noon followed by great calamities, here and elsewhere. In that of Pratovechio, government has made, of late, great improvements, and during five years, 1,200 isectares have been planted with different sorts of pines. Being placed at a distance of three yards from each other, $3,600,000$ trees have been planted, which, in 40 years, will yield $15,000,000$ trees fit for construction.

A few observations on the geological character of the Maremme may best conclude this paper. It canoot be duubted, that it was the alluvium poured forth Irom the rivers, which has filled up the gulph which once occupied this place. This, however, was again modified hy the reaction of the sea, which formed on the alluvium various dykes and elevations, and tbus shaped the whole surface of the land. V. Fossombroni, an author of note, says that this took place in the frst centuries of the Christian era-to prove which, be cites the Peutinger tables, \&c. Against this, M. Salvagooti asserts, that along the whole sea shore, in parts quite close to it, there is a dyke of sed sand (at times one unile broad), on which the remaias of a Roman road bave been found, which is the Via Aurelia, built 100 years B.c.; that parts of it, going in the direction of Rome, bave been used for making the new road, \&c., in 1826. These latter ure forcible facts, and prove-that the formation of the Maremme, albeit recent, still precedes the Cbristian era. Hence it follows, that the alluvium of the rivers formed that land, and that for draining the uwamps, which are the rempants of old gulphs of the sea, the means hituerto employed have been the right ones.

We need scarcely state, that the above remarks will be useful not only in reference to the bog lands of Ireland and Scotland, but atill more to many of our distant colonies.
J. L———.

- The geological neatraliention, if we may say so, of extenalive mand lands with the ad-
 New 8onkh Wulwe, bay been hitherto quite overiooked By plector two subutacee, quice uproductive by thompelves, in auch clove juxtm-poailion, neture beoms to have urged men to tule them recifrocally arullable.

There has been a great contest this mond about the ventilation of the House of Lordy, Dr. Faraday having lectured at the lioyal lastitution in praise of Mr. Barry's plan, and Dr. Retd having lectured ia answer at Willin's Rooms, and in defence of himself.

ON THE INDUCTION OF ATMOSPHERIC ELECTRICTTY ON the wires of tee electric telegraph.

By Paortasor Joscpa Henkt.

The action of the electricity of the atmosphere on the wires of the electrical telegraph is at the present time a subject of much importance, both on account of iti practical bearing, and the number of purely seientific queatione which it involves. I have accordingly given due attention to the letter referred to me, and have succeeded in collecting a number of facts in reference to the action in queation. Some of these are from the observations of different persons along the pripcipal lines, and others from my own investigations during a thunder-atorm on the 19 th of June, when I was so furtunate m to be preaent in the office of the telegraph in Philadelphia, while a series of very interesting electrieal plupomena was exhibited. In connexion with the facte derived from these aourcen, I muat ank the lodulgence of the Society in frequently referring, in the course of this communication, to the results of my. previous investigations in dymanic electricity, accounts of which are to be found in the ProceedInge and Transuct lons of this Institution.*

From all the information on the subject of the action of the electricity of the atmosphere on the wires of the telegraph, it is evident that effects are produced in several different ways.

1. The wires of the telegraph are liable to be struck by a direct diacharge of lightning from the cloods, and several cases of this kiad have been noticed during the present season. About the 2016 of May the lightning ntruck the elevated part of the wire, which is supported on a high mast at the place where the telegraph crosses the Hackensack River. The fluid pasaed along the wire each wny, from the point which received the discharge, for several miles, striking off at irregular intervals down the supporting poles, At each place where the diacharge to a pole took place, a number of sharp explosions were heard insuccession, resembling the rapid reports of several rifes. During another storm, the wire was struck in two places in Pennglvania, on the route between Philadelphia and New York; at one of these places twelve poles were struck, and at the other eight In the latter oase the remarkuble fact was obeerved, that every other pole escaped the discharge; and the same phenomenon was observed, though in a less marked degree, near the Hackpnsack River. In sume instances the lightning bas been seen coursing along the wire in a stream of light; und in anullier case it is described as exploding frum the wire at certain points, though there were no bodies in the vicinity to attract it from the conductur.

In discussing these and osber facts to be mentioned bereafter, we shall, for convenience, adopt the principles und language of the theory which refers the phenomena of electricity to the uction of a fluid, of which the particles repel each other, aud are attiacted by the particles of other matter. Althougb it cannot be affirmed that this theory is an actual representation of the cause of the phenomena as they are pruduced in nature, yet it may be asserted that it is, in the present state of science, an accurate mode of expressing the laws of electrical action, so far as they hive been made ont; and that though there are a number of plienomena which liave not as yet been referred to this theory, there are none which are proved to be directly at variauce with it.

That the wires of the telegraph should be frequently struck by a direct disclarge of lightning, is nut surprising, wheu we consider the great length of the couductur, and cous quently the many points alung the surface of the earth through which it must pass peculiarly liable to receive the discharge from the heavens. Also, from the great length of the conductor, the more readily must.the repulsive actiou of the free electricity of the cloud drive the natural electricity of the conductor to the further end of the line, thus readering more intense the negative condition of the nearer part of the wire, and consequently increasing the attraction of the metal for the free electricity of the clond. It is not lowever probable that the attraction, whatever may be its intensity, of so small a quantity of matter as that of the wire of the telegraph, can of itself produce an electrical discharge from the heavens ; although, if the discharge were started by some uther cause, such as the attraction of a large mass of conducting matter in the vicinity, the attraction of the wire might be sufficient to cbange the direction of the deacending bolt, and draw it in part or whule to iteelf. It should also be recollected that, on account of the perfect conduction, a discharge on any part of the wire must alfect every other part of the connected line, aithough it may be bundreds of milea in length.

* American Phlonoybical Boctety, 1846,

That the wire shoold give off a dichbarge to a montor of poles in succession, is a fact I should have expeoted, from my previous researches on the lateral disobarge of a conductor transmiliting a current of free electricity. In a paper oo ibis eubject, presented to the British Association in 1837, I ahowed that when electricity strikes a conductor explosivaly, it tends to give of sparks to all bodies in the vicinity, however intimately the conductor may be connected with the earth. In an experiment in which sparks from a small machine were thrown on the upper part of a lightaing-rod, erected in accordance wlth the formula given by the French Institute, correaponding spark: could be drawn from every part of the rod, even from that near the ground. In a communication slnce made to this Society, I have ascceeded in referring this phenomenon to the fact, that during the transmission of a quantity of electicity along a rod, the surface of the conductor is charged in succession, as it were, by a wave of the guid. which, when it arrives opposite a given point, tends to give of a apark to a neighbouring budy, for the same reason that the charged conductor of the muchine gives off a apark under the same circumstances.

It might at firat be supposed that the reduadant electricity of the conductur would exhaust itself in giving off the first spark, and that a second discharge could rot take place; but it shouid be observed, that the wuve of free electricity, in its passage, is constantly attrected to the wire by the portion of the uncharged conductor which immediately precedes its position at any time; and lience but a part of the whole redundant electricity is given off at one place; the relocity of trungmisaion of the wave as it passes the neighbouring body, and ite attraction for the wire, preveniing a full discharge at any one place. The intensity of the successive explosions is explained by referring to the fact, that the discharge from the clouds does not groerally conaist of a single wave of electricity, but of a number of discliarges along the same path in rapid succession, or of a continuous discharge which has an appreciable duratiou; and hence the wire of the telegraph is capable of transmitting an immense quantity of the fluid thus distributed over a great leugth of the conductur.

The remarkable facts of the explosions of the electricity into the air, and of the poles being struck in interrupted succession, find a plausible explanation in anther electrical principle which I have entablished, namely, in all cases of the disturbance of the equilibriam of the electrical plenum, which we must suppose to exist tiroughout all terrestrial space, the state of rest is attuined by a series of dimidishing oscillations. Thus in the discharge of a Leyden jar, I bave showns that the plienomena exhibited cannot be explaiued by merely supposing the transfer of a quantity of fluid from the inner to the outer side of the jar; but in addition to this we are obliged to admait the existence of several waves, backwards and forwards, until tise equilibrium is attained. In the case of the discharge from the cloud, a wave of the natural electricity of the metal is repelled each way from the point on which the discharge falls, to either end of the wire, ts then rt flected, and in its reverse pasage meats in succession the several waves which make up the discharge from the cloud. These waves will tberefore interfere at certain points ulong the wire, producing, for a mument waves of double magnitude, and will thus enbance the tendency of the fluid ut these points to fly from the conductor. I do not say that the effects ubserved were actually prodeced in this way; I merely wish to convey the idea that known primeiples of electrical action might, under certain circumatances, lead us to anticipate such results.
2. The state of the wire may be disturbed by the conduction of a current of electricity from one portion of spuce to anuller, without the presence of a thunder-cloud; had this will happen ia cuse of a long line, when the electrical condition of the utmonpliere which sorrounds the wire at one place is different from that at anutber. Now it is well known that a mere differeuce in elevation is attended with a change in the electrical state of the atmosphere. A conductur, ele. vuted by means of a kite, gives sparks of positive clectricity in a perfectly clear day; hence it the line of the telegraph pusses over an elevated mountain ridge, there wili be concuually, during clear weather, a current from the more elevated to the luwer puints of the conductor.

A current may also be produced in a long level line, by the precipitetion of vapour in the form of fog at oue end, while the air remains clear at the other; or by the existence of a storm of rain or snow at any point along the liue, while the other parts of the wire are not subjected to the same influence.

Currents of sufficient power to set in motion the marking ma. cline of the telegrapl lave been observed, which mast have been produced by sume of these causes. In one case the machine spontaneously began to operate without the aid of the battery, while a
mow-atorm was falling at owe end of the line, and clear weather exinted at tire otber. On another occasion a continued atream of electricity was obwerved to pass between two points at a break in the wire, presenting the appearance of a gas-light almost extinguished. A conetant effect of ihis kind indicates a constant accession of electricity at one part of the wire, and a constant discharge at the other.
3. The natural electricity of the wire of the telegraph is liable to be disturbed by the ordinary electrical induction of a distant cloud. Suppose a thunder-cloud, driven by the wind in sach a direction as to erose one end of the line of the telegraph at the elevation, say of a site: during the whole time of the approach of the clood to the point of its path directly above the wire, the repulaion of the redundant Electricity with which it is charged would constantly drlve more and more of the natural electricity of the wire to the further end of the lise, and would thus give rise to a current. When the clond arrived at the point nearest to the wire, the current would cease for a moment; and as the repulsion gradually diminished by the receding of the cload, the natural electricity of the wire would gradually return to its pormul state, giving rise to a current in an opposite direction. If the cluad were driven by the wind parallel to the lide of the teligraph, a earrent would be produced towards each end of the wire, and these would constantly vary in intensity with the different positions of the cood. Although currenta produced in this way may be too feeble to set in motion the marking apparatus, yet they muy have zufficient power to influence the action of the corrent of the baltery so as to inderfere with the perfect operation of the machine.
(To be conlinned.)

LOCOMOTIVE SLIDE VALVES.

Str-The following is a scheme for relieving the slide valves of a locumotive engine from the great pressure which is upon them (in the ordinary valves). It is thas :

In this sectional view, the slide will be seen to have two ports $a^{a} a^{0}$ connected with each other, and of equal area to those on the cylinder face, $b, b^{\prime} ; c$ is a plate placed on the back of the valve, and kept there by means of a strong spring, which should be tested, to stand the nmount of pressure there would be on a space equal to the area of the two ports $a_{1} a^{\prime} ;$ is a steam-way, through which the stenm is admitted, passing from thence through the ports into the cylinder. The pressure on the space between the ports is neutralised by the strip e, to which I think there can be no objection, as it would only open and shot the steam-way simultaneously with the steam ports in the cylinder; therefore, the supply of ateam would be as regular as were it full open during the entire travel of the valve. The exhaust is formed through the chamber R, and the blast-pipe P. The lap of the valve is of course at the will of the engiveer. Hoping that the scheme will meet with your approbation and insertion in your next,
I am, Sir, your's, very respectively,
F. A. Bucznall.

Bristol, May 22, 1847.

WATER-BALANCE WINDING MACBINE.

We are indehted for the folvowing deweripton and engreving to the Minder Jound.

Description.-A A A A, the pits; BB B B, plate-iron water-tanks; C C, two wagons ; D D D D D D, part of the rails, and the bridge across the top of the tanks; E E E, different viewt of the crose connecting the tanks and wire ropes; F F, water-pipes, provided with valven, for filling the tank-to be opened and shut by levera, uader the command of the attendant; $\mathbf{G} \mathbf{G} \mathbf{G G G} \mathbf{G}$, the walling, or steaning,

of the pits ; \mathbf{H} H, exit valves, at the bottom of the tank. The large Wheel has a groove to receire the rope, or chain, as the case may be, and furnished with a brake, to regulate the motion and gripe tight, as the wagons reach the proper places for pashing off and on It will be necessary to attach a rope (or chain) to the bottom of the tanks, similar to that annexed, in order to keep up the equilibrium through the whole depth of the pit; for, where the ground is favourable, one elliptical pit will be a saving in ainking and steaning, as well as in the size of the wheel, which may be proportionably leas.-The upright pipe, seen behind the wheel, may be surmounted by a cistern, to relieve the pipes and joints from the shock occasioned by anddenly checking the momentum of the water-current along the horizontal pipes.
It should be underatood, that guide-rods, though not shown, are necessary to keep the tanks steady.
It is now 20 years since 1 erected one of these machines, which has been in constant work ever since, and is still ralaing 500 tons, from a depth of 50 gards, in 12 hours.

Coleford, May 8.
Jobe Walignbian,

REGISTER OF NEW PATENTS.

PRESERVATION OF ORGANIC SUBSTANCES.

John Rtan, of the Royal Polytechnic Institation, doctor of medicine, and professor of chemistry, for "Improvements in the preservatiom of organic and other subtisnece."-Granted Oct. 17, 1846 ; Enrolled April 17, 1847.
These improvements relate, firstly, to preserving organic and other substances, by supplying thereto a mixture of gases and vapours which are opposed to combustion and decomposition, applied either in combination with air or instead of air. The gases preferred are either a mixture of carbonic and chloro-hydric acids, or a mixture of carbonic and acetic, or pyroligneous acids.

For preserving animal mallers, a mixture of carbonic and pyroligneous acids in a gaseous form, is preferred, because of the presence of a small quantity of kreasote; sometimes a little kreasote is added and allowed to pass over with the gases into the versel containing the substance to be preserved. These gases are obtained from any suitable carbonates, but carbonate of lime in the form of marble is preferred, to which is sometimes added common chloro-hydric acid, diluted with half its bulk of water; by which a mizture of carbonic and chlorohydric acid gases is procured. If it be neceasary to render the mode of preservation more complete, there is added a small quantity of kreasote, in the proportion of half-a-drachm to two quarts of the liquid. In this case, the mired acids carry off with them a portion of the kreasote vapour. In other cases, to obtain the carbonic acid of the marble, rough or unpurified pyroligneous acid, containing small quantities of kreasote, is nsed ; by which a mixnre of carbonic pyroligreous acid and the vapour of kreasote is obtained. If coarse pyroligneous acid cannot be obtained, either acetic acid and a small quantity of kreasote, in the proportions of half-a-drachm to two quarts of the aeid, or common vinegar with the same quantity of lressote, may be used. When organic matters, such as meat, are to be preserved, they are to be deposited in suitable air-tight boxes.

For preserving vegelable subslances, or fermented liquids, the vapour of kreasote is not to be used, but carbonic acid alone, obtained by the action of the chloro-hydric, or other suitable acid containing no kreasote.
For preserving fermented liquids, it is necebsary to wash the carbonic acid by passing it through a small vessel containing clean water, to remove any of the chloro-hydric or acetic acids.
The second part of the Improvements relates to the constructing a self-acting apparatus for generating the gases, and its application to supplying the vessel containing the articles to be preserved. The annexed figure is a section of the apparatus, which may be made of glaso, earthenware, iron glazed inside, or pure lead, of a sufficient strength. a is a vessel or clamber for bolding the acid, and b an inter-
 na! chamber, with a perforated false bottom, for holding broken pieces of marble; c is a capping, secured by screw bolts ; d a bent tube with stopcock, to which is attached a flexible tobe e, communicating with an airtight box or safe, containing the articles to be preserved; f is an a perture furnished with a plug, for filling the vessel with acid when required; to fill the interior vessel, it is necessary to remove the capping.
The action of the apparatus is as follows:-when the door of the box or safe containing the article to be preserved is open, the pressure of the air on the acid in the outer chamber a_{1} canses the acid to rise among the broken marble in the chamber b, when gas is generated and is carried off by the tube d, to the preserving box or safe; when the door of the latter safe is closed air-tight, the vessel is filled with the gases, mixed with air, and when fully charged, the pressure of the gas on the acid in the inner vessel, b, will force the acid out into the outer chamber a, leaving the marble dry; consequently, the action of generating the gases will cease until the door of the preserving box is opened again.

SHIPS AND PROPELLERS.

Join Buchanan, of Queen-square, Westminster, gentleman, for - Improvements in ships or oessels, and in the propelling theroof, and in securing the same from foatal damage, certain farts of which machizery may be ued for motion on land." Granted Auguat 15, 1846 ; Earolled February 4, 1847.
The improvement consista, first, in the formation or conatruction of shipa or vessels, by means of lines, as hereinafter deacribed; and, secondly, to the application of a blade or blades for the propelling of ships or vessela, so constructed as to gield to the adverse pressure of the water when required.
The patentee states that the object of the first part of his invention is to enable the lines of a ship or vessel to be drafted so that all the lines will correctly ron into each other, and that they will not require adjustment by shifting the transverse sections The work is done according to true geometrical bases thronghont beginning with the main frame, and in lieu of water lines, ribband lines, and buttock lines, with their necessary accompanviog baladice and adjuating frames, the patentee only makes use of the midship section, an upper extreme beight-of-breadth-line, and one main diagonal on each side of the holl, uniting or fitting in all the transverse sections from the upper height of breadth to the main diagonal, and thence down to the keel, in the same manner as if followed in coostructing the main frame, viz., bisecting, or halving the angles contained within the several perpendiculary, (or straight lines approaching more or less to the perpendicular,) aud also al the angles withis the straiglit lines crossing these perpendiculars and the diagonals at the points where the transverne sections respectively crose the main diagonals. Lines traced through these bisections of the anglea form the outside of the frame of the ship. The longitudinul curves being formed nearly in the same manner, viz., balving the angles contained within the perpendiculars or lines bounding the ends of the oblong figures and sides or bottom of the said figures, whether vertical, horizontal, or diagonal, and lines connecting the extreme points or base lines of these triangles, such being a pure trigonometrical and geometrical formula for determining the transverse and longitudinal lines of a ship or vessel, according to this invention, regulating her form from the straight lines of the stem, stern post, and keel, to the greateat extent of breadth and depth, beautifully proportioning all her linee, and each line relatively partaking of each other's qualities upon the principle of the two sides and base of a cone regulating all the lesser diameters thereof in due proportion.
The second part of the invention is for improvements in propelling vessela, as shown in the annexed engraving :-

Fg. 1.

FIg. 2.
Fig. 1 is a section showing the internal construction, and a plan (ss it would appear from beneath) of the stero end of a vessel, to which one modification of this part of the invention is applied.

A, represents the revolving slaft driven by the steam-engine, or other power. The bearings are supported on elastic springs, $B_{\text {, }}$, so that any bending of the vessel does not bind the journals of such shaft, which are allowed to arrange themselves in a line by the com-
proating elastieity of such springs. The shaft, A, is conpected or coupled at c, to the ahaft, c, which carries the propelling-blade, D, formed as a cylindrical axis, which passes through the shaft, c, and the boes, m ; where it is held by means of the cotter, e. The cotter is ent or split in a different direction to that generalls practised. Tlis form of cotter is fixed by opening the slit by a drift or wedge, and, while open, rivetting in the small bolt, which leaves the cotter perfectly secure and safe. The blade, $\mathrm{D}_{\text {, }}$ thus supported on the shaft, C , partikes of the revolution of such shaft at the same time that it is free and at liberty to move on its own axis; so that, supposing the abaft, c , to revolve in the direction indicated by the arrows, the reristance of the water will place the blade, D , in the position represented, resting against the shoulder or face, f, formed in the boss, E_{p}, as seen at fig. 2 ; bot when the revolution of the shaft, c , is reversed, the blade will vibrate on its axis from the same resistance of the witer, and assume the opposite position, reating on the shoulder or face, g. The angles formed by the shonldere, f and g, with the shaft, c , are slighty varied, so that the angle formed by the shoulder, g, being more acote, will drive qnicker when required, without any increase of apeed in the rotation of the shaft, c. By this arrangement the blade, D, having free play on its axis between the shoulders, f and g, cill at all times yield to any adverse pressure which may arise from the superior velocity of the vessel to that generated by the propolsion of the blade, D , itself; so that, supposing sail to be on the vessel at the same time that the propeller is in actiou, and that the gale should raddenly carry the veasel beyond the speed due to the propeller, it will inatantly yield to the adverse pressure, ard present no resistance to the courae of the vessel. And in like, mander, when the vessel is under sail, and no rotation is imparted to the slaft, C , the blade, D , will yield to the adverse pressure of the water, and assume'that position which prevents the least resistance to the onward course of the ressel. The shaft, C , is supported in a bollow tube, x, x, passing through, and firmly fixed in, the dead wood of the vessel's stern, and lubricated at various points by meana of pipes, marked \mathbf{F}, carried to soch an elevation as to support a cnlumn of oil sufficient to overcome the pressure of the external water, and ensure the necessary supply of oil where required, which is not always the case in the ordinary arnagements of machinery of this nature. It will be also seen, in this forpe, that the force or pressure imparted from the rotation of the blade, D, to the vessel, is received from the boss, E_{r} resting and revolving against the fixed tube, x, x, which carries the shaft, c, at a point immersed in the external water, which prevents it heating whilst the superior column of oil, supplied by the small tule, F , lubrieates the parts in contact. The shaft, c, is formed of two srmieglipdrical lalves, the centre or fat surface of each being planed or plonghed out, so that when placed face to face, they form a cylindrical, bollow shaft, turongh which is passed a rud or bolt, 0 , for the parpone of fixing or bolting the blade, D , when in a propelling posiion, which bolting or fixing is practised only when baching or sternway is reqnired. The bolt, or rod, o, is traversed by the lever, G, and may be put into action, or relieved at any moment, while the blade, D, is resting on either one or other of the shoulders, f, or g, holes being provided in the cylindrical axis of the blade, D, in the proper position to receive the bolt, 0 , and when bolted, the reverse rotation of the shaft, G, necessarily becks the vessel.

GUTTA PERCHA SAFETY FUZE.

Grorge Smita, of Camborue, Cornwall, safety-fuze manufacturer, for "Improtements in the manufacture of safoly-fuzes." Granted November 12, 1846; Enrolled May 8, 1847. (Reported in the Mtedanice' Mugazine.)
The safety fuze is to be made in such manner and material, to render them less liuble to injury from changes of atmospheric temperature, damp, or the action and pressure of water, when employed in submarine operations, by employing gutta percha to enclose an interior cyliuder of gonpowder; or as a cuating, or covering, for the ordinary bempen fuzes. The eylinder for gunpowder is made with gutta percha in the following manner:-A cylinder of iron, capable of supporting a pressare of 500 jb . to the square inch, and made at its low er extremity of the form of an inverted cone, is surrounded with acasing, between which and the cylinder steam is allowed to circulate. The lower part of the cylinder-that is, the apex of the inverted cone-terminates in a pipe, which is carried down through a cisters of cold water. A gunpowder chamber, or funnel, is supported by saitable bearings in the centre of the cylinder, aad, passing through the inverted cone, terminates in the pipe below the joint. The funnel is filled with gunpowder, having a thread througb the centre thereof, to facilitate if pusuage; and the cylinder with gutta percha. The
steam is made to cireulate between the cylinder and ontride casing, until the gutta percha assames the consistency of putty. It is then pressed through the pipe, and, passing round the gunpowder funnel, takes the form of a bollow tube, while it becomes filled with gunpowder. The fuze, in passing through the cold water cistern, acquires a degree of firmness, which may be increased by causing it to pass between two rollers, grooved on their peripheries, and made to revolve in opposite directions. The ordinary hempen fuze are also coated with gutta percha in the following manoer:-An iron cylinder, similar to the preceding, and heated in like manner, is filled.with gutta percha, which is subjected to the pressure of about 300 lb . to the square inch. The sides of the cylinders are bored with boles of different diameters, to suit the size of different fuzes, to which inlet and corresponding outlet pipes are attached. When the gutta percha is sofficiently softened, a wire, hooked at the end, is made to enter one of the inlet pipes, and, passing through the mass of gutta percha, to come out at the exit one opposite. The fuze is cooled in its passage tbrough the exit pipe by an arrangement similar to the one deacribed.

SHIPS' ANCHORS AND MASTS.

Joen James Alexander Maccartey, of Sidney Terrace, Brompton, gentleman, for "Improvements in anchors, and fide for masts for ressels." Granted Oct. 22ud, 1846 ; Earolled April 22nd, 1847.

Tas implovements relate, firstly; to an improved form of anchor for ships, as shown in the annexed engraving. It is made with onjy one fluke, and a stem or shank of the form shown in the engraving,

in order that the centre of gravity of the mass shall be as near as possibie to a line drawn from the point of the fluke to that part of the shank where the stock is attached. The stock is of a lieart shape, made of iron, welded to the shank, or it may be formed separately, and secured by any suitable means. This stock is constructed with the greatest proportion of metal nearest the shank, to render it stronger, and more capuble of resivting the slocks and strains it may be subjected to, and, at the same time, it keeps the greater proportion of the weigbt near the desired point. If an anchor be constructed as described, whichever way it may fall, it will, by its own gravity, take the position slown in the engraving.
The second part of the improvements consists in introducing a ratchet and pall for supporting the top-masts of vessels; the ratchet, being secured to the top-mast, and the pall hinged to the lower mast, the mast is raised and lowered in the osual way by a pulley let into the lower end thereof, the mast as usual passing through holes in the cap and cross-tree; when it is desired to lower the mast, the pall is withdrawn from the ratchet, by means of a cord or rope fastened to the back of the pall, and passes over a pulley in the mast down to the deck. In raising the mast, the rope is slacked; the pall, falling by its own gravity ygainst the top-mast, enters the teeth of the ratchet on the mast's attaining the requisite beight, and securely holds it in the rrquired ponitiou till again releused by removing the pall as before described. Another improvement consisty in using a hoop, supported from the cross-tree by staples or hinges, in such a manner thut it may be drawn tuwards the luwer mast and frou under the upper mast by a chain, the same being lowered by the pulley as usual. When the mast is raised, the chaiu is slacked, and the hoop or fid falling by ite own gravity in a perpendicular position, receives the weigut of the mast, and in order to retain it in a proper position, that part of the end of the mast which rests on the fid is cut somewhat shorter, the fid being drawn by the chain agaiust the shoulder thus formed, and retains if securely in the desired position.

IRON TUBING.

$J_{A M E S}$ ROOSE, of Darlaston, in the county of Stafford, tube manufacturer, for "Certain emprovements in melded irom tubing." Granted August 29, 1846 ; Earolled February 27, 1847.
The improvements consiat, firsh in taking a strip of irun of a required length, breadth, and thickuess, according to the size of tube, and bevilling or chamfering the two edges of the lap joint, as is well understood amongst tute mauafactarery; then turning the two sides
of one end of the skelp or strip when at a red beat, the two edges curling towards each other, and one lapping under the other, so that the first end is made smaller than the size of the tube when finished; the skelp, or partly turned and partly flat etrip, is then put into the fumace, and when brought up to a welding state, it is introduced into

a bell or mouth-piece, D, similar to that shown in the engraving, and the turned-up end is sufficiently inserted through the bell and between the rolls, \mathbf{H}, \mathbf{H}, to allow the plyers on the drawbench to catch hold of the end of the skeip; the clain being then set in motion, the skelp will draw through the bell, and, owing to the ridge on the bell, the one end of the akelp will be caused to overlap the other edge, and when it has left the bell, and it is in the pinch of the rolls, the place of contact of the rolls being the point which gives the weiling pressure, the mandril being within and offering resistance to the internal part of the tube. Between the back part or small end of the bell, and the entrance of the rollers, there is a tube, c, through which is conveyed either hot or cold blant, blown by the engine; the end of this tube is fixed over the seam of the skelp or tube. The blast will have the effect of producing the metal at the seam or joint into a partly liquid state, or state of fusion. The rolls revolve by machinery, and traverse at the same surface speed as the chain on the drawbench, so that the draft on the tube is eased, aud the draft has not the tendency to atretch the tube more in one place than another, nor to puli the tube in two. The mandril is placed in front of the bell, the bulb protruding through and into the groove of the rilla. By this process, the skelp, with the one end turned up, is produced at one heat, and at one operation, into a lap-joint welded iron tube. This process will be found most advantageons in the production, particularly of lap-joint iron tubes, ou account of the small quantity of hands required, the very great facility it offers in their production, and the superiority of the article produced. They will be found to stand a greater pressure on the inch, according to the substance of metal, than other similar tubes produced by any of the other known processen, on areount of the properties of the iron being retained, the tube only having deen heated once. By other processes the tubes are repeatedly heated in the farmace, which tends to destroy the fibres of the iron. Another very great adrantage resulting from this process, is in the blast playing on the seam or joint of the tube before it goes moder the welding pressure, so that in all cases dependence may be placed on the joint being in a good welding state, which joint might in some degree have got chiled in the bell or mouth-piece, in the bending.

SHEATHING FOR SHIPS.

Grorge Frebericy Muntz, Esq., M.P., of Ley Hall, dear Birmingham, for "An improved manufacture of metal plates for sheathing the botioms of ahipe or other measela." Grauted October 15, 1846; Eproiled April 16, 1847.
This invention relates to an improved manufactore of the sheathing metul of copper and cinc, described in the specificution of a patent granted to the preaent patentee October 22, 1832, containing 60 purts copper and 40 parts zinc. The preseat improvements consist of an allog of 56 parts of copper, $40 \frac{9}{4} \mathrm{zinc}$, and 34 lead; in making the alloy, an additional quantity of rinc is used, on account of the loss of that material during the operation, so as to obtain an alloy containiag the different metals in the above proportions. The lead acts an important part in the alloy, as, without it, the alloy would not oxidize aufficienuly to keep the ahip's bottom clean. The alloy, after being cast into ingota, is rolled into sheets (by preference, at a red heat), and then annealed; and, if desired, the sheets may be cleaned with $«$ mixture of sulphuric and pitrid acids, properly diluted.

Tise patentee does not confine himself strictly to the above proportions, for the quantity of copper may be increased (which will, however, increase the cost of the sheathing metal), or it may be decreised to a slight extent ; bat it must not be redaced to fifty per cent. of the alloy produced. Although lead is mentioned in the above descriptiun,
any other saitable metal may be used in place of it, but not with equal advantuge.

The patentee claims the minufacture of aheathing metal, by so using other saitahle metal or metala, when copper and zino are comsbined for the purpone of sheathing, as to allow the misture to contain a less proportion of copper than about sixty parts of cupp er and forty parts of zinc, and at the snme time attain a sufficient degr ee of oxidation, and prevent separate ection on the siuc.

IRON WIRE

Willaam Red, of St. Pancras, Middlesex, enginver, fir "Improvements in the manufacture of mire"-Granted October 29, 1846; Eurolled April 29, 1847.-(Reported in the Patend Jgurnal.)

This invention relates specially to the manufacture of iron wire, and also to the cleansing, or prepiring the surface of the sams, to receive a metallic coating, for the purpose of preventing oxidation, and has for its object the producing wires of greater length, and more perfeet throughout its entire length, than can be effected by any means at present in use, and consequently better calculated for the purposes to which it is applied; more especially for transmitting the currents io electric telegraphs. For, whereas the bundles of wlre, which average about 192 feet in length, and weigh 14 lb , are welded together when reduced to the size whicls they are intended to remain, the parta joired almost invariably being tlicker than the rest, and at the same time rendered more brittle, and not unfrequentiy unsound. Now, the improvement in the first part of this invention, consists in welding end to end, scarf-wise, two, three, funr, or more bars of iron, suitable fur the purpose, and afterwards drawing them through the drawing manchine, which process not only renders it the same size throughout, bat by the strain required, effecrually tries the different joints, which if not sound, will give way, thus detecting any imperfections that arise in the construction. By this means, the patentea slates be can readily fornish buodles of wire, of ten times the nsual length, or even any length that may be required. After drawing, the wire is submitted to the annealing oven, which renders it as near as may be of a bomogeneous quality throughout. With regard to the welding and drawing the jom, the does not lay any claim to the different operations when considered without respect to the order in which they are performed. Although these improvements have been specially mentioned as desirable for the manufucture of iron wire, it may also be equilly well applied to the mapatacture of steel wire. The second part of these improvements yelates to the preparing wire to receive a coating of zine or tin, in order to prevent it oxydixing; the ordinary metbod being to immerse it in a solution of oitric or aulphuric acid, from tue unequal action of which, or one part remaining longer in the solution than another, the quality of the aron is much deterlurated. Now, according to this invention, the surface of the wire is prepared solely by a mechanical agency, or at least so far as to require ouly the acid very much diluted, the apparatus for which is as follows:-the coits, as they are takeo from the annealing oven, are placed on reels, which revolve freely on vertical spindles, from a suitable frame-work. The form of these reels is the frustum of a cone, the amall end being oppermost, so as to admit of the coil of wire being easily placed thereon: the ends of these coils, which may be fire, six, or any convenieat number, are led round, or rather half round three rollers, whose axes are also vertical; the sinuous route passes throughout, bending the wire alternately in contrary directions, as it turus over each roller; it is then conducted through another series of five rollers, whose axes lay horizontally; the wire, in passing the sinuous course prescribed by them. is bent in a contrary direction to that in passing the previons set of rollers. In order that one wire shall not ride on the other in its passage through the different sets of rullers, the wires are passed through suitable guides, and for the purpose of clianging the point of contact on each roller, so that it shall not wear the sime into grooves, the first seriea of rollers is caused to traverse backwards and forwards, in a direction at right angles to the motion of the wire; thus far the process is merely for breaking up any scale or oxide on the surfuce of the wire; it is then passed beiween two pieces of wood, faced with leather, or other substasce, on which a constant stream of emery ia permitted to flow from a hopper above; these piecea of wood are squeezed together with sufficient pressure to clean the surfuce of the wire, as it passes between them. Instead of leather, lie sometimes applies grooved surfaces, cut in the manuer of a file, suitable to receive the size of the wire to be cleaned. The wire is next conveyed through a solutive of weak sal-ammoniac or muriatic acid; thie is effected by passing it duwn tnto a trough filled with the liquid, turaing it over twu rollers immersed therein; it is then conveged to the buth
of metal with which it is intended to be coated, and from thence to reple, on which it is to be wound; these heving motion communicated to them from same primary moving power, effectually pull it through the different machines, by which it is cleansed as hereinbefore described.

Having thus set forth the nature of his invention, and the manner of earrying the same into effect, he wishes it to be understood, that although he has described it as being peculiarly applicable to iron wire, used for telegraphic purposes, he dues ant confine limself thereto, as it is equally well adapted for steel wire; and the second part thereof, preparatory to receiving a coat of other metnl, may be applied to varions ather descriptions of wire. He claims, first, the welding fron birs end to end, scarf-wise, and afterwards drawing them through soitable machinery, with regard to the order in which the same is performed; secund, the cleansing the surface of wire by the machinery before described, preparatory to receiving a coatlog of sinc, tin, or other metal suitable for the prevention of oxidation.

STEAM BOILERS.

Geore Lodge, of Leeds, Yorkshire, engineer, for "Improocments in lealing maler, generating steam, and saving fucl."-Granted Angust 10, 1846 ; Enrolled Febru'iry 10, 1847.-(Rpported in Nemton's Londow Jowrnal.)

This invention conaiste in an improved arrangement of apparatus whereby the heating of water may be pconomically offected (an incrpased heating surface being exposed to the action of the fame and beated gases), and a large aupply of steam may be quickly generated. The apparatug employed for this purpose is shown in 6gs. 1 and 2, as applied to a furmace in conjunction with an ordinary wagon-ahaped boiler. - It consists of two rectungular vessels or chambers of iron, set parallel to each other, one on either side of the fire-place, and connected together in front by a hollow arch, made alao of iron. These vesels or chambers are intended to receive the wrater from the force pacop, and, by means of pipes, with which they are provided, to conduet the witer over a considerable heating surface before it enters the -agor-baped boiler. Fig. 1, is a sectional elevation of a farnace,

lited aceording to the invention, the front end plates of the chambers hefore-mentioned being rrmoved; and fig. 2, is a sectional plan of the improved generating apparatus, taken in the line 1,2 , of $\operatorname{fg} .1 . a, a$,

are the two rectangular chambers, throngh which the water passes on its way to the boiler. It is obvious that these chambers may be of a eflidrical or other required form, but the construction aliown in the draming is preferred, as an extensive heating surface is lhereby premeard to the fire. b, is the bollow arch, connecting the two cbambers tagether, and forming a passage for the water frum one chamber to
the other; c, is the boiler, resting on the chambers a_{3}, a, and connected to the chamber a, by a pipe $d ; c$, is a pipe leading from the supply. pamp to the chamber a; and f, is a pipe within the chamber a, and forming a continuation to the pipe e, for the purpose of conducting the water, as it is supplied by the force-pump, to the opposite end of the chamber at which it paters, as shown by the arrows in fig. 2. The other chamber a, is similarly provided with a pipe g, forming a continuation of the pipe d_{1} and having an open end near the back end of that chamber. By this arrangement it will be noderstood that the water, as it enters at the pipe e, will flow along the pipe f, to the buck end of the chamber $a ;$ it will then return to the front, and, by the continued action of the pamp, be made to rise up the hollow arch b, and puas into the chamber a_{0}. When it has traversed the length of that chamber, it will enter the pipe g, and, passing forward, will rise np the pipe d, and flow into the boiler in a heated state.

On referring to the elevation, fig. 1 , it will be seen that the boiler is fixed so that the play of the flame around it will be precisely the same as in the ordinary mode of setting such boilers; the heat is therefore as economically employed with regard to its action on the water in the boiler as beretufore. The chambers $a_{1} a_{1}$ (which ocoupy the place hitherto filled with solid brlck-work for supporting the boiler) will therrfore, in exposing the water on its passage tu the boiler to the action of the fire, cause it to take up a considerable portion of heat that might otherwise be lost; and as the water is thus submitted to the fire in a comparatively small body, it will become quickly heated, and, entering the boiler in that state, will speedily be converted into steam.

The patentee claims the improved arrangement, above deseribed, for raising the temperatare of wuter on its passage to the boiler, whereby steam may to more quickly generated than by conveying the water directly from the well or sapply-cistern to the boiler, and also an economy of fael will result.

VALVES FOR SEWERS.

James Lrsander Hale, of Hackney, Middlesez, civil engineer, for acertain improoments in eemerage and drainage, and apparatue connected therenith, parts of which are applicable to steam-engines."Granted October 27, 1846 ; Enrolled April 27, 1847.

The improvements reiate to preventing the eacape of noxious air, vaponrs, steam, gas, \&c., from drains, engiues, \&ec, and obviating the corrosion of the bingen used in apparatua connected therewith. For this purpose, instead of forming the common trapa fur drains of iron, as usual, the inventor makes the frame of brown eurthenvare or other suitable lasting and non-corroding substance, placed in the usual way at the entrance to the druin. The valve is constructed of a piece of vulcanized india-rubber, large enough to cover the opening of the trap, aud to give sufficient lap; the edge is secured to the framo of earthroware by rivets, or cement munufactared for similar purposes, by the Kamptulicon Compang. The sheet of vulcanized india-rabber has a metal plate, or a stone, placed on the back, which, by its weight, keeps the face of the valve cluse to lts seat.

Anotlier trup for sewers is made with a number of bars on the back, instead of the metal plate or stone as above deacribred; the vulcanized india-rubber ls affixed to the earlisen frume as before; the bars are secured by cement or rivets, in the direction or length of the part arecured, forming the hinge; the water, as it issues from the pipe into the sewer, only raises the vaira to the eztent necesaury to udmit of the paesage of the water escaping; the space between each bar forming a hiuge, on which each bar moves, consequently there is no room for the escape of nuxious vapours, the vaive being always closed down to the surface of the water. The metal for the bars the putentee prefors is galvanised, or tinued iron.

The next improvement is fur a ventilator, to be placed on the top of tues leading from pluce requiring ventilation-consisting of two cyliuders of guivanised sheet irun or zinc, of different diameters; the smallest is placed on the top of the chimney; it has sereral openings in the sides near the upper eud; the top is closed by a plate of metal; the large cylinder is ouly about bulf the lengtb of the other, but at the same time sufficient to piotect the openings in the amaller oae (over which it is placed) from side currents, while, at the tame time, space sulficient for the escape of smoke or vapour is allowed between the two: the external cylinder is supported from the smaller une by stays, and in such a way as nut to obstruce the pasage between the

RAILWAY BXPENDITURE.

Rerunn, to an order of the House of Commons, shotoing the dmount of Money expended in the actual Cout of Construction, and of Borking Shad (ineluding Locomotive Engines, Carriages, Tools, \&oc.) of all Railways in Garar Britaix and Iaeland, in each Triennial Period, preeiour to tie Ist day of January respectively, in the Years 1841, 1844, and 1847,- [Practional Parts of a Pound are omitted.]

Cont of Vallogs Ratlitati Panvioos 901841. mivis aming tin Sume of Momey actrully espended by the following Rellocey Compmior protione to $1841:$ Great Western, South Wetern, Bripton, and North Weitern (Soutbern Division); tikeoise the Logregate sine espended by the above mentioned Raihocy Companies in acet Year proviour to 1841 :-

Test.	Great Wenters.	London and Soath Wiotern.	Londoa and Bristion.	Laucon and Moeth Weetere (Sooth era Dithsion.)
1833	6	\pm	8	$\begin{aligned} & 6 \\ & 48,943 \end{aligned}$
183	\cdots	24,754	..	277.742
1835	93.580	130.780	..	727,956
1836	350,983	385,537	..	1,230.679
1837	966,574	385,932	..	1,696,508
1838	1,196,580	609,251	384,831	1.036.990
1839	1,157,893	402,061	348,072	579.723
1840	1,322,544	325,482	-38,477	193,934
Total	5,288,044	2,283,837	1.691,380	5,792,475

ON the manuracture of casks and vessels, AND SEASONING TIMBER.

At the Weotora Literary Inaitation, Leiceator-aquare, May 3, the followipe paper was read, "On the Hanwacture of Canks and Vosedo, more Frimioly thon yed by Brewers. and an the surimes melhode adopted for Claming and Purivying aseh Vesoels":-"
Whes it is borse in miad that in soope entablichments in London, there an so fowtr thea from 70,000 to 80,000 casks omployed in sending out wercoly; and when it is further believed that in the United Kiogdom for pabie beowing alooe, there canuot be less than $2,600,000$ of such vescels in are,-herentiject of keeping them in a fit and proper condition for the Meposf for which they are intended, becomes one of immonse importance. It rould bo folly to saj that the subject has pot bad much attention do. reat to i. Large ande of nooey have been expended in fitting up rarious ybta of enothinery for this parpose. Many persons incar great expense in removing a bead of each cask and thorongtly acuaring and clonning then ; dee "A Aring," steneming, the ase of chemicals, and oither meava have wen resorted to, in onder to offoet the grrat desideratum of cloan and aweet anks ; bat afer all, the greatest dimiculty is experienoed in effocting thia, a a serionas loep of property is oftentimes the coosequeace.
Before going more felly into the cabject, it is necessary that the varions melbode which have bilberto been adopled and which are otill in ase, sooid be fulis explaioed, and wo will cosesider in tbe first place, nohead. ingeack.
Recoviar the beed of a cack is so doube the surest aod bert mode, 10 far Mrenda getting it olean, and ono whioh, in many establishments, is carriod out completely at no small axpence for labour, damage to honds, proores, boope, \&e. Thewe drawbecke, great as they are, migtt be overbooked, provided by soch mesens thoy conld bo insared as sweet. But this by no meane always happose; there is thon the alterantive of oither allow. ingit to ramein (withont the hoed) for a considerable leagth of time oxMoed to the pou's reys, or oxtreme frost, or subject It at once to the-
"Piring proveen," - Which is that of placing of what is called a "cresset," avaining fre inside the cack, and thas heating the wood until the "must," * mouldy namell is destroyed. Duriog this procese it sot anfrequently occurs that a plece of burning wood drope upoa the bottom head of the cask, aportape the deme remches to the sides, and hence oharring taken place, in Nu probability, to a serions extent, cad if ± 0, a noo-condnctor is thus herwow, which mast mocescarily prevent any taiat still oxistiog in the body α ith wood, frome boing evaporatod. Casks so lreated are often found to pive on a paraicioas inverar to the beer or ofber liquid, with which they my beaterwarda charged, to the serious lowe of the brower, inaumuch as In my huvo to pay doable froightage or carriage oa "retarbed beer," if mat be estire loss of it; beaides ithe repetillon of the above raidous proceen, Thith is medaited by those who adopt it, as only advieable in extreme cren. The next process is that of
"Scempiag." - For, this porpose many brewors beve boilers of large aymely, in which is generated weam of 3 or 4 lb . prosesure, coanocted to a pipe leadies all ronad, or by the sides of a building, witt nosades inserted the ense, aboul 2 n . 6 in. apart, or acoording to the diameter of vesseis mpuivitg to be moemed. These norstes, on boing lacerted into the bongHiag theo the presemre of the atrem forced throagh them into the canke, in many eween for 3 or 4 hours cooseoctively, but the more common period

[^25]In two hoarr. This in for the purpose of cleasolag as woll as ameetening caske, and as a substitate for the more expenaive process of nabeading. Now the effect of this is, in the firat place, to swell and surcharge the porea of the wood with motsure, to force toto the blibters any mouldy colation, or trint, which may have beea proviounly withia a liop's chicknems of the atave, a coasiderable distance further into the body of the wood. As a proof of chis being the case, it is perfoetly well keows that where the ays-
 filled with beer, oth erwice apote of mould fill make their appoeranoe, and all the Cavour will agaig return to the ineide of the cack; clearly abowing that the germs of the disease have not beos destroyed, bat simply witb. drawn behind the sereen, to retarn is all probebility, with increased violesoce. Can eoukd and dismese be so pour whand and yak the beer not partake of it
Steemiag frequenily causes the complete fracture of the atavea, on acconat of the expanaion which necessarily tintos place; the elbres of the wood are destroyed, the resins and other solid matters which bind the fibres logether are gradually wached a way, aod enoh ancemaive peamiag, whea carriod to oxcome, has been known to charge the pores of the wood witi 3 lb . weight, or nearly the third of a gallon of water, which on coming into contact with the remaline of the beor (aftor the cask has boen emptiod) thon, mose likely, is an sold atale, vary spoedily generates moold, as proved by M. Dutrocbet, who sayo-4 that a drop of acid la an oupce of water produced moold is eight days." But independent of the prevenet of acid, water len is the porses of the wood is sufilienent of iteolf in cortain sitastions to oreate decomponition, and ali the worst evils of which the brower and others have to complaia. Bot ather all, that stoming will not elemase a cack, has bees proved on reveral occacions. When mouldy carks here been eabjeoted to it for ap warde of two hourn, It has boen foend apon abbondiag theme that they have beve io a allmy and filthy coodition. Scaldlog and " blowing of," ast it is termed, have thea beea retortod to, bot stih the casks could not be considorod clona inside; that which appeared before the stomming as moukl, had atterwarde the appearance of glae.

There is another very important matter as regards damp belag allowed to remaia is asy reseed intopded for the reception of beer. Take the simplo faot of its being pat into a wot jug, or glase-do wo not at oace find it "Aat," and out of condition I Indoed, so much so that thove, whose trade it is to bottle beer, are compeilod to be exceedingly paricular in havlag the bottien porfectly dry. If it is thas necescary in the one cane, surely it zinest be so to some extert in the other.
With regard to the awoeteaing the caake by chemleals, the methodg are as numerous an they are varied. Some ase common malt, others coda, lime, sulphurio acid, muriatic acid, leys made of ash, beech, or other hard wood, aubes, together with boiling water ia abuadance, and many othor expediente, all of which are attended with labour in the firat instance, and unheadiog and scouring the cask. Much tlme is afterwards spent in waiting for these solutions taking offect; and after all this, there la perhaps an odour left quite as bad un the original ove which they were intended to cure. The result is, that frequent scaldiags with hot water or stemm be. come necescary, and the cask is loally leff in the best poseible condition to georrate mould and other ovils.
The machinery in its simplest form for cleansing canks, has hitherto been that of a common chain, or, in zouno inatanoe, a "mail"-chain, placed lu. side the cask, with two or three gallons of hot water, and the cask afterwards rolled about io a back ward mod forward directios, antil it was considered to bo sufficiently olenneed; but this bas bees foond ancertaia ia its resulta, there belng no proof whatever of the chain having traverwed over the whole of the surfmor, and purticularly in the angles of the beads. This process, therefore, is not to be depeoded apon.
A piece of machinery was invented a fow yeura since, to work oilber by hand or engloe power. It consisted of frames or crudios at right angles to ouch other, on one continued ohan, the frames being altached at the diagonal points, the casks thus lying in an oblique position, and socured to the frames or cradios by mesas of a strap and set-2irem ; s common chain was placed ianide for the purpose of closasing, bat owtiag to the contianous angular movement of the cask, the chanio coly acted partially oo the nurfince; it was therefore necosoury to abiff it several times before caything like a clean cask couid, by this method be obtainod; so that, from the labour in shifting, ulded to the uncertainty of having as cleas cack, the invention met with very litule encouragement.
There whe suother fitted ap sotase years unce at a large eatablishment in South Wales, at an oxpense of $\mathbf{E} 1,500$, and which io still in uce. It consisted of a series of jointod bruwbes, which are made to revolvo horizoeLully; one bead of each cusk being taken vot, the cact is put apon a truok (or sompethiag of that kiod), mul pushod cowards the brush, whinh, gaing at conaiderable volucity, remuves the adhering mattert, but owlog to the inequality of thicknewe of the staves, the brusben lenve sooniderable quantity of dirt in the ungles, which has afterwarde to be seraped or brusbed out with scrubbing brushes, the latter operation being parformod by womoo empioyed expresely for this work; as many as 400 omaks per day being thuis cleaned, mand uler being hoaded up arain, are, in caves of mast ur monell, subjooked to aleum, the use of moda, \&o., at provioualy alladed to, al do litulo ex pease for dnamge duse to cuske, benides the wear. and toer of brusbes, which is very greai.
Haring poinved wat the evil effectiv of ariag, hard steansing, the ane of ahomicals, and otber mothodia, at woll as the altempte whioh have beeu made at machinery, to rouder cunky in a dit med proper coodition to contulu
heer, tce., we will now proceed to deacribe the procens lately invented by Davison eod Symiagton.

The invention relateq-Ist, to a new method of making cashs; grodly, th a mew method of oleapsing canks by machivery; 8rdly, to a method of parifyiog casks. On the jmproved mode of making oasks;-but frat a fow words on the present ptans. According to the present mode, the matter cooper being deairous of sending to bls cavtoment orly such as are made of pure and well-seasoned wood, is compelled to lay by the wood for a considerable period, in some cases two or three years. Now, after this, the wood is, no doubt, froed from much of its moistare; some of the vegetable joices have been evmporated by expoenre to the sen and wisd; bot it ahould be remembered that the wood in this atate is moch barder to bend than It was in its formor green atate, 80 much 80 , that froguent appll. cations of water, assisted by heat. are obliged to be made, before the nocessary bending can be accomplished; with all the care that can be bestowed, ithe staves frequently crack in the crose way of the wood, which, if not through the entire thickness, exbibits iteelf in the inside in the form of a blister, many of which may sometimes be found in one cank, to the great anoyance of the brower and those whose business it is to seo that the casks are in a fit clate to contain beer or other liquids, as it moot frequeatly happess, that when moiature is admitted into these canks, the listors expand, and form a receptacle for any vagetable or other matter which may deposit Itself from the contents of the cask, and by subsequent oxposure to the atmosphere so0n become mouldy, if not in a musty atite; hence the plea of the coopers when they say-"We muat unohead the cask to chip out the blisters."

To avoid this expensive and injurions process, as well as to render casks in a much better semsoned atate than by long exposure to the almosphere, it is proposed to make use of woud in its new or greek state, that is, when the vegetable juices are in the pores, in which state the staves are easily bent to the desired curvature, withont cracking or otherwice injaring the slaves; after being thus beat in the form of casks with tomporary boops, making due allowance for shrinkege, they are in this state to be subjected to the action of a continuone and rapid curreat of heated air passing through the interior of the cask (the cask being supplied with a temporary cover over the top eud, with a small hole io the same fur the exit of the air), notil the wood has exhaled all ite natoral sap or other aquecus matters with which it was formerly impregoated; the staves thus become denser and harder, all the fibres loeing brouxht closer together ; this done, the casks are finally hooped and finisbed off is the usual way, the wood of which the heads are composed having been previously seasoned in a similar manner, in chamberu properly constructed for the purpose. Casks so made are rendered entirely free from sap and other moisture, hence their peculiur filness for warn climutos; and whilst it is of great importance for some kinds of beer to have the casks free from all coloured juices, it is equally so for other articles, such as hread, beef, \&c. In proof of the heated air so removing these aqueous matters, Dr. D. B. Roid, who wes profemionally engaged to inveatigate the merits of ibis invention, states"A new cask of green wood, subjected to the action of heated air, gives out a volatile mattor along with a large quantity of water, which, when condensed in a refrigerator, sustained at a low lemperature by a freezing mixture, presents a liquid, Jimpid and coluurless, like water, bat strongly impregreted with the odonr of the wood. Alto, the wood not oniy be. comes deaser, but has less taste, at least at frat, and most necessarily rary in its texture, acording to the extent to which it hus been heated, and the amonal of moisture expelled."

The new cleanglig machines consist of two frames mado of iron, one revolving inside the other; the inner may be termed a cradie, in whiob the caak is ceourod by means of a chmin, Jerer, and catch; motios boing siven to the outer frame, either by hand or engloc power, causes the inner one to revolve in a contrary direction, which is mecomplished by an eccentric noxt the axis of the outer frame, and to which is connected a set of jointed rods commonicating with a ratchet, which is Axed on the axis of the ianer frame. The action is thos:-for overy turn the outer frame makes in the direction of its length, the inoer one, which contaios the cask, movea at right angles with the other frame, a distance equal to one tooth of the ratchet, or 1.20 Lh of the circumference of the cask; in this way, by the itme the outer frame with the cask has made tweaty revolutions end over ead, the inner frame has moved the cask ruund only once sideways. Thus by means of a chain of peculiar construction, attached to a plug suited to the bung hole, which is in the first jostance ioseried in the cask, together with two or three gallons of hot wuter, every inch of sarface becomes moted upon and freed from all adhering matter in a very short time. For the purpose of more thoroughly cleansing a very bad cask, it is usoal, after it has revolved for about a quarter of an hoor, to loosen the plug, and allow the first water and dirt to ruv out ; then, from a man ovor the macbines, to let in about gallon of clean hot water, for the purpose of giving a second rinse. The very worst description of canke are, by this process, reodered perfectly clean in the course of half an bour. It is ooly nocessary furtber to observe, that any number of mactines may be made to revolve at the same time, by applying adequate power.

To teat the merits of this part of the iovention, a great number of rery interestiag experiments were gone into, sons of which were made imme. dlately uoder the direction of Dr. IReid, frum which it would appear that mpid carreats of heated air in prasing through a mouldy cauk becomes loaded not ouly with moisture, buis also with monate particles of mould, or ut all eveats, with some material from the mould, which is proved to de.
velope moald into other sobrtunoes ; whioh was encerthined by coedemslog the vapour which passed from a mouldy eask, by a murreat of beated sir, being foand to deposit on the corks of the bottles containing the llquad, a very rich vegetation of mould, whilet no such appearance was traced is the liquid condensed from fresh casks ; showing that the fact refered to is one of the freatest importance, as indicatiog that the action of heated air is not merely exsicentive but that it does dissipate mould.
Dry beat is a woll known pariger, it haviog beed satixfactorily proved Latoly in Syria, that evon the clothes worn by persons who hud died of the plague, were reodered perfectly harmlesa by being exposed to $280^{\circ} \mathrm{Fab}$. but lest this should be going too far away from the subject in question, ame or two other simple circamstances mang be meationed, as showing that dry beat is the thiog Deeded between the fibres of the wood; take for instence a chip from a musty cask, and carry it in the waistcont pocket for an hour or more, and it will be found that the warmith of the body alone has materially, if not wholly, removed the unpleasant odour. In the procesa of fring a cank, it was found that the average beat from the cressot agoind the sides of the cask, was equal to 350°, and the applicalion of this temperature for half an hour is usually considered sufficieat to remore the moistore and smell; but great difioulty is experienced in applying the heal uniformily, aod it is at all times 100 sudden to effect a complete removal of the moisture and taint from the body of the wood, in addition lo the ill effects of charring. The new process inanres one temperatore throughout every portion of the cask, and as it requires only 1 ve seconds of time (from the rapidity with which the air is propelled) to give every crevice of a 86 gallod caak a fresh supply of beat, it will be readily understood that by such means, all danger of the wood being barat is removed, the cask becoming gradoally and apeedily deprived of all moistare, and with it the complete evaporation of the " must" with which that mois. tore is impregnated.

Contrary to the opinions of some, this process is not attended with acy injurions effects apoo the wood, but the very reverne; it being foupd in close the pores and render the sorface moch harder, and conerquently lese sosceptible of re imbibing moisture, and which would be particalarly 00 if steam could be altogether abandoned in the process of cask cleaniog; the residue of the beer would then become hardened in the pores upoe each application of beated air, and would oventually effect an internal protect. ing ernat or glaze on the surface, which would materially facilitato the future cleanding of the caske.

The advantages of the new syatem are these:-First, that caaks can be made ont of green wood inatead of very dry and seaconed wood, aed by this means be free from blisters, and in overy way better futted to reaint molsture and its evll conseqnences. Secondly, that ibe cleantog of oesks may be effected by meschinery, with every degree of certainty, withort ma heading or otherwise destroying the constitution of the casks. Thirdly, that caskis may be reudered sweet, pure, and udifurmily dry, wlthoent the injorious effecte of either un-headiag, the ase of chemicale, or hard atemen. ing. Lantly, that the means by which the whole is accomplished, are bot only simplo, speedy, and to be depended upon, but at onefourth the expense of any other aystem where an-headiug is remortod to.

The heating apparatus consists of 15 cast iron pipes of a horno-shoe form-the internal sectional area of each being 12 inches, and the external heating surface 1605 superficial ioches-these drop into sockefs coosected with a horisontal pipe, of 9 inches diameter, which is placed on ench side of the surface, and the divisions in the latter are 00 mrmaged that the air in its passage towards the dozeles first passes through fonr of the bormeshoe pipes; next five, and thed ols, pipes; this is for the purpose of mak. ing room for the expansion of the air, which, it will be observed, has by this time paased thrre limes over the furnace. The air on passiog away from the six pipes immediately rashes through the aozeles, and from theece to the interior of the cacks over which thoy are placed. The atr to pro. pelled by means of a fan of 18 inches diameter, ut a apeed of 1,400 revojutions per minute. The apparatus is also furnished with a boiler which is placed over the heatiog-pipes, the external beat of which teods greatly to forward the generation of steam, which is used for the purpoee of warming and slighty moistening the casks previous to beiog fainhed off with the heated air. The water in the boiler serves for chargigg the casty duriog the cleansing procese, as befure described.

An apparatus such as now desoribed, consiating of cleadsing machbes, and yl nuzzles, for heated air, has been in operalion at Measm. Trumen, Hanhury, Buxion, and Co.'s brewery for upwards of two jears, daring which time opwards of $\mathbf{7 0 , 0 0 0}$ mooldy casks have been clemneed and pu: rified; a great proportios of Which would have required, asoder the old system, to have beup either unhended, and remained so for a considernote
 expeose of at lemst 10 d . per cask. The apparatus alloded to is onpable of cleansing and purifying 280 cacks por day, or $1,88 n$ por week, at ater expeose as ooder, vix. :-

Foel for farouce, 21 toas, at 28s.
8150
Proportion of fuel to engines, 18 owt.
13 B
y inen and 1 boy, but say 3 labourers, to attend to ma.
chines and hot mir apparatus, each 20s. .

- 0

Tutal
268 B
Or under 1łd. per cask.
This does not include the interent of moaey sunk in fiting up the ap. parstus, or the cont of wear and tear; bat icelading the wiole ather two
own' hard working of the apparatien, it is found that each cask (inoledior botts procheoss, and the lurger dasoription of casks), exceeds litule bejoed 2jd.. or one-fourth what it costs by the present sytem.
Wood searoned by this process is particularly applicable to toor boards, sad boase filuiaga generally, for cabiset work, masieal instrumants, cap. riage hoildiug, \&ce, as shown by the annexed table:-
Conqerative Strougtt of Varione hinds of Wood in a "Seasonea" and "Unerasomed" state.

'remes of Wood 11 bearterg 1 inch square.	Weisht.	Weghe arer Hot Atr.	calleture removed	Defee- thon in lachee tenths.		
1.7is masoned. .	$1 \cdot 16$	1.09	. 07	$3 \cdot 5$	201	
$2!$ do..	$1 \cdot 17$	1.08	-09	$3 \cdot 3$	190	8.8 or nearly 9
$3{ }_{1}$ do......	$1 \cdot 19$	$1 \cdot 1$	-09	$4 \cdot 0$	214	per cent. added to
4 ITr not seasd.	$1 \cdot 18$	-	-	3.6	190	atrength of Fir by
3 do......	$1 \cdot 15$	-	-	3.8	190	seasoning.
6 do......	1.05	-	\sim	4.0	176	
1 EIm seasoned.	$1 \cdot 33$	$1 \cdot 21$	-12	3.5	120	
2 do......	$1 \cdot 3$	$1 \cdot 18$	-12	$5 \cdot$	106	12.3 per cent.
$3{ }^{1}$ do......	$1 \cdot 4$	127	$\cdot 13$	4.3	128	added to strength
$4{ }^{\text {Elm }}$ not sensd.	$1 \cdot 15$	-	-	6.5	106	of Elm by sea.
3 do......	$1 \cdot 21$	-	-	$5 \cdot 7$	99	soning.
6 - do.	$1 \cdot 36$	-	-	$6 \cdot 1$	110	
1 Ash memoned.	$1 \cdot 36$	$1 \cdot 44$	-12	4.	234	
2 do......	$1 \cdot 51$	$1 \cdot 38$	-13	6.8	252	44.7 per ceal.
3 do......	$1 \cdot 46$	1.33	-13	6.1	248	added to turengtb
4-Ash not seasd.	1.41	-	-	$8 \cdot$	176	of Ash by tea.
s do......	1.38	-	-	$8 \cdot 3$	162	soning.
6 do......	$1 \cdot 34$	-	-	$8 \cdot$	169	
1 Beect samsond.	1.85	1.71	-14	5.	257	
3 do......	1.76	1.62	-14	$5 \cdot$	279	61.9 per cent.
3 do..	1.81	1.63	-18	5.	280	added to ntreagth
4 Beech pot seas.	1.73	-	-	$7 \cdot 5$	176	of Beech by sea.
3 do.	1.8	-	-	7.	180	roalng.
6 do.	$1 \cdot 78$	-	-	$5 \cdot 5$	148	
loak reasoned.	1.88	1.73	-15	$6 \cdot$	299	
2, do......	1.88	1.77	-11	5.	270	26.1 per cent.
3. do......	$1 \cdot 45$	$1 \cdot 36$	-09	-	-	added to treogth
touk mot seasd.	1.84	\rightarrow	-	$6 \cdot 2$	218	of Onk by cemon.
3 do...	1.89	-	-	$6 \cdot 9$	227	ing.
¢ do...	1.85	-	-	6	232	

AGE OF VOLCANOES.

At the Dojal Iostitotion, April 30, W. R. Hamilson, Eeq., iv the chair, a paper wras read ${ }^{4}$ On the Age of the Volcanors of Aurergne as detornined in the Remaine of anccestive Groups of Land Quadrupeds:" By C. LYELL, Esq.
The region of extinct volcanoes of Auvergne derives its peculiar intereat from the circumatunce of its sevor having been submerged beneath the sen dariag a period is which ite geoturical and geographical structore, and the animels and plants by which it has been inhablted, have ondergome a great succesion of changes. In the rest of Enrope generally the volcanic rocks have elther beed originally of submarine origin, of the surface since they were produced has suffered so much denodation by the action of the waves of the ocenn as to make it ien posaible for as to ascertain the form and manere ia which the eroptions took place, or the relative position which the igneoon foremation held at frat to the hills, plains, and valleys then exist-
 the eocese freshwater, and the older and modern volcanic, each depicted by difierent colours in an extensive landscape enlarged from a viow of the rilley of Chambun (Pay de Dome) by Mr. P. Scrope.-Mr. Lyell said be aboald dwell chiefly on the antiquity to be ascribed to the Puy de Tartaret, a type of one of the mont modern cones of oruption in Central France. Te eonparatively recent origin of this conical hill of esorim, with its crater at the sommit, is proved by its standing at the botton of a deep valley ex. arated througt the alternatiog beds of pomice, trachyte, and banalt, betonging to the more ancient valoano of Moot Dor, and partly through the mabjocest and fundemental granile. It is fartber confirmed by the course di powerfal corrent of lava; which, procerding from the base of the cone. fow thincen miles down the chanoel of the River Conse, stopping at the lowe of Nechers, near lasoire. The lava occupies the anciant river-bed, and to observed to contruct in its dimenslous in the aarrow gorgen, where it the ghins in beigbt, like the water of a river fowing throogh the arch of a bidge; and to expand agtin whore the valley opens, where it spreads

Lato a broad cheet baving a level sorfice. It aloo lowt ap the chapcols of tributary streams till it attains a leval correspomeling with the top of the lava at the point of jupetion of the tribetary with the smain valley. But althongh these appearanees prove that the lava bas fowed as it woald now do if it were remolted and made again to deceend the aame chanoel, it eevertheless bears in sowe part of its coorse the marks of considernble age.

Before considering theos, Mr. Lyell entered Into a short digresaion to rofute the doctrine of the mediseval origin of the volcunoes npar Clermont, advapeed by a writer it the Qmarterly Reelew for Uctober 1844 (p. 296), where it is pretended that Sidodios A pollinaris, Biabop of Clermont. who sonrisbed at the close of the Efth centary, bas borne explicit tectianony to "the volcanic erapion, the crumbling of the cones, and the beaping up of the showert of ashes and scoria cast forth amidat the fires." The pmasages relied on oecur la a letter from Sidoains to hie contemporary, Mamertus, Bichop of Vienoe, in Dauphiay, written whea Auvergne was threatened with freeb irraption of the Goths; to avert which danger the Bishop proposes to adopt certaju forms of prajer (rogations or litasies), which Mamertos had already istroduced on the occanion of some "prodigies" which had happened in Danphiny sisteen years before. In allading to these pheoomena, Bidonive says shal "the walls of the elly of Vience wore shaken by frequent earthqaakes, many fires broke oor, and moands of ashes were heaped up over the fallen copings of the walls." "Nam modo
 ifnes smpe Aammati anducas culminum cristab, superjecto favillarum moate tumulabant." Deer also took refuge in the forani, and the people fied; all but the Bishop, who hed a riabi to reckon on divibe protection, because, as Sidonias reminds him, ot a former occaston, the lames at his approach had miraculonsly receded out of reverence to his boly person. At the tlme of the earthquake be (Mamertns) had told bis people that their repentent tears would extingaish the fires sooner than rivers of water, adid the steadfastopss of their faith would canse the rocking of the gronod to cesco. Siduaius folshes with asking the Bishop of Vience to cend hin some relics to make all secure. The siyle of the whole epistle is so fantiy. ambitione, and poetical, as to make it difficult to know the exact value of the expresciona, and dangerous to fonod apon them any philosophicul argnment abont natural eveats. There is not a word abont Auvergne, but simply an allacion to the thock: which appear to have thrown down buildings and cansed (as usual in such cases where roofo fall in) greal confiagrations and beape of cinders. The terror of the wild avimals when the earth rocks, and their seositiveness to the slightest movements, aro well known. Althongh the epistle proves 8idoaius to have bad a fair share of the credulity of hin age, both iv respect to miraciet Wrought in favour of m contemporary saint and the efficacy of relics, it would be unfair to charge him with a belief in the occurreoce of a volcanic eruplion at or veer the site of the city of Vienne, which the investigatioe of the ablest government aurves ors, to whom the coastraction of a geological map of Pradce bas been intrusted, has entirely disproved. There are, ia fact, no monuments of volcanoes, ancient or modern, in Dauphing; and If there had been they would not throw light on the date of eruptions in Auvergue.

But to returs to the Iava-stream of the Puy de Tartaret before alluded to-what geological antiquity cas we ascign to it f In ode of the gorges the eolire mass of solid bisalt has been awept awny by the torroat, so thut the former contimuity of the stony current is interrupted for sereral hundred yards, at a point about midway between its efflux from the cooc und its termination. This implies a lung period of excavation. In another place, about one mille and a balf from st. Nectaire, an old Roman bridge, stili pasable, having two archea, each fourreen foet wide, spans a deep ravine, cut by the Conse through the middle of the iarn, which is bere of columnar structore. The bridge is supposed by Preach arohitects and antiquaries to be of the dute of ebont the fifth century; jet the springlog of the arches proves that when it wus erecied the ravine was of the same width as now. Nevertheless, while signs of deaudution sucb as these altest the vast amoant of removal of hard rock since the lava dowed and was consolidatod the contemporary oone of loose, incoberent scorise has stood in its ex posed ponition at ibe very bollom of a valley, enlire and uninjured, the rain-water being instanlly aborbed by the porous mass; and no rill being allowed to collect on its danke. It is clear thnt if any flooll of water bad paseed over Auvergne, If any jaundation had raised the Lake of Chambon thirty of forty feet, It mast have carried away the periahable cone. The lake alluded to orres its origin to the damming op of the Couse by the rolcano and by landslipe which accompanied the eruption.

But the most conclusive evideace, acocording to Mr. Lyell, of the remoteness of the period at which the cone and lave of Tartaret originated hes yet to be set forth, and has only been diatinctly bruaght to light since be revisited Nechers in 1843, when the Abbe Cruizet pointed out to bim a locality dear the lower extremity of the greal current, where fossil bones of extinct animals had bepp discovered in meaduw, between the base of the luva and the channel of the Conse, now ten feet lower in level than the lava. In company with Mr. Bravard, Mr. Lyell explured the spot; and they convinced themseives that the bone-deposit passed ander the lava, which here forms a mass thirty feet thick. Subsequent investigutsoos not only coofrm this view, but have enabled Mr. Bravard to oblaia from beaeath the stony current a considerable number of additional uaseuus remains, referable to the genera Equus, Sus, Tarandus, Cervus, Caais, Pelia, Martes, Putoriun, Sorez, Talpa, A rvicola, Spermophilus, Lagomys, Lepas, ind according to Mr. WaterLouse, Cricetus or hamster, und others,
vedidet the remolas of a frog, lhard, and goake, and the bones of aeveral Wrds. Mr, Oweo has oxamlaed come of them remaine for Mr. Lyell, and reoogalses among them tho Eqmusfomilis apd Terames priecus, both extinct speciet, ocourriag in the enver of Enginod, with the coatoats of which genorally this avemblage of foudils from Auvergme appens to agree very closely there belog a predombance, acoording to Mesers. Orioeth Bra. Fard, and Pomel, of species not known to exist at prosent with an iztormiztare of a few others and betionaichable from quadropeds now inbebiting Earope. Among the land eholls assooialed with the booes, wone fonad Cyolonome elegras, Clencilian rugene, Belix hortensie, H. memoratio, \boldsymbol{H}. lapicida, and H. obwatus-all recent, and all, with the exception of the lact, now fosad in the immediate nelghbonrheod, Mr. Lyell thiske it probable that the deponit of red araillaceons mad aeder the lave costaising these remaing, was derived chiefy from voleapio matter, which the ernptioo of Tartaret threw out, and that the fonall animals perisbed by toods occasioved by that outburat. That a slmilar Fanna conkiaced to live in Auvergoe aher the lateat eraption, is inferred from the discovery of the reasains of many of the same groap of amimals-Bpermopbilne, Lepms, Cactor, and uthers, in the clofis of a lava current as modera so that of Tartarec, obserped at Avbidre, dear Clermons. This Fanna, so differeot as a wbole from that now iiviag in Earope, evideotly inhabited Auverceo, when the vallay of the Coum had been excavated down to the rame level as that over mich the lava of Tartarat fowed:-yot ite antiquity mast be extreasely great-she gradeal dyiog-out of apecies and the iatroduction of sew opes taking plece, coconding to Mr. Lyell's viewt, with extrense elow. ases. The feer that the shells bolonged all to liviag apeules (which possibly might not hold good if a larger number were obtained) afords no prememption againat an indefaitely remote origin as compared to the periuda of history and tradition, because the lecturer has shown that the ravioe of the Niagara ("Travels in N. Americm," vol. i. ch. 8) and the Delta of the Mississippi (Heports of the Brit. Aseoo. for 1846), both of whioh must have required an epormous period for their lormation, are, neverthelese, postorior ia date to deposits fall of the recent lad and freshwater abells of North Amerion, aseociated with the remaims of quadrapeds, nearly ali of which are now extisct.

It was shown that all the volonoces of the modern olase of which the Pay de Tartaret is a type, wore not formed at once, for the iavas of nome (as for oxample, at Champheix, in the same valiey of the Couse) stand at a greater hright above the actonl river-eourses and repose on ancieat aila. viam formed whea the valleys were shallower. To aliow time for the ejection of theac namerous cones and lave-carronts, of which there are severna handreds in Central France, we require a loag series of ages, all subsequent to the miocene period, to which another clase of monumente of anterior date are reforable-as, for example, the bone-beariag alluviums alternating with volcanic formelions (pumiceona and trachytic) of Mont Perrier, to which a dietiact Fauna (of the geoera mastodo, ciephat, hippopotamas, tapir, \&ec.) belonge. 8ome of the valleys cut out of the still more ancient lecustriae strata were only half eroded to their preseat depth in the mivcene period, and were accasionally filled up with miocene deposits and afterwards re-ezcavated. It is possibie in Auvargne to distingaish the relative agen of a great variety of ulluvioms containing the bones of terrestrial quadrupeds, in conseqneace parly of their preservation aoder lavas of different eges, and partly their position on the sides of valleys which were gradually deapened; no food or relura of the coean having disturbed the surface and mingled the foasils of one period with thooe of another, to has happened in Eagiand and most parts of Europe. The oldent Fauna of laod quadrupeds in Auvergne, that found in a fossil state in freshwater atrala or marl and limestone, older then the trachyte of Moot Dor, consieted of species of Paleotherium, Anoplotheriom, Aathracotherium, Opomam, \&eng malagous, in great part, to those of the Paris besio, with nome miocene forms astociated and belonging, acoording to Mr. Lyell, to ma upper eocene gronp, newer than the Parisian tertiaries, or the uppermost freshwatar of the Isle of Wight. Hence it follown that the whole auccession of revolutions in the animate and inanimate croalion which have occurred in Centrul Frunce since the land emerged, vast as they are in duration, as compared to the era of the more mudern volcanoes, is neverthelome, 00saiderably posterior to the marine olay on which Loodon is buitit;-this last being one of those tartiary depoaits which rank as bat the monuments of yesterday in the great calogdar of geological chropology.

IMPURITIES OF WATER.

At the Royal Institution, April 16, Prof. Solly delivered a lecture "On the Impmrities of Wreter and the Mode of its Purification."

Mr. Solly deacribed fresh water as the resalt of distillation from the ocean. In the progress of thls operation, the vapour in the firat insinace, and the condensed liquid sabsequently, must become contamianted with whatever foreiga matters exist in the atmosphere which receives the former, and the strata of the earth on which the latter fills and through which it percolates. But even at the onteet of this aataral chemistry there is impurity. Alkalloe calts, we Mr. Solly hat already demonstrated, rise in vapour; therefore no water whioh is evaporsted from the sea uan be pure. The asaly is of water is ajmple in theory. The gateons or solid subatances contained in, or combined with it, belng detected by fow leste. Before,
howerer, the acilyst hes recoume to these, he atteects to the phyikeal quall-
 inpurity. These impuritien are ciber ganme, orgeric, or farconic.-1. Ganmes. If common air be preseat in the weter, it fa deteeted by teent if carbonic acid gas, by hroowriter; walpharetiod bydrogen ts difeovetrd by
 are oitber solid subtances, as oley, hold in suspemaion by orgacio mether or eline insolable aubstences held io solation by the gas that bo present in the water. Thes, Carrark-wator in chalk diamived in vater by the ezeess of curbos therein. There remain other inorganic substancon, as comomon calt aod some salts of iroe, which are casentially soleble. Beaides theme imporition, wator kept in leadoe ressels often eootsios a trice of that foctal. Mr. Solly notioed the familiar tests by which these are recogrised-s. Organic Inapurilies in Water are chiofy moxious by the alolpharetted hydro. gea and ammonia which they prodece, and which is nacally percoptible to the senses. The affeots of thew various imporitien were naxt speciled. Mr. Solly ozplalned, froen the prisciple of saponilicatian, how whlor coestaining malts of lime docomposer the moluble sade or moteah anth and formes an inaoluble dime sapp, which is useleas for ali purposes of washing. He quoted the opinion of some experimentert, tbat blourtoonte of Hese telter improved thata deteriorated the atility of water for calinary purpones; but he maiatained that It was injurioas to the regetstion of planta, in eoneoquence of the deposit on their lonves which it lef on being erteporated. sulphate of iime is always injuptoes for colinary vees, inespach at it io. terfores with the sotability of many organis substances, as tea, dos Having briedy adverted to the injory prodoced by the oarthy fropartice of water when thoy are deposited in water-pipet, boilern of atean-wemels, \&ce., Mr. Solly lastly suggrited various methods of freoing wretor from the impuritiea which he had detoribed. Solid mattern are separated by filtera of sand or of fively-powdered charocel. The latter subatence poomeseres the additional property of absorbing gases: beace ite use in eneotemiag fetid waters. Carbonate of lime is decompoeed by the miztare of zaminte of ammoaia in the water which cootains it. This prootios has beon foesd efficacious in preventiog deponits in steam-boilers. Gypenm may be chruma down in the form of carbooate of lime by mdding carbonate of eoda. A very ingenions procese for the same purpose was oxhibited:-by firntion through oxulute of baryla, sulphate of lime is entimply separated from its solution. This operation may atill leave a trace of the orulate of bargta in the purified water. This small contaviontion, however, may be eatirely removed by making the luid pasa througt a second filter of phouphate of lime. The water then becomes perfoctly pare. With respect to the mout dangerous of all impurities-sthe salte of lead-Mr. Solly showed that, un-
 of eurthy ealte-such as sulphate of lime-it ought never w be mad as a beverage wheo kept in leaded oisterns. These earthy salts protect the fead from the action of the water,-Mr. Solly roferred to the attompt to reeder lead insoloble by alloying is with $\frac{1}{\text { g }}$ of its weight of arsenic. He thea apolce of the signal faiiare of as endeavoar to protect lead from the ution of water by placing it in contact with siac. The rosult of this experiment was a vastly increased corroaion of the land by the water in which it was immersed ; which was, therefore, reedered additionally poisosons.

VULCANIZED INDIA-RUBBER.

At the Royal Institution, April 90, Mr. Brockedonexplained * The Preparation of India.rabber by Vulcanizution and Coneersion."-Mr. Brochodon's object in this communication was to describe-1. A mode of treatiag india rabber by which aet properties are imparted to this substance. 2 . The oew uses in the arts to which these acquired properties now reader india-robber applicable. Fweamization and conversioz denote that conbtamtion of iadia-rabber with sulphor from whish the new properties abuat to be dencribed resuit. The process of conversloa coasists in gubmittiog ta-dia-rabber to the action of bisulphuet of carboa mised with chloride of sel. phur. The caontchonc cannot, however, be penetrated by this procens to any depth; and therefore it is inapplicable when the mass to be acted ou is thick. The process of rulcemizetion, which seems to be more teplic. able, is the resuit of many experiments made by Mr. Hancock; who fourd that caoutchonc, when immersed in a bath of fused aulphar heated to various temperatures, by abeorbigg the sulphar, aseamed a cartionised appearance, and lastly acquired the consistency of horn. It was lo the coarse of these changee that it attuioed the state of valcanization which Mr. Brockedon aftorwarda described. The asme valcaaized condition cas. however, be produced either by kaeading the india-rubber with uelphar and then exponing it to a temperature of 190°, or by distolving the indinrubber in any koowe solvest, at turpentiae, previously charged with seiphur. Having thus explained the processes, Mr. Brockedon dearthed the effect which they prodaced on the ceontchooc. I. The indienrether, thea treated, remains elatic at all lemperatorea. In its ordionery athe 负 is quite rigid at a tomperatare of 40°. 2. Vuleanised ceoutchoas ta bor affected by any knowa colveath, as bisalphurot of cerboa, amphthe, or Itrrpeative. 3. It bot affected by beet short of the volomarsorg polth. A. It acquires extroordiany powers of resinting compromion. Thea, m ersobe ball wus broken to pleces by bolet drivee through a man of ritomakiad onoutchouc-the cecoutohonc itsetf erhibitian no ofbor trave of the penage than a scarcely percoptible reat. The applioations of this bolunave eprer
 "elatio bands" obet they mey not be aware that the wam fabote, edfanted in siat and treagth to the perpoee required, faralates efpriage for locke and the the racke of wimdow Minde. It is abso capabie of bolng monlded

 tand. It is adapted to protect frome corrocion wiree eabjeoted to the ecthe of the cean. an th the case of the wires required for the profected aloctria csenmaniention betwees Roglead aed Framoe. For the maces meson, air tebat of valcesined rubber are bettor wolted for Hfe-boatis thap thoee formeriy made of earvas, which are liable to be deatroyed by the aetioe of the wreter.
 as the thre of a carriago-wheet; and it is staled that a rebicle morranged roas mock easier than on the prearat plan. But perthope the moot ie. portent application is in the use in railroeda and railreed carriages. In the hormer, it tha lald between the rall and the sleeper, ad thes proveate the raik fen ladleming any tracen of pressure; and the apriags conaected wide the the frrs of the Fatter, whea formed of vulcanised cacnichoes, oan milber be bralcea mor can thelr elanicity be serteonated by asy degree of comencive violence. In conclasion, Mr. Brockedom exhibited objectililesmative of the great physical ehagge isdeced oo caomloboec by vulcuaiseriea. He thowed a serew, with lit reciplent, both made of this sabetasoos, mowell an form of letter-prese (uke e atereotyped page) for printing. He alto motioed its enofeleese in miking opithons for sergical parposes, thoven ad bates hat gonty portere, de.

GCENREY AND DECORATIONS OF THEATRES,
Abropet of a loctere delivered at the Decorative Ant Booioty, Agril Is, "On the Sounry and Enate Decoratious of Theadra," by Mr. Jown Dwret, $\nabla . P$.
The author atated that the opinton which be had formerly expreseed [me Joarnal, p. 28] on conatruction had, in the Thedtre Bioterigue, recently opeoed in Paris, bees in many rerpecte exemplifed. The criciciams upon infs theatre atate, that every person obtalaing a seat is ecabled to 800 twe whole of the stage. With reference to the proscepiom, he had become mere forcibly impressed with the advantages ariaing from the form which We had then suggested; and he stated that Mr. Proderick Chatterton had mine informed him that his instrument (the harp) was more ferourably leard in Corent Gardes than in any other of the metropolitan thentres. It an ornamental aud artastic viow, the form which be proposed oombined wose very cesential properties. The proscealam, he coasidered, should form a frame to the animated picture on the stage; and the broad equal marace offered through his anggestion afforded an ample and aritable field w which to diaplay rich and faocifol embelishmeats. The Surrey Theatre bes an example of this framelike character, -and, together with the drop yeas, exhibits thus far a satisfactory effect; and in the Thedtre Blatorique this has beea attended to with succest. The usual arrangements within the proscening of crimion draperies frequeatly exbibit marvellous com-pasitieas-bet of that commopplace nature which he would asist is Elermibaliag. A drop scene, be maid, certalaly required consummate cill. The pause in the excitement from the atage effects lands to the cretemplation of the honse in its lant cusemble-thue demanding a twohold coanideration; aubject of appropriate and intereatiag charmeter, metber with a proper regand to the general intertor of the theatre. Mr. Dwjer moticed geveral devices which hare been applied for drop-scenes, tach es the lookiof-glase curtain at the Cobourg some years ago-which be maned a coally aboundity, althoogh at that time thought "a great hit." Bat a drop sceme puisted by Bunbeld for the opera of uAcis and Galatea," prodeced at Drory Lame some years ago, he provoanced to bo a fine work. Il diaplayed is vignottes ideal scesen by the artist from the opera; and thos ofered to the mind'a eye congenial Art during the panses bofween the acts. Nevertheless, these pictures were placed within elaborate frame, contranting etrongis with the general exprestion of the theatre. A droperoede painted by Mr. P. Phillipa for Astley's whe mentioned as a proper application of art to this purpoce. It was intended to harmonise wibh the general business of the theatre, and was an excellent fllostration of th, the sobject being "Vletorin's retare from Olympian ganee with a procension to the merfice." The groape thus brought togel erer had dinect relativa to the features is the performacess on the stege. Mr. Dwyer comedered that the comporition always ought to bave relation to the sotion as the stage; and chserved that thin prinoiple bas been regarded, in some deprev, is the prewert drop-weece at Her Majenty's Theatre, where the ceutse embodies abetruet idmas of oper acd balion, bat in coepection with a masive arobiteoteral represeatapioa quile dintact from the geveral chas. neter of the inmetion, of which to coorpies so lerge aprepertion. Ho coounced that nare enaity in this partionlar ought to bo atterpted; and atated the he woald trat the drep-towe es a plotare to which the proscenicm brall be se oater fromeworts but be would tare, leloo, an lamer frame, appocios on tha secoa, aod parthing of the atyle of orpemeat adopted in ater perts of the theatro. As approximeting ihnatrations of his meaning, te anmilenet thane of the Priocest's and the Adalphi, both of which, howeviry mo dofoelive in some mivot qualitipat. This mamer has aleo the adratioge of explrmetiog with the steg qualimer.

Mr. Dwyer matidireoted attantion to lifhte De obeorvad that ith refoctors to the foothights in our tieatres prepent an oblectionablo appear ance; and te showed a sketch of orpanestal screep-work for comephliog then. He also surgeeted that they adrait of a very difierept arragempert on the Bude priselple with modifying reflectots; and that it would the adrantageonat to carry off the nosione reach of combustion. Eie adroanted the not of atroager side-lithty, heving their ialppaity regulated in accordanee with the thadowifg ae scenery; and be geptloged, with approvad, the effects thua occetionally prodaced in mpeolight semoes, Mr. Dwyer. thet explained the masagemant of coloaris for ertificial light,-the exeggeration necemary, the vigorous lights and shadowe, and the brond and dashing tomokes which form the soone-painter's art, A dight knowledge of the ctege, be observed, woald be anefioient to prove that, at the presept Uima, with one or iwe axcoption, the lmitation of outward things is very imperfeet. They are bel belf mpreconted. The benquetiong hall in respleadeat with gold and silver, and gorgeons magnifloence every where but on the loor; -and the forest laxariant with folinge, aod intricate with benuties to form aod colour, is robbed of half its fair proportion of effect by the poverty on whalh it ataods.

Mr. Donyer stated that sweces had seanally attended the carefol " getiars up" of plays; acd that taste extended to the zorect trilles had geaerilly beon appreclated by the poblice. A degurtption was given of the arrager neopl of 4 wings, tats, and by beeders " "and the ledierens contretemper of the scebo-biltors in thoir workteg dresem eppearieg on the thage to rewove refractory seenery, together with other assalties iacidental to the chapgo of aceses dering the acts, were addsoed as sumpiont reasons for adrocating. - lees frequeat resort to that prectice.

April 28.-Mr. DwYER read the second portion of a paper on the above unbject, commencing with an examination of the advantaget derivable from placing the acenery obliquely on the stage, referring of course to the wiogs and eet acenes, the slats or back soenes beiog in the usual position. Bome diminaltios io perspective having been alloded to, it wes afeted thet for drawing-rooms and apartments, the acenery ought to be arranged with due regard to the ground-plan of what is to be represented. Tris would emable actors to eater or take leave to a cormplete mander; they would not be observable by those in the aide-boxes whee approechiog or lingering for that purpose, and their voices woold reverberste agd be carried into the body of the thealre. A tcene in the "Flowers of the Forest," now being performed at the Adelphl, was described as an example, and also as alearly showing thet with soma attention to groand-plen in setting out an interior, together with as iatroduction of biey wisdown, octagonal recesees, \&c., the variety and perfection of soeeery wonjd be greatly edvanoed.

Mr. Dwryer then directed attention to the primeiples of design, which be considered me mainly divisible into two dasees, idenl and coantructive; the former embodying cortain eharacteriaties withoot referoace to matural lawh, and the latter demandiag atriet attontion to the fuadameatal principles of composition in art. Ideality, it was said, had in some exrraraplanas been doveloped in a ourprivigg and iagemions manoer, aod delicate concaptions is a reficed tasto were frequently introduoed with that reatertable freedom peculiar to the sebool of Art.
Some chalk sketches, designed for the scoeery to the " Emehented Forum," Jately performed at the Lyceren, werp exhibited as illastrations of the vigoroms masper and spirtt of thin clase of compretitions. Cometruetive design was decoribed as neceochry to architoctural mobjeots. THe epinions of Prof. Cockerell ad others were quoted io acknowledgmeat of the artintic talent, together with acourate knowledge of the arebiteetare of remote eget, which are frequeatly dieplayed in our theatres; aod the reador suggeated that if the attention of the strudeots in decorstive art at the Government School of Design wero direoted to the coptemplation of the better sceaic productions, baving the beanky and priveiples of deaigin explained, this would be foured one of the most prectioal and efleient tmedee of acquiring knowledge.

He regretted that many admirable works of art, exsecuted for theatras aboald have hed such a trasient extitence, leaviats searoely a trace behind them. The creative fiwney and design in manorvas ingapoes ought to bevo been preserved at any cont; and he argued that atudents in art woald, it a cereful contemplation of sespefy, roalise more freshnems and origioality in idanl and consuractive dedge than fros any other clan of eximplea. Keowing ita power and rast noexplored range, he felt an earmeat deairo that scene paintiog ebooid be fully and properly aatimatod. Eigraved examples might offer an tutermating oollection of the mont ingeaiona fancies of the move ewinent ariasts.
Perspective, the reader obeerved, conatitutes one of the greateat obstaales to perfeetion in scenic effecte, and he alluded to the defects which ordisarily appear in set-sceaces, from their being made op of various parts, placed at intervals aloan the stage, each part drawn, probably, at a diferrest perspective augle. The peculiar manser of treatiog perspeotive for theatrical porposes was expluined. While the situation of spectators varios greally, the treatmeat must necessurily be imperfect. It is, therufore, usual to set out scenery with two polnte of sight, but he preferred. in arehilectural subjecta, to bere threc, and to have thom placed near the ceatre, to as to comaternot the elfoct of opposition in the horisontal features of the wings, whereby the scenes are frequently mande to appear hoisted. Scoess showing grouad in perspective, ary frequeatly spoiled by the visible fenotion of the wings and the fiwor, thus dislurbing the fllusion of distape atsempted by the artist; and he would tiat the lower purtion of the scene with ooloer similar to that of the stuge. Architectural drop-scenes were
frequently objeotionable from the same canse, and he maintaioed that they shoald oever be thos applied, bot only at pictares within frames, if epplied at all.

The effect of limear and aerial perapeative wat adverted to, and the softraing infuences of colonr in acrial perspective were described as pertaining to the highest order of artistic talent. Scenes of thia kiod are 00 m posed of a number of parts, the fints represeatiag sky and extrome distance, while the middle distance and foregrouad are broken lato perspeotive forms. Floal-lights being placed behind these parts, impart brilliant effects that no colouring cen atiain to, remembling the sumpy epole of a landscape.

Linear perspective required, it was said, very great consideration, and failares in street architecture, and similar sabjeots, are onen evident to the least initiated obeerver. The artist, however, has to conted with serious disadrantages from not being permitted to sat out this clase of scenea upon the atage instead of in the painting.room ; and the manner in which they are produced ought to be borne in miad when judging of their merits. Street architecture offers a peculiar difficulty from the actors influenciag the seale by thelr comparative size; this illastrates the great absurdity of placing a façade of the National Gallery or other well-kwown bollding within the area of a theatrical scent, without a proper regard to distance. As an instance of a favonrable effect, he named a scene in the "School for Scheming;" at the Haymarket, reprecenting portions of atreets abutting on the quay . At Boulogee, which he considered far removed from a commonplace efisul, and that it alco testifed what might be obtained by placiag scenery obliquely.

Mr. Dwyer nezt alladed to the taste and refinement Madame Vestris had first presented to the public in her drawlog-room scenes, elegantly and completely farnished; and he also mentioned with commendation some interiors produced at the Haymarket, in a similar apirit. He admirod this perfoct kind of representation, and was pleased with the manaer in Which it had been extended to exteriors, garden scenes, \&cc., and he referred to the gardien scene in the "Lady of Lyons," at Sudler's Wells, in which the stage is covered with a painted cloth imitative of gravel walks, grass plote, strubberies, \&c.., producing together a very superior effect. In a soow scene in the "Buttle of Life," at the Lyceum, the stagn was covered with painted canvas very successfully, and in the "Flowers of the Forest," the scene of a village church, with well-worn pathe, \&c., similarly treated, was equally akilful and pleasing.

Mr. Dwyer commented apon the fits and starts usual to these malters, stating that the better scenes were oxceptions, while the imperfect school retained the predominance. As one of the earliest and moat perfoct illusions ever depicted, be described a scene introduced in the opera of " Acis and Galatea." The last scene in the ballet of "Coralia," at her Majesty's Theatre, was also fully described, at eminent example of sceaic display.

The anthor then noticed the machinery pertaining to theatres, and rocommended the use of painted canvas pleced on rollers sufficiently lony $s 0$ as to dispense with the series of curved, scolloped, aad atraight fy bordera, ordiasily representing sky, \&cc. He next reviewed the iaconsiateacies which occar in scenery and properties being of a different perind in character and stgle to that of historical dramas, mentioning a scene in "Lucis de Lamraermoor," at the Italian Opera House, Covent Garden. It repro. sente a Norman interior furnished with one chair of modern Freach style, and a table of doubtful period, the story of the opera heing in 1669 . He contended that those adjuncts are imporiant; and that if costome, manners, and customs are rendered faithfuily, properties should receive equal attention. The progress lu mattors of costume from the time of Garrick was noticed, and the properties introdeeed by John Kemble, Planche, and others, were meationed with encomioms. The increasiog taste of actors, shown in careful dressing aod wearing apparel with a bearing in accordance with the period represented, was alwo favoarably commended, at diaplaying research and cocurate stady of their art. Mr. Dwjer drew attention to the force with which the varieties of coloorn is drusses may be doveloped, by having regard to the background and to the position of the actors. An ack nowledgment was made of the elevalod taste and artistic arrangements which Mr. Macready had frequently ahown in groupiags and tableaux, and he concluded with the exprossion of a desire to find a proper feeling more generaliy establighed between the artists, actors, and managers, so that the capabilities of combined talents might produce resolts al oace gratifying, eievatiog, and promotive of the welfare of the arte.

INSTITUTION OF CIVIG ENGINEER8.

April 27. -Sir J. Rennie, President, in the Chair.

"On the laws of Towhronism of the Belance-spring an coanceted with the ndeher order of afmadments of Watches and Chronometers." By Mr. C. Frodsham.

The frat portion of the paper gave an historical sketch of the horological tavebtions and writings of the artists of the eighteenth ceatory ; which appear to constiLute the basis of all she knowledge possessed in the present day, and the principles of whose suhool were still followed in the construe.
tion of both walches and chronometers of the better sort. It was adsaitted that, by the aid of machinery, and the practical skill of the workmen, the separate pleces of clocks and watches are now produced in a high stale of perfection; but it was contended, that horology, as a science, had decliaed since the days of Houke, Bernouili, Sully, Grahaw. Harriaon, Camus, Mudge, Ellicot, the two Arnolds, Earnshaw, Le Roy, Berihoud, and olbers, whose aplendid talents and acientific attainmeats were all devoted to the elevation of the art of construciing time-keepers. Among these Dr. Hooke appears to have been the first to bring the force of acnte reasoning asd pare mechanical gesins to bear upon the practice of the art, add from bis experimente upon the pendulam and the applicetion of the balanoe-spring-which latter uaquestionably laid the foundation of the ohronometrio art-it is erident that he partially raised the veil which concealed the laws of the isochronism of the splral apring; as is demonstrated by his expression "wt tensio sic mis," -aded it ls extraordinary that 00 plain a hint was not immediacely seized on by thg able men who succeeded him.-A Araold appears to have been the first who really practically comproheaded the eubjeot ; and in the course of bis researches he lovented the cyliodrical eprisg and compensation-balanoe, which formed the commencement of a new ora In the science. The merit of the disoovery of the isorhronism in Frases was contested hy Le Roy and Berthoud. Bernoailli auticed, in a paper rend to the Acadénce in 1747, the fact of the loas of elastic force in balangeaprings, from exposure to heat; and the experimenta of Berthoud demos. strated that in paseing from 82° to 92° Fuhrenheit the loss per diem was 6 miautes 88 seconds.
The paper then considered generally the subject of the isochroaisen of the balance spring, eonaciating isochronism to be an inhereat property of the halance-spring, depending entirely upon the ratio of the spring's teosion foliowing the proportion of the arcs of inflection: a baianco-spring, therefore, bavlag the progression required by the lav of isochroaism will preserve that property, whether it be applied to a halance making quick or slow vibrationt. The clastic foree of balance-sprioge was considered as a constant, because the scilon is by a number of consecutive imputees follow. ing ench other in such rapid succession at to constitote an uninterrapted and continuous force. This is shown in considering the accelerated and retarded motion of the balasoe, when by following it through an entire are of vibration, it will be seen thut if the balance be moved over a givea number of degrees, the spring will be wound into a certain tension, aod has acquired a certuin elastic force due to the angle over which it is indected. This elastio force being theu transferred to the balance, it will be exerted in overcoming its inertia; and at the expiration of the first period will bave communicated a sligit motion to $1 t$. During the next period, Its state will be that of comparalive aod not absolute inertia (for It decreases as the motion increases), whence it follows that as the spring's force is exerted agaisat a body in motion instead of at rest, it will necessarily accelerste progrossively the motion the balance had proviously acquired, ontil the spriog arrives at the puint of quiescence, where, baving lost all its elesticity, is ceases further to urge the balance, and a dew relation of power and reaistacoo takes place. The apring's force being transferred to the balance, it assanes a new charncter, has acquired sufficient momentum to carry it lorougt the second half of the vibration, and to inflect the spring over an angle equal to that first passed over, and to give it the requisite tension to curnmeses a new vibration, -particularly as during the second half of the vibration the spring has so littie tension that its force refards but slightly the motion of the balance. After much acute reasoning upon this posilion, illastrated by numerical examples, the anthor proceeded to describe the helical and the Aut-coiled springs which are used in chronompters and watchen, and tho manner of regulating their action, so as to take advantage of the isochromition, instancing the advantages to be derived from the innate power poseaned by an icochronal-spring of resisting the infuences which cause a chaspe of rate-such as change of position, increased frictiun from dirt, or the viacidity of the oil at low temperature. This was illustrated by ad example of three balls falling in equal times through apaces regulated by the densities of the medium, vie., in vacuo, in air, and in water, wherein they traverse apeote equal to the squares of the times.-So, it was argued, it was with increased friction in wateh-work; for the olastic forces of the balance-spring beieg conatuntly proportional to the angle of inflection, whitever was the amons of friction, the law of iochronism remained unchanged; and frictiun wha only au adveutitions circumstance, which affects the extent of the arc of vibration, but not the time of its description.
May 4.-The diccussion upon the above paper wat continued. The vis. eddity of the oil, from ite nature and from exteral causea, and the bed effecth arising from it, wore dwelt upon at great length; bnt, it did not appeas, that either chemistry, or the practical experience of working watch-matern, had at yet either pointed out the true canset of viseldity, or onabled its effects to be sstivfactorily remedied. The relative values of various modes of trial α timoteepers were also diated upon. It was attempted to be showi, bot wes succesfully refuted, that a taper spring woold prodoce the anoe cflat at the isochronal arrangement, and that the taperiag could be effected by machinery. Among the extarnal infuenon affectiag the oil im time-keopern. was mentioned the circumstance of the watehes beloagiots to Geores Ill., which, being kept in drawer of codar wood, 100 n stopped, and it wat foned that the oil had changed into a substance resombling gras. attampas bat been made to substitute oil of sweet almonds for olive oil, on the race. mendation of a distingrisbed chemist, bat they were aignal fuilmste. The inemciency of the remontoir movement wed cleaty shown, dibougt in in.
madty was folly simitted. Throughont the discosaion the great merit of hored them provemeate seemed to be recognised, and it wat generally dowalt a spirit of epiriciom has been allowed to atop the profreas of so carsifal a science as that of the construction of timekeepern. It was, howwea, to , be boped that, by the facility afforded by the lastitution of Civil Sagiacers of making known ingenioas and recogaised improvements, more particalar accounts of what was done would be given to the world, and the serta of the scientific constructort of that iedispentible isatrument, the drosometer, woald become generally known.
May 11.-The paper reid was "An Aceoment of the Progroenive Improvement in Sunderland Harbour and the River Wear," by Mr. J. Musray.
The menoir commenced with as account of the conl trade, licensea having man granted by King Heary IIL., in 1239, "to the good men of Newceatle, o dif coals and stones in the common soll of the town and outside the nalla." In 1384 permission was giren to export the prodace of the minet. Drieg the civil wan, in 1644, the export from Suoderland wat greatly inmeund, as no coule were permitted to bo hrought from Newcatle to London, macount of that town being a atronghold of the royalist party. Between 1704 and 1711, the average annual export had reached 174,264 tons; and tut of the last year, 1846, whi $1,500,000$ tons. The ceasas, in 1802, gave 19,100 inhabitants, whilet the town at present conceins apwards of 60,000

The management and improvement of the River Wear was natoraly an object of great solicitude, at its entrance was much exponed. In 1669 Charlet 1. grasted a patent to R. Andrews, to build a pier, and orect light-bouses, and forbade the casting of ballast, \&ec., into the river. An act was obtained in 1717, appointing river commissioners for the conservancy of the barbour, den giving power to raise money by tonage daty on ships entering the port. The joristiction of the commissioners is limited by the lant sets to an exteot of aboot 11 miles, between Biddock Pord, above the town, and to a distance oet to rea of a depth of five fathoms at low water. Little was done to im. prove the river until 1719; at that time the entranee was very intricate, and the two main channels were both very shallow. The south pier what com. menced in 1723, for the purpose of directing the fall force of the current guiast the bar. Bualeigh and Thompson's map, pablished in 1737, shows the bad atate at that period. Labelye (the eagineer of Wastmioster-bridge) me culled apon for bit adrice in 1748. He pointed out the principal cantes The then atate of the river, and sugreated the contraction of the chanoel at the worat places, so as to increace the seouring power of the stream, deepcaing the Still by manal labour, and by dredging eaginet, and conatructing sorth pier, to as to leave a distance of 200 yards between the point of that und the sooth pier. He stated, bowever, tbat "afier all, as no man could loree the consequences of erecting the north pier, if it caused a greater obtruetion than it removed, it most be uabuilt and taken up." He recom. meaded aleo tbrowing all the force of the atream into one channel, and cutting sway the bar by bellant engines, and cantioned the commimioners againat owe permitting slaices or locks to be placed upon their river.
Mt. Vincent, of Scarborough, was appointed engineer to the troat in 1752. Mr. Eobin arceeded him in 1755, and noder them the sonth channel was to aset improved that the north chaunel was warped up with sand. Mr. Smitb, © Sbelibeld, proposed sundry forther improvements in 1758. Mr. Wooler tho reported in 1767 on Mr. Robin's plan of building moles on the north und conth rocke. The work wai commenced, and was abandoned for reasons which do not appear. Mr. R. Shout was appointed in 1779; and in 1780, 4. 8meator's advice was cought. He recommended the prolongation of the pien on Mr. Shout's plans. The consequence of this constant extension of the wooth pier seems to have been the warping op of and into the harbour's woulh. Two timber jetties were, therefore, suggested by Mr. Shout in 1786, and were the origin of the present north pier. The effects produced were very beneficial, at in a few months a deep and upacions chanael was formed by the rush of the watern. The timber work was then cased with none, and the work was continoed by Mr. Pickernell, who succeeded Mr. Shoot in 1795 . He alco erected the lighe. house at the point of the pier. The wooth pier wat also extended. Mr. R. Dodd also reported on the works, and reommended chiefly the formation of a wet dock on the prement Potato Gurtb. Mr. M. Shout became the engineer in 1804 , and be rednced somes of the old works, whilet he extended the north pier. Mr. Jemop made a roport in 1807, recommending fortber extension of the nouth pier, the redac. tion of the width of the entrance to 300 feet, and the conatruction of some mbenhment walls at various pointo to incresse the volocity of the atream, ad at tbe same time form a scoaring basin. Mr. Gilea made a sarvoy mader do directions of Mr. Renaie, which was completed in 1823, under Sir J. Meanie. This plan is poblisbed, and wat exhibited. In 1824, Mr. Rennie mevmended certina linee of extenaion of the pier, and the reconatruction of mane parts of the workn, with sounder materiala, with other precentionary semarres calcolated to improve the port, come of whieb were carried into clies by Mr. Milton. Mr. J. Marray ancceeded Mr. Milton, and carried on the deaigno od Mr. Rennie and Sir J. Rennie, with great solidity, oxing the dring-bell for part of the foundations. The north pier was thos extended to t loal leagth of 1770 foot. He also removed, in an entire mane, the lighthome to the extremity of the inteoded pies, an accoant of which has boen Aromy asberittod to the Inatiotion. In 1843, the wouth pler being in a reines athte, wat partially removed aod reballt, is a direction better calcmwin to browk the swell of the we. The plays eribibited the chenget that
had taken plece in the entuary, improving the chanael, end givias, at loant; 4 feet of water over the ber at low wator of apring tidea. It is ourrow and ohelving, with deep water on each side. Formerly the large shlpatook in pert of their cargoes beyond the bar, but now they all load within it, even when drawing 15 to 18 feet, and as many as a bundred shipe have entered and departed from the harboar in one tide. A longitudinal section of the river showed some remarkable ebagges in the bed, and correaponding im. provementa in the heights of the tide, aflording, at the same time, increased facility for the drainage of the conotry around. Dredging has been carried on to a great extent, and from 100,000 to 150,000 tons have been raicod anoually.
The want of floating docks bat been much felt, and several plana have been projected for them by Mesars. Dodd, Jessop, Stevenson (of Edinburgh), Gilet, Brunel, G. Renaie, Walker, and G. Marray, bat none bave jet been execnted. A amall dock, of about six acres in extent, was finished in 1838. A conth dock, with tide basins, is now in course of construction, under the direction of Mr. R. Stephenson and Mr. Marray, and by its means it is anticipated that Sunderland will become the firt port, at to depth of water at ita entrance, between the Humber and the Prith of Porth.

May 18.-"An Aecomnt of the Sarah Sandi, and other Iron Veselt, with direct-acting Auriliary.engtmee, and Screso-propellore," by J. Grantiane, of Liverpool.

The object of the paper was to show, that a propeller might be construeted of such dimessions that the number of revolutions it would require to make in order to obtajo a high velocity would not much exceed that of the ordianty paddle-wheel, and that hence the usual marine condessing engine might be applied direct to the propeller-shaft, without the intervention of a secondary motion. It appeared from the otatementa in the paper that thic opinion was found to be correct, end that Wooderoft's expanding pitch serew-propeller was the best form that had hitherto been employed. in a paper read to the Institution, npwards of three geare since, Mr. Grantham gave his views on this subject, and several vessels had been since built-the reaults of the triale of which were commonicated to the meeting. The principal of thete were the Emarald sid Diamond, three-masted steamert, of 300 tons, and 60 -horne power ; the Neutilus, of the same dimensions ; the datelope, of 600 tona, and 100 .horte power; and the Sarah Sands, of 1000 tons, and 180 -horwe power. Drawingt of thene vescls were exbibited to the meeting. The capabilities and performance of these vesuels were described in the paper, bat particolar notice wat taken of the lant-ammed veasel, which had performed a most succensful voyage to New York daring bad weather and adverue winde. The pasages made by the ordinary New York linerh, which were out at the same tive, were very long, averaging 48 days each, and the Boston and Liverpool steamera were much longer than naual on their panage. The Saral Sands ased ber ateam aboat 17 days, and aniled the remainder, making ber voyage in 20 daye 10 hours. On her arrival she had abont enough fuel romaining for four days' steaming. The paper did not enter minatoly into the particulers of the screw ituelf, at it was considered that too much attention had been given to that branch of the subject to the exclusion of the consideration of the plans for working it, which, after all, had been the atumblingblock to the general adoption of the system. It was necessary with tha screw, the theory of which, an a propeller, was so little underatood, to proceed with experiments perseveringly in one direction, at variations in the resalts were frequently attributed to causes which really did not exiat. After describing several interesting details, the paper concluded by expreasing a deaire that engineers should examine the drawings of the aystem laid before the meeting, and endeavoar to add to the stock of information already obthined.

After the paper wha read, Mi. Grantham added some facts which he had receatly gatbered, and which atrongly confirmed what had been stated. The Diamend had recently made a very rapid pacage to Madeira, deeply laden: bot, during the whole pasage, the engines maintained a very moderate speed, and quite removed the impremion that under such circumatances they would run too fast from their being conneeted directly to the screw.

An acoount of the last succeafol voyage outwarda of the Sarai Sands was also given, and it appeared that, in spite of most severe gales, which bad driven back almost all other vessela, her pasage bad been made in the most satiafactory manner. In the discuasion which followed, weveral engineers of emloence exprescod themeives much pleased with the factu bronght forwand in the paper, and perfectly concorred with the views put fortb. The principle of the following carrent of the ship, which had a material infueace in inereasing the efficiency of the serev, was alluded to, and a conviction was exprewed that the cerew nould eventully supersede all other means of propalling veacels on loag voyares.

An acoonnt was given aliso of the anxiliary acrewneteamers that ply betwee London and Rotterdem, and some intereating facto were given of the power which these veseels possessed of working to wind ward in bad weatber. The subject was closed by a discuavion upon several pointa that had been started, relative to the aize of the screm, the mode of dicengaging it, and the protpecte which were hold out of the fial succese of the principle.

INETITUTION OF MBCEANICAL ENGNEERS AT BIRMTNGHAM.
On Wednasky, April 28, a numuroes moding of the monber sad frionds Of the ebove Inetitution wai held at the Quene's Hotel, Birminghers, fite the
 thas from the members.

Is the dsence of George siephersom, Reqn, President, Mr. M'Connall wes called to the chair, and the minuten of the hat mecting beviag been read by the Secretary (Mr. Archibald Slate),

The Chairman rone and mid, the prosent meetion was ane of the four ardinass meetiags provided by the rules of the Inctitntion, and required to bo hald on the fourth Wodneaday in April. Since the last reeting, the Conncit had met on neveral occasiose, and after disensing various sabjectes of interest to the Inatitation, they invited the Loadon and Mapcheater branches of the body to meet them, consider their proceedinge, and canfirm than if approved 4. The genkemen from Manchenter accordingly attended a meoting of the Conncil, on the 21 at April, confirmed the past minntes of Conncil, and anggented some further improvements in the management of the Institution. The bealoess of the present meeting wes to confrm the mfartes of the that goneral meeting, to recoive aew members and communications, and convult at to future operations; and bere, perbaps, before they proceeded further, be night be allowed to any he had a vary agreeable piece of intelligence to cocamucicato, which he was cure would be very gratefully recoived by the geeting. It was the anonncement of a banduome donation of 100L to the Inatitution, by their worthy and higbly-antecmed Preaident, to whom ho begged lame to propose a vote of thanks for thin additional mark of his antimetion © the Inetitution, which was manimonaly asented to.

The Chairman stated that the Conncil was of opinion that the members onght at ones to proceed to work and arpply information on aseful rubjecte; and, in ordor make a commeneement, they had formarded the following tuyFeationa to each member of the iastitution :-
"1. The best form of railway arles and wheels
"1. The bent deacription of eagine and mill for mananturing tron.
"8. The best form of barker mill or tarbine.
"4. The beat form of lograge-angine for marrow gange.
"15. The moat ceomomical atationary stenm-eagine, with coel at 6m, 18n, and 24s per ton, taken in a commerciel point of view.
${ }^{4}$ a. The beat form of air-pump valves.
" 7. The beat ligh-presure marine boiler.
${ }^{4}$ 8. Tha beat description of proping eagive for the thict coed dixtriet of 8tatiordichire.
"9. The 10 w of water through araight maine and exres."
The follewing papern were then read:-

1. "Apparatiat to be applided to Raidway Carricges for bementing the dengrowe effacts of Collinions on Reinocya." By Mr. B. Cersesmine.

This method has been described in the Journal for September last, p. 283, ft simply consists in applying beneath all the length of the body of each passenger and otber carriage of every train an intexible nayielding rod, which in termed a "safety-buffer;" of wronght iron, and a tube plugged with wood, supported in saitable bearing-socketr beneath the framework of the carriage, at the midale of the breadth thereof, and left loose in those socketh. The safety-buffer terminaten at each end with an enlarged head like those of ordinary boffera, and the heads of the afety-bufier of each carrige corre. spond to the lize heads of the anfety-buffer of the preceding and following carriagee. When the uanal coapling links are acrewed up to bring the ordinery huffer heads of the several carriages into elastic contact one with another, at is usal, there will be a vacant space between the safety-bufier hoad of each carriage and that of the next edjecent carriage, varytay from three to six inchet, more or lem, wecording to circomstances, and the safety1 rufter will not hire any effect or oparation in the ordinary courte of travelling, bat only in ease of a collision. The antety-baffers in the van, at the hiader end of the traim, and in the tender at the front end, are not to extend throughoat the whote length of thow carriages, and need not have anj eadway motion, but may be firmiy fastoned to the framework of thone carriagen, ar they moy be appliad egcinat etrong elliptical aprings, placed and to end for espending some of the force of the coltiaion. The van is to be bower than tie pameager and otber carriagen, is order that ite centre of gravity maty be geactr to the leval of the riis. The van at the hinder end of the train in to have it ordhary betwe with eas yielding spriags, which, with the mane serce apphied to thes, will allow thove butiort to move through a meeh greater apmes in reapeet to the van then the ordiagry buffen of the onrriggen of the train, so that, in cace of a collision from behind, the ordinary brafiem of the van being so jialding, they will mot aet with arach torce getimet the carrepponding buffors of the himdrant cerringe of the train.

Romarks.-Mr. W. Rosinson, of London, said, it night be adranced egrinat the proposed improvement, that every rod being six faches hest in begth than the side buriter, would lose sis inches fo every carriage; consequently, mupposing a trinu to be composed of, ery 30 carriages, it would re. quire 25 feet for the stroke of the lat buffer. It might aleo be objected that the rod would double up; four or six inches in diameter wat not sufficient to take the amount of force imparted by the collision. He would eatimate that it would require 13 feet dimeter to oppose the force of the shock imparted to is

 through is to the Biades van, jett as in the cave of a mamber of billimed ball pheed in a row. When the fret was etroek, the law wat drives away with
 feetly at reat

4 Member regguted that world requin 800 toas to deabil up a mod four inches in dimpeter.

Mr. Caysbring-I take it at that eulculation, med my, eonsequenty, wor poaing the momenton of the collision to be greater than that, it wes quite evideat that 300 tom muat be taken from the amonnt of collision imparted to the train and expended upon the van bebiad the train. As the strole of the cide bufter was 13 inches, it was quite clear six inchen wight be allowed for the atroke of the centre buffer without any injury to the penenger ens riage; consequenty, if 25 feet were lost in the centre betiter in a tuin of 50 carriages, 84 feet would be gained by the stroke of the side boffor, leaving : surphos of 29 feet.
2. "Discomerting Conpling."-Mr. Jonmson, locomotive superintendent of the Manchester and Leads Britway, produced a model of an inveation for dieconnecting the carriaget from the emgive, in the exent of an obstraction on the line, or any other eccident which would canse the engine to ron of the rails, by a self-acting disconnecting coupling chain, which he proposed to apply between the tender and the luggage van. It wat exceedingly simple and inexpanive, and might be applied to any train with a alfght alteration of the premens conpling crook of the luggage van or carriaget. In cmee the engine or tender got off the rails from suy cause whatever, regardleas of the apeed, the eagine or tender would be immedintely disengaged from the truis, allowing the latter to remain on the line perfectly uninjared, end thereby mecomplishing the object for which it was intended. He had had a working model twelve months, and during that time tried it repeatedty, and cond now speak confidently of its merits.
Mr. Mindherow, having inspected the model, aid he beliaved a petent had been taken out some years ago for a similar invention. He thought the plas a vary good one; but he wan under the impremion that at the time Dr. Charch's erriage wis before the public, it was teid that such an invention had been petented.

Mr. Bryez whe almo of opivion that the iden or priveiple of the invention wen set new, as it had been propoed by Mr. Watcon Buck, engineer, on the opmoing of the Muschenter and Birminghara Rilway.

Mr. Ramgeotroy, of the Lomdon and Morth.Wenteo Reivery, feared tha violent oncillation of the cerriage woald prodece the sarne result, He had seet crringta vibrite vey mooh Then mot suficieathy tight
3. "Raihoay Ayles."-Mr. H. Besmemerex, menufacturer, Lendom, prodecol a model of a railway axle, to do away with the pecenaity of covering the tive, which the inventor atated caused great tear and wear of the rails and tine and also a tendency in the carriagea to an oncillatiog or vibratory metion when running on a straight line. Mr. B. stated that the meam by whiteh be proposed to effect his object was by cattiog the axlo in two fin the oemere, and holding it rigid and in its place by a lomg coophing, with conecentreat grooves, so that each wheel, and the end of the asho, andd revolve indepeadently of the other.

Mr. Berme anid an invention for tecomplistring the nemo objoct had boens proposed, and applied before, and in his opinion one more simpte hal been tried. He had aeen the same iden carried out in two difterent way. Be gneationed the denirableness of having anch an inveltion at ath.
4. "Description of a mew Raiheay Breat," bs Mr. P. Kwrent, wis reed, which requires a drawiss to make it understood.

May 18.-Mr. J. E. M4ConnesL, in the Chair.
"On the wer of the Fam-blate for mannfactwing phrpoers." By Mr. Becene, the following papers were read:-

1. This puper described a series of experimests on the fan-blast, as ep plied to manefaturing parpowes. They ware made for the perpone of guiding the coostrection of the fan, so that the greatenk quastily of ar conil be accemalated with the lasat posaibie expenditare of power. Tbe originat applieation of the fas was for the purpose of saparatiog and dressing eeedes the speed and deasity of the air beiog limiled to manual power. But sisce their application to sonilheries and foandries, stean and ouber reotive power have beet nsed, thair apeed 50 increased that the deasity of the air ruoges from 8 on to 18 on por square inch. Various forms of fass huve been made, but the one generally preferred is called as eccentric, with three or siz bleden or arms radiating from the centre. This indispensetule machioe is owe that has ebridged much lime and labour; the uniform strean of air mataits of no comparicea with the puffing blants of the bellows or cylinder. The saith cas heat his wark with presision, proportion the sixe of his mackle tayeres to suit bis work, without deteriorating the inlensity of the blast, and in overe inatagces it enables him to heat one piece of work while ahaping apother, the pressure of the blast rauging from 4 oz . lo $\$ \mathrm{as}$, per equare inch, with noxale toyerea 18 inch dimmeter; but in a well regulated amithy, the nozste is Gitted with nose pipes as ferrules, varying frum 1 to 3 in. diameter, to suit the quantily of blat required. An eccentric fan 4 feet diancter, the blades of which are 10 inches wide by 14 inches luog, sad ranming 870 revolution per midute, will supply air at a deasity of 4 os per square ioch, to 40 tuyeres of $1 f$ inch dimaseter each, without any falthes
of in deasity. In the firet six experiments no dicoharge of air takes place, the velocity of the tam merdy trenpigg the air et a faced terbity or presance per square inch due to that volocity. The remaining 26 experinuents show the fan discharging air. An inopection of the table will show that, under varioas conditions of velooity of the tips of the fas, thet doumity of the air, and theoretioal quantity of the air disebaryed, varies, but not in a direct zastion Tha best remults are abtained when the velocity of the tips of vanes coincide with the relocity, and 9.10 ths of the relocity a body would acguire by falling freely the beight of a bomogenons column of air due to its deasity. This is what we have called the theoretical velocity; or, In other words, the greatent quantity of air is discharged by the fan with the least oxpenditure of power when the tips of the vanes move at these veloctiles.

In a recent set of experiments, the iolet openings in the sides of the fanchest were contracted to 12 inches, and 6 inches diameter-the origianal diameter being 171 inches. The results obtained were, that with the 18 inch openings, the power expended was $2 \$$ to 1 compared to the openings of $17 \frac{1}{\text { in }}$ inchen, the velocity of fan, the density of air, and the cuble discharge being the same. With the 6 ioch opening the same results followed as with the 12 ipeh, only the density of air decreased ope-quarter. These experiments show that the iolet openiogs must be of sofficient sire, that the nir may have a free end oninterrupted action in its paccage to the blades; Sor if wo at all impede this action, we do so at the expense of power. Hero follows a copy of the tables of 82 experiments, ather which the paper gives the dimensions of fan employed in these experiments-namely, 8 f. 107 in. til dreter; widith of the rape, 104 indues; end the leagth, 14 inches.
 placed at an angle of σ° to the plane of the dimmoter. The iolet opeminge en the side of the famebast are 181 linches dianotor. The ootlot opening or diacharge peseape is 18 inches wide and 19 inohes deep; the apace bosween the tips of the blades end the obont insemaiog from two-eighthe of e- inch on the exil pipe, to 8 isobes at the betort, in e perpendicolar line with the centre.

Mr. Buckle caid, that he had fornd that the ane of the dimobarge and the denaity of the air correnpoedial very mearly. His object bad been to how the qumpity of the air discharged at a oertain dassity, and the power in required to efect that reanlt.
2. Another peper on the strice subjeot, from Mr. Jonme of the Bridgowiter Poundy, Bridge witer, wes also read.

Mr. Jowss obwervee_4 There is, perbept, mo potut upoe which meehanion have bad a greater variety of opinion than thet of the eppliontion of the fan for manufactaring and other purposes; nor to thore apy otber subgoet whioh has cunsed more diappointroext ; and I em decintedify of optation that this has been primetpally oconstoned by coontratting the air papasges
 - Alweys bothor than opinjons; and in oftering the following statement, I nercis sive the reault of six monthe' constant work. Two points of inportance in the constraction of fans are, an exact balance of the fan upon
 so to to avoid sither tight atrapa, or any alipping ap on the palloys. With this I forward yon a drawing of the fans I have constructed. Yoa mill perceire that I bave the apenings unasually large, but the results havo Ially jontified the proportions. With these two fans we heve been melting 80 to 60 toos of iron per day, at the rate of 5 to B tons par hour, with a comenmption of aoke of 208 lb . to the ton of iron; in addition to whiah there are apwards of 50 smiths' fires blown al the same time. The power required is about eight horses, the motion being taken from a 12 home power epgipe by means of a T-in. gutta percha belt, the shaft running at Ts revolutions per minute : the speed of the fan is about 780. They ame driven by a poltey on each end of the spindle. This I think much better than a single strap. The openings at the side of the tans are $9 \mathbf{A} .4 \mathrm{in}$. in diameter, and the onllets are 24 inches by 12 inches. The passage from the faco is $2^{\prime} g^{\prime \prime}$ by $1^{\prime} g^{\prime}$, leading to a resorvoir under the capola $18^{\prime} 0^{\prime \prime}$ by $7^{\prime} 0^{\prime \prime}$ by $4^{\prime} 0^{\prime \prime}$ deep, from which we have t wo tuyeres 6 inches in diameter. The pressare of blast is about $b, \frac{1}{2}$ oz. per inch. The anly thing to which I wish to call your attention is the increased size of the air pasaages ; and When we consider the large quantity of iron melted, and the emall propartion of coke used, the rasult is very satisfactory."

Mr. Buckle remarked, that his paper had been drawn up for the parpose of recording a course of experimenta mado during a series of years at bis leisure, and which had been executed with the atmost care. The results were important to thoee who were about to adopt the fan, as teaching them that its size sust pot be a maller of guenc-work. When he himself had a fan made, all the advice he coold obtain was, "Make it big enough." The parties who said so traew nothing about it. Had he been then in possession of the resalts of his subsequent esperiments, he should hevo had his fan made only half its present size. He now fonnd that all required was, that the tips of the fan ebould revolve with 9 -10ths of the theoratical velocity. In driving the fan at that speed they would obtain the largest portion of blast at the least expenditure of power. By driving then at a greater volocity, the power wras absorbed whthout producing a sremer quantity of blast.

Br. Cowpen whed to know if the horne-power mertioned by Mr. Sowe was todicated or commercial horse-powert F we it the same as Nat memt by Mr. Buckle?-Mr. Bocrle eaid, be had ancertained the powne by a dypanometer, having a apiral apring and a pistom attiched.
 whe the fan, he hat deducted that amocmi trom the amoent abown th
overy exparimet. The angine wes sominally a 14 heree pomer andin. Ho had found that by a encoession of fana, the frat trasmitting tho blat to the second, and so on, he obtained by the third or fourth a pressure of 21 lbs. on the square inch.

Alderman Gracs remarked, that this plan wha in pee at a formace fitted op some three or four monthe sinoe in Derbyshire, where they proved that they could oltate a prosere of $2 \frac{1}{4}$ ba. an the aquare ipoth, and that they conld make better iron, and in a larger quantity, than by the old plan.Mr. Bockus had not been previoully aware that the plan had beep tried, but be had ascertained that uniformity of the discharge was greater thas that of the blowing cylinder, and the quality of the iron would be betler,

Mr. Hendersons said, that in the works in Scotland with which he was oonsected, they had a fan so badly constructed that they were abort to beve it altered, which, bevertheless, turned oot 820 to 230 tone of casting per woek. They had found that they oonld get something like doutfe issdicated power out of the ordivary Fairbairn's engine, compared with whit it way sold for. He should like to knew the proper form of the fan, the proper lenth of pipe, and the stze of the pipe whlot condocted the blint from the tals to che place where they wished to use it. In Booflend they were morting a chaft 800 foat long ; and be cheald Fike to know whether they coald effect their objeot by laying down uadergroond piping, fnetomed of having a shate to conduct the power to wear the place where they wiebed to wait. They had ealarged the tayere pipe, haviog acoortnined that, in malting ineo, the dendity of the air was not co tnaportant as the quantity, and that it was necesary that the air should be sodmitted in large quand tien-Alderman Geachi knew of one furnace where the onpola whe 150 foet frem the blast-Mr. H. Smity meted some oxperiments, which wont to show, as the Chairmen rerarked, that, potting tho case in an extremo point of view, the further the blat whis from the fre the better. She discuscion was then adfearned, to atford ap opportunity for further enpeni. mants.
3. "Hented Atr." The nezt paper was from Mr. Wilkiwson, who, the Ohairman observed, had beet so bold as to try a totally new plan for oceoromining fuel, by introducing hatted air into the botler of a etecu-axgrime, ansong the stoam, by which the iaventor estimated that he effected a saving of $\$ 0$ to 26 per cont. in fael. They had had stemen and heated air eeparataly, but this was the fret attempt to combine them. The following are extracis froen the paper:-

4 It in an onalterable law of Natare that to prodnce a given quantity of stoam, a given quantity of beat must be imparted to the water, and that in proportion to the stom required. Therefore, nador the most advantageons circmmatances, to produce an effeat, a certain emonnt of combuntion mant peoeenarily be expended. Now I lind, from repoated experiments, thets Water alone han the mont economic agent to work with; and, by way of eluoldeting this faot, I will explain one, and only one, though not the mont enoceneful of ery experiments, and this whe made on a alx-borse power highoprecoure ongive, working in the maoufictory of Mr. J. Burman, Comberiandstreok, Onrtain-road, London. The prinolple eoosinte in the injeotion of a itreem of air, beated to the hight temperctare of 800 , the the arman in the bollex-by which mons the tomperature, aed conerqueatly, the exparrine force of the ateam, was lecreaced. To effect this objeot, ma iron pipe or tube was bent in a serpentine form, so as te precent a groet maxeat of surface, and placed ander the boiker, there to repoive a red beat from the glowios part of the fre, after it had paceed the boidse oo its coerwe to the tae. One and of thie rerefyios chamber was conneoted with min jeoting air-purp, proportioned to the nine of the cylinder of the engine. The other eod wis ingorted by a continualion of the sube above the surfine of the walar into the atoan in the boilor. The whote oapmaity of the tribe was greater thap the rolome of compremed air which it recaived from eath etroke of the piaton of the pamp, so that the air did not enter the boiler math it had acquired the full beat or nearly 60 of the red-hot inbe through which it pasced. At every atroke of the piston the erme guantity of cold air wres injected into the tuba. That part of the air which was neat to the panep wan forced into a hottor plaon, and the air, which previonty ocoupled that hutter plane, was forsed on to a still holter one, and 20 on, until the forthermoat and hotteat of all was discharged into the steam in the buine. The pressure of air in the tube, striatly speaking, exceeded that of the steam in the boiler, for it was an exceasive pressure that overcame the renistndce in the boller. That, at the commencement of each stroke the alr is the oylinder of the pamp was in equilibrivm with the external air, and ooly opposed a reaintunce as it became oompremed, and gredually fooreasod its compressed force ontil it arrived at its maximum, which was the potet of equilibriun with the compremed air in the hot tube and the resistance of the ateam. Taking all things into soeonnt, the whole amount of power expeaded in working the pump was aboet 5 per eent., or 19ath of the foroo which auted on the stemen oylinder of the eagteo, and the reault of the ex. periment showed that the appliemion of the heated air enused a redection in the quastity of coal consumed of from 20 to 80 per cent., and this Frat contimped for sovenal weaks, the eogise of course wortheg al lis naal promatres

The Chairian bud had his watrontion ollied to the mbjeot by Mr. R. gnphenson, who wisted him to try it in the loocmotives on the Jinc, but bo had profored to wait till be had asoortaned whethar the principle was conomical, aed whelhor the reoalte coutd be dopended on Fith a stations.

aldered the eugine out of order, be would not express any opinion apon the value of the invention.

ROYAL INSTITUTB OP BRITISH ARCHITBCTS.

May 17.-Rarl de Gery, Preoident, in the Chair.

The President preeented to J. W. Papworth, Fellow, the Medal of the In. stitute for his Raaky ${ }^{\omega} \mathrm{On}$ the Adaptation and Moditication of the Orders of the Greeks by the Romass and Moderns;" and to James Bell, the Medal of Merit for his Resey on the same aubject.

The Ilev. Prof. Winuse read a paper "On the Swecespive Cometruction and Fintory of the Church of the Holy Sepulelere at Jermalem, from Conitontina dowmoords." After alloding generally to the holy pleces visited by the pitgrims and grouped together mithin the walls of the church, and the buildingu immediately connected with it, he tben proceeded to give a briof bistory of the charch. Constantine raised structures to preserve the memory of three epote,-the birth-place of the Saviour, the scene of the reanerection, and that of the sacention. The second, or chnrch in question, remained till the invasion of the Persians in 614, when it was deatroyed. It wis re-erected by Modentus, s00n after, but was mach injured, thongh not detroyed, in 637, by the Mohammedacs. The crasaders made considerable additions to it, and so it continned till 1808, when it was burnt down, and afterward rebuilt in rach a manner as to diaguise its real character.

The problem was, to diseover what Constantine's architecta did ; and to obtain tyowledge of this it was necessary to go to docnmentary evidence. The writings of the pilgrims, one an early as 333, were of the utmont importance, and had been carefally examined by him. A minute plan of the present charch, mado by Mr. Scoles, he had found of great service. Firat describing the church as left by the erneaden, he waid he considered the tomb not to be a built structure, as often supposed, but a genuiae rock sepulchre, pared down and decorated externally; and he ahowed the probability of this, by tracing the line of portions of the rock jet remaining at the weat end of the circular building. Abont this the ronnd church was bailt in the late Greek style, like the church of St. Sophia, and others. The appendage towards the east, added hy the crusaders, was Romaneaque, resembling many early buildinge in Barope, and similar to thone we call Norman. It had a semi-circular apse at the enst end, with an ainle round it, and radiating chapels.

The original building, eccording to the profeavor's viewn, consisted of an enclosare of colnmas, with an apoidel termination towarda the weat (affording the foundation for half the circular building afterwards erected), haring at the opponite extremity a basilica, similar in plan to those of St. Peter and St. Paul. To learn what the crusadera added and altered, it was only necesary to look to William of Tyre, who is very clear, and shows how the round church and court towards the east, with other macred apots, anch as the site Where the wood of the croas was discovered, were converted by them into a medisvel chorch of their own fashion. In doing this they exhibited much cleverneas. It shonid be remembered, he said, that the Knights Hospitallers had the custody of the sepulchre, not the Templars; the latter had charge of the site of Solomon's Temple.

For an account of the church raised by Conntantive, he of course ment to Busebius, and gave a tranalation of some pasages is that anthor, who wat more an encomiast than an architectural critic, and must, therefore, be listened to sceptically. When Constantine proposed to commence a house of prayer on this site, he fonnd there a Temple of Venus; and on palling this down, discovered the cave. Eusehios says, that the walls of the basilica were coated with marbles, the roof covered with lead, and the inner ceiling gilded. He describes a propylenm to the east; and the lecturer said nomangate had recently been discovered there, wbich he had little doubt was the very propyleum to referred to. In this beulica the apee wes at the weat end,-it was not till afterwards that the altar was placed at the east end of ascred buildingt. The cave then stood in the open air, sorrounded by porticoes, wo we have already said; and a passage in a sermon by St. Cyril, preached in this charch, bears ont this opinion. The professor concluded by soliciting information from any who might viait the spot.

May 3._W. Trre, Eeg., V.P., in the Chair.
The anaual general meeting of the Iastitute was held this eveaing, to receive the report of the Council ou the state of the property and affairs of the lastitate, and to elect officers for the ensuing year.
The roport thowed that the finances were in a very satisfactory condition. Relative to Mr. Weale's proposal to publish annnally a volume illastrative of the works of the members, the Council atated, that, as the plea required them to guarantee a aupply of matter for the valume by the members, which they had not power to compel, it was necesarily doalined.
The Cbairman alluded to the dificulty with which becoming papers for the evening Were obtained by the secretaries, and called on the members to aford them that assistance which they ought to expeot.

The following geatlemen wore elected Uficers for the ensoing jear : President, Earl do Grey; Vice-presidents, Menars. 8. Angell, A. Poynter, and O. Fowlor; Comath, Messra. G. Alezander, H. Ashton, C. Berry, D. Brandon, R. D. Chantrell, T. L. Donaldson, J. B. Gardiner, E. I'Amson, Q. Pownall, and John Woolley; hom avet, Menars, Bailey and Scholes; forsign cee., Mr. Donaldeon.

ROYAL SCOTTISH SOCLBTY OF ABTB.

April 26.-Geozez Tart, Esq. V.P., in the Chair.
The following commuaications were made:-

1. Description of "a Night Telegruph by Colenred Lights," to be used on Railways, Ferries, and in Military operations, \&o. By J. Btewamt Hepbonen, Eeq.

This telegraph consisty in the employment of varions combinations of the only two colours, red and wehite, which are distinctly visible at cossiderable distances. This is effected by the ase of a lamp, inclosed in a hexagoal screen, which revolven borizontally on pivots; four of the compartments being opaque, and two furnished with leases, one red, the other colourlens. By the turning of the screen the light cas either be manked or shown of a rod or wbite colonr as the particular combination may require. Three snch lamps art hang on pirots on an arm or beam 15 or 20 feet in leogth, turning vertically on its contre on an upright poat, and made to assume four defivite positions, horizontal, vertical, and diagonal, rising from the left or falling from the left. The different positions of this arm, together with the varietles in colour and order given to the lights by this construction of the lampe, afford at least fifty distinct combinations, to which numbers, or the letters of the alphabet, and arbitrary significations adapted to the particular uses of the telegraph, may be assigned.
2. Description of "a new methed of acercoming an Incline of 1 foot in 12, wilh a new Lacomotice Reversing Steam Eagine." By Mr. Daniel Erskine.
In addition to the small wheels keyed on the axle ontside of the usoal large wheels of looomotives, and connected by connecting rods, Mr. Erskine has a toothed ploion on each side of the ongine, dropping down bee twist the flange of the small wheels and the large wheels, which, oo two Iocomotive coming to ateep incline, say 1 foot in 12, works into gtrong pine or bolts, fixed on the inside of the raisod reil. The oagine and carriages all the while running on the small wheels, by which their whole weight is borne, and the large wheels acting an fy-wheels, leaving the toothed pinions nothing to do but to work in gear with the pins of bolts, thereby effectually preventing slippiog. It was shown, by a beantiful working locomotive of about 9 lb . Wrigbt, made by Mr. Erakine, and 6tted with his reversing pivot valve, that by this means it easily ascended an incline of 1 foot in 10 ; and on an inclive of 1 in 16 , the amall wheels themselves, withont the toothed pinion, easily accompliabed the asceat; Whereas the engine conld not attempt the ascent with its ordinary larger wheels. It was stated that this is not the first time a rack and pinion him been proposed on the inclines of railways, but that it has never been proposed in the way now done by Mr. Erakine, by whose method the powrar is so vastly increased by being bronght to act no mear to the centre of the wheel.
8. Description of a proposed "Plan for arreating the progress of Five in Dwelling-Houses, Factorics, and other Buildings, by meane of FionShields." By Mr. Alpred Canning, of London.
The invention consiste in the adaptation of sheet-iron, copper, or other motallic cases, fillod with water, and interposed between a fire and sutroanding objecte, in onder not only to prevent such objects, howover itsAnmmable, from ignition, but aleo to shut out dranghts of air from feeding a fire. For general purposes, Mr. Canuing proposes the use, priseipally, of three modified forms of cases or shiolds, vis., Nos. 1, 2, and 8. No. I, a 'sheet-iron, copper, or other metal, case or shntter, abont 6 feet long, 8 feet wide, and 2 inches thick, open at ove end, intonded to be plaoed, with the open end upwards, ageinat the door or window of a room on fire, or a anccession of such shields might be set up aqninat partitions ieaide of adjoiniog rooms, and then Gilled with water by buckets, \&ec., or by direet ing the nozsle of a fire-engine hose over the open ends of the shielda. Such shields may be secured by proper means to doors and elevated wisdows of buildings opposite to and contiguous to a fire. Bhields Noa, 8 and 8 are cases of similar dimensions to No. 1, but adapted oither to protect firemen and engines in approaching a fire, or to be laid tat orer the floors of rooms immediately above those on fire, to prevent the fire from communicating with the opper parts of a building.

SOCIBTY OP ARTS, LONDON.

> April 28.-W. H. Bodan, M.P., V.P., in the Chair.

The following communicutions were read :-

1. By Mr. T. Drayron," On his patent process for Slloering Glase with Pure Sitrer." "The table used by me (observes Mr. Drayton) in ailveriof is of a similar description to that ordinarily nsed, the glass to be silvered being fixed horisontally upon it by meana of machinery. It is necescary that the piese of glass should be perfectly level, so that the liquor poored on shail act equally on all parts of the ourface. The material need consists of nitrate of silver, to which is added ammonia, water, spirits of wine, and thirty or forty drope of oil of cassica; in this state, the ligoot can be kept for a long lime without deteriorating. When it in required for silvering, oil of cloves is to be added to it; and in proportion to the quantity of oil of cloves added, is the length of time required to perfeof the deponit. The depodt take place equally well whether the merfaet is

Its or of any other form ; after it is silvered it is washed, to remove the Inperitien which have been deposited with the silver, and then placed in a bot-air closet, where it remains for a fow hours until perfeolly dry it is then varniabed, to protect it from the action of the air, and also from being seratched. Ginsees of any dimensions may be silvered in the most perfect manoer in 48 hoars. The silver deposited by this process adheres more盆rmily than does that by the old method; it is also lens injurious to the bealth of the worknan, as mercury is not used; and the cost of prodncthon is not increased."

Mr. Winkworta stated that he comaidered the invention as one of the zoat beantiful and most valuable of the prosent day, as the silvering can be epplied to any sarface withont difficaliy.

Mr. Newron observed, that as it is a solution of alver that is ased, there is no other method of obtaining sucb fine particles; the adhesion is frmer, the ase of mercury is dispensed with, and the whole process is completed withont increase of cont.
2. By Mr. Betert, "On his Electric Printing Telegraph." Tho apparatess was exbihited.-The author commenced by statiog, that in Jaly, 1845, he ondeavoured to introduce to the government his priating telegraph, and to arge on them the importance of adopting some such plan as his, in the place of the semaphore. The great advantages of the electric printiog telegraph, either for government or other purposes, are its great simplicity, eertainty of action, and economy. The instrament consists of two parts; cee haring a row of ivory kegs, with the letters of the alphabet, words; or otber characters, marked opon them, and is connected with one ead of the telegraphic wire, the other eod being oonnected with the printing machine. The printing machine contains a type-wbeel, having on its circumference corresponding letters, words, or aigas with the key-board, and by seans of weight movements and an escapement, a very slight power is sufficient to regulate the whole; so that the inslant a key, representing any letter, \&c., is pressed down, the corresponding letter, \&cc., is priated and a bell rung at the otber ead of the instrument.

Mr. Brett atated that be considered the advaotages of his instrument to coasiat in its making a permanent register of the communication transmitend, it being priated on paper supplied from a roll of ualimited lengtb, from which any portion of the correspondence may be cut off at pleasure.
8. By Mr. F. Whishaw, "On the application of Heated Currents to Manyfartwring and other purposea."-"In November, 1844, (says Mr. WhisEam) I read a paper on the manofacture of caskn, more particularly those maed by brewers, with remarks on the various methods adopted for cleansing and purifying sucb reasels. The object of the present paper is to show the advantages arising from the application of the same patent, viz., that of carrents of hented air to the following purposes:-1. Seesoning timber generally. 2. Preserving timber. 3. Parifying feathers, bleokets, clothing, \&ec. 4. Drying coffee. 3. Roanting coffee. 6. Japanning ieather for table covers, and other parposes. 7. Drying silks. 8. Drying yarn. 9. Drying distillers' tuns. 10. Driag papier mache. 11. Drying vuleanised Indis rubber. The procens has also been succesufully tested for the following porposes:-12. Drying loaf sagar. 18. Drying printing peper, or seluing the ink to enable books to be bound more quickly than manal. 14. Drying slarch, and converting it iato dextrine or Britinh gum, and also, 15 , for preserving meat." The paper then proceeded with a rery legethened acconat of the action of heated air on the varions kiods of timber, and the success which had attended its adaptation for that parpose. It was aimo atated that sirty suits of clothes, which had belonged to persons who had died of the plague in Syria, had been subjected to the procese of parification, at a temperature of about 240 degs., and afterwards worn by sixty pernons, not one of whom ever gave the alightestsymptoms of being affocted by the calady. Theanthor concladed by referring to the mode adopted by the North American Indians, for preserving the flesh of the buffulo, piz., that of drying it in the sun, and stated that heated carrents had been applied successfully. "How important for shipping? Instead of satlor coesuming calted provision from one month's end to another, to have an ceosesional sopply of fresh meat." It is important also in other respects, as ment treated in this way ocoupies mach less spaco, asd is mach lighter is weight. It is believed that the juices of the meat contain aboot fihs of watery moisture; this the carrent of honted air removes, and leares the albanen, and all the flavour and nutrition behiad.

May 5.-Sir Jobn Boileav, Bart., V.P., in the Chair.

1. By Mr. Defares, "On his new Patent (8rd) Dry Gas Meter."-It is notorions, obeerves Mr. Defries, that the gas supplied by some London and provincial companios, contains salpburetted hydrogen and ammonia, and these tend to impair the gas meters and prevent correct registration. The object of the present invention has been to place the more delicute and working parts of the meter beyond the reach of the gas and its injorions setivn; and the been accompliahed in the following manner-lis.: by ahotling of the methehinery in the upper chamber of the meter, by means of e rotary air.tight raive, which alluws the gas to pass from the main to the meter, and from the weter to the supply pipe, withont even coming in cootact with the vital parts of the machine. The valve and gearage are also made of an amalgam of motal, apon which the ammonia and sulphar of the gas do not act. Gas meters on the old and new principles were exhibited, as well as numeroos specimens of the metals, which had been rendered aselese from the action of the impure gas.

Mr. Newton mald, he did not contider Mr. Defrien enttled to the merit
of the inveotios of the rotary valve, we it had already beon prateated by Mesers. Bdge and Wright.

Mr. Wriget was prosent, and arhibited one of his valves. He almo stated that Mr. Defries' meter had still about twelve of the working parts exposed to the action of the gas.

Mr. Defrizs, in reply, stated that he was quite awnere that the rotary valve had been previounly patented by Mears. Edge and Wright; bat there was this differeace between his aad theirs-vis., that theirs wan a threo-ihroat valve, and does not shut the gas off from any part of the works, while his is a sis-throat valve, and excludes the gat from all the more delicate perts of tho mechioe.
2. By Mr. T. Boccios, "On his improved Gas-burmer."-The two mont important pointe in the combustion of gas, are economy and perfect light; "and these desideratum combined, I believe I have attained," seys Mr. Boccins, " with my buraers." The patent for the present barner was taken oot in 1848; and the burner is so constracted as to admit auch an amonat of atmospheric air as wili completely oxygenate the buraing bydro-carbon, at the same time keep up the same amonat of intense heat, oven to the apoz of the flame, which is necessary to the incandescence of the solid carbon, in order to obtain lumidosity.
"In the patent of 1848, (Mr. Boccius steys) I did not coafine myself to any given form of bnraer, as my apparatos can be adapted to all forms, whether flat, half-circuiar, triangular, circular, 8co., the reanlt always boing the same."

It consists of a series of concentric rings, from the centre of which rises a crescent-formed tabe, with other concentric rings. These latter serve to koep op the required beat at the aper of the fame, and also to steady the light. From the form of burner, it is shadowless, no portion of the light being obstructed either above or below the flame.

Mr. Newton and Mr. Rozerts then alladed to the tulip-shaped berner, for which a patent had been taken out, that particular form being given to the fame by means of a current of air passing throogh a perforated betton or inverted cone, into the body of the fiame.

Mr. Boccius stated that the inverted cone was incladed in his patent; that no action took place from the pasage of air, as stated, the flame being expanded more or less, according to the height at which the oone is placed in or from the flatue.

The Secretary deacribed "An Excapating Machine"" by Mr. Pele dravx. (Sne Journal for Jaly last page \#19.) The machine conasts of a series of scoops attached to arms fixed on an azle drivea by a steame engive. As the scoops revolve, they slice off the earth, and discharge it on to an inclined plane, on which it is removed to the wagon. The whole apparatus bears a resemblance to the ordinary dredging-machine, and is worked by a steam-engine.

Mr. W. E. Newton stated that an American machine, for a simiar purpose, had been used on a railway at Brentwood, and succeeded very well. It cat some millions of tons of earth away in the United States. The greatest difficalty they met with, was getting the wagons up to, and away from, the machine.

Mr. Paideanx stated that two wagons conld be brought up at one time, and there would be no difficulfy in changing them as fast as the machine conld fill them.

zeverevil

Practical Observations on the Present Slate of the Steasn Engime By G. V. Gurtapsson, late engineer R.N. London: George Herbert.

Mr. Gustafsson's work is a small pamphlet of 36 pages-the purport of it seems to be to show that much power is lost in the preseat ezisting forms of marine steam engines; as a substitute for which the author proposes an improvement, or rather modification, of his own. The most valuable part of bis treatise is a table of the rates of motion of the steamer Acheron, and of the angular velocity and extent of im. mersion of ber paddle-wheels-the resalt of experiments institated during the tbree yeurs that Mr. Guatafsson was her acting engineer. This alone, as furnishing very useful and important data for subsequent investigations, we consider a sufficient recommendation of the work to the notice of our practical readers; although we mant at the same time caution them against adopting the author's mechunical viewswhich, in statement at least, if oot in conception, apperr to us extremely confused. The reasons anaigned for the frequent occurrence of breakage in the various parte of marine engines, exhibit the too common incorrectness of thought concerning pressare and impact whick is conatantly displayed by men not thorougbly versed in the principles of mechanica. The casaalties above alladed to are easily explained, and are not at all owing to any peculiar mode of conatruction in the engines. Marine engines are especially subject to impulsive strains, the amount of which is not eany to calculate before hand; they have no relation whatever to the horse power, or any thing of the kind, but ase chielly caused by heavy seas breaking
agint the reasol-nmd abere all, againot the paddle wheels. The ordibary strains of tension are, besides, continoally varring; and these eases combined continoally tend to loosen and weaken the several parts of the machinery, and ultimately to produce disrapture. The evident and only way to lessen the probability of such accidents is to make the parta most liable to strains as massive as possible, and to avoid all unpecesary gearing. But the most serious objection which the sathor urges againat the present forms of marine engines is the alleged enormonas abcorption of power by them, and consequent loss of usefol effect. The method he adopts to eatimate this losis is conteseedly merely mo approximation-and, as we hope presenty to sbow, en spproximation which, being based on ansound principles, is altogethor wide of the trath. The resistance of water to a moring sorface having previonsly been determined by experiment for a given velocity-and resistance being asnumed to rary as the square of the velocity-it is clear that if we know the rate of the vessels motion, and also the rate of motion and the diameter of the paddle wheels, and the depth to which they are immersed, we can calculate the "mort done" during a given timet, As the subjeot is nne of considerable importance to eagiveerth, we shall proceed to invertigate formale for the amcunt of work done, and usefal effect prodaced by the rotation of a single paddle board. We shall suppose the paddle boards rectangular and perpendicular to the erige of the wheel, so wa to radiate from its centre. Let $2 a=\angle$ of the wheel immernod; $\omega=$ angolar velocity of the wheel; $A=$ length, $b=$ breadth, of paddle boards. Let $f=$ resistance against an unit of surface for a velocity $1 ; 0=$ relocity of vesuel; θ = angle pased over from the vertical by the given board at time t. Then the revistance against a thin slip of the board, at distanoe r from the centre, will be $b f(w r-0 \cos \theta)^{2} 8 r$; and the work done while it passen through a very mall angle 8θ will be
 tion of the wort done that propels the vesuel forwards, will be bf (wr-vion 0) r con of rite. Therefora integrating between proper limita, the total work done by one paddle boadd for one revoluHom of the wheel ts

$$
\text { bf. }\left\{\begin{array}{c}
\frac{2 \alpha \omega^{2}}{4}\left\{(l+i)^{4}-l^{4}\right\}-\frac{(\pi}{8} \cdot \sin a v\left\{(l+i)^{2}-m\right\} \\
\left.+\nabla^{2}\left\{a+\frac{\sin 2 \alpha}{2}\right\}\left\{\frac{(l+\pi)^{2}-l}{2}\right\}\right\} ;
\end{array}\right.
$$

and the useful efroct-

$$
\begin{aligned}
& 8 f\left\{\frac { 2 } { 4 } \left\{x^{2} \sin a\left\{(l+n)^{4}-b^{4}\right\}-\frac{2 \infty}{8} \cdot 0 \varepsilon\left\{(l+\pi)^{2}-l^{2}\right\}\right.\right. \\
& -\frac{\omega}{8} \sin 2 a\left\{(l+l)^{3}-r^{2}\right\}+\left(2 v^{4} \sin a-\frac{2 v^{2}}{8}(\sin a)^{2} \frac{l+n)^{2}-F^{2}}{8}\right\} .
\end{aligned}
$$

If $i=$ be very small compared with l, these expressions become

$$
\begin{gathered}
b f l h\left\{2 a \omega^{2} l^{2}-4 \omega l \sin a \theta+\theta^{2}(a+1 \sin 2 a\}\right. \\
\text { and } b f l A\left\{2 \omega^{2} l^{2} \sin a-2 l \omega \theta-l \omega \theta \sin 2 a\right. \\
\left.+2 t^{2} \sin a-\frac{2 v^{2}}{8}(\sin a)^{2}\right\}
\end{gathered}
$$

The expresalon, which Mr. Gustafsen obtains by an empirical and not very tateiligible method, is eacuivalent totfic $l+\frac{2 h}{8}\left\{\left\{l+\frac{2 h}{8}\right\}=0 \frac{\operatorname{sln}=}{a}\right\} \times 2 a$ for the weot dome. When λ is smalh, this becomes $b l f \lambda\left(l \omega-v \frac{\sin a}{i a}\right\}^{2} \times 2 a$ This subtracted from the correat formula, gives
bflat $\left(a+\frac{\sin 2 \alpha}{2}-2 \frac{\sin ^{2} a}{a}\right\}$; which defioienog will ac. coment for, at least, some of the power Mr. Gustareson merts to be tont in martue engioer.

$$
\boldsymbol{K} a=\frac{\pi}{2} \text { the above difrenopee }=b \text { if } \theta^{2}\left\{\frac{\pi}{2}-\frac{4}{\pi}=b l f d v^{2} \times \cdot 3\right.
$$

cendy; a large quantity, when we condder thet is mout of the experimente on board the Achoron l a-v. ina would, probably,
 thalf whet it ought to bo.

persoveramoe in availing himseaf of the mean of experiacet within bis power. That more power is expended thm meeful effeot obtained in sea engines, no doabt is true-bat the loss is not so much in the machinery itself, as in the mode of propolsion. If the flonts be radial, the paddle wheels deeply immersed, and the velocity of the boat neanly equal to the relative lidear velocity of the floats,-the resistance against the floats will be most powerful when their useful effect is least, and the greater part of the power will be lost. To remedy this, has been the subject of frequent patents;-various contrivapoes have been proposed to canse the floats to enter the water always vertically, and to preserve as mach as possible their vertical position when in the water. But we believe the complexity of the machinery neceasary to effect this kind of action, bas bitberto been a bor to its adoption. As to the merits of Mr. Gustafoson's proposed form of an osciHating en-gine-and bis new method of feeding the farmace-nve leave par practical readers to judge for themelves-we having already everstepped the limits we had assigned to the present review.

A short Treatise on the Steam Engina. By Jama Hann, A.I.C.E, Mathematical Manter of King's College School. London: Jobn Weale, 1847. Part I, 8*O~ pp. 102.
Mr. Hapo's mathematical abilities are so woll knows, that his same alode is sufficient recownepdation to any wort be may prabish. If has evidenthy presumed that bis readers are samioiently well 20quainted with mechavical principles, amd especially with the theory of the steam engine, to render superfuous any explanation of technical terms connected with those subjects. In fact, the work before us is rather a class-book of reference than an elementary treatise-and as such in a compendious form, comprises nearly all the facts that can be arrived at by purely mathematical investigation, with reference to the application of steam power.

We wish, however, that Mr. Hann had been more rigid in his demonatrationa, and bad based them more directly on the dynamical equations of motion; for instance, in finding the relation between the pressure of the steam admitted, the load, the length of the stroke, and part of the atroke when the steam is cut off-he assumes the work of the steam muat be equal to the work done upon the load," and spparently as though it were axiomatic, inatead of being a propoaition onpable of a proof, which is very short, and as follows :-

Let X be the pressure of the ateam when the load and piaton has been raised throngh a space x; let m= mase of lond and pition; v the veloolty of piston; L the load;-then $\operatorname{sav} d v=\mathbf{X} d x-\mathrm{L} d x$:

$$
\cdots \frac{m x^{2}}{2}+c=\int \mathrm{X} d x-\int \mathrm{L} d x
$$

Let $l=$ length of stroke; then, when

$$
\begin{aligned}
& x=a, \text { and } x=b v=0 \\
& \therefore 0=\int_{e}^{\infty} \mathrm{X} d x-\int_{e}^{\infty} \mathrm{L} d x ; \\
& \therefore 0=\int_{e}^{\infty} \mathrm{X} d x-\mathrm{L} ; ;
\end{aligned}
$$

but $\int_{e}^{\infty} \mathrm{X} d x$ is the work of the steam, and $\mathrm{L} l$ is the work dose on the load: $-\cdot$ the work of the steam is equal to the work done on the load. The way in which Mr. Hann has stated this relation, woold load one to suppose that it were true for any portion of the strokewhioh is not the case. Again, in finding the velocity on which we have obtained above, Mr. Hann most annecomarily mates it depend on ois vita nad work dope-asing, not only in this inetance, bat throughout the course of his book, the former of these two terte as though it implied sometbing more than a merely analytical expres-sion-as though, in fact, it were some independent property of force -"llving force," in short, as he translates it. The term vis viva, as used by modern mathematicians, is a purely arbitrary and conventional expression for certain algebraical aymbois. The old philosophers, bowever, used it to express some confused or mistaken notion rospeeting inharent prepertiee of matter. It seems injudicions (to say the teont of j) to revive, by tramelation of the plarase, exploded idens which were ody excusable in an immature state of acience.

"On the Fork done by the Engtue on the Pitton per minate.

"Let E reprevent namber of cabic feet of wilar converted inte ateam pe minme, A the area of the piatoo in square foet, $1=$ actual langth of atroike a - that peat of atroke before the steam is cat off, $\mathbf{P}=$ pressure in th hoilec, $p,=$ promare in the cylinder before expenaion, p-promure et the sme foot of the atroke, $c=$ total elcorance, $\mathrm{N}=$ bumber of cingle strotion per minutn, $\bar{Y},=$ work of atenm oa pinton par miante

 tif quen by Equation (o), Eprumetel by

$$
\varepsilon=\frac{1}{a+\beta p}
$$

${ }^{n}$ Now, the number of cabic teet of water which in evapornted in the wiler, and pases into the cylindte at every atrole of the engine in the form
 aneglinder when the valve in clowed and expansion begiat will be mprevaled by $\frac{\mathrm{E}}{\mathrm{N}}\left(\frac{1}{a+\beta p_{1}}\right)$."
There in an insaperable objection be any measore of the duty of the ergise, as eximated by the quantity of water diminiahed is the boiter in a given time; and thatis, that all the water removed is not evaporated. In faet, a large portion of wreter, called " primiag" by eugineers, is conveyed from the boiler into the cylinders in a etate of twe pertictea, pomessed of no elastic force whatever. The preportivn which this bears to the amount evaporated seems to depend on the viodence of the ebollition and the form of the throttle pipa Substrees which bave a tendency to modify the action of the boiling miter, such as butter or potato parings, lizewise aliect the quactity of priming; and in tubular boilers the priving in fonad to be greatent when the exten of fire-surface is greatest All these dinturbing cuses, which it is imposible to contemplate in theory, rander neeertrin any formale for the work done by the engive as dedeced from the derense of water in the boiler. In $p_{0} 65$, on the crank, the proof givee by Woolhouse, that the power multiplied by the space which it pases orer is equal to the weight or retietance maltiplied by the eper which it passe over, eridently sanmes that the mase of the canecting rod may be meglected, otherwice the proof would be incorret. Mr. Woolbouse, asooted by Mr. Hamp, emones that the prese sare against the crank is the resolved part of the preseure applied at the bower ead of the consecting rod. The follorings is a more aceonete invertigation:-
Let the leggth of the conmectiog rod =r; the madios of the erank Fp; and θ and p the angles they nake reapeetively with a vertion throght the eoutre of the cranly as time t_{0} Let this vertical be taken lae the axis of as. Let $x y$ be the condinates of the centre of gravity of rod at time t; the origin, that point in the vertical which coinciden with the lower end of the red when $\theta=\phi=0 ; \mathbf{X}, \mathbf{Y}$, reactions betreen rod and radius of crank parallel to the axes of s and y; $m=$ man of rod $;$ and $X ', Y^{\prime}$, the preenares at lower and of rad parallel to y : then,

$$
\varepsilon=\rho(1-\cos \varphi)+\frac{y}{8} \cos \theta \quad y=\frac{y}{8} \sin \theta ;
$$

tho, 9 sin $\theta=\rho$ sin 4 . These are the geonetrical relation
Por the meahanical we have-

$$
\left.\begin{array}{c}
\frac{d t^{\prime}}{d t^{2}}=-m+X^{\prime}-X \\
\frac{d^{2} y}{d t^{2}}=Y^{\prime}-Y
\end{array}\right\}
$$

Iron these equations, X^{\prime}, P, and Y can be obtained in terms of X, θ^{\prime} $\frac{d \theta}{d i}$, and $\frac{d^{2} t}{d t^{2}} ;$ also, since sin $\theta={ }^{\circ}$ als ϕ, and ite diPerental 0 eficienta depend only on ϕ and ite diferential co-effietents; therefore, if the angular velocity of the radine of the crank be given $\frac{d \theta}{d t}$ is given, and in given: $\cdot, \frac{d \theta}{d t}$ and $\frac{d^{2} \theta}{d t^{2}}$ ase given;
 $Y=Y^{\prime}, X^{\prime} \sin -\mathbf{Y}$ ene $\theta=0$-and Mr. Woolhonecs solution is errect.
We rant here eeselnde onr motice of Mr. Hama's treatime-Part I. Firmpe that before long, Part II. will make it appearamoe, asd that the author will be enabled to eostinae, withoul interruption bis useful Lrears, whiah are gitise homoarable to birsself and to the sollegiate mory whin be is so dintingoished a mombet.

Praetical Rule for Alserteining the Relations between the Alleratione

 in Gradients, and the Corresponding Changes in the Contents. By Denzul J. H. Ibbetson, civil engineer. London: Weale. 8vo. pp. 24.To the eagiveer and surveyor, the objeet of this little work will be sufficiently obvious from its tilla. The increase or dimination of earthwork on railways consequent on the alteration of gradientas bere calculated on the aupposition that the altered gradient is parallel to the original gradient. It is important to cbeerve that the caloulam tione are beoed on this hypothesis exclonively, because they are applicable to no other. The case taken is a very unpractical one, and of so race occurresoe, and so simple, that it is a very insufficient ascuse for raching into print. Where gradients are altered at ant, it is usually thoir incliomion which is subjected to the alteration. Our autbon at page 11, gives incidentally a bint for modifying bis formulo to these more gemeral cases ; but the method is unsatimfactory and uecer-taim-isstances might be suggeated is which it would give resulta whioh were the exact reverse of the trulh ; that is, rewults which represented the earthwork to be increased, where it was in reality diminished by the atecation of the gradieat; and conversely.

Mr. Ibbetson's formule do not suppose the crose section to be knowns they depend on the inclination of the slopes, but not on their comparatire beight on opposite sides of the railway. No distinction is made between a cutting through a hill and one round it; and no apecial rules are given for sidelong ground or open cutting. It is quite clear that soch a rough method of procoeding could gever be permitted in making the earthwork for mooking or contract estimates In thene; considerable accuracy is imperatively required, and can be enared by 00 method but that of taking out the quantities from the crosssection

For parliamentary purposes less accuracy is wanted. In the preliminary investigations the distinction between equal catting and sidelong ground, is considered unnecessary. Here then, perbaps, the proposed method might sometimes apply. But, unfortunately, the very cause (laxity of investigation) which would palliate the inaccuracies of the method, at the same time ezcludes ite comparatively inconsiderable recults. The results of Mr. Ibbetion's formule then woald gemerally be too minute for padiamentary purposen, and too inezact for the purposes of the contractor.
However the methods appear to be in thenselves neat and simple enough. The propositions are stated in that precise langunge which always argues well for the correctness of them. There soeme every reason to suppose that if Mr. Ibbetson would write another book on the practical cases of alteration of gradients, and confine himself to abjects of practical utility, the result would be succesafully obtained. There are no diagrams or demonstrations in his treatise. Against this method of giving mere recipes in the cookery-book fachion we alvays proteat. But be has taken up new ground, and one in which a qualiged labourer is much wanted;-if he will permit the above suggestions to weigh with him, he may gain the credit of having efected a work, which though of great value and importance, has been hitherte unatempled.

A Proposed Syotesn for the 'more ready and correct Valuation of Carpealers' and Joiners' Worke. By Henay B. Biownume. London: Weale.
Tbough this work of Mr. Browning's in fonnded on Peter Nicbolson's systom, yet he has carried it out in a new way, and inatead of the labour employed, he proposes to calculate the quantities of menteriale used, and to give the elemente of valuation in such minutanoes, - to enable the builder to calculate them in detail. For thia attempt, Mr. Browning deserves partieular praine, for he has evidently taken conseientious pains in getting up bis work, and bestowed great labour upon it; but we doabt whether the work will be extemipely meed by praetical men, for whom the Builders' Price Books are fowod to cono tain more conveniently the information they wall. The mode of calcalating eacb part is carefully shown by Mr. Browning, and tables and forms are given with each example. In calculating the material for joiners' work, the several thicknemes are all reduced to a standard thickness of one inch, and then multiplied by the value of the inch deal Thna, ecoording to the price of ioch deal, the price of matesials will be determined. Mr. Browning does nol, however, it the case of joiners' work, give the value of labour and naile, though, in the case of carpenters' work, be gives now tablem, instead of the usaal eximates.
While we award great praise to Mr. Browning, we manat obverve, that so far as experienced surveyons are concerned, the same minatemese of caleulations is omployed; but the rason why builders femerally do not apply it, is, not from want of appreciation of its raler,
or from want of capacity, bat because sneb calculations require special proficiency, and they cither use a price-book, or, if the case requires it, resort to a surveyor.

Copyright of Desigas at Distinguidhed from Patentable Inventions.

 By Wm. Spence, Anacc. Inst. C.En patent agent. London: V. and R. Stevens, 1847.The object of this pamphlet is to show the exact degree of protection afforded by the regiatration of desigos, and in particular to show that it does not supersede a patent. It carries out, therefore, the interpretations of the Registration Act, in the same view that we originially took on the passing of the act. We then showed that registration gave no protection for the principle of a design-only for the form. If, for example, a round cullender were registered, an oval collender would be held to be vo infringement. We may observe, by the bye, that the Registrar takes on himself to decide on what designs ought to be registered, whereas his jurisdiction is merely limited to the determipation of the class in which the design is to be placed. 1f, bowever, a Registrar is to exercise any jurisdiction at all, it is desirable that an engineer sbould hold the appointment; so that at any rate the services of a competent anthority may be secured.

DECIMAL WEIGHTS, MEASURES, AND MONEY.

One of the lesser public questions of the day, which is of special interest to our readers, is that concerning the tithing of money, weights, and mpasures; and which is the more worthy of notice, as it is making way on the road from theory to practice, as the new rupee, two-sbilling piece, or tithe of a pound, will show.

The root of the whole matter is this, that our way of numbering, fized by our mother tongue, is by tens, as ove, two, \&c., ten, eleven, twenty, twenty-one, thirty, forty, a hundred, a thousand, ten thousand, \&c. We have also other usual ways, such as by twelves, as one dozen, one dozen-and-a-balf, two dozen, and so forth; and by twenties, as a score, two score, three score and five, and so forth.

The way of numbering by tens is that followed in most tongues, and by all the higher races of mankind from the beginning of time; whereas some of the lower races can count only by twos or by threes, or as far as four at the utmost-all numbers bey ond being out of their power to reckon.

The kind of notations now used, called Arabic, agrees well with the words, as $1,10,11,20,21,30,100,1,000,10,000$.

All this is so very simple-it is $s 0$ readily learned in our babyhoodit seems so trifing-that we are jikely to be blamed for raming it; and yet what is the answer to what we are going to ask,-"Why do we not follow up the way in which we begin?

One of the evils we now find in all our dealings and reckonings, in that we have all kinds of weights, measures, and money-only one of which in any way agrees with our way of numbering and reckoning. Some of our ways of measuring or weighing are by twos, some by threes, others by fours, eighte, tens, twelves, sixteens, and twenties; in some cases even by fractions. If we buy by weight, we reckon by twenty, by one bundred and twelve, and by sixteen; we pay by twenty, by twelve, and by four; and we do the sum by ten-whereas if we bought by tens, paid by tens, and counted by tens, the operation would be easy, instead of being needlessly troublesome.
It is now some time since the state of our weights and measures awakened the notice of learned men. In the beginning of the last hundred years, a lawsuit showed that the Customs officers were using a wrong measure; while the Royal Society, having turned their attention to the measarement of the earth, found it needful to look into the standards of measurement used bere. The Royal Suciety exchunged, in 1742, with the French Academy of Sciences, a set of standard measures and weights. These proceedings showed great differences between the standurds kept at the Exchequer, Tower, Guildhall, Midt, Clockmakers' Company, Founders' Compuny, \&c. In 1758 and 1759^{\prime} a Parliamentary Committee was named to look into the standard. This Committee had a stundard yard, and standard troy pound, made. In 1765, bills were brought in for eatablishing new standards, but fell to the ground. This Committee wished to une the pound troy instead of the pound avoirdupois.
In 1779, Lord Swinton tried, but fruitlessly, to get the English standards used in Scotland, as agreed in the Act of Union. He wrote a book apon this matter.

In 1798, Sir George Shackbargh Evelyn made farther enquiriea into the state of the standards, which he publinhed in the traneactions of the Royal Society.

Before this, however, the Rev. Dr. George Skene Keith, who had laboured on the matter for more than thirty yeare, wrote a pampblet in 1791, proposing a decimal syatem of weighta, measures, and monies
In 1795, the Frencb, in their revolutionary madnems for sweepigg away every old law and custom, decimalized every kind of weigbt, measure, and money, on a plan which is called the metrical sjatemo ita first unit being a metre, the ten millionth part of a quadrant of the great circle. The Frencb supposed they had laid their aystem on a natural and plain basis; but after inveatigations have left this a matter of doubt.

Our brethren in America had already adopted the dollar as their money unit, and divided it by tens into dimes and cents; but they have kept our weights and measures.

With the year 1800, a new agitation began for a change bere. Professor Playfair and others wanted to have the French system, bat happily they did not succeed. It was soon found that the Freach metrical system, having no fellowship with the old system of weighte and measures, was not followed by the people, who could not be made to understand it ; and the end was, that while the pure metrical system was kept for scientific purposes, it was for popular purposes provided with old names, and was called the "usual" system; thus a double metre was called a toise, a third of the metre was called a foot, a balf kilogram a pound, an eighth of a hectolitre a boshel, and so farth. This was fully established in 1816.
In 1813, a Committee of the House of Commons was named, who published a report, and in 1818 a Royal Commission was named for weights and measures ; under which, reporte were published in 1819 1820, and 1821. In 1824 and 1825 acta were passed, which named the atandards, called "imperial standards," which abolished all local weights and measures, and reduced the number of standards.
The greatest evil attendant upon the "imperial" measurement is, that the new gallon is made to contain ten pounds avoirdupois weigbt of distilled water, whereby the size in cubic inches is $\mathbf{2 7 7 . 2 7 4}$, giving a number most inconvenient for calculation.
In 1821, the American legislature took up the sabject, and a mose valuable report was drawn up by Mr. John Quincy Adums, afterwards President, who was in favour of the French metrical system. No important result has, however, been achieved In America.
Professor Robert Wallace, Mr. John Wilson, of Thornley, nnd othera, proposed modifications of the English system, and pubished pamptlets upon it. In 1831 and 1832, General Pasley published a work suggesting a new standard and a decimal system, which he further carried in a second edition, published in 1834, and which for the labour bestowed upon it, is well worthy of being read. He proposed as a standard a fathom of the thuusandth part of the nautical mile, whicb he adapted to the present systems of measurement, without causing much change in the value, though be introduces many new terms. His remarks upon the modes of measurement now in use are particularly valuable.

Mr. Babbage bas been another labourer on this subject.
Since these, Professor De Morganhas repeatedly brought the decimal system before the notice of the public, and bus written upon it. We have likewise made some remarks in a former volume of the Journal.

In the present session, the Chancellor of the Exchequer, having been questioned by Dr. Bowring, has agreed, as a first step, to coin a twoshilling piece.

However desirable it might be, in a theoretical point of view, to carry out forthwith any given syatem, experience has fully shown in Fruace, that the only practicable way of gettingan efficient and wurking syatemp is by confurming, so far as possible, with existing institutions and the babits of the people. The French "metricul" system has become the "usual" system, and as such works nell, while most of theoretical advantuges are already obtained. It is in conformity with this experience that any attempts must be made in England, and indeed thia is pretty commonly allowed; although there are many differences of opinion as to details in carrying out a decimal system.

The great difference is as to the units and standards to be adopted. It has been assumed by some that a patural and invariable standard is to be looked for, which can always be referred to $;$ and the measure of a degree of the meridinn, the length of a pendulum, a quantity of distilled water, and variuus other such standards, tuve been proposeds but the attempt is perfectly futile, for there is no such natural standard. Captain Kater's imperial gallon is just as good a natural standurd as the French metre, and it resolves itself into this-buat all such unite are arbitary ; and that therefore, inatead of inventing a new abbicrary unlt, it is better to adopt an old arbitary unit.

Whatever weight may have bern at ove time given to the Fresel metrical syntem, it can no longer be allowed, for it is found not to reek on a matural standard, while the French have fuiled in enforcing it,

There is no reason either why we sbould adopt the standards of an inferior people like the Frepeh, whan our own, adopted in our vast empire, and by our brethren in the United States, of themenelves secure a wider adoption.
The introduction of a decimal syatem mast be in conformity with exiating units, and it mast be gradual. The first thing certainly seema to be a reform in the coinage-and this is determined upon, the ponnd being taken as the noit.

It need scarcely be said in these daym, that a decimal aystem would diminish the work of cbildren in learning aritbmetic, giving them time for other parsuits; it would diminish the mork of grown up people in reckoning; add it would enable all ranks to do what they cannot now-to reckon properly; the moral results of which may be expected, so far as prudence, economy, and foresight are concerned, to be much greater than any other.

Tbe ponnd being taken as the unit, its tenth is the pew two-shilling pieer. The worth of this is about the same as the rupee, and it is to be hoped that the two will be made to agree, so that our East Indian currency may be uniform. The half-sovereign remains for a balf-pound or five-tenths ; the crown for a quarter-pound or twentyfre hundredths : the half-crnwn will, in all probeblity, be superseded; bat while it remains, it causes no interference with a decimul coinage, having a defined value. The shilling is a hulf-rupee, the sixpence a quarter-rupee, but the fourpence is an anomalous coin, and it is to be boped will be withdrawn from circulation, so as to leave room fur a new groat or luudreth of a pound in silver, wiich will be the tepth of a rupee and fifth of a shilling. It has been well observed, that a very litule change is involved in leaving the cupper coinage, making the penoy five thousandths, or four thousandths; the halfpenny two thousandibs, and the farthing one thousandit.
The effect would be that the decimal monies would be a pound, a rupee, a groat, a farthing, ieaving the others as conventional movies, as the crown, half-crown, and groat are now.

A change in the coinage is indispensable in reference to a change in the weights and measures. It is a matter of convenience now, particalary with women, to reckon by the unit, balf, quarter, and halfquarter, the divisiou by halves being one of the simplest arithmetical operations. In effecting any alterations, while a full decimal scale is giren on a measure, the unit can be divided by halver, quarters, \&ec., on the other nide, as is very common on rules and scales. This is a mere detail of the rule maker. With a change in the coinage the reamon for a duodecimal division would drop, for a foot or a pound divided into tenths would readily answer to the parts of a rupee or a shilling.
In long measure the great dispute is, whether the unit or the foot shall be taken as the unit. If the foot be taken as the unit, it will cause little disturbance of the small measurements, but it will interfere with all the larger measurenents. The mile must then be a mile of 5,000 present feet, inatead of 5,280 ; the chain will become fractional, and so forth.
If the mile be taken as the unit, it will be divided into 1,000 fathoms, and 6,000 feet, or ten furlungs, one handred chains, one thousand fathomes ten thousand links, one hundred thoosand half inches. The foot will be ten inches (to the present inch as 1.056 to -833), and ove hondred hundrediths. The square mile would be divided into one buudred square furlongs (of 6.4 acres each) 10,000 roods of square chains, and $1,000,000$ square fathoms.
With regard to weight, the choice is also disturbed between the pound and the ton. The pound, however, appears preferable. The pound would be of ten ounces, one hundred drama, and one thousund grains ; and the rising scale would be a cwt. of one hundred pounds, a last or load of one thousand lbs, and uton of two thoosand lbs. If a load of 1,0001bs. were used forthwith in calculations, this would very much siwplify matters.

As to liquid and dry measores, there ara still greater discrepancies, but it appeare desirable in all cases to employ the lb . or cubic foot, in preference to the gallon or busbel.
In conclusion, it may be observed, that it is partioularly desirable that engineers and survegora, who have so much to do with measurement and calculations, should at an early period direct their attration to this subject, particularly in reference to a choice of the units, as they will, thereby, very much advance the progress of legislative measures, and secure their cunfurmity with the views of practical men.

THE GBRMAN OVRRLAND ROUTBS TO INDIA.

The contest carried on, of old, betreen the teven citien for the hononr of Homer's eradle, cannot be fiercer than that for the Iadian route throagh middie Burope. As, however, that over the Lackmanjier pass (Lacas Major of the Romans) has attracted some notice, we shall brielly advert to it. It is now two years since Colonel Lericce, of the Piedmontese service, made the necestary atadies and measurements, which were laid, in 1843, before the Compaoy of Turin. He then prueeeded to the northern slope of the Alpe, while lnapector Carbonasai sarveyed the southern parts, and made levela and planimetric cuarts of the whole conntry, from the valley of the Temano to the lake of Como.

In July and Auguat last, these surveps were continued by the two engipeers, and to which the services of Capt. Ricei, of the Piedmontese corps of Bugineert, were edded. All of them co-incided in the opinion, that the valley of the Crintallien was the fittest point to cross the Rhetian Alpe. A superficial glance at the cbarta pablishad in the Stattgard Bisenbabin-Zoituag coarinces one of the laboar, at least, beatowed on that survey.

The plan of the route to be traversed, shows especially that the 341 Germen leagues to be laid over with rails, presente no insurmonntable diffena. ties, and has only to pass one water-way, while the Triette line hat to pass fonr. An extent of 23 , 8 lengues of that line-viz, that from the Boden See to Sunhein (in the Rhine valley), conjointly with that from Progiasea to Locarno, is quite edapted for beiog pased by locomotive engises. A distance of $6 \frac{1}{i s}$ leagues, however, between the above points, is very mona. tainous, and could not be pased but with gradiente of 33.9 to 49.9 in every 1000. Here, therefore, atationary engines are to be used-unless, indeed, some means should be devised for using the water-power, so aburdant in these Alpine localities, for that parpoee. But even if that apace ahould have to be gone over with the aid of animal power, or on an ordinary road, atill the distance from the Langen to the Bodease (239,435 metres), could be travelled over in 9 hours, great dispatch, indeed.

Another difficulty, not to be pased over, is a tunnel of 5,200 metres in length; bat as it could be driven through the main rock, without embenkmente, the engiaeer thinks lightly of it. Pitt, certainly, there could be none, except at the iwo ends of the abalt, as an enormous mase of rock overlay the projected tannel.

The dificulty of pasing this line in winter (here 8 months out of 12), is alleged to be obviated by covering the places likely to be overspread by aralanches or drift snow with galleriea, as has been done on the Splizen, the St. Bemard, sec. While, in fine, this line will have to cope with dimpulties of troublesome earth. works, and require every aid engineert can afford-the ahandance of stone, timber, \&c., may be considered as some compenation. If the Alps are and cas be pessed, this line seems to present the oasiout access from Upper Italy and Germany, while also the Sardinian govemment is undertaking important works for the improvement of the now free port of Genos, and the railway thence to Aroue, which will be completed in $\mathbf{1 8 5 0}$. At any rate, an important rival to the Trieate route has aprong op in that over the Lackmenjier-although both, perhapa, are not worth the old Marsoilles route.

THE LONG RANGE.

Speech of Lieut.-Gemeral Sir Howamd Dovoras, Bart., M.P.; on Lord Ingestre's motion on Mr. Warner's alleged dircoberies, July 13, 1846.
If any one doubts that the "long range" is a gross quackery, we secommend the perusal of Sir Howard Douglas's speech. Mr. Warner has said a great deal about official persecution, but we understand it now in another sense. Here is a gallant general, a bighly uecomplished member of his profession, forced to undertake a most unpleusant public duty, as a commissioner of enquiry into this "long range," and he is obliged to get op and defend himself in parliament, and to publish his apeech, by way of making a kind of weapon aganst any future attacks. Sir Howard's exposure of W arder is complete, while his professional remarks on explosive power are very interesting; and as the subject is very litule underatood, we shall take the liberty of making a few extracts from the speech and notes. It will be observed, that beforA receiving any intimution as to the nature of the invention, Sir Howard Douglas expressed in the following speech, the opinion that a balluon was the essential feature of it:-
"Mr. Warner asserts a power which sets the most important lawa of nature at defiance. Gravilation, by which the system of the universe is maintained-resiatance, by which some of the most benign parposes of Providence are accompliahed, are nothing to Mr. Warner. W'hen Cutooel Cbalmery, a member of the late commission, cautioned Mr. Warner of the prodigious powers of resistance to his long range, be exclajmed, "Who can frame laws to govern a force which has never before been heard of-a force a hundred times greater than that of guopowder!' More was orged by the coionel, but, as he says, Mr. Waraer was too dogmatical to reavo with. Who can frame luws to control sucb a force as Mr. Warner imagines? Why, the Almighty Maker of the univerne......... It is pre-
cisely because Mr. Warner's alleged projectile force is, as he says, a hundred times greater than that of gunpowder, that it would the met by a resisting force greater in an increased ratio, by which the projectile would be opposed, controlled, and reduced to moderate volocitios and limited ranges. We possess in gunpowder greater force than we require. We reject the random use of it to gain accuracy. The power by which one of the cliffis of Albion was recently blown into the sem, and the Royal George ont of it, is more than adequate to any, that war requires, or can be ased with advantage in projectiles......... The greatent range that ever zet has been attained was by the mortar or howitzer, the trophy that now stands in St. James's Park, which threw a shell Glled with lead aboat three milea into Cadiz, but with soch random effect, as to do little or no harm.
"By uning the denser metal, lead, that range was procored, and the momentum of the thell, so flled, augmented. A British 13 -inch shell flled with lead discharged from a mortar with the full charge, may be projected about as far as the Cadiz mortar tbrew its shell. I do not may that greater rangen may not be attained. No great increase, even of random range could be obtained, by increasing the magnitude of the gun to almoat any size. And even then it would he a random range. My life has been devoted in a great degres to matters of this kind, and I assert, that it is pbysically impracticable to procure a range of six miles by any projectile force. Mr. Warner first saserted, that his long range was not a projectile, he has since asserted that it is. Bnt it may be ballonn, or a kite : if so it is old, and nothing worlh. (It was proposed during the threat of invasion in the late war, to endeavour to destroy the Boulogne flotilla by such agents, but this was laghed at. It is well known that Sir W. Congreve proposed to destroy towns and forts hy the aid of kites. They were to be made of canvas, and of a very large size, so as to be able to carry very great weights. When the kite had reached its place of destination, and stood over the devoted fort, camp, or ship, the shell was to he dropped into the midst of the place or vesacl.) It may be a compound of projection and propulsion. This were still more ridiculons.
"I do not deny that Mr. Warner may have hit apon some explosive compound more potent than gunpowder, and some improved mode of causing it to explode, either by mechanical or chemical action, but as to the modus operandi, so far from there being anything new in Mr. Warner's process, I hold in my hand a work published at Paris five and twenty years ago,-- Memoire sur lea Mines Flottantea et les Petarda Flotann, ou Machines Infernales Maritimes ; par Montgery, Otficier de Marine,'-containing a history of many different modes of blowing up ships by marine fougasses from very early times. This work has for its frontispiece, the destruction of a vessel

- Memoire aur lea Mine Flotranies et les Kelards Flotans, on Machinea Iofernale Mardimes; per Montgery, Gfifier de Marine:

If an invisible shell loaded with gunpowder, which did its work more effectually than in the case of the John o' Gaunt. Mr. Montgery detaila in this work, different processen for blockading vessels in bays or harbnurs, by lay. ing down 'torpilles ligne d'accouplement,' acrosa their entrances, these torpillea being made invisible by being retained below the surface of the spa hy anchors, and connected with each other by lines, co that no vessel
could pas, without coming in contact, either with a torpille, or wish the line connecting one with another, causing both to collapse, atrike the vessel, and explode. Mr. Montgery likewise details the process by which a ressel in chase of another may be destroyed by the une of two torpilles, conneeted to each other by a line,-.. Vesuels of all aizes, but above all steam-boats, may make use of these torpilles connected with each other by lines. A vestel may even sink another by torpilles connected with each other by lioes. Vessels or boats chased by anperior forces, may deliver themselves from their enemies, by throwing into the sea one or more of these mines flostantes connected with each other. The operation of shatting up an enemy's port, ought to be executed at night, otherwise the enemy having knowiedge of it. wonld easily frustrate the attempt.'
"It were easy to addnce from Mr. Montgery's work, and many otbers, abundant proofs that there is nothing aew in the proposition for submarine mines, at suggested by Mr. Waraer. We find the following in Pepy's Diary:-
"In the afternoon come the German de Knufiler to discourse with us aboat his engine to blow up ships. We doubsed not the matter of fact, it being tried in Cromwell's time, bat the safety of carrying them in shipe. Bat be do tell ns, that when he comes to tell the king his secret, for none but the kings anccesaively, and their heirs' (to this Mr. Warner adds prime ministers) 'must know it, it will appear to be of no danger at all. We concluded nothing; but shall discourse with the Duke of York to-morrow about it.'
"To theae I may add an infinity of namea mentioned by Monsieur Montgery from the earliest simes. And in our own reier to Bushnel, 1787 ; Torpedo war and submarine explosions, by Robert Fultou, Fellow of the American Philoaopbical Society, and of the United States Military and Ph lowo phical Society, New York, 1810 ; De la machine infernale maritime, pu de la tectique-offensive et défensive de la corpille, ete. par M. K. Nunez de Taboada, etc. Paris, 1812 ; Colt, see New York Weekly Sun; Monsieur Jobert, of Brassels, Aec. \&ec."

IMPORTANT EXPERIMENTAL TRIP.

On Thursday, May 13th, there was a grand day with the steam oavy at Woolwich, the Lords Cummissioners of the Admiralty having ordered an esperimenial trip with all the stem.veseels at that station which were in a state of sufticient forwardness for the purpuse. The vessels originally appointed to compose the squadron were, the Amphion, 36 gons (300 horsopower) ; Sharpshooter (iron screw st.); Rifleman (wooden screw st.); Alinx (iron screw st.) ; Teazer (wooden screw st.) ; Growler (st. sloop); Kite (st. v.); and Princess Alice (iron st. packet). Owing to the arrangements being incomplete, the Sharpshooter and Rideman did not join the squadroa. Between nine and ten o'clock the Lords Commissioners arrived. At ten minutes past eleven the signal was given from the Black Eaghe lu loose from moorings, and in about ten minutem the fleet alarted from Woolwich in the fullowing order: Teazer (screw) lemding the way, followed by the Araphion, Monkey, Black Eaglo, and Kite, and is this order they proceeded down Woolwich Reach, and up the galleons. The Amphion was, of course, the principal object of interest, end upon testing her speed, it was found that with the engines making 45 revolntions, and witb her jib set, her rate of speed through the water was 6.8 knuts. The Teuser proved to be the slowest boat of the feet. In Halfway Heach the Black Eugle put on her full speed, and soon ceme up to the A mpbiun, and then reducing her engines to half speed, she kept within hail of the Amphion during the remainder of the cruise. Their lordships, who touk their station on the paddle-box of the Black Eagle, with Sir J.J. Gordon Bremer, puid especial attention to the Amphion, and signalled to hoist the spanker sail, the wind then blowing atiff from the south-east. The log was aguiu thrown uverbourd, and the speed with the engines at furty-seven revolutions proved to be 7.8 knots. When the squadron reached Erith, the Mins, which it a faster boat than oither the Amphion or Teazer, soon beaded the teet, the Amphion holding on her way, with the Kite on her lerbourd, and the Biack Eagle on her starboard, quarter ; the Teazer a considerable distance astera. and the Growler (which had been detaiued at Woolwioh) juat bearing in sight. The equadron passed Erith al a quarter-past iwelve, and a signal was then hoisted from the Admiraliy yacht (Black Eagle) to put on more sail; an order which could not then be complied with, as the wind was anfuvourable. In Long Heach, the speed of the Amphisa was tried at the measured mile, which was done in 8 min. 52 secu., the tide having just ebbed; this gives a rate of speed equal to $\mathbf{6 . 7 6 6} \mathrm{k}$ nuts, or mbunt 8 miles, with the engines making 44e revolutiuns. As the aquadron neared Greenbithe, their lordships boarded the Amphion, and ordered all aail to be set. Tbe spanker, jibs, and topsails were then set, and this respel, under the conjoint influencea of wiad and ateam, cureered rapidly on ber way. The Gruwler, which had continued her course at full speed, here overhauled the deet, and passing the Auphion to port, took up her station as the leading steamer on the starboard side. The squadron stood os through Sea Heacb, where the full operation of both wind and tide wan felt; and here the log gave a speed of 10 knots. Having reached the estuary of the Thames, their lordabips signified their wish to return, and the Amphion was brought round with great celerity, and they emburked at once on board the Black Eagle. It may be as well watate, that Usis is
the Arat time the experimental triale with the Amphion have proved anccenoful. In all former trials the enccess was most incomplete, the engines woold monsely work for half hour withotst slopping, owing to the canrases collapsing. Metal valves bave mow, on the recommendation of the anthorities at Woolwich been adopted, and the result has proved in the higheat degree alisfactory. A correspondent says-" coosidering the great diae of the Amphion, and that her auniliary engises are ooiy of 200 herse power, a very amall proportion for a frigate of 86 gums , ber progrese tbrough the water was sorprising, and leads to the belief that she will prove one of the most serviceable vessels afloat." She carried with her in this cruise, all her guns, with stores, provisions, and water, for three muathe, and a large supply of coals.

NOTES ON FOREIGN WORKS.

Apowe Fiemen and 7 rieste Rathang,-This live, from Cilly to the ead of the Saun valley (14 Baglish miles), has been juat completed, and ranks now, hy the still employed thereon, at well as the great beantien of Alpine ceemery, amongat the most remarkable objects of Styria. The bridge, in Ane, Which has been thrown across the Saun (near itt contaeat with the 8eve), it the colminating point of the whole work. Conformably with the utiricalties presented by the ground, it concists of an oblique arch, whowecirevlar opening is 100 cubits. The three miaor arehes will bave a span of 15 cabits in the light, their height being 40 feet. The conatruction of the protecting dyke was accomplished by iron bars being ecrewred perpendicu. barly to the rock-bed of the Seus, on whicb bars the pilet were plarted. The diflenaty of Alpine ground may he gueseed from the fact, that from the Wetering place of Tuffer to Steinbricken (a diatance of fonr Bugiish miles), the embankments of the road amoant to 12,000 cubic klafter. M. Pico, the engineer, is moch praised for the cboice of the moat solid materials, and for the solidity of the works. The Bath of Tüfters was known and resorted to by tbe Romans.

Groat Contimental Reihoay Lines.-A joint meeting of the directors of the diterent lines forming thomefrom Vienna to Hambarg, and Vienes to Stetzin-the first 140, the latter 125, German leagues (15 to a degree), bave met at Berlin, and concerted a plan, by which the first distance can be accomplished in 44 hours, and the latter in 40 hours, either going or coming. The train will leave Vienna at 7 o'clock, p.m., arrive next day at noon at Brealan, where it will stop four hours; start at 4 p.m., and arrive at 5 a.m. at Berlin, whence it will start for Hamburg or Stettin at 7. It is atated, that the Berlin and Magdeburg company winh to purchase the interest of the Magdeburg and Leipaig line, at the enormons intereat of 250 per centu; but, bewever foreaighted the plans of the company may be, it it pretty well acknowiedped now in Germany, that over-apeculating ought to be racher called maderapeeulating.

Reymiation and Draincge of the Rubne--After the terrible dianters which the overfowing of this river caused, last yesp, Dear Vaduz (SwiteerLand), aurveys and plans for the above parpose have been made by Colonel Lanicea and a number of Swiss engineern. According to this plan, an area of about $5,000,000$ square klafters (cubits) of arable land could be gained in this apot, hitherto considered most barren.

Spaminh Surbeyr.-The activity which reigns In some departments of Spauish science and industry, is fairly exhihited in a gigantic chart just pub-lished-" Gran Mape de la Isla de Mallorca." Ite dimensions are 67 inches (prifyedas castellamar) by 32 inchea. Its detail of ports, harboura, beys, and other featurea of the island of Majorca, are eccurately rendered.

Brweselo.-M. Peter Dabrred, merchant of Cologue, has been introduced to the king, for the purpose of laying before his majesty his new plan for preventing accidents on railways. It consiste of an ingenious plan of auddenly detaching the engine from the train, and bringing it to a atand still. The inventor intends, also, to have hil discovery teated in other couatries.

Lilerary and Art Property in Awsiria.-An imperial decree bas been lately published on this sabject the parport of which is consonant with similer regalations enacted previnualy by the Rmperor of Rusain. The copyright for eny ideal property (ideale Eigen/Awm) lasta during the lifetime of the author or artiot, and thirty yearn, in the maia, after his death. Foreign (not Gerwap) worts are treated sccording to a standard of "material reciprocity." Austria has not joined the Anglo-Pruedian convention of literary and art property-but Sazony, Hanover, and otbers, have.

The Forall Soa-Serpent.-Dr. Koch, who brought to thit country the Misourri mammoth, exhibited in Bryptian Hall, bat also discovered in America the fosall remains of an ophidina animal of immense size, which he calle Hyduarchos. It possesses a vast number of viry large vertebres, and is the most extraordinary specimen of the so-called antediluvian creation extant. Is bat been exhihited at Berlin, and the king has given orders to purchaee it, notwitbetanding Dr. Koch requires as extrsordinary price for it.

Drainege of Land in Dalmatia, -The valley of the Narento (Narona of the Bocomas) wat one of the corn-depots of antiquity, but now presents aothing but a anccesslon of anwholenome boge and wilda, to wbich the attention of government has at length been awakened. M. Mattels has been directed to examine and report on the regnalation of the rirar Narenta, the
mont considerable between Trieste and Greece. It forms a dolta at ith embouchare, and ite innadations have hitherto spread at random, and the mould being bent retained between the coppices of vineyards, merely served to increase their fertility. M. Matteis proposes two different syatems-irat, the so-celled bomifticasione per sedimento stream or warping, similar to the old Bgyptian method, by which, during the floode, the water, impregaated with alluvial soil, is directed to and retained in anch places where it is most required to elevate and fertilise the coll; secondly, by the usual metbod of dyites and channele. The firat plan is, obviously, the best, at no land is lost by the cutting of canals, dec.; bat the expense is very great. Thas, moat probably, the second plan will be adopted with the Narenta: one of the principal reasons for ita adoption is the attention here paid to the rearing of the ailkworm, and at the malberry trees attain an extraordinary nire (some being 15 feet in cirenmfereace), it is proponed to plant them along the canals, and thus streagthen and solidify the conaistency of the sail.

Amatralian Antiguities.-Although this title may monnd somewhat anomalous, we have anmmed it deliberately, as it can be proved to evidence, that as soon as man tranagrenses the limite of animality, be bocomen a monturntat being, if we may so term it. Although many other criteria have been asoigned to the idea of humanity (speech, using of instruments, \&c.), yet it in, after all, art of mome kind or otber which marks the limita between brutes and human beings. Ia Australia, a contlnent of extremely novel formation and civiliation, these art-traces cannot be bat very faint-atill, they exiat. We count amongat them those matioe roads, as they are to be met with in many parta of New Holland and Tasmania; and avail ouraclves of some notices derived from a colonial publication: "Our amages know of no rule, no rytem, except where they are absolately forced to resort to it. In their Fanderings throngh open plains, they fullow, even if their nuwhers be conalderable, their own fancy; bat. if any locality, which they have to pass, presents any particular feature-for instance, is encompassed by awamp, and the like ; then, as a matter of course, a certain direction is given, and mast be followed. Thin is the reason why regular roads (paths) of the Papuas are rather frequently met wibb. Such are to be found on the coal-eandstone rocks between Botany Bay and Point Hakiog ; but the coost remarkable are in Byron's Valley, Australian Alpw, where the wanderiog of tribes of aeveral handred persons, hat worn of the sward of the soil, and even impressed the grenite anderlaying it. From these to the Llame roads of Mexico and Peru if but one atep. These paths are the only historical monument whioh the Papus leaves hebind him-if we except, perhaps, large eccumulations of oyster and cockle shells, near the sea shore; and which, as some inatruments to open them which have been found amongat the beaps testify, have been thus aceumulated by these people frequenting and feeding at anch places for a series of years. Tranagreasing from these aboriginal antiquities to European ones in the Australian colonies, we presuree, that a freestone slab above the door of one of M. R. Campbell', warebouses in Sydney Cove, engraved with the date of 1802, will be ouce valued tat oldest inscription of the kind in Polynesia."

Hor Majesty and the Royal Comoort's Priwate Art Collections,-Unontentations as many other of the Queen's endeavours at general im. provement-the entabliching of an eapecial achool for the children of the domeatic hoasehold and the labonsera at the royal palace, and other actothe art collections at Buckingham Palace and Windsor Castle are aloo judiciously, yet unceasingly, increased. As the sovereipns of this country, fortanately, do not possess the power to draw on the Treanury for any amonnt, their collections do not connist of bulky and contly apecimeme-bnt of a number of select and clever engravinge, drawings, miniatures, \&e., Which, while they pleasartly and wortbily occupy the leisare hourt of the royal couple, will serse as early incentives to tbeir growing-ap family, and at a future time (be it a remota one) merge into the general itock of the country's art-trophies.

NOTES OF THE MONTH.

The new Roman Calholic church In St. George's Fields, by Pugin, has been advertised us open to the pablic.
The Royal Iuntitute of British Architects bave published a copious catalogue of their library.
The great east window of 8t. Peter's cburch, at Sudhury, is being restored hy Mr. Sprague, of Colchester, at the sole expense of Dr. Maclean.
The Bishop of Norwich, at his last visitation, made some very strong remarks againat pews, and expressed his gratitication that his caibedral was now thrown oped throughout to all classes.
The luprovements in Durham Cathedral are making most satisfactory progres.
There has been an unfortanate accideat on the Shrewsbory and Cheater railway, by the falling in of a large viaduct bridge, by a train being thrown into the river.
The great tamel for the sew station at Liverpool, and running from Ciarence Duck to Edgehill, has been begna at the surface.
A beautifoi irou steamer, named the Oberon, was last aronth sent out from the yard of the Mesars. Mennie. She is of 050 tons, and 200 horse power.

London，Brighton，and Soush Coast Railway Company．－The directors baving decided upon the competition designs for the terminns at Nev－ haven，have awarded the premium of $£ 100$ to Messra．J．W．and W．A． Papworth，of Caroline－street，Bedford－square；and that of $£ 50$ to Mr． Martin Stutely，of Gower－street，Bedford－square．
The Hadover and Harhurg railway has bena opened．
The Croydon Atmeapheric System．－The Croydon Atmospheric Railwey is at an end I At a bonrd meetiog on Tuesday，May 4，it was determined that the live ahould be shot up；and this was done forthwith．

Predention of Oxidation of Mefals．－A correspondent of the Mining Jomr． mal，says－＂．I have been led to adopt a simple method of contiog metals，by the agency of an acid，so as to secare them most afticiently from the de－ teriorating influence of oxidation．The article to be coated ia first dipped in a dilute acid，composed of two parts salphuric acid and one nitric acid， in oine parts water．After immersion in this solution，the article is to be washed in clean water，and then allowed to drain；and so suon as it ap－ pears to be dry，it is to be hrusbed over with copal or lac varnish；the var－ bish attaches itself firmly to the acidulated surface of the metal，and never peels off．The beat species of varnish for this purposs is probably copal， to which is added a littic litharge．I have subjected sheet－iron thus treat－ ed to the contiaued action of sea water for several months，withont its sus－ taining any injury．It is，perthaps，worth while for ship owners to con－ sider whether a considerable economy would not result from the applica－ tivn of this method to the copper sheating of ships．＂
Sawing Engine．－At the Royal Institation，April 16，Prof．Faraday called the attention of the members to a working model of a sawing－en－ gine，invented by Mr．Cochran．By this engine wood can be cut into curres of donble currature（i．e．，curves in two planes）．This is effected by the saw being made to torn on a vertical，while the wood is turned at the same time on a horizontal，axis．

Reernt Depressions in the Land．－A paper was read at the Geological Society，Feb．24，by J．Smith，Esq．，oo the above sobject．Mr．Smith gives the result of careful measarements of the sea－level above the pave－ ment of the famous Teuple of Serupis near Pozzuoli．These measure－ ments，made independently in the years 1819，1826，1888，1848，and 1845， by Mr．Smith，Prof．Forbes，and the Chevalier Niccolini，all conspire to prove a gentle subsidence of the land on which the temple stands at a rate of about one inch anoually．Mr．Smith gives other proofs of the encroach－ ments of the sea from an engraving in the＂Vera Aotichita di Pozzuoli，＂ published at Rome in 1652，where the churches are represented as inter－ vening between the three columas and the sea．Thene churches are washed away，as well as two sea－walls，built one within the other for the protection of the road．Mr．Smith then gives a variety of proofs，histori－ cal and geological，of the aubsidence of paris of the coast of Normandy， Brittany，and the Chanoel Islands．The stumps of trees are seen stand－ ing in the sea，in spots where，at high water，the sea is 60 feet deep；and Mr．Smith has ascertained，from MSS．of the ninth century in the Library of Avranches，that these forests were tranquilly submerged abont that period．Mr．Smith also states，on the antbority of Capt．Martin White， R．N．，thal on the coast of Nurmandy，lines，evidently artifcial，and appa－ rentiy atone walla，are seen under water ranoing out to sea，and that the lead in sounding on that coast frequently brings ap fragments of bricks and tiles，which be is cuavioced are the ruins of submerged buildings．

Electrical Musical Instrument．－At the Freach Academy of Sciedces， M．Froment presented a little electrical instrument，with a vibrating blade yielding a sound．It is composed of a small electro－magnet of iron，the contact of which oscillates between one of the pules and a stop against which a apring causes it to bear．An electric current，introduced into the spparatus，pusses by the contact in iroo and the stops in such a way that the circuit is cat off when these two pieces are separated．This last effect takes place when the wire of the magnet is interposed ia the circuit；for it then attracts the contact which，in abandoning the stop，interrupts the flow of the current．The magnetic power then ceases，the iron blade pushed by the spring returns to strike the stop，and again closes the cir－ cuit．A new magnetic power is again given，and again checked，and all this with great rapidity，so as to cause several thousand beats in a second． By turning the screw which serves to vary the amplitude of the vir ration und the immediate force of the spring，the instrument can be made to give out all the sounda upon tbe musical scale．Tbe instrument being so regu－ lated as to give out a fixed sound，the slightest variations io the intensity of the current emploged cause corresponding variations in the sound；and thus the apparatus may be employed to judge of the regularity of the passage of electricity in varions instruments used in electrical experi－ menta．

Fresco Painting．－A new method of painting as a sobstitute for fresco has been discovered hy a Freach artist，M．Chevot．It is called by the author Fresque Mirturale，and consists of a composition which effectually resists the action of alspetre，so fatal to fresco painting wherever there is saltpetre in the wails on which it is laid．The effect of M．Cbevot＇s painting is as bold as that for which it is a substitute，and the colours are as vivid．It possesser not merels the advantage of resisting the effect of saltpetre，but can be whahed when dirt or dust has accumulated npon it with quite as mach security at oil paintingt．

HIET OP ETHW PATERYTB．

GRantid in genghand from apmil 24，to may 18， 1847 Sife Mouthe cllowed for Enrokment，milese otherwire eapreanid

Theodore Eyja Jenteas，of Birmlogham，manufectoser，for＂an Improved． improved methode of manufacturing papier tonche artictes，aiso a new or fripa thod of ornameatiog papier mache articlet，which sald smethod of ornamentig maché articles，is aleo applicable for orommental purposen generally．＂－Bealird A
John Morgat，of East Green wiah，manager，for＂certuln Impr rementa in mi applicable to preparing and spinaing fax and hemp，and other abrous aubetix A pril 27.
Jobathan Athason，of Liverpool，In the connty of Lancaster，somp boller，for method of menofactoriag monp．＂－April 27 ．
Caroline Wateon，of Chorley，in the county of Lancuter，for＂Improvemente ratus for Altering．＂（A communication．）－Aprll 27.
Alfred Vincent Newton，of Chancery－lene，Middlesex，mechacical draughte ＂certaln Improvemente to the conatruction of roads of ways，and In the carrial used thereon．＂（A communicellon．）－April 27.
Thomas Denne，of Bermondsey，Sarrey，strap manufacturer，for＂Improve， the manifneture of grease or compontion for atmuspheric plpen，and for lubrit axies and moving parts of machinery．＂－A pril 27.
Joha Conten，of Beediey，in the county of Lancanter，calleo printer，for＂Izupp in machinery or apparatua for cleaniag the surface of woven fabrics，or freting trom fibrous or other loose matiers，previluis to prtatiag thereon．＂－April 2% ．
George Themson，of Notlingham，cabineL－malrer，for＂Improvemente in meek sumpog wood and other sabstancen．＂－April 27.
Mate Malanie D＇Kervily Hehuemana，of Rae Ollichy，Paris，and Heary Petti． Phace de Chatean Roage，Paris，for io Improvements it laskumente for wrilang． 27.

Rebert Broad，of Tipton，in the county of Stafiord，eaglineer，for－Improved rallmay turn－Lublea．＂－April 28 ．
Richard Archibald Brooman，of Fleelatrert，London，for＂certaln Improves raliwhy tura－Lables．＂（A commaniention．）－Aprli 28.
Willise Carter Stafford Percy，of Manchester，apholder，for＂Improvemantal cbloery for making an 2 dremelog bricks and tiles，and is certaln theda aud killna enioery for mating an 2 dremiog bricks and ties，
bricks and tiles are aried and trarat．＂－Aprit 29 ．
John Spear，of Gloncenter－ro，d，Hyde－park－gardena，gentiemen，for a－Improf In plano fortes，and in the mualcul acale of notes in ube for surh fuatromento，and apparaton to fectlitate the action of the lugars on the reye of the piano－fortes．． 29.
 chanie，for＂evertain lomprovements in machinery fur preparing and spinnlag cotce， and other abrons subutances．＂一Nay 4.
WIIHam Newton，of Cbancery－lane，ctill engiaeer，for＂Improvements in mith for letter－prese priating．＂（A communication．）－May 4.
Josept Taylor，of Tiplon，in the county of Stafford，engineer，for＂a certaln 1 ， ment or certain improvements in the conatruction and manafactive of wheelis for mand other crarriagee．＂－May 4.
Gardner Stow，of King－atreet．Cheapulde，geotieman，for＂Improvements in of utruction of atem－veasels，and an apparatus for propelifing abips and other vesack communicalion．）－May 4.
WILlam Henwood，of Portaea，in the county of Soushampton，navel arebleect provements in propeling veacele，and in steme．veasels．＂－May 4.
Lemue！Wellman Wright，of Chalford，in the conaty of Gloncester，eagloper，foce， tala Improvamont in muchivery，or apparatus，for aweeping or cleasaing chimnien and other similiar purpones．＂一 May 4.
Fennell Allman，of Chatles－street，St．Jamen＇s－spaner，Middlemex，consultiaf－en for＂an Improved mode of making，torming，or shaping candies．＂－May 4.
Conred Haverikam Greenhow，of North Shilids，genviemao，tor＂Improvementrif construecton of shlps or vescela，and to propelling ships or veasels．＂一May 4.
John Horsley，of Ryde，Ide of Wight，prectical chemiat，for＂Improvements serving animal and vegetable substances．＂－May 6 ．
Herbert spencer，of Lloyd－street，Lloyd－equare，Cleckenwell，civil engineer，for tuln Improvements in mactidery，tol pliming and mawing woor．parts of which het tonts are applicahle to mechinery for cuttag certala nther substaucen．＂－Al ay 6 ．
Moses Poole，of London，gentleman，for＂Improvements in appaiatui for cone and disconpectiag railway carriages．＂（A communication．）－May B．$^{\text {．}}$
Charies Fox，of No．8，Trifalgar－square，Cbaring．crow，Middienex，angineer，and Coope Haddan，of No．II，Upper Woburn－place．civil engineer，tor＂Improveme rallweg－chairs，and awiches in trenaily or fantenings，eud in machitory for preparta， way cleepers．＂－May 6.
Joham Goasob Segrig，of New Lenton，In the county of Nottingham，eogionen， ＂certala Improvementin In piopelling on land and on water．＂－Bluy 6 ．
Isham Baggs，of Holford－equara，Middienex，for＂certain Improvements in the ductlon and managemeat of aridicial Mght．＂－May 7.
Johhua Fielden，Eaq．，of Warernide，Todmorden，in the county of Lancaster，fu Improved mode of laytig and presalag cotton，sill，wool，⿴囗玉as，and other aurous mix Into cans，balkets，boxes，and other depositories．＂－Diay 8.
Amon Bryant，of Heavitree，in the county of Devoushire，gardener，and Michard
 conatructlog，and draloligg land，and an lmproved lmplemeat or implements to bef therela．＂－May 8.
Willsm Norman，of Paradine－plece，Finebnry，Middleaex，sabinet－maker，for provemeats ta the construction of expanding or dintog tablea．＂－May 10.
John Marta，of Allsop＇s－terrace，Middiesex，for＂Improvements in apparatic means aned when draulag cities，tomas，and other fanabited places．＂－may 8 ．
John Tatteriall Cunliffe，of aranchester，bide merchant，for＂crertain lonprovemp pickere，for powtr loome，and aleo in the tools of apparabe for manufucturliag the －aley 14.
John Thomas Gray，of Wardour．atreet，Middiesex，bootmaker，for＂an Improved and thoe．＂－May 14.
Thoman Shipp Grimmade，of Sheepcote Farm，Harrow．on．the－Hill，Middecex，foll new mode of treatiag milit for purpones of nutrimen i．＂一 May 14.
Thonas Haseldine，of Brudenell－place，Now North Road，Middienex，enginees ＂Improvements in the construction of rurnacen．＂一May 18.
Ruchard Peytoa，of the Bordealey Work，Bifiningham，metallic bedstend mank Borough or Birminglam，bramsfoudder，for＂C limpruentd，and Thomas Horne，of Bleade．＂一May l8．

30 Foort

THE NEW PALACE OF WESTMINSTER.

THE BOUEE OF LORDS.

With an Engraving, Plate X.

Architedure is pro-minenty a royal art-princes, pantife, and prefates bave paid more direct borange to it theo to any other of the fien arta. Is the pakay daye of Cbriwtinn arcastocture-ope its deesy was losulted by the mongrei abortion which wecall Classio-the spoils of eonquerort, the revenues of rich churches, the rotive treasures of pilgrims, the dowries of king's daughters, the gains of merchants and burghers, the tribute of provieneas, were not conaidered contributions too manificant for the erection of thoees stapeadoes edifices which adorned eyery town and city of medimal Earopar In our owa country, from tha, time when the Saxom Ethelthert fousded the abbey of S1. Augustine at Oenterbary, thl Heary she Sowenth reared the magrificent chapel at Weatmineter which bears his name, seal, wealth, and power had scaroely any other historical records bat palaces, colleges, and catbedrals. Architectare seems to bave boen a ruling and pervediag idem in the minds of the people of those timen. The mailed knigbt, returaing from the wars, made is hin ehiof care to adorn the abbey adjeceat to his ematlo-or, at least, to found a contly chantry in which prayers might be made for him when departed. Bival monactariot atiove with all their energy to ontvie each other in the magnitude and decoration of their edifices; their brethren travelled far and wide to levy contribations ; and every art which zeal and axperience could suggent, or saperstition and crodulity render available, wes pat in requisition.
All this took place in days when compontion devigra and tooders for batlding by contract were not yet invested. The common people shared in the architectoaic enthustamem of their superiors. There were mote pennies than golden pieces among the offeringe: and they who were too poor to give even pence, freelj bestowed their labour-felled trees, quarried stooe, dag earth, carried bardens, and considered no task too toileome, so that they might be gladdened by soelag their beautifal charch rising, day after day, before their eyes. It was a sorrowfal sight when the work stood still becunse of war or for lack of means. The pride taken in the task by these men, who were the lowest and humblest that lived in what have since been called the Dark Ages, is now so entirely out of date-so utberly onlike any modern popalar feeling-an to ceem incompreheasible, and almost improbable. To them the great fabric, as it gradually towered above their cottages, and became the way-mark of the country roond, was the chief boast and glory of their native place: and if they might only 200 with their own ejes the wondrove wort at length accomplished, which had slowly grown beneath their hands and the hands of thoir fathers, and, periape, grandfathers before them,-then, indeed, their highest embition was accomplished. These poor men were very apendthrifts in their love of the Beartifal.

Mach of this feeling donbless was due to the prevaling infuence of the charch and religious or soperstitious motives. But even after making a jiberal allowance on this score, a great deal romains which is only oxplicable on the anpposition of a general enthasinam for noble architecture. The religioas bodies themselves had little to gain by the mere decoration of their edfices: they, at least, munt have been aincere in their masonic senl; for had their charches been as hideoses as meeting-hooves in modern mampfactaring towns, or as contemptible as genteel chapels of anse in fachionebte watering-ptaces, their owt conctition would have romeined anaffected. Thoy mialstered in no way to their personal luxary or love of anoo in adorning beildings dentined for no private or seomiar asee. Neithor coold the leing have been eximated by aelish motives alone ;-Sthe hope of sheoletion, indalgence and eacy exemption from pepance, could not have saficed alone. The unanimity of purpose threaghout widely mapanuted conatries, its contisuance for centaries in succession, and its naiversality aroong all grades and claces, anfticiently show that mot axternal indicements alone, bat internal feelinge also, muat have been in operation. The internal feeling: which Infuenced these votaries of art were chiefty-s utroag love of bome, an hooest ambition for the honour of their birth-places, and a fond desire to raise ap something in their familiar hanats whicb might draw the wayfarer and stranger ont of their road, to marvel at its exceeding beanty and excellence.
Accordingly, their arehitectare was of home-growth and contemporary
-it wac onseatielly their own. These mon ware meitber cosmopolitaes nor archmologists: they sought neither for exolic imenportations nor for ramacitated antiquities-had no craving for thinge remored by either tiase or dintapoe-sead too litulo to careo for the one, travelled too little to atuin the oller,
 and was suoceeded by a strange fantastio anyle-the mingted prodectice of masy ages and climates. This melioy, as strange, as was ever seen in an old curionity shop, which grow fashiosable in England only mfter architocture beange the exclesive lanury of tha rich, has been lauded in all the set phrases of the dilletlanti, from the reign of Queen Elizabeth to that of Queen Viatoria. It has, therefore, been a most happy chance for the Fine Arta, that this confnaion of andagonistic principles, exhibited daring that long period, in the pablic edifices of Eagland, bas at last been checked, and that in offering designa for so rast and important an odifice sa the Nev. Palace of Westminster, the competing architects were restricted to two atyles which, whaterer their imperfoctions, possessed in a great degree these essential elements of architectaral troth-indigenous growth and the aubservience of decoration to construction.
The atgle ectually adopted by Mr. Barry-the Parpendicolar-is, of the two styles to which the deaigns ware ramricted, the one which most fuliy setiafies the teats in question. It is not only Bnglish, but excladively English. Tha change of architecture, atter the Deconted period, took in this country a form altogother diffarent to that axhibited in the conteapporary change of foreiga architectore ; so that it is all but absolutely true that the Perpendicalar atyie is pot to be found oot of Rngland. Agsin, the otyle was a frithful one-it involved none of the absurdities ariving from the incongruous combination of archen and horizontal architravea. All encomiom of the new brilding, thould therefore, at it seems to us, commence from this point-that it developes on a grand scale, for the fint time in modern pablic edifices, the priaciple of architectural truth. Colnmas, arches, piera, and battressen are emplojed not merely to be looked at, bat to contribnte each ite due ahare to the aupport of the bailding. It in true that this principle hat some exceptions. Large iron girders are employed in the conatruction; and though all attempta to apply modern mechanical akill to the legitimale parposes of art tend to the bepefit of art itelf, yet it muit be confened that the condistent adaptation to an ancient English atyle of mechanical applimeces so entirely unknown to ous anceators an were cast iron girders, involves considerable difficulties. Among the fow oxceptions to our commendation of the conatractive faithfulnem of the architectare of the New Palace muat be mentioned certnin arch-heads formed by single atonea. These atones are to all intents beams, and to cut them into the shape of arches is to deceive the eje by an affectation of forms withont purpose.
The interior of the House of Lords corresponds well to the character of the external architecture. We find the ame rich profasion of elaborate detrilh, the asme multitude of rectangular panels, the same minate and careful utady of the decorations. The old architects deemed the composition of their buildinga the firt point for consideration to which the elaboration of minor parts was to be kept sabordiante: bat the risitor to the House of Lorda must not expect any of that massire, bold combination of simple parts by which the older arcbltects produced effect, eren with restricted means. Everything here is rich, graceful, and delicate. The severeat of critics could not discern one oflemee against good tate. But there are no tovering colomna, dark vanlted rooft, plere that ecem to have been reared by giants, and bromd deep masees of shadow, mech a are found in the adjacent ancient building.
The drawing herewith shown is the fint of a serien, which we propose to give illuutrative of the new Honsen. It is merely an oulline, and munt not be considered as giviog any adequate idea of the affect of decoration-for every littje panel there shown is filled up with carrings and other earichments, which we shall hareafter give in detail. A work so large an is the House of Lords, so profusely and to minntely decorated, cannot be reprerented by any drawing which is leas than the sise of the original; for there is certiialy not a square foot of aurface, which ham not been placod under the hand of the decorater. Our engraving han, by the great kindnose of Mr. Barry, been mado partly from our own admesurremonta and partly from drawinga, and we thall endeavour to give a record of this raluable work, which may be received an anthentic.

The Honse of Lprds in a donble cube of 45 feet, that is to my, 90 feet in leugth, and 45 feet in hreadth and beight. It may be considered as contisting of three parth-the wouthern or throne end, the morthera or ber end,
and the middie or larger portion, in which are the wookenck, cierke' tablen und reats of the peers.

The Hoase is ifghted by twelve windowe, dix on the weat and air on the oust ; the latter side is the one shown in oor drawing. At each end of the Hoase are three archways of the seme dimenaions as the windown. At the throme and there arches are slied up to ast to reecive freceo paintings ; at the morth end they are recessed for galleries.

We shall confine ourrelves at present chiedy to the description of the sides. It will be seen that the side forms three tiers, the two lower of which are of onk panelling, and are divided by a projecting gallery. The lower tier in divided into twenty-four compartmente or dirisions, three under each window, and one under each pier. This lower tier is formed into pabela, four high, with a coved panel or canopy onder the gallery. The three lower magea of pasele are of the "napkin" style, with V.R., an oak leaf, and crown intertvining in the cornert of the folde of the drapery. The fourth range han an ogoe arch, crocketa, and finials, the arch being divided by quatrefolls and tracery, with a fower orament at the bottom. The compartmente are divided by a pillar bearing a buat. The buste form a series of the Ruglish king. Between the burta is an inseription, in Tudor characters of "God ara the Queen" in openworked letters. Above this and below the canopy is a pierced brattishing of trefolls. The canopy is mpportod by moalded ribs, apringing from the pilasters. Bech panet of the canopy bears the emblazoned arms of one of the Lords Chancellor of Bugland. The series begins with Adam, Bichop of St. David's, in 1377, and extende to Lord Cottenham, the present Chancellor. The arms of the sovereigna, also richly emblaroned, serve to mark each rejgn, and to form a chronological drision.
The front of the canopy is moulded, having a treillage in the lower moulding. The pendante are carved, and bear a llon's head, above which is the braws railing of the gallery. The lower part of the brawwork consinta of roses intertwining. The reat of the brasawork is chiedy twisted. The knobs are enamelled in colour and gilt, and serve to relleve and set off the braskwork.
The gallery only containe one row of seate, intended for peereases, and is entered by a number of amall concealed doors in the panelling under the windows.
The upper tier of pavelling is very rich indeed. It is divided on a different plan from the lower panelling, as will be seen from our plate. The upper panels are filled with labela bearing "God save the Queen," upon a ground of vine leaves and grapes in relief. The pillare dividing the panelling are alight and are elegantly carred. They aupport a cornice decorated with patere and embattled. Above this again is a bratishing of trefoill, interaperned with finialu correnponding to the pillars below.
The windows are each of eight lights, divided by mallions and transome, and the upper range of lighta subdivided and alled in with quarterfoil tracery. The windows are to be flled with atained glasa. On the aplay of the jambe the inscription "Yivat Regina," is painted many times, the words being separated by quaterfoils, alternately blue and red.
Between the windowe are niches with canopies, in which are to be placed statues of the Baroas who signed the Great Charter. The pedeatal is supported by an angel bearing a shield, on which in emblazoned the armi of the Baron. The interior of the niche is diapered, but the canopy, pillars, \&e., are gilt. Above the niches apring the spandrele, to support the arched ribs of the windowe and the ceiling, being filled in with quaterfoil tracerg, richly gilt. On the fascia around the Houne is inscribed repeatedly the motto, "Dien et mon droit."

Chromatype.-The most interesting process of photography appears to be that of the Chromatype, discovered by Mr. Robert Hunt. It consisti in washing good ietter paper with the following solution:-Bi-chromate of potahh, $10 \mathrm{grr} . ;$ sulphate of copper, $20 \mathrm{grs}$. ; distilled water, 1 oz . Papers prepared with this are of a pale yellow colour; they may be kept for any length of time without injury, and are always ready for use. Por copying botanical apecimena of engravinga nothing can be more beantiful. After the paper has been exposed to the infuence of anabine, with the object to be copied saperponed, it in washed over in the dark with a solution of nitrate of silver of woderate strength. As aoon as this is done a very vivid positive picture makes ith appearance; and all the fixing these protographic pietares require is well washing in pure water.

The Tradeaman's Book of Ormamental Detigre. By Samogi Latio. Part L. London: W. B.Orr.

The progress of ormamental desigr in this counlry has ereated its own circumatances; it hus now its own artists, its own cocietles, and its own literature. Whereas, when we began our labours is this Journal, it was difficult for a gentleman to get his bonee decoratedand then only under foreign superintendence and with foreign asaiaance ; in consequence of which, very few persons of competent means gave any encouragement to decoration: now, as in the case of the Baron de Gold smid's mansion in the Regent's Park, the mont admirable deslgos can be executed by Engllab aid alone. We are coovinced that had the High Datch party been allowed to have their own way, and to surrender the decorations of the Pulace of Parliament to Cornelius and the Munich people, the present progreas of the arts in England would have never taken place; and we feel gratified that we were among the earliest to oppose the attempt, and to claim a fair trial for Englishmen on their own ground. We do not regret that we then exerted ourselves, and we may any confidently that overy effort that bas been made of late years to forward the cause of art, hus been fairly met, and that there is every encouragement for future exertion-
Mr. Leith is an artist at Edinburgh, connected with the Board of Trustees for Manufactures in Scotland, and he has been led to bring forward a cheap collection of drawings suitable for tradesmen, with the view of apreadlog a better knowledge of atyle and parer elemente of taste. In thin first number there is, among the examplea, some excellent iron work, particularly perforated railing. The carved atand, which is called Flemish, doen not seem to un to have any impreas of atyle. An Italian study of angela, from a drawing made by Guido Reni, after an earlier muster, is admirable. There is an Elizabethan rignette. We know that a work of this kind is wanted, and we think that Mr. Leith is likely to prove successful. We shall therefore watch its progress attentively.

General Table for Facilitating the Calculation of Earthmorks. By F. Bashrosth, M.A., Fellow of St. John's College, Cambridge. George Bell, Fleet-street.
A table for the calculation of eartbworks, of sufficient generality to include all cases-and at the same time of easy application - has long been a great desideratum among engineers. The two tables which Lave been hitberto employed are those of Bidder and Macneill; the great objection to the former is the number and labour of the operations required, and to the latter that they are not aufficiently comprebensive. Neither of these objection apply to Mr. Bashforth'a syse tem, which is very aimple and easily applied-and moreover has this advantage, that it includes the case of sidelong cuttings. The tablea, with the acale for proportional parts, are not much more bulky than those of Mr. Bidder: the mode of using them we now proceed to deacribe.

Suppose two crous sections, a cbain apart, to be made tbrough a railway cutting; and first suppose that the slope on either side is unity, and the beights of the opposite banks equal at the same section, but unifurmly decreasing from end to end. If now we suppose the inclived planes to be produced, they will meet in a straight line below the formation level; and the figure included between the two vertical planes of the sections a clain apart, an inclined plane through the summit of the banks, and the inclined planes of the benka, will be a portion of a pyramid. If, morever, a and b be the vertical depths of the line where the planes of the benks or alopes meet below the summit of the cutting at the two sections, the volame of the portion of the pyramid will be $=\frac{22}{27}\left\{a^{2}+a b+b^{2}\right\}$ cubic jards. If, now, the slope, instead of being $=1$, had been $=r$, the volume would have been $\frac{22 . r}{27^{-}}\left\{a^{2}+a b+b^{2}\right\}$ cubic yarde; and if the distance between the ter minal sections had been d chains, ibstead of one chain, the above quantity must bare been multiplied by d. In order to find a and b, suppose a and k^{\prime} the beights of the portion of
entting at the two ende measured from the formation level; \boldsymbol{c} the breadth of the formation level; and r the slope:-then

$$
\frac{c}{2 r}+A=a ; \quad \frac{c}{2 r}+A^{\prime}=b
$$

But the quantity of parthwork is equal to the volume of the above frustum of a pyramid, minus that portion which lies below the formation level; and this latter portion is a prism, bounded by two triangles at the ends, the areas of which are, for a slope $1,(k-a)^{2}$; consequently, if L were the length in chains of such a prism, its cubic contents would be $\frac{22}{9} . \mathrm{L}(h-a)^{2}$; and for a slope $r \frac{22 r}{9} \cdot \mathrm{~L}(a-k)^{2}$:
\therefore the quantity of earthwork taken for L distances, a chain apart, and a slope r would be

$$
\text { r. } 亠 䒑 \cdot \frac{22}{9}\left(a^{2}+a b+b^{2}\right)-\frac{22 r}{9} \mathrm{~L}(a-k)^{2} .
$$

In Mr. Bashforth's tables, $\frac{22}{9}\left(a^{2}+a b+b^{2}\right)$ is tabulated for all integer values of a and b, from $a=0$ to $a=65$, and $b=0$ to $b=65$; and a scale of proportional parts is added, to extend the calculation to decimal parts of a foot.

Example for Equal Distances.

To show how to use the tables, we will take out the following example, working it first by Mr. Bashforth's, and then by Mr. Bidder's, methor: :-

Heights from formation level at distances a chain apart, 30,40 , 25,35 ; breadth of formation level, 80 feet; slope, $1 \frac{1}{6}$ in 1.

Mr. Baseforth's Metbod.
To find the quantity to be added to each of the beights, divide lalf the base by the slope: then $14 \div 18=8$. Adding this quantity to the heights, and taking the corresponding figures from Mr. Bashforth's table, we bave the following scheme:-

Example for Unequal Distances.

In the last example the sections were supposed to be taken at every chain. If, bowever, we take the sections at unequal distances, the difference between Mr. Bashforth's method and Mr. Bidder's is more apparent. In both, the tabular numbers have to be multiplied by the dintances; bnt as there are tro tabular numbers in Bidder's table for every distance, the number of multiplications is doubled.

Let the sections be taken at distances 3,2 , 2,1 , chains, respectively. Let the beights be $\mathbf{4 0}, \mathbf{3 0}, 20,15$, and 10 . The slope 1 to 1 ; the base 25 feet.

Mr. Babiforth's method.
The addition to the heights is balf $25 \div 1 \pm=10$. Making the
addition, taking the numbers from the table, and multiplying hy tha corresponding dintances, we have

Mr. Bidder's Method.

Hedghta	Tubalar Nambers.		Distances	Products.	
	Centre.	slope.		Centre.	Slope .
40,30	$85 \cdot 6$	3015	3	256.8	9045
30, 20	$61 \cdot \mathrm{I}$	1548	2t	152.7	3870
20,15	12.8	754	2	$85 \cdot 6$	1508
16, 10	$30 \cdot 6$	387	1	$30 \cdot 6$	387
				625.7	14810
				25 (base)	14 (slope)
				13142	18512
					13142
				tal cub. yds.	81654 (1 no)

Macneill's method does not, like the above, give a general table for all slopes and bases and any combination of them, but a number of special tables of particular slopes combined with particular bases. This method not being general, it would require not a volume, but a library, to contain tables of all combinations of slopes and bases which occur in railway practice. The cases above taken (for example) are altogether omitted in Macnelli's tables. But wherever these tables do apply, the arithmetical operations are nearly the same as Mr. Bashforth's: and consist in multiplying the tabular numbers by the distances, and adding the results.
The great value of Mr. Bashforth's tables is the scale of proportional parts; for the mode of using this, and likewise for the calculation of earthwork in sidelong cuttings, we refer the reader to the next number of the Journal : we cannot, however, dismiss the subject even temporarily, witbout expressing our conviction that Mr. Bashforth's tables are by far the most simple and generally useful of any that have get appeared;-such we know is the opinion entertained by men who have for vears past been engaged in the computation of cartiwworky, and, consequently, are best qualified to appreciate the vulue of tabular modes of shortening the labour of calculation.

The Hand-book of the "Sounder;" or Theoretical and Practical Treatise of the Sounder (or Borer).-Guide du Sondeur, \&c. By J. Legousser, civil engineer. Paris: 8vo.; with maps. 1847.

The work of M. Legoussee treats of every subject relating to borings for underground works, and although there has been uo lack of detached papers on this bead, the work before us comprehends the whole of the facts and reasoning bitherto known. After baving brietly aketched the history of the subject, the author proceeds to the geological portion of the doctrine, and firat defines what is to be called a geological basin. He describes, then, the aspect of secondary and tertiary basins in different countries, and examines the most favourable localities for the boring of artesian wells, the strata of fossil foel, rock salt, mineral waters, \&c.

After these preliminaries, our author enters on the description of the different systems, and the different applications of sounding; the explanatory apparatus for the study of the ground; the driving of piles, and placing of poles for telegraphic lines; mooring stones, and foundations for suspension bridges; submarine boring for the removal of shoals and reefs, and the improvement of bridges; horizontal boring, and other mining operations-ventilation, and absorbing pits for the draining or absorption of fetid waters; in fine, on artesian wells and the search for underground water.

After having dilated on the different modes and aystems of boring the work passes to the description of the different boring apparatus -as Instraments for clearing and emptytog, correctiog apparatus, instrumeatin for boring horizentally, or for boring in the angles of walls, \&ec. The author then details meveral contrivances for tubes and repairing damages, and inserts a journal of a boring operation, indicating with great accuracy the progreas of the work through different formations; the accidente which might bave intervened, and the remedies resorted to to repair and prevent them. Δ recapitulation of the results hitherto obtained by boring, and what may be accomplished, follows, and the author conclades this chapter by the description of some instruments which are indiapensable for ascertaining the extent and quality of work performed in any given time. The means for obviating the decrease in the flow of artesian wella, as well as abworbing pits suffering under stoppages, are then given. The work concludes by fixing attention on the especial law of geology and mechanics, which it is jodispensable for the borer to know, and for securing a proper execution of the many works in which boring is now used. The platen form a very mefal and interesting acceasary to this deserving work.

Carpentry in Divisione of \mathcal{A}, B, C. \mathcal{A} Comprehensive and Useful Work. Dy Perer Nicholson. In Twedty Parts. Part L. London: Weale.
This is the first part of a new issue of Peter Nicholson's work, with additional piates, and many promised improvementa. The work seems hikely to be what it is atyled, "compretrensive and aseful;" but we hope that the redandancy. of Mr. Nicholson's atyle will be carefully prased, and that unexecuted designs (such as the verandah by Mr. Arundale) will not be pubtished. Mr. Nicholson's practical plates are very good, but his deacriptions of them are apt to run to too great a length.

Poot Office Railway Directory for 1847.

With the growth of reilmay kinge, directors, and members of parliament, it becomes desirable to know who they are-which is, we uppose, the reason for the present work, which gives an alphabetical list and biography of all these fanctionaries. Thus we have sketches of the Stephensons, Brupel, Locke, Hudsor, \&cm, and as the book ministers to public curiosity, it will in all probability be a standard. We notice a list of railway engineers and mechanical engineers, with the appointments they hold.

Architectural Maxims and Theorems. By Tromas Leverton Donaldson, Professor of Architecture, University College. London : Weale, 1847.
Mr. Donaldson has prablished a varall work, whieh consists of two parts-a colleotion of maxims, and a lecture on the character of architects. It is a work remarkuble enough to deter as from reviewing it at the late period at which we have received it.

THE DEE BRIDGE PAILURE.
Considerabio jateress bat been cansed among the profescion through the failure of a cast iron girder bridge over the River Dee, near Chester, which took place on the 24th May leat; and in consequence of the accident involitigg the death of some individuals, a coroner's inquest has been held, which lasted several days. It not our intention to give the whole of the evidence, as much of it was oxtraneoun ; bat we shall seloct thore portiona which immediatoly apply to the conatruction and fullure, wid then offor nome remarks of our own, together with a wood-engraving of the girder, showing the fracturen, and a section.
Mr. Thomas Alprrd Yarrow, who whes selected by the coroner and jury to examine the bridge, aeid, -I have been a civil engineer for the latt 12 years. I have held the appointment of bridge-manter for Cbester for some time, and have no conaection at present with any railway. I have made an examination of the railway bridge over the Dee, and I now read my report of the Inspection:-

Report.-"Upon examining the bridge, I foond that the masoory and iroowork, with the exception of that part of each which has fallen, were in an appareatly sound state. The principle of the bridge is that of truased girders of east metal restiog opon stove piers and abutments, which.are parallel to the course of the river, but mikew to the sailway
 bolts at the joints, sod, in addition to belog bolted to the foll depilh of the ginder, each joint is surmonated by a segmootal piece, to receive which, notches have been cast in the apper sarface of the girders. The lension rods descend in an oblique direction to each joint, and are carried horisontally betweea them ; they consist of separate bars of wrought iron, which are eecurod to each other laterally by chps. The portion of the bridge which has fallen coosists of one outside girider on the Sulteney side of the river, with the attached platform and trancverse tenaion rods. Two stooes, composing part of the striag courme, and atting as a bed for the ginder wa the Golvesey ebmemeot have fallon, and alioo the cormer stone at the semte exthe of the opposite river pier upoo which the broken girder rested. The girder Kself is broken, baviag two fractures in the leagth near to the Sellessey abutment, and oue in its centre. Having premised this short description of the construction of the bridge, and tis present appearance, 1 may proceed to detall the facto which I bave remarked daring my investigation, and which have enubled me to arrive at a confieat conclasion as to the cause of the accident. My attention was in the Ifrst inatance directed to an examination of the fractured ends of the girder, for the purpose of ascertaining whether any defect had existed in the castings. The appearance of the broken surface led me to conclude that the castioga had beea sound, and the tension bars, as far as they have yot been recovered from the waler, are anbroken.
"From calcalations which 1 have sade of the strength of the girdens, taken from ad actinal measarement of the eeetion at the point of fracture, I find that, independent of any additional strangth trint may be obtition from the tension bars, the girders alone are capable of sustaining a mact greater weight than conld under any ordinary circumatances be placed upon thom. The breaking weight of ouch girder I calculate at 74 tons, sopposing the weight to be concontrated over one point, and of both ginders 148 tons. But it is an admitted principle that a beam will canty twice the wright, distributed over its whole surfece, that it will bear upon one point. We can therefore conclude, that twice the above weight, $148+9=$ 296 tons, is the breaking weight of one bay or opering of the bridge for one liae of rails. The waight of girders and platform is, at a rougb calculation, about 90 tons, which must be deducted from the foregoing quantity; we have therefore 290, less 90 , equal 206 toms $=$ the breaking weigbt; und this is altogethor without reference to the tessiona bars.
"From the above ficts, I comeluded that the aocident did not ariee frote the breaking of the girder as a primery caase, and I therefore tirested my attention to the state of the masonry and to a consideration of ita sustaining power. Having carefuily examined all the dieplaced stone and their respective beds, I found that one, previously named as forming the acute angle of the river pier, and upon which one end of the broken girder rested, was lotally inadequate, in its form and bearing sorface, to its important situation. This stone bed sustaiced nearly three-quarters of that portion of the flange of the girder which rested upon the pier. The area of its lower surface is 24 f . 6 in., of thich 11 n .6 fm . ooty was bedded on the pier, leaving 13 n . to overhang as a cornice. The stome wha not connected by cramps or ties with the adjoining masonry of the pier. The railway over the whole bridge is curved. The broken girder supporting the onter side, and being subject to a greater lateral force than the girdere forming the inside radius of the curve, 1 consider that this lateral force, acting during the pasaage of each train, must bave so far loosenod the Inefficient masonry as to cause a displacement of the girder iteelf and its consequent fracture."
Mr. Robert Boand, superiateadetit of the Maucley Ifon Works.-The girders of the Chester railway bridge over the Dee were manofactored at thuse morks. They were tested before sent to the railway. Each girder was placed side by aide and tested by 50 tons of iron being put oo them in the centre. We took the deflection an every five lons, bot hare oot got the particulars of those dellections. The erdinary premore on the girders passing over them would not exceed 50 tons. After the girders had been tested we found a flaw in one of them : it wes a mere bonoy-cake, and it was rectified before it was sent away. I have since oxamined the girder, and found that the accident had not reaulted from the faw. The fractures were in the sound metal. I superintended the fixiog of the girders. There are many railway bridges of the same kind. On the Trent Valley line there are eight of the kind. It is not opened to the public as yel, but on the Blackwall railway there are several that have had heary trains passing over them for years. The one over the Dee is the largest. I never heard of any of them glving way. Had been several times to view the bridge when traime were passiag over it, and found the deflection rery trivial, not mucb more than an inch.
Major General Sir Charlps Willian Pasley.-I was the Goveroment Inepeotor-Goneral of Ruilwaye whea the Cbeoter and Holghead Railway was opened. 1 surreyed the bridge over the river Dee an October 2oth, and reported it as safe. I compared the placs with the soloal buildtas, and examined it in auch detail as I deemed necesmary. It is an iron girder bridge, of three openings or spans of 98 feet each; wrought iron tension rods are used to strengthen it. I always was of opinion, and an so still, that theso temion rods are not of great use, because I consider that the expabsion of wrooght and cast fron from heal differs in some degree, although pol very groatily; but that iroo ginders belng vory massive and the teosion bars thin and of small dimensions, the sun may act on the wrought iroo rode very considerably and less on the cant iron girders; and sopposing them to be adjusted for a moderate temperature, the intensity of bot wer. ther may destroy their proper proportion and do away with the beaest of
the temion. I may here state that wroegti Iron, whem seted upoo, will eloagate considerably withoat breakiog, but cast iron will aor withont brealiag. There have been a namber of bridges of this damoription erected on railways in varions parts of Eagland, both before and aftor I held the sppointment of Iaspeotor-Gemernt of Rathmeje, nome of whith, with the exteption of this one, over fadled. They were not quito of the ename ezteat, but I will allude to a catt iron ginder bridge of Yort, over the fiver Oese, of the York and gumporo' Bailway, which has twe openting of 70 feet span. The least depth of the iron girdor on that bridge is $\$$ foet, The Inat depth of thoee on the Dee bridge is $3 f$ 9 in. $;$ and is the bridge at Yert and other ainilat bridgee have alood, I comeluded thet this one would, as it bad an extre dopth. I may alco soeption moother betdre over He Teen, at Stoakion, elthough I have not seen it. I mey vouch for what I mate to be correct. It has a spen of 88 A 4 im , and the least dopth of irom is Ifect.
Mr. D. Brapmemor ald it mes 87 fret.
Geocral Pasloy.-I thought it wis what I stated, but you may the eotreot The flange on this bridge is grater thes on others. I Leve froqacetty moaticned to anglueers that wrooght jron censiou rods would do little sued. In wy inspection of a cast Irou sirder bridge, on the Eymion and Petartorongh Railway, built by Mr. Liddle, the resident eugineer, I Cuged that be hed onitsed tension bars, tod in my roport to the Eari of Clarsadoe I approved of the omiscion, asd conaldered it a preferable coasstruotion. It appoared that Mir. Liddle could not get the tension roda in time, and therefore he built the bridge withoot them. Haviag anationed this repeatedly to engieeers, and haviog been givea to onderstand that Mr. Bidder and Mr. Gooch have made experiments with a view of testing the atremsth of girders withont rods, I an informed that the trial was in faroar of the latter. As to the cause of the accident ;-it has boen atated that come lime after the Shrewabury and Chester railway was opened, and after I had inspected it, a sirder mas orncked, and was repleced by a aen ane. 2his aircountance, which I did mot keow, ead which whe bever seportal to government, conpled with the fracture of this one, iaduces me to thiak they are not safe, and that it is the mere cast of a die between their safoty aed danger. I consider that the tension rods are of very little use indeed. The tengion rods are coonected with the girder alope, as if they wert part of th. They bave $\mathbf{t o}$ independent suppert, and there is a difioremee be tween this bridge and Mr. Btopbenson's foemer iron ginder bridges. In all his former girder bridges there is a compezion from girder to girder, on the ceetral pier or piers, from ono ond of the bridge to the other, to that when the preapure is on one girder, the other girder io the same line contributes to assict. That is the case with the one on the river Oase at York. The bericeatal pertion of tivese barm appears to be oselets. The oblique tomaton bars would be of ose if the upper ends wore fixed to some indopendurt support to each pler, and similar indepeadent aupport on each abutnent, and if the standards or support over the abotments had tension bars axteading taland to resist the heavy weight going over the extreme baya or openiogs of the bridge. There is a swing bridge over the river Wensham, at Norwich, strongthened on this prinoiple, and which is extromely jadicious. In this case I consider thas the girder broke on a train paesing over, added to the weight of the ballast that bad been thrown on it in the coarse of the morning. The masoory gave way from the girier breaking, and from that catee alowe. I eramhed the girder; and the oabings coenal very good, and I belfove it is genorally adolitted that they are good ; bat the girder was too weak after the ballaat that was pot opon it. The firder was far enough in the maconry to support it. There was quite bearing eaongh to reader it eecare. I dernot think the ongine driver saddealy pettiog on the ateam would cause the engine to boond with enoth toee as to break the greder. I saw mothing to throw the ourriagee of the mils on the bridge, which had stroag gaard rails. I sbeald say that mo girder could bave withstood a defection of 51 inches. It would have broken short at once. A continued defiection of 4 loches must bave broken it long before tble occurred.
Mr. Robizt Stephenson pat In a written report on the accident; from wheh it appeared that on the day it occurred, and only a few hourn previonaly, he had marrowly inspacted overy part of the bridge, and anm nothing to indieate weaknew. He hed carofully oxamieed into overy circxmatance conneoted with the disaster, and for reasons which he geve, was atisfied that it arose from a violent blow againat the girder, near to the abotment on the Salteney shde, cansed by the train getting off the rails. The report said:-
"Is has bees sugrented that the unequal expation and comtraution of the girder, during great changee of temperature, might probably interfere with the aniform strength of the melal. It is impossible to deny that this circomstance does sometimes interfere with the atrength of cast irou beams; but generally this infuence may be regarded as confined to castiogs where the thiaknece of the difereat parts vary coscidernbly. In the present emee, the form of the castiags wescerofuliy atudied, and with oaly soch manall deviation from absolato moiformity in all thicknesses of the different parts of the section, as practice has long proved to be justifiable.
"With regard to the competent strength of the stracture, I concur generally to the deduction drawo by Mr. Yarrow, in which I am confirmed by an extensive experionee in the conatruction and ase of similar structares, briel ander elrememanops that demonstrate thair capmbilities to meet all the ordianty contingencies of railway traffic."
Mr. Jayes Kennedy, of the firm of Bary aod Keanedy, Liverpool, was recalled, and confirmed the opioion he had given at the lust meetiog as to
tre protate ancee of the cocilook. The ginder anght beve given why elther from a biow, or the extre welytt of ballonk and the tricia on it. Cantfrom ginders wore axpeble of mastating the ceatre 70 cean; bert if the tesaion rods wow pet parfeotly adjunted, be did not thisk le bridge safe for ordiamy truins. Hie ad net chink damp bellast piened on the bridge would affect the temperatare of the girclers so ms to onow them to break.
Mr. H. Rozeatmon, the eagiaeer of the Shrewsbory and Chester Bailway, was next called, and said-I have examiaed the bridge since the acclident. My opinion is that the bridge broke under the weight of the ongine and train, increaced to a large extent by the leying down of 25 tons of ballant on the platform jast previous to the acotlest. The witnoes then handed in a legatheoed report which he had ande to the Directors, reepectiog the faiture of the bridge, in which he anated that the fraotare spetion of by Mr. R. Stopheweoa, as having boen preduced by a lateral blow, wat, in bis epinion, oacoed after the gioder had fallen, apd that the fractore which cansed the brilge to give way was that in the centre. He conaidered that the teasion-rods tended mone to weaken the girder than to strongthen it.
Mr. Robertepe thet read the fellowing report wrich he had made to the Directers of the Bhrwmenry and Cbeater Railway:-
"I minately eramieed the Dee bridge on the Cheeter and Holybead Railway on the ocearreace of the acoident, and have aince esamined repeltedly the pointe whiol bear apos the aceideot. I have cansed drawinge to be propared and ahe a model, chowing the dotails of the atructure and the fragments of the beam, in so far as now discovered; and to these I would refer jov, instead of attempting to give a writion description of the bridge. (These ware prodoced in Court, for the inspection of the coroner and jery.) Yon will perceive that there are two priocipal fractures in the beam-one mear the centce, of feet from the weat abatment, in the middle portion of the ginder; the other in the portion of the girder next to the abulseert, and 20 feet from its 'foace.' The latter fractore appears to mo, from its form, and enpecially from the position in which the fragment lay, © shown in the grosod plan maken the morning after accident, to bave been camed by the fall; any disturbing cause previonsly to the fall is quite incontiatent with the close proximity of the fragments. The fractare at the centre, from the position of the fallen portion, and of the middle teosion-rod wrepped over the girder, and eapecially from the form of the fracture, appeare to me to have first taken place. This fracture I consider to have recolted from the weaksess of the top flange, which was compressed and broken by the etrain arising from the rolling weight of the engive and tender, and the vibratory motion of the structure itself, increased to a large extent by the deposit of 25 tons of ballast on the roadway immediately bofore the aceident. This compreseion is remarkably ovident by the bulging out of the metal at the point of the parting at the top of the web, or vertical pertion of the girder.
"In extimating the strength of the girder, I an of opinion that the tensionronls, from the ferm of the suction of the girder, weakened in, and threw an nodeo atrain, by compremaion, on the top flange ; but, assoming that they did not weaken it, ad applying the formula, as given by Katon Hodkin. 100, F.R.S., to the girdore-by one formula, the breaking weight is equal to 61 theas; and, by the other, the breaking weight is equal to 76 toas. Now, it has been an established rule in practice, that one-third or onefourth of the breaking weight is the safe working weight to which a girder should be subjected, and the larger the size, the smaller ought to be the proportion; taking, therefore, one-fourth of 56 (the breaking weight), it follows that the safe weight to which one of the girders ought to be sabjeated is 181, and the two girders 37 tona. The weight of the timber, platform, beams, rails, chairs, \&c., exclusive of the girder, according to an approximate calculation I made, is 10 tons 6 cwt ; and, adopting the rule that a aniform weight is diffused over the beam, is equivalent to ooe-half that weight amspended at the eentre, this becomes equal to a welght suspended al the centre of 9 tons 13 cwt . The equlvalent weight of an engine and tender of 33 tons 10 cwt .2 quarters, suspended at the centre of the beam, I astimate at 32 tons-making a strain of 41 tons 10 cwt agalnst 97 toms-the safo working strain to which the bridge ought to be subjected. However, on the afternoon of the accident, immediately previous to the pasaing of the train, the bridge was subjected to an additional strain, by the laying on of 5 inches of broken red sandstone ballast, amounting to a wreight over the bridge of 25 tons, which is equivalent to a weight suspended at the centre of 12 tons 10 cwt . This makes a total of 84 tons against the safe strain of 37 tons formerly stated; and the last addition appears to me to be the immediate cause of the necident. In these calculations, howover, it is assomed that everything is at rest, and that the forces applied are those resolling from direct pressure, whilst the evidence shows that there is a vibralory movement of the whole atructure to a large extent ; and there is, besides, a percussive movement of the engine and tender, which, with a beavy long-boiler engine, with outside cylinder, is considerable.
"The weight of the strmetare, and of the trat in motion, will be about 164 toos in all, and the strain from this cause must be added to that formerly stated. This strain, although it cannot be ascertained by accuracy of culculation founded on experiment, experience shows to be great; and I am of opinion that it formed a large element in the strain which broke the bridge down. There is almo the whole gross strain arisog from the pres. sure and the percassion of the strocture and its load, with the apportionment of that strain between the girders; for I am of opinion that, from tre loose ard independent coenctition of the giriers, and the giving of the atructure, the strain may have bees uvequally divided between the girders. These tavestigations, independenty of the evidence of the ege-pitmatses,
lead me to the cooolvaion, that the girder broke in the middle from lte weaksess to resist the atrain, increased by the laying on of the ballast.
«The apinions of Mr. Stephenson and Mr. Locke, founded on the allegred facts as to the paint on the lender, the broken oarriage-wheel, and the anipa In the chairs, appear to fall to the pround, at they must have been misinformed on thoee particulars, which can all be disproved.
"Henry Robertion, Eigdecer."
"Chester, Jume 15, 1847.
Captain Symonds, R.E., and Mr. Walker, who were retained by Government to examine into the causo of the accideat, presented to the inquest a very leagthened report, the following are extracts from it :-
"That the bridge was of saficient atreogth if the cast and wrought iron be sapposed to act together, each taking its equal proportion of the straln.
"That there is great difficulty in ibsuring the joint action, and that if this is a part of the priaciple of the bridge, wo do not approve of it.
"That neither the wrought oor the cast iron, taken separatoly, was sofficient for perfect stability; and that, to have insured this, the cast Irou girders alone shoold bave been of sufficient streagth to carry the whole weight, with an ample allowance for the varions circumatances (some of them peculiar to this brldge) which we have explained.
"That, with the exception of the beads, or warps in the top Alanges, the cantings are of good quality. That the wrought iroa is also of good quality.
"That the stonework of the piers and abatments is good; and in no way contributed to the failore.
uWe now come to the question, what was the immediate canse of the accident? As the bridge had carried as great or greater loads before, the suggestlon that there was something peculiar in this case, as the end of a rail having projected from the straight line and been struck by the engine, or the tender haviag got off the line and strack the girder laterally, is not improbable. The engineers who were called by the Railway Company considered that the breaking of one leaf of the wrought iron that was nezt the tander, the piece that was struck out of the girder, and the damage to the abotment wall, are all proof of the fact that the accident was caused by the tender having got off the lioe, and broken the girder by a heary lateral blow. We refer to the ovidence of Mr. Robert Stepbenson, Mr. Locke, Mr. Vigooles, and Mr. Goocb, who were also of opiaion that the strength of the girder was safficient. As to this latter point, we have already stated the principles apon which alone this conclusion could have been arrived at, and our own opinion. As to the teader or the carringe immediately behind it having got off the raiiway and damaged the abutment walls, there is no doubt ; and if the tender struck the side of the girder, when the latter was under great strain, a fractare was the probable consequence. This is on the presamption of the tender having got off the line from some other canse than the breakjog of the girder.
*Our own decided opinion, formed from the statement we have made as to the strength of the girder, and from the position in which the broken pieces were found, the two balves being each in a straight line, or nearly so, but at an angle with one anotber, is that the'first fracture took place in the centre of the girder, and not at the end which rested oo the abutment.
"In corroboration of this last view, the addition that was made to the permanent weight of the bridge, immediatoly before the accident, by the ballast spread over it, and the fact that when a weight, partly permanent and parily passing, but which together formed a considerable portion of the breaking weight of the girder, are in continual operatlon, Aat girders of east-iron suffer injury, as their strength becomes reduced; and if, when this bas taken place, the momentum of the passing weight is increased by an irregularity of the rails, or in the motion of the engine, to which the bent made and managed railways are suhject, a fracture is likely to follow. The probability of this having been so in the present case, and the fact of the tender baving been off the line, and having been drawn up with great violence, so as to break the end piece of the girder by the blow, are to be weighed against each other in assiguing the canse of the accident.
"Having refereace to other casea, it is proper to state that Mr. Robert Stephenson stated io his evidence that he bad erected a number of bridges on the same principle as this, and that this was the first failure. We bave not examined these bridges; they are stated to be all of a leas apan than the Chester bridge, but that the dimensions of the parts are proportionally less; and it may perhaps be argued from the above namerous esamples, and the opiaions of the eminent engineers opposed by this one failure, that we are mistaken in considering the weakness of the girder to be the canse of the failure in the prosent cose, and onnecessarily cantions in the objection we entertained, and have espressed, as to the principle of this bridge and its security; but, as we entertain these npinions very decidedly, it is our daty (by no means an agreeable one) to exprest them."

The Vordict of the Jury.

ARer an bonr's deliberation, the foreman, Sir E. Walker, retarned the following as the unanimous verdiot of the jury:-
"We find that George Roberta, John Matthews, and Charles Nevitt, were accidentallykilled on the evening of the 24th of May last, in the parish of St. Mary on-the Hill, in the city of Chester, by being precipitated along writh a train of carriages on the bank or bed of the river Dee, from the breakage of one of the 12 cast iron girders constitating the railways-bridge over that river.
"We find also that Iseac Powis died on the 26th of May from injurios
he received at the aame time and place, and from the like canse; and we find that Thomas Anderson came by hit death on the 24th of May last, in the parish aforeaid, by being accidentally thrown from the tender on to the rails.
"We are forther amanimously of opiaion, that the aforesaid girder did not break from any lateral blow of the engine, tender, carriage, of vao, or from any fault or defeat in the masonry of the piers or abutments; bat from its being made of a streggth insufficieat to bear the pressare of quick trains passing over it.
"We feel that the 11 remaining girders, having been cast from the same pattern and of the same utreagth, are equally weak, aud consequenty equally dangerons for quick or paseenger trains as was the brokea one.
*We consider we should not be doing onr doty towards the pablic if we separated withont expressing our unamimons opiaion, that no girder bridge of so brittle and treacherous a metal as cant irod alone, even though trumsed with wroggt iron rods, is safe for quick or passenger traien ; and we have it in evidence before us, that there are upwards of 100 bridges similar in principle and form to the late one over the river Dee, either in use or in the coorse of being constructed, on various lines of railway. We consider als these unsafe, more or lesa, in proportion to the span ; utili, all unsafe.
"We therefore call apon her Majesty's Goveroment to inatitute such en inguiry into the merits or demerits of these bridges, as shall either oonderna the principle, or establish their safety to such a degree, that passengers may rest fully satisfied there is no danger, althongh such bridges may deflect from $1 \frac{1}{4}$ to σ inches."

The Coroner atated that that portion which related to the death of the decessed could ooly be taken as their verdict. Their recommendations, however, he woald forvard to the Railway Departinent of her Majeaty's Government; and no doubt the prese would give them due publicity.

The bridge crosses the Dee river at an angle of about 48°, and is coestructed with three spans-skemed to the aame angle-of 08 feet each ic. the elear ; each span being sustained by fonr truserd girders, 109 feet long, one on each side, and two in the middle, making the two roadways inde. pendent of each other; on the iaside of the boltom fange of each pair of girders, whoes are cast, having a dovo-tailed eocket, into which wrogghe iron cross ties are fitted, to secure the girders from springing outwards at the bottom. Between these, and resting upon the same fange, are strong timber bearers or joisla, upan which a looring of four-inch planks is laid ; on this the longitudinal sleepers aro fitted, carrying the rails and cbeckrails, the latter being cantinued 26 foel beyond the span of the bridge each way.
The train pasaing over the bridge at the time of the accident consisted of the angine and tender, following which the carriages were arranged1st. One first-class: 2nd. One second class (with break and gaard-box): 8rd. One second: 4th. Luggage-van: 5th. Second-clans.

Each girder is in three lengths of cast iron, bolted together at the jolnts, making 109 feet in length and $\$ \mathrm{f} .9 \mathrm{in}$. in depth, and surmounted over each joint by a connecting ecarfing, 13 feet long and 8 feet high. The clear span of the bridge is 98 feet, and the bearing 6 f. 6 in. at cech end.

The width of the top fange is $7 \frac{1}{\text { tinches, }}$ and thickness I $1 \frac{1}{\text { inch }}$ on the edge; thickness of the web 84 inches; width of lower tange $\&$ feet by 2 inches thick. The top section, including the molding on the uaderside, contains 14 square inches; the lower tange and molding 66 square inches, and the web 80 incbes: making in all 160 square incues. On each side of the girder there are four wrought iron tension bars, 6 in. by $1 \neq \mathrm{in}$. the collected section of the eight bars (four on each side) contains $\mathbf{0 0}$ inches. The bars are put together in lengths, as nsual for suspension bridgen; and at the joints of the cast-iton bean, a wrought iron bolt pasees throngh the eight thickneases of wrought iron bars and the cast iron girder. To this cross-bolt are suspended two other bolts, which pass through the cast iron dovetailed plate, under the joints, and securad on the uaderside with screws and nuts, to bring the plate up tant to the fiange; and the eads of the suspeasion bars at the abutment are secured to a anst iroa misiog piece by cross keys.

It will thus be seen that the girder consists, in saction, of a cast Irea ginder (similar in form to 0 g .2 2) and eight thicksesces of wrought iroe ensponsion bars: these wrought irun bars, from the very fat angle at which they are set and secured to the cant iron girder jteolf, seem to be a very poor safeguard against the breakage of the cast iron. In faot, on account of the tension bare being inclined at such a small angle, that a displaoement of the particies of the cast iron girder, quite suflicient for fracture, wrould have produced scarcely any extension of the wrought iron bars, and, therefore, hardly called into play any resisting force from their temslon: the tension-rods, in short, were of about as much sorvice to the girder at a piece of pack-thread passed from ond to ead. The scarfiag
pieces being placed over the joiat, also appear to be injodicioully ar. rasged, and are not no good as when an increased dopth is given to the casting at the joints, as adopted in some other bridgen.
The anaezed wood-engraving (48. 1) is an elevation of a portion of the broken girder ; part of one of the length, which wat not broken, is ent chort for waol of space. The abotment ond of the girder is that portion which inid on the Saltmey abatmeat, and had a beariag of $5 \mathrm{tt} .6 \mathrm{is}, 0 \mathrm{on}$ the masonry. Thero are two fractures-one in the length nearest to the Saliney abatment, and which was of considorable extent, 8 ft . 8 in. Wide at the botfom, the fracture runcing along the meb, just on the top of the lower Alange, and then upwards in a slanting direction ou oge side and perpendicolar tbe other side. Fig. 2 is a section of the iron at this fractere, which chows two bolt boles at the top, made for fixing on an eaglo orvament, and donbless considerably weakened the girder, as at these bolk boles the finge was found to be completely crushed. From the appearance of this fracture, upon the whole, we are inclined to asaign it as the part that first broke. The other frectare in nearly in the centre of the middla leagth of the girder, and takes a diagoand direation acrose the girder upwarde, to the extent of 4 feat horisontally.

From experiments that have been made since the iccident, the deflection of the girders ander differeat loads is from 1 to 2 inches-the greater the velocity of the train the greater is the deflection : this shows that we must pot fix the proportions of a girder at three times the breaking weight; but coaniderably more mast be allowed-it ought to be at the least four, if not five, times.

The question that mggests itself, from the failing of this bridge, for consideration among eagineers, is whether a girder, containing the same quas. tity of metal of wrought and cast iron together, 140 qquare inchen in the section, could not be better arranged than the one before ns, so as to form the requisites of crossing over a roud or river without interfering with the headway below. From the beat consideration that we heve bestowed upon the asbject, we are indiceed to adopt a girder of the proportions and form abown in the maexed engravinge, fgs. 4 and 5 . The fangen at the joints

Mg. 4 and 5. Flerition and Plan of Propened Gtrder.
tobe wide, and of the form shown in fg. 3, and the surfaces planed; the connecting bolis to be of as large a diameter as the metal fange will allow, the iower bolts being at least 2l inches diameter; particular altention must be paid to the fixing of these bolts, and the keying of them, to prevent the nuts loosenlog by vibration.

According to Hodgkinson's formala* $\left(\mathbf{W}=\frac{2 \cdot 166 』 d}{1}\right)$, the breaking
weight of the Dee Bridge girder is 60 toos-that is supposing the tension bars to be of no mervice; whereas, the breaking weight of our proposed girder to 110 tods, end containa four tons less metal than the Dee Bridge trassed girder. The weight of 110 tons is, as near as can be, the atrength required for the Dee Bridge span of 98 feet, which will be equal to 280 tons for a pair of girders : taking a fourth of this weight as the safe strain, it will give 55 tons. The calculated atrain upon the girder at the time of the accident was 54 todn.
It is the joints of these girders that require the especial attention of the engineer, as we shall next proceed to show.

[^26]

A. Practare.
 Fis. 1. Elevation of Des Brides Girder 100 feet long avd 88 fint in clear of the Beariogs.

Tig. 2. Seetion at Frecture A. Depth 3 A. 9 in.

Pig. 8. Section of Proponed Girder at Juint

The cause of the fractare we believe to be, that the girder was jointed, and that dee consideration was not given to that circumatance in assigning their relative proportions to the flanges. As the offect of a joint is one that practical men are apt to overlook, we propose to examine the aubject in detail-excloding as much as possible symbolical lengaage, in order that our reasoning may clearly be apprehended. It is well known that there are naually three distinct divisions of a girder, consisting of the upper and lower flanges and the web: the vertical and transverse section of anch an arrengement woold resemble somewhat an H laid on its beck -thus $工$. The reason of this mode of construction will be better understood when we have determined the nature and amount of the strains and thrames experienced by the several parts of a loaded girder.

Let ABdc be a vertical section of a girder, resling oa the points A and B, and loaded with the weight vo at Q. Let $c Q=a ; c d=l ; B d=b$; $\boldsymbol{c} \mathbf{D}$, the section of the apper fange; $\mathbf{C b}$, of the web; and a B, of the lower fange. Let $\mathbf{R}=$ reaction at $\mathrm{A} ; \mathbf{H}^{\prime}=$ reaction at $\mathrm{B} ; \boldsymbol{w}^{\prime}=$ weight of the girder, which is sapposed symmetrical and aniform throaghout its length.
Then we ahall have these equation, when there is equilibrium -

$$
\omega a+\frac{\omega^{\prime} l}{z}=\mathbf{R}^{\prime} l ; \quad \omega(l-a)+\frac{\omega^{\prime} l}{2}=\mathbf{R} l
$$

Let us now soppose a vertical eection to be made through some point, M , of the girder. Let $\mathrm{CM}=\boldsymbol{h} ; \mathrm{C} \boldsymbol{c}=c ; \mathrm{A} a=\boldsymbol{d}$.
Consider now the equilibrium of the part $\mathbf{c} \mathbf{N}: \subset \mathbf{N}$ is kept at rest by the reaction \mathbb{E} at A, by its own weight $\frac{\boldsymbol{w}^{\prime \prime} h}{l}$, and by vertical and borizontal forces arising from its connection with MB: let Y be the vertical force; t and ' t ' acting at m and n, in the directions indicated by the arrows, the horizontal forcos. Let $\mathrm{N} n=s, N \mathrm{~N}=x^{\prime}$:

Then we have for the equilibrium of $c \mathbf{N}$

$$
\mathbf{R}+\mathbf{Y}=w+\frac{w^{\prime} h}{l} ; t=t ;
$$

also, taking moments abont A,

$$
\begin{aligned}
& \mathbf{Y} h+t x=v 0 a+\frac{w^{\prime} / h^{2}}{2 l}+t^{\prime} x^{\prime} . \\
& \text { Now, } t=t^{\prime} ; \mathbf{R}=\frac{\omega(l-a)+1}{l} w^{\prime} l \\
& Y=\infty+\frac{w 0^{\prime} h}{l}-\mathbf{R}=\frac{w 0 a}{l}+\frac{w^{\prime}(2 k-l)}{2 l} .
\end{aligned}
$$

Subatinting this value of Y, we find

$$
\left.f\left(x^{\prime}-x\right)=\varphi\left(a, h, b, w, \infty^{\prime}\right)\right):
$$

$\therefore t\left(x^{\prime}-x\right)$ is known, and depends simply on the weight of the beam and its load, and not on the shape of the beam-the only condition to that effect being, that the beam ahall be longitudinally uniform.

We find, then, that at the upper part of the beam there is a thrast, and at the lower part a teasion. Consequently, at the upper part the particlos of the beam are in a state of compression, and at the lower in a state of extension. Therefore, between \mathbf{M} and \mathbf{N} there is some point where the particles are neither extended nor compressed. Let o be thls point : 0 is said to be a point is the neatral axis. If, now, the beam were laminatedthat is, composed of parallel lamines, incapable of sliding over each other, and which obeyed Hooke's law-the amount of the forces arising from the extension and compression of the particies in MN, would vary as their distances from o. This is the lav asually assumed for materials of even a crystaline textare; at all events, the probabilities are, that even if the teasion and compreasion do not in all cases vary directly as the distance from 0 -they vary as some higher power of the distavce: according to rither supposition, it is clear that the particles near 0 are not so effective in supporting w and wo we thoee farther from it; and, consequently, we see the reason why the greater part of the substance of the girder is distributed at the groalent available distance from 0 , in the form of danges.

In the case of a cast irou girder like that of the Dee Bridge, it is not neceseary to make the upper flange as thick to the lower one, becanse cant
iron exerta a mach greater force for compression than it does for extension to the same amount, and bears a much greater crushing thas robding strain. Suppose now $M \mathbb{N}$ to be a joint, and the connection to be effected by menas of bolts let throngh projectiog lips, as was the caso in the girder that broke; --the quention irmediately arices, hom would that eflect ths thrast and arain on the upper and lower flanges? Beforo we connider this quention, is will be wisisable to akow that in the molecular consection, first noticed, $x^{\prime}-x$ is eithar or very nearly a meximum; and, therefore, y oither or vory nearly a minimum-for $y\left(x^{\prime}-x\right)$ is a conatant, as we proved.

In the first plaoe, taking the naval law-and supposing the girder not finged, but uniform, $x^{\prime}-x$ would $=\frac{2}{8} \cdot A c$; bat when we consider the fanges, the resaltants of the straina and throsto will be thmwa mach nearer to N and M reapectively ; and with the ordinary proportions obnerved for the lianges and web, $x^{\prime}-x$ would not be lese than $\frac{4}{5}$. A c, or $\frac{4}{5} \mathrm{MN}$ -and it is difficult to conocive any mode of connection at MN whimb could make it greater. We cannet, then, suppose that y cen be increened; let us, therefore, suppose that y is the mame for all modes of consectiog.

If, instead of the ordinary lew, we had ansumed any other law for the amount and rariation of the thrusts and strains, involving a higher power of the diatance from o than the first, (for instance that adopted by Mr. Hodgkinson) $x^{\prime}-x$ would ou such a supposition be still more increased. On the whole, we may fairly suppose y to be constant-certainly dot capable of being diminished by any mode of connection.

But although y remains constant, its distribution, both above and below 0 , will matarially depend on the natore of the joint. Sappose, for instance, a single bolt at N ; thes this bolt will sustain all the tension-and all the particles about N will be exposed to an enormons rending strain. Again, if, ses in practice, when the joint is boltod from \mathbf{M} to \mathbf{N}, the lip gives and is elighty defeated, and the bolts work loose, then, in order to maske ap the valae of y, more bolle than those between o and N may be in a state of teasion, and Jeas of the girder than from o to M in a atate of comprosion ; consequently, since the area which sustains the thruat is diminiched, the thrast per square inch will be increased. Also, if nome of the bolts work looser than olhers, the bolts which work tightest will be in the highest state of tension. Some of these causes of imperfeot action may be pre sumed always to exist; and the only way we know of compensatigg for their effoct, is very much to increase the vertical breadth of the girder at the joint. This, however, was not done in the girdare of the Dee Bridge.

To all this reasoning, it may be objected that the girder did not break at the joint. Our roply is, that the strains arising from a bad joist are trasa mitted to a great distance throagh the sabstance of the girder-and wbere the metal is weakest, there we may expect fracture to ensue. It is not enough to build bridges calculated to endure two or three times the greatest statical atrains they can be subjected to-especially when those atrains are to be supported by cast iron girders. The continual vibration to which iron is liable, tends to weaken the cobesion of its particles: the allermate expansion occasioned by hoat aud oold has tho same offect.

Lastly, it must never be forgolten that the ribration of a train increasea emormously the tendency to fractore, by bringing into play dyamiead atrains, the amount of which is beyond calcalation; and thet iron bridges are especially adapted to transmit such vibrations.

Artesian Wells in Voleanic Formalions.-The first attempts of this Kind in Naples were made, some years ago, near the Campo Santo, by the Societa Industriale ; they, however, yielded but a small quantity of water, at a depth of 80 or 80 foet. This led to the great undertaking in the Royal Gardens, which, however, is not likely to yield uoy favourable rosult. The deeper the boring proceede, the barder is the appeearnoce of the strata of volcanic tuffa-and the only adrantage derived is the parfect knowledge of the geological stratification of the terrain of Naples, on which the architect, M. Cangiano (who saperintends the work) read a paper at the meetung of Italian scienziate, in 1845, As the sopply of wator for the metropolis (eapeaially near the Pouilippo and Vomero) is constuntly on the decrease, government will be obliged to erect new eqeeducts at an enormous expense, and to convey freah water from Moate Taburno, or the sources of the Sarno-or oven so lar as the Tifetini and Trobulini mountains, noar Capon. It may be said with certainty, that the volcanic terrain near Naples does not contain a sufficient quantity of driakable water for its inoreseing popalation-oren if it be not the case, that the quastity of water is joenty deersening, for reacess not yoi properly accertained.

HISTORY OF ARCHITECTURE IN GREAT BRITAIN.
4 Briff Sketch or Epitome of the Rise and Progress of Archilecture in Great Britain. By James Elurs.
" Epitomes are heipfol to the memory, and of good private use." Sir Henay Wotion.

(Continued from page 170.)

It has been already mentioned that Inigo Jones had improved his tasto by atedying the works of Palladio add other eminent Italian architecte, in Inaly. It is not onlikely that he had met Sir Heary Wotton at Veaice, as this tastefal consoissear and elegant illastrator of the Vitruvien art was then ambasendor from James I. to the Doge. Jawes's brother-in-law, Ondetian IV., King of Deamark, who had heard of Inigo's repatation from that elty of lakes and palaces, introdaced kim to the British monarch, Tho immediately appoiated him his architect.

Joset's style, attor his retarn from Italy, bears marks of much improvement in taste and parity, as may be seen in the works he executed before his visit to that fostering conatry of the arts, and those which be designed after his return. This ominent architect visited Italy twice, and enjojed the friendship and patroagge of the celebrated Earl of Pembroke, and other tastefal nobility of the period.

Among his works not already mentioned, are additions to Lord Pem. broke's reat at Wilton, the porch of which had been designed by Holbein. Jonen's ohassical additions to this edifice are apparent, particularly the triamphal arch and its equestrian statue, that has been lately cited as an anthority, among others, in the controveray about Mathew Wyatl's coloneal statese of the Duke of Wellington, in Piccadilly. Also, the quadrangle of 8 . John's College, Oxford, another proof of his want of feellug for the beantioe of Gothic architecture, as is the Chapel Royal, St. Jamen's; Coleshill, in Berkshire ; Cobham Hall, in Kent; and the Grange, in Hampubire.

Before conefuding that portion of our notice that terminates with Inigo Jones, we must revert to some of those less known artists who fourished between the great days of the Tudor atyle and the expolsion of artis from England by the roagh-shod founders and supporters of the Commonwealth.

Whaterer maj have been the intentions of James I. as to the erection of a splendid palace for himself add his successors to the crown of the two Eiogdoms, which had been first naited in his pereon, he had strong objeotions to his example being copied by his nobles. Fearing that if they made their establishments in the metropolis too large and expensive, it might rob the provinces of much of their grandear, and the country people of their natural protectors, the wealthy aristocracy of their respective connties; he therefore issued edicts against the enlargement of the metropolis, and confirmed the royal will of bis predecessor, Elizabetb, that no furtber mansions or aoble residences ahould be erected but upon ancient foundations. Lord Bacon informs us, that King Jumes was wont to be very earnest with the country genilemen to abandon Londos for their country seats ; and that he would sometimes any to them: "Gentlemen, at London you are like mbipe in a mea, which show like nothing; but in your country villages, yon are like ships in a river, which look like great things."

Although James atteropted to drive his opolent subjects from the metropolis to their country residences, few of our monarchs had a greater anmber or more aplendid palaces in London than the successor of Elizabeth, from whom be probably inhereted this dread of palatial rivalry by his soblea in the metropolis. That powerful queen, who was one of the most absolute monarchs in our bistory, issued several proclamations, rigidly forbidding the increase of new buildinga in London. James did not content himself with merely reproving and exborting bis nobles and magnates, bat isseed eeveral proclamations to the same purport.

In 1605, when he had been but two gears upon the throne, be iseued the firat of these mandates, which forbade all manaer of buiding within the city, add a circuit of one mile thereof. Among its commands was the salutary one to a wooden metropolis, that all persons henceforward should boild their exteroal walls and windows either of brick or stone. The elassical reading of the king, who delighted to be compared in wiadom to Solomon, and in the patronage of literature and art to Augustus, probably wished to vie with the Roman emperor in the boast of having found his metropolis of wood, and leaving it of marble (atone). The reason given
in this proclamation for building with brick abd stone is, "as wall for decency, as by reason all great and well-grown woods were mach spent and wated, so that timber for shipping beomme scarce." James always showed a predilection for the ectablichmeat of a powerfal nary, bolb meronntile and warlike, as bis foundlag the corporation of the Trinity Honse, the cultivation of the royal woods and forests, and this proclamation, teestify. This edict produced as little effect as those of bis predecencor; be, therefore, iseued another, with mare striageat penaltion, dated Octobar 10, 1607, and on the 16th of the same month, some offenders against it were ceosured in the Star-chamber, for boilding contrarg to its temor. By an. other edict of the same nataro, issoed in 1614, the comminsioners are required to proceed with all possible atricineses agaliast every offonder of this sort. This bad somewhat more effect, particularly as to the mode of building with stove and brick; and from this period may be dated the reformation of the arehitecture of London, which is so muab indebted both to the arobifeot and his royal patron.
The first hoase of note that wat ereoted in conformity with this procla mation, was one in the Strand, built for Colonel Cecil; after that, one near Drapers'-hall, Throgmorton-street, in the city, is celebrated; anotber, bailt for an opulent goldumith, in Cheapside, opposite to Sadlers'hall; aod one that was built for a leathor-weller, in St. Panl's Churchyard, near the north gate of the cathedral, not being in conformity with the kiag's regulationbeing built of timber-was ordored to be takon down, and robwilt according theroto.

Among the principal mansions of this period, are Helfeld, in Hertfordshire, the seat of the Marquit of Balisbury, and Barleigh, near Stamford, in Lincolonbire, the seat of the Marquis of Exeter, both built in the roign of Queen Elizabeth ; and being atill in existeace, with very little alteration from their original design, are fine speoimens of the mixed pictorial ajple of the Elizabethan period.
James onlarged and improved, in a aimilar atyle, Theobeld's, near Chesbast, in Hertfordahire, originally the seat of Elizabeth's great primeminitter, Gecil, Lord Burieigh, who ofen eatertained bis royal mistrens withio its walle. It was a favourite residence of King James, and was the acene of his last moments. It afterwarda became the abode of Richard Cromwell, who retired thither after his rosignation of the protectorate of England. He passed the remainder of his days in this once royal residence, in pencefal retirement.
Of the principal reformers of taste among the literary men and nobles of the period, the great lord chancellor Bacon atande in the foremost rauk; and his opiaions on arehitecture and gardening are decisive of the character of those arts, which he so much improved, in his days. His maxim, that houses are built to live in, and not to look on, should never be forgotten by the domestic architect; and his description of a palace, in opposition to sach huge buildinge as the Vatican, the Escurial, and some others, which, he pithily observes, bave scarce a fair room in them, is characterintic of the best atyle of this period, which Inigo Jonen, Sir Heary Wotton, and the elogant-minded lord-keeper had wo much improved.
That the taste of Jones was infloenced by his aseociacion in literature and art, with Pembroke, Bacon, Wotton, Ben Jonson, and other eminent Englishmen. as well as with the literati and connoisseurs of Ituly, is proved not ooly by the purer style of his maturer age, but by the unrivalled design for the royal palace, which bears marke of being arranged in the study of the artist, assisted by noble minds, rather tban the work of a builder's office, traced by the mechanical hande of architectural draughtomen.
Bacon's description of what elements an arshitect shoold compose a royal palace, with its accessorial gardens, terraces, and courts; royal state, dwolling, and necessary apartmenta, together with the personal survey that Jooes had made, accompanied by men with congenial minds, of the palaces and royal residences of Venice, Florence, Rome, and other parta of Italy, bad a powerful effoct upon all bis designa, and particularly upon that of has unexecuted palace.
The limited apace which the pages of this Jouroal allows to this notioe, will not permit the quoting of Bacon's admirable description of a rosal palace-not designed for bis poetical commonwealth of Eutopia, but evidentiy for the encouragement of his royal master to commence a palace, which, in two or three reigns, might surpass all the other royal residences in Europe.

Upwards of twenty years ago, the author of this sketch gave Bacon's deacription entire in the introduction to his Memoirs of Sir Cbristopher Wren, and said-"This ideal palace would be an excellent lask to try theubilitios of a young architect to deaign on paper, and would nuke an
admirable probationary rold medal study for the more adranced studenta of our Royal Acndomy."
With similar foelinge, the ecoomplished Sir Heary Wotton, who imbibed a pure taste in all the arts by bis resideace, as James's ambasador, at Venice, Joins with Bneon in admitting that architecture is worthy the attention of an elevated mind, and confesces it to be an art that requires no commendation, where there are poble men and noble miods. He says that he is but a galberer and disposer of other men's atufl (aparea colliget); be yet presents his conatrymen with the monadest theoretical doctrines, and the poreas ideas of tacte in this noble art, which Jones carried so benutifally into practice. In Wotton's preface, he feart it may be said that be handled as art no way suitable to his employments or bis fortuse, and 20 may atand charged with intrasion and with impertinency. To the firat, he answered, "That thoogh, by the ever-acknowledged goodness of his muet dear and gracious sovereiga, he had borne abroad some part of bis civil eervice; jel, when he came home, and was again resolved into his own aimplleity, be fonad it fitter for bis pen to deal with these plain compiloments and tractable materials, than with the labyrinthe of courts and states ; add less presomption in bim, who had long contemplated a famous republic (Veaice), to write, lhen, of architectore, than it was anciently for Hippodamas, the Milesian, to write of republics, who was himself bat an architect." To the second, be coofesses that his fortune is very onable to exemplify and actuate his speculations in thie art, which yet made him rather, from this very disability, take eaconragement to hope that his present labours would find the more faroar with others, since it was andertakea for no man's sake less than for his own.
Oar great architect, Inigo Jones, who atands eecond to no modero artist in Europe, was, like his illastrions cotemporary, Milton, not only an Englishman, but a Londoner, being born in the neighbourhood of our metropolitan eathedral, to which he had attached the apleodid portico that had drawn forth the joat eulogiom of the testefal Barlingion. He was appreaticed to a carpenter and joiner, who were in those days more of oparative artists and carrers than those of the present timo. Daring his apprenticeship, his innate love for drawiag and design had sufficient employment; and be obtained, aleo, a greater knowledge of architectural construction than be could, bad be been in the stady of one of the painterarchiteots of the day. He distinguished himself in early life by a general love for the arts of design, and bas been mach commended for his skill in landscape-paintiog ; aod Dr. Chalmers asserts, in his "Biographical Dictionary," that there is still a specimen by bim in the latter art at Chiswickbouse.

He was destined for higher purposes than or a carpenter's foreman, or a builder's clerk of the works, his talents baving attrected the notice of Thomas Howard, the celebrated Earl of Aruadel, whose name is immortalised by bis inestimable collection of antique sculptare, called after bim the Arundelian marbles,-and alwo of William, Earl of Pembroke, who took him onder his patronage, and rent him to France, Italy, and the politer parts of Europe, with a bandeome allowance.

Aner exhanating the classical beanties of ancient Rome, he proceeded through other cities to Venice, then in the zenith of wealth and aplendoar, whence be was invited, as before-mentioned, to Denmark, by Cbristian IV., who appointed bim his arohitect. He accompained the King of Denmark in his viait to James I., the husband of his sister, the Princess Anoe of Denmark. On bis arrival in his aative country, he was appointed architeot to the queen, and shortly afterwards to Prince Henry, at whose lamentod death, in 1612, be re-visited the classical shores of Italy. He gave such satiofuction to bis iilustrious patrons, that od his departure from London, the king gave bim the reversion of the office of surveyor-general of his worke.

On his second retorn to this conntry, be entered upon his office, and executed the aplendid pablic works already meationed as being marked by a greater pority of taste than his former productions. Upon the death of King James, he was continued iu bis honourabie post by Charles I., and was associated to bis bonourable and tasteful employments with Rubens, Vandyke, Chapman, Bir William Davenant, Daniel and Ben Jonson. He designed and execated buildings, for Rnbe as, the priare of painters, to decorate with his gorgeoas pencil ; and scenes, decorations, dresses, and machinery for the most illustrious poets of his time. At the death of Charles I., Inigo Jones adhered to the party of his royal master. He was persecoted and fieeced, as a matter of conree, and stigmatised as a malignant. He died in grief, poverty, and obscarity, July 21, 1052, and wes buried in the chancel of 8 L . Bennel's Church, Panl'a-wharf, London.

[^27]The brilliant galaxy of philonophy, poetry, and art, which illumined the hemisphere of the Stuarts, with Bacon, Ben Jonson, Daveonat, Robens, and Joues as atars of the firat magaitude, sel, amidst the clouds and tempests that conrulsed the uation, from the first attack opon the mosarchy till the Restoration; when elegance agaia dawned apon the people in the times of the second Charles, which will form the oext opoch of thes sketch.
Amidst the stars of lesser magnitade that beamed amoog the cotomporaries and immediate pred-cessors of Jones, were Girolamo da Treviso, who, like Hulbein, practised both paintiog and architecture-thelatter, as an artist, and not as a builder ; Richard Lea, an Englithman, comewhes later; and another, aamed John Thyone, who built Sumernet-hoase, in the Strand, in 1507, in a mixed atyle of Italian and Gothic architectane. John Shute, an English painter and architect, who doorished in the reign of Queen Elizabech, whe seat by the Duke of Northumberlaod, his noble patron, to atudy the art under the beat masters in lealy. He pobliched, ia 1563, a folio volume of the principlen of architectare, as developed in the most celebrated monuments of antiquity. Milezia, in his lives of archl. tects, mentions an Englishman, of the name of Sticklen, who foarinted about 1596, as an excellent architect. Robert Adams, who practised architecture and engineering, was superintendent of the royal buildings to Queen Elizabeth, and wrote a descriptivn of the river Thames, and of the best method of fortifying it against an enemy. In the same period, flonrished Theodore Havena, an architect, sculptor, and painter, who affected graodeur on a small scale, and was rich in Italian conceits. He designed Cains Collige, Cambridge, a fair specimen of the architecture of the ago -pedantic, eccentric, affected, and trifing. This college was founded by Dr. Cains, phynician to Queens Mary and Elizabeth; and throe of the gates are of curious, if not of elegant, designe, being among the frot consstructed after the Italian manoer in Eagland. The firat is iosoribed, "Homiliras," and, as the Gate of Hamility, is of low proportions; the second, which is lonier, and embellished with a portico and emblematical figore, is dedicated to Virtue, and is inscribed "Viatotis. Ia. Caibe posuit Sapientie," and conducts to Caias Conit and the public achoole; and the third, which is inscribed "Honoria," and is called the Gate al Honour, is of still larger dimensions, and decorated with the varions orders of Romad architecture, overlaid with ornameats, in the atyle of the ecclesiastical monuments of tive period.
About the same time, Rodoiph Simmons brilt Emanuel and Sldmey Sussex Colleges, Cambridge, and rebuilt the grenter part of Trinity College, in the same University.

Berpard Jansen, a paidter-architect of the Flemish scbool, also \&oarisbed in the reign of James; he was a disciple of Dieterling, a oelebrated architect of the same conntry, who wroto mach on bis art. Jansen executed, during bie residence in England, the splendid manaion of Aadiey. End, in Saffulk, and a great part of Northumberland-hoase, London; bat the extraordinary and original façade wes designed by Gerard Chrise. mas.

Among the other architects of this period whowe pames bave reacbed as, are John 8 mithson, who died in 1648, and who, ander the patronage of the Doke of Newcastle, iravelled into lialy to improve himself in his art, and to acquire a knowledge of good design. The mansion-hoose at Welbeck, and the castle at Boisover, were of his execution. Stephen Harrious mant have been an architect of come reputation, as he was employed to deniga and execule the triumphal arches and other architectural pegeantrien, erected in London, on the accession of James I. to the throese of Great Britain.
The political strugglen that convalsed the reign of Cherlee $I_{\text {es }}$, which began wish such fluttering prospects for the arts, and which was the epoeth of good taste in architecture, bas been already noticed. The rolers of the Commonwealth, instead of patronising arts and artiste, not only dicconraged the living, but destroyed the works of the dead. The deatraction of some of the most elegant prodactions of painting, sculptare, and architec. ture, by the iconoclants of the Cowmonwealth, will ever remain a sligma on the administration of Cromwell: but the reign of Charles II. Was favoarable to architecture, as moch by the dreadful fre which conanmed the metropolis, as by the inaste love of nuagnificence and art which diacteguished the king and his conrt.

(To be continued.)

[In the frat part of this sketch, ia our last Number, page 168, cal. 1, line 11 from bottom, for "Torteginu,"" read " Torreginoo."]
.PL. XI.

ON THE CONSTRUCTION OF ARCHES.

A paper "On the existence (practically) of the line of ogual Horizontal Thrust in Arches, and the mode of determising it by Geometrical Construcsiom." By William Henay Barlow, M. Inst. C.E. (Read at the Insti. tution of Cicil Engineers. (With an Engraving, Plate XI)

The eopposition of the existence of a certain curve or line, is whlch the prosacre is irmasmitted throaghout the vouscoirs of an arch, is not of recent ofgin. The theory of equilibration, called the Catenarian, of which an accomat is given by David Gregory (Phil. Trans. 1697), is founded on this basis ; but throaghout the investigation, it has beea aesumed necessary to make the live in which the preseare is transmitted, coincide procisely with the form of the intrados of the arch; a condition which is neceeaary to sta. bitity, only when the areb is infinitely thin.

Ia the theory promulgated by La Hiro and Attwood, familiarly known st the wedge theory, or that in which each vouscoir is supposed to act as a wedge, it in considered necessary that the pressare should be iransmitted, so that the direction in which it acts at each joint, should be at right angles to the sorface of contact, which condition is ooly necesuary to atability, Whee no friction exists betwoen the surfaces of contact of the vonseoirs.

But whoe the thickness of the arch and the friclion at the surfaces of contet of the ronssoirs, are both incladed in the investigation, it has been sbows by Profescor Moseley, in his able and elegant exposition on this sabject, that the two conditions above mentioned, become modified, and that is as arch of uncemented voaseoirs, the actaal requiremeats to establish stability are, 一

First, That the line is which the pressure in transmitted (which he has mased the lice of resistance), shonld fall withln the thickness of the arch at every joint.

Becoedly, That the direction of the pressure, al esch joint, should be - ithin certain limits, depeading os the friction of the materials employed.

Coalomb, the frst writer on this subject, who based his assumptions on dala consistent wilb practice (M6moires des savans étrangers, 1773), coneidered, with Moseley, that there were two causes of ruptere; the first arisigg from the turning over of certain parts of one vonssoir on the edges of another; and the second, from the slipping or sliding of the voascoirs on each ofber; and althongh the mode of investigation puraued was totally diferent, yet the results preaent a complete accordance with those since arrived at by Profeseor Moseley, so far as they embrace the same elements f discasaion. This rewark applies also to the catebarian and the wedge theories; for if the thickness of the arch be considered to le infinitely cmall, the line of resintance becomes the catenary, and if the thickness be retained and the friction omitted, the line of resistance is analogons with the line of presance as determined by Whewell in the wedge theory; but though the taveatigations of Moseley leave little to be done in riucidating the conditione of stability in arches mathematically, yot the deductions buve not received that attention from engincers which their importance deserves chieny from the ubsence of any decided practical exhibition of their cor. reetoens and utility, and also from the investigation being surrounded by too rach mathematical dificulty, to admit of ready application.

The analogy befure-mentioned, as exinting between the iine of resistance' the catebary, and the jine of presance of the wedge theory, arises from une governing principlo, whlch is general in these curves, and constitates the esential elemeat of equilibrium when the only force acting is gravity, memaly, thet the borizontal forces in any part of the curve are equal to each orker; by which it must be onderatood, that not ooly must the borizoatal force, at any part of the curve, bo opposed by a horizoutal force of equal amonot in the opposite direction, bet that the borisumial force is equal throaghout the curre. This emential element of any curve of equilibrium, though probably known, hat got been pointed oat ; its mathematical correctness is celf-evideat, asd of its existence practically, as applied to the lise is which the pressure is trassmitted throngh the vonseoirs of an arch, the following experiments give satisfactory evidence:-

In an arch composed of numerons vonseirs, let their surfaces of contact. ingtead of being planes, be made carven, as is fig. 1. If the original form of the arch be such that the line of resietance passes through the points of contect, no motion will ariee among the vouseoirs, on removing the centre; but if the arch be a aegment of a circle, or any other form which does not coiscide with the line of resistance, the rouscoirs will take up a new posjcion, the curved surfaces of the voqesoirs roiling on each other, to a certaln limit, when they come to reat, and If disturbed from this poaition (unlens
the disfurbing force be sufficient to produce actual raptare), they will retarn to it.*

Mr. 1.
In this experimentit is obvious, that the pressure mast be trasmitted throngh the points of costact ; and it affords a practical proof, that this line is the carre of equal borisootal thrust ; for if in any vouspoir a, the horirontal furce at b, was aot equal to that at c, motion mast easue, and as this condition in the same in all the ronssoirs, it follows, that the borizontal force is equal throaghont. The experiment admits of farther application, by loadiag the arch 50 as to vary the form of the curve in which the pressare is traasmitted, while it of gecessity retains the element of equal horizontal thruat; and it wili be found, that the limit of stability is when the point of contect of any two voncooirs falls at their onter or inser extremities; thus establishing practically, that the lise of resistasee, or carre of equal horicontal thrast, mast be contained within the thicknest at every joint.
The second condition necenary to atability, namely, that the direction of the pressare, at each joint, should be withia the limiting angle of friction, is almont always of necessity fulfilled in the forms of arohes and with the materials usaully employed in practice; this part of the inqulry will therefore be confined to the firat condition.
Now the property of equal horisontal thrust, onables a geometrical conatruction of the carve to be readily obtained in any given form of arch, if two points is the curve be given, and by asmming these two points, it can be ascertained by a tentative process, if any given arch does, or does not, contain the curre.
Proseeding in thle mancer it is fousd, that io a semicircular arch, the thickneas must be one-ninth of the radius to contaio the curve, a result which is completely borne ont in practice; for thongh apparently nonoticed, a semicircular arch cannot be made to atand without foreign support, unless the thickness be greater than one-ainth of the radius.

In like manoer, in any other form of arch which does not precisely coincide with the corve of equal horizontal thruat, there is a certain minimum thickneas, or depth of voumeoir, necemery to obtain etability.
Among various other experiments, made to teat the acouracy of the theory, it will be sufficient to give the following. The curre of equal horizontai thrust, when drawn on the eievation of a semiciroular arch, of which the thickness is one-ninth of the iadius, touches the intradoe at 35° abeve the springiag, and the extradoe at the crown ; and practically, an arch of these dlmensions yields, by the crown descending, and the hannches golng outwards, the points of ruptare, or rotation, being precisaly those where the curve touches the intrados and extrados.

Fis. 2.

[^28]The condition, that the corre must lie within the thickness at every joint was alno tested in the following manoer. A semicircular arch, of which the thickness whe one niath of the radius, was constracted in four pieces, baving the jointe eand f, $\mathbf{G g}$. 2, at the points of contact of the corre of equal horizontal thrust with the iotrados and extrados. A similar arch was also made in six pieces, baving the joints at a, b, d, c, where the corre lies withia the thickness. In the first case, yieldiag took place, by the crown deacending and the hanaches going out, and in the second, though composed of a greater number of pieces, perfect stability was obtaioed.

Hg. 3.
Lactly, it being obvions, that these conditions, if correct, most apply to any fonm of structure whose stability depended on equilibrium ; the curve of equal horizontal throat was ascertained, in a series of rectangular pieces, as in fg. 8, and it was found, that when they were placed inclined to each other at an angle of 45°, the thickness mast be $\cdot 1464$ of the length to contain the curve, and that the point of contact was - 3535 of the length, from the upper extremity; also, that whether the inclination was greater or leas than 45°, the corvo fell within the thickness. Then taking two rectangular

Mr. 4.
pieces of wood of this form, and dividing them where the carre touches the extradosal line at a, they will sield by the aper going upwards, when placed at 45°; bat when the angle of inclination is made greater or leas than 45° as in $\mathbf{f g} .4$, stability is obtained; and at the inclination of 45°, if the divisions be made at c and d, instead of at $a, f \mathrm{fg} . \mathrm{z}$, although composed of a greater number of pieces, stability is also obtained.

Before leaving this part of the subject, it may not be ont of place to mention another experiment, which exhibits the analogy between the catenary and the curve of horizontal thrust.- On a vertical piane surface, an inverted semicircular arch was drawn, and divided into eighteen voussoirs of equal dimensions. Through the centre of gravity of each voussoir, a vertical line was drawa, as in fg. 6. From two pina, fixed at p and p^{\prime}, a atrong fine silk cord was hung, and eighteen pieces of chain, of equal weight, were attached to it, representing the equal weighte of the vousboirs. This species of catenary was then adjosted, so that each of the chains hang opposite the rertical lines, and the upex foll just within the thickneas of the arch as ahown on the figure. The similarity of the carve thes prodaced, to that of the curve of equal horizontal throst, was immediately apparent.
Next, one of the piss at p was withdrawn, and the cord was longthened and attached to another pin at P, m as to retain the part p $\boldsymbol{c} p^{\prime}$ in its orisinal position. The line \mathbf{P}_{p} thus represented the resultant of all the forces acting at \dot{p}, and completing the triangie $\mathbf{P a p} ; a^{\prime} p$ the weight or vertical force, was to $\mathbf{P a}$ the horizontal force as $\mathbf{9 . 7 5}$ to 1 , which result was found to aceord perfectly with that exhibited in a brick arch which wes sobse-
quently turned, in order to ascertain, by actual experiment, the ratio of the thrust to the weight, in a semicircular arch.

Fis. 5.
Having now, it is presumed, given sufficient practical ovidence of the existence of the line of equal horizontal thrust, it only remains to notice, in this part of the subject, that as well ai the position of the point of raptare being denotod by it, the direction in which gielding will take plece, may also be known. That is to say, it will be outward, when the curve of equal horizontal thrust touches the intrados, and inwards when it tocchee the extrados, and before actual ruptare, the approach of the corre to either extromity of the roussoirs, indicates the tendency to yield.
Namerous other experiments, of which it is unnecessary to give the dotails, have shown, that the conditions of equilibrium are the same for the arch and the abatment as for the arch itself; in fact, that the arch aod the abutment, when togetber, may be considered as an arch.
"On the Geometrical Construction of the Curve of equal Herizontel Thrust."
The two half arches being aesumed to be symmetrical, the aper of the curve will be in a vertical line equidistant from the spriagings, and for the present purpose, it will be sufficient to assume one of the two pointe (supposed to be given), to be in this line. The constraction of the curre theas resolves itmelf iato two problems.

Pig. 6.
1at. To find a third point in the curre, at any joint between the iwe pointe given.

2adly. To flad a third point in the curre, at any joint beyond the iwo pointu given.

The Arat of these eonstractions, is that which is more particularly applleable, in determining whether a given form of arch contains the curve; for bs taking each joint separately, the whole curve is obtained. The second is that which is employed, in determining whether a given abutment is of manficient thickness to contain the curve.

Problem I.-Let a and b, fig. 0 , be two points in the curve of equal borisontal thrast in the arch A B; required to find the point at which the exrve intersects the joint og. Let G be the centre of grevity of the half arch $A B$, and g that of the portion og B. Through b draw the horizontal line $e s$, and the vertical line $b l$; also through G and g, draw the vertical lines $G h$ and $g k$, intersecting $e m$ in h and k; join $a k$, and produce it to l; from k sel off $k n$, equal to $h b$, and through a draw the vertion line
 of the half arch A B; join n \& and produce it until it intermects $\theta q ; p$, the point of intersection, will be the polnt required.

Fis. 7.
Proslem II. \rightarrow Let a b, ig. 7 , be two points in the carve of equal horisontal throct, in the arch A B; required to fod the point at which the curve interneots the joiat o 9 , boing the base of the abutment. Lot G be the centre of gravity for tho half arch A B, and g that of the arch and abutment taizen together. Throagh b, draw the borisontal line $b r$, and the vertical line 61 ; aiso through G and 5 , draw the vertical lines G and $g k$, internecting ϕr in h and k; join $a h$ and produce it to l, from k set off k a equal to $h b$, and throogh n draw the vertical line $n m$, making n m to $l b$ as the weight of the arob and abatment is to the weight of the arch $\mathbf{A B}$; join $n k$, and produce it, nutil it intersects og; p, the point of interseotion, will be the point required.

It is nanecessary to accompany theso constractions with a demonstration, e it is evident, from the nature of the construction in either case, that the horivontal throst of the portion A B, at the points a and b, is equal to that of eqB, at the points p and b.-For a loaded arch the constroction romains the same; the centre of gravity of the arch and load belog talon, instead of that of the arch oaly.

These constructions point out, not only the form of the curre of eqnal berizontal throst in any given arch, bat also the direction and amonnt of presane at any joint. For as the perpeadiculars of the several triangles represent the weights of the several parts, so the bypothenase of the several triangles represent the resultant preasures at any joint. From this it appears, that the actad pressure, tending to crush the materin of whieh the arch is made, decreases towards the crown of the areh.

Fige. 8, 9, 10, 11, and 12 (Plate XI.), are drawinge to scale, of ordinary forms of arches, showing the minimum thicknes that will comtain the curve of equal horisontal thrust, and that this is the least thioknese capable of standing practically, may be readily tested by models; due allow. acee being made, on acconnt of the joints not being able to be worked

With mathematical exactneas. From theoe diagrams it appearn, that tha arches which differ most in form from their curvee of equal horiental thrust, are memicircles asd semi-ellipses, and that in these forms, there is a teadency for the crown to deacend, and the hanaches to go outwards. Heace the atility and the general adoption of solid backing end spandril walls in these forms of arches. The pointed arch has a teadency to go up in the crown.

Figs. 18 and 14 show the varialions produced in the carve of horizontal thrast, by the addition of the filling in, up to the level of the roadway.

Hitherto, only one line, or curve of equal horizontal throst, has been spoken of; bat if the thickness of an arch be more than sufficient to contain this curre, it is obvions, from the nature of the construction, that more than one such curve will be contained in it, and if the theory advanced is cor rect, the arch onght to be capable of being supported in any one of these cerres.

Fis. 15.
The truth of this porition was prectically tested by the model represonted in fig. 15, which consisted of an arch composed of six voussoirs, separated at each joint by four small pieces of wood, each of which could be withdrawn by hand. A curve of equal horizontal thrust was then carefully drawn upon the profile of the arch, as represented in the figure by the line eb e, and it was foond that, provided the separating pieces were left in at the points where this carved line intersected the surfaces of the vonacolrs, the whole of the remaining pieces might be removed, witbout producing rapture of the arch ; in the seme manner it conld be supported in the carves df or $\mathrm{f} \boldsymbol{h} \boldsymbol{i}$, or in any ourve of equal horizontal thrust, which was contained withio the depth of the roussoirs ; but that if the separating pieoes were so placed, that a curve of equal horivontal thrust conld not pase through every one of them, the stability of the arch could not be maintained. Of these curres there are two limits, namely, that in which the ratio of the vereed sine to the chord at the springing is the greateat, and that in which it is the least. Thewe two corves are represeated in Ig. 16 (Plate XI.), and are both determinable by the same procese.

The inat points out the curve, in which the pressure is tranmitted through the vonacoirs to the abutment, and is identical with that called by Moseley, "the line of resistance."

The other points ont the carre, in which a pressure from without would be tranumitted from the apringing through the arch; such as would arise from the thrust of a second arch. This line may be callod, for the sake of distinction, "the line of impression." The one carre, in short, is derived or generated by the pressare the arch oxerts; the other that which it is capable of resisting. In different forms and constractions of arches, the amounts of these forces vary very greally, and it becomes a connideration of importance, where arches of different sizes are abntted against each other.

In the fiat arch, fig. 17, the line of impresaion in a straight line, and

Mg. 17.
therefore, equilibrinm conld not be dentroyed hy ontward horisontal pressure, antil the mpterial yielded by crashing; while by inereabing the depth of the ronseirs, the thrust exerted on the abutarents mas be diminished and rendered comparatively small.

From this, a knowledge of a property in arches is arrived'at, whisk
though folt, and to a oertain degree acted apon, bas not hiltherto admittod of a clear explanation.

The annoxed diagrame, $\mathrm{A}_{\mathrm{gh}} 18$ and 19, exhibit forms of arehes, supposed to be loaded with a material of equal weight with the arch, and sbow the abutronents neceseary to suatain them. In these, it will be observed that

Fe. 18.

If. 19.
the division between the arch and the abotment is not made where the arch, so called, commences. The point of division adopted, has not been chosen on account of the result as to the required thickness of abutment being materially affected by it; but as being the place at which raptore would ensue, if the abutments fielded. In fact, the effective part of an arch is only so much of it as would not stand anless the arch were entire. So mach of the arch es lies below this point, would stand of itself, and is practically a part of the pier or abutment. curved out for the arch to apring from. This point of diviaion also permits a readier means of compoting the thickness of abutments; as with the exception of the sasall projection at the springing, the woight of which may be omitted, the abotnent is a rectangle, when the roadway is horizontal.
In this manuer the fullowing formula is derived, for ascertaining the thickness of the abotments necestary to support a given arch; the hoight of the abotment being given.

If BEF (8g. 20) represent the half aroh with its backing; and G is the
centre of gravity-agenalog pand p^{t} to be two points of applieation of the pressure, or points in the curve of equal horizontal thrust in the arch let $p f=d, k f=h, p q=m, p r=m, A D=a, w=w e i g h t$ or area of arch and backing, and $x=D$ O tho Fidth of abutment sought; then assuming equal areas to produce equal wirghts, ax will be the weight of the abutmeat; and when x is anoh, that the curve of equal horimotal thrast will meet the base of the abutment at the extreme poiat D, we have

$$
\begin{gathered}
\frac{a x^{2}}{2 m}+\frac{m(x+m)}{m}=\frac{\omega d}{n} \\
\text { or } x=\frac{m}{a}+\sqrt{\left(\frac{d m}{m}-n\right) \frac{\sum n}{a}+\left(\frac{w}{a}\right)^{2}}
\end{gathered}
$$

Also to find the thinknese of abutment whon ans given additional lond is placed on the arch, let B be the load, expreseed in terme of the area of the arch and backing, and sits horizontal distance from the point P;

$$
\text { then } x= \pm \pm \sqrt{\left\{\frac{(B a+w d) m}{h}-\infty\right\}^{2}+\left(\frac{m}{a}\right)^{2}}
$$

In like manner, when the arch and abutment are glven, we can find the extreme load which may be placed on the half aroh.

Heferring again to fig. 20, lot GK be a vertical line pasaing through the centre of gravity of the arch aad abotment, and $\boldsymbol{F}^{\prime} \ell=\mathbf{H}, \mathbf{D K}=\mathbf{D}$, $S=$ borisonial distace of load from the back of the abutment, and $\mathbf{W}=$ weight or area of arch and pier; thou wsing the aame letters as before tor the other dimensions-

$$
\begin{aligned}
& \frac{W D}{H}+\frac{B 8}{H}=\frac{m d}{h}+\frac{B}{h} \\
& \text { or } B=\frac{h W D-H \% d}{H:-H S}
\end{aligned}
$$

In these cases, the two half arches aro assamed to bo loaded ulike; hence, when the load is at the erown, the result must be doubled, to gire the entire load. As regards the positions of the assamed points $p P^{\prime}$, it is sufficient, in an arch of large dimensions, to take them in the ceatre of the thicknegs. Though the extreme limit, theoretically, in an anch taraed in one ring of voussoirs, in when the points $P P^{\prime}$ are in the lime of resietance.

In offering the forepoing as a practical outline of the lave whleh govern the equilibrium of arches, it must be observed, that the moot aideple conditions consistent with practice, have been asaumed at data, and so far as these conditions can be fulflled, there is no doubt that the principles bere set forth will be fully borne out in actual execution. How mooh farther the inquiry might be oarriod with advantage, it is difilicult to say : bet there appears to be much connected with the unequal loadiag of arches, which has not hitherto bera the subject of investigution.

Moseley has lotroduced is his reseurches, the effeet of the adhesion of oements; but he has ecoompanied it with the romart, that * that atroctame (being of large dimenaions) which would not stand without coment, woold assuredly be a perilows one," a remark which applies very properly to arches of masonry; but in brick arches, turned in mamerous rings, the adbetion of the cement undoubtediy becomes an ciement, materially affectiog the stability of the structnre. Upon such aubjects, add opon the varyias conditions in which arches are piaced, it is in vain to attempt to bring theory to bear. They are considerations which must and ought, at all times, to be left to the skill and judgment of the engineer.

In practice, an aroh will exert more presure and resiat leas than theory would deaote ; becanse the conditions of onyielding materials and mathematical adjustment of the joiots, aro iocompalible with practice. Even in arches of the hardest stone, and with the best workmanship, the lines of renistance and impression most aot be bronght too near the extremities of the voussoirs; and in brick arches, particulariy those turned in separate Fingt, a much greater latitude mast be allowed. It mant be ovident, bowover, that it is desirable to form brich archos as moch as posaible in ote bonded mass, usiog the best cement.

In ebutments, a atill greater variety of considerations will arise. To reoder this part of the subject tangible by theory, the abutment most be asaumed as standing aluoe, the fovodations being perfect, and the point of rapture being at the base of the abutment. In practice, they are rarely, if ever, withont earth behiod them, aiding more or lens in their aupport. Some emees, such as in arches onder embankmente, tbe force actiog to puch it the abiatment, exceeds the horisontal thruat of the areh, and a tendency has been frequently exhibited in arches so situated, to rise in the crown.

The foundations, the wiog walle, the spaodril walts, the backing, the mature of the materiale employed, and many other practical enosideratione,
all send to afiect the stability, and modify the stanite of theory ; each of which eircomatances, meting pro or con, will be made to fultil lis dasy to the best adivantage, by the akilful ongioeor. The atmott that theory can do, is to show the conditions of oquilibriam, ander certain Exed prectical data, and there can be 00 doubt, that the lise of equal horisontal thrant in as arch, in analogous to a vertical line drawn through the eemetpo of gravity it a coloma. That this line should fill within the mase at every joinh, and that the position of each joint should be such, that the direotion in whioh the pressare sets shoald be within the limelting angle of friction, are conditions common to both structares.
[The interesing obetrvetions made at the meeting of the Institution, by the members, after the reading of the paper, will be given in the aext manth's Journal]

CONSTRUCTION OF 8EA WALLS.

A Protent against the Decision of the Members of the Harbour of Reftige Comminson present at the Sitting of ithe 13th January 1846 ; and Dusent from their Report, on the part of Lieutenatht Gereral Sir Howard Dovelab; ene of the Commiarion-presented to the Howre of Commons. (Slightly abridged.) The ansexce reforred to will be gieen in the maxt month's Jowrsal,

Attaching the greatest importance to the attainment of certalnty in the mode of forming, and of durability in that of executing the exteasive works aboat to be andertaken for the proposed harbour of refoge in Dover Bay, I conaider it incumbent upon me to exprest my matked opinion, in opposition to plans which, in my judgment, are founded on modes of conatruction not reating opon any proved principle, and antried upon any anficient acale to warmat their present adoption; which are moreover theoretical in conception, and consequently oncertain in their ultimste reault. Sueh plans are, in my opinion, unft for the atthinment of the grest natlonal ohject which we have in view; and which it is my mont anxious wish to see underiaken in auch a menner at will leave no doubt of its being anceeafolly accomplished.

Considering, then, that the building of an opright wall in the opensea, in seven or eipht fathoms water, is a proposition dovel in theory, and aever, in so far as I am a ware, proved in practice, on a scale to warrant its adoption;' and being of oplaion that a breakwater of the proposed revation and magnitude, risiog with an upright face, from the depth of 42 feet at low water, would be far less capable of resisting the vielence of seas, ${ }^{2}$ and

1 See Observation on Kllruth P or, built in only 9 feet 6 inches depth of water. The application of the theory of the readitape and impuct of fuide is po doebt at-
 whatoral philomophy; but Whatever the bita hare been derived, elther from tbeory of
 body if tnereaod, in a very ligh ratio. Es the toclination of tite surface (A B) to the direction (B C) of the mollon ipereaces. The fuodamental theorem Is, that this varies as $(\sin \theta)^{2}(0$ representing the ipclinntion), becatuepresenling the jocinnuop), because tipuipef ithe atme, the quantity of ctuld lompioging on It whll be the empe at all inclinationim. If the height of the incination. If the height of the impetun mould then be as (min θ) B , mecmate ha this eate, not only to the force of esch particie diminiahed in proportion to

Prom this resolution of the presmen of a Auld apalnat the murtice of a bddy, whether dher be in motion and the otber st rapt, or both body and Inid be In motion, some of the mont rooftal refulte of practical welence are obtained. By this a ship is ispethed forwad obliquety to the direction of the whad, won when that direction is before "the ioe teres, ar ande rwolution of presolure fives nite to the propulaive force of the revolviof cerev, or enables the rudder to retaln and gulde the reptel in ber Intended coorse.
 co be alowred scroas a niver; and sot only doen that of the wind give motion to the alils Cis mill, bat by proper varlation of the obllquity of these, acconding th the diatance frem the axis of motion, the impelling forte be rendered equably on erer? part.
In the application of this principla to prectical mechanict, great dimcolties certainly
 Whed, and the problem coocrining the ection of the aes actinat a waU, can mo more be be detey the resolution of forces the parabolic theort, or even by any theory founded on the menally an be detirmined by the parabolie theory, or even by any theory founded on the asually at
 Kmowledge of the mathemalical principles of hydrodynemice it entential wo ano adequate conctplion of the meand to be mpioyed for rearotipt the sctions of waren.
On the benf form for the prodie for a ${ }^{44}$ breakwater" a difference of oplaion eziata; and Whil, on one hand, it in contended that the esterior face of the Wall stoold be virtical, Whe other, a face frellsed to the horison in recommended. The advocatet of the former

 coa directiona, bat nelther of thete conditiont holda good in Dover Bay, or wherever by Thut loose moner constitutilus a breakwater, when depoatted so as to form an inclined That loose stonet constitutify a breatwater, when deposited to as to iorm an inclined
 thet, with equal quantites of material, a vertical wall shonid Fwat the concuasions p It doy iuch action, as emceciounly so ope wht an extertor siope, is inconceivable.
 buparape, or a smaller inclinntion to a horisontal plape, thas the part betow and shia deinution from edeptlice prindplas by many eminenfarthorlites la ecolirmed by the prac. if of endiocert.
empeoially of broken som, (oxpowed as it mait, atoreover, bo to the wasemitting action of strong fides aod currents) than a sloping breakwater formed in a manner similar to that which has been succesefolly comploted in Plymonth Sound (which is now in a state of perfect repoee and stability) (Annex B.D.), as well as similar to others (Delaware Breakwater, Ansex L) oonstructed on it model; haviag also diseented from the proposition of the upright wall on a former occasion (31st July 1844, Anvex A.), I bow consider it mg duty to oppose myeelf, decidedly, to the adoption of that mode of construction, and to the employment of any artificial or inferior material, as a substitute for stone, trom mere considerations of pecuniary economy. The latter should I thiok have no place in a great national undertaking of this description, and I frmly believe that the me. thod proposed with this view wonld, in the end, prove by far the mott expensive.

In the more recent minutes and proceedings of this Commission, I find moch to confrm me, practically, in these views and opinions (which I brought before the Commission in July 1844), and I parceive that even the bighest acknowledged scientific aniborities who adhere or incline to the theory of the upright wall, apeak cautiously, diffidently, doubtingly, or ambiguonsls of the capability of vertical walls to reais the uction of waves and sens in all cases aud onder all circomstances. Some of these maintain that waves in a breaking state do act percussively; that a sloping breakwater is therefore best able to resist the action of sean in that state, and that consequeatly there should be a sloping breakwater in one part of the proposed harbour of refoge, and a perpendicular wall in others; whilat other high anthorities, who iocline to the upright wall, admit that this is merely matter of opinion, quite apeculative and experiaseatal as respects themselves, and that there can be no donbt that a oloping breakwater would be perfectly secure. Now in my judganent, vothing purely theoretical can remove the strong objections which have been so forcibly advanced by maoy experienced practical engineers,* (and I may add other eminent wen of high soientife and practical attainments, naval, militery, and civil), agaiak the adoption of a mode of construction diflicult if not impracticable, any fallure in which would be discreditable to the ongineering talent of the conntry, and in ruininp Dover Bay as a natural rosdstead and anchorage, be productive of evils the most serious to cummercial operations in the Channel.

Mr. Alan Stevencon stetes, that to build an epright wall in seven or eight fathoms water, $t 0$ far as his experience goes, would be entirely an experimental measure ; that to attompt this in an open sea-way like Dover Bay, would be a work of the utmost dificulty, if not wholly impracticuble; and that so far from recommending the trial of sach a wort, he would humbly, but decidedly, dissuade the Goveroment from makiog an attempt which he was sure would end in failure; and, is reply to cross-questions put to him with a view to shake his testimony against the upright wall, he denies the theory on which that mode of conatruction is founded. He asserts, on his own experience, that wave are not purely oecillatory, bet have onward motion, and consequently percussive force, such, in his conviction, that any attenupt to check their force by meane of a vertical wad, will prove a signal failure; for that a force would be developed by the collision of the wave with the wall, whose amonnt will be found to sorpasiany which has ever been experienced on the face of a slapjing breakwater.
In the conrse of the protracted discossions to which my oppoition gave rise, the danger was demonstrated of usiog, in such a work, a material (cuncrete) to which I had always objected, as deficient in tenacity, and incapable of resiating mechanical action of water. An opinion of the efficiency of this material was, however, strongly supported by the reference made in an official report, and in a leading queation to the use of blocks of oomcrete for the completion of the breakwater io Cherbourg Bay, which was described as a successfal oxperiment, and one deserving of being adopted by us, as a precedent; but the contrary of both was soon evident ; for within the period to which, happily, the proceedinge of the Commiseion were thas extended, on important failure occorred in the works at thet place; and the employment of concrete, as a substitute for stome in this climate, has been abandoned by the French engineers.

This failare, and the opinion of Sir R. Smirke againat the adoption of blocks of concrete as an artificial stone, which he thought would fail, de. posed of this proposition; and it will not be conducive to the pablic inte. reats, in my opinion, that the other description of artificial material recom. mended by Mr. Rendel (namely, brick set in cement), which Mr. Corderoy

Pohaon, Pront, Charlos Duph, Girasd, Cachin: Profemor Cape, Nilitary Eeminary, Addiseombe ; Proferoor Narrion, Royal Milltary College; Cieperal Beraerd, Uritied Btave
 Aonex. (L.), on the Delaware Breaimatef, by which it appenrs that Colopel Jonat was mistintormed.-See ble Report of 1848, Appendix, No. 1, p. 72. by the Unilnd 8iaten' En - 1. Sir John Benaie, Arsex (B.) See aleo his Beport and Oplalon, No. 4, of plan sent in.
2. Mr. George Renale, A anex (C.) See aleo hle plan, No. 2, of the Reporte; his model and recent examination, Q. 480 w 434,445 to 447.
3. Mr. Cubitt, Abnex (D.) 8oe his Report and plat, No. 6, and recont examiontion, Q. 210 to 243,234 to 288 ; and better to the Chalrman. Appendix, Na. 11, Secoved Eepont. 4. Mr. Willian Btart, mpertatendent of Plymouth Breaheater, fom the commemes mpent of the wort in 181d to the present time, Andex (\mathbf{F}.), evidence of June 20, 1844.
An important endeace, showlog that the camages which that work had eostalned arove from thy slope or forenhore not belog long enongh; slatug his practleal objoetloas 20 . more aprght alope, and hile convietion hat it couid mot mand, and hat if that breat-
 capable of ruintios the force of the Whyen.
contractor, states, would cost twice as much as concrete, and which Mr. Bmirke eays would be more expeasive than stove, should be ased.

With respect to the adoption of blucks of concrete; -far "from atanding remarkably well in the breakwater at Algiers." the whole mass of the breakwater has settled bodily, not from the effects of gales of wind, but from defects in the material (which time will further show); this, there is mo doubt, is occasioned by the ohemical action of the sean " which in the Mediterranean contains 7.02 per cent. of sulpbate of magnenia, whereas the Water in the ocean containa only $\mathbf{2 \cdot 2 9}$ per cent., consequeatly, of two moles made of the same concrete, the one in the ocean may last an indefinite period, the other will dissolve in a few years; and even mixing pazzolano with the concrete will not guarantee the lime from solution." Nor can that work, ander any circumatances, be cited as an example for our imitation on the coasts of Great Britain. There are no tides in the Mediterranean, and the climate there is well suited to the drying and consolidatios of that material, which is not the case in mure aorthern regions.

It may be added, that the form of the work at Algiers is not that of an upright wall, for its face has a slope of 45 degrees; the work, therefore, cannot be addaced as an example in favour of that form of constraction.

In support of my dissent from the adoption of the upright wall, I appeal to the debate which took place at the Institution of Civil Enginears, in April 1842,4 on Colonel Jones's "Observations upon the Sections of Break. waters as beretofore constructed, with Suggestions as to some modifications of their Forms." This debate may be taken as a very fair exposition of the opinions of practical engineers on the principle of the ouright wall.

Tbe president, Mr. Walker, took an important part in that discussion. Ho asid, "It is evident that if the materials are deproited at an inclination, any portion being displaced, is only carried down elsowbers. Although strictily speaking it may not be wanted, it most nevertheless assist in consolidating the mass, and the vacant apaces can onsily be fillod up. Under similar circumstances (to those which displaced some of the atodes in Plymonth Breakwater) a perpendicular wall wonld suffor more severely, and probably would have fallen eutirely. He therefore considered that in situations like that of the Piymouth Break water, which was exposed to a heavier sem than Cherbourg, a long slope for the sea face was ossential."

Mr. Palmer, vice-president, observed that the form suggested by Colonel Jones for the faces of break waters, did not appear sofficiently juatified by observed facta; that the idea wes ontirely of a apeculative character, and was contrary to the laws of nature, which shonld be the ongineer's chief guide; and he attributed the failure alluded to by Colonel Jones, in the harbonrs of Ardglass, Portrush, \&ec., more to defects in Workmanabip, than to faults in the principle of the structure.

General Pasley said he conceived that a perpendicular wall, constructed of large ashlar work, well cemented, would assume the character of a rock, and all the prejudicial action of the receding wave would be avoided.

Mr. Bull differed entirely from Colonel Jones's opinion as to breakwaters with vertical or nearly vertical faces, becmuse any disturbance of the footing, however slight, mast have a tendency to overthrow the wall.

Mr. George Reanic deprecated in atrong terms the opright wall, and stalod that the late Mr. Thomas Telford had abandoned that mode of construction.

Mr. Vignoles only agreed to a certain extent, to the form proposed by Colonel Jones, and recommended a combination of a slope below with a vertical parapet ahove.

Mr. Gordon was in favour of the alope; and atated that a sloping breakwater, composed of pierre perdue, with a aloping face, hed withstood undis. turbed the surf at Madras.

Mr. M'Neill adduced the long slopes of sand, at an inclination of 10 to 1 , thatched with straw, which resist the waves of the ocean on the coast of Holland.

Thus we have in thls discussion, a majority of speakers of seven to two, in favour of the slope ; and of the minority, one was for a combination of the slope with a vertical wall above. Even Colonel Jones suggested this modification. See page 125, vol. 2, Proceedings of Institation of Civil Engineers. Plan No. 5, proposed by him for Dover Bay, was of this description.

1 object to Kllrash Pier being anduced as a test of the priaciple of the upright wall sufficient to warrant its adoption in the construction of a harbour of Refoge in Dover Bay. Kilrush is a small tidml harboor on the coast of Ireland for comating vessels. The piers are built in ooly 9 f .6 in . depth of water, at low tide. The fonndations were laid without difiticulty by the diving-bell, with large masses of stone, which were easily and quickly deposited. The area of the section of the wall is considerably greater than that of the old work ; bot so far from the opright wall hnving been built in consequence of the sloping profile as originally proposed having failed, Col. Jones expressly says "that the old work atood remarkably well." There is nothing in thit, therefore, either practically condemnatory of the slope, or sufficient to warrant the edoption of the upright face, on such a scale as to which these proceedings relate. There is no doubt, as Mr. Palmer says, the piers of the small harbonrs which Captain Washington reports to have been so mach damaged by the sea, were constructed in a very defeative manaer, and with materials of dimensions that ought not to have been putin, and it likewise appears that the damage which these piers may bave austained might easily be repaired; but certainly no euch errors would be committed in any new work of this desorip. tloo, far less in that great national work now under consideration.

4 Proceedingt of the Inatiation of Cinl Engtnems. See Journal, wol, b, 184, p. 818.

The recommeadation of a majority of the Comminsion in ferore of the opright wall is atated, in tho Report, to have been made oo a summary,

1. Of the conflicting opinions entertained by the eight engineers whose plans for constractiog a barbour of refuge in Dover Hay were subtritted to the Commission; and
2. With reference to the opinions of those persons who had beea roquested to give their evidence or advice upon this important question.
The following is a list of the engineers whose plans for ounstructiog a harbour of refuge in Dover Bay were sent in to the Commisgion :
3. James Walker ; 8. Georgo Rennie; 3. Captain Denison; 4. Bir Joha Reanie; 5. Lt.-Col. Jones; 6. W. Cubitt ; T. Charles Vignoles; 8. J. M. Rendel.
4. Mr. Walker, civil engineer, is somewhat inconsistently adduced in the Report as an advocate, in principle, for the construction of a neariy upright wall. The project submitted by Mr. Walker to the Commission, is to build these walls io immense vessels, or as be calls them, "ntonsila" (cuissons), three or four hundred feet long and seventy feet wide, containing two or three thousand toas of reudy-made breakwaters, to be towed by steam tugs and stranded in Dover Bay! But wo have Mr. Walkers authority, from what he said at the meeting of the Iostitution of Civil Ensgineere, on April 12, 1842, that his reason for proposing nearly uprigth walls in this case, was to avoid the extravagant width which must be givea to these huge utensils, if the walle have any considerable slope; for, at the discastion to which I refer, Mr. Walker stated, that in situalinas exposed, like that of the Plymooth Break water, to a heavier sea than that which rolle into Cherbourg Bay, a long slope for the sea face was easential; and that had a perpendicular wall been constructed in Plymouth Sound, insteand of a aloping breakwater, it woold, in the storms which assalied it, have suffered more severely than it did, and probably would have been entirely overthrown.

The dangerous instability of works executed in deep water, by a systern of caiseoning, such as that propoeed by Mr. Walker, is very generally acknowledged, and is sufficiently proved by the perilous atate in which Weatminster Bridge now romains, notwithstanding the costly expedient by which it has been attempted to remedy the defects of its original cosstraction. These expedients consist in forming a cofferdam about each pier, pomping out the water, and then driving rows of sheet piling tato the blue clay, so as to form a girdle round the base of the original caisen, and thos to provent the materials of the natural bed of the river from beias underwashed by the current, or sqneezed out by the weight of the bridge, into the gradually deepening water-courses. But it does seem very strange, that these expedients huving failed to arrest the sobsideace which is still taking place in Westminster Bridge, the method omployed in the construction of that work should be proposed for adoption, on an immease scale, in the formation of a barbour of refuge in Dover Bay.
2. Mr. George Rennie deprecates the upright wall as impracticable and dangerons, and strungly recommonds a sloping breakwator, as at Plymouth.
3. Captain Denison is for a vertical wall formed of hezagonal prisms of concrete (proposed by Monsieur Emy, in 1881, but never adopted), 10 feet long, and about 23 tons weight, to be mabufactored at Dungenese, and dragged by steam tugs to Dover Bay, by boing suspended to rafu formed of two cylindrical pontoons, and there sauk by mechenical means. The wall to be upright from the bottom to about low-water mark, with a superstructure of granite.
4. Sir Joho Reanie, after deprecating in atrong terms all syatems of caissoning, and some other expedients, particularly the adoption of upright walls; and after urging the disastrons cousequences that may attend any mode of construction which is not recognised as certain of aucceen, proposes the adoption of the principle observed in the breakwater at Plymouth. This be considers as having completely suoceeded, and therefore be conceives that it fully justifies the adoption of the like mode of construction for the proposed harbour of refuge in Dover Bay.
5. Colonel Jones is in favour of a combination, of a sloping breakwater, up to low-water mark, with aq upright wall of stone erected on it.
6. Mr. Cubitt, after having been a little taken with the theory of the upright wall, and having since bestowed upon this subjrat the most careful consideration, comes to the conclusion that any attempt to erect an upright wall in Dover Bay would be an ondertaking of great dificulty, and that the only safe and practicable mode of execution is by depositing masees of stone, to form a sloping breakwater, as at Plymouth, with stome broogt from the Chananel Isiands, or from Portland.
7. Mr. Vignole's plan is to form a sloping breakwater, by depositugs cabical blocks of concreta up to about low-water mark, and upon this 10 opect a vertical wall.
8. Mr. Rendel is next adduced as an advocate for the upright wall. Now, with great respect for the practical opinion of this eminent engiveer, it is of lmportance to review in detail his several oxeminations before the Harbour of Refuge Commission, previous to bis conversion to, or adoption of, the now theory, and to advert to the circumatances with respect to material, which induce him now to recommend a wall of that form.

In his examinatlon of the 19th of June 1844, Mr. Rendel told us, that to constroct a breakwater in seven fathoms water is a very formidable nodertakiag, eapecially if caissons or other mechines should be revorted to and that he doubted very moch whether if a breakwater is to be a0po aructed in seven fathoms water, the only aafo plan would not be, to deposit stones in the usual way from vescels; bringing of the gave to wilhin,
sy two or three feet of low water; above that, he propoeed to canstruct perpendicular walls, as recommended by Colonel Jones ; obserfing that if stoees were deponited in this manoef, and allowed to form their own slope, If would is mott eftuations be the most economical ples.
Hestated that if be bed an nalimited command of materials, he woold Ant begis to deposit those malerials so as to form a rough mase, and whes be had brooght his foundatioas up to that point (nearly luw-water mark) at which the sea woald begio to athotk him, be would attack the sen, by beildies with a clase of materisls that woold be its mastor; adding, that we thooght en apright wall in this cace might be desirable for a sapertrectare.
In Mr. Rendel's examination before the Comminsion, In November 1845, his ettertion was expresoly called to his former evidence by several questione, to all of which be replied that be retained the opinions expresed in that ovidence; and also stated that be did not know of any instance in whlet a breakwater with an upright face, of the magoitade now contemplated. had been constructed in the open eea la seven fathoms water. He added, that so far it is an experimental measure. Mr. Rendel's reasons for adepting the opright wall, in the project which he now proposes, are fourded parely on considerutions of economy in money and time. He obverred, that where there te abundance of masses of atone, fi for conetresing breakwaters, he would form them of rubble stone up to low. wreter mark, with sloping faces, in the anaser in which he had just tinished a dealgn of Holybead harbour; but in order to aroid the expense of briaging stove to Dover, be proponed to adupt, as subatitates for stono, rectengolar blocks of brick, set in cement, ted feet long, five wide, and three thick. and whb these to bulld a perfectly upright wall in Dover Bay, by meenme of powefful machines and the use of the diving bell. Un a forener oecasion Mr. Renuel objected to the employment of machiver, and particalarfy to the ate of the divlag-bell. This proposition, therefore, remolven itsolf into the queation, whether such a project would be economied.
Mr. Readel admits that if the execution of the work by meana of brick blecte were preesed on 20 rapidly as to reoder it neceseary to import into Dover brickt, or materials with which to make them, a great part of the economienl advantage would disappear. He alno sacknowledges "that the advantages of that poode of construction, namely, the upright wall, over the common slopiog-tided break waters, is a mere questlon of economy in mosey and time." He has further admitted, that if he bad volimited command of materials at Dover, he would adopt the asual mode hitherto oberved in conatructiog breakwaters. Now Mr. Hartley expresaly states, bat the expenme of providing brick blocks made of the materials that be recommeads as indiapensable in the cogatruction of such a work, would we greater than that at which granite might be procured from the Channel Iflande.

From this and other calcolations it appears, that " the mode of constrocting break waters hitherto observed," with materials of the beat deseription, is preferable, in an economical seace, to that proposed by Mr. Rendel, and tha being so that he would renoance it. We have this reliance on Mr. Rendel's discreiion and judgment, that he would guard himelf ageinat aseuming anything where experience, the only safe gaide, can be referred to; and, in a great national work like this, would not propose any sew-fangled notions that have nothing but their ingenuity to recomaend them.
If then the question, whether the theory of the apright wall, or the eatablished practice of the slope, was to be determined by the opinions of a enderity of eompetitora, the Commistion ought to have decided the other way, tor, of the eight eagineers who gave in plans, four recommended the aloping breakwater: and, of the other four, two propose a combination of the slupe below, with a nearly apright superstructure; and only one preters the epright wall, and this provided his proposition for naing brick blocks of 25 toos weight as substitutes for stone, be adopted.
The following is a lint of the persons whose opinions are adduced as adriaiag the construction of the upright wall:-1. Profescor Airy ; £. Profestor Barlow ; 8. Major-general Sir J. Bargoyne; 4. Sir Henry De ia Beche ; B. Mr. Hartley; 6. Major-general Pasley; 7. Captain Vetch; B. M. Reibell; 9. Mr. Brunel; J0. Mr. Bremaer.

1. Profrseor Alry's opinion is matters of science is unqueationably eotiLled to the very higteat respect. 1 havestudied with the greatest attention and proft the Astronomer Royal's tracr, in which the phenomena of tides and waves are investigated by a refined analysia on what is called the 4. Wave theory." It is asaumed that in deep weter, the motions of the particles are oscillatory, and that the rising and failing of tho sorface of the rea depeed on the boricontal movements taking place alternately in the same and in contrary directions; that thene diaplacements are represented by a periodical function (the sine or cosine of an angle depending on time). The circular or eiliptical movement of the particles is shown to take place coly whon a wave is transmitted along a channei of uniform breadth and depth; and the fuct, that, as the depth of water becomes less, waves become sborter and their fronls steoper, is proved to be in accordance with what may be deduced frum the theoretical expressions of the diaplacements. It follows from this, thal, as a men-wave adrances into water gradeally becoming shallower, it assumes a crested shape, the upper partides moving towards the coast, tili at length the top rolls over the bace, the. wave breaks, and a surf is created. Heference is made in this article to the apecial Leatises oo sea-waves by Msl. Uf la Condray and Bremontier.
When Mr, Airy was Professor of Niatural Philoeophy at Cembridge, he
explained, with suocest, that waves in a duid at roct, such as we may con celve to arise from throwing a stose into a pond, or the ordinary waves in a close lake, are more or lese superfolal nadulationa, and that in reatiry 00 current, or onward motlon of the duid, appears to take place. I well remember, also, that he lovented an ingenloos machlae by which be illumtrated this oncillatory motion. But admittiog this to be trate, to a considerabile extent, in a pond or a small lake, it is totally inappliaable 10 the sen, the open sea, in Dover Bay, where an immense body of water is is comptapt motion, by tides rising and falling fifteen or twenty feet in the course of two or three bours, and where the surface is llable to be acted apoa by heary gales, which drive in rolling soas is mecession with rapld on ward motion, and therefore producing percassive force ln the djrection of the wind. Withont however eatering here oa Profescor Airy's theory of waves is deep open sea, bat confring myself to dednotions from that theory, as to the practical effect of waves in gales of wiod on erections in the see, of a limited depth, it will be ceen, that instead of his theory (that the opright wall is in all cases proforable to the alope) being aboolate, this eminent a ochority allows that waves in a breakiog or brokes atate do act percossively and powerfully as hydraulic rams, and not by bydrostatic prosserv. How then can that hydraulic action ceace and beoome merely hydroatatioal pressare unlest it has first exerted a force of impact upon the wall which arreata its motion f Even if the wall should stand after having recoived the shock, the concassion must be more severe on an opright will, In the retio above mentioned, than that which would take place on a slopleg wall of equal height.
The question of coostroction, thes, resolves itself into this: is what depths of water do waves assome that form and acquire that percossive forcet Where, according to this, should the stope oense and the oprigtt wall commence ? The profescor says, practical opinios, that of the pllots, can best determine this.
Those whom I have questioned on that subject any, that this will be found to take place, in heary gales of south-went and soatherly winds, tbroughout nearly the whole of Dover Bay at low water.

However this mas be, it in clear from the Astronomer Royal' deductions from his own theory, that there should be a sloping break water in the shallower parts of the space to be enclosed, and an upright wall in the deeper.

But with respect to the practical question, Profestor Airy atates, in reply to question 596, whatever theory may asy, "that building on opright wall in the open sea, in soven fathoms water, is so far an experimental measure, that no sucb work has over been executed.".

With every renpect, then, for the theoretical opinion of this high authority, I cannot connider that it would juntify the Government in sanctioning the mode of copatruction recommended by a majority of the Comminoion; it may rather be inferred that this is contrary to the dednction of acience and that, if the dificulties of constrocting soeh a wall in deep water coofid be overcome, it would be incapable of resinting the action of the sea where waves assume that shape, and poseess that percussive power, whiab Mr. Airy admite.
2. Professor Bariow has most usefully applied mathomatienl investlgation to practical parposes, and knows well the differmee between theoretical views and practical effects upon a proposition of this description. In his letter of the sth January 1840, Writien in reply to the question referred to him, he states. that theory canvot safely eetule that question; he avows that he has not sufficient practical knowiedge or experience to enable him to speak confideatly on the anbject ; expresees hlmeelf diffidently, eantiously, and even ambiguously, as to theory ; and recommends that the question be referred to practical mea for their opinion, made upon resalis obtained from actual experience and observation. The learaed profescor therefore rather declined and disclaimed giving a decided opinion in favonr of the upright wall; and 1 think be will be surprised to find that his letter has been addueed, by a anjority of the Commiation, rather at condicting with, than as doferring to the opinion of prectical men. Further it appears, by the professoris letter, that be is decidedly opposed to the theory of the apright well; for be denies the asenmption on which it is baced: namely. "that waves have no onward motion." He states, "tbere can be an dombt that waves when acted upon by tempestuous winds, will beat with great violence against any obstacle opposed to their progress; that what we want in breakwatera is, to resist that force; io withstand that momentam; and that much of this direct violeace would be avoided, by receiving that action on an inclived surface."
8. I reler with the greatest deference and respect to any prectical opinion of so eminent a man as Mujur-General Sir John Burgoyne; but 1 do not read his letter on the comparative merits and capabilities of the upright wall and the alope, es contalaing any very positive or coufldent preference of the former; and in that letter it is admitted that there can be no donbt as to the eecurity of the slope. This distinguiahed military engineer says,
"The effort against the upright wall I conceive would be far lean.
" In deep Frater, the action of the wave is, I apprehend, an up aod down undulation, the water having very litle, if aoy, forward motion, except where it breaks. A flat piece of wood, floating on the sorface, and presenting no hold to the wiad, would progress very slowly before the heaviest gale; therefore I consider that there would be no bluw ar impulse generaliy on the upright wall, but merely the weight of water from the top of the wave to its mean ievel, to be supported.
"I should not expect that the wall itself would case the wares to break, and even thow that accidentally did $s 0$ at that particular place would have
ruch of their force canght by the recoding of the previons wave, 00 as rarely to strike with much force agalost the wall iteelf.

世There can be no doubt bet that a slope could be given to a breakwater that would be very secure.
"In Holland, the shorea, even of sand, aro in many parts secured against the whole force of the North Sea by a aurface coating of mere clay and atraw, but tben the jaclination is exceedingly geatle quite to deep water, not more, 1 apprehesd, than 1 in 18 or 1 in 24 . As the material is increased in sime and weight, it is to be prosumed that this alope may be incrensed."
4. 8ir Heary De la Beche is addared as an advocate for the upright wall. Now the theory of the upright wall rests entirely upon the assamption that waves have no progressive forward movement or motion, or per. cusaive foree, in acting upon erection in the sea, or on coasts, clifts, or benches. But Sir H. De la Beche expressly slatea, that seas in heary pales of wind are nrged oawards in the direction of the winds which raise ahem; that waves in a breaking state possess enormons force from the woight and velocity of the water thrown forward; and the following extraots from his very able work, "How to Observe Geology," show Ihat he has been erroneonsly cited, or that be exprossed himself in an noguarded manoer, when he asserted that opright walls resembling elifis, are more capable of resisting the percussive effects of waves and seas than alopes."
In the very able work which this eminent goologist published, be delivers the following roles as the result of what he had observed and ascertained with respect to the action of the sea :-
u Properly to estimate the effrets of this power, the observer should be present on some exposed evest, such as that of the western part of Ireland, the Land's End, Cornwall, or anjong the western islands of Scolland, dur. ing a beavy gale from the westward, and mark the crasb of a heavy Allan. tic wave when it strikes the coast. The blow is sometimes so beavy that the rock will seem to tremble beneath his feet. He will generally find in such situatioas, that thongh the rocks are acooped and caverned into a thougand fantastic shapes, they are still hard rocka, for no others coald continue long to reaist the elmost incessent action of sach an abrading force. Having witnessed such a acene, he will be better able to appreciate the effects, even thongh the waves be far inferior in size, upon the softer rocks of olber coasts.
"The observer should carefolly remark the direction of the prevalent wiods, and the proportion of those which sead the greatent waves, or seas as they are termed, on shore, in order that he may duly appreciate the loss of coast sustained in those directions where the force of the breakers is greatest and most incessant.
" It mast not, however, be forgotten that coasts where breakers reach the eliffis at high water, are freqnently protected by beaches at low water; and that therefore they are removed from the abrading power of the waves, during all the time that they break on the protecting beaches, a time which varies with the varying state of the tides, and the state of the woather generally.
"Other encroachments are made by the fall of masses of cliff undermined by the waves, the cohesive power of the rock not being equal to its weight, or the action of gravity downwards. If a rock be oven sufficientiy cohesive in the mase, as to admit of considerabie oxcavation withont falling, a time must come, if the breakers continue to work on is the same direction, when the weight of the superincumbent mass would be such that it most fall.
"Where, however, a great mass of cliff does fall, in the manner noticed above, the observer should direct his attention to its conservative infuence. To appreciste this, be will consider the bardseas of the rock, the position into which it has fallen, and its new power of breaking the waves farther from the coast. If the mass of fallen rock be stratified, much will depeod upon the face presented to the breakers; for if it fall so that the plane of the beds remains sloping seaward, it will act as a well-contrived wall erected to defend the cliff; bat if the beds should be exposed vertically after the fall, the futare destruction of the mass would be far more rapid, and its conservative influence consequently less."
6. No one knows better than I do the ability, the zeal, and the intelligence which Mr. Hartloy has displayed in the construction of the Liverpool Docks, and the bydranlic works in the Biver Mersey ; in stating bis evidence, as that of a practical man, in favour of the upright wall in the opea sea in Dover Bay, I think it beat to let him apeak for bimself.

Question. "You say you prefer an upright wall to any other form for a breakwater; do you know any certain instance of the positive experiment of a wall which hus atood the test of time in such an exposed siluation, and on auch a monstrous scale as Dover Harbour may require?Answer. I do not.
"1s it merely matter of opinion ?-That is all.
"This perfectly upright wall in Dover Bay in seven fathoms water is an oxperimental measure you admit?-Qnite so as respects myself.
"With respect to the time that it would take to make a breakwater, is that opinion formed upon any knowledge of Dover, or the difficulties of making a wall at Dover i-No, it is only fonoded upon a sapposition of What the sea is in geoeral, and sapposing I was to atiend to it mjself, and had nothing else to do ; but it is a vague sort of idea.
"You are not acquainted with the locality ?-No, not sufficiently; I have been there two or three times.
"Have you over built a wall yourself in such deep water as that ? $-N 0$, never."
6. My gallant and highly enteemed friend, Major-gercral Pasley, givea
the following meconat of his convernion to, or sdoption of, the theory of the upright wall: "For many jears I paid no attention to this aubject, but thonght that the long fiat slope adopted at Plymouth Breakwater mast be the beat form for resiating the sea, not ooly from the reputation of the eminent engineer and naval officers by whom this construotion was proposed, but also from the circnmetance of jis having been approved and earried into execation by order of the Government of that day. But in the yoar 1842, when this question was publicly diacussed at one of tho meet. ings of the Institution of Clvil Engineers, at which I was preseat, anar a paper of Lieutenant-colonel Jones, R.E., had been read, in which be greve the prefereace to upright walls, as being much more securo than break. waters or flat slopes, and stated his reasons for this opinion, the argements in farour of the former appeared to me to preponderate. I have sinoe given the subject mach attention, and have made inquiries and observationat which have confirmed me in this impresaion."
7. Captain Velch is the ooxt anthority cited in favour of the upright or nearly apright wall, both from theory and practical observation. Un acconnt of the extraordinary difficulties of constructing a barbour of refuge in Dover Bay, he thought that the best mode of executing ench a work was by the system of caissons which he proposed. With respect to the combination of a slope with an upright or nearly upright face for the superstructnre, he Captain Vetrh, said it would be highly advantageons ; that it woald obviate a great many objections to the present condition of the Plymouth Breakwater; it would provent the waves breaking over, and woald give security to erections on the break water itself. The worts now going on al Cherbourg, which had been erroneounly considered to be an abandonment of the slope in favour of the upright wall, is ooly a come. bination of bolb; this he thinks a great improvement, and adds, that aach a breakwater at Dover would be very superior to one entirely slopisgo Captain Votch recommends brick in cement for face work, and suggeite blocks of brick firmly agglutinated into a mass by means of a cheap lax between the joints; the mass of brick blocks being subjoctod to the see quisite heat by means of fues or otherwise.
8. M. M. Reibell is the nert authority addaced in support of the apright wall ; and a sketch, of which the annezed is a copy, is inserted is the Proceedings of the Commission to sustain, as it would appear, the

proposition of the upright wall, which it is inferred the French enginaers as a body, approve, and would adopt, if the breakwatar in Cherbourg Bay were to be commenced de note.

Captain Washington, in his report on the breskwatar at Cherboark states, that "M. Reibell, the present engiseer, is decided)s in favorar of an upright wall, and recommends the form abown in the annexed aktich as the best for opposing the shock of the waves."
9. Mr. Brunel is nezt adduced es haviog giren his opiajon in favonr of an upright wall for the construction of breakwaters. But Mr. Brucel wat not examined before the Commission, and the only opinion which be han given apon this subject is that contained in the annered ortract of a letter from Mr. Brunel, addressed to the Chairman, dated 10th Jupe 1844: " Upon one point upon which I understand the Commissioners to have sought an opinion, I buve no hesitation in axpreasing my concurresce in those which I am told have been generally expreseed in favoar of vertical rea-walls, in lien of slopes, where the nature of the material to be meed, and other circumstances, admit of soch a plan boing efficienty and eeonomically carried out."
10. Mr. Bremner is next adduced as an authority in favour of the ops right wall.

With the greatest possible respect for all these able and emineat men, I must say, that I do not find any thing in what they bave addoced that can, in my judgment, warrant the adoption of the mode of construction which they reoonmend; it does not rest apon any proved principle, is antried opon any anficient scale to juatify its adoption in a great aational undertaking, and all egree in designating it experimental.

When I find it stated, in the summing op of the Commission, that the opinion of Mr. Alad Sievenson in favour of a sloping breakwater is the "sole exception" to thone of the other men of diatinguishrd science aned practical observation, who have been called upon to advise the Commiasive on this important subject,--I frel bound to interpose against the coaclasion arrived at, Sir John Rennie, Mr. George Reanie, Mr. Cubjtt, Mr. Williana Stuart, as well as Mr. Alan Stevenson, who all disapprove of any attempt to construct an apright wall in the open sea at Dover; and they diatisety express their opiaion, apprebeasion, or conviotion, that anch attempt would
and is total failare; and when to this I shall have added what I have yet tu asy apon the a abject of Cherbourg, Plymoah, and Delaware breakwaters, works ectually conatructed on the principles which the oew theory would abandon, and shall have adduced the opinion of the most eminent and ealightened engineer of France, I trast I shall be considered to bave made sood case in support of this dissent.

Tbere is ao part of the Report of the 28th Jamaary 1848 from which I more decidedly diasent than thet which refors to Cherbourg Breakwater as a fallore, and an an attempt which may serve as a warring to those who may bave to decide apon the construction of anch works in this conatry," that they evoid eatirely the principles opon which that work has been controcted.

In the Annex (M.) is a brief historical account of Cherbourg Breakratior from the commencement, together with an extract of the Report of the Commission of the Institute of Fraoce, of which Prooy and Charles Dupin were members, and Girard rapportear. These ominent men, after a carcful inapection of that work, and alter having investigated the whole jrocese of its execution throughont, reported that the failures which had nakea place arnse, not from its heving a sloping face, bat that the slopes were not long enough to resist the action of the waves; that no constant degree of alope is oalcuhated to resiat the different actions of the sea at differemt depthe ; that these actlons reduced gradually the masges of atone formiag the original dyke, to a profile baving different degrees of slope, and that thin nocessarily dianinished the height of the work at different times. Tway added that the whole mass was thos, at lengih, brought into a state of the mont perfect stability; and all this was verified by the United States Commission.
The frat great lesson really taught by the work in Cherbonrg Bay, as a warsing what to avold, is that the system of caissoning should not be edopted; the next lesson is to aroid the use of small stones deposited a pierre perdue; the third lesson is, not to constract the sea-face of break. walers in ose uniform slope from the bottom, bat to form the profile with two slopes, and to make the slope far Jonger than that which was origivally ceaiged for the work. The result of this extessive experiment demonstrates frat, how inauficient and incompetent mere theory and speculation are, to fiz within precise limits the degrees of resistance which should be given to wort exposed to the violent efforts of the sea.

We fad that the mass of materials origioally deposited in Cherboarg Bay, was heeped up $s 0$ as to form too steep a slope, and that the agency of tempeatuous waves has diapused of them by reduction to a form which seoures ibeir permaneat stability :

That the part of a break water which la above the highest level of apring tides, is so little exposed to the metion of waves (which must have loit by their eocest a portion of their momentom ore they arrive there), that it may be pore steop thao the part below.

We learn aloo that the part of the breakwater between low water and bigh water, spring tide level, is exposed to the greatest violence of the waves during tha whole of the rise and fall of tides; and that there the slope shonld be longest, or the inelination of the face to the borizon should be the least.

Captain Washington states, in his report on the breakwater at Cherboarg, ${ }^{*}$ thet the long slope of ten to one, formed by the action of the waves, from low-whiter mark upwards, has not varied, not even io the gales of 1803, 1894, and 1836, the mont memorable ou record." There cannot be better evidesee of the stability of the long slope.

That the part of the break water for a certain distance below the lowest opring tide, in exposed oniy to the shook of weves towards the termiantion of the fall and the commencement of the rise of tide; that there the slope may be atceper, or the inclination to the borizon greater; whilst at the bowest part of all, or that wbich remains permanently aubmerged, the alope may be still more steep, or have the greatest inclination to the horizon.

With respect to the magnitude of materials, wo lind that small stones have not safiecient stability to withatand even a moderate action of waves.

That stones of from one and a balf to two tons weight, are sufficient to reaist the effects of a modorate sem.

That blocka considerably lurger are required to withatand violent seas.
That when small materials are used, it is Indispensable to cover them with blocks of kerge dimensions.

That very large blocks should be placed towards the top of the work, to compensate by tbeir weight the lose of stability caused by the total immersion of the materiala beneath, for these lose as much of their weight in water, as is equal to the wright of water displaced.

The last fact to be ooticed respectiog the work at Cherbourg constitutes a very decided warning agalnst the use of blocks of concrete, which was proposed by Captain Denison, Noveauber 11, 18s5; for the application of this material on a large scalo has entirely failed; the blocks of concrete having broken to pieces.

The imperfections of the origioal project being corrected, the breakwater at Cherbourg is now proceeding repidly to completion; and far from being a warning that those who have to decide upon the conatruction of a Harboar of Hefage in Dover Bay, or olsewhere, should avoid the principles and reject the form which has been observed in its construction, it demonatretes in tho most forcible manner, that the theory of the upright wall shoald be rejocted, and that in its place should be adopted the well-tried siope, or rather a combination of different slopes; while a nearly upright wall may be formed above, to serve for the facing of a parapot like that which crowai tbe work at the French port.
Now, pertions who read' carsortly that part of the Repart to which I
have referred, may imagine that the old dyke at Cherbourg had been takea down, and that the vertical wall which bat recently been built, is raised from the natoral bed of the sea, to the exclosion of the slope; wheress it is, in fact, merely a parapet with a nearly vertical face placed on the original break water, to prevent the waves from rushing over the terre-plein, after their force had been expended or greally diminiahed, in ascending the long slope or glacis in its front.

I repeat now, on the authority of the very highest, the mont experionced civil and military engiaeer of Frasce, or probabily that the world ever knew, that "all the enlighteped engiaeers of France do contince to adopt, and will contince to constrnct breakwalers with inclined slopen, and do reject the theory of the upright wall ; that the ooly alteration thay would make if the work were to do over again, is in tha degree of slope, which they would make varimble according to the antare, specific gravity, and magnitude of the materials used; that the walls now being erected at Cherbourg; are not upright from the naked bottom of the sea, but built as a parapet, upon a well-consolidated basis; this being the breakwater previously formed d pierre perdue, whose slope has different degrees of inclination to the horizon, according as the action of the sea has reduced the origioal mass." That great work now stands in the form of a combination of the slope with the upright face for the superstructure; a profle which Readel, Ronoie, Cubitt, Vetch, Stuart, Colonel Harry Joses, Vignoles, acd others recommend, hat which Profeseor Airy says, spaaking of an entire break= water 20 formed, is, theoretically, "without doubt the worat of all.

That there may be no miatake apon this important matter in reference to Cherbourg Breakwater, unqueationahly the greateat piece of hydraulic architecture that has ever been executed, I annex a profile, showing a combina-

tion of the long alope with the vertical parapet and its fore-slope of stonee ; and I add the reasohe which induced the French engineers 14 years ago to recommend such a soperstructure. This combination was proposed for the completion of the breakwater, by Mons. Duparc, director of hydranalic works at Cberbourg, and sanctioned without modificationa by the Minister of Ma. rine in April 1832, on the advice of a apecial commistion, to which that proposition had been referred; bat $s 0$ far from palling down the ancient dyke, as atated in the Report, it whes reised from the level to which it had been réduced from not having alope enough, by depositing large blocks of rough stone up to the height of low-water apring tidew; and on it there wasa laid a mase of concrete, about 3 feet thick, on whleh a wall or quay is built to the height of 12 feet above high.water spring tides. The exterior aide of this quay or wall, is protected hy a fore-ibore of great blocke of stona, extending in a slope of 120 feet to the depth of 21 feet below low-water mark. The object of these blocks is stated by Mr. Virla to have been twofold. The in clined enface of this fore-slope makes, with the face of the wall, a re-enter. ing angle which might have been avoided in part by adopting the concave profile of Mons. Emy, but which in this ease what thonght necestary, inamach at the artificisl beach of great masses of stone the priocipal object of which wat to give to the slope of the dyke perfect atahility, produced in addition an important effect in resisting the action of the waves at low water. It is found, in fact, that the waves which break on the sarface of a long slope, have time to deaden their foree against the anperities of the blocks which form the alope, before they atrike the re-entering angle of the fourdation; and as the sea rises, and the time of high water approaches, the alope in froat producea the effect of an ordiasty beach in turning and throwing ap the waves, which would otherwise break against the wall with extreme violonce at the moment of their mazimum of intensity.

Lieut. General Sir Howard Douglas concludes by giving his diment to the statement made by the Commisaioners in their Report, "that they do not approve fully of any of the plans seat in."

And he objects to the use of blocks of cnncrete, or of brick set in cement, or to any other artificial material, as aubatitutes for atone, for the formation of national worka, which, if not to be constructed on sound and well-tried principlea, with materials of the bent and most enduring deacriptions, should not be attempted; and he also diasents to the recommendation of a majority of the Commisslun, for the adoption of masses of brich, at proposed by Mr. Readel.

And latily, Sir Howard dincents from any extension of the area to be comprehended by the breakwater, is reeommended in the Report of 1844; and moro eapecially from the suppreasion of the eastern opening; withont such opening, the proposed Harbour of Refuge would be deprived of at easential condition which all such harbours should possem, that of facility of egrese or escape at all times and tides, and in all weathera ;and he is convinced that by omisting to form this opening, the proposed enclosure would become to auch a degree a close harbour, an greatly to increase and accelerate the progress of the evil to which all close harboura are liable, that of rapidly ailking ng.

RENALSSANCE DECORATIONS.

An Aecoums of the Palace of Blots and Palacs of Chambord, France, mpecially at to the Decorations. By Jonn Gregory Cracr. Read at the Royal Institute of British Archilecte, May 31.

Heving been moch interested daring an excursion made to Touraine, is the antamn of lat year, by visita to Bloia, Chambord, Chenovceeve, Amboice, and other monuments of the Renaissance style of architectare, which abound in that district of Prance, I am induced to lay beo fore you a description of what I saw at the two former of those placea, Biois and Chambord.

The town of Blois, on the river Loire, is of very comiderable antiquity, and containe many objecte highly interestling to the lover of medimval art. It lies between two billa, on one of which is the cathedral, on the other the palace or castle.

The Cantle of Blois is supposed to stand oo the site of a Roman camp. Mention is made of it in history about the ninth century. I do not attempt to detail to you ite various posessero, but merely observe, that in the year 1292 it firat came to the De Chatillone, who are supposed to have built parts of the castle. Froissart, who was chaplain to Guy de Chatillon, Count de Blois, says, that it was "grand and otrong, and one of the handsomest iv France." By this Count Guy it wats zold, as indignantly mentioned by Froissart, to Louis d'Orleans, brother to King Charies VI., who took possession in 1397. The Or. leans retalned the property till their descendant became King of France nader the title of Louis XII.; it then remained arown property till Lonis XIII. bentowed it on his brother, Gaston d'Orleang, at whose death it seems to have reverted to the crown, and at the Revolation to bave become public property. Viewed as you ascend from the town, the cartle appears rising from a mass of rock, on which is an imposing base of solid masonry, giving the idea of a fortress of considerable strength. Passing the west front of the building, you arrive at the Place des Jesuiten, when the eye is struck with the magnificent north front of the quarter erected by Frapcis I. Tbis front is eatirely of stone ; partly in two, and party in three atories. The windows are in arched recenses, relieved with deep colouring, producing a rich and powerfal effect ; between the windows are pilanters, and where theae are double they are separated by niches and deep recesses. Pictureaque bays also project in various parts of this facade. A large circular tower marks the old tour des oubliettes, or the donjon, considered ove of the oldent parts of the building. The roof is separated from the entablature by a series of columne, thus forming an open gallery, and from the pedestals of these columbs project tremendons gargela. To my mind the effect of thin front is truly beautiful, and a successful example of the introduction of colour to architectural exterior. Part of the building was erected by the architect Mansard, by direction of Ganton d'Orleans, in the reign of Louis XIII., in a style of art seen to great disadrantage beside the beautiful front I have attempted to describe.
Leaving the Place, we approach the east front of the exterior, constructed by Louis XII. It is of brick, with ornamental stone dressings. I regret not being able to show a view of this front, which is very picturesque. I sketched one window, and also-what is the principal object-the canopied recess that formerly contained the equestrian statue of King Louis XII. This recess, surmounted by its cunupy, is of stone beautifulis wrought. I have ventured to restore, in the draw. jog, the colouring to the back-ground, powdered with gold Acura-deLis, apd to replace the statue as it existed previous to the Revolution, from a drawing in a manuacript by Felibiea. Oo the fascia under the statue was formerly placed an inscription, in Latin, which may be thus tranalated:-
"Where by the grece of God Loule whe born,
Here also, with a nolle hadd, he amamed the ropal sceptre.
Happy the day which annoonced the coming of no greal a moaarch.
Fracee could not bave found a klag mave worthy of ber."
That statue and the inscription are alike removed, and on the same fascia is now written "Cuserne d'lofunterie." The palace of Louis Xil. " the father of bis peuple," is now a barract.

Under this canopy is an archway, forming the pribcipal eatrance to the interior court of the pulace. This court consists of an irregular square, the four aides of which are in as many styles of architecture. On the south, the Guthic of the fifteenth century; on the tast, the plaborately ornamented Gothic of Lonis XIL; on the north, the elegent renaissance of Francis I.; and on the west, the Frapeo-Italian atyle of Mansard: all these, full of irregularities, produce an ensecmble picturesque and charming to the eyes of all, and most interesting to she loper of art.

The south side of the building, looking towards the interior court, was alfered and partly rebuilt by the old Dukes of Orleans it is of
an rapretending style of domentic Gothic, the outer walla being of brick, the whodows and dressings of atone. In this quarter, in addition to variona apartmente, is the old obapel of St. Calais, whileh dates from a moch earlier period; a view of it can be seen in Androuel Ducercean.

The east gide of the court is the boilding erected by Lonis XII ; it is of red briek, with window dressinges string coursen, sod earichmente of atope richly carved; abuve, rises a bigh roof furmerly created with gilt metal work, from which project dormers in stome of hematiful tracery, the whole reating in front on a colonnade, forming a sort of clofster; the stove pillars being diapered with trellis work, in which were formerly feuro-de-lis and ermines. This quarter contaline the epartments occupied by King Lonis XII., which, though pow under one universal coat of whitewash and all in the occupativu of soldiers, were formerly fitted up with regal splendour.
Here, in the year 150 L, King Louis XII. received in this building the Archduke Philip of Austria, and a chronicler of the period give a most complete and intereating description of the palace as it then appeared. The east front wha then just finisbed, its network of etome shown in all its brilliant freebness on its bright brick ground; the carvings were seen in all their perfection; a prufusion of fours-de-lis and ermines, scolptured or painted, were spread over the building! gold, purple, and azure daszled the eje in every direction, even up to the roof, whose creatinge and enricbments were also gilt; uver every door was seen the royal badge of the porcupine spreading out its quills, and over the entrapee archway was the splendid statue of the king himself, young and bandsome, noble and full of grace, as be then was.

Nor was the interior less magnificently decorated: rich tapestrieg, wrought in figures or flowers, or ornaments, furnished the walls; orer the floors were apread thick carpeta. The sbimpey-pieces wrre blazoned with beraldic shields, pulatiogs, and devioes; the jointe of the oeilings (for they were unplastered then) glittered with gildiog and elegant decoration; fumiture, carved with the utmost delieacy of finish; beds, covered in the richeat atuff, émbroidered in gold and lo siiks of all colours-these ornimented the apartmenta. And as if to recail the salutary thought of death, in the midat of all that was gay and joyfal there was painted, as was usual them, the celebrated dance, Macabre, on the walle under the piazzy or colonaade.
The king was prond of his palace, aod right royally did he receive his viaitors. Our chronicler, after describing with much latereating detail the procession by torchlight, the reception of the arehduke and duchess, and the ceremonies of introduction to the king and queen continues his description of the apartments of the palace.
"The Grand Hall, by which the archduke and duchess eatered, was of great aise, and bung with a tapestry of the Deatruction of Tros; and in the like manner also a chapel at the end of the hall. The room where the king dined, and where the archduchens was, was hung with a tapestry of a batte. Over the chimney was a grand mantle of cluth of gold, craped very rich. The chamber of young Madame Claula was next to the kings, and was bung with a tapestry of pastorals, all small, with inscriptions, which was very fine. Afterwards came the chamber of the queen, hung with a tapentry of strange beasts and birds, with figures from fureign countries; and in ssid room was a bed all dressed out with cloth of gold, and above the bed a canopy of crimson damask. In the lodgings of the archduke there mas: gallery, hang with tapentry of the deeds of the Trojans; after that a grand chamber, hung with tapeatry of the actious of Alexander the Great, and a mantle uver the chimney, of cloth of gold, craped. Frum ceiiing of this room bang two chandeifier, marvellougly large, of silver, made crosswaya, for placing on each fuur dambeaux, which chaodeliers hung by great chaias of silver. At the end of this room was the chamber of the archduchess, where the said lady and geutleman sleph which was huag with cloth of gold, wove with black und ped. Here were two beds, of which the ond in which they slept was of atuffembroidered in gold, and curtains of the same, hned with white damast: and above this bed was a canopy, the top of cloth of gold, the curtaise of taffetty, yellow and red.
"The other bed was furnished in the same manner, and on each were coverlets of cloth of gold, and inside them sheets of linen from Holland. All around the beds, and on the buffet were carpets of cluth of guld. In the corner by the bed was a gilt chuir, admurably wrought by Italians, of which the seat, \&cc. was covered with cluth of gold, fringed all round with fringes of guld and silver. Before the chimuey was another chair, also covered with cloth of gold, and there was carpet of the same stuff under it; a!so, there were many rich oushioce in the room to sit upon."
And thus goes on our chronicler, describing every room: one bugg with crimson velvet embroidered with K's and A's, crowned; another with crimson embroidered with curds and the arms of Burgundy;
methep with broende, yeflow and grey, with Sis in back velvet; waner with erinoon thiln embrotdered is flames of firs, and at the angles and to the centre ware lions in wreathe, entirely covered in pearth, nad which were migthy rich to eeee, and cest 40 to 50,000 decith. And the chronicler further taket care to remark, that will the and atale and taphutries were as fresh and good as new, and that the boon of ell the rooms were covered with carpets of velvet, to that mothlogg of the toors was soen.
Throt wes furmished this palace of a king of Frapce at a time conseaporary with the reige of our Heary VIl.
At each eztremity of the frow of Louis XIL, and forming part of the work erected by him, is a equare tower of picturraque eppesarance. It contsins a stairease of conaiderable elegrace. The stairs radiate rond a centre shaft, which is formed of elontering columpe terminating in a crown at top, from which rises a vaulted ceiling. Though the cometrection and rany of the details are Gotbic, yat cume of the oraaments partake of an Italiad charaeter.
Prowis this stairease we pars to the part of the palace the mont historically famons, the amolent Salle des Elats, a large boilding, of somewhat plain appearance, dailog about the thirteenib century, although tereral aterations of a hater period have been made to ite windows, ste. In this spacious hall the three estates of the kingdom used formerly to assemble. It has a rude and bare appearance; down the coutre range a series of pointed arches, reating on colomps supporting iveroof, and dividing the ceiling into two parts, which are arehed, and simply covered with lat boards. In the reign of Henry IIL. the wates were summoned to meet bere; and it was during their assemby that tbe powerful Dae de Guise was murdered in one of the apartwents of the palace. The hall was then richly orramented; the malls were huag with aplendid tapestry, worked in fgures, relieved rith gold; the column covered with purple velvet, puwdered with gold feurs-de-lie; and the ceiling was also covered with tapestry. A phationm wat raised nearly in the eentre, bebind one of the arches, on whth was plaeed the throne of the king, all being covered with purple velvet, powdered with gold feure-de-lis, und on this, and on the ateps to it, were seate for the blood rogul; behind stood the archers of the guard; lo front, and on either side, were the three estates, and in galleries at the ead were seats for ladies ;-the common people were also allowed to enter within certain barriers. The king deacended from his apartmente into the hall by wooden atairs at the end, but which stairs are DOw removed.
Adjoining the ancient Salle des Eta/a, and furming the northern side of the quadrangle, is that quarter of the palace erected by Francia I. This froat, by the elegance of ite proportions, the beauty of its deluith, and the grandenr of ite effect, in by far the most imponing feature in the whole building, and a wost tasteful apecimen of the Remisance atvie of archltecture. The exterior frosh towarda the place des Jeeustes, 1 have miready deacribed; this, wwards the interior cuurt, is ulcogether different : here we have more elaburate deeprotion and greater delicacy of faish. It is entirely of atone, and epmposed of two priucipal fluors, decorated by pilastera and paneilinges round the windows are interlaced entichments, and the reveala are panelled, and were, I suspect, formerly relieved with colour. Abore is an edablature of considerable richoess and beautiful effect. lo modilliona project to some extent, and above them is a kind of machicolution, containing shell enrichmats in its recessea; over this rimen an or aumental buluatrade, formed of the letters F and C , for the diditiale of Francis I. and Claude of France. Frum the roof project durmer windows of graceful outline; add eveu the chimpey-shafts are exriched, and by no smeans noworthy of remark. The rool itself was fipmesty crested with an ornament composed of feure-de-lis, gilded. Below was furmerly a colomade supportiug a gallery, as given by Ducercean, whieh, although now removed, is ubout tu be restored. Bot the pripeipal object In this frunt, and which gives a charm to the whole, is the giand open ataircusp, situate about the centre of the lagade, and projecting in front of it. Tbis bus lately been restored, and now shines furth lo the full beauty of all its delicate and tasteful morkmanahip. The belustredes are formed of open carvinge of foliage and the crawling salamander. Niches of moat elaborate detail and degash arabesques adorn the shafts of the pilasters; twining foliage is sculptured round the mouldings of the winduw openinge ;-in every purt does ornament seem to clothe this magnificent work of art like ite delicute foliage and clinging tendrils of the ivy clostering round a tree, yet nowhere does it superabound or appear mianplaced.
The interior of this staircase is alao ormamented with carved piches ade enrichments; mounting its stepa, we enter the suite of apartments oo the firat floor, being those formerly occupied by Queen Catheriae de Medici. The frat is called the Salle des Gardet, or guard cham. ber, a room of conaiderable slep. The chimney-piece of atune, thougb manive in construction, is to be nuticed fur the elegance and richnem
of lis ornaments; the atair doop-frame is decorated, and has over it the calamander in flames, the budge of Francis I. The ceiling bere, as in most of the rooms in this building, is formed of beams, which are, in fact, the foor-joiste of the room above; the effect of thene, when painted, is by no means unpleasing. I made a sketch of the decorations lately executed on this ceilling, in which the initiale, arms, and badges are mingled, with forcible contrasts of colour ; whether the precise pattern is a reatoration or not, 1 had no means of discovering; but there are many old oxamples of this mode of ornamenting the ceilinge atill remaining at Chenonceaus, Fontainbleau, and other places; and in Venice, almost all the older palaces have the ceilinge decorated in this way, with arabesques and inlaid omsmente of greak variety ond beasty. The walh of this chamber are now bare, so they are all, in fact; mothing now remains of the aplendonr that dazzled the eyes, or the works of art tiat delighted the mind, during the time of Francia I. We pass through a multitude of rooma, but all are desolate alike-each has suffered the distressing calamity of whitewash -not a vestige of furniture, not a hanging remaina. The chinaneypiecrs alone attest the magnificence and beauty with which the remainder must huve been ornamented. I anticipated the pleasure of sketehing these, whicls possess a rich fund of renaissance art, but a cuatodian abruptly prohibited my making further drawings ; and I was tius prevented taking many detaile in the interior that might have proved interesting. T'be state-rooms seem to have been situated on this court-side of the building; and on the other, looking towards the Place dea Jesuiles, were the large bed-room and private apartments of the queen; amongst others, her csbinet. In this the walls are covered by carved panelling, the details of which ure executed with much spirit and taste.

Again mounting the open staircase, we reach the floor above, the disposition of the rooms on which is exactly almilar to the one we have left. These were the apartments occapied by King Henry ItI. You enter firat the Salle des Gardes, which served also as a covocil chamber; from hence you pass into the king's bed-room, a very spacious apartment looking towards the Place dee Jesuiles. Here occurred the tragedy of the marder of the celebrated Duc de Guise.

The cabinet of the king is next this chamber; it is a small room, which atill retains some traces of decoratione. On the ceiliug are to be dirtinguished slight remains of coloaring, and arabesque ornameat in frenco may still to seen on the linings of the window recess. On the left of the bed-chamber you enter a sort of passage which leads to the old Tour des Oubliettes or Donjon, of which wo many horrors ate retaiied; at present nothing but bart walle of comaiderable thicknem are to be seen.
Above this second fluor are a range of roome in the roof, but these contain do ornamental or interestiog feature of any kind except that a most extenaive view of the adjoining country is to be obtained from the open gallery outaide them.
Of the west front I have litule to say; it is that ereeted by Gaston d'Orleaps, in the time of Louis XIII. As a atructare away from these middle age remains, it would probably be admired, but here it is thoroughly out of place. It stands on the aite of a purt of the ancient cbateau erected by the old Dokes of Orleans.

Before leaving the Chateau de Blois, I muat not omit to call attention to an old tower, ased subsequently as an observatory and astrological stady by Calberine de Medici.

TEE PALACE OP CHAMBORD.

Crousing the Loire, you pase along a sandy road through a diatrict of vipeyards, till you enter a forest, in the midat of which, and at about four leagues from Blois, lies the celebrated Chaleaus de Clambord.

It is difficult to describe the effect it first creates upon the miod-it looks so perfectly unlike any thing one has ever seen before. Below -ite mashive round towers and perfect simplicity give the idea of the atrong fortress of ancient date. Abore-the wildeat confusion and profusion of the moat fantuatic, the most beantiful, and the uglieat forms, all mingla together, and produce an architectural acene that cannot be imagined.
The building is immense, and has an appearance of extremp grandeur, statelinem, and colidity.
Androuet Ducerceau eayg," All this edifice is admirable, by reason of its great mansiveness, and presente an effect wondrously superb on accond of the immensity of work in it."
It is ald to have been begun to be built by Francis I. after his return from Spain, about the jeur 1526, and that nearly 2,000 work men were empluyed on it fur many years.
The centre building is in the form of a equare, having at the angles four great round towers about 60 feet in diameter. This centre square bnilding is incloned, an it were, witbin an exterior court, baving at iti angles round towers also. Of these, the swo in a line with the prin-
cipal building nearly resemble those of the centre, with which they are.connecten by a continuation of the front ; and the two towpit at the other extremities are smaller, and connected with an insignificant range of buildings for stables, offices, 8 zc., and which, though built by Mansard, in the time of Gaston d'Orleans, are a complete eye-sore contrasted with the more ancient building.

I believe it is unknown who wus the architect of Chambord. Primaticcio has been mentioned, and it seems to me likely to have been designed by an artint accuatomed to flights of the imagination, rather than by an architect who would have studied greater appropriateness in the forms.

Though it is not so stated in any account that I um aware of, I cannot help fancying that the round towers munt be the remains of nome older building, so completely does the plan resemble the inclosed strong-hold, the old maison-forte of the earlier middle ages.

Three ranges of pilasters at almost regular intervals, girt the exterior of the principal building, which is partly relieved with open galleries; above these is an entablature, showing the same kind of machicolation and shell-work as in the building of Francis, at Blois; and above the cornice is a balustrade, which girts the platform on the roof. Towards the interior of the court, the architecture poseesses more variety, and at the two angles is an open staircase of beautiful design, resenbling the one at Bluis.

But the roof is the glory of Chambord. The whole top of the building in one grand terrace, pared like a marble court.

Immense pointed roufs, more than 50 feet high, rise above the towers like ornamented pyramids studded with magnificent dormers and gabels, intermingled with elegant chimney shafts and towers, decorated with niches and flanked with columns in most beautilul proportion,

Elevated above all the rest is the grand centre staircase of the building (of the interior of which I will speak presently). This, as it rises above the platform, is surrounded by columns supporting a gallery, from which spring eight grand fying buttresses, ornamented with gigantic salamanders and supporting the cupola, which terminates in the remains of the famous feur-de-lis, which gave the name to this crowning glory the "Tour de la Fleur-de-Lis."

There are pablished views to explain, in some degree, the appearance of this wonderful work; but no drawing can convey the full effect of this labyrinth of palaces, seen at different points of view, as you wander about this magnificent platform.

The rarious towers and chimney-shafts are of most elegant proportion; but the details, though of beautiful design, are rarely executed with the faish of the work at Blois, which they much resemble.

The caps of the pilasters, and the corbels at their base, are of infinite variety.

On the gable and the buttress of centre tower may be remarked dark lozenges and circles, and also a sort of futiog. To these I beg to call your attention; for though looking from below like inlaid marble, they are in fact nothing but pieces of slate nailed on the surface.

The jnterior arrangement of the chatteau is extremely peculiar. On each floor one vast apartment atratches in the form of a cross, from back to front, and from side to side, of the building; and in the centre of the cross is the celebrated double staircase, rising through every floor, and forming the highest object in the roof above.

In each of the four angles left by the cross is a separate suite of apartments, including also others within the angle towers, and from two of these, again, there is a comaunication by another suite of rooms with the two onter towers on the same front. The large cross-shaped chambers are called Salles des Garde: ; but I cannot think that rooms of such magnitude, communicating with every quarter of the chateau, could ever all of them bave been intended as guxrd chambers. I rather imagine, considering that Chambord was erected by Francis I. as a bunting palace, that it was arrunged on this singular plan as a place where state was to be laid aside, and that these balls were places of general rendezvous. Their ceilings are vaulted and divided into panellings, filled with the initial F and the royal salamander in flames alternately. In one of these curious chambers, where scenes of state and ceremony bave often occurred, Moliere's play of the "Bourgeois Gentilhomme" was represented for the first time, before Louis XIV.

The grand staircase is wonderful-wonderful for the effect it produces and the beauty of its proportion and its ormaments, rather than for any peculiar difficulty of construation. Its construction may be thus demeribed:-the outer diameter of the ataircase is, I suppose, sbout $\$ 0$ feet; in the centre of this is an inner wall, in diameter about 10 feet; between these two circles the stairs wind up in a double spiral, commencing at opposite points, so that parties entering at each, in ascending, see each other repeatedly through openings, but do not meet till they arrive at the various floors. The exterior of the staircase is decorated, and the interior wall is also bighly ormumented with
a variety of beantiful niches. The salamander in tames and the initial F are also introduced, the latter marrounded with a frame of cordsemblem of the Cordilieres to whioh the king's mother belonged. Of the termination of this staircase above the rouf I bave already spoken.

Of tho four hundred and forty chambers which this mighty chleesn is said to contain, there is not one that has eccaped the distreming evil of whitewash, and few of them retain any omament indicating their former use or recalling their furmer grandeur. I aketched a cetiing of a small raulted room, said to be a private chapel, where the panels resembled those in the Salles des Gardes; nod I remarked a chamber where there were indications that a painted friese, three feet deep, bad been; but every where the walls are bare-not a vestige remains of any kind of hanging or decoration Destruction, the mast ruthless that can be conceived, bas swept orer tho whole interiors all the furniture, the paintings, the wainscoting of the walls, the very doors, the wiadows, were burnt, broken, or tolen at the time of the Revolution.

Yet, what must the cbambers have been at the time of the royal Francis, who so loved to surround bimself with objects of art!-what thousands of works produced under bis fustering care still remain te us! Who can doubt that the rooms, so wretched now, were one blase of splendour then? that, besides the paintings of Primaticcio, and the frescoes of Jean Coussin, who were engaged there for years, there were assembled there the choicent works of the greatest mastersgroups in marble by the rarest Italian hands; bronses by Cellini, and, equaily precious, his tasteful ornaments and vases in gold and silver; delicate carvings in ivory; enamels, by Leonard de Limoges; glames from Venice. Fancy that the walls were lung with the riohest tapeqtry, or leather, or brocade-that the cuilings were blazoned with colour and glittered with gold-that tasteful furniture, which II Rosso and Primaticcio disdained not to design, filled the various apartments: picture the king, in the midst of his brilliant court, dazaling the eye with the ricliness of the costume and the beauty of the ladies_nad the mind will iudeed conceive a scene at Chambord, in vivid contrast to now what meets the view.

ON THE INDUCTION OF ATMOSPHERIC ELECTRICITY ON THE WIRES OF THE ELECTRIC TELEGRAPE.

By Professor Joseph Henry.

(Continued from page 177.)
4. Powerful electrical currents are produced in the wires of the telegraph by every flash of lightning which takes place withio many miles of the line, by the action of dynamic induction; which differs from the action laat described, in being the result of the influence of electricity in motion on the natural electricity of the conductor. The effect of this induction, which is the most frnitful source of disturbance, will be bent illustrated by an account of some experiments of my own, presented to the Society in 1843. A copper wire was suspended by silk strings around the ceiling of an upper room, so as to form 2 parallelogram of about sixty feet by thirty on the sides; and in the cellis of the same building, immediately below, another parallelogram of the same dimensions was placed. When a spark from an electrical machine was transmitted through the apper parallelogram, an induced current was developed in the lower one, sufficiently powerful to magpetize needles, although two floors intervened, and the conduetorn were separated to the distance of thirty feet. In this experiment, $n 0$ electricity passed through the floors from one conductor to the other; the effect was entirely due to the repulsive action of the electricity in motion in the upper wire on the natural electricity of the lower. In another experiment, two wires, about 400 feet long, were atretched parallel to each other between two buildings; a spark of electricity sent through one produced a current in the other, though the two were separated to the distance of 300 feet; and from all the experiments it was concluded that the distance might be indefinitely increased, provided the wires were lengthened in a corresponding ratio.
That the same effect is produced by the repulsive action of the electrical discharge in the heavens, is shown by the following modit. cation of the foregoing arrangement. One of the wires was removed, and the other so lengthened at one end to pass into my study, and thence through a cellar wiudow into an adjacent well. With every flash of lightoing which took place in the liearean, witbin at least a circle of twenty miles around Princeton, needles were magnetised in the study by the induced current developed in the wire. The eame effect was produced by soldering a wire to the motallic roof of the house, and passing it down into the well; at every tash of lightaing a series of currents in alternate directions was produced in the wire.

I was also led, from these resulte, to infer that induced carrente mest travere the line of a rallroad, and this I found to be the case. Sparks we seen at the breaks in the continaity of the rail, with every fah of a distat thander-cloud.
Bimilar effects, but in a greater degree, must be produced on the wire of the telegraph by every discharge in the heavens; and the phamonena which I witnessed on the 19th of June in the telegraph office in Philadelphia were, I am sure, of this kind. In the midst of the harry of the trammisaion of the congresaional inteligence from Washington to Philadelphia, and thence to New York the apparatus began to work irregulariy. The operator at each ead of the line anmounced at the asme time a storm at Washington, and another at Jessey City. The portion of the circuit of the telegraph which entered the bailding, and was convected with one pole of the galvanic batuery, bappened to pass within the distance of less than an inch of the wire which served to form the comnexion of the other pole with the earth. Across this space, at an interval of every few minutes, a series of sparts in rapid succession, was observed to pass; and when one of the torms arrived so near Plutladelphia that the lightning could be seem each series of sparks was found to be simultaneous with a flash in the henvens. Now we cannot suppose for a moment that the wire was attually struck at the time each flash twok place; and indeed it was obarved that the sparks were produced when the cloud and lash were the distance of several miles to the east of the line of the wire. The inevituble conclusion is, that all the exhibition of electrical phenomena witnessed during the afterooon was purely the effect of induction, or the mere disturbance of the natural electricity of the wire at a distance, without any transfer of the guid from the cloud to the spparatus.

The disebarge between the two portlons of the wire continued for more than an hour, when the effect became so powerful, that the superistendent, alarmed for the salety of the building, contected the long wire with the city gas-pipes, and thus transmitted the current silently to the gronnd. I was surprised at the quantity and intensity of the eurrent; it is well known, that to affect a common galvanometer with ordinary electricity, requires the discharge of a large battery; but anch was the quantity of the induced current exhibited on this oceasion, that the needle of an ordinary vertical galvanometer, with a sbort wire, and apparently of litele sensibilisy, was moved sevaral degrees.
The pungency of the apark was also, as might have been expected, very great. When a amall break was-made in the circuit, and the parts joined by the fore-finger and tbumb, the discharge transmitted through the hand affected the whole arm up to the shoulder. I was informed by the superintendent, that on another occasion a park pased over the surface of the apool of wire, surrounding the lega of the horse-sboe magnet at right angles to the spires; and such was its istensity and quantity, that all the wires acrose which it passed were melted at points in the asme straight line as if theg had been cut in two by a sharp knife.
The effecta of the powerful discharges from the clouds may be prevented in a great degree, by erectiog at intervals along the line, aod aside of the supporting poles, a metallic wire, connected with the earth at the lower end, and terminating above at the distance of abont half an inch irom the wire of the telegraph. By this arrangement the insulation of the conductor will not be interfered with, while the greater portion of the charge will be drawn off. I think the precantion of great importance at places where the line cronses a river, and is supported on high poles; also in the vicinity of the office of the telegraph, where a discharge, fulling on the wire near the station, might send a current into the house of sufficient quantity to produce serions accidents. The fate of Professor Richman, of St. Petersburgh, should be recullected, who was killed by a flash from a small wire, which entered bis house from an elevated pole while he was experimentiog on atrospheric electricity.
The danger, however, which has been apprehended from the electricity leafing the wire and discharging itself into a person on the rond, is, I think, very smull; electricity of sufficient intensity to strike a perion at the distance of eight or ten feet from the wire, would, in preference, be conducted down the neareat pole. It will, bowever, in all canes be most prudent to keep at a proper distance from the wire dariog the existeace of a thnnder-atorm in the neighbourbood.
It may be mentioned as an interesting fact, derived from two independeat sources of infurmation, that large numbers of small birds luse been seen suapended by the claws from the wire of the telegraph. They had in all probability been instantaueously killed, either by a direct diecharge, or an induced current from a distant cloud, while they were resting on the wire.
Thoogh accidents to the operators, from the direct diachage, may be prevented by the method before mentioned, yet the effect on the ma-
chine cainnot be eutirely obviated ; the residual corrent which escapes the discharge along the perpendicular wires, must neutralise for a roment the current of the battery, and produce irregularity of action in the apparatus.

The direct discharge from the cloud on the wire in, comparatively, not a frequent occurrence, while the dynamic inductive influence most be a source of constant disturbance during the season of thunderstorms; and no other method preseuts itself to my mind at this time for obviating the effect, but that of increasing the size of the battery, and diminisling the seusibility of the magnet, so that at least the smaller indoced currents may nut be felt by the machine. It must be recollented that the inductive influence takes place at a diatance tbrough all bodies, conductors and non-conductorn; and hence no coating that be put upon the wire will prevent the formation of induced currents.

I think it not improbable, nince the earth has been made to act the part of the return conductor, that some means will be discovered for insulating the aingle wire beneath the surface of the earth; the difficulty in effecting this is by no means as great as that of inanlating two wires, and preventing the current striking across from one to the other. A wire buriod in the earth would be protected in most cases from the effect of a direct discharge; but the inductive infuenee would still be eserted. though perbaps in a less degree.

The wires of the telegraply are 100 amall and too few in number to affect, as some have supposed, the electrical condition of the atmosphere, by equalizing the quantity of the fuid in different places, and thus producing a less changeable state of the weather. The feeble currents of electricity which must be coostantly passing along the wires of a long line, may, howerer, with proper stady, be the meass of discovering many intereating faole relative to the electrical state of the air over different regions.

REGISTER OF NEW PATENTS.

WAGON COVERS AND WRAPPERS.

Hrnay Henson, of Hampstead, in the county of Middlesex, gentleman, for "a ners fabric, suilable for goods' nrappers, magon-covere, and olher like purposes; and cerlain procesats employed in the manufacture of the same."-Granted November 5, 1846; Enrolled May 5, I847.
This inventiou relates to the manufacture of two deacriptions of fabrics; one suitable for covering wagone, coaches, or other vehicles, \&co, and the other for covering fight goods, which are not generally exposed to the weather, and for similir purposen. The base of the first fabric is bempen thread; with which is interwoven, when the fabric is being made in the loom, copper wires, or galvanized iron wires covered with thread (but uncovered may be used, if preferred), or thin strips of cane ; the object being to produce a fabric which shall not be liable to be rent or torn. The wires or strips of cane may be inserted at from one to sir inches apart, according to the strength required, and the thicknese of the wires or strips; and they may form part of either the warp or weft. For ordinary fabrics, No. 28 wire will be found suitable, and inserted at two inches apart. The fabric is immersed in a vat, filled with tanning liquor, of $1 \frac{\mathrm{ewt} \text {. of good }}{}$ oak bark to one hundred gallous of liquor; the fabric mast be so proportioned to the quantity of the liquor, that for every yard there shall be about two galluns of tanning liquor, and to remain in the liquor for about fifty bours, and kept at a temperature of 150°; it is then removed from the vat, and hung up to dry. If the fabric be required to possess the quality of leather in a greater degree than can be given to it by the above process, this may be effected by subsequently immersing it, for about ten hours, in a weak eolution of gelatine or albumen, and repeating this operation two or three times, according to the effect desired to be produced. Inatead of the above process of tapning, the well-known processes of tauning by exbaustion, or by hydraulic prossure, may be employed. The fabric is now waterproofed, by first saturating it with a composition culled by the patenter No. 1, and, when that bas become dry, coating it with another composition termed No. 2. The first composition is formed of one gallon of turpentlpe, one ppound of tallow, and one pound of bees' waz; and the second is composed of two.quarts of raw linseed oil, one quart of boiled linssed oil (rendered drying by the addition of litharge), one quart of Stockbolm tar, and tweniy ounces of lamp-black or ground cliarcoal. The fabric is placed upon a bollow iron table or chest, beated by the admission of steam into it , and the compositions are applled by means
of a spatula or brush; the first composition being forced into and through the fabric, and the second laid on evenly and swoothly.

The eecond description of fabric is made by pauting, cementing, or otherwise uniting a sheet of paper to a sheet of calico or situilar textile fabria, which lias been previously waterproofed and japanned.

MANUFACTURE OF GAS.

Grobge Lowz, of Finsbury-circus, Middlesex, engineer, fur " Jmprovements in the manufacture of and in burning gas, and in the mankfacture of fueh"-Granted Oct. 8, 1846; Enrolled April 8, 1847.

The improvements relate, first, in preparing peat in combination with resin, pitch, oil, fat, or other hydro-carbonaceous matter, and in making gas therefrom: secondly, an appara'us for purifying gas; thirdly, in making gas from coal and other mattern, by introducing steam, highly heated, into the retorts used; fourthly, in improvements in Argand gus•burners, whereby the gallery or apparatus carrying the chimney is made to rise and fall on a screw, so as to adjust the admisaion of the air to the flame; and, bithly, in manufacturing fuel from peat, by causing dry blocks of peat to be saturated with pitch or other hydro-carbonaceous matters.

The first part of the invention is for saturating blocks of peat with resic, pitch, fat, oil, or other hydro-carbonaceous matters. The peat is cut into blocke, and well dried, and then saturated by piling the peat in a aquare cast iron boiler, about 18 Inches deep, to within a few inches of the top; then melted pitch, resin, tar, or combinations thereof, or other cheap hydro-carbonuceous matter, in a bighly-heated state, is allowed to flow into the boiler, and heat is then applied; by suoh means, the hrdro-carbonaceous matter penetrates the blocks, and causes them to be well saturated, the time of such process depending on the character of the peat and the sises of the dry blocks, but generally about an hour is sufficient. When the block: are saturated, tbe remainder of the fluid matter is allowed to run off, and the blocks are removed, and a fresh quantity put into the boiler, and the saturated blocks are placed on edge on open shelves to drain, and afterwards made into gas, by being placed into retorts, in the same manner as coal. The patentee prefers to salurate the dry blocks of peat by placing them within a vessel, such as is now used for saturated wood by the aid of vacuum and pressure. When using tar as the hydrocarbonaceous matter, it is advantageous to combine therewith. from five to ten per cent. of quicklime in the state of powder.
The recond improvement relates to an apparatus for purifying gas. The annexed engraving is a section of the apparatus, made in two
compartments, weak ammoniacal
 liquor to be used in the lower one, and water or water acidulated with sulphuric or muriatic acid in the other. These two compartmente are each nearly Gilled with lumps of coke, as has before been done in conatructing what is called the scrubber; and the improvements consist of the means of distributing the purifring fluid used. a is a tank of water or other purifying liquid; b, a tank for weak ammoniacal liquid; b^{\prime}, c, are two perforated pipes on axes, the perforations on either side of the axis of each pipe being on opposite sides, so that the flow of fluid in streams will cause the tubes to revolve on their axes and distribute the fluid equally on the coke; the gas rising upwards from its pipe of introduction at d, passes off, partially parified from amroonia, by the pipe e; and it is the use of revolving pipes, b^{\prime}, c, wbich constitutes the novelty of this arrangement of apparatus.
The third part of the invention consists in applying steam, highly beated (after it leaves the boiler ar generator), into the re. torta und when making gas from coal, prepared peal, or other matter rich in carbon. Steam from a steamboiler or vossel passes through pipes bighly beated, in a like
manner to that commonly resorted to for obtaining hot blast in the manufacture of iron, which highly-heated steam is conduoted by a pipe into that part of a gas retort most distant from where the gas passes off from the retort. The steam is generated ander a premere about that of the gas, and it flows into the retort freely at the commencement of gas making, after charging the retort, and it is stopped after the most carbonaceous matters bave been driven off from the conl or other matter used.
The forrth part of the invention relates to improvementa in Argand gas burners, by so arranging the gallery for carrying the chimney for directing the air to the external surface of the flate, that it may rive and fall, and be fixed at the required position by a sorew or other meam, and thus allow of a nice adjustment of the admiacion of air to the Bame.

The fifth part of the invention consists of treating blocks of dry peat in the same manuer as that described under tho first part of the invention for gas making.

STEAM HAMMER.

Joun Condir, of Glaugow, engineer, for "Improdemente in machinery used in manufacturing malleable irom."-Granted Uct. 15, 1846 ; Earolled April 15, 1847.

The improvemente relate, first, to the arranging or construeting steam hammers, that the steam cylinders have the hammer faces ap:plied thereto and move therewith; and, secondly, to the introduction of malleable iron tubes into anvils and hammer and squeeser fuces.

Fig. 1 ls a front elevation of the hammer and steam apparatos;

Gg. 2 a vertical section, taken at right angles to fig. 1 ; and fig. 3 a plan of the cylinder. The steam is admitted through the valve a and tube b, which encases the piston rod, into the steam eylinder c, and presses on the piston d (which is fixed) and the cylinder top, and raises the cylinder, which is made moveable, together with the hammer e, attached thereto, until the steam valve a closes, and cuts of the supply of steam, and at the same time opens the outlet port f, to allow the steam to escape from the cylinder through the pipe g into the atmosphere; consequently, the hammer will then fall by its weight, and when the steam is again admitted the same operation is repeated. Near the bottom of the cylinder, there is a port, or ports, h, to allow the air under the piston to escape while the cylinder and hammer are being raised, and also the air to return when the hammer is falling. Wheu the hammer is required to strike with more force than its weight alone, the throttle valve is fully opened, which causes the air port it to pass the pistou and compresn the air under the lecter, by which additional recoil will be given to the fall of the hamomer. The cylinder is guided by gaides i, working in grooves attuebed to the vertical framing k.
The hammer may ulso be worked without the air port $k_{\text {, at }}$ at the bottom of the eylinder ; in such case, the cylinder is made longer, and the air under the piston is compressed, as the hawmer is raised, ontil its densily is about half that of the atem. When the steam ia
allowed to emospe by this plan, the compresed air gives additiona force to the blow of the hammer.

FIGURED SURFACES.

Artave Malward, of Birmingham, in the county of Warwick' gentleman, for "certain Improvements in producing Agured suffaces, maken and in relief:"-Granted October 15, 1846 ; Enrolled April 15, 1847. [Reported in Nemlon's London Journal.]
This invertion is divided into eight parta; it conaiste, firstly, in the following method of producing sunken designs on metallic surfaces:The design is painted, drawn or otherwise depicted on the metallic surface to be ornamented, or it is impriated thereon by stencilling or traseferring: a thin cost of gold, silver, copper, or other metal is deposited by voltaic electricity or other means on all parts of the surface, exeept those which are covered by the design, or are, to use the pateatec's words, "stopped out;" then the colonring or other materiala employed in the stopping out are cleared away, and the aurface is econected with the negative pole of a voltaic battery, or electro-magvetic machine, in which the solution employed is of such a nature as to ate only on the ground-plate, whereby all those parts of the plate which were covered by the stopping oul, but are now laid bare, may be decomposed or eroded to any extent required. Inatead of a voltaic bettery or electro-magnetic machine being employed, the metallic mufice may be immersed in any acid or alkuline or other saline solution, capable of acting on the exposed portione of the sarface, but not on the precipitated metal. The sunken design may be intersected in different parts by cross lines in relief, so as to present the appearance of "cromehatching," by inserting such lines with a peocil dipped in varnish, after the plate has been cleared of the atopping out, and before it is subjected to the decomposing or eroling action.
The zecond improvement consists in producing sunkeo designs on metallic aurfaces, by first covering the whole of the surface, is the maner above mentioned, with a coat of any suitable metal, and var. nishing the some; mext seraping the design in the varnisb; and then mabjeeting the aurface to the decomposing or eroding procese, whereby the metal left exposed by the scraping out is removed and the sunken denign produced.
The third improvement consists in producing figares in relief on metallic surfaces, by first coating the same with any suitable metal, and painting, drawing, or otherwise depicting the required design thereon, or imprinting the desigo upon it by stencilling or transferring; the design is then intersected by indented lines and cross lines, after the manper of line engraving (the whole of the colour or other material oned in laying on the deaign being cleared away from such linen); and, after this, all those parte of the deposited metal which are left exposed are semoved by the eroding procem, and the lines of the design only left standing in relief from the ground-plate.
The fourth lmprovement consiste in the following method of proo ducing denigne in relief:-The surface or ground-plate is varnished all over, and at certain parts the varnish is seraped away to form the required design ; upon the exposed parts a coat of any suitable metal is deponited, and the remainder of the varnioh is then removed from the plate; after which, the unprotected parte of the ground-plate are removed to the desired extent by the decomposing or eroding proces.
The fifth part of the invention relates to the production, in metals, of desigos which partake of the character of being both suaken and in relief, and are commonly termed "pierced work." To the groundplate a thin cont of any suitable metal is applied, by electro-deposition or otherwise, and the design is painted thereon; all the parta except those beneath the design are then subjected to the decomposing process, ontil the said parts (both ground-plate and conting) are completely eaten through. The colour or other material used in laying on the design may be afterwards cleared away.
The sixth part of the invention alco relates to "pierced work." A metal-plate, on which a raised denign has been atamped out, is covered all over with any suitable metal by electro-deposition; then, by means of a seraper or other tool, the deposited metal is removed from those parts which are to be pierced through; and, after this, the expromed portions of the plate are decomposed or eroded. The same object may be effected by cutting through the metal deposited on the front of the plate all round the design, when so much of the deposited metal as covered the denign drops out; and all the parte of the plate from which the deposited metal has been removed are then dissolved or decomposed by the means before mentioned. Any suitable varnish may be used inotead of a cont of metal as the atopping-out material in the above processes.
The seventh part of the invention relates to the mattening or deadming of articles with plain or figured surfaces, which hare been
mannfactured by the processes of stamping, embosing, or cationg. The portions of the surface required to be mattened or deadened are covered with varoish or other suitable medium, and the remaining portions of the article are coated with any soitable metal by electric deposition; the varnish or other medium being then cleared away, the parts of the plate left unprotected are subjected to the decomposing proces. A similar effect may be produced by at once stopping out all the parts but those required to be mattened or deadened, and submitting the plate to the decomposing or eroding process.
The last part of the intervention relates to the production of engraved surfaces, sanken and in relief, from which impressions may be tuken on paper, cloth, or other saitable material, by the ordiarary modes of printing or embossing. If the design is to be sunken, it is painted or otherwise depicted on a plate or metallic surface; a thin coat of any suitable metal is next deposited upon the uncovered parte ; then the colour or other material employed in forming the design is cleared away, and the parte of the plate thus left uncovered are decomposed or eroded to the required depth. When the design is required to be in relief, the plate first receives a cuat of any suitable metal; the deaign is then painted thereon; and those portions of the depasited metal which are not covered by the design are decomposed, leaving the design standing out in strong and clear relief.

The patentee claims, Firatly,-the producing of sunkea figured surfaces by the combination of paintiag, drawing, iransferring, stencilling, or other known processes of delineating objects with the direct action of voltaic eiectricity, in the manner above described. Secondly,-the producing of sunken figured surfaces by the employment of a combination of metallic precipitates or deposite with the direct action of voltaic electricity, as above described. Thirdly,-the producing of figared surfaces in relief by the combinatlon of metallic deposits with painting, drawing, transferring, stencilling, or other known procenses of delineating objects, and with or without the addition of the process of line-indenting or engraving, as above described. Fourthly, the producing of figured surfaces in relief by the combination of the processes of varnishing and scraping out with the metallic deposits, and the direct action of voltaic electricity, or acid or alkaline or other saline solution, as above described. Fifthly, and Sixthly, -the producing of pierced work by all or any of the processes described under the fifth and sizth beads of this invention. Seventhly,-the process of mattening or deadening plain and fgured surfaces, above described. Eighthly,-the production of figured surfaces, sunken or in relief, for thepurpose of printing from or embossing, by the processes deacribed under the laut head of the invention.

SHEET METAL AND PANNT.

Baron Calbles Wettrrstidt, of Rhodesweli-road, Limehouse, for "Improvements in the manufocture of sheet metal for sheathing and other purposet, in pretenting the corrosion of melal, and in preserving nood and other materiale."-Granted Nov. 3, 1846; Errolled May \&, 1847.

This invention consists, first, of a mode of manufacturing lead into sheets for various purposes; secondly, of a mode of manufacturing copper into sheets, and in combining metals to be afterwards rolled into sheets for sheathing and for other purposes; and, thirdly, of manufacturing composition or painte for preventing corrosion of metal and for preserving wood and other materials.
First, for manufacturing lead into sheets, there is to be added to the lead, when in a melted state, a quantity of regalus of antimony, in the proportion of from one to two parts in weight to 100 parts of lead; the same is to be well stirred and the impurities skimmed off, when the mixture may be poured out and rolled into sheets in the same manner as lead.
The second part of the invention is the manufacturing copper into aheets. When the copper is in the refining furmace and just before it in to be ran out according to the ordinary process, there is added a quantity of regulus of antimony in the proportion of 1 lb , to about 200 lb of copper; and at the same time about 2 lb , to 3 lb . of calcined soda, heated to such a degree as to be just previous to melting, and after stirring the whole of this mass together and akimming the surface, it may be run into moulds in the ordinary manner and afterwards rolled.

Another part of the invention is for combining copper and other metals to be rolled into sheets for sheathing and other purposes. Two farnaces are to be uned, side by side, one for refined copper, kept ready to be run out into the moulds; and in the other yellow metal (Muntr's patent matal). Take one part of copper and four or five parts of yellow metal, and pour them into a mould of cast or wrought iron costed with clay and sand; and hest the same to a red heat, when
the whole mase will be in a ft tate for rolling. Instead of yellow metal, bress may be employed. And the same procesa may be em. ployed with lead and tin, the lead being first poured out, and then the tin the proportion being four or five parts of lead and one of tin, or in and lead combined. This sheet metal will be very suitable for wator cisterns, \&ze.
The third part of the invention is for preventing the corrosion of metale, and preserving wood and other materiala by combining metals together, and then applying them an a paint on the surfaces of the metal or wood, which paint consists of regulus of antimony and copper, mixed together in the proportion of one part of antimony to two or three of copper; to be well mixed and melted together, and ran out into water, and afterwards dried by a gentle heat. Then about two parts of oxide of copper is added, and the whole ground together and moistened daring grinding with maphtha, sufficient to bring it into a thick pasty state. A solution, composed of tar and naphtha in equal parts, is tben made, and mixed with the metallic compositions, in sufficient quantity to bring the composition into a suitable state to be employed an a paint.

When preparing paints in which zinc or lead is employed, antimony in the proportion of $1 \frac{1}{1}$ part of antimony to 1 part of zinc or lead is to be used; and when tin is used, the proportion is two of autimony to one of tin. These materials are to be first melted together, then poured into water, and ground as before described, leaving out the oxide of copper, and when ground they may be brought into the proper state to be employed as a paipt, by mixing with either a sufficient quantity of oil and turpentine and suitable drying ingredients, or they may be mixed with the naphtha and tar as before described.

Another composition for the same purpose is prepared as follows :Take 30 lb . of tar, 30 lb . of pitch, 20 lb . of dried 800 t , and 4 lb . of tallow or sperm oil, and melt the whole together, adding naphtha to it in the proper quantities, so as to bring it into the suitable consistency required for the purposes to which it is to be applied.

Another part of the inventinn for the prevention of the corrosion of metals, is by immeraing sheets of copper or zinc, and aleo copper and zinc nails, in a solution of muriatic acid and other materials in the following proportions:-Take about 60 lb . of muriatio acid of commerce, about 10 lb . of oxide or old copper, and about 3 lb . of regulus of antimony, and mix the whole well together, and place the sbeete or nails therein, and allow them to remain for two or three days-the solution being at a temperature not less than $70^{\circ} \mathrm{Fah}$.

SCHINKEL'S REMARES ON ART, ART-CULTURE, AND ART-LIPE.
Bj Dr. G. F. Whagen.*
Having boen called upon by many artists and art-friends to publish my discourse, uttored on this jesr's anoiversary of Schinkel's birthdny, I have undertaken my task the more eagerly, as his remarks possess not only a subjectios valne, dertived as they are from such a man, but may alco have a great objective utility for art-pupils, who earnestly devire to strengthen Chempelves in sentiment and activity.
That gloomy-yet, after all, elating and fide feeling, of eelebrating the memory of a noble mind, which that anavoidable transition to higher existence (called, perhaps improperly, deatb) hat deprived ns of,-pervades, I ams sure, the breasts of all in this solemn meeting. A natore so rich as that of Schinkel, presents always new aspects for consideration. I intend. therefore, to fir attention to some observations, which have been found amongat the papers of the departed-alboit merely detached leaves; still, unost ftt to abow his character as an artist in a very clear light. I hardly think it neceseary to observe, that some slight inaccuracies of diction must not be taken into acconnt; as, in the first place, the bandling of the pen may not be considered the very province of the forming lartiant (Bildenden Kinactler). What these remarks may want in this respoet, a certaia tonch of genias will greatly reoompense.
Amongat one of the mosf distinguishing qualites of Schinkel, by which his great exertion in art has been cansed-is his great moral atrength, bin heallufal and spirited vivacity, his rigid, anrolaxed tendency to proaress ; on which acconnt, nothing reemed so averue from him as the reposing on one's harreis, the so much wanted otium cum dignitate. How much be knew that, how great were his self-imposed duties on that accont, his own words will best illustrate. "The conditions of a perfect existence (Zubtande) are real liveltreas and stirringress ; phlegma, be it bodily or mindly, is a sinful sitation for him who lives in a civilised nation-an aramal for them who live in times of barbarism I Only that artwork, which has entailed the spending of noble forces, and in which appears the highest ten. dency of sala-a noble sacricice of soble powerp-imparts true interest and edidontion. Wherever it is sean that a master har taken things too

[^29]eacily, that he has not strivco after something extriontivary and sovel, bat has abandoned himself to routioe and stalo and stable art-roles-aten if he has sncceeded in displaying all known form-beauties-he will not overcome, it appears to me, the enoui of the beholder; and such works, howerer superior in many respects to thoue of inferior minds, are oevertheless unworthy of him who could have achieved more. In the physical as well as art world, we are only then really living when somethlag tovel is oreated; and whenever we go too securely on trodden paths, our exertions become ambiguons, as we then have perfect knowledge of what is to be done-do, therefore, something which already oxists: handle something second-hand, as it were-and repeat repetitions. "This, surely, is already a half-dead vitality.' Wherevar we are yet uncertain, but feel the impulee Lowards, and the presentiment of, something beantifol, which is to be pro-duced-there, therefore, where we seek, we are really alive and vivified. From these reflections, may be explained the often apprehensive, anxious, and eren humble temper of the greatent talents on earth-compared with the bouncing, over-bearing, and self-sufficient contentment of the sucoans. ful and purse-proud cobbler and handicraft-man."
These forcible expressions of Schinkel are not only most charactertentic of the whole art-mind of the departed-bnt, parhapt, never before has that trepidation and hesitation, thome pange of partarition, fell in the boly privacy of the man of genias-who conslanlly feels his aim is infinite, merely attained at by approximation-been 30 truly and concisoly ex pressed as here. If it has been repeatedly remarked, that one of
the chief characteristice of Scbinkel's art-zenloas consfatod in the combina. tion of the manifold and moat pregnant practionl orvations, together with the unrelared study of the general and eternal laws of at-vit., theorythe followtar extract, derived from an unpubliabod work of tho great architect, will show how early he felt what others never do.
4 I perceived, when I began my architectural apprenticeship. a great treasure of forms, which, for scores of centuries past, have guided nations in the various phases of their cultare, in the execution of their bulldings and structures. Bnt I saw, at the same time, that our use of this treasure was arbitrary, and that what produced a most pleasant effect in its primitive usage, was quite inappropriate in its present application to structures of thls age. Especially clear became the conviction to me, that in the arbitraryisen of form-giving-the real cause of want of charecter and etyle in wo many of our modern structares is to be sought for. It became a vital quention with me to anive at the bottom of these anomalies; bot the deeper quention wita med this topic, the larger and more comprebensive it appeared to me. At first, I fell into the error of pare, fuodamental abatraction, aod developed the whole ides of any given structure from its neareat trivial object and scope, and the three laws of construction. In following this courne, dry and stiff worke will result, wanting in freedom, and excluding the 'two grand eloments of architecture-the historical and poetical.' I forther inquired in how far the mere rational principle be suficient for fring the mere mechanical and trivial basis of an edifioe, and how much there be required of the higher infuence of the historical and poetical 60 elevate it to the conception of an ari-work. It became clear to zee, that I had anived at that point to arohitecture, where the real olemest of art is to be placed, which, in every other respect, "Was and would be but a trede with a scientific basis!' At the came time, it became clear to me, that is this stage of thought (here, as in any other art), the dogmas of a doctrine became difficult to be चttered, and were perhaps reducible to a culture of feeling and intuition-qualities of the mind which comprehend, in architecture, a very wide compass, and require to be much and most variedly developed, if their products are to yield great reaults, t It appears to me necessary to aecertain properly the different spheres in which the fooliags and intaition of the architect are to be developed, which will ateo cuable us properly to survey the extent of this art-branch.
"We have, therefore, to consider, first, what are the desiderata of oar time in architecture; secondly, a retrospect on previous periode will show What has been then used for similar parposes, and what of that (comaidered is fts perfection) may be aseful and adequate now. Next, the modifications of approved expedients are to be properly weighed. It is, however, chiefly necesoary, that (fourth) wo inquire how imagination has to act in the assimmilation and modification of these expedients-how, thence, the new product is to be treated in form and essence. This, bowever, is to be done than, that it may still posseas some historical basis, and that the conception of the new may arise withont taling away the the pression of an architectural style-by wbich doing, the combined foelings of style and something primitive, and oven ingenious, will arise ta the beboider."
From this it is to be seen what general path Schinkal hes treced out for the brilder of present times. But for complete success, he bas pointed to a serios of ebstract intuitions-from which the principles according to which the artist has to act, are to be' deduced. These intuitions are the hidden point of crystallisation (punctum salicms) of every mind deatined for, or tending after, greatpess.

- It may be caid, that such remarka are upprotitable, as we etaoot all peopt by tive,
 reach at hgh as he can. "It is undoubtedip superiority to know one's own inferfority, and to worthiy co-ordinate onraivet to mech. It fs not honest, unpretending wist we have wei Infured art and mapldind-bat the cooceited, world-be, apd preteming-IDr Wagen.]
t Eay appear still more discongedip than the preytous remarts, Our despondesey, bowever, would pot makre thing difertut from whit thry are. It is once in a luodred chlay, will be led at timet, bot nover driveno-[Dr. Wrapen.]

On the other hand, a mont detailed atudy of the arahiteotomis forme of all times and ages, had brooght Schinkel to the idea, that the intuition of troe priseiples of artetyle had never atarted 30 clearly, harmonieally, and firly as with the Greeks-fior whom and with whom our departed friend had formed a coomection of the mone introate aympatioy. And thas, in asother of his frempents, he says-" The real stods, especially an ascidnone ereccise of imagiantion on the terrnin of elansie art, will alone bring bermongy in the general eultare of men, belonging to these latiter days.". Bot it was in many other reepects that Greolan antiquity attracted his so foomidy. It was one of the monk vivid ideas of Schjakel, to thank that "the hisheat and mont general signification (Be-dentwing) of five art whe the ethie edncation and enaobling of mee by the beeatiful." But this, oertitily, has never ad mowhere como lato practice so extenaively-bo where beon so extengively resorted to-as wherever Helienic existence bas taken root in the world. And thence Schinkel, speaking of Hor-
 meaneat person's house was without art ; every one was so far caltivated, as to sarronnd himeelf with ert-culture, $;$ from which thought, idens, precept spoke to him-and thence was developed an immense treasare and great Solicaey of thought and ceatiment, which, perhaps, constitates the very scinatple of culture (cultur sutandes)." - Nay it may be aaid, that SchinKel's Whole life and his tendency in art, were so much identified with the soblest ideas which Hellenic civilisation presented-as well as its varioas forms of pure and beanteous bumanity, that both cannot be better oxpreseed thas by the Groek tern, Kallolengathea, which meass the in. ermone (natural) combination of the beantiful and good.

Notwihntanding this enthnsiasm for Grecian art, Schinkel, in his capacity of practical architeot, was far from imitating it servilely and in contradiction to the wants of our times, which is evinced in many of his splendid baildiogs. Allie, this made him not un-susceptible of the particotiar grandear and the wonderful mystery of Gothle architecture, as his meteraciue of Cologne Cachedral, eoveral of his oil paintingo-nay, oven roces of his enquisite deaicas of churahes, fully demonetrato.

It cannot be doobled, in fine, that to a mind like that of Schinkel, the immense diaparity of the public taste in oar timen, and those of Grecian antiquity, should have escaped. He says-L There are fev persons who an elevate themelros in the contemplation of art-works, eepecially baild toge, to the atasdard of general oultare or general cirlliation. In the min, they fed oniy that beantifal mad praiseworthy, which is desirabie in their owr individual cireomstances; the common, the every-day work with a certain degree of completion and nicety, is all they ever require. The novel, grand, and uncommon hardly ever pleases the great mars; and If it does not sult their most obvious convenience, it will meet with mach oppositioa and obloquy." Uaheppy he-who, has the geniae aod tendenes for art, is obliged to serve such paltry parposes ; into which, how. over, searly the whole of ear architectoral and structural endeavoars are now resolving.
J. 1 I.
t We think that eone of than mayng ought to be ingcribed in braen and marble on rome of our poblic budidings.-[Vagen.]
IThe componads of tiv German mord, ce Cultrr," are very dificolt to be readered is Evith,-[Iramel.]

ROYAL INSTITUTB OP BRITISH ARCHITECTS.

Juen 14.-Axamosn Pornter, Beq. V.P. in the chair.

A commenieation wes read from A. H. LAYARD, Beq., reletive to further $D_{\text {incoerties made by him at Nimrowd; purticalarly as to the fact of the em- }}^{\text {min }}$ ployment of oofour by the anoient Amyrian in the ombellishment of their arceritecture and aenlptare; deecribing the mode of construction adopted, and ctatins that it had been setisfectorily ascertained that the buildinger recently brooght to light ere of verions opochs ; ad expreating an opinion that some C thoee at Nimaroed are of muoh more remote entiquity than those at Khor-cobel-and probably of the age of Nious or Semirnmis
"On the Geometric System applied by the Medianal Architecta to the proportione q : thes Becletartical Sfrwetwres." By R. D. Chantanli, Req.

The chief object of the paper was to prove that in all the modiseval atructares a eeneral principle of the mont perfect and beantifal proportion perrades the design, and may be recognized by the scientific observer. This syatem mant be adopted by the modern architect in order to produce the come encoeseful reculta. That some general principle of componition had been adopted by the mediveval architect is an opinion that has been enterenfed by verions individuals for many years part; and attempta have been made by Kerriek, Basex, Browne, and others to develope it. Their endeavours lave been attemed with rarions degrees of succest ; but according to the mother of the paper no and bat himelf hat succeeded in discovering the true primetple capeble of noiform application. Mr. Chantrell exhibited a namber A pines and other diegrams in alocidation of his theory; and withoat which to would te frpeactionile to conver an adequate idea of the syatem.

Mocals of a sew kind of brick invented by Mp, Moning, of Woodheider, were arhibited and asplained. The bricke are so shaped as to form intaral chansels fer the peasage of air-and consequently proluee a thorough vantiLation of the wall.

INSTITUTION OF CIVIL ENGINEERS.

June 1.-Sir J. Renniz, President, in the Chair.
"An Loconat of the irom bargue Jomirainz, of Liooppool," By Capt. Masten, who commanded her in the voyages the hat made.

The paper read was a plain and eomewhat dry apecification of the construotion of the reanel, which will, howerar, when printed in extanoo in the minates of proceedings, be extremely nseful. The main dimensions of the harque Josephine are-Length, over all, 99 ft .3 in ; extreme hreadth, 24 ft. 6 in . ; depth of hold, 9 ft .9 in . ; register tonnage, 168 tons; by old measurement, 221 tont. She wat of a pecnliar baild, differing from almost any other merchant-ship, being intended for servioe in the Mexican trade, and calcuLated to cross the bar of Tampico, and other impediments. She wat entirely of iron, even to the bulwarts; and as she lay low in the mater, drawing 9 it. at, and 8 ft .8 in . forward, her ports were hang on hinges forward, 80 that they should act as valves, and allow the mater to escape from the deck, and yet shat of themealves when she heeled over deep on her side. Her ganeral rate of alling was from 111 to 12 knote per hour; she was very buogant and very dry, riding well to the ane. Thers was great atpactig for stowiag the carge, owing to the absence of large projectiag timbers. She what cone what damp formard and aft, bet wea very dry in the main held. Thare was not fonad to be asy difference in the health of the crew from that of wooden vescela; she wea a littio dooler than other ships, owing to her being so deap in the water, and the thin material did not relain the heat like wood.

Iron ships have generally been foand to get very fool : the Jownhte wra, howerer, paid with varion componitions as experimests. That which maccoeded bout was-l birrel of varniah, 24 cwts. of beat tallow, 40 lb . bleok lead, 7 lb . brimetose, and 70 lb . arsonic. Thin being epplied hot, the fron heving been previoualy warmed sed peid with boilod linneed oil, appeared to have prevented foulneas, as after her royages there wat little weed or green, and scarcely any barnacles; bat very alight oxidation took plece, and that only where the componition had been rabbed off.

They were as much annojed by rats as in a timber ship, nor conld they be destroyed by any of the means adopted. The principal feature of the paper was that which treated of the local sttraction of the compasi, which can scarcely bo noticed in an abridged form. It appeared that the thip was on. an even teel, and perfectly upright, the compas acted correctly; but in proportion to the listing over, 00 was the derangement of the magaet, the local attraction being changed by the aide frames and deck-beama falling into new positions. This caused great variation in the thip's courso, and it led to a conjecture whether thi may not have been the canse of the loss of the Great Brilain-at if her compasses wore actod opon an mach as thowe of the Josephine, a deviation of 61 miles from her course might eatily have occorred. Capt. Masters anggested the hanging the binnacles complete in gimbles like the compass, in order to their alwayt remaining vertical, and also in adjuating the comparses that they should be trixd in every ponition, a table of variation being made out for evary degree of listing over. The paper wat illustrated by drawinge of the veasel and of her rigging, which pospessed pecoliaritiet, and also by several tables for the correction of the compases.
Fume 8. The followiog papers were read:- ${ }^{n}$ On the Erpanive Letion of Steam." By Mr. J. M. Hepret, Grad. Inst. C.E.

The object of the paper was to deduce a more exrect formola than thowe now in use for the dymmical efreet developed by steam in oxpanding from one presure to another. The nsual method of compoting this effect neslects the infuence of the variation of temperature, which alway accompanies change of denaity, and which has been shown to modify conadierably the corresponding pressare. M. de Pambour, however, hat, by combining Gay Luseac's formale for the relation between temperaturesend density under uniform presaure, with that of Boyle for the rolation between density and presare under uniform temperatare, deduced a formule containing the density, pressare, and temperature, from which any two being given, the third may be deduced.

What wat further done in Mr. Heppel's paper, wat to combine this formula with one by Mr. Scott Rancell, expreaning the relation between the preance and temperatore, and by this means to eliminate the latter, and obtain e formule containing only the preanure sad density. Prom this formule another wat eatily obtained, thowing the total dynamical action developed during expanion from one pressure to another, and the remlta were given in atabalar form, exhibiting -

1. The pressure in lbs. per square inch.
2. The relative volume, or ratio of the valume of steam, to that of the weter which produced it.
3. The dynamical effect before expansion, or the number of lbe. rised ane inch by the evaporation of each cabic inch of water.
4. The dynamical effect during expanaion, or the number ollbe. rieed one inch by the steam prodeced from one cubic inch of weter in expanding trom a preasure of 100 lb . per square inch to the particular correaponding preasare. The dyanoinal effect is expanding from any one prensret to any other, mut
be clearly expreased by the difference of the comemponding numbert in thit column.

Part of the reminder of the paper was devoted to showing, that whilst the performance of engines could not possibly be expected to erceed the reaults ascertained as above, it should not fall far short of them in the case of engines of good construction. In conclusion, a simple method was anggented of ascartaining the magnitude of all the forces in action during the working of the Corninh engine, independently of the indicator.

In the course of the paper, the fallecy of the theory of what had been termed the "percussive action" of atenm was ably exposed; and althongh, from the paper being full of mathematical formola, it wrat not well adapted for being read at a pablic meeting, it evidently possessed great merit an an inveatigation of an important subject.
"On the Expansive Aetion of Sleam." By Mr. Tatz, matheratical mas. ter of the Training College, Battertea.

The object of this paper was to demonstrate and apply a formula some time since discovered by the author, expressing the law of the expansion of ateam, and at the ame time to eatablish certain general equationa relative to the work of ateam, applicable to all formulte profensing to give the law of volnme and presarre. It also examined and corrected Pole's formala, which, although a decided jmprovement upon Pambour's, was atated to be not sufficiently accurate for preasures above 70 lb ., or below 16 lb .
M. Planger exhibited in the library, after the meeting, apecimens of his improvementa in producing ornamental metal aurfaces, formed by the depoaition of metals during the electrotype process, which is conducted in a peculiar manner, with mirtures adapted to the effect deaired to be attained. The form also of the bath is peculiar, and wben the plate is taken ont of it, and off the model, it exhibita a burnithed polish, or a dead appearance, according to the propsration used. The metal thus prodnced is atated to be of a much better description than metals which have not andergone such procest, as it is more fexible, and is capable of withstanding the action of heat without deatroying the form or the copper, and the surface will not tarnish when exposed to the air. Portions of any pattern can also be silvered by a similar procest ; and the general expense is about one-third of that of engraving or chating, while the boldest or most minote patterns can be equally well produced.
June 15.-m" On the Lave which Governe the Diecharge of Elastic Fluide under Pressure, through ahort Tubea and Orifices." By W. Froode, M. Inst. C.E.

The law proposed was a modification of that which has been naually asaumed-viz, : a simple application of that which holds good with reapect to non-elastic foids; this law is, generally, that the velocity of issne is directly as the equare root of the pressure, and inversely as the aqnare root of the density; but this law neglecte wholly the reaction that mast arise from the expansion necessarily takiog place in the courso of issue. The nature of the action was illustrated by the following example:-If a balance be sapposed, with an equal weigbt in each scale, one of the weights being a spiral spring, like that of a spring balance compressed lengthwise with its arit vertical, and held in a state of compression by a cord. Now let the cord be suddenly reversed, so that the spring is enabled to extend itself vertically; the scale in which it stands will obvionsly be depressed, the spring reacting on it as it expands upwards, and continuing to press till wholls relazed; or if the scale in which it stands were ascending by a preponderance given to the other acale, the rate of ancent would be in the same way retarded. The amount of the retardation would depend on the strength and tbe weigbt of the epring, and on the length to which it would extend itself when released. Now in the discbarge of an elastic fluid, there is an action, atrictly analogons, operatlog continuously, however, inatead of per saltwm, the strength and weight of the spring being represented by the elasticity and denaity of the flaid, and the leagth to which it would extend itself by the degree of expansion, in the conrse of isaue. The reduction in quantity of discharge, due to the action, was to be measured by the velocity imparted by expansion, to each particle of the elastic fuid in course of jesue, the velocity of each particle after expansion, would be its velocity before expansion, multiplied into the rate of expansion, and the primary force must be subdivided in generating each additional unit of vefocity, so that the portion applicahle to the generation of velocity before expansion, would be the whole force divided by the rate of expansion; thus, the velocity before expansion would be divided by the aquare root of that rate. For instance, an elastic faid expanding four times in course of issue, would be discharged with ooly half the velocity of a non-elastic fuid, under the asme circumstances of pressure and density. This modification was shown to fulfl the general dy口amical law "that a given force, acting for a given time, will produce a given momentum, whatever be the weight of the mass acted upon." This seemed to be the essence of the law for non-elastic fluids, but it was disregurded by the unmodified application of that law to elastic fluids, in which there would be a great accession of relocity, of particles issning nader a given pressure, without any reduction of quantity discharged in a given time; if, however, the quantity be reduced as proposed, in the ratio of the square foot of the density, and the velocity be acoelerated in the same ratio-the final momentum would be the true equivaleat of the pressare. This, in its practical application, oxpladeed what was inexplicable by the ordinary theory.

The difficulty experienced from the back pressure of the waste steam in locomotive engines was exhibited, showing, that at 60 miles per
hour, this would be at the least equivalont to 8 lb . per inoh throghont the stroke, thus showing a loss of nearly $50 \mathrm{~h} . \mathrm{p}$. As applied to the cace of air, discharged into an exhansted recoiver, the result was highly carions. The rate of discharge, inatead of increasing throughont as the dogree of venom was jncreased, would be maximum at 15 inches of vacoum, althongh nearty uniform for many inches above and below that point ; it would, however, progressively decrense above that point, beoause the expansion woald increase in a higher ratio than the prosaure, and oltimately, at the point of perfect vacuom, it would be at a minimum (indeed stationary, were air perfeclly elastic), because at that point the expansion woald bo iafaite, bot the preseure only finite-vis. : 30 inches of mercury. Experiments made, by permistion of Mr. Brunel, with the South Devon Railway atmonpheric apparatus, coofirmed the theory. The line traced by an indicator apparatus was shown to accord very closely with one traced by this theory, whilst it was widely at variance with the result of the ordinary theory.
[We mnat caution our readers againat placing any confidence in the new Iav of the motion of elastic Inide, enunciated by Mr. Froude, which seems to us to be directly opposed to the fandamental lawe of dymamics. If we suppose any number of particles acted on hy external lapreased moving forces, all in the ame direction, the motion of the centre of grevity of the particles in that direction will be the same as the motion of the centre of gravity of a solid body of which the mass is equal to the wom of the mases of all the particles, and the moving force the anm of the moviar forces acting on all the particles; and this law is true whataver be the mature of the connection between the perticles or the mutual intermal forces which they exart on each other. In the case of the motion of particles of finid from an orifice-if the pressure at the orifice is conntant, we confese we can see no reason why the quantity diecharged in a given time shorld not be the same, whether the fluid be clatic or not-the question of eland. city or mon-elasticity iuvolving merely the intermal or molecular conneotion of the discharged particlos. We wish, instead of the brief and not rery intelligible abstract inserted above, we had been favoured with Mr. Froude's unabridged sanlysis. If his views be correctly reported, it seems to as that be has confounded mass with volume; at all events, his results lead to en evident absordity-viz., that if air were perfectly elactic (as iodeed it is very nearly), and the vacunon in an air-pump Fere perfect, on opening tho cock of the receiver no air would fow in. We think that if Mr. Froode repeats his experiments with a well constructed air-pamp, he will be convinced that he ia mistaken. Let bim take an exhausted receiver, Fith a mercurial gauge, and having opened the oock, note the times of the mereary rising from 0 to 5 inches, 5 to 10 inches, 10 to 15 inches, respectively; \rightarrow why onr ear at once detects the absurdity. Who has not noticed how the hissing of the air, as it rushes throngh a small orifice into a vacuum, changes from a sbrill to a hoarse note ? There is no doubt that the lew of theory in not fulfilled in practice, but that is owing to the friction-or rather resistance-arising from the particles of atr striking, with eaormone velocity, againat the inequalities of the small tube. Neither is it poseible-at least in the present state of analysis-to eatimate exactly the preseare at the orifice. Bat the ame difficulty holds in the case of inelastic fuide, for the motion of which, we refer the reader to a paper in the Jouralal for April ; one or two errors which escaped us at the lime, in the proof, will be found corrected in the Number for June. For the "beck preseare," we recommend our readers to turn to the Connt de Pambour's veloable work on the stemm engine.-EDirtor.]

June 22.-"An Acconnt of the Plane that have been Propeeed for Comnecting the Atlantic and Pacific Oceans by a Navigable Canab" By Mr. Josbry Glynn, M, Inst. C, E.

The author took a reviow of thece projects from the time of Cortes, who proposed to cross the Isthmus of Tehanntepec by Joining the weters of the River Coateoccoalers, which fows into the Galf of Mexico, with thone of the River Chicapa, flowing into tbe Pacific, by the Bay of Tehuaptopec ; a plan which has lately been revived by Don Jose de Garsy, who, with the assistance of Signor Moro, sarveyed the country from tea to eeta, and showed that the chain of monatain is there broken for about 85 ailen, giving place to an elevated plain or table Jand, called the Maea do Tarifa, where both these rivers originate, and where their jonctiou could be easily effected. The ohjections to this plan are, the length of the river navigation, about 200 miles, and the ascent of the atream to the Mean do Tarifa, about 200 metres, or 056 feet above the ocean. The survey was made voder the patronage of the Mexican President, General Santa Amba, who professed to grant many important privileges to the promoters. The Isthmus of Nicaragua was next examined, and aftor that the coarse of the River St. John to the lake, which is a little more than 15 milee dintart from the Pacific Ocean, and about 130 feet above its level. The distances and the levels were accurately taken by Mr. Builoy, an ofiser in the Royal Marines, by desire of General Marason, Preaidedt of the Ceatral American Ropablic. The ridge of hille intervening between the late and the ocean, and the uncertainty of the waters in the River 8 f . Jobe, altergately awollen by the raing, or dided ap by the heat of a tropical ene,
the roleamic character of the conatry, and the uaheallhy natare of the clinate on this river, from which Lord Nelson's expedition suffered so mach, ronder the execution of such an undertaking at this place very tmprobable. The Isthmus of Panama presents fewer obstacles than any obter point-the distance from sea to sea is only about 39 miles-and the conatry is traversed for dearly the whole width by the great river of Chagres and its tributaries, which are interlaced, as it were, with the streams fowing to the Pacific. The chain of mountains here sioks into extenaive savanahs and foresta, with a few detached and isolated bills, and sonall elovations, seldom exceeding 500 feet in height. The conntry was anrveyed in 1828, at the instance of General Bolivar, by Mr. Lloyd, an Eaglich officer, who also took the Jevels, and determined the difference botween the two oceans to be 31 ft . (3.52), the waters of the Pacific being the highest. Mr. Loyd's valuable papers, deposited with the Royal Society, and the Royal Geographical Society, were exhibited to illustrate the paper. A survey of the River Chagres was alao made by order of the Admiralty, during which Captain Foster, of her Majesty's ship Chanticlecr, lost his life. The maps, plans, sections, and other valuable information deporited with these societies, aeem to have created but little interest in Englaad; but they havo been diligently examined, and extracts and copies taken by foreigners, who have bad free access to them, especially by the French; and M. Guizot lately sent M. Napoleon Garella, as engj. neer-in-chief, with a numerous staff of assistants, to make a further survey, and ascertain the practicability of making a canal. This survey bas fully confirmed that of Mr. Lloyd, and proves that there are no obstacles which engineers and contractors of the present day conld not encounter and overcome withoas much dificulty or expense ; the difficulties being more of a political character, add to be dealt with hy statesmen rather than by engineers.

The meeting was very fully attended, and an interesting discnssion ensued, in which his Royal Highness Prince Louis Napoleon took an active part. Ho had evidently studied the subject carefully on the spot, and traced a line between the lakes Nicaragua and Leon, which he reconmended as preferable on account of the local facilities, the salubrity of the climate, the already populated character of the country, and the edrantages of the tmo lakes, which, at small expense, may be converted into harbours, accessible at all times for vemsels of Leavy tonage. The pians proposed by his Royal Highness appeared to meet the views of the mooting, an far as a ship canal was concerved; bnt it was agreed that for quick tranait by railway, the lines traced by Mr. Lloyd uver the Isthmus of Panama were to be preferred.

Conversazionk.-The President, Sir Jobn Rennie, gave bis two convencaziones on May 29 th and June 5th. The latter of these was one of the best conversaziones of the reason, forming a grand union of the men most eminent in science, literature, and art. Additional rooms were thrown upen in Sir John Rennie's mansion, and the persodal attention of himself and Mr. Charles Manby, the Secretary to the lnatitution, to the hospiable entertainment of the guests, made the meetings particularly pleasing. The leading feature in the model rooms was a grand collection, illustrative of the progress of sbip-building, from the time of the Pett's to the last productlons of the Surveyor-Genersl of the Navy. Next to them cano a series, showing what has beets done in electric telegraphs and clocks. A mass of electric telegraph Jines gave singular evidence of the extension of the system, which has now become a recognised branch of poblic service. It is a curious sign of the age, to notice the Times, its a late aumber, complain of the mismanagement of the Rugbs telegraph, by which they were deprived of their accustomed racing news. The visitors were $s 0$ namerous that we may readily be excused for missing many of the most prominent. The Grand Duke Constantine of Russia, being uaphle to atteod in the evening, went with his suite to a private view of the models.

Count D'Oreay contributed some statuettes and basts of the Emperor of Raseia, Daniel O'Connell, the Duke of Wellington, \&e., which were deservedly much admired. Paintings and sketches by Landscer, Oliver, Bnes, Wood, Scanlan, Digby, Wyatt, Boxall, and Ward ; enamel paintiage, by Bone; chalk drawings, from Mr. Fuller; and some beautiful aketches, from Mesars. Ackerman's collection, were profusely scattered throughout the rooms. Taylor, Williams, and Jordan, had some excellent apecimens of machine carvings; and Mr. Rogers aome delicate examples of hand carving.
A. series of models from the Admiralty exhibited the construction of a so-gud ship at varions epochs. Other models illustrated the most approved focms of bows, sterns, and midship section; and the general lines of the ressels composing the experimental squadron were contrasted by a sories of uniform models. The wave principle was illustrated by models from Mr. Scott Russell and Dr. Phipps; and the progress of the steam gavy was exemplified by models of vessels and engines, constructed by Mears. Reanle, Maudslay, and others; with screw propellers by G. Beasie, Woudcroft, Hays, and Mandslay. Models of Brunel's bluck asehirery, and Hurwood's petent acuttle, were appropriately introduced.

All the varioas systems of electricsl telegraphs were represented, and wre at work in the apartments:-Bain's electric clock-Nott and Gamble's siagle-wire telegraph-the Electric Telegraph Company's system, as unad at the Admiralty-Brett and Little's apparalus, and Brett's writing tolagraph, in which, by depressing a series of keys, corresponding letters are broaght toto contact with a continuous strip of paper, and the commuaication is printed at any number of miles distant.

Mr. Cowper contributed a series of models of the old French and other telegraphs, in order to form a contrast with the prasent insiantaneous methods of commuoication.
There was a series of models of bridges of all kiods, amongat which we remarked one of corrngated cast iron, erected by Mr. Barlow on the Tunbridge Railway.
The wroaght-iron tube bridge, by Mr. R. Stephenson, at Conway, beartifolly shown, on various scales, by Salter's elogant card-board models.

A cast-iron girder bridge, by Mr. Borthwick, of the same construction as that over the Dee, at Chester.
The drops for loading coal vessels at the Bote Dock, Cardiff, by Mr. Highton, appeared to be an ingenions modification of the syatem used in the north.
Stephedsou's long boiler locomotive, Bessemer's axlos, Dunn's turntables, Stevens's railway signals, and Clarke and Varley's new atmospheric railway tube, formed an intereating series of railway models.

Cochraue's machide for sdwing out carved timbers of all forms, without waste, was worked, and was universally admired. It was stated that these efficient machines were now being introduced into the royal dockyards.

Little's new printing machine, by which the number of sheete now digpatched, great as the quantity seems, can be doubled, was also at work, and excited much attention.
A curious clock, made by Tompion, in 1670 , and presented by Charles I. to the Duchess of Cleveland, was exhibited by Mr. Vulliamy.
M. Praget contrihuted some extraordibary specimens of gold electrodeposit for ornamental work for clock cases, \&c. It appeared from the statements that this introduction would make a great diminution in the price of this kind of work.

A collection of fossils, from the Oxford clay, at Trowbridge, made by Dr. Mantell, during the excavations on the line of the Wilto, Somerset, and Weymonth Railway, appeared to excite attention among the geologistsas did two casts of impressions of the feet of some unknown species of animal, found in the uew red sandstone in the United States, and recently transmitted to Dr. Mantell.
A revolving disc pendulum, by Mr. Fronde, for rondering uniform the circular revolution, under considerable variation of the maintaining power.

Otis' American Excavator, which was worked on the Eastern Connties Railway, by Mr. Hyde, and that of Messrs. Barber, Brothers, invented by Colonel Hamilton, and now in construction for dredging the port of Toulon, were placed with Prideaux's Excavator.
A model of the Somerset-bridge, of 110 feet span, by Mr. Bruael, on the line of the Bristol and Exeter Railway, an example of the strength and aim. plicity that may be attained by well-constructed trussed timber bridges.

Fuller and De Berque's application of thick rings of valcanised India rabber, alternating with metal discs, to form buffer springe for reilway carriages.

Davison's system of cleansing casks, as used at Truman and Hanbury's, and other breweries.

SOCIETY OF ARTS, LONDON.

At the Annual Meeting, which took place on Tharaday, Jane 10, in their Great Room in the Adelphi,-H.R.H. Prince Albert, as Preaident of the Society, filling the chair. His Royal Highness congratulated the 8ociety on ite increasing prosperity and usefulness; and proceeded to confer the honours which had been awarded to authors of important works or inventions in arts, mechanica, and mannfactures aubmitted to the Society during the past yearand many of them exhihited at their late Exponition. The list of medale, \&ec. avparded on the occation is at follows:-
The GOLD MEDAL to Mesarn. Daridion and Symington, for theif method of applyids Currenta of Heated Air to Seasoning Timber and to the varlous M muftectures-Meass. H. Minton and Co., for the Modela of a Jug and Loring Cup-Mr. Thomaa Draton, for his new process of silvering Glas with pure Biver-and John Everett Mulle, for hit Original Compoattion in Oil.
The GOLD ISIS MEDAL; to Mesura. Ricbordson and Co. for their apecimen of Euamelled Colours on Glass-Thomas Brown Jordan, for his Michine for Carving Wood, Stone, \&c. for ornamental and decorative purposes-Mr. Heary Grainger, for the beat
apecimen of Whice Earthenware-Mensra. H. Kinton and Co., for the bent apecimen of specimen of Whice Earthenware-Mensra. H. Minton and Co., for the bent specimen o:
White Chlna-The same, for the beat apecimen of Deep Blae Colour on Chinm-and the came, for the best spectmen of Green Colour on Porculain.
The Large SILYER MEDAL and 10l. 10a., to Measrs. D. Pearce and C. Worrall, for their dealgn and modil of a Lamp Pillar-mir. Charien Meigh, for a model of a Mus ormamented in reitef-and M. F. Abate, for a means of Preventing the Emianlon of Noxious
 aign for a Roller Window Bund-Mr. Daniel Pearce, for his desibn for Priang on Cuiga
 Oediake, for his realga for a Geometrical stampod Drugret-and Mr. . Autin, for an
 in. Inman, for his Compasa Plan. The mame Aedal, to Mr. Horne, for his Block Priatag in Distemper-Mr. Edwand Keys, for hir model of a Mug ornamented in relief-Captain
Carter for his method of Susperding a Knapack-M r . Fuiter, for the application of Vul. Carter for hia method of Suspending a Knapaeck-Mr. Fulter, for the appication of Vul-
canieed India Rubber to Raliway Buffer Springa-Mr. M'Swey, for hla improved donble
 cone barrel Steenng Wheel-Mr. C. J. Variey, for an Apparatua for factiating the use of
 Cross, Orford-Mr. W. Ford, for his Orginni model of a Figure of Nebuchadueszar-Mr. C. S. Keley, for hif Original Figure of a Greek Youth-mr. E. J. Physic, for bis Jeduced
 for his ADodel of a Sewer Trap-Mr. Chadiey, for his plan for Prevenuig the kmission of
Noxious Vapoura from Sewers-Mauter B. Burall, for a Cxat from an Orifinal Model of the Pigure of Hereules-and Master Aliexander Btapeaby, for a Chalk Drawidg of Apollo from the roand,

Th BILVER 1818 IEDAL mad EONORARY TEGTIMONLALs to Mr, W. Wood, for his Tuptiopraph for the use of the 8Bnd. The mane Medel and $1 i$ II., wo Mr. G.
 Mret. for his Microecople Drawng of the spine of the Behinas. The tame Medal, to
 Dirait, for am Orymal Bmat to Prater, beine a Portralt-Mr. C. Worrall, for a Model in
 Hodgetts, for an Orgtnal Chalk Drampy of the Glediator-Mr. J. G. George, for a Chalk Drawing of she Giadiator-Mit. Arthur Or Connor, for a Chilt Drawirg of the Heed of

 Campbell Ben, for a Chalk. Drawing of E Head-Mr. F. Bandia, Lor an OI Painting of Birde from Natare-Mr. E. Eughet, for a Chalk Drawig of the Btatue of Mara-and
 Webb, for a seppia Driwigg of a Trin trom Natare. Hosorary Testimonial and B. to Mr.
 Tealmonia, to AR. Thomas Lambert, for a Fiexible Dlaphragro Water Vatve-Mr. G. P. Bayley, for hal Brash for Tabalar Botlerr-Mr. W. Nilton, for an fmproved Angular Drill Stock-and Mr. T. Rectell, for his Comprametion Pendulum.

 manoffeturen.

rHE DECORATIONS OF COVENT GARDEN THRATRE.

Mr. Ludgater read a paper at the Decorative Art Society on the Decorations of Covent Garden Thealre, 1847, considered in their relation to art. Alluding to the practical difficaltio to be overcome in $s 0$ brief a period, he mid, that he was disposed to attribute some of the defects in the deaign to the aecesaity of using such available embellishmento as the experience of the architect onabied him to collect inatanter; and while admitting that much eargy and some discrimination might be detected in some of the operations, he contended that the aelection of an ornamental material in which the architect is arowedly interested, and its unkilfol epplication, were equally remarkable. The material thus alluded to is called cannabic; and was deacribed an being compoeed of the refuse part of flar, held together by a bitnminous matter, and pressed is this shects into intaglio moulds, producing thereby a baseo. reliteo anface at rather leas expense, and of greater lightness, than papier mache and similar anbstances. The author conaidered this material a nseful amiliary in decoration; but in the present case, the disfance at which it is placed from the point of view, together with injodicions coloaring and an croen of burnished gilding, cancel the interest which under farourable circumstances scoompanies ite adoption. Mr. Laugher complained of the gloomy and beary tone of red and shadow perveding the boxes:-the divisions being covered with crimson and marone figured paper, with scrimson carpet on the floor, erimeon cortains and valancea; while the light impingeint over a smoothly stuffed cushioa in front covered with crimson silk, difluces a red glare by no means favourable to the appreciation of colour elsewhere. The arraggemont of the curtains and valnnces wes aid to be meagre; and it wat astamed that the whole had been intended to offer a quiot effect, with a reliance on the value of the silk for imparting reapectability. The gronsde on which crimson had probably been selected for these purposes were discussed. If a a background to a pictoreaque development of the andience, it mas anid that it totally failed-and if with reference to the effect of the general interior, the readt was to be condemned for the objectionable and inartistic effect of the horizontal atrips in white and heary-toned red in harah and forcible contrats, placed moreover without apparent vertical support. The carred fronts to the boxes were not considered equal in reapeot of form to those at the St. Jamet's Thentre; and the general efrect of colour upon them was deecribed as palid and fint-which an excess of bwruinthed gilding does nothing to relleve. It wat argued that gilding ought to be brainhed only in a very alight proportion when pleced on a white or a light coloured ground; and that the bormighing had in this case completely confused the delieate baseo-reliceo forms of ornament. The ceilligg, it whe obeerved, oftirn as agreeable repose to the eye in the circular range of graduated green with the full-toned browns prevalling in the marginal decorations. The general effect of the colouring throughout the embellinhments is infuenced in a remarkable meaner by the erimen bores in which the spectator is placed; and this, it was argued, constitutes the key-note to which other parte offer but little accordance. It was suggented that a charming effeet might be obtained by the application of diffarent colours for the cartains of the rempective tierraleo that the divivions in the bores ought to be of a neutral colour. The charsetar, tremtment, and propriety of selection in varions details of the embellinhmenta upon the bax fronts were described and commented upon. It was suid that forms of ormament prevailing at almost every period had been applied :-ancient Greek, Roman, Renainance, Lonis XIV., Lonis XVI., and modern French combinstion, had each andited to confuse and debase, in the motley arrangement, the attributes whose aspects they wore; while the ceiling itcalf, which tt was etated is almost the ooly portion partaking of artintic manfpulations, owes it merits to examples of Lo Bran. The introdoction thereon of ropes and mask in basco-relieto, and meretricious glitter of gilding, whersby the allegoric subjocts appear in alueyance, were considered to mark the loes of akill between the artists of that and choce of the present period.
[We do not by any means concar with Mr, Langher in his aweeping conclouions. Wo cannot moe how the lining of the box can serve as the keynote to the other decorations, and it has never produced that effect on na We likewise differ from him in toto as to the want of effect of the crimeon as a beckprotand to the andience, for we agree with those who hold that it ad-
 theoretiel ground it might natarally be expected to do. Wo exspeot Mr. Lagher has seen the house when there wren no andieace in it. We are giad, however, to acknowledge in Mr. Langher's oseay a praiseworthy endeavour to reine a higher standard of criticiem-Bprron.]

THE STBAM JET FOR VENTLLATING.

Profeasor Pamaday, in a former lecture delivered at the Royal Inatitetion "On Mr. Barry's method of warning and ventilating the now Fowes of Lordy", mentioned that a part of the means employed for securing a current of air sufficiently abundant to insure the required objeet wae the use of a jet of high-pressure steam in the ventilating shaft of that beilding. At a recent meeting Mr. Faraday explained the physical conditions of such a steam-jet, and the relations of the vapour diecharged from it to the anrooneding air.

More than forty years ego, Dr. Young (Nat. Phil., vol. iL, p. 534) bad shown that wherever any elantic fluid was forced from a jet with but small velocity, the steam proceeded for some inches without observable dilatation, and then diverged into a cone; but that when the presure on this vaponr was incressed, the aper of the cone approeched the orfice of the jet; but whatever might be the amonnt of this pressore, the form of the cone continued the same. Mr. Furaday proceeded to notice the lines of motion of the particles constituting this cone of vapour. The rings of amoke produced by the combustion of bubbles of phosphuretted hydrogen on the surface of water were exhibited. The revolution of each of these hollow ringe on the axis of the cylinder which forms it was pointed out, as was their gradual expansion when rising into the air: and it was shown that each of these enlarging rings might be viewed as a magnified element of the cone of steam issaing from the jet. In the same clasa of effects Mr. Feraday placed the rotating clonds of smoke which are seen issuing from the chimnoys of ateansboats, \&c. The force with which the particles of the air surronnding the cone of steam produced by a powerful jet were drawn towards it, were showa by varions striking experimenta. Hollow balle of 1 and 2 inches diemeter were seen drawn into the cone, and surtained flosting in the line of its adis. oven when, by an arrangement of the apparatas, this axis was brought 35° out of the perpendicular. An upright glas tabe, 18 inches long and I inch diameter, having one extremity plunged into water and the other end drawn into a capillary jet was visibly exhansted of its contained air (the water being drawn up from the lower end of the tube) whea the capilsery jet was placed within the in-draught of air ocenioned by the cone of ateam. In closiag this part of his sabject, Mr. Faraday explained the use which has been made of a cylindrical or conical jecket to include this steam-cone, and thus to increase the draught-power of the jet. In the arrangemant adopted by Mr. Barry for ventilating the House of Lords, this jecket is the ventilating-shaft itself; so that there can be no room for the entrance of air to form a downward current in the shaft. This mode of moving air has been adopted in lead-worke and other manufactories, for the parpone of washing and condensing the amoke where noxions fumes are generated in the processesNoticing the coolness of the high-pressure steam, even near the orifice of the jet, as being due to the quantity of cold air rushing towards it and diminishing its temperature, Mr. Faraday connected with this and the other phemomens the experiment of M. Clement Déwormes-who thowed that when steam, under high pressure, is allowed to eacape from an orifice pierced in a plate, and a fiat disc is brought close to this plate, the plate and diac are made to adhere together. In this case, the elastic force of the iteam issuing from the jet, and which tends to separate the plate and diec, diminishes rapidly in ita course from the centre to the edges of the disc; at the seree time, the radial currents by their in-draught, at before illustrated, bring the two plates together with a power which is 20 moch granter than the former that the furfaces adhore. Mr. Faraday fininhed by noticing the danger of conical safety-valves in high-presure boilert, when the lateral expansion of the conical surfect is large iu proportion to the rectional ared of the thenen pasauge.

TIRES OF RAILWAY WHEELS.

The following remarks have been communicatod by a correspondent ("X. Y. Z."), to the Railway Record:-" It was given in evidence, at an inquent recently held to decide opon the fatal reanits of an socident which occurred on the Great Western Railway, that the fracture of the steel tire of the driving. wheels of some of their locomotives was by no means en nn. nsoal occurrence, and that even those tires sometimes snapped when the engines wrere not ranning. The dreadful effeets of the accident in queetion make it erident that nothing should be omitted by which risk may poesibly be mitigated ; and to this end, among, probably, many better cugrestiona, I beg to offer the following, both as respects the cause and its removal.
"These steel tires are dovetailed into the iron wheel; and boing lot in hot, it appears to be assumed that the slefge hammers of the forgers will cause the two metals-ateel and Iron-to become properly welded together. Now this I venture to dispute; an the contrary, I am corvinced nothins Ilike a real comentation of the two metals will be effected. If this anouraption
be correct, it necessarily follows that the iron folloes of the wheel will be anrrounded by a distinct steel hoop. Now, the transverse section and body of hoop is very small, compared with that of the felloes, or iron rim, of the wheel-coasequently, under the enormons pressure of a Great Western locomotive, the steel hoop will have a lendency to roll out longitudiaally more than the iron rim of the wheel; and, so rolling ont or stretching, it meat either fracture the felloes, or the iron rim itself, if it is let into its dovetailed bed very tight; or it must become somewhat larger in diameter than the felloes of the wheels. If thls latter be the result, we know that the wheel and the steel tire cannot, without a jerking back of the tire, make the same number of revolutions in any given distance. A tire so enlarged, on an iron wheel, will, when the wheel is in revolution with a heavy load upon it, be rolled down tight into its bed at all points behind that of ite contact with the rail; and, at all points before that, it will be thrown partly up and forward out of its hed, by so much as it is larger in diameter than the felloes of the wheel. But when, from any canse-such as an increase of apeed, or at some portion of its bed where the steel rim fits tighter -his kied of slipping of the larger outer rim on the smaller inner one, can no longer be maintained, the outer, that is the steel rim, must snap, and its fractured pieces frequently fy off with great force. But it is stated that these tires sometimes suap when the engine is not ln motiod. Here the laws of expansion and contraction, probably, come into action. Supposing a steel tire not to have been rolled ont, as previously assumed, in runaing; then, when the engine comes to a atate of reat, the wheel will begin to discharge into the atmosphere the extra amount of heat it has acquired during its rapid journey; and, though the contractive forces of iron and steel are, in like conditions, nearly the same, yet, the tire being the outside, will cool faster, and contract at first more than the body of the wheel; and hence it will be likely enough to soap, particularly when the hardness of the steel is considered. The converse of all this even might account for the fiying off of those tires when runding, without supposing there were any rolling ont of the metal ander the enormons load of the engine, with all ita hammering on the rails. Now, if the cementation of the steel tire and the iron falloes of the wheel were perfect, the riak of all such accidents would seem to be obviated; and this occasions me to mention, that I some time back observed that a patent had been taken out by a Sheffield gentleman-I think of the name of Sanderson-for welding a steel plate, of sufficient thickness, on an iron bloom, and then rolling out into bars. In fact, it seemed to me that this was a plan for platiog iron with steel, precisely on a similar method with that of plating copper with silver, as long pracised in the well-known Shefield plated ware. I have not been in the way of learaing whether this patent has been successfully worked out ; but it up. pears to me it might be well worth the while of any railway company using steel tires to inquire."

ARMY AND NAVY CLUB.HOUSE.
Teble of Dimentiont of Coffer-Room, \&c., in some of the Deaigns.

No.	Arebitect.	Coffee.Room.	$\begin{array}{\|c} \text { Area } \\ \text { in } 8 . \\ \text { Feet } \end{array}$	MarningRoom.	Area ln Sq. Feet	Drawing. Room.	$\begin{gathered} \text { Area } \\ \text { ins } \\ \text { ineet. } \end{gathered}$
		ft. ft.		ft. ft.		ft . ft.	
28.	Tatterall	68 by 21	1428	55 by 24	1320	55 by 21	1155
359	Powler and Fiak	100-32	3200	36-33	1848	101-29*	2953
1		56-25 6	1428	46-22	1012	-	-
3		54-29 6	[1543	42-29	1218	54-29	61593
12		80-27	2160	56-28	1568	56-25	1400
13		97-23	2231	56-28	1568	47-23	1081
14		64-30 6	1952	306-30 6	6 930	-	-
15	Piddian	98-30	2940	44-25	1100	98-30	2940
18		42-32	1344	53-32	1196	53-32	1696
20		75-29	2175	58-29	1682	-	-
23	Salvin	85-30	2550	58-30	1740	58-30	1740
33		85-27	1685	58-21	1218	58-21	1218
38	Lamb	90-23	2070	98-21	2058	98-21	2058
39		80-31	2480	88-26 6	2332	66-26 6	61716
40	Johneon	70-30	2100	57-27	1539	57-26	1482
44	Owen Jones	65-39	2535	39-30	1080	65-39	2555
46	Parnell \& Smith	70-34	2580	52-24	1248	5s-30	1650
19	Granville	85-28 6	2462	58-28 6	1653	58-28 G	G 1653
50	Pripp	80-31	2480	48-24 6	1176	80-31	2480
33		62-29 6	1829	55-29 6	1620	-	-
57	Alexander	81-32	2592	42-31	1302	68.30	2040
${ }^{58}$		84-30	2520	56-26 6	1484	68-30	2040
167		93-27	2511	55-27 3	1499	55-27 3	31499
169	Papworth	80-40	3200	56-28	1568	56-28	1568
	Travellers' \quad.	68-24 6	1066	436-24 6	1065	39-23 9	900
	Reform	105-27	3105	58-28	1624	115-27	3105
	Cunservative ..	80-28 6	2280	92-26 6	2438	92-26 6	62438

ARMY IAND NAVY CLUB DESIGNS.

Dear Sir,-On the part of my brother and myself, I beg to say that we observe in your valuahle periodical, at page 174 of the last number. that we are held op, ex cathedra, as being gailty of perpetrating an un. truth la the design for the Army and Navy Club-house, exhibiting by us in the gallery of the Royal Academy. As we took the trouble of making a drawing of Winchester Honse, for the purpose of regalating our own design, and also the liberty of sending to the secretary and committee that drawing, for the purpose of affording a test of the correctness of the designt submitted; and knowing, as we do, that the perspective of our drawing is correct, for it is our own handiwork, I beg of your justice to make this exculpation as public as the odinm cast by your reviewer upon, dear Sir, Your obedient servant,

John W. Papworth.
10, Caroline-street, Bedford-\&quare, 181 h Jwne, 1847.

- I write this because, in a perspective view, such an error or liberty, as the case may be, is hardly, if at all, justifiable.

NOTES OF THE HONTH.
Avignon and Marscilles Railway.-A serious disasfer has occurred on the new line of railway between Arignod and Marseilles, which was just ready to be opened. The viaduct which carried the railway over the river Neurthe, one of the principal works of art upon the line, bas fallen. The particulars of this event had not reached Paris, but it appears that no lives have beed lost. The damage to the company will amount to from two to three millions of francs.

Crimple Viaduct.-This magnificent viaduct will, when completed, form one of the most wonderful of the achievements of science in railway construction in the kingdom. Its massy towering piers are now all reared, and its lofty expansive arches, stretching their wide concavitios acroas the deep glen, will shortly be brought to a close. Those of our readers who may be unacquainted with this structnre, may feel somowhat interested by a brief description of its situation, and an accurato admeasurement of ite gigantic form. Its situation is about a mile to the south-east of Harrogate; it is intended to convey the Harrogate and Church Fenton line of railway across the Crimple Valley. The viaduct consists of 31 arches. each of 52 ft . span, and the loftiest are 180 ft . in height. The piers on which they rest, 32 in number, are about 20 ft . each in thickness at the base, and are composed of immense blocks of hard granite. The top of each pier, immedi. ately beneath the apringer, is 8 f ., and the quoins 4 ft . in thickness. The abutments are thickly fanked, and joined by lofty embankmenta. The lise at the south end is carried throagh a long deep tannel; while at the opposite extremity it proceeds along a deep rocky catting. The whole length of the masonry is aboot 1856 ft . Between the first and aecond buttresses at the sonth end runs the line of the Leeds and Thirsk Railway, which is carried along the mountain side a considerable distance, and afterwards thrown acroes the vale by another viadact, which, however, appears very diminutive compared with the one described above. The part of the valley over wbick the monster viaduct is thrown, is a beantiful and romantic little defile between two high rocky mountaing, whose steep and rugged sides are covered with a profusion of heath, brushwood, and other kinds of vegetable life, indigenious to the monntain soil-Harrogate Heralds

The Exhibition of Oil Paintings at Westminster Fall, must; be looked upon as satisfactory on the whole, while the awards of the Commissioners can scarcely be impugned. The works are 120 in number. The 5006. prizes are givnn to Mr. Armitage, for bis Battle of Meanee, anost spirited work; to Mr. F. R. Yiakeragill, for the Burial of Harold; and to Mr. G. F. Watts, for his Sketch of Alfred inciting the Eaglish to meet the Danes at Sea. The 300I. prives are given to Mesars. John Cross, P. F. Poole, and J. Noel Paten. The 2001. prizes to Messrs. J. E. Letuder, Charles Lucy, and J. C. Horsley. Among the remaining meritorious works are those of Mr. S. Gambardella, Mr. Wm. Cave Thomar, Mr. Salter, Mr. Crowley, and Mr. Brunaing. The great defect is in the choice of subjects, showing the want of liberal education on the part of the artists It was not 00 in the middle ages; bat now the artist thinks he need only study with his pencil, that he oan loarn enongh by his own observations, without having recourse to the observations of others. The partisans of " art-cultus" and artistic neology had better look to this.

The Opening of Harllepool Weas Harbowr and Docks, sitnate moar the village of Stranton, about a mile and a half to the sonth of Hartlepool, close upon the sea-shore, has taken place. The dock comprises an area of about eight acres of water, and has substantially-buils quas walls on every side, and in cases of danger is calculated to afford a convenient place of shelter and security for a large number of vessels. The harbour comprises about fourteen acres of wator, and is enclosed by two bold piers Jutting into the sea, the whole bailt in the most solid aod aubstancial manner. Vessels can always be afioat in the dock with twenty-three feet of wator, if required. A graring dock bas also been commenced.

Obiruary -Wo have to record the death of Mr. John Buonarolli Papworth, late Vice-President of the Royal Institute of British Architects, Which occurred ou Wednesday, the 16 hh ult., at his residence, Park End, 8t. Neol's, whither he had retired from London, after more than fifty yeara of professional practice. Early in life, his excellent judgment and a kind heart acquired for him the intimacy of the leadiug artiats, and also the confidence of many wealthy amatenrs as to the direction of their patronage, and as to the decoration of their mansions; in this course he nriginated and accomplished the adoption of the tasteful style of modern furniture, from which cause be was selected by goverameat to carry oat the foundation of the School of Design at Somerset House. His works on garden and rural architecture, very favourably received by the public, were the resalte of his experience in landscapo gardeniug, which he joined as a profession with bis other art. Amongat the clients to whom he owed an extremely varied practice, he numbered several of the late branchos of the royal family, eapecially the Princess Cbarlotte, and also the present King of Würtemberg, from whom he, having designed the Palaco and Euglish Park at Kannstadt, received the appointment of architect to his Majesty. His son will bave the satiefaction of remembering how highly Mr. Papwortb was respected, oot only by his private frieods and by bls clients, bat hy those severer jodges, the members of his own profession, to whose splendid token of their esteem we gave publicity at the beginding of the year.

LIET OF EBW PATEETTB.

GRANTED in England from mat 22, to jone 24, 1847. Sir Months allowed for Burolment, malest otherwise espressed.

Heary John Nicoll, of 114, Regent-atreet, Middienex, Lalor, for "Improvements in sarmenta, and in pocketa, baga, and other recepracles."-Sealed May 88.
8ydper Smith, of the county of the town of Notulogham, engineer, for "a certala 1 m proved apparatua for determiniots the pretture of stemm in bollert, and regulating the dampert of a furnee."一May 22 .
Willam Bridget Adana, of Old Ford, in the county of Middlaex, engineer, and Robart Richardson, lete of Wanglaptree, in the county of Eseex, hat now of Badleigh, In the county of Suffolk, for "certain Improvements in the conatruction of rallweys, and of enciose ad carriagen used thereon, and also in transport and atorage arrangemente for the conveyance, management, and presorvation of perimable artictes. ${ }^{n}$ —May 22 .
Moses Poole, of London, gentlamen, for "Improvements in the constructlon of paen" matic spriogs and pressem." (A communication.)-May 22.
Jean Marley ourmentin, of New Bridge-atreet, Blaclefriars, gentleman, for "Improvemente in the mannfacture of carbonate of lead."-May 22.
Willam Edmard Newton, of Chancery-line, Middlesex, civil enginem, for "a new or Improved Instrament or apparatus for maldng or manufectaning capsales for encloling medictnes, preparalions, or other llquid or solld preparstions." (A communiction.)Mey 22.
John Attren, of Russall-mtreet, Bermondeef, leather dreaser, for "Improrements in team-englaes or atmonphenc enginet, in digtiling and pumping water. ${ }^{m}$, 1 fay 22.
Wiblam Dype, of Bocheater-terracp, Stoke Newington, Middlesex, corn merchant, and Moryp Haggar, of Chnach- Itreet, Btake Newington, for " certain Improved apparatue for protecting 116 and property in cases of shipwreck."-May 22.
Charies Chinnoct, of 52, Regent's Qnadrant, Middleaw, for "Improvementi in regubeting motion, and controlliag firction in the jolnis and other parts of furatiture, machinery, and carriages."一May 22 .
Heary La Levre, of Cleveland_-trett, Mile-end, Middlenex, for ${ }^{*}$ Improvementa in dyeInt and atratching allk, and in Ankhing plash."-May 24 .
Plerre Armand Le Comta de Pontalaeroorem, of 4, Boptb-itreet, Piusbury, London, for "certalin Improvements In the machinery for catiling wood, and in liging and uniting vepers." (A communlestion.)-May 25.

Chriatian Schinle, late of Franifiort on the Malne, but now of Manchester, for "certion Improvementa in mechinery or apparatur for condenging stean, Which ald improvaruente we aleo applicable to other stmilar parposes,"-Mey 27.
Alesander Alap, of Creme, in the conaty of Chenter, engtaeer, for "certalu Improvementa in turn tables, to be employed on, or in conneetion fith rallwtys, part or parts of Wheb add improvemente are also epplicable to the construction of tubular boflers." May 27.
Fonry Gilbert of Marin, 8t. Leoanards, Eurgeon, for ${ }^{64}$ Improvementia In apparatur for hoiding sacke to freliltata the flling them with corn or other material."-May 27.
Heary MeEvor, of Efallistreet Worka, Blrminghan, machlaist, for "Improvementa in the mamiscture of, and in the packing hook and eyes."-May 87.
Bonjamin Thornegeroft, of Wolverhamptom, Iron master; for " Improvement in the manufetore of ralls for ralifrods., -May 27.
James Johngtome, of Willow Park, Greenock, Eig., for "certaln Improvemente In the mannfacture of mygr."-3Ay 27.
Jamei Blewtit, of Llanternam Abbey, Newport, in the conoty of Monmonth, Eisq, for
Wmprovemente in the manuficture of malleabla iron."-May 27.
 machinery amployed in sconing and bleachlog." (A communication, M-May 27.
Alfred Ytevens, of 2, Queen's Tarrace, Salut John'm Wood, Middleser, chemlat, for at a new or Improved proparation or preparations of certain anberancen for malding various ctativous componads."-May 24.

Pruseia Bernard Belaert, of Rave Royale, Exienteare, Brumels, In tha kingiom of Belsimer, lor " a mothod of tncremalnt the quandity of cream procured from milly, and preHis min. -May 29.
Whilan Eorne, of Leng-acre, Middeacr, conch-malter, George Beadon, of Batiernat Fields. Surrey, and Andrew Smith, of Millwill, Middetex, enginetr, for " Improvement
In wheel carrigete" June A.

Jomith George Jemolnge, of Great Charlotio-itreth, Blacitriars, for "Improvements in what-clocots, apd in maiding jolnte and connections of pipes,"-Jume 8.

Chystopher Niekels, of Yort-road, Snrrey, gentleman, for "Improveinent in the monofinetare of woven fabrics, and in giving clasticliy to certidn articles of finbrics."-Jnoo 8 .
John Eill, of Bulma; near Manchester, machlo malrer, for "Improvements in hooms

 Samuel Bugjamin Edward Berger, of Abehnreh-lane, in thy alty of Landoa, merchment, tor " certain Improvements in the construetion of railivey carriages."-Juse d.
George Taylor, of Elolbeck, near Leeds, mechanle, for "Imprevements in the constrac. tion of eagines and carriages to be used on rallway.
 Bamuel Ellen, of Grange-roed, Bermondery, Eentloman, for "Improvements to the mapufecture of loah hide lether and other oiled leathers." Jame 8 .
Charles Iarrard, of Lelcester, machinist, for "Improvements In machiotery for cutilat wood for the manufacture of bobblis and other ardeles."-June 8.
Heary Cox, of No. 2, Chappel-place, Batternet Fields, 8arrey, for "Improvereate ts the preserving and preparing of wood, bricta, tiles, and other smbetances."-Jupe 10.
Bondy Asulay, of Rotheritithe, In the countyof Surrty, pintor, and Abraham Soiponope, of the city of London, merchant, for "certala Improvemente in the manefactare of char coal and other fuel."-June 10.
Willam Darling, of Glangow, Scothad, Iron-founder, for "Improvements In momaling, and in the manufactore of certain articled of cest trou,"-Jane 10 .
Wjlliam Beckett Johnson, of Manchenter, enflneer, for " certaln Imptoveronts to the constraction of locomotive enginas, to be nged upon rall or other weyt, whlch lapropement ase also applicabla to cerrigges used upon inilways." Juna 12.
Jamea Johnson, of Bradiry, in the county of 8taflurd, Iron forpder and boller maber for "" Improvementa In the manulacture of nirete, ral:why, or other plns, bolte, natia, and splaser."-Jane12.
John Mercer, of Oakenchaw, and John Greenwood, of Church, both In the coraty of Lepester, chemists, for ${ }^{*}$ Improrements in certaln anbetances appliceble to the mato-
 12.

George Edmund Donisthorpe, of Ieede, in the county of Yorls. manuracturef, for ${ }^{* 1} \mathrm{Im}$ provements in weating and aplaning weol and fing, and in treating wool proviout to aplaprovementa in wearing and apinninf
nlog, and heckling fer. "-June 12.
Joseph Wheock, of Barnaby, in the eoonty of York, gentieman, for "ceatn Improve Joseph Wilcock, of Barnaby, in the eounty of
menta in the ventlintion of mines."-Jupe I2.
James Rjchards, of New Yoris, engineer, for " Improvementa in construetine pletome"" June 12.
Prancls Bowers 8teveng, of Eobotren, in the connty of Hudson, in the 8tate of New Jersey, in the United States of Americs, engineer, for "Improvementa In epplyiog menn and apparatus to ships and vestels, to Improve their opeed."-June 12.
John Lane, of Oriel-street, Liverpool, hrewer, for "Improvemente In raliway cerring and engines."- June 13.
Richard Roberta, of Mancheater, endneer, for "Improvements In machinary for prosparing and spinulas cotion, and olber abrons anbatances.".Jupe 15.
James Timmins Chance, of Haudeworth, in the county of Stantord, itan manahetartry for "Improvemente in the menufncture of glass." (A commpalcation.)-J ape 15 .
Jolin Lene Higgins, of Oxford-streat, Middlesex, Beq., for "Improvernente Le the cesstruction of wioches and windiasses."-Jane 16.
Predencir Theodore Philippe, of Bellifeld Eall, In the county of Zanceapter, calico printer, for "cortain I mprorementin in mechinery or apparang for acretchalag, drying, and finh. Ing woven fabrice."-Juo 15.
Alexader Symons, of Iondon-atreet, Feachurch-atreet, merchant, for is Impervereata In raliway carriages in preventiog accidention rallway, and ascertation the mped α earriges."-June 15 .
James Honghton, of Oidham, In the county of Lancuater, for "eartain Improvementa In machinery or apparatus, to be uned in the preparstion and mpinging of cotcon, mool, and othar fibrous substances."-Jnne 13 .
Hepry Pooler, of Liverpool, tron fowader, for ${ }^{4}$ certaln Improrements lo meitina mechloes. ${ }^{\text {H/ June }} 16$.
James Bill, of Btaley Bridge, In the county of Cheutur, cotton oplaner, for "Improvementa in or applicable to certila machlnes for prepariag, eploning, and doublos cetva, wool, and other fhrous sabstancen."-June 19.

8amuel Keeling, of Eanley, in the county of 8taford, for "an Improved method of maring candlesticlise."-Jupe 19.
James Murdock, of 7, 8taple Inn, Middleaex, patent egent, for " as Improwed mode of manufscturlig woven goods figured on both aldes."-Juge 19 .
Prancols Hend Bleken, of Meyence, on the Bhine, gentiman, and Meyer Beary, of Colonial Chambers, Cruched Friars, merchant, for "certion Improvameetis in maitis, maniutigg, or prepering corn, meade, plente, and treen, and in fertilising land."-Jume 19 . Williem Vickert, of Shefild, ateel manufacturer, for "Improvementa in the asomfice turer of lron. ${ }^{\circ}$-Junce 19.
Thomas Rucgell Crampton, of Adam-street, Adelphl, englneer, for "Imprevementia in locomotire englnes-"-Jane 19.
Jamen Robertion, of Great Howned streot, Liverpool, for ${ }^{\text {" }}$ Improweonente In the man nufucture of casle and other moodan vasain, apd In machinery for cnetiop wood for that and other parponem."-Jupe 19.

John Mectatoth, of Bedford-Equare, Middlesex, for " Improvements in engloat to be worked by tienm or
Jumes Soatter and Whllam Prederick Blammond, of the Spread Eaplo Woth, Lue-
 propellofe:"-Jone 22.
John Obadlah Newell Antter, of Brishton, Bac englneer, for "c exrtain Improwed aethod, of, or apparatus for conveying Inteligence."-Jnne 23.
Heary Mapple, William Brown, and Jamea Lodge Mapple, of Chilas Bill, Headon, int " Improvemente in communicetiog Intellipence by means of electrielty, and In apparatas relating thereto, part of which lap provementa are also applicable to other ulve puppeme" Jelang 28.
 ment for registering anglen at sem"-.Jupe 24.

ERRATA.-In the last number of the Journul, in our reviow of Mr. Hann's "Treatise on the Steam Engine," page 195, for

$$
\begin{aligned}
& x=p(1-\cos \phi)+\frac{r}{2} \cos \theta, \quad \text { reed } \\
& x=p(1-\cos \phi)+r\left(1-\frac{1}{8} \cos \theta\right) .
\end{aligned}
$$

Obituary - We have to record the de worth, late Vice-President of the Roy which occurred on Wednesday, the 160
St. Neot's, whither he had retired from of professional practice. Early in life heart acquired for him the intimacy confidence of many wealthy amateurs and as to the decoration of their man accomplished the adoption of the tawhich cause he was selected by go the School of Design at Somerset I architecture, very favourably recei his experience in landscape garde with his other art. Amongst the varied practice, he numbered s family, especially the Princess Würtemberg, from whom he, Park at Kannstadt, received His sou will have the satisfact worth was respected, not onl but by those severer judges, splendid token of their este year.

LIST

GRANTED IN ENG
Six Months allow

Henry John NIcoll, of 1
garments, and in pockets,
Sydney Sulttb, of the co
proved apparatus for det
Wullam Brldges. Adar
Michardson, late of Mar
county of Suffolk, for "
gines and carrlages use
conveyance, managem
Moses Poole, of Lo
matie spriges and pr
Jean Marle,'Fourr
ments in the mandf
Willam Edward
Improved instrum
medicines, prepart
John Alticen,
ateam-engines of
William Dyme
Morya Haggary
protecting life
Charles Clify
lating nootion,
Heary Le
Henry Le
Ing and stre
Pierre Ar
"certain
Chilati/
Improver
Alexis
menta
menta
$\mathrm{Mny}{ }^{2}$
$\underset{\text { holdj }}{\text { Her }}$
He
Hif
the
508
m
*
n

THE NEW PALACE AT WESTMINSTER.

(With an Engraving of the House of Lords, Plele XII.)
Charles Barry, Eso., Abchitect.
We this mooth, agreenbly to our promise, give a second riew of the iaterior of the Hoase of Londa ; it is a transverse seotion, or view of the oorth ead, showing the Reporters and Strangers' Gallery. The archway under the oentre of the gallery is the principal entrance to the Hoase, and the aide arches enclose two small waitiog rooms or lobbies. The arcbes above the Gullery, and the centre one below, are silled in with cloth cartains. The froot of the Galleries aod the enolesure to the Lobbies below are of wainecot, and the arches above of atooe. The faces of the spandrals and ribs are elaborately gilt, similar to the side elevation. The Piate is drawn to the same scale as the ooe io lact month's Joornal.

The following is Mr. Barry's report of the atate of the works on June 30, 1847 :-
The carcace works of the portion of the boilding towards Now Palace Yard are eatirely completed.
The Victoria Tower is abont 90 feet high; the carving of the stone rroin within it is completed, and the scaffolding is removed.
The Clock Tower is also about 90 feet high. Framed scaffolding and boistige apparatus have beeo prepared, and are now being fixed for the upper portions of those towers, which are not yet contracted for.
The stone grois over the Central Hall is now helog taraed, and is far adruced to completivn.
St. Stephen's Hall is in part carried up to its fall height for the roof, and the remainder is, apon an average, within abont 10 foet of the same level. SL Stephen's Porch and the western entranoe of the building is carried op to the beight of aboat 30 foet above the ground.
The Commons' pablic lobby, and the central macess of the boilding abore the corridors and poblic staircase, are, upon an average, within about 10 feet of their full height.
The Hoase of Commons' ceiling, beams, and bracketting, and the stove creens at the porth and soath ends of the house, are completed. The attioge and finishings of the house are not yet ordered, at no decinion is set come to reapectiog Dr. Reid's plans for warming and ventilating this portion of the bailding.
The Houne of Lorda, the royal ante-chamber, and the hoose or public jobby, with all their warming and ventilating arrangements and apparatus, are (with the exception of a portion of the atained glass, the fresco paintiags, statioes, and otber works of art) completed; and those portions of the buildiag were occupied for the first time immediately after the Easter recess of the present jear.
The fitiogs of the old House of Lords were removed daring the Easter recose, the house converted into a gallery of approach from the House of Commons, and other commanications mado between the tomporary and the new traildings.
The fittinge and fisishings of the libraries and refreshment rooms are sear completion. A considerable extent of joiners' work in ceilings is prepared: wach of it is fixed, and other finiahings are execoted in other portiones of the building.
Ten new committee rooma in the river froal have been temporarily fitted ap for use since Easter.
There are al present 1,976 men engaged upon the works of the New Palace, of whom 708 are emplojed at the building, 147 at the quarrien, 228 at the government works at Thamea-bank npon the joiners' Altings and wood carvings, and 193 opon miscollanieons works both at the building and einambere.

4 Builders' Benevolent Institution is abont being established for the relief of decajed masters in the bailding businese, and also for the relief of workmen in the employ of a subscriber, who may meet with an aoeident; it is also proposed to establish Alms-honses when an adequate sum can be raised.

No. 119.-Vol. X.-Avevat, 1847.

CANDIDUS'S NOTE-BOOK. FASCICULUS LXII.

" I mast have uberty
Withel, as lerge a charter as the wiode, To blow on whora I pleare."

I. "Why work we not as our forefathers wrought," is a queation that wit pat by Mr. Seott wit the moto to his deaign for the Army and Nary Clah. house. No doabt it is one which he conaiders unanswerable ; yet the derigu. ithelf forniohed a tolerably conclasive reply, at did likewise one or two othera which appoared in similar architoctaral manquerade, having mamed the cortume of medievaliam. Clabs and Clab-honcea, however, are inatitations belonging exelasively to modern civilisatlon and.refipement. In former times, there wat nothing whatever andlogous to them, unles it were con-vents,-cernobitism, or living in common, and the exclusion of the cociety of the other sex, being one great characteristic of both. Yet there all recemblance ends; modern coenobitism being of quite a different atamp from that which was in vogue amoag oar "forefathers." Bverything has been meta-morphosed-aither greatly reformed or ele grosily perverted. The Cotteeroom has taken place of the Refectory, and the epicurean carte has put the meagre days of the "good olden times" to light. Are the latter, then, to be now reatored?-or are we to return to medisevalism only hy halren? If we are to be archaic in our baildinge, why not aleo in our drem, in onr speech, in oor amusementa? Why do we not dine at our forefathera diand ? And we might goon adding question of the kind to question, till we alked : why are we not our veritable forefuthers themselves? --Sentimental archeomania is one of the fachions of the day, and one whose very extravagace will cooner or later bring it into contempt, when it will be pat on the amme shelf with bibliomaain and other exploded follies. Like bibliomenia itealf, archwomania is-althoagh it does not absolately exclade them-quite indepeadent of any knowledge of, or tasto for, the intrinaic methotic value of the clas of productions it concerns itself with. The one prides iseelf apon estimating baildinga as the other does books-by merely extrin. sic circumatances, instead of jadging of them by their architectural or literary worth. The building may be rabbish, the book may be-rabbish also; bat if the one can be proved to be of the date of the Conqueat, the other he a bleck-letter edition-perbapa an anique copy in the original binding-your archroomaniac and your bibliomaniac fall into ectasien,that is, provided there be anybods present to witnens them, anch rapturea being themselves far too valuable to be acted in private. Your archmomanice will, perbapt, be able to tell gon the date of every part of a cathe. dral, and the names of all the reapective bishops or other fonaders, together with many other, no doubt, bighly cwrious, yet altogether extrinaic, matters; but akk him for a critical elucidation of individual sad aggregate beauties, and be stares at you with contempt, if not with horror-probably the latter, for be feels very ancomfortable in your company. Yon seem to expect something like reasoning nous from bim; while be dernanda the anqueationing admiration of implicit faith from you.-Go to : you are a heretic l
II. Among the deaigna for the aame building, namely, the Army and Naty Club-bouse, was another Gothic oue that wat an ahzolute bargain; for, although it showed a lofty structure, bristling with pinnacies, and crowded with canopied niches and their atatues, and tbe whole was to he executed in real stone, the estimate was neither more nor less than the exact $£ 30,000$; which rigourosaly preacribed sum wat conscientiourly adhered to by nearly every one of the competitors, notwithatanding the prodigious difference of the designa themselvet, in regard to a great variety of circumatancea affecting cont. Bat, alan ! oven such tempting bargain an the design alluded to, did not tempt the gentlemen of the Army and Navy Club. Perhapa they rather looked at that and the other Guthic designs with con-tempt, as silly at-tempts to make them make monkeys of themselves, by aping the architore of monkery and monkish times. Let un not mock "oor forefathen," by arbatitating mere mummery for art.
III. We have outgrown medieval architecture. It in a garb which, betides that it ill secords with the rest of our social costume, would require to be enlarged-to be both greatly lengthened and wideoed, in order to it it to the present stature of civilization. It may become the churoh well enough, as being of the troe clerical cut and "cloth." But for ordinary porposes, and all sorts of porposes, 一that is not to be thought of serioualy. Nevertheless, it is atated that the Carlsrahe Theatre, which was lac.ily barnt down, is to be rebuilt in the Gothio style-at least, rome such iden is oater.
tained, and Heideloff has been specinlly invited to furnish derifns in that etyle. Still, complimentery this looke to Gothic architecture, it may fairly be queationad whether the compliment will not be resented rather a an inult, by the tranch adrocates for medisvalism. To apply such a style to a theatre will be deemed by thom little lese than a downright profanation of it. One inevitable scandal will be, that Precedent mast be rudely thoved atide, there being no precedent whatever for any profane strnctare of the kind in all the remains of the middle eges. Innovationa, and very extensive ones, there munt be, in order to accommodate the building to its expreas purpoee. The idea is not, indeed, quite new to the Gormana, a private court theatre having been built some few years ago, by Ottmer, in a sort of Gothic -but of anch sort, as would certainly scandalise our Pagins asd our Willisen. Whether Heideloff will acquit himself of the difficult tupt imposed upon him, much more atatactorily, may be doubted, nince the vary fact which is alleged as pectiarly qualifying him for it, mant in a great menare dinqualify him aleo; becanso if he has all along devoted himeelf exclunively to the atudy of Gothic architeeture and art, he must come quite unprepared to such a very special subject an a theatre, which is, moroover, one that domands ability of a particular kind. His deagns for Gothic furniture do not promise much for his power of invention-that apecies of invention which consista in re-combining forms and details into novel apphications of them, and adding others to them where necesiary, conceived in the ame spirit and treated with the same guato.
IV. Although in his lately publiahed lecture on the "Fducation and Character of the Architect," Professor Donaldson earnestly recommends the atody of biography, and especially commends Milizin's "Liven," he seems to think that no farther dose of biography is now wanted. At least, he has expressed no desire to see some one undertake a continuation of that work, bringing it down to the present time. Such a continuation of it ought to be fully as intereating as Milizis's work, which, to say the truth, hardly pretends to be a readable book, though neeful enough at one of mere reference. To say the truth again, there it very little that answere to the idea of biography in it, moat of the livea being very jejune notices of the individuals themselves, with a dry onumeration of tbeir principal boildings. The subjecte of such biography have since then greatly accumalated, although it must be confeased that materials for thom are in many instancea very ecanty, owing to their not hering been collected while they were within rencb. Still there is very much lying seattered shont, which requires only to be searched ont and pat together. It will, perhape, be aid that in the two last genera. tions of architects who have gone off the atege, there were fow who distingainhed themselves eitber hy great works or great talent. Still, there were many of celebrity, whether that celebrity wan merited or not, and meveral of great ability also,-pernons quite an worthy of a niche in biography, as are a very great many of thone recorded, and merely recorded, by Milizia. It is in one respeot all the better if there are companatively few to be spoken of, because in that ease there is room for biographical narrative and critical remark. Something more attractive and instructive also than such mere skelatons, as many of the noticea in Milizia are, is highly denirable;-someching sufficiently readable to impress itself on the memory;-something analogows in plan to "Johason's Lives of the Poeta." Properly written, the biographies of architects, or indeed any artists, might be mado to comprise a great deal of valuable preceptive comurent, illuatrating and illustrated by the building thomelves that are spoken of ; and even where they must be spoken of with censure, art and good taste are benefited by the exposure of mis. taken and orrors. It is almost as neceseary to know what we ought to avoid as what we ought to imitate ; otherwise we have only one-half of the experience necessary for our guidance, and are in danger of ranning aground on the very anme thoals that others have been wrecked upon, merely becanes the mistaken, not to say dishoneat, lenity of biography and criticiam has not pointedly merked out for our warning, those concealed dangers.
V. Not long ago a volume mede its appearance, which promised beforehand to be an unusually complete piece of urchitectural biograpby, the whole of it being devoted to the life of James Gandon. As the subject of it could poncess no interest for the general public, it was almost to be taken for granted that it Fould contain a great deal that would be particularly interesting to architectural readers. Iostead of wbich, it has no interest at all for con one : a a biography it is a qullity, there being nothing in the history of the man himelf but what might bave been related in a couple of pagea. His was not a life replete with incident like thai of Benvenuto Cellini; neither is it made a vehicle for bringing ns acqusinted, except here and there merely nominally, with other individuals who were of particular note. The anecdoten with which the book is eked ont, are all of the most trivial description; and
the notice of contemporny artite-aearly all of them, by the by, patetertare as dall as they are meagre, or rather are so meagre as to be almost of peceasity very dry and dall aleo. The only one of whom we are allowed to obtein more then a mere glinpme, is Pan Sandby, who exhibity himsolf as a hamourist, in which character he preposecses ns not a little in his favour in one or two very lively and playful lettert-the only bonne bowche in the volume. At to Gandon himself, he might just as well have been any thing alvo-a brilder or contractor, for instance-as what he whit and the book might atill have been just what it is now. Thet he was an architect neem to beve bean all but ontirely forgotten by his biographer. Though he did not erect meny atructures, those wbich he did were finportant onen; accordingly they onght to have heen made the anbject of fall deacription and diecomion: or if his works do not deserve it, bet are as uninteresting as hit own Mfo, why thonid his biography heve been attempted at all? At any rate, one wort thers in of his which would have afforded ample matter for notice, unmely, the two eupplementary volnmea to the "Vitruvius Britannicun," for apon them might very properly have been founded a reriew of the atate of architectare in this conntry duriag the period they illustrate. As it is, the "Lifo" of Gendon fully varifies the proverb, that "God mende meat and the devil mende cooks."
VI. Allan Cunningham's "Lives of British Architecta," are just what they were intended, a fow popular and pleasingly writton biographies of the kiad, derived from accesible mourcos, laterspersed with snpericial, and nomo of them erroneoun, remarks, that may pais for very reapectable second-hand criticiem. With him, Vanbrugh the architect is eclipeed by Veabrugh the dramatint. Alian contented himself with what he conld fad at hand and shaped-out for him, withont looking about for mare rase suaterial. Jamen Wyatt is excluded, although he was mont nadeniably of extraordinary rogne in his time, and aleo in some measure makes opoch in his profeasion by heviag been one of the first to practive revived Gothic architecture to any extent. Noiwitbstanding, too, that he himself was a Scotchman, and not deficisnt is nstionality, Allan gave no biography either of Sir Willam Bruce, or Bobert Adam :-and the omiasion of the latter is remarkable enough.
VII. If we turn to the continent, we ahall there dicover many important names that are now become available for architectural biography, \rightarrow uch for instance as Percier, Cagnole, Piermarini, Scbinkel, and quite recently, Priedrich Gärtner. Of these, with the exception of the Int, various memoirs, and some of them of conaidersble length, and critical as well as biographical, are to be met with in foreign publications; as are likewice those of a great many otber Frencb, Italian, and German architectn. Most of them are quite as "well written" as Milizia's "Lives" some of them incomparably better. As to Mrs. Creay's tranalation of the Iatter, it is charitahle to anppose that sbe was learning Italian at the time, and tarned the book into Englinh, for there are paseages in it of which it is impossible to discovar the meaning at all without referring to the original. Milizia required not a lady trasslator, but one tboroughly converant with architecture, and capable of officiating as his annotator also.

HISTORY OF ARCHITECTURE IN GREAT BRITAIN. 4 Brief Sketch of Epitome of the Rise and Progress of Architectine in Great Bridain. By James Elmbs.
"Epitomes are helpfol to the memory, and of good private nse." Sir Henay Worton.

(Continued from page 210.)

The great epoch of modern architecture in England is that of Wren, and was created by the fire that reduced the city of London to a mass of ruins. Wren was fortunate in falling upon such an opportanity, and London was fortunate in finding such an able rebuilder es Wren, who was a aingolar combiastion of the greatest powers of the human mind. He wes a mabolar, a poet, an artist, an astronomer, a mathematician, an engiveer, an architect, and a profond philosopher. Nothing was too difficutt for his appiring and powerful mind. He was born when Cbarles I. was in the senith of his power, having then sat on the throne of Great Britain, as its eeoond monarch, about seven years. How that monarch patronised architecture and the other arts of design is before recorded. Wren began bin pablic career at a very early age; but, unlike the generality of precocione youthe, retained his intellect unimpaired and bis body vigorous to a Netorian age.

He left Weatmiastor school and was entared a geotloman commoner of Wadham College, Oxford, at the early age of fonrteen. Although so yoong, be obtained the notice and frieadabip of the greatest men then rosident in that anlvernity. The great mathematician, Oughtred, then a Felbow of Wadham, records his talents in his "Clavis Mathematicns," and Dr. John Wilkins, the then warden of his college, Introduced him as a prodigy of science, to the Elector Palatine Prince Charles, who was on a visit Lo thet distingoished sent and seminary of learning. He had proviously keown this illustrions Prince when on a visit to his father's honse, the Deanery at Windsor, and took this opportunity of presenting some acientifio inventiones by the desire of Dr. Wilkins, and recorded them in a Jettere to Hi Serepe Highoem. As a scholar, he wan commanded by Sir Charles Scarborongh to transiate Oughtred's "Geometrical Dialling" into Latin, for the wac of the learaed men of Europe; and this when he was only in his 151h jear. In tho same year he invented and received a patent for an instrement for writing with two pens; and it is recorded as a singular coincidence that Bir William Petty, the founder of the noble family of Lansdowre, inveated a similar machine in France, and obtained a patent in Englasd in the same year wlih his youthful cotemporary. He was at the sarne period engaged by Dr. Bir Charies Scarborough as his demonatrating secietant in his lectures on anatomy, of which appointment he was so proed, that he commanicated it to his father in a leuer of elogant Latin. He alfo sigualised himself as an astronomer, a scholar, and a poet, by a serise of Latin metrical stansas, proposiag a roformation of the ancient fables of the sigas of the sodiac; an algobraical treatise on the Julian period; and a Latin treatise on spherical trigonometry.

Few men of any time have exhibited a more expansive miad than Wren: like Mrichael Angelo, nothing seemed too great, too difienit, or too minute for its iavestigation. At one time sweeping the heavens with "Galileo's trbe," tracing the motions of pianets and comets through empyreal space; at abother seeking the properties of insects and animalcnie with the microscopic lens; occupled in his atudy by storing his vast miad by the treasures of ancient lore; giving to the learned hia disconrses in Latin, worthy of the Augastan age; improving machinery for tillage, the mensuration of time, registration of changes in the atmophere, and other useful projocts. In fact, bis mind whas never anemployed ; be stadied, as Horsce directs, by day and by oight, and of no man could it be more truly said, sulla dies sine lisumb

Whilst Wren was parsaing bis conrse of atadies and inventions with indefatigable induntry, giving to the worid nseful discoveries at an age when others were stodying their elemente, a circumatarce occurred that gave a powerfal direction to Wron's mind. In 1648, Wren's 16th year, Pope Inmocent X. anoonnced to the world, that St. Peters, the great cathedral of Catholic Barope, was thon completod, noder the superintendence of the Illastrious Beraial. This great event was the engrossing topic of the day, and induced Wren, among others, to the examination of its clajms to celobrity, by comparing it with the great works of the ancients and their arohiteetural law-giver, Vitruvius, which was then a sealed book but to the leamed. This new etudy enabied Wron, in after days, to complete our Protestant cathedral of 8t. Paal by himself, whilst that of St. Peter's occupied the talents of twenty architects, from Bramante to Berninj, inclading Rafinelle and the mighty Buonarotti, who ralsed, as he had promised, the Pantbeon into the air. Nineteen poper, from Julins II. to Innocent X., aided by forced coatribations from the whole Ohriatian world, raised the one: a single people, in three short reigas, by one architect, a single diocesan Protectant bishop, from $n 0$ fands bat thoee rolontarily given by the people, accomplished the other.

Wren's society and advice was sought by all the illastrions in birth and mind. His repatation was not merely British, it was European. At one time, he is sought by Helvicus to illustrate his chronologioal tables by an algebraical calcolation of the Julian period; at another, invited by the Ilfustrions Boyle to examine the hypothesis of Des Cartes on the pressure of the atmoepbere, which indisprably gives to Wran the invention of the baroseter ; again, Dr. Willis desires hls assistance in dissecting and proparing a treatise on the anatomy of the brain. Immersed in the anmerons engergements consequent on being elected Fellow of All Souls, Oxford, and the preparation of an inangural disconrse on being appointed professor of entronomy in Gresham College, be found time to solve Pascal's problem, and to proponnd another, originally proposed by Kepier, and privatoly answered by himself, and was the oaly solntion ever given to lt. Handreds
of such instanses, in overy brach of solence, oecar in his blography, from an inveatigation into tho motioas of the eatellites of Jopiter, and as Bavillian profeacor in Oxford to report on the consteliation Taurns, to an earneat solicitation of his friend John Evelyn, on the education of his son, to which Wren applied himeelf with as mach sincerity and coal as he did to the questioss of the most learned in Europe, and to the King's command to make a globe of the moon. Sooght for both in Oxford and in London, his presence at one cansiag rogrets for his abaence at another; flling with nue exampled earnestness and seal the antronomical chairn of the university and the metropolin, descanting to them apon the starry hoavens, and enter. thining the membern of the newly-formed Royal Society by microscopical diequisitions upon the mallest Insects, and with ever-recurring novelties in mechanios, he still found time to caltivate the arts of deaign, and the still more abstruse science of chemistry, which be studied with other learned cotemporaries under the celobrated Rosicrucian philosopher, Peter Sthael, of Strasburgh, who was invited to Oxford and coarteonsly entertained by the Illatrious Robert Boyle, one of the closest and perhape the most distincuished of Wren's friends.

At this period of Wren's life, his 28th year, which was marked by the restoration of mooarohy in the persoo of the proligate and ungrateful Charles II., 1660, whilet be was flling the rich storehouse of his mind from every available soores, had it been directed to any distinct object, whether in literatare, philoeophy, science, or art, he would have been eminent in either. From the circomatance of there being at that tirne no architect in England, but the beglected aed almost forgotten Inigo Jones, he was consulted as a man of general knowledge upon all the little architectoral projects of the day. Had Cromwoll been a patron of the liberal arts, Wren, most likely, would have been his arohitect and aurveyor-general, for it is related that Mr. Claypole, who married Oliver Cromwell's favourite daughter, who had more infuence over her father than any other human being, was well ecquainted with Wren. Claypole, whe was a mild, retiring man, fond of mathematics and the atudies of the closet, had a great love for the society of the yonthful philosopher, and frequently introduced him to his own domestic circle, where the atern Protector occasionally paid visits to indaige In couverse with his favourite daughter. It happened at one of these vinits that Cromwell came into the room as they sat at dinner, and without any ceremony, as was his nsual way in his own family, he took his place. After a litule time, fixing his eyes on Mr. Wren, he said, "Your oncle hat been long confined in the Tower." "He has been so, sir," replied Wren; "but be bears his affictions with great patience and resignation."

Cromicell-" He may come ont if he will."

Wren-" Will your highness permit me to tell him this from your own month t^{n}

Crommell-"Yes, you may."
As soon as Wren could retire with propriety, he bastened with no little joy to the Tower, and informed his ancle of all the particulars of this inter. view with Cromwell. After which the bishop replied, with warm iadignation, that it was not the firat timo he had received the like intimation from that miscreant; bat he disdained the terma proposed for his ealargement, which were a mean ackoowledgment of his favonr, and an abject submission to his detestable tyranny; that he was detormined to tarry the Lord's leisure, and owe bis delivernce, which was not far off, to him only.

That Cromwell did patroaise Wren ls clear, from a letter writton by the latter to his friend, Dr. John Wilkins, wheroin he states that his diplogrephic instrument, for which he had recently received a patent, had boen "commended to the then great, now greatest pernon in the nation," (Oliver Cromwell.)

In 1661, Wren may be anid to have commenced hisarchlteotural career, and to have fixed upon his fotnre profension. He had completed his academical honours by receiving from his univernity the well-won degree of doctor of civil law. The king (Charies II.), who had acquired, both from his father and bis sqjourn abroad, a great love for the arts, finding on his retarn to the throne of his ancestors, how mach the royal palaces, the cathedral of 8t. Paul, and other amored edifices, had been dilapidated and desecrated by the military hordes of the Commonwealth, had determined on their restoration. Sir Jolsn Denham, author of "Cowper's Hill," who is more renowned for his poetry and polite learning than for any knowledge of architecture, had beeu appointed, in reversion, to the office of surveyor-general of his majesty's works, in reward for his loyel services, to which he had now nominally succeeded by the death of Inigo Jones during the interregnum. The fame of Wren had reached the ears of the king, who propos-

- Anthor of the weilinowa Parallel of Architectare.
its illastrions archltect, whom the Quarterly Revieco" calls "the pride and honour of English art," to the rank of an equally bold and original imltator, as Milton is of Homer and of Virgil; exhibiting in all its parts the most indubutable marks of real genias-" that quality, withont which," says Dr. Johnson, "jodgment in cold, and knowledge is inert; that energy, which collects, combines, amplifies, and animates."

- Por October, 1822.

(Tb be continued.)

GLANCE AT SOME OF THE ATTEIBUTES OF ARCHITECTURE.

By Frederice Lueh.
No. II.
${ }^{n}$ Greet art had her iafnacy, but the Graces rocted the cradle, and love tanght her to

Simplicity, fc.-We cannot arrive at conclasions respecting the firat principles of art, without making the homan mind, as being the sonree of all beauty, the gronadwork of our inveatigations. All the qualities that contribute, or are essential, to artistic beauty, will be foand to make up the requiroments of a perfect mind; and among these qualities, that whioh bears a very'striking analogy to it, is simplicity.

Simplicity and unity of composition may be compared to that powor of generalization which selects from disgimilar objectis, parts of a like nature or property, and then inclades them under one genos or kind. It was a principle of the Greeks, which wesfounded on the iden they formed of perfect anture, " to combine into one grand expression of feellag a whole series of ideas, and by excluding everything heterogeneous, to combine all homogeneous elements ioto a perfect and harmonious unity" (Schlegel*.) Amidat, therefore, the many and raried elements of an art, whose grand object is to make a strong impreacion on the senses, no matter that is irrelevant mant be allowed-nothing that woold prodace confosion; so that the eje may repose upon it without the least distraction: the varions ingredionts being so balanced and regulated, that not one of them shall act prejudicially to the rest by any ondue proportion; but that each combine, to the utmost of its power, in such perfect onison and co-operation, as to condace towards but one end, and anuounce in its effect the one great controlling mind that directed and presided over it. This is so necessary, that even where the style of architecture is elaborate and intricate, it must still preserve a marked onity and consistency of purpose, for without it we may not be eaabled to see and embrace clearly the complication and web of the whole. In simplicity, a degree of variety and contrest mast be joined to $i t$, lest it should be too monotonons and betray a poverty of imagination ; variety also, ancomposed and withont some simplicity and conslatency in its parts, would withdrem the attention from it on accornt of the appearance of confonion.

Those ancient temples, which in their plan and general forms were parahelograms, and offored a most striking similarity and eniformity of parts, anggested to the apectator ideas of infinity, nothwithstanding their extreme regalarity. But the gratification which the mind receives from objeots, depends opon the nature of the ezercise they afford to the visual feculty; and circular forms, in consequence of bringing all the muscles that more the eye into play, caosing an equable share of labour, are foond to yield more delightfol sensations than those produced by objects bonnded only by straight lines. Now, hoowlerge of the effect of geometrical fgure was known to the Greeks; and we bave a fice instance of their appreciation of the cirole, in the Choragic monument of Lysicrates. In this rotuad tomple, as in many others, we may notice that the figures in succession in the bas-reliefs on the frieze, seem to the eje to have no limitation, bat as it advances and one portion appears, another disappears; $s 0$ that althongh the whole is most simple and uniform in itself, and may be easily embraced at a glance, yet at the same time it soems endless and infnite. This beautiful ides was imitated by the Romans, brt its elegance and grace was lost in vastness of dimensions; for grandeur emanated from them as beanty did from the Groeks, and proofs of their masterly
control over the arch and vault, which they were ever ambitions to display, remain to us in their Aqueducto, is their Pantheon, and Cantle of St. Angelo. So the classieal mind of Bramante, soariag and oxpanding iself in the contemplation of ofroles, in concelvlag a design for $8 t$. Peter's, suggeated" for the naves, an adaptation of the arrangeneat of the great archen in the avcient edifice called the Templo of Peace; and for the conjunction of the four nares, the constraction and form of the Pentheos:" thns oulting and harmonising in one stopendona atructure the propertions of two of the grandeet edillces of entiquity.

Simplicity is the leading charactaristio of Grecian architactere. The form of their temples was the simplest, although in its details the most elegant, and in its dimensions the grandent, that conld be concetvedgraciag the sites on which they were erected; for there seemed to exist amoag the architecte a sort of anxiety lest they should in the mallest degree disfigare nature. The orators and philosophers of the day beheld in them the image and refection of aincerity and truth; and the anpiriag colamas, no less than the gracefal superstracture, were channels for condocting minds habitually coaring, to the contemplation of supertataral beauty. At the glorions epoch of the Parthenon, the porticoes being the favourte places of resort, a boilding would scarcely have been tolerated that wes not stamped with that calm repose, that dignified simplicity, which moet ascimilated with the feeling* of the Athenians. Heace the sedate grandear of expreasion which breathed from their walls, which led the thoughts apward, and was eloquent not only with the authoritative voice of the senate, but with the storn wisdom yot mild tranquility of the deity to whom it was consecrated. The presiding goddess of Athens was the mase that aided them, the fonnt whence they drew their inapiss. tiom.

The Greeks prided themselves upon the invention and perfection of their colomss, and since they made them perform sach an important pert in their edifces, they took care to set off their contonrs and proportions to the beat possible adrentage. With what saccess they did 40 , wo have proofs in the impressions conveyed to as by some of the porticoes of their temples-an that of Minerva, where the utmost relief and effect are given to theme featares, by the majestic shade whish is fing inlo lts interoolomniations. Hero, it may be remarked, the cbiar 'oscuro is not broken up and mlate, bat the light and shade of the stractare preseats broad and simple masses.

The mont cherished objects which the scalptor conld commemorato on their temples were the deeds of conquerors nod heroes; but then there was demanded on his part a high command of talent, that anch things should be worthily represented; and that, by a soientific and beautifol execation, by force of expression and simplicity of character, they should be at the same time a powerfol auxiliary to the architecture. Viewing cculpture in the dags of Phidias, we cannot but be struck with its admirable harmony to the grand and simple oharacter of the temple. The. high embellishment and lmportance which it received from the introdace tion of sculptare, is particularly observable at that epooh; and it is oaly. by an attentlive examination of the bold and decided execution of the ancient relievi, so adapted in their effecta of chiar 'oscono to their elevated positions, that we can appreciate the excellency of the principles which regulated their introdection into the baildinge-principles often inculcated and taught by the philosophers, and fonnded ou a profound knowledge of' optics and perapective.

In the materials and means employed, as well ts in the forms they eelected, wo see how wisely they sought and seoured simplicity; they adopted just so much as the peculiar nature of ciroumstances prompted, and no more; they prodoced the greatest strength with the foweat mate-rials-the greatest effect with the simplest means; they brought out the most beantifal features into the strongent relief; they mingled the white cum dulci; the elongation of lines and the relation of spaces satistied the mathematician, - the delicacy of the curve delighted the poet; the naiformity and succession of parts, the huge masses of the surfaces, the loos unbroken continuation of the members, all teaded to produce sublimity and breadth of manner ; the ornamental portions softened the aspect, and prevented too great a degree of austerity: yet, in the eculpture there was no artilloial refinement,* no laborious minateness, bat it coatributed to the stateliness of the pile; and even when the Greeks thought it necessery, onder their glowing sky, to beighton the effect of the whole by the addi-
tion of pigmente, still ite moral grandear rome paramonat to all the brilliangy of oolona. Owing to the searohing and penetratiog light whioh shoa moued it, anything that was defoctive would be immedintely mani-fent-the betuties more strongly developed; to the atmost ingenuity of the artint was tazed to combine greatness with caution, effectivences with eoceomy : if the colouring, for instance, were over-warm and aot jodio cionaly applied, a glaring contrast might be prodaced; equal care was neceseary, aleo, lest it should be too cold, amidst the rariegated and laxu. riant ecenery by which It was eurrounded. On the same principle, nothing unnecessary or soperifuoss was to obtrade iteolf in the orpamental portions;-What took the lead in these were the sculptured figures, that represented varions actions, and gave the most animation to the marbleon the execation and arragement of which, matare consideration was to be beatowed, a conspicuous situation being given to the prineipal : to condede all, the building, by its pyramidal termination, was brought to an exqainite elimax.
This supremacy of grandenr over the deaire for the exhibition of orna-ment-this matery of aimplicity over overy inforior feeling, convincen ns of the high taste and refinement of the Greeks. They attempted, bat indeed were able, to achieve the sablime. They knew that art could ouly posseas the efilicient cause of the sublime, in proportion to the manifestation of akill and manly evergy. They knew that a departure from sieplicity would be a fatal blow to art: and bence it was that the legslature watched over its interests, and Pericles onforced apon the artiote the secencity of preserving in all their works a settled simplicity, es the prisoipal moarce of grandear. And there is in siaplicity of arebitectare, especially in that 00 deservedly called "Classic," an attraction which calls forth a dignified calmnese, yot a tenderneas of monl, and steals upon its sympathies as does the pore and nosophiscated matere of a beantifal child. Hence the dominion of the architecture of the Greeks over our feeliogo-for the evidence of what is truly good or benutiful, is reoognised by the soul as something most congeaial to it; and that nnity of design, that conformity of character, ia Grecian arohitecture, corresponds in its asture to that of a well-regulated mindto the healihy balance and proportionate development of all the powers that constitote a perfeot nature. Architectural works that bear not this atamp canoot satisfy. Sach are thoee where we see the imagination has gined an entiro ascendancy over reason, and where an overweening foedness for a redundanoy of ornament has been indulged in at the expeese and sacrifice of simplicity.

THE BRITISH MUSEUM.

No. I.
The opening of the new hall of the British Musenm in a fiting time for begianing a set of papers on ito contents in this Journal, in which we have very often given notices relating to it. The collections in the Britiah Meceam are more the result of the exertions of the pablic than of the governmeat, and onlens the exertions of the government be kept up by the voiee of the public they will be alackened. Great as is what has been already done, yet measored by what is wanted and what is to be done, it is but little. As the pablic get a better knowledge of the Maseum, and make a better use of it, $s 0$ they prepare themselves for the requirement of something more. We fear, howover, that the worth of the Museum is not Jef 20 fully felt 18 it ought to be; while we cannot but eay, that even in its moet trifling oses ite worth is great.

By some, the Museum is looked upon as a great plaything or playhouse for the people. Be it so; we shoold be willing to take the matter op that footing, for it is no menn thing to furnish pastime for a people. Among the chief doties of a governmeat, are to provide for the amosement of the people; and if men who are hard-worked in their several callinga, can have a day's pleasare in a Maseam, and can bave giveo to them new thoughts, which ahall fill their minda in many days of toil, this is a great thing. Discontent is one of the greatest evils which any government has to withstand, eved where bodily evil, hunger, and want are not felt. The deomy sway of the Independents broke down mostly from this cause; and the people hantily changed a good government for a bad one at the Reatoration, because they were deadened and disheariened by the want of their accustomed pleasures. The plaghouse, the bear-garden, and the fair
were cloced, the fiddler and the ballad-alinger were put down, bolidaye were forbidden, and although plenty reigned at home, and glory crowned our arms abroad, the people were sollen and unhappy. In times of want, workmen are ever open to be led astray by mob oralors and agitatorn, to whom, when in fall work, they will not listen. As it is with one, so it is with many; when the mind is heavy and the heart faints, the man himself gives way to a trifling sorrow, and sinks from bad to worme; whereas, were he bot upheld, he would overcome every hardship. More or less, the amme thing is to be seen at all timen, aod we feel sure that we are alwags doing good when we aro yielding pleanare to the old or to the young. Happy feelings are the mainspring of good doeds.

As it has been acknowledged by the greatest statesmen, that it is dosirable to find pastime for the people, so it abould be given asefolly. The bloody shows of gladiators, or the beastly games of the bear-garded or the prise-ring, will give pleasure to thoee who are culled onlightened Romang or ealightened Eaglishmen; the gambling cock or quall fight or horse rece may prove still more enticing, but no one good feeling is awakened or strengthoeed, and no bed one weakeaed or quelled. The lore of the good. the true, the great, and the beautifnl is that which should always be kept before the people, from their childhood to their death, in all outward forms and shspes. It should never be thought that edacation is the time of schooling in boyhood, but it should be remembered that in ite rigbtfol meaning of "bringing up" a man, it is being carried on at all timen, in all places, and by all means. The eye, the ear, the tonch, the taste, the smell are always on the watch learning something,-and if not good, they are learning evil. Thus hablte, which cannot be shakeo or undoce, are shaped slowly and anknown, and fetters are wolded which chain the mind in the doing of good or evil. If mankind are to be thoughtfol and careful in their deeds and thoughts, it is becoming thet in everything we stoald keep sight of goodaess, of trath, of beauty, and of greatness, for the Almighty maker of all has done this in everything, from the smallest boing, hardly seen by Ehrenberg ander the most powerfal microscope, w the great bult of the mastodon or the most dreaded beast which ever walked the earth. If mankind are not to be tanght to think, at least, we should take all means of giving them right habits.

Whatever may be the feeling as to the forms of worship to be taught in common achools, however moch quarrelling and bickering there may be about these-whereby the chlldren of England run the chance of loning their schooling altogether-there can ooly be one foeling as to the right and duty of the governmeat to look after the poblic bringing op of the people, by trajuing them to proper thoughte, wherever there may be the moans of doing so. No one, we believe, has ever thought otherwise than that the great mind of the Greeks, their love of freedom and of learning, was kept ap as much by their care for the beautiful in their buildinge and poblic works, an by any other means. Those lovely templea, those carvings which bave never yet been outdone; those ahapes, which seem already to have a soul, and want oaly breath to live, were bat the outward showing of what the minds of the people held within, of thoee great feelings of which even the lowest Athenian slave must have had his share.

If we are to have great pablic baildings and great architects, we mast have an enlightened people, a people who love art for its own sake. In Athens, lowly as were the dwellings, every public boilding was beantifal, and was so becauce no other dare be opened to them. Pablic buiddings are always those which are the best for abowing the skill and cunning of the builder, where there is the most money to be laid out, the beat place to be had, and the most care to be taken in keeping op what is once built. In Loadon, not to eay in England, so far from our public buildings being always handeome, they are ofted far from it; and what a siagle rich man would not bear nor ley ont his wealth opon, many thonsands of the people are made to bear. It is a mere chance whether Wred or Dance be the architect, whether he be Barry or Some. We should never see workhouses set ap for pablic buildings, and barns for charohen, if the people were brought ap to think rightly. The taste of a people may wander upon matters of detail or of style, but it is alvaye right to to what is great or beantifol. York Minster, St. Pani's, and Westminster Palace will alwaya be liked by the people, although they may never be able to give a reason for their liking.

It is acknowledged that we have made a great atop in wreaning the people from cockpits, bear-gardens, and prise-ights, that we have lessened their love for low and bloody aports, -and we feel a kind of pride that we have dode so moch. We may be no less proud that we have given them a greater love of gardens, paintings, and museuma, which, while we look upon only as a harmless change, must indeed work greatly upon the minds
of the people. The lesconing of drankenness and ldieness, the milder bearing of the people, the falliag off of streat Aghts, the greater cleanlinems and neatness, if they lead to better health, are of still greater worth, as they lead to better minds. If we teach a workman to like the maseum better than the alebouse, we teach bim something more; by awakening his thoughte as to what is only rare, we awaken his miod in his owa calliog, end the thlnking workman must be a better workman than the unthinking workman. There are, however, many callings in which the workman bas to deal with shape and coloar, and if his thoughts are in any way trained to see and feel what is beantiful, he has earned something which to him is of the highent worth.

That the people of England are not brought up to have a right feeling of the besutiful and great in works of art, is seen painfully, not only in our pablic buildings and in our ahowe of paintings, but also in our workshops. Whenever this has been looked into, there hae been but one answer by men of akill and knowledge, whether English or foreigners, and that is-that the English people and Eaglish workmen have less taste than those ahroad. This is the paln whereby carelessness of a natural and moral law is made known, and those who judge by the porse are punished in the purse. The price we pay for foroigu silke, satios, ribbands, lace, clocks, watches, castings, jewellery, paper hangings, made flowers, and other wares bought of the Freach, Flemings, Swiss, Italians, and Prussians is so great, st to be wonder to those who reckon it up, and bethink themselves that Eugland in the great loom and workshop for the world, the heart of trade, and the mistreas of every craft whereby wealth can be made. We pay down in hard mosey a heavy floc for our want of leara. ing; bat this is not the only loss to which we are open, for we farther lose the supply of foreigu markets, which, if we tried in the right way, we could master, as wo do all things that we once try. This is a money rea300, and a weighty one for a love of art.

We cannot foster the love of the beantifal and great in art, withont fostering the love of the trine and the good. It does not follow that a painting, a carving, or a buildlag shall be all truth and nothing more, but there must be something which shall strike the mind as true; and thougb with this it will take in much whlch is antrue or false, yet without some troth is mired up, it will not take in any sbare of antruth. In a building, this seeming of troth may belong to the look, as, if a prisoo were built as a playhouse it would not be liked, neither would a playhouse if built as a church; so, too, if a building were so made, that It seemed unsteady or toppling, there would be a want of truth about it which would atrike any man. In a play or in a painting, it is acknowledged that there should be this truthfulneas, which when once given in the leading parts, the looker-on is willing to take the atage or the canves as the reai scene of the events, and to overlook the want of colidity in the colours, or the smallness of the drawing-nay, to go in despite of his own knowledge that the player is Jack Robinson, and believe bim to be Alerander or Henry the Fifth. It is, perhaps, a failing of mankind, that a small share of truth is often enongh for them, and thet having that, they do not look further; but as in Works of art they are trained to look for the true, so is the love of trath ppheld; and the eyes of the looker.on being opened, and his mind awalkened, it cannot be otherwise than that he should get a greater love of truth, and that it should follow him in hls life.

The truthful in art is its groondwork, and carelessoess as to this is a besetting sin of our artists, and therefore they do not carry the people nlong with them. The painter makes a show of bright colour, and thinks se does enough ; the arohitect puts in good stone and good mortar, and then prides himself that he has doae all. "To kelon kai to prepos,"-the bandsome and the fitting-was the good rule of the Greeks in art; so likewise did they say "good and beantiful"-and, indeed, in a fow words, they teach the whole anm of art. With a better trained people, we should have better drilled artists, for these latter would no longer dare to set themselves againat all right laws, and waste their own powers and our means. The new school of art most be made from without, and not from within; it mast, as with the Greake, not depend upon the fow of the artiats, but upon the firm will of the many. Although Pericles took the lead, the Athenians never forsook the path in which he had led them, and the whole commonwealuh took its way onward. On the other land, siogle lovers of the arts die, and the arts dio with them. The wealth of the Philips gifted Spain with paiatings, but not with painters; Charles the First died before he had awakened a love for art in England; but if Lewis of Bavaria dies, the sohool of Munich will live in deaplte of churlish foilowers. Lewis has not merely bonght paintings, but he has raised up a school of artiats, who are already sought throaghout Europe.

Where the love of the beantiful It atrengthened, the mind Iferwe fo strengthened, for it thkes a bealthy cotion jasteed of an uahealthy ove. Disoontent is one of the worst signs of a low otate of being, as to seen is Ireland, where what is good and useful is altogother loot alght of it brooding over fanciful ills. A healthy mind is ever ready to draw the most good from everything: an unhealithy one to dran the most evil. So in criticism this may be seen; while the older, higher, and better tanght critic is ready to find whatever is good, the younger add worse trained critic thinks be does beet if he can bit opon a blot-which moreover he is sure to be ahle to do in any one of man's works. Theee mast always be faulty from their very beginning: we know this, and it needs small skill to show it; but every one is not well enough trained to fiod a beanty and to feel it. How often is it fornd that an old and great painter will gind a beauty in the work of a younger man, for which the brethren of the latter give him no praise, but the rather ran bim down for his falte. The greater our knowledge, the greater our pleasures; it ls oot, as is thought by some, that the rognd of onr pleasares is hemmed is by our greater knowledge, but that the more we know, the bettor our foelloge are trained, the greater love do we get for what is good and right, and the leas we cars for what is bad and wroag.

The kind of achoollog which has been most used by enlightened people in olden times and in new times, has been sucb te to open the minds of joutb to the great principles we have aamed. The teachlog of Hower among the Greeks and Romans, and of the Classica among ourselves, better answers to a liberal, free, and easy way of training, than does the drier way of mathematical study, which there are many people who now uphold. In schooling, what is tanght is less to be looked at than how the mind is trained, for the man of hereafter will not be made by a funltiese knowledge of English grammar or an exact and correct way of reckoning, bat by those powers of mind which will onable him 10 do his part among bis fellow men. Public training uhould be in agreement with that of the schoolo-the man should be able to follow op what he began as achild; or if, as a child, his training has been careless, there is the more need that it should afterwarda be in a right way.

We have thought it right to atand up for the British Museum, as a achool for the people, inasmuch as the matter is littie underatood, and many able men are vers careless about what 80 far from being a trifie is a thing of very great earnest. In whatever light we look at the matter, if we choose to think, we are alway brought back to the aame point-that the pablic truining of the people in the right way la of the highest need, and that a museum, well laid out, is among the best achoole and best means of doing this. Indeed, we have no fear in saying that every pound laid out in the British Museum has been already brought back by what we have earned in our workshops, to say nothing of the very great good which is doae to the minds of its bundreds of thousands of yearly visitors.

It is pleasing to see that the part of the Museum giren to olden art is now large and well provided; but it is not laid ont as if those at the bead of it had a clear sight of what it ought to be. To gather bit by bit works of art here and there, is not enough for any end of public teaching. The more the Museam is made useful, the more lts worth will be felt, aod the more will be done to make it gr-ater and better. Although the Masemm holds the works of many people, it neither gives any full view of the works of one people, nor of the way in which art has grown and been followed up. It la wanting as a whole, and the feeling made is that it ia a gathering of bits of wreck, worthless to their former ownern, and of which the now owners do not know how to make nse. This is not to be said of all to the same length; but it is to be said, more or lens.

Although the Greek rooms hold the Phigaleian and Elgin marbles, and have many later works of worth, they give, even to the scholar, but a amall knowledge of what Greece and Greek art are; they rather want the book to hefp them out, instead of helping the book out. There is ad earcest, it is true, of the will to do and of what may be done; but we want a great deal more. When a working mat has seen all the marbles of the Parthenon, he has an better thought of the Greeks than he had before. The Egyptian rooms, which are much better off, will teach him much more as to the Egypilans. The letting in of some casts from the Purtheson, of the casts from the Eging marbles, and of the models of the Partheson, have opened the way for more. We would have the Greek roome laid out with casts from other museums of the works which se missing here; there should be models of soch temples as can anfely be laid down; likewise models of tombs. In the Greek rooms we would place the vases, bronses, and coins. Why these are put away we do not uoderstand.

, on the
it in cons.
lech earry
of whole

- alaglo
ned pain
a to dix
ed an to
lan it in
Horm is

Fon L.
matedt :
renance
Dadon:
riale for
Ig it to.
l, which
r by the
the case
itecture
nd other
recupied -
, and by seem to railding: 5 themon to be seing all nothing ines the
yard to
we been
tance-
enf or
be sup.
teation.
orth of
, on the chapter
in madd:
linge of
a rased
ia, ace., e Great rits the On this ©" This which mentst architiee
of t
bearl
and.
they
bett
thou'
and '
worl
to di
to $\begin{aligned} \\ \end{aligned}$
is of
T1
the I
publ
Whe
of s
the
abro
law'
the 1
clocl
othe
siand
the
mad
ing 1
lose
500
font
paid
thell
trut
this
epl
topi
man
this
is an
dral
Jad
is,
enol
wot
opa
of
beat
alon
eld
prid
bad
Jike
havi
ther
mea
will
art
lead
the
love
Phi
Pir
of 1
folk
a 4

Models would show the great baildings of the Greeks, from which would be coen the originals, which have been so mach followed in late times. To the lower clasves of builders, to masons, and to workmen, this would be of much use. We are sure tbat the model of the Parthenon has already done a great deal of good in sbowing to the people how a public building of this kind whe treatod at Athens. The peristyle, and the marble carvingi, go far beyond what we are here pleased to call Greek architecture. With a better knowledge, of sach things we should not be wayleid with brick barns atuck on to a small portico, or with porticon, so called by their makers, from being mede witb a few naked columns which but for the capitale dare not be called Greek or anything alce. If the growth of Greek boilding in Rngland be desirable, nothing is more likely to further it than a knowledge of it in its beat shape.

The bronzes and a fow more carts would enable us to follow Greek art from ite beginning, and this is most avefol. In the Eginetan marbles we have rode and grim drawinga of men; in the Phidian we have gods in the shape of men. We can see how art began, and how far nature truthfally followed will lead us. The Greek carver learned from the living man, the carrer of this day from a cast, the pattern drawer or bronze founder is tanght in a school of deagn from a drawing of a cats, in which life has bean $s o$ wiredrawn that it has flattered away. Going into the Egyptian room we find in the best figures a carefol anatomy in parts, bat that the carvers, having stopped in that path in which the Greeks went on, never reached the power of the latter.

The works of the failing time of art teach likewise, and we can track the footateps of failure from their first faint marking. When the carver set up the great works of old as his model he began to waver, and though he might bring forth a great work, yet he led those who followed him off the right track ; to that in the end nature was forgotten. Whatever may be said, the living form is our nearest and surest inspiration, it gives us a nearer insight into the workinge of the divine power, and we cannot therefore in art get better teaching.

The vases, showing how in the houschold, and in those things most brittle and most worthleas, the principles of art were followed by the Greeks, thould atand in the neighbourhood of the lasting remains of the Parthenon. It is by seeing the Greek in amall thinga as well as in great, that we are led to acknowledge the depth of their feeling for art and learning, apheld at a time when the printing mechine was not, before the telegraph overcame time, or the rilway leasened apace. The tchooling of the wealthiest Athenian was behind that given to a founding in an English workhouse; bat how much is Bugland behind what Athens whi in art 1

The coins, which are now hidden, and about which it may be said no one knows anything, ahould be drawn forth. They will be as safe under the public watch, as where they now are.

The Bgyptian rooms, and even the Btrascan, are in a better state than the Greek, and we have therefore not so mach to say about them; but in the Bgyptikn rooms, models might well be placed of the pyramida, temples, obelisk, tombs, sphinxes, and great works. Now, we only see the little works of the Bgyptians, their akill in handicraft; but we shonid have some know. ledge of thowe great works, which have been the wonder of no many agen.

The Roman rooms give us a very poor knowledge of a people who, by their writinga, are better known to un, and who have this cleim-that they peopled this ishand before un, and that our Buglish forefathers fonght with them. A very great deal must be a, ne before the Roman rooms will be what they ought. Among other weute we may name copies of the frescoes from Pompeii.
The Welsh or British antiquities should be pat in order, so as to show ua the atate of the ravages who filled the ioland before the Eng lish overcame them. The few modela of cromlechs were a nuefal eddition, but all such things should be modelled, and the works of the Irish and of the Welch in Gaul should be shown.

The Raglich antiquities cannot begin with any works of our forefathers in Scotlend, but a collection shonld be formed which shonld inclade tombs, brasees, armour, weapona, coins, sealh, models of buildinga, books, paintings, mod whatever are callod medimal anliquitien.

RAILWAY LIFT BRDGGR.

(THith an Engraving, Plate XIII.)

J. U. Rastrice, Req., Enginerg.

This Bridge is in course of conntruction over the Surrey Canal, on the Brighton branch railway from New Cross to the river Thames; it is constracted of timber, consisting of fonr inverted trussed girders, which carry the rails, the ends of the girders bear npon aille supported by piling of whole timbers, 12×12 inches.
The plafform is lifted bodily by six wire ropes, which pase over single grooved palleya, supported by iron atandarda, and then deacend and pass round doubly-grooved polleys; the ends of the ropes are atteched to six iron balance-weighte, of two tons each. The lower palleyt are keyed on to iron sbafts, which are turned by the wheel gear at the end, when it is deaired to raise the Bridge.
The clear water-way in 21 feet, and the head-way, when the platform is lifted, 12 feet; the platform in 31 feet long by 23 feet wide.

GBRMAN ARCHITECTURAL WORES.

1. Briträge sur Kerntwise der Backstein-Architectur Italioms. Von L. Ruman. Berlin: Hegmann. London: Pranz Thimm.
2. Dia Bauncerke in der Lombardei. Von Panepmich Ostry. Darmatadt : Leake. London: Franz Thimm.
3. Kmutwerke und Geräthsehaften der Mittelalters wad der Renaisamee Von E. Becicir und J. von Hajnel. Prankfurt: Schmerber. London : Franz Thimm.
We may put these three publications together as affording materials for conuiderably enlarging the aphere of architectaral stady, and directing it towards edifices and works of art beionging to the medirval period, which have hitherto been scarcely noticed, much leat been illattrated, either by the pencil or by historical comment and description. This is especially the case with regard to the firat work on the list, viz. : Range's "Brick Architectare of Italy," though some of the examples are from Bologna, Forrara, and other places usually visited by travellers, artista, and atudents. Yet, pro-occapied by the fame of the remains of classical architecture on the one hand, and by that of the modern standards of the art on the other, sach vinitors seem to have no eyes except for the Pantheon and St. Peter's, and for the buildinga of Sansorino, Palladio, and other aceredited mastern. Surrendering themselves up entirely to thoir "Guide-book," they suffer their attention to be absorbed by, and their inquiry limited to, its directions. Next to soeing all that is there pointed ont, it seems to be with them a merit to see nothing elco-to search for nothing farther. They do not even give themselves the chance of atambling upon anything which their parblind and one-eyed "Guide" is unable to discern for them.
Even Woods himself is exceedingly nusatiofactory indeed in regerd to some of the pleces and buildings he visited, for his virits seem to have been made en cowrier, and his notices of them-Ferrara and Feonza, for instanceare more provokingly tantalizing than complete rilence would have been; or if they do not tantalize, it in because they mislead, by learing it to be supposed that they really contain nothing at all worth an architect's attention. He does not even so mnch as hint at Brick Archltectare in the North of Italy as constituting a pecoliar style of ornamentation. Something, on the contrary, although in itself but very little, may be found in the 29th chapter of Hope's "Historical Esaay of Architectare," in a note to which it is said: "In the plains of Lombardy, where stone is rare, clay has in baildinge of importance, been monlded into forms so exquisite as to have been rased into a material of value and dignity. In the ancient charches of Paria, sce, it presents itself in all the delicate tracery of the middle ages ; in the Great Horpital,* Campo Santo, and Castiglione Palece, at Milan, it exhibita the arabesque, medalions, and scroll-work of the cinque-cento atyle. On this side the Alpa, clay has never received forms quite so elaborate, \&c. Ac." This alone sufficiently recommends, or ought to recommend, Range's work, which

[^30]at fur at we are aware, it the fint pablieation that prosents an with epeolmens of briekwork at it was formorly practiced in Itely.

Did we previonaly donbt $i t$, we should be convinced by theae axamplea that brickwork, combined with moulded bricks and tarre-cotte arnementa, in uasceptible of a bigh degree of embellishment, and readily attorda great diveralty of combinations. Bat we are prejudiced againat it by the alovenly coerveness of our modern bricks, which wro only meed for ordinery buildings, or slee intended to be concealed by ashler facing. Thanks to acts of parlinmant, which have preacribed their size and ahape, oura art, at Hope obearves, the coarseat and moat nasightly bricke nsed in any country; yet wby parlizment thould interfere with the fashion of bricks, more than with any other fabion, it pozalen os to make ont. Such interference has certainly been to mischiovons, that unlous the interest now affected for the advancement of art be all make-balieve and sham, such injurious restriotions ought at once to be repealed.

The froutisplece, or engisved title-page, of Range's work exhibita the portal of the ohureh of Ste. Caterina at Bologna, a composition of auch remarkeble elegance and deliceoy, that it in antoniohing it should have eecaped the notice of those who profeasedly go in quent of architectaral itudies. The next plate gives of two admirably profled cornices at Ferrars and Feonrs, aleo the part of a window and highly eariched string-course from a hoase at the latter-plece; somewhat similar decoration to which, we are informed by the anthor, has been adopted in the rentoration of the Eloaterkirche at Berlin. A house at Bologna hat fornished the subject of the two following plates, and although it cannot be affirmed that the baildiag itsolf in by any meant a model, the window and some of the other detaila alpord valuable bints. It is to be regretted, however, that the principel coraicione and its frieso are mot shown at large like some of the other perts, for if we may juige hy what ean be mede out in the parnpective view of the building, they are of perticularly rioh and elaborace deaign. The other pletes show a variety of otber cornices, wheroin the mere arrangement of bricke of nearly the unal shape in sude to produce very bold and effective mondiags for sueh purpose. Hardly need we add that Range's work deserres to meet with ertentive enconragement in this country, at one of real prectical atility, and calcalated to improve the character of brick bnilding.

Osten's work, on the contrary, is more of an archsological and historical nature, in which reapeet it in a highly welcome contribution to the history of architecture in Lombardy and the North of Italy, from the 7th to the 14th century. It promises to so far towards Alling up what is now an histos in the architect's library,-fowards serving an a bridge seroas the chanm which mparates the clasic from the medisoval period of the art. Lombardic architecture has of late yoars obtaiaed attention; jet, owing to the want of adequate nolices and illoutrations, those who have spoken of it have not been able to enter into the cubject 50 fully an they othervise might and would have done. We do not know whether Osten inteads to give only unedited monameata, but even chould any that have bean before repreaented be here introduced, thay will be more atisfactorily explined than hitherto. The prineipal monument contained in the two firat Lifiruagen of the work ere the cathedral of 8. Eratio, at Cacale, Monteferrato; the beptiatery of 8 . Pietro, at Asti, and the ohurch of S. Andrea, at Fercellf, of nome of which is any mention at all made by eithor Seroux d'Agincourt, or Wiebeking, Hode, or Woods. Both the charehes are intereating, that at Vercelli more eapecially, it boing, we are told, the work of an Buglith architect, named Brigintbe -at least one whom the founder, Cardinal Gule Bicehieri, brought over from England, whers that prelato bad reaided for several years. The edifice is further remerkable for hating been complated within the short apace of about two yean, it being begun in 1219, and Anished, together with the bnildinge of the adjoining convent, in 1222. It in accordingly uniform in idea, though it at the same time exhibits the comhination of two difterent atylen, for while the exterior is decidedly Lombardic, and the window are very small semicircular-hemded openinge, the pillars, archen, and varlting of the nave are expreasly in the Pointed atyle, and some of the arches are unneually acute. The general dimentions of the plan are abont 223 by 108 Englinh feet, and 131 acrost the transept. The other church, viz : that at Catale, whiah was begro in 741, by King Lintprond, and consecrated at a cathedral in 1107, by Pope Paschal IL., forme externally a parallelogram of 170 faet by 104 ; but although the external form in so simple, the lateral plan ie vory remarkable, the church iteelf, notwithyanding ita moderate dimenaione, boing divided into five compartmente or ainee, and preceded by an
atriom or Galilee; of which Iatter two soctions are given, bat mot oven one, unluckily, of the body of the church itecf. The baptistery at Anti is a polypor of 84 siden-aceordingly may be cleseed with rotondes, It is 53 feet in ite external, and 46 in its internal, diameter, and 40 high to the anmmit in the centre of the plan; although to the edge of the sloping hase-to roof over the amrounding aiale, or whatever else it may be called, the beight is only 17 feet. Strikingly piquant, the architectural character of the structure artsea almont entirals out of plan, and ite consecutive forms, independently of, and in this instance quite without, decoration; wherefore, were saibe a term current among arehitecta, we should apply it to this building at a very approprinte epithet for it, $-\infty$ se that goet fer towarde expreacing a prominent sathekic quality in it. The edifice itself, indeed, helong to a clase bow eztinct; novertholesy, idean available for other purposen than the origiol one, may be derived from it. Were our architects occanionally to tarn to auch studies as thil examplo at Asti, ad the Abbot's Barn at Glastonbary, they would not give is anch tantastic monatrosities the they now frequently do when called upon to denign buildings for industrial of economical parposes, for which a medisval style is desidersted.

The third publication on our lint, is of quite a difecent character from the other two, it being devoted to specimens of furniture and ardicien of evth, both of the middie-age period, and that of the Cinque-cento and Remaimance. Mont tantefully ereouted both an to drawing and coloaring, it will form a very suitable companion worls to H. Bhar's "Encyclopredis of Ornament," with which it agrees alco in nise,-at leant the difference of aiza it 20 very slight, that the two booke may stand beaide each other on the atase abolf. To many of our readers this, we preanme, will be suficient information as 80 the general nature and character of this collection of "Knnatwerke." Have ing an yet ouly the first heft or pert before os, we eannot nay which elnet of subjects will predominate, bat the ipecimens themsolves, salected from pablic and private collections at Vienna, Beriin, Dresden, Gotha, Caven, Dersstadt, and other plece in Germany, will be now to this country, apd will extend onr acquaintace with mediseval art and taste. That the hatter reproncben the taste of our modern fanhionable peendo-medirevaliem in furniture, is tolerably evident from an oak cabinet here represented, which unitee extreme simplicity of general form with elaborate ornamental denign. If wo compare this with modern productions calling themselven deaign for "Oothic furniture"-and we mey mention those of Heidelof; both becanse he is a German artiat of considerable repete, and because some of them hure been not only thown, but extolled in the Art.Union,-the latter appear traly coarse and berbarons extravagancles, devoid of a aingio priaciple of either design or compocition. To may the trath, some of Herr Heidelor's chairs ars $t 0$ preposterously absurd, that their clamaineat, inconvenience, and naconfortablencen, if not their uglinea, must deter any one from adopting them. Neither do we may that even suoh a specimen of furaiture as the cabinet ebove-mentioned, is now suitable at an exprest model for n ; for even the choieest and most genuine religues of the kind require considerable modites. tion, and onght to be regarded not a patterna, bat at atudiet; and as a collection of such studies, these "Knatowerke and Gerithechaften" promise to beoome a most valuable addition to the information we already pones. too scanty, perhapa, in itsolf-relative to " incwotidel art" during the mideria 4808.

OF LOGARITHMS.

By Ourvez Brant.

Sra-Having tnown for year the readisens with which you pabligh any thing intersating in art or acience, even when it in not in striet aceoriance with the arowed objecta of yoar eacallent Jonral, I take the liberty of eendiag you a fow remariza on the cometrection of logerithemb. Indeed, I know of no other periodical open to mathematical commenications, perticelarly when the arbjects require woodertin to illastrate, or symbolical lan. grage to iaveatigate.

Logarithms in as powerful an agent in calcalation at stam in is motianics; with this trath before un, it in strange that fow know their proper no or how they are computed, -and fowrar atill, from the great laboar atsemily the operations by any known method, attempt the calculation of themems important numbers. Since the dayt of Napier and Bricsa, logarithmotectay, in a practical point of view, has received but little improvement, whil logarithmic formuls have been cultivated with great ameeeme, and advan. tageonaly employed to abridge many analytion inquiries in dirireret parta of mathematica. However, it is alootrue, that rome analyate heve bestorred
moch time and laboar in saurch of a dmple and direct mode of calenatating logatithes, and though tholly unsuccestol, or very pearly so, as reapect the ostensible object of the inquiry, they have been rewarded by the dis. covery of those interenting and momentous formule which conatitnte what in at present termed "the Theory of Logarithms." It in also worshy of remart, that Brigst, Halley, Sharp, Vlacq, and othern, who brought the doctrine ef logarithms to perfection, were not averne to arithmetical calcnlations; bat our modern mathematiciant depend by far too much on parely algebrical expreasions, foreign'translations, and mere hocus poeus operstions on operatical symbols.
In an inquiry on logarithms, it is usual to put $N=$ any given nusuber, $a=$ the base of any syitem, and $M=$ the modulise of the syatem. Sobotitoting $1+n$ for N, sec., we have
$\log (1+n)=M\left(n-\frac{1}{1} n^{2}+\frac{1}{1} n^{2}-\frac{1}{4} n^{4}+\frac{1}{4} n^{5}-\right.$, dec, for the fun. demental expression, from which several other formule are derived, bitherto med in the compatation of logarithms. But the above series is only usefol when n is a very small fraction; while the majority of those deduced from it, are only avilable in the press of determining logarithm: from the combinations of others. The valbe of M , in the above series, cont Mr. Briges 54 saccessive extractions of the equare root, and 54 multiplications; and although many ingenious contrivances have been devised to abridge the labour of these extractions, the process is at best very tedions.
Lagrange converted the above series into

$$
\text { loge } m=r M\left\{\left(m^{2} f-1\right)-\frac{\left(m^{2}-1\right)^{2}}{2}+\frac{\left(m^{\frac{1}{2}}-1\right)^{3}}{3}-d c c\right\}
$$

 be rendered in convergent at we plane, and therefore the value of r can be © ampred, that the logarthm of any anmber, n, can be determined to a Himited ertent, by uging only the firat term of the serien, vis. from the equation-

$$
\log m=r M\left(m^{\frac{1}{2}}-1\right) .
$$

This method, undoubtedly, is alway applicable to the direot compatation of a logarithm; yet it is the stane in effect as that proposed by Briget, and is equally laborious, on aeconnt of the great number of extractione generally required.

It in, perhapa, nanecessary to divell at any great length on the dinicultien attending the compration of logerithms by a direet process, independently of other logarithms; however, we cannot conclude these remarks withort giving a remarkable exprestion, deduced by Profencor Wallece, of Ediahurgh. The form is thit-

$$
\log s=\frac{s^{i}}{x^{\frac{1}{n}}} \cdot \frac{n\left(s^{2}-1\right)}{m\left(b^{2}-1\right)} ;
$$

is which and and ane numbert choen at pleanre; x, always some ralue betreen 0 and 1 ; and b, the given base of the system. Tbis expression leaves the base anrestricted, involves no infinite quantity, and is anid by some to be "" of great analytical elegance;"-yet, it is purely algebraical, and as to it practical utility in the actnal determination of a logarithm, it is just y much nat as any other intelligible hieroglyphics.

Perhape you will allow me to etate a fact, which you have teated that I have discovered a method by which the logarithm of any pumber, to almont any extent, may be calculated, fndependently of other logarithma, in a few mioutes. Mathematicians and the curions will, I heve no doubt, be obliged to you for pablisbing the following reanlte. It is well known that when the dinmeter of a circle is ane, the circumference is

$3 \cdot 14159265358979323846264338327950288419716939937511$,

to 50 pieces of decimals. Now, I find the logurthm of this namber to be
49714987269413385435126888829089887365167832438044 , which in true to 50 placel. For the information of the general reader, it mey be necesaary to meation, that the logarithm of a number consiating of 50 many pinces of ligurea, has not been before compted to anything near this extent; for, by any of the known methoda, such a calculetion is almost iapomita. Proem the above realt, the logarithm of the area of a cirele, whea the diameter is walty, mey be readily deduced, and is found to be
[-89508988136617146392379049884191282011529856145642; correct to the lat figure.

[^31]What equil facility, we obtain the logarithm of the contents of a ephere, when the diameter in malty, to be

1-71899862231049022184250149021129053768335957872764. $\mathbf{M}=-4342944819032518276511289189166050822943970058036666$. July, 1847.

Ohyer Byene.

WARNER'S LONG RANGE.

For the following calculations of the dimensions of the balloons which would be required for the purposes of Mr. Waraer's Long Renge, we are indebted to the courteay of Siz Howard Dovelas, whose scientific researches have so greatly tended to disabuse the pablle mind of errors respectiog the resuscitation of an old project for aeronantic warfare.
It has been already explained that Mr. Warner's apparatus conniste of a balloon, from which, when it has attained a proper altitude and position, heavy shot or shells are to be let fall, being detached from the car by eelfacting mechenism : these misailes derive their deatractive effecte from the velocity acquired by the aetion of gravity during their dencent, or from the disruptive force of an explosive composition contained in them.

Fint of all, let it be required to determine the greatent pondble velocity which the shote will sequire.
Falling bodies are acted on by two vertical forces during their leseentthe accelerating force of gravity, and the retarding force of the resintance of the air. The former of these forces is conatant at all velocities; the latter increases very rapidly with the relocity, and may be asaemed to vary as the vquare of it. Coneequently, the resistance to the progreas of the balle becomes greater and greater, till at last it just connterbalances the action of gravity : in this stage of the descent, the solocity is anid to have sequired is: "trerminal value," beyoud which further acceleration is imposaible. When once, therefore, afllige bodyhes eoquired its termiand velocity, it is mo longer secelerated, bat continuen ite deecent with preeisely the came oniform velocity (nuless new forcen are brought into operation), till it reach the earth.

Now it eppears from numerous experimente, that the terminal velocity of a 12 lb . shot, fillod with lead, (that is, the greateat vertical velocity which the shot can acquire by descept) is 419.6 feet in a second : and to sequire such a velocity the ball must fall from height of not leas than $2749 \cdot 2$ feet. These roault may be safely relied on, as they express the mean of a vest number of experimentt. The terminal velocities of solid shot of varioun sizee differ considerably. As the solid contents of apheres rary as the cubes of their radij, and their aurfaces only at the aquares of their radii, it follows that the lerger the shot the beavier will it be in proportion to the sarface exponed to the air's resiatance, and therefore the greater will be the terminal velocity For ahells fillod mith an explosive composition the terminal velocity is leas than for solid shelis of eqnal size, the former being lighter is proporsion to the sarfece orposed to the resistanee of the air:

If the resistance be taken to vary as the aurface and the square of the velocity coojointly (the sarface varying as the sqnaro, and the meight as the cube, of the radiun), it may be easily shown that the terminal velocity varies as the root of the radius. Heace, $v=178 \checkmark \mathbb{d}$ is a general expression for the terminal velocity of a ball of d diameter, the conntant 178 being determined by numerous experiments.

The doctrine of terminal zelocitice is beautifully illustrated in the descent of the parachate, which, after it has altained a certain velocity, will, if properly constructed, continue to descend uniformly, without any further acceleration. Another admirable illaatration ia afforded by falling rain, which, unless retarded by the air, would be so moch socelerated as to deatroy vegetation.

The idee of defence of fortifed pleces by "vertical Are"-_that is, by shot discharged so as to fall nearly vertically on the heads of the be-siegers-wras promulgated by the celebrated mathematician, M. Camot, who, however, totally overlooked the resistance of the air, and anppoed the shot to describe parabolas. In a Replye to his theories, it was ahown theoretically, that the rolardation of shat descending vertically wonld rendor them all bat inoperative; and the theory was confirmed by actnal experiments, andertaken by the anthor for the eapecial purpose of testing its aecuracy. The following extract details the matare and results of these experiments:-

[^32]"A cohtorn mortar was phaced 100 yards trom six new deal targeta hid on the ground, and two new wadmill tilts spread out near them, to catimate by the imprestion made on them the force with which the balls would fall.
The firit round was with the usal tin case, containing 33 four ounce-ballo, with a charge of one ounce of powder, elevation 45°. The case went bodily about 180 yurds without breaking.

Loose balls were then put in over a wooden bottom. After a number of sounda with the above charge and elevation, with differont numbers of fouronnce balle, it was acertained that the cohiorn would throw 12 of them 100 yards, and that the spread wa, on an average, abont 10 or 12 yards. It was not very easy to hit the targets and cloths, although they covered a surface of 774 square feet; but, in one instance, 22 bells left their mark. The indentation on the aurface of the deal was no small that it could not well be menaured-it certainly was not more than of of an inch deap. A ball thrown with force from the hand appeared to make an equal imprenion. Those which struck the wadmill till did not penetrate, but merely indented the ground underneath. The penetration of the balls into the ground (which was of the softent dature of meadow) wac, on an average, 2 liches; bat the balle throwa by band did not penetrate 10 fur.
The mortar was then elevated to 75°, and with two ounces of powder and 42 balle made nearly the range as before; bat the epread was increaced to aboat 40 yards, so that it wat difficalt to hit the surfice aimed ats. Sereral balls did, howerer, at length fall on the targeta and wadmill tilta. The imprension on the former was sometbing increased, but still no trisling as hardly to be meneured; the balls did not go through the cloth, and the peanetration on the meadow was only incresed to aboat three inches."
Secondly; to determine the dimensions of the belloons necemary to ruice the weighte proposed by Mr. Warner.
By a well-known principle of pnemanatea, tha weight of the balloon and its appendages, when fonting in the air in equilibrium, to equal to the weight of the air dirpleced. Now the demsity of hydrogen gas when properod in lerge quantitiles for the porpose of infation in about -2 , or a cubic foot weighe 2 oz . In ordar to ascertain the dencity of the air, the dimination of barometrie preanare due to the altitude munt be taken into account; and if the balloon be mopposed to bava attained the average allitade of 2500 feet, the demity of the air may be taken at 1•09, or a eabic foot of air wedghe $1 \cdot 09 \mathrm{oz}$.
Anume the belloon to be spiterical, mend call ita rediar n Its solid content $-4 \mathrm{t}^{2}=4 \cdot 1897 \times \mathrm{r}^{2}$.
The weight of that ralume of gas $=-2 \times 4 \cdot 1887 \mathrm{x}$ r.
The weight of that volume of air $=1.09 \times 4 \cdot 1887 \times y^{2}$.
The weight of 100 sbells of 500 lb . eech $=800,000 \mathrm{oz}$
The weight of ailk, netting, car, eo., taken for an appsorimate determinttion of the nize of the balloon, $=78,931$ orn
Now, as has boen stated, the total weight raisod is the same as that of a rolume of alr equal to the capecity of the balloon, te. Hence, neglecting the apace occupied by the ear and appendages, we bave the equation
$1 \cdot 09 \times 4 \cdot 1887 r^{3}=-2 \times 4 \cdot 1887 r^{2}+800,000+73,981$.
Whence may be obtained the following resulta:-

$$
\begin{aligned}
4 \cdot 1887 r^{3} & =981,945 \text { (volume) } \\
r & =\{61 \cdot 602 \text { (radius) } \\
4+r^{3} & =47,686 \text { (smffee) }
\end{aligned}
$$

In other wordh, the capeaity of the balloon and the quantity of gas which would be required to infate it would be nearly one million cubic fort, the quantity of rilk required in its construction would be forty-eight thowsand soguare foet, and ite diameter (doable the radius) one hundred and thoenty. theree flet.
If instead of accertaining the dimenaions of the balloon at an alititude of 2500 feet, its dimenaions necemery for riking the given welght jurt off the ground be calculated, the results will not be matarinily altered. In this case, the denaity of the air must be taken at 1.2 (instend $\alpha 1.09$), and the diameter of the balloon will be found to be 119 feet instead of 123 feet. The following table shows the dimensions of the balloon neceasary for sustaining the several specitied loads, and the cost of the silk required in its construction.

Number und welght of shelle or shot.	Bequired diameter of balloon in feet	Ouble feet of gus content.	8arface of bellicon in equare yards.	$\begin{aligned} & \text { Quanitity of } \\ & \text { manterfal } \\ & \text { yard whde. } \end{aligned}$	Cost of ailik alope.
No. Wetsht.					α
20 of 2 slb . $\}$	380	18,816	380	570	300
50 of 10 lb.$\}$	30	18,816	380	070	300
40 of 25 lb.$\}$	40.4	33,510	569	854	455
100 of 10 lb.$\}$	40.4	33,010	80	884	405
60 of 25 lb . ..	45.8	50,89 8	731	1097	584
80 of 25 lb . ..	80.1	65,440	876	1814	700
100 of 25 lb . ..	53-1	77,981	1010	1515	812
100 of $500 \mathrm{lb} . .$.	123	974,349	5298	7947	3,200

 No that a correipondint lecrease muat be made.

WIOKET-GATE FOR CANAL LOCKS.

Inoonted by F. C. Lowfhorp, Beq., C.E., of Penneglocanda, Unifed States. (Reported in the Franklin Jowrmal.)

The object of the apperatus is to draw water rapidly from a highor lovel to a lower ; for example, to fll or empty lock cbambers, or to draw offe a canal level, mill race, or reservoir of any kind. It is effected by an ingeniocs application of hydrostatic proseure. In the efficent alaice is placed a gate, or wicket, with two leaves at right angles to each other, baving a cromesection like the letter \mathbf{L}, one leaf being longer than the other. This gate works apon pivote, or a hinge, at the angle of intersection of the two leares, and at one side of tha aleice. The shorter leaf of the gate is of proper dimensions to close the sluice when the flow of water in not required. This leaf is kept shat by the pressure of the head of water, which produces no effoot upon the longer leaf so long as it is admitted freely to both sides of it.

Whea the sluice is to be opened, the water is drawn from one side of the longer leaf, and immediately the prossure apon the other side preponderates against the shorter leaf, and forces it open. The opposite effeot it produced by admitting the water to both sides of the longer leaf, when the pressure apon the shorter leaf again close st the aloice. These altornate effects are produced by two small tarning wickets at right angles to each other aed conpled together, which are moved aimaltaneounly by a single lever.
The time and offort required to mancourre the amall wicketa will certalnly not be greater than is nocemary to work one of the simple tarmiag wickete gonerally used in look-gaten, while the quantity of water discharged by the alaioe will, with the above proportions, be about four-fold, and may! by a rariation of the rolative dimenaions of the parts, be oven gready increasod.

Y4. -
Fig. 1 ls a plat, in which the part A is intended to represent a reporvoir; lock-chamber, \&cc. ay d, shows the leaves of the wicket-gate (whioh in supposed to be placed in the side wall of a lock), both of which are tecured to the shaft s, and are conneoted by meams of the rods, or barn, pp. H is a recens or chamber, into which the leaf d mores in opening the leaf or gate a. i, 0 , are small valve gates (50 conneoted or oouplod, that both may be tarued at the same time, the oae openlag, and the other chatring), maed for omptying and filling the ohamber H , and may be worked as shows in the plan and sectional viows (1 gas, $1,2,8$), or otherwise. c c is a chacnol or pipe, oommanicating with the water in the lock-chnmber or reat. oir A, and the chamber H, through the valre-gate i. E is ar gration
 chasad or pipe, communioating with the chamber \mathbf{H}, and the lower lovel, throagh the valve-gete o. mis aman-hale in the leef $d_{\text {a }}$ for the parpoee of getith at the small valre-gates i, 9 , for repairs and other parpoees. 63. 4 , chows the water-why commanionting with the revervoir and the level below.
yis. Ile a longtudinal rection of the plan, represented in fig. I.

F8. 2.

Hz. 8 it a cross section of the sams.
The plan represents the wicket-gate as closed, and the lock, as well as the chamber B, full of water. When it is deaired to empty the lock, the ralve-gete 0 , communicating with the lower level, throagh the channol an, is opened; at the same time, thel valve-gate i (which is connected with the tamo), commonicating with the look-ahamber, througt the pipe $c c$, is clowed ; the water in this discharged from the ahamber \mathbf{H}, and the prete sare of the wreter coting on the larger loaf d, forces the gate of amaller leaf apen. The watar contaised in the lock-chamber is thou diecharged throagh the pasage ob b

Fis. 3.
The inventor does not propose to confina himsalf to the precise mode of ceaptrution chown in the plas, brit purposes aralling himelf of difierent modes of conmtruction to enit differest localities whero gates for diseharg. ing water are used; the prinoiple remaining the same, which consints in alsersataly applying and relioving the presanm from one aide of the larger Jeaf (arn, of paddit) of a wiakehgate, theroby causing it to torm ono way of the other, to as to forve the other leaf of the gate open or abot, as may be dectred; both leavee of the (valve-gate, or) wicket-gato being eeoured to, and mede to turt on, or vith, the mame shaf, or axis; the chaft being Fheed in a vertical, horivontal, or fn any other position deatred.

EXPLOSION OF A LOCOMOTLVE ENGINE IN THE UNITED STATES.

The Committee on Science and the Arth, constituted by the Franklin Institute of the State of Pennsylvania, for the promotion of the Mechanic Arta, to whom was referred the examination into the causes of the explonion of the locomotive engine "Neversink," upon the Reading railroad, United States, on the evening of the 14th January last, report:-

That they have collected all the evidence bearing upon the subject which they could obtain, and have visited Reading for the purpose of examining the wreck of the engine; and they desire in this place to return their acknowledgments to the officers of the Reading Railroad Company, and especially to Mr. G. A. Nicolls, the superintendent, for their very great courtesy and kindness to the committee, in facilitating in every possible manner, their examinations, and putting them in possession of all information having a bearing upon the object of their research. The following is the result of their inquiries:-

The ongine Neveralak was originally built by Baldwin, and sent npon the road in April 1836. It then weighed 101 tone, and had six wheele, two of which were drivers. The engine was thoroughly renewed and rebuilt by the Reading Rallroad Company at their Reading depot, in April 1846, and was changed to an engine of 19 tome on six wheels, all eonoected drivers.
In rebuilding it, four plates in length at the fire-box end of the cylindrical part of the boiler were retained, and lis sheets in length were added at the front end of the boiler. The new iron was five-rixteenths of an inch in thickness, the old one-fourth of an inch.
The vertical part of the boiler was 51 inches in diameter; the frebox wha 89 inches long, 87 inolies wide, and 44 inches high; the ceown was stayed with wrought iron bridge bast, ased was 20 strong that it reeeived no damage from the explotion. The horizontal portien of the boiler was 41 inches in diametar, and 11 ft .6 in in length between the tuberheets. The smoke-boz was 2 ft . 3 ins inche in depth; making a total length of boiler of 18 feet. There were 128 wrought iron tubes, two inches in internal diameter and one-eighth of an inch thick in the wall; thay had copper ends at the fire-bor tube sheets.
There was but one safety-vaive, 21 inchas in diameter, placed upon the dome; there were four gauge-cocks, the lower one of which was 8 inches above the arown-sheet, and the uppor one about 14 inches above the lower. The highest tube was 11 inches below the crown of the fire-boy, and 11i inches below the top of the cylindrical part of the boiler. The firs surface, reduced to fire-box surface, amounted to 809 square feet. The cylinders were 131 inches by 20 . The driving wheels 46 inches in diameter.
It was a favourite engine upon the road, and had rap, previous to alteration, in April, 1846 71,010 miles.
Afterwards

\cdots	\cdots	71,010 miles.
\ldots	\cdots	18,041
Total		89,051
miles.		

Upon their examination, the committee found the borizontal part of the boiler almost completely deatroyed. In this part of the boiler
the explosion had manifeetly originated, commencing in the older iron which remained in the hinder part of the boiler. The tuben were, for the most part, still fast in the tube-sheets, bat they were bent out wards at their middle, like the staves of a barrel. The steam pipe, an it passed through the boiler, was collapsed, bot not brokea. The outer shell of the boiler bad been torn into fragments, and the rents had extended to the vertical part, the upper portion of which had been entirely torn away, so as to expose the fire-box, which was sound; but slightly eaved in on the sides. The cylinders were unbarmed by the explosion, but had sinee bepn removed. The quality of the iron appeared to the committee to be oniformly good.

There was, therefore, nothing about the engine to indicate that the necident had occurred from defects in workmamhip or material, por, indeed, did the tremendous power which was indicated, seem consistent with the idea of an originally defectlve boiler.

The evaporative power of these heavy engines is necessarity vety great. Mr. Nicolls assared the committee that the Neversiok was capable of drawing a train of 88 cars, weighing, loaded, $7 \&$ tons each, (equal to 637 tona, at a speed of 12 miles per hour, (1056 feet per minute.) Allowing the traction to be 71 pounds per ton, (as experiments opon this road show it to be, this is equivalent to 158 borse power-requiring an evaporation of 2.55 cubic feet of water per minote.
Now, by the peculiar construction of these engines, rendered necessary by the restricted space allowable for the boiler, when the water-level stood two inches above the lower cock, the steam was confined exclusively to the hemispherical dome above the fire-box, the cuble content of which is rather less than 24 cubic feet, ($23-8565$ cubic feet.) The cubic content of each cylinder (13.5×20) is $1 \cdot 657$ (1) cubic feet, and, astwo oplinders are drawnat once, the ratio of the cylindrical content is as 3.814 to 24 , or more than one-eighth. When the water-level is at the upper gauge-cock, the steam room is nine cubic feet, and the ratio about one-third. Now, the most recent (and apparently the best) authority upon the high pressure engine declares, after nearly 30 years of practical experience, that "the steam space should be at a minimum 20 times as great as the space to be filled with steam in the cylinder. If it can be made greater, consistently with the other arrangements of the boiler, 30 much the better." This is, of course, Inapplicable in locomotive engines.
The reason, therefore, that these engine will throw water from the afety-valve, and from the gauge-cocks, when the actual water-level is dangerously low-and that, in the words of Mr. Kirk, they are ticklish in carrying their water, must be evident. The foaming in one of these engines must be incessant, and the danger of priming very great. The gauge-cocks, which, under the most favourable circumatances, are but indifferent lndicators of the water-level, become, in this case, useless, and the engine driver must rely upon bis experionce of the engine and trust to incessant watehfulneas alone, if be would avoid an accident.

A very remarkable fact about this explosion is, that the steam pipe passing through the apper part of the boiler, from the throtule valve to the cylinders, was collapsed and unbroken, as is well seen in the accompanying Daguerreotype portrait of the engine, taken after the explosion by Mr. David Monday, of Reading, and kindly lent by him to the committee. It is, indeed, possible that this may have been produced, during the explosion, by the sudden bending upwards of the tube, otherwise it would eeem to indicate that the engine was throttled at the time of the explosion; an expedient which may have been resorted to for the parpose of avoiding the dumpness of the steam, or to check the speed of the engine; but the fearful danger of which will be seen when it is considered that, if the ateam was shut off but onefourth, (the water being above the lower gnuge-cock,) the pressure in the boiler would double itself in about one minate.

It seems useless to speculate upon the immediate cause of this terrible accident, since the death of all upon the engine has removed the direct testimony of the circumstances under which it occurred. However, it appears that the engine was under a very unusually beavy pressure of steam, and scarcely less certain that the safety valve wat (accidently or otherwiee) fastened down. Mr. Nicolis and Mr. Kirk both testify to the competency of the engine driver, who was in charge, and every one bears witnem to his character for sobriety. That he may bare been deeeived as to the beight of water in the boiler is possible from the character of the engine, although it is difficult to imagine how an experienced hand could bave neglected the indications given by the increased pressure, as shown by the rapid running of the train and the sharpnese of the exbaust.

Upon the whole, it appears prubable to the committee that the explosion of the Neversink occurted in this way:-

That the engine was running under a heavy premare of steam, and that, owing to the defective indications of the gauge-cocks, the Water

In the boilers was permitted to get below the upper tabes, which thas became unduly heatod; that the rapidly increasing presoure (amisted, perbapa, by an injodicioos partial closing of the tbroule valve) caumed the atarting of ose or more of the unbes from the furward tube-aheet and this mudden relief of the pressure caused a fonming in the boilep, by which the water was thrown over the heatod tubet, and being thus rapidly evaporated, caused an instantancous increase of tension, which the additional openinge were incompetent to relieve, and thun produced the rupture of the outer shell of the boiler. This, however, is intended only as a plassible anggention, and by no means as a confident affirmation of the canse of the explosion.
But whatever bypothesis may be adopted to explain this unfortonate uccident, its investigation has forcibly calied the attention of the committee to several matters which they believe to be of sofficient practical importance to deserve the attention of the Institute.

First. The necessity of providing all ateam engines with a second safety-valve, of large dimensions, regulated to the mazimux prewure which the eugine is intended to bear, and placed begond the coutrol of the engines-man. It is true that this will entail upon the owrera the trouble of frequent examination to maintain the efficiency of such a valve, but this trouble will be more than compensated by the increased safety which will be procured by its use.
Secondly. The uncertainty of the ordioary geuge-oocke, as indiontors of the water-level under the mort favourable circurastancea, and the deceptive character of their indications upon the moders locomotive engines, where the amount of work to be done and the restricted space which can be allowed to the boiler, necestarily confines the water and steam room, and renders the evaporation more tumaltuous than in the larger boilers of stationary enginea.

Thirdly. The committee would suggest the inquiry whether it is not feasible and advisable so to construct the locomotive engine that explosions, if they occur at all, shall take place in such a manner as to be less deatructive to human life than they at present are. One of the great recommendations of the tubular boiler, when firat introduced into use, was this very diminished liability to do injury, by allowiog a tubular fue, of comparatively somall size, to collapse, in place of int large cylinders, by which the boiler was at once emptied of Its contents.
areverw.

Earthoork Tables. By Cabrles K. Sibley, C.E., and Willum Rutararoad, F.R.A.S. London: Longmin and $\mathrm{Co}_{0} 1847$.
These tables are for the purpose of estimating the contents in cobic yards of the earthwork of railways: they are calculated, by the ordinary prismoidal formula, for a central width of 83 feet at slopes of 1, $1 \frac{1}{6}$, and 2, to 1 ; beights from 0 to 60 feet, at intervals of halfafoot.
The advantages of the tables are, that there is no necessity for a second calculation, as at one glance the cubsc contents of a chain io length are seen by merely looking for the corresponding heighte of the respective ends of each chain's length in the table, -the heights of one end being given at the bottom of the table, and the other beight on the side, and at the intersection of the two lines the cubic contents are given. Thus, for a cutting 5 chains to leagth, of the respective heights of
$\left\{0,74,13,11 \frac{1}{1} 3\right\}$, and 0 , the contents are read off
$\{348,1090,1855,756,151$;-total, 3700 cubic yards
We believe these tables are the only ones that offer such a facility of calculation; consequently, we strongly recommend them to the Profession.

We must observe that there is another table, by which the content 1 for any other width, from 23 to 43 feet, may be fund; for this parpose, it will be requisite to have two inspections, but no multiplicetion.

Architectural Mixims and Thoorems, and Loeture on the Edweation and Character of the Architect. By Thomas Leverion Domaldson, M.L.R.A. London : John Weale, 1847.
Professor Donaldson has laid the ground-work for an excellent book; hut in the present edition the Maxims are too concise, and are not carried out sufficiently to render them of much service to the student. Many of the Misims require an explantion and a reasoning to prove that what is set forth is true. We feel assured that Mr. Donaldsan, if he can devote the time to the work, will be easbled to enlarge it in such a manner as to mike it a valuable wort of
reference, not only to the atudent, bat alno to the experienced aro chitect.

With regerd to the Lpetare which is appended to the preaent work, we cail only say, at the present time, that it is a good summary to a course of lectures, bat there are some portions of it with which we cannot agree four reasons for differing must be deferred to another opportunity.

The Art of Sketching from Nature in Perspectice Simplifed by the Goniometricone By Grober Earl, Principal of the School of Deaigr, Peckbam. London: G. W. Meder, 1847.
We gave a short aceount of this inatrument in the Journal for December last (Vol. 1X, p. 369). The object of the present work is to show how the inatrument may be used; it is extremely simple, und is handled with great facility. It will be found of great service to the travelling student in taking sketchies of buildings and other objects.

The Tradesman's Book of Ormamertal Destigre-The second part of this work fully suataipa its character for utility : the desigo for an jron gate is exceedingly good.

REGISTER OF NEW PATENTS.

RAILWAY AXLES AND SIGNALS.

Thomas WATERHocaz, of Edgeley, near Stock port, cotton manofacti.rer, for "mechanical Improcementa applicalle to railmay enginet and lemdert, and to railmaly carriages of tarions kinds."-Granted March 10 ; Eurolled Sept. 10, 1847.
The object of the improvements is, firstly, to facilitate the pasasge of railway engines and carriages round curven, by allowing each wheel to move independently of its fellow. This is effected by forming one uf each pair of wheels with a long nave equal to one-lalf the diameter of the wheel to which it is applied, which is bored to fit the axle, and to woit against a shouider on the same; it is to be kept in contact with thie shoulder by a washer, secured to the azle, outside the nave by a key; the other wheel is fixed to the opposite end of the axle. Another method is to divide the axle at the centre into two parts, and fix bearings to the lower framing of the carriage, for the parpose of supporting the inner ends of the two parts of the azle; by which means the wheels are permitted to rotate independent of each other.
The second improvement is for an apparatus for counding slgoels by meane of compressed air; consuating of a force-pump for compressing air into a receiver beneath the carrloge, from which it can be admitted, by the guard or attendant, into a raibmay whistle or other instrument for counding siguals.

DRESSING LACE AND FABRICS.

Joha Eexiy, Jun, of Nottipgham, dyer and lace-dresser, for " 7mprooments in dressing or finishing lace and olher fabrice."-Granted December 14, 1846; Enrolled June 14, 1847.

This invention relates to a dressing for lace and other fabrics, which when made up, will not be liable to abeorb moisture from the atmosphere, but will preserve their shape when exposed to heat or damp. 5 lb . of shellac is to be dissolved with 1 lb . of borax in 3 gallons of bot water, or the shellac may be diasolved by other alkalies, and in differeat proportions to the before-mentioned. The solution of sbellac may be used alope, or, when thought desirable to give a greater degree of stiffness, it may be mixed with etarch, gelative, glue, or other siffening material, dissolved by the ordinary metbods, and then atirred into the solation of sbellac wbile the lutter is at a boiling beat : the quantity of stiffening material added wiil vary according to the stiffwhem required; the addition of 1 lb . of glue to a solution containing 1 lb . of shellac has been found to apswer well. Tbe solution is applied by dipping the fabric therein, or spreading it upon the fabric; the Guishlog is proceeded with in the ordinary manner.

GAS METERS.

Thomas Edge, of Great Peter-street, Weatminster, for "Impropements in the mamafacture of gae metcra."-Granted Dec. 31, 1846 ; Eurrolled Jupe 80 , 1847.

This invention relstes, fratly, to the mapufacturing of gasmeters uf plates or sheets of irop, covered with a coating, firat of tion and
then a conting of cinc, or with an alloy consisting of tin and otber metala, to prevent or retard the destructive effects of the gas. The metals or alloya employed for this purpose are lin and zinc, as being found in practice to be the most deairable and efficient. Any known method for cuating plate-iron with these or other metals may be employed. The inventor lays no claim gemerally to the coating or covering of plates or sheets of iron with zine and tin, or with any alloy of metais, as these processes form no part of his invention when taken separately.

The secoud part of the invention is for forming the internal parts of the meter of the same or a similar kind of metal, so that no voltaic aetion may be induced between the neveral patt, by constructiog them of an ulioy of metals, as being most suitable, apd which alloy is made to bear some analogy to the particulas coating of the plates or sheets of iron of which the case is coustructed; and, in order to preserve the solid parts, which are liable to be injuriously acted upon by the gas or that come into contact with the water that becomes ima pregnated with the gas that pasmes through the meter, the inventor conatructs them of an alloy of metals, conaisting priucipaily of zino and tio, the proportions of which may be varied, or other metals may be added, for the puspose of hardening the alloy. For the above purposer, an alloy cousisting of from 50 to 70 parts of zinc to from 30 to 50 parts of tin, will be found to answer the object required.

PIERS AND HARBOURS.

Prtrar Borbif, of the Crescent, Minoriea, Clity, engineer, for "Improvemente is the conotruction of piers and harbours." Granted Dec. 21, 1846 ; Enrolled June 21, 1847. (Reported in the Patent Journel.)

This invention relates, first, to the construction of piers, whereby the commanication is maintained between the approach and the vensel, without the intervention of atairy, at all times of the tide. It consiats of a combination of a permanent way, a floating pier, and a platform connecting the two, which is hinged at one end to the permanent way, and at the other rests on the barge or vessel, which rises and falls with the tide. For light traffic this erection is constructed almost entirely of wood; the permanent way, which in the drawing is represented as being curved, but which may be formed according to the nature of the approach, is aupported on piles driven into the ground; the space between each set of pile leaving a clear water-

Pis. 1.

way. The roadmay, which is of peculiar conatreotion, is represented at ig. 1. Beams, a, are laid longitudinally and reating on the piles; at their extremities they are alightly curved upwarde and atrengthened by means of tension-bars, or chains, b; these chains are secored to a cast iron cap on each end of the beam, and support it at intermediate point by stretchers, c, c, c, c. Now, it will be obvious that the tendency of weight placed on the centre of the arch will be to straighten and, consequently, lengthed the beam, thereby throwing the greater part of the strain on the chain b. The barge, or foating part of the pier, is placed between two buttresses formed of piles, one at either end, and by them is guided in its rise or fall with the tide; and it is generally preferable to place this barge parallel to the current, without regard to the position in which it is necessary to connect the roadway; this barge may be constrncted of iron, with a wooden dect or it may be wholly of wood; the inner side, on which the hinged platform rests, baving a greater diaplacement of water to compensate for the wright thereof, and it is furnished with water-tight bulkbeads for additional security and atrength. The platform whicir connects the roadway with the floating barge, is conatructed in a similar manner to the permanent roadway, beiog formed of longitudinai beama, strengthened by tension-rods and atretchers, as before described; one end of these beams is connected by a strong boft, pusing
through the caat iron cape and correspording knucklea, fixed to the piles which support the extreme end of the permanent way, and thus forming a hinge on which it rises and falls; these piles are strengthened sideways by means of atruts, so as to enable the structore to resist the strain consequent thereon; the other end of the platform, which rests on the barge, is farnished with rollers, whioh traverse raile placed in a recess formed in the side thereof, so as to bring the surface of the platform on a level with the deck. The flooring of this structure is supported from the beams by joists which, with other transrerse fastenlogs, connect the whole firmly together, and it in surmounted by a railing as in other similar erections. Piers intended for heavier traffle, he constructs in a manner very similar to the foregoing, but with the several parts of a proportionate strength; but in many cases, where the rise and fall of the tide is too great to admit of the whole of the inclination being thrown on one moveable platform, he, therefore, makes une of an intermediate floating barge, protected by buttresses; this arrangement avoids she necessity of having the platform of any extraordinary length, when any great height is to be attained. Instead, also, of the rollers at the end of the platform bearing directly on the floating barge, it reats on a frame which is supported by a stroog shaft laid horizontally in the direction of its length; this admits of a rocking motion, and, consequently, prevents any strain from twisting or affeeting the permanent pier, to which the other end is affixed. In piers constructed for every description of heavy goods, in place of snpporting it on piles, it is erected on a base of solid masonry, supporting cast iron pillars, on the top of which the longitudinal beams are placed, and the whole is finiabed in a manner proportionably strong for the accommodation of wagons and other vehicles; the platform of this pier also rests on an apparatus, the same as before desoribed, for the purpose of counteracting the rolling of the barge from the action of the waves. The foating-barge of this pler, supponing it to be erected where it will be subjected to the action of the sea, is constructed with open-ended tubes passing through from side to side, as also from the deck to the bottom; this not only materially strengthens the barge, but allows the sea to break through and thereby partially avolds Its effect. Having described the nature of his invention as regards piers, he states that he is aware they have before been erected where the communication has been effected by means of a platform, rising and falling with the tide, but what be claims is the peculiar construction of low-water piers, adapted for all kinda of traffic, and for the acoommodation of all classes of vessels in loading or delivering passengers or goods of all kinds, at any state of the tide, without the intervention of stairs between the fixed and floating piers, and which pier forms

Fig. 2. proper roadways for carriages, cart, wagons, or other vehicles, even of the heaviest description, coming to or golng from such vessels lying alongaide the floating-piers; and when such piers are to be adaptad for ferrys, the floating-piers may be made of such a height that their decks will be level with the deck of the steamer or other vessel used for the ferry, so that any carriage or vehlele may drive down the pier, and on board such ateamer or vessel, without disengaging the horses, and which piers are constructed in the peculiar manner herein shown. The second part of this invention relates to the construction of a floating breakwater, for the protection of shippiog in harbours, bays, estuariea, or other inlets of the sea. Fig. 2, represents a transerse vertioal section of this breakwater, and fix. 3, an elevation of the same; it consists of a cylindrical caisson a, of iron, which being rendered water-tight forms the buoyent part ou which the whole structure is aupported ; b, b, b, is a frame-work made of iron, attached to the caisson; on this frame-work a number of planks, c, c, c, are fixed longitudinalty, which as the sea breaks through renders it comparatively smooth on the inside. The caisson a_{p} has a

Fig. 8.
number of tubes, $\alpha_{1} \alpha_{1}$ through it, both vertically and horizontally; these tubes allow the sea to break through, and consequenty lessen the effect thereon, and likewise tend considerably to strengthen it; at the lower part of the frame-work a ballast-chamber is plaeed, which has the requisite quantity dropped through vertical tubes, d, d; , weveral of these breakwaters may be connected together by the joints $e_{\text {, }}$, according to the entry of the harbour; the whole is secured by the chains f, f, to a suitable anchorage in the position most desirable for obtaining the desired effect. He does not claim the invention of floesing breakwaters of iron, or other material ; but what he ciaims is the forming of floating breakwaters in the peculiar manner represented in the drawing, and as hereinbefure described.

RAILWAY WHEELS AND BREAKS.

Henry Grafton, of Holborn-hill, engineer, for "Improvements in railway sohesls and apparatus connected mith sailway carriages."Granted January 16 ; Enrolled July 16, 1847.

The improvements relate, firatly; to the formation of wheels for railway carriagen, to adapt them for running on different gauges. The anoexed engraving shows the construction of the wheel with two flanges or railwhy tyres. In place of spoken, the inventor proposes to have two dished plates formed of corrugated iron, which are made by preming the plate in a mould; the centre to be rivetted to the nave and the outar rim to the tyre and a cylinder of sufficient width to receive the two tyres-the distance regulated according to the diferent gauges.
The second improvement is for a rail-way-break, consisting of a metal band placed between the two tyres, which by a lever is made to press apon the periphery of the wheel between the two flanges.

BARLOW ON ARCHES.

(Continued frown page 215.)

(Remarles after the Reading of the Paper at the Institution of Cicil En. ciaecr:)

Mr. Cosirt, V.P., said he felt the propositions io the paper were so concluaive. that they carcely afforded an opportunity for remark, much lane for discussion. The great mesit of the communication, and of the illostralions, was the adaptation to prattice; in must of the treatises on arebes, the theory alone was considered: Mr. Burluw had, however, very properly pointed out the possibility of constructing arches of certain forms and dimpo ions, strictly within the theoretical rules, so that they should stand well alone; but that when any pressure was iaposed on them, they would fall Th-se were points of great importance. which should never be lost sight of by the engineer, and demanded not only great attention to the proportions of the structure, but also to the quality of the materiais enployed, the situation, the nature of the foundation and of the backing and numprous other considerations, in order to adapt the arch to the usa for which it was iotended.
Mr. Sopwith agreed in the value of the paper. He viewed it more parlieularly in its application to the construction of arches in mines, where colidity and permanpace were of such importance, on account of the unequal prensure to which they were subjected.

Mr. Bronel. had padenvoured, during the reading of the paper, and the remarks of the preceding aprakers, to find some point whereon to found obeervations, but it was very difficalt, as the author's practical experience appeared to have constantly directed his theoretical investigations. He thought, humever, that the compresaibility and elasticity of materials of conatruation had not been sufficiently insisted upon. This did not generally obtain enough consideration, yet it was of great Importance to the atability of a strocture: all materiala, even to granite, possessed an amount of elmaticity, and it did not suffice to have the line of pressure fall merely withio the mast; it should be sufficiently withia it to allow for any yielding from elasticity, without eadangering the building.

Mr. Pellatt observed, that the valuable information might be rendered available in tbe construction of the vaulta of furances, the duration of which Whas of areat importance in the giass manufuctory. It was dusirable that the crown of the arch of a glass fornace should be so low as to keep the heat well down, and yet if it was too liat, it was soon deetroyed by the isopigging action of the flame, or else the expanuion of the maieriala by the heat destroyed the equilibrium of the arch, and it fell. At present the practical judgmeat of the workman was alone drpended upon for the proper form, and the consequence was, that ulthough a well-built furnace arch might lact 14 years, it might not last longer than 14 months.
Mr. Imman said that the ruins of anclent buildings would afford many striking leasons of the correctness of the priaciples laid down in the paper. Namerous exmmples of remains of arches standing without other support thans the stoues of which they were composed, might, he believed, be found, which could corruborate the views of the author, and he recommended such -ramples being anoght for as illostrations.

Mr R. Stephenson wished to express his conviction of the oseful character of the paper, which, he was convinced, would remove nayny difficul. ties hithertu felt in exmmining the subject by the process laid duwn tiy Profeasor Moseley. whose formulse. thougb highly scientitic, anil no duubt very beaviful, were much too abstruse for the use of the practical man. Ally thing which tended to elucidute these formula, and render the nubjeot more populer, most be received with grrat intereat by the civil engineer, whose laboors would be materially facilitated by such clear adaplatious of theory to practice. It would apprar, that the principal noveliy consisted, in describing by a simple process from two given, ur assumed, points, a curve of equal horizuntal thrust. falling within such puinte in the voussoirs, as should demonsirate the stability or instability of the structure. There could be aus doubl of the value of snch a process ; but be would suggest to Mr. Barlow the drsirableness of giving, in sumewhat more precise and simple terms, the mathematical demonstration of that which must be universally edmitted in practice. He wuuld suzgest wheiber Moseles's term of the " liae of prespure," us contra disinguisbed to the " line of resistance." did not convey the mraning of the propositiod better thad the term "curre of Weritonial thrust." It was accept ed as perfecily true, that, as stated in the paper, the horizontal furce at any part of the curve was opposed by a borizontal force of equal amount, exerted in an opposite direction, nind that the borizuntal force or thrust was equal throughuat the curve, and hence the equilibrated arch; yet this had not been hitherto clearly and simply laid dow n_{1} in such a nanner as to be practically used.
Mr. Bidpea accorded with Mr. Stephenson ia bis appreciation of the value of the paper, be bad seldom heard one of greater utility, and be trosted so goud an example would be followed in the Institution. The propoeed mode of describing the curve or line of pressure, showed the impropriety of constructing brick arches in separute superposed rings; the line wodd in almost every instance, travel out of the ring in which it commesced, and in case of fructure, the rings would fail cunsecutively: but if the arch was well bonded tokether throughout its eutire depth, the line, or ourve, wuald be traced within it, and it would possens the requisite strengith. All thest brick arches were now built in that manuer with foll boud.

Aa arch had recently been so built by Mesars. Griasell and Peto over the River Lea, with a span of 87 feet, and a rise of 6 feet; the centres were struck within an unusually short time after the arch was keyed; bot it stood perfectly, and with very little subsidence. He was tempted to consider an arch constructed of rectangular brick: eet in a matrix of ceneat, as a bent trucsed girder, the tenaion rode of which were represented by the abutments of the arch. Very fat arches, such as the Maidenbead Bridge, were examples of what he meadt.

Mr. Beonel could not agree with Mr. Bidder's comparison, or what he might be permitted to term his amosing theory; on the contrary, he most contend that there was no analogy between the arch and a trussed girder. In the furmer the main force was pressure, in the lalter the force exerted was tension; the abutments of the one bad to resist a horizontal thrust, at a given angle, whilst the wing walls, onder the other, had to support only a vertical preasure; eny tendency towards horizontal throst, which might have arisen from deflection of the beam or girder, was prevented by the tension rods whirh connected the opposite extremities. If an arch could be cousidered as a beat trussed girder, it must follow, that it mould stand equally well whether the curve was upwards or downwards, which certuinly did not accord with his notions of the properties of an arch.

Mr Bidder replied that his views were misepprehended; what he contended was, that a brick arob being formed of rectangular piecrs, set in a matrix of cement, having great adhenive properties, upon which it in a great measure depended, it should be coosidered as a bomogeneous mass, assuming the aature of a curved trassed girder, the resistance of the abolments acting as the tension rods of a girder. He must still contend for his position, and that the bridges of great span and small rise, orected by Mr. Brunel, were excellent examples of the constraction he meant.

Mr. R. Stephenson considered that Mr. Bidder only meant to put forward the position for the sake of argument. It was certain, that the arch and the Irussed girder, being supposed to be formed of the same materials, the furmer would be supported by the resistance of the abutheots to compression, and the Iutter by the tension of the tie-rods; the adheave properties of the materials nol being in eitber case taken into consideration. The arch, per se, should always be considered as composed of separame masses, nut set in a matrix; but combined In a certain form, the only adhesion being the friction of the surfaces. It would be desirable if Mr. Bariow would give a more perfect mathematical formula for deacribing the curve; the rule which the had given had too moch the character of being empirical and of being arade to fit given cases.

Mr. W. H. Barlow was quable to percelve any deficiency in his definition, or in the auethod by which he ascertained the carve. The line of thrust, as obtained by the constroction given in the paper, was practically given in the aodels.- It was not a decessery condition of atability, that the live of pressure should intersect the surfaces of contact at right angles, it was sufircieat that the direction of the pressore shonld meet the surfaces of contact, within the limiting angle of friction. The same condition was exemplafied in a columin; there the lise of prossure was a vertical line, bot the surfaces of contact of the stones might be inclined, without oocanioning the upper part to slip, provided the inclination was within the angle of friction of the material employed.-Moseley's formulw, althounh theoretically perfectly accurate, wore too complicated, and involved too much wa. thematical knowledge for the general use of practical men.-A deep or thick arch contanaed more than one 4 line of pressure; " the line of pres. sure to be dealt with in practice was, in effect, the centro of a sarface of pressure.

Mr. R. Stephenson said, that mathematiciansalways considerod the line of pressure to be at right angles with the supporting surfaces or the abutments. It would appear, however, from Mr. Barlow's explanatina, that ins ead of drawiog a series of lines at right anglen to the surfaces through given points, thusfurming what might be termed the polygunal theory, be described a correct curve through the same given poinis. Mr. Stephenson cuulit not onderstand how the voussoir conld wive a line differlag frum the line of force treated of by mathematicians.

Mr. Brunel. said, the subject was one of great difficulty, as it embraced so many considerations; it might, however, he thought, be rendered simple, hy considering an arch not as composed of separate voussoirs bound together by cement, thus involving oiber principles, bot as a homngeneous, aud, be might almost say, an elastic mass. If viewed in that light, the prresure would be found to extend more or less over the whole surface. The "centre line," or "aeutral axis," might in such case receive the denominatiou of the " line of pressure." If this idea were fullowed up, there would be less difficulty in explaining the principles laid down by Mr. Barluw.

Mr. W. H. Bazlow said, that Mr. Bronel's "line of neutral axis" expressed more nearly what he anderstood by the " line of pressure," and that line described by the impinging points of the curved surface of the voussoirs of the model. Mr. Barlow thought, that Mr. Bidder's ex perience, as to arches turned in one entire bond, being stronger than those composed of separate ringe, bore obt the deductions of the paper. The rings coald not separately contain the curve of equal horisonial thrust; but whet bonded they did so. An arch turned in separate riags depended too mach on the adhesive strength of the cement or mortar.

Mr. Cubrrt, V.P., esid, it appeared to bim that the whole quertion was contained in the proposition demonstrated by the model with curved
vonssoirs, where the points of contact, and consequently the curre of pressure, varied according to the spot where the pressure was imposed. In practice, thin pointed out the necessity of adapling the form of the arch to the service it was intended to perform. For instance, if the rondway over an arch wore levol, and the pressure equal, the fracture would take piace by depreasion of the haunches and the opeaing of the extrados of the crown; but if the roadway were curved, the pressure being thrown upon the crown, the crown would fall, and opentags would oceur at the extradoa of the hanches. Different oalculations mut therefore be made for the different conatractions.

Mr. G. Srell observed, that Mr. Barlow, in his geometric condruction of the line of reaintance, asonmed, that there were already two points found. Now two points in the line of resistance were determined, when the points of ruptare were known; for, at the time whed rupture was abont to take place, when the arch was balaocing between standiog and falling, the line of resistance tovched the extrados or intrados of the arch, at the points of nupture. One of these poiats of rupture was determined by the conditions of the question, the other might be determined by a geometric construction, fonoded on the principles set forth in Moseley's works, and which be bad demonatrated in his lectures. The process was one of approximation, and be supposed three trials would be sufficient to determine the point of ruptore, with perfect accuracy. The process would apply to all shapes of arches onder presure, in any direction, in any position, or of any amonnt; bat Mr. Snell would at precent confine himself to the simple case of an arch which was loaded equally on either side, and the vonssoirs of which were equal each to each, on either sideof the centre line. In such a case, the one point of rupture woald be at the crown of the arch, which would be on the point of torning on one of its edgen, at its extrados, if the arch was about to fail by the sinking of the crown; and at its intrados, if it was about to fail by the rising of the crown. In the first case, some stone at the

718. 1. hanoches would be on the point of taraing on its edge at the intrados. In the second case, some stone at the haunches would be on the point of torning on its edge at the extrados. He would confine himgelf to the first of these casps. Then, to find the point of ruptare, choose some point C (fig. 1), which was considered to be near the point of rupture, and which, in this case was at the intrados; draw C D the joint of the ronssoir. The arch being abont to fail, by the tarning of the key-stone on its edge at A, the resultant of all the forces, at that point, must touch the curre of the oxtrados at A ; its direction was therofore horizontal, and was represented in porition add direction by the line Ac. The resultant of the weight of the mass A, B, C, D, was represented in position and direction, by a vertical line pasiong through the centre of gravity, G, such as $G h$. Now, the only forces acting on the point C (in this case) were the resultant of the forces at A, and the weight of the mass A, B, C, D, and these, being represented in positlon and direction respectively, by A e and $G h$, which intersected at the point m, the resaltant of all the forces aoted through m; It also acted at \mathbf{C}, and therefore $m \mathrm{C}$ represented the resultant of all the forees acting at C. Now, as before steted, If C was the point of rapture, the line of resistance tonched the curve of the intrados at C, therefore a tangent to the line of reaistance at \mathbf{C} was also a tangent to the intrados, and the reealtant of all the forces, acting on any point in the line of resistance, was in the direction of taogent to that line. Therefore, if \mathbf{C} was the polnt of rapture, $\boldsymbol{m} \mathbf{C}$ was a tagent to the line of resistance, and therefore m C wat a tapgent to the intrados, as in fig. 1. If \mathbf{C} was not the point of rupture, but if the point of rupture was above C, w C would cut the intrados, as ln fig. 2 ; but if the point of rupture was below C , sa C would cut the intradot, at in fig. 8 .

Mr. 2.
Hg. 3
Mr. R. W. Barlow said, he amproed two points in order to facilitate the investigation. As far as practical utllity was concerned, the line of thrust might thas be obtalned at one operation, inatead of porauing the la. borions procens meoeseary for determining the theoretic llne of resiptance; indeed, excepting for the most regular geometric forms of the arch, Moseley
also adopted a tentative process. Moselay's line of resiatance louched the intradoa and oxtrados at the points of ruptare. Now a practical eye could dotect very closely which wonid be the point of rupture, and a carre of equal horizontal thrust drawn throngh theat points, though it might not prodnce the line of resistance with mathematicial accuracy, was sufficiently near it for all useful porposes. Moseley's theory was undoubtedly very perfect; in fact ho was the only mathematician who had treated the sub. ject consistently with its prectical requirements. The dificulty in his mode of investigation was in those arches which did not partake of regalar geometric forms, and in these cases Mr. Barlow's method would be foned easy of applicalion.

Mr. Bronel still thonght, that Mr. Barlow had ecarcely met the objections which had been raised. It was true that in practice some points might be asenmed ; but it was more satiafactory to have positive rales for finding these points, and assuring the miad as to the correctaesa of the basis of the proposition. In a very large arch, with a small rise, the llne of pressure mast be confined vithin very narrow limits, and in sach a case a formula giving the points definitively was essential for inspiriag confidence.

Mr. W. H. Barlow replied, that the limits which confined the line of resistance, depended on the thickness of the arcb and not on the ratio of the rise to the span; the points of rupture in ordinary forms of archee were well known; they were at the extrados in the crowa, and at tha intredos in the haunches; there was, therefore, n difficulty in finding the line of resistance in these cases. If the mind was as perfectly improseed with the direction of the forces in arches, as in the case of colvmas, both conld be built with equal security.

Mr. G. Snewl stated, that in all cases of equal thicknene of vonseoirs throughout, Mr. Berlow's rules might apply; but if the thickneas wes leas at the crown, as in the case of an arch with a koystone of limited dopth, but of which the roussoirs increased towards the ebatments antil they ceme to en extreme length, he did not see where Mr. Bartow could axsume his points in the line of reaistance.

Mr. W. H. Barlow replied, that in reference to that particular form of aroh, it was evident many curves of eqnal horizontal thrust Fould be drawn within the thickness, so that it wras annecescary to entertain the question ; because, if any one curve of equal horizonial thrast was contained, it proved that the theoretical line of resintance was aiso contained. It would be observed, on referring to the paper and consulting the drawlags and models, that the rules were general, and applled to every form of arch and archiform atructare, loaded or anlonded, and whether of equal thick. ness or otherwise. The model, with the rectangular vonmeoirs leaning together at the aper, was selected as an extreme case. He wishod to remove an impreasion, whicb might have been produced, by his stating thet his mode of treating the subject of arches was not mabemational as that of Professor Moseley : he only alladed to the ase of geometric conetruction instead of algebraic formuln; the principle or theory was the same in both cases. The misapprehension as to assuming points in the curve, whioh Mr. Stephenson alluded to, as not having been sufficiently explained, arose from the modification which was necessary in applying theory to practice. If perfect hardness of materials and mathematical accuncy of workmanship were attainable, the pressure would be transmitted in the line of reslstance, as laid down by Moseley, and described by Mr. Snell. On the other hand, if the materials were in the softest state in which it was possible for an arch to sastain itself, the pressare would be transmitted in that curve of equal horizontal throst, which corresponded most nearly to a line drawn through the centre of the thickness of the arch; becauso in that state of the arch, the whole available surface of the voussoirs must be acting, to support the insistent pressare; practically, therefore, the preasume would be transmitted in a curve of equal horicontal thrast, somewhere botween these two limits. Now, in the case of large brick arohes, particularly when the centres were firat struck, the state of the arch appronched that which had been juat mentioned, and it was for that reason he had stated in the paper, that in determining abutments for arohes of large dimensions, the points $p p^{\prime}$ should be taken in the centre of the thickness of the arch, though the extreme limit of stability, if the materials were herd, would be when the points $p p^{\prime}$ were in the theoretical line of retiotance. Assuming the points $p p^{\prime}$ to be in the centre of the thickneas, and makins the abutments accordingly, was in effect nothing more then providing abotments of such dimensions as shonld resist the thrust of the arch, when it was in the most disadvantageous state in which it was possible for it to exist. An arch constructed with abatments only just sufficient to contain the theoretical line of resistance, would possess the same degree of stability as a column placed so far out of perpendicular, that a vertical line drawn through its centre of gravity would just fall at the extremity of its buse; but an arch, with abulments bullt so as to cuntain the curre of equal hori. zontal thrust, which accorded nearest to the centre line of its depth or thickness, would be under the same condition of stability at a colamn placed perfectly vartical.

CONSTRUCTION DF SEA WALLS.

Opinions of Bngineers on the Construction of Sea Wallo, reforred to in Sir Howard Dooglas's Protest, gioen in last monti's Jowrmal.

AnkEX (B).-Sir Joan Rennis on the Mode of Constrmetion of the propaced Herbowr.

With regard to the last important conaideration, namely, the particular mode of coastruction, and the coes. Various plans mey and have been proposed for this purpose, sach as fousding the subetructure below low water in caiscoas, and raising a apperstracture of perpendicular walls of masoary apon them, carrying out frame-worls of timber or iron, and forming walls of masoary within them, filling the interior space between the walle with chalk or coacrete; another plan conaists in throwing down mases of chelk into the open sea, and covering them wlth stone of harder deacription. Noos of these, however, appear to me applicable to the purpose, parsicalarly for the great outer mole or break water; the only similar examples where caisesns have been employed, are the memorable cases of Cherbourg and Sheerness, where they aignally failed. Wooden caissons and hollow circular towers, composed of brickwork, masoary, and timber conbined, also wooden flonting breakwaters, were proposed by General Beatham to be used in the consiruction of the breakwater at Plymouth, bat after being fully discussed, these plans were abandoned as being inapplicable, and, looking to the particular cirenmatances of Plymonth Sound, the reasons given for the rejection of thoee plans were unanewerable. In anch great and important works, where failare wonld be attended with most disastrons consequences, none bnt those means which are best recog. nised as certain of snccess sbould be adopted. This has been amply justiGed by the result of the mode adopted in the coastraction of the breakwater at Plymouth, which has completely ancoeeded in every respect, whether as regarde desipn, construction, of economy, and I feel convinced that ander thoee cirenmstances, no other ayatem would have answered so wroll. Much has been said about the damape occasioned by atorms distarbing the rabble; the fact is, storms form the principal agent in consolidatiog the robble and save manval labour, and, to use the late Mr. Renmio's words, are the best workmen.

Annex (C).-Mr. Grobar Rennie's Report on the Harbowr in Docer Bry, and his Evidence.

With respect to the form and copatruction of the proposed breakwater. Fisperience has proved the principles of Cherbourg, Plymouth, and Kingstown Breakwators. The dentruction of the cones al Cherbong, and the failure of the brick masces at Sheernesa, are snfficieat argmments agajnst the adoption of caiseons, or other expedients.

If such a work as is now proposed be undertaken, it should be solidly and properly done. The magnitude of sucb a work would not justify the risk of a failure; and, withont entering into the question of the comparative cost and efficiency of different syatems, I have 00 hesitation in pronooncing in favour of sloping stone breakwaters, similar to that of Plymoath; assuming, therefore, the same profic or section for the proposed breakwater as that, from 1,800 to 2,000 square yards, and the same pricea which that work has cost, the probable amonat will be about $\mathbf{8 8 , 5 0 0 , 0 0 0 ;}$ in conseqnence of there being oo good materials in the vicinity, they must be brought from olse where.

Ques. You have spoten of the experience you bave had in constructiog breakwaters, and of the observations you have made upon existing breakwaters; you have atndied fully also the theory upou which the constroction of break waters depends with respeot to the action of the sea ?-Ane. I have.

Yon have sald that you consider upright walls not so capable of resist ing the action of the sea as uloping; do you form that opinion upon the well-known theorem of the action of fuids in motion upon planes in terms of their obliquity ?-I do.

A nd that as the obliquity increases the effect apon the wall is diminished in a very high ratio \boldsymbol{f}-It is.

Do not the advocates of the upright system predicate their theory upon the supposition that waves in the open deep sea have only an oscillatory motion, direct and indirect, but that they have no progressive motion; that they do not act with any propelling or percuasive force upon an erection in the cea 1 -I believe they have that notion.

And that the ouly motion is a verticali-Yes.
And that, consequently, the oaly effect that waves prodece upon the wall is by their statical pressure, or welght P I believe so. But in answer to that, come experiments have been recently made upon the horisontal action of wares upon flat sorfaces by Mr. Alan Stevedson. Mr. Stevenson showed me an instrument when I was in Edinhurgh in June last, which consisted of a flat plane of a foot space, atuck apon the end of a rod, just like a letter balance, placed vertically to the shock of the set. It had a spring behind it, and, of course, when a wave atruck it, it indicated by the pressure against the spring the force of the wave. The action of a wave mover borisontaliy, and when it strikes an object, it does it with the mase of the wave pot in molion, multiplied by its velocity. Consequently, is order to repel that wave, we must have a mase which shali be soch that its weight shall be cepable of resisting the shook. It must be equal, both by its adhenion and weight, to ovareome the shock of the wave.

Do not yon think that 20 far from a sloping breakwater creating the
force (as the adrocates of the upright wall state) with which the water rushes up, it is the force with which the water does so rush op the plane, being thas permitted to expend and exhaust itself, which diminishes the effect in the horizontal direction apon the structare; and that If it were not so, as in the case of an opright breakwater, that force would act wholly like a ram upon the perpeadicular wall, to overthrow it i-It would; if we compare it with the friction of water in waves, which 1 have found by experience to be something like a third of the pressing or horizontal force, I should think by the same reasoning that the force of waves would be diminished in the same proportion, only that the friction of those large stones is much greater. I shoold say that the force by the great engular inclination of those stones would bo diminiabed in the ratio of one-half the monentum or impulae of the shock.

Is it not clear, then, that 20 far from waves having wholly an op and down motion upon the face of an erection in the see, so far from their having no foro in a horizontal direction, they do come in with propolling and percossive force, which doen act horizontally againat the erection, whaterer it ray be, with a force which varies according to the slope ?-I am quite of that opinion, and it is further confimed by the forms which beaches take.
The advocates of the upright breakwater do not dlspute the bydraulie fundamental theory, that when fluids in motion act upon a plane, the force of the motion upon the plane diminisbes in a high ratio in proportion to the angle of the plane, hut they ascert that tbis does not apply to the hydraulic constraction which we are considering, because there is only an up and down motion. Do you or do you not consider that the constraction of breakwaters, and their proper form, does depend opon that hydranlio theorem, and that it would not be safe to proceed to the construction of any break water upon the snpposition that it is oot governed by those lawe, for that there is no borizontal motion, but onls a vertical pressure? I I think so. I think that the adrocates of perpendicular walls are quite wrong, with all due deference of course.
Do you think it is practicable, or would it not be exceediogly difficalt to build an upright wall in the open sea, in seven fathoms water l-I think it wonld be almost impracticable in deep water; I should be very sorry to undertake sucb a thing.

Do yon think, if nodertaken, it would be cafe to use any artificial or inferior materials, such as concrete or chalk, In any part of it ?-I do not, decidedly.

Do jou know any case in which an upright wall has been builtin modern times in euch deep water as that in which we propose to erect this breakwater ?-I know the case of Sheerness, where the masces were sank to form an upright quay wall.

Would not the erection of a breakwater, perfectly opright, in the open sea, in Dover Bay, in seven fathoms water, be an experimental measure? -It woold.
Under all the circumstances of the case, confining yourself to the practical question, and especially considering the effect of failure, do you think in the natural rondstead and anchorage of Dover we should be justified in making such an experiment under such circumstances as these ? -1 do not. Of course I máy be a partiean of a particalar ayatem, but I give you my uabiassed judgment.

Anmex (D).-Mr. William Cubitt's Plan for the Conatruction of a

 Harbour of Refuge in Dorer Bay.The most ohvions mode of construction, and possibly after all the best, is that of dopositing large massen of rough hard rubble stone in the sea, In the line of the intended work, in the same manoer in which the harbour of Kingatown and the breakwater at Plymouth were constructed. The simplest is tumbling large atones into the sen, as Plymonth Brenkwater and Kiogetown Harbour Pier; another mode is bailding in water with large stones, by means of the diviag-bell; another by baildiog cajasons, filling them up partially, and floating them into their berths, and sinking them, and completing afterwards, either in or about them.

On the whole, therefore, after a most carefol consideration of the subject, my recommendation to their lordships is, to form the harbour at Dover Bay with piers or breakwaters, constructed by depositing the largest blocks of either granite. Portland cap stane, or limestone, or all of them as may be procurable together, with all the small atone that may be procurable together, with all the small stone that may arise in quarrying the rough blocks; and to form the breakwaters with circular heads at each of the entrances $\mathbf{3 0 0}$ feet in diameter, brought up from the bottom with solid facinge of athlar masunry by means of the diving-bell after the harbour is enclosed, as is now being done at Kingatown Harbour.

Ques. Will you have the goodness to state, after euch strong expremions in favour of an upright wall, why you now recommend a long slopo i-Ana. The reasons I stated, that if in coustructing a wall in the sea 78 feet bigh, which is the height we calcalated upon in deep water, we could be sure of all oar premises, the thing could be done, and would be the mont perfect. I also stated, I think I recollect, in that report the reason I weat from that and recommended another plan was, becanse I wished to recommend that which was perfectly certain to be effected with no contingencles, and at a much more easily ascertained cost than a breakwater with upright faces. which I certainly deemed the most perfect if done, bot the canallies and unknown circumstances attending which readered it doubtfol in srme points, and the expense of which would be greater. That in a thing of 90 large and importact consideration as this barbour is, where miltions of money, to say the least of it, must be expended, to do anything effoctual,
in my opinion it is better to take that thing which we thoroughly undertand and know, than to take a thing which is in the least degree experimeotal on such an inmense ecale.

You are, no doubt, aware of the tremendous disasters that attended the long slope at Plymouth during its progress of construction. With such facts as these before us, do you think the long slope can be safely adopted at Dover 9 -Quite so, and for very good reasons. It is not brcause a casualty happened from a great storm arising whilst the breakwater was buildiog there, or because another happened afterwards, in which they took up $\mathbf{2 0 0 , 0 0 0}$ tona of stone, which js not a great quantity, that we are to conclude that the plan was not a good one. I believe that that breakwater was set about in an imperfect manner. The makers of Plymouth breakwater prided themselves upon taking all large stones for it, the breakwater consequently was too hollow, and when a heavy sea came it curled over the surface of the breakwater, covering it with the water, and the compression of the air inside drove up the stones. Now, if all the atuff thut was raised io the quarries, large and small, had been put into that breakwater, I do not think that that quantity of stone would have tumbled out of it; and again, when a breakwater is fairly trimmed over, and trimmed into form, there is no difficulty in paving that with heavy stones on the edge, and giving it as perfect and amooth a face, after a little time, an can be, at any angle you please, so that no sea can break into it at all. It is because the thing is imperfectly done that it is not good. And with regard to casualties bappening, I am sure I do not myeelf suppose, and I do not think any party in reason will suppose, that we can build an oprlght wall without having casualties; things will be tumbled bead over becls, and we cannot work balf the lime, or sonetimes a quarter of the time. We must have the heaeft of experience in a great work of this kind; aod, I think, there is not that experience for an upright breakwater yet to justify as in entering upon it to this extent in the first instance.

I will ask your attention to the different aspects of the iwo works, the Plymouth breakwater and that proposed at Dover. What will be the effect of its strixing in that way upon those loose stones; will it throw them into the passage?-I would have none come out. But in completing the ead of the rubble, if there were a thousand stones driven out they woald be faken out, and it would be cleared out again in completing the ends whith the diving-bell, exactly as they are now cowpleting the wulls of Kingstown harbour.

Yon are aware that at Plymouth the entrances of the breakwater are at each end, but at Dover the entrances mast be directly through the slope? -Exactly so. So it is at Kingstown harbour; and though the seas there are not equal to those at Plymouth Sound, they are at timen uncommoniy heary seas, and I have seen a perfectly clear passage in the seven or eight fathom wuter. There is no difficulty about that.

Without going inlo the question of the principle of the action of waves on upright faces or slopes, you think that to build an upright wall in Dover Bay in the open sea, in seven fathoms at low water, exposed to the action of currents and tides, would be altogether a very difficult under. taking? - Upon any plan whatever.

And having bestowed upon this important queation all the acience and all the attention which you have devoted to it, and with all your experience, you come at length to this practical conclusion, that upon the whole, after the mout careful consideration of the aubject, your recomuendation would be to form the harbour at Dover Bay by depositing blocks or masses of stone, as shown in the plan which accompanies your report, osing the largest blocks either of grunite, Portland stone, or limestone, 00 as to form a section, having a long fore-alope?-I do; but I not only do that, I give a statement at the same time of the dimensions of the thing, the quantity measured, and show what addition it would make in the cost of the whole, and what saving might be made by using other materials in its constroction.
Then you think that any attempt to erect an opright wall from the bottom io Dover Bay, at the depth of seven fathoms at low water, and to form that wall of blocks of concrete, or any other artificial material would partake very considerably of an experimental underiaking p-Quite so.

And that we should not be jnstifed in recommending or approving anything which is of an experimental character for this orational work i-I thing there would be great danger in undertaking a work of that kind opon an experimental or new plan. We are not sufficiently experienced beforehand, baving no previous knowledge. There are very weeks in the gear in which it is at all comfortable, being of Dover one mile or two miles at sea. It is all blind work at the bottom of the apa. People may thluk that they can put those down with scaffoldings, but what is to be done at 72 feet derp, with a diving bell, in the open eea, is very dificult to say.

Amnex (E).-Mr. Alan Stevenson's Ancmets lo Quealione proposed to him on the Mode of Conalruction.

You are considered to have bestowed much study and observation, and to have great practical experience as to tbe action of waves on erections in the sea f-I have had considerable experience in the erectiun of works espoeed to the action of the sea, in piers, light-honses, harbours, and beacous; and I believe I have enjoyed good opportunities, more eapecially at the Skerryvore Rocks, of observiog the action of the waves.

All my experience, observation, and conslderation, lead me to believe that a sloping face is better culculated to resist the action of the waves than a perpendicular one, and the force expended against the perpendicular ptase seema by concentration to become more intense, for the seas rive
to a greater height than thse which strike a sloping face. Soch as opinion is in accordance with the phenomena which characterise almout every part of the coast, where it is found that the angle of the shore varies with the force of the wuves. I canoot imagine that the waves of the sea ezert co percusyive energy, whed I observe their power in forciog forward a vessel which has neither wind nor tide to help her, or a veasel at anchor, an effect which I have felt in 18 and 18 fathous water; or when I consider the beight to which spray rises in deep water by striking a vessel at anchor.

That waves driven in by gales of wiod are destitute of percussive effect I cannot couceive to be possible.

The force of the waves will be greally diminished when they act obliquely on a slopiog surface. From the effect of the slope to increace the surfuce of the wall opposed to a given perpendiculer surface of the wave, the energy of the wave will necessarily be decreased in proportion as the impinging particles are spread over a greater surfuce. Hut the force of impact thus diminished ln the ratio of the sine of the inclination of the surface to the direction of the fuid's motion, unust, in order to estimate its tendency to displace the wall horizontaliy, be resolved, frst, perpendicularly to the surface, and again in a borizontal direction, 20 as to be thus fiaally diminished in the ratio of the cube of the sine of the inclination of the surfuce of the wall to the direction of the wave. Experiments upon the action of fuids or surfaces conftrm the view thus theoretically assamed.
I cuusot perceive any material difference, in so far as the result is concerned, between the case of the breaking wave and that of an uobroken wave, except that I should expect more force in an unbroken wave which has not encuuntered an obstacle. Admitting that both hase an onward movement (which I take to be the case with all waves which are acted on by the wind), it would appear to me that the direction of the force in a broken wave must be more diffused in different directions, and would thos seem to possess lesa of a "ram-like power."

What du you thiuk of the theury which asames that waves have no other action than statical pressure upoo a perfectly opright nall, allhough it is admitted that waves in a broken or breaking state have a percuesive force, which an upright plane is not eo capable of resisting as a slupe, accorling to the well-known hydraulic theorem to which I have adverted -My opininn of that theory is that it is not sound, mad I found any conclusion on observation, and on reasoning, which both conduct me to the same resolt.

How can the hydraulic actlod or percussion of the wave, in the direc. tion of its motion, cease when it comes in contact with the wall, and beconse hydrostatic pressure, without acting hy impact on the wall which stops that motion, and which consequently, if it stands, resists that im-polse?-I see co reason, as stated in the last answer. fur supposing that the purely vertical or undulatory movement, which the above theory ascribes to all unbroken waves, should not produce, in the process of its neutralization by a vertical wall, effects simplar in kiod to thone produced by its neatraligation by an iuclined plane. In both cases the undulative is checked; and whether this is doue by reflecting the verticul or vodula. tory motion in one direction or another, seems in no way to change the measure of the whole shook, which such a concussion and final extinction of the force seems to imply.
Are you wware of any case in which a perfecily upright wall has been balt in the open sea, in a depth of seven or eight fathoms?-I sever heard of any upright wall being built in any such depth as seven or eight futhoms.

Wuuld not such a mode of conatraction, applied to Dovar Bay, be eseentially an experimental measure ?-Certainly, so far as my experiease goea.

What is your opinion of the difficulty, facility, or practleability of building an uprigat wall io the open sea in such a depth of watert and how should 300 proceed to execute such a work? 1 should coasider building an upright wall from the bottom in seven or eight fathoms in an open seu way, IIke that at Dover, as a work of the utmost difficulty, if not iddeed wholly impracticable.
Are you prepared, as a practical and experienced eagineer, to recome mend that such an experimental mode of construction should be tried in buch a place, on such a scale, at an enormous cost, and for such permapent national objects us thuse tu which these pruceedings relate ?-Sis far from recommending the trial of such a work, i should bumbly, but decidediy, dixsuade the government from such an attempt, which I am sure woold ead in failure.

What, upod the whole then, is the mode of construction which ron would propose for executiog this great work, in the nost certain, solid and enduring mannert-Taking into account the forms of the natural shore, and the tendeucy of the furegoing views, I wee nuthing to warrant a departure, in any material degree, from the existiog practice of engiaeery in the construction of break waters.

What is your opinion of the action of the wave apon a perpendicular wall, with a mouth surface in deep water t-I cannot conceive limat the unbroken waves caused by wiad have less percassive force than when thet are broken and diffused ; I must conclude that the sudden check of this force by a vertical barrior will produce a greater single effect than the gradoal oz penditure of force over a larger space caumed by meetion the successive surfuces presonted by a aloping wall. The cendeocy, therefore, appears to me to be towards a nore certuin and rapid deatructure of the vertionl barrier than of the alopieg 00e. The destroction of the aloptive
break watere may either prove that the slopes were oot anficiently great or that the materials composing them have been ill assembled, so as to cance vacuities botween the stomes, or, which is perhaps the most common earse of railure, the foundation of the glacis has not been laid at a low onounh level, or, Analls, that they have not been paved with stones of sufBeient weight. bor united to each other with the care necessary to exclude the action of the water, which tends to remove this description of patiog.

The analogy between the natoral heach composed of loose materials and the fice of a broskwater is not complete, because the materials with which a breakwater is to be paved may not only be larger than thoee which play ebout on E batural shore. but may have the additional advantage of being cerefolly asserobled and united together. Again, it must be remarked that artificin) works are exposed to greater risk from casualties than the matural beaches, from the following reasona: First, because the choice of their position is too often empirical lo so far as their stability is concrened, and in primarily and sometimes almost solely determined, with reference to their fideas to produce an effect in stilling a basin or harbour, with only a seenendary rezard to the risks of injury which they may encounter. And, metoed, brenuse, from motires of economy, such artifcial works, so far from having slopes greater than those of the neighbouring beaches, are geatrally steeper, and, as before noticed, are too ofted deficient in solidity end is the carrful protection of their surfuce by means of pitching.

Froas the general tenor of the answers you bave given to Sir Howard Dooghas'a questions, y ou are of opioion that the onbroken wave has perenarlve force like the broken wave, and that, of the two, yon consider the vobroken wave to have thin force lo a greater degree than the broken wave: will , oo be good eoough to state how you acconat. therefore, for these facte on your theory t-I am of opinion that an uabroked wave has percuasive force like a broken wave, and probably in a greater degree, bocanse it has not sustained the same check or retardation. I believe that all weven, except the great tide whve, have an onward motion, becance I krow of no caose constantly in operation which is capable of prodocing waves bat the wind, and this ageat, It appears to me, mast of necessity ingross upon the waves some degree of onvard motion. From all my enperience I have invariably found that the sea broke genily and playfully on en the sloping walls, while it lroke with a loud noise on the plomb walls, aod raised the spray io some cases to the height of 30 feet and upwarde. In striking against this perpendicalar face the successive weves make a coand similar to that of a great gun at a distance, carrying somesimes with them large pieces of stone which, falling on a lighthone roof, coesesionally damuge lt; though at the distance of 240 yards from the face of the rock.
There is $n 0$ amalogy between the case of a pile which permits the sen to pess roond it freely, and that of a continuons wall wbich checks its progrese and opposes a long froat of resiatance. The mere circumstance of the in-rbore piles being nore injured than the onter onen, appears to me sot very relevant to the sunject under consideration.
As to the circomatance of the piles which were braced being more in. fared than those which were oubraced, this only proves that from the man r in which the braces were applied, they offered more resiatance to the wave than wrat compensated for by the additional support derived from thes. I have sufficiently shown that it is possille to explain the varions elreonatances adduced by Colonei Alderson on the view which 1 have talken of the percussive dature of all waves with which we heve to do in the formation of breakwaters

In my owo mind I have no doubt that ocean waves are not porely ocelibetory, but that all wares bave an onward motion, and possess perceneive force. and nig humble conviction is, that the firat attempt on a large scale to check the force of the waves in deep water, hy means of a vertieal wall, will prove a sigal failore, and that a force will be developed by the collision of the wave with the wall, whose amount will be found to erpase angthing which has bitherto been experienced on the face of a stopiog break water.

I cingeot luok apon the works at Plymonth, Kingstown, and Cherbourg. each of which 1 have visited, way longer merely experimental. Such works, man, on the whole, be considered as eatiafactory as the nature of the circnmasadees will permit.

Do you think it impossible to construct a breakwater at Dover in such a manoer, and by such methods, as would give it practically a monolithic cbarmeter, and reoder it capable of resiating the force of the sea in the came manaer as an npright clift?-I have already expressed my belief thet the waves bave an onward motion, and that this motion would be coostiawed uatil checked and throwa back by the action of the mall. The wall thorefore mast reverse the movement and anoihilate the force on its onward course, nod ceems consequently obnoxions to sostain the final effort of the wevos. I cannot mee how in such e case any part of the water can be ceasidered as at rest, and thus operating as a non-conductor of the foree ; and the facta alluded to in my former answers, which I have myeelf oberved, es to the action of waves against cliff, seem folly to corroborate ay viewt.

Ampex (F).-Mr. William Stuart, Saperintendent af the Plymanth Breakrater, on the Mode of Construction.
I hare been employed at the breakwater from the commencement of the - Ind 1811 ; but as superintendent oaly siace 1899.

The alepe, as left by the sen, from low water opwards, was about 5 feet mancotal to 1 foot perpeadicular, and in some pleces rather more.

Messrs. Chapman, Jescop, and Rennie (the Jate Mr. John Renaie), engneers, were called in to report; and it was thereupon determined, in A pril 1625, that a breakwater sbould be formed regularly from the level of lowwater spring-tides, with a casing of rough squared blocks of granite and limestone, commenciag on the exterior, or south slope, ith a slope of 5 to 1, ae the sea had left it; and on the inaer, or north side, with a slope of 2101.

What was the ohject of increasing the breadth at the top I-To add to the stability of the breakwater.

Do you attribute the damages you have stated in the years alladed to, to the form and shape of the breakwater, and to the want of filling up the interatices?-In the first gales I altributed the damages to the fact that we had dot length enough of fureshore, or of exteasiou to seaward.

Not slope enough i-Not slope enough.
What was the objection you had to the more upright slope?-I was convinced it coold oot stand; and my belief was afterwards confirmed by the actual failure of a solid part of the breakwater, which had been boilt os this plan, and also by the failure of a part of Statten Pier itself, which had oever to encounter aogthing like so severe atest as the breakwater.

Do you think if the breakwater had brea constructed in any other form, for instance, if it had been either wholly upright from the botlom of the sea, or uprigit from about low-water mark, that much a breakwater would have had puwer to resist the force of the sea which overuarned thet largo portion of it which you have meationed ?-I think not.

Du jon thiok that oblique planes of broak waters, boilt in the sea, arn better calculated to resist the force of the sea in the direction of motion than any upright work ?-I do, decidedly.

Having said yon prefer a sloping brratwater, at beat able to reaiat the force of the sea, you further state, from your own experience, you think the long slope of 8 to 1 is that which is most likely to romain in a gtate of stability t-I do.

I would begin by throwing in stonen and gettiog the whole op to lowwater mark, letting them fod their own base in the first inatance, with rubble atone, large and small together, and then that would become a protection, and the see would level down and you could then add to it again.

Was any part of it ever made opright \uparrow-Never.
So thul the upright building was oever tried i -Never.

Amaex (G).-Mr. J. M. Rendel, on the Mode of Conotruction, and

 Eridence.To construct breakwater in seven fathoms water is, I apprebend, a very formidable ondertaking, eapecially if any of the ingenious contrivances of caiseons and machioes of that kiod are to be resorted to. I doubt very much, if a breakwater is to be constructed in seven fachoms water, whether the only safe plan would not be to deposit in the usual way from vessela (if it is a detached breakwater, or frocs a railway, if it is a breakwatreconnected with the aliore, and the shore prodoces auitablo materials), a mass of atnoe up to within, say, two or three feat of low water; and above that to construct perpeodicular walls of the kind referred to in Col. Jones's letter of suggentions.

Conaidrerable donbt berng entertained as to the slopes, and particalarly the sea slope of a breakwater, as least likely to be danaged by the action of the waves, you are tequested to state, on reading Col. Jones's paper upon this important subject, your opinion upon It i-I think Col. Jones would be very likely to full into the same error io quiversally applying perpendicularly sided breakwaters as other engineers bave been of najversally employing sloping ones. I thiak if the atones were ibrows in and allowed tu form their own slope, that slupe bring determined by the vatare of the materials up to within two or three feet of low water, and thea the breakwater reised upon that with perpeodicular sides, it would be the most economical plan in most situations. I should be more diaposed, if I had to build one in seven fathoms water, to adopt the plan 1 before referred to : suppose I had an uolimited command of materime, I should first of all begin to deposit those materials to form a rongh mass up to within a moderate drpth at low water, and then when I had brought my foundations np to that point at. Which the see would begin to mttack me, I ehould begin to atlack the sea by building witha class of materimis that would be its master. I thiok an opright wall in that case might be desirable.

In your evidence before the Commissioners last year on the dificalty of conetructing works in seven fathums of water, you deprecate the use of caiseons, and expressed doubts whether a breakwuter could be con structed in seven fathoms water by such means; do jon retain thot opinion i-l do.

You eay you do not know of ang instance in which a breakwater, with an opright face of the magnitude dow contemplated, has been constructed in the open sea, in seven fathoms water 1-I do not.

Theo jou say in another part, that if you had an uolimited command of materials, you would begin to deposit those materials so as to form a rough mass, with a slope up to about low-mater mark, and upon that you wuuld build a soperstructure in the shape of an opright wall t-I ahould do 80.

A ud you recommended thls combination of the slope for the subatruature with an upright wall for the superstructure $1-1$ should so build if I had suitable nuaterimls at baod.

Are yon fill of that opinion p-I am.
You stated that if you had plenty of materials your disponal yoa
woald be disposed to form the breakwater foundations below low-water mark with a \&ope, and above with an upright wall; was that é matter of economy or as matter of principle ?-As matter of economy. It is qoite a question of the cost. I have just finished a design for Holy head Harbour; there, on account of the facility of getting rough masses of stone for the breakwaters, I have proposed to form them of rubble-stone up to lowwater mark, with sloping sides.

If the execntion of this work, with the brick blocks, were pressed on so rapidly as to render it necessary that those blocks shonld be made in rerote places to be shipped or otherwise traosported to Dover, would not a great part, if not the whole, of the economical advantage of usiog brick masses instead of stone disappear ?-To a certain extent it would, but there is 00 county in Eugland where brick earth more abonnds than in Kent. In short, I am quite satisfied that you must have the material without briaging it by veasel; it must be brought by railway.

ON THE ACTION OF WAVES.

Annex (H).-Prof. Airr's Answert to Questions proposed to him on the Action of Wares.
Which form of structure is best adapted to resist the force of the waves, an upright wall or a break water with a slope similar to that at Plymouth?一In my judgment, an upright wall.

You have mentioned in a work which I have read with great atiention and admiration, on the theors of waves, that the horizontal motion of the particles of water next the boltom, prodoced by waves in the sea, is foud to extend to very great depths, and to occasion a sensible disturbance of atoses and asad af the botiom, and that waves break over ridges or shoals, to the depth of 500 feet P - Yes ; but in these instances the waves are very loge.

Without entering on your theory of waves in the open deep sea, and cosfining my questions to your dedoctions from that theory, as to the practical effect of waves on erections in the sea, am I correct in saying you assome, that in deep water the motions of the particles are obcillatory, that the rjaing and falling of the surface of the sea depend on the horizontal movements taking place alternately in the same and contrary directions? -Yes.

That those displacements are represented by a periodical function, the sine or conine of an angle depronding on time?-Yes.
That this circular or elliptical movement of the particles is shown to take place only when a wave is transmitted along a channel of naiform breadih aad depth P -Yea.

That as the depth of water becomes less, the waves become ahorter ?Yes.

That their fronts become steeper ?-Yep.

Bo that as thoy proceed into wator of less depth, their faces become more and more perpendicular notil they break ?-Yes.

That waves in a broken state strike erections in the sex, in a manner to act powerfully and percassively, as hydraviic rams by their momentum ?Yes; when in broken state they act percussively, not by the ordinary hydrontatic pressure.

Their mass and velocity give those waves that momentam or percussive force? - Yes.

For that reason, is the shallower parts of the proposed harbone, where the waves come into a depth at which, according to your theory, they would by breaking ezert such a force upon the wall, yon would reconmeod a sioping and not an upright wall ?-I should. I think a sloping wall is beat able to resist the action of the water is a broken state; and inasmach as you canoot aroid the breaking of the waves, I should recommend a slope there; but in other parts, where you can avoid the breaking of the waves, I would have a perpendicolar wall.

The wares become shorter and shorter as they advance, and, acquiring increasing tendency to bresk as they come into sballower water, their faces will be nearly vertical, in the state just preceding the broken state. Now, for the reason which you easign for thinking a sloping wall more capable of reaisting the impact of a broked wave than an opright wall, do not you think that waves in heary gales coming in with considerable relocity, and in that alate, woold act apon an upright wall with the percussive force due to their weight and velocity, and produce a more serious effect than if that fmpact were to act agajnat a slope p-It will not strike at all. There will be a great swell up and down agaio; there will be nothing like horizontal mation.

The ware is proceeding ?-It becomes a stationsry ware; a combination of a direct and a reffected wave. It poes up and down again without breaking; it is merely an elovation of the surface. I bave been in circumstances where 1 have had good opportunities of observing that practically, and I know that that is the case.
Then the modification you would propose is, that in the depth of water in whioh you think the wave would break. yon would recommend a slupe, and in the otber part an upright face ?-Yes,

Io what depths, practically, woold that be? I think you aid the pilots can best answor thit. You say that inasmuch as a wave does not break against so upright surface, it will exort no porcoseive force opon the wall? -No. It will exert the same sort of pressure that there is against a lockgate; that in, 3 bydroetatio prossure.

Equal to the weight of a column of water, whose base is the surface preaged, and height the depth of the centre of gravity i-Yes.

On the Concare Face.-The construction would be exposed to leas danger, if the section of the wall presented to the sea a bollow curve, like the base of the Eddystone lighthonse; but still there would be the breaking sen searching through every joint, and nothing can make squarestone masonry quite secure when it is exposed to this.

BRITISH ASSOCLATION.

The seventeenth meeting took place al Oxford on the 23rd Jnne, when Sir Robert Inglis delivered an tlaborate address, which we give in a condensed form.

Sir Robert Inglis's Addregs,

I begio with Astronomy.-The progress of astronomy during the past year has bren distioguished by a discovery the most remarkable, perhaps, ever made as the result of pore intellect exercised before observation, -mad deferminiog without observation the existence and force of a planet; which existence and which force were subsequently verified by observation. 1t had provionsiy been considered as the great trial and triumph of dynemi. cal science to determios the disturbances cansed by the mintual action of "the stars in their conrses," even when their position and their orbite wero fally known; bat it has beed reserved for these days to reverse the process, and to investigate from the discordance actualiy observed the existeace and the place of the wondrous atranger which had been silentiy, since its creation, exerting this mysterious power. It was reserved for theoe days to track lhe path and to measure the force which the great Creatur had given to this hitherto unknown orb among the nyriads of the air.
1 am aware that Lalande, more than ifty gears ago, on two nightswhich, if he had pursued the object then first discavered, would hare been well distinguished from the rest of the year, and woold have added new glory to his own nawe-did observe what is now fally ascertaiaed to have been the planet Neptuse; but thongh Uranus had just been added to thoe bright orbs which to mortal eyes for more than 2,000 years have been known to circle our sun, Lalande was observing before Piazei, Olbers, aud Harding had added Ceres, Pallas, Juoo, and Vesta to that number, ar.d before by those difcoveries it was proved, not only that the planets round the sun had passed the myatic onmber of seven-sioce Hersohel had canfuted that ancient belief-but that others might also remaio to reward the patient laboors of other observers. He therefore distrusted his own eyes; and proferred to believe that he had been mistaken, rather than that the existence and force of a new planet had been regerved for the discovery of this latter age. What his eyes baw, bat whut his judgmeat failed to discriminate and apply, bas since become a recognised fact in science.

I will not presnme to measare the claims of the two illustrions names of Leverrier and Adaus: of him, who, in midoight workings and warchiagh, discovered the truth in our own country, and of the bardly happier phites sopher who was permitted and eoabled to be the first, after equal workings and watchings, to proclaim the great reality which bis scienoe had prepared and assured him to expect. 1 will trust myself with otly two ub. servations: the one any earneat bope that the rivalry not merely of the iliustrions Leverrier and of my illustrions coontryman Adams, bat of the two great nations which they represent, France and England, reapeotively, may always he confined to parsuits in which victory is withoot woe, and to sludies which enlarge and elevate the mind, and which, if iighely di. rected, may produce alike glory to God and good to mankind: and the other, my equal hope, that fur those (some of whom I trust may now bear me) who employ the same scientific training aod the same laborious industry which have marked the researches of Leverrier and Adams, there may still remain similar trlumphs in the yet unpenetrated regions of space; and that-ualike the greater son of a great father-thoy may not have to mourn that there are no more worlds to be conquered.

It is a remarkable fact tbat the seeing of the plact Neptune was effected as suddenly at Berlin by means of one of the star-meps which has proceeded from an association of astronomers chiefly Germans; suoh maps forming io themselvee a sufficient illustration of the value of such Associations as our on 0 , by which the labour and the expense-t 100 great, perhapa, for any one individual-are supplied by the oombined exertions of many kindred followers of acience.

It is another result of the circulation of these star-maps, that a new viejtor, a comet, can bardly be within the range of a telescope for a few hours Without bis presence being discovered and announced through Europe. Those comets which have been of larger apparent dimensions, or whieh have continued longer within view, have, in conseqvence, for more than 2,000 years been observed with wore or less accuracy; their orbits have been calculated; and the return of sone has been delermined with a piecision which in past ages exeroised the wonder of nations;-but sow, in. proved maps of the beaveas, and improved instrumentis by which the strangera who pass along those heavens are obeerved, carry koowledge where conjectore lately dared not to peoctrate. It is not that more cometa exist, as hus sometimes been said, bat more are obeerved.

Lord Roses's Telemopis.

An Englishman-a subject of this United Kingdon-enanot refer to the enlarged meuas of astronomical observation onjoyed by the preseat age without some allasion to the noble Earl, Lord Rusee, asd hie mont wuos
derfal telesoope. It actoal operations have been for a time suspended by a eanse not less hooourablo to Lord Rosse in another character. They have been rotarded, so far as be himself is concerned, by the more immediate dutiet, which, as magistrate, and as a landowner, he owed to his meighbours, his tenantry, and his country, daring the lato awful visitaLien which has afficted Ireland.

Btar Catalogure.

The Catalogaes of Lacaille and of the Hiatoire Celeste are now before the world ; and with the Catalogue of our Association conntitute a meries of mot important gifts conferred on astronomy.

Lomar Tbiory.

The Astronomer Royal has done me the hononr and the kindness, by a paper which I havejuat received from him, to make me the rehicle of commaneating his wisdom to you on a most important and interesting discovery of the part year:-
"In the lanar theory a very important step has been made in the conrse of the past year. When, dear the beginning of the present centory, a conskerable namber of the Green wich lunar obserrations were reduced by Burs for the parpose of obtaining olements for the construction of his Lunar Tables, and generally for the comparison of the moon's observed place with Laplace's theory, it was found impossible to reconcile the theoretical with the observed places except bs the assumplion that some slowly varying error afrected the epoch of the moon's mean longitude. From the nature of the proceses by which the errors of the elements are found, the conclusion upan the existence of this pecaliar error is less subject to donbt than that upon any other error. So certain did it appear, that Laplace devoted to it oes eatire chapter in the Mecamique Céleate, with the tille ' $O n$ an inequality of long period by which the moon's mean motion appears to be alfected.' Guided by the general analogy of terms producing inequalities of long period, he suggested as its probable canse an inequality whose argament depends upon a complicated combination of the longitude of the earth's perihelion, the longitade of the moon's perige e, the longitode of the moon's oode, and the mon's angular distance from the san. But he made p_{0} attempt to calcalate its theoretical offect. He abso saggested an in equality depending on a poesible difference in the northern and southero bomiapheres of the earth. Many yoars olapsed before these saggested theoretical loequalities were carefally examined by physical astronomers. At length the introlnetion of new methods onabled Poisson and Labbock snocesafolly to enter upon the investigation of the theoretical valaes; and they proved that inequalitien deponding on the argumants suggested by Laplace could not have senaible valnes. The theory was now lef in greater doubt than ever; and suspicion fell even on the acouracy of the reductions of the observations.
${ }^{4}$ A fow years since, as is well known to members of the British Assoefition, the British Government, at the representation of the Aesociation, mactioned the complete reduction, on en waiform plan, of all the observa. tiens of the moon made at the Royal Observatory of Greenwich siace the year 1750: and the immediate superintendence of this work was nadertaken by the Astronomer Royal. The reductions are now priatling in all nececsary detail; and the press.work is at this time very far advanced. In the last anmmor the corrections of the elements of the moon's orbit were generally obtained; and the errors of epoch in particular at difforent timen were foand with great accaracy. These resules confirmed those of Bürg, and extended the faw of the inequality to a much iater time. In this state shey were exhibited by the Astronomer Royal to Prof. Hansen of Gotha, Who was known to be engaged in the Lnuar Theory. Prof. Hansen immediately undertook a search for their theoretical causes. His perfect kaowledge of the state of the existing theories enabled him at once to single out the class of disturbances produced by the action of the planets as that in which the expianation of this inequality woaid probably be found. In the coarse of a systematic search, many inequalities of long period were found; but none of sensible magnitude. At length two were foand, both prodiced by the disturbing force of Venus, of a magnitnde entirely unexpected. One depende apon the circumstance that eighteen times the mean anomaly of Veans diminished by sirtees times the mean anomaly of the Earth increases at very dearly the same rato as the mean anomaly of the Moon : its co-eflicient is $87 /$ and its period 273 years. The olher depends opon the circomstance, that eight limes the mean aoomely of Venusincreases at very nearly the amme rato as thirteen times the mean anomaly of the Ferth : its co-efficient is $88^{\prime \prime}$ and its period 289 years. The combina. tion of these two explains almost perfectly the error of epoch, which had $s 0$ long been a subject of difficulty. The discovery of these two inequalities, whether we regard the pecularlity of their laws, the laboars expended apon the inventigations, or the perfect success of their results, must be regarded as the most important step made in physical astronomy for many years."

Tides of the Air.-Tangible Astaonomy.

The dectrise of the influence of the moon and of the sun on the tides was eo sooner establishod than it begame omineatly probable that an infuence exerted so stroogly upon a fuid so hoavy as water could not but have the lighter and all but imponderable fluid of air ander its grasp. I apeak not of the infuence attributed to the moon in the popolar language and belief of mations ancient and modera,-of Weatern Eurupe and of Central Asia, in reapect to disease; hat of the direct and measureable infiaence of the moon
and of the sun in respect to the air. It is now clear, as the resalt of the oheorrations at St. Helena by my friend Col. Sabine, that as on the waters, 50 on the atmonphere there is a corresponding influence exerted by the same canses. There are tides in the air as in the sas; the eztent is of conrse determioable only by the most careful observations with the most delicate inatruments ; aince tho minuteness of the effect, both in itself and in comparimn with the distorbances which are occasioned in the equilibrium of tho atmosphere from other causes, must aiways present great dificulty in the way of ascertaining the troth-and had, in fact, till Col. Sabine's rosearches, prerented any decisive lestimony of the fact being obtained by direct information. But the hourly observations of the beromeler, made for some years past at the Meteorological and Magnetical Observatory at St Helena, have now placed beyond a doubt the existence of a lunar atmoopheric tide. It appears that in each day the barometer at St. Helona stands, on an average, four thousandibs of an inct higher at the two periods when the moon is on the meridian above or below the pole than when she is six hours distant from the meridian on either side; the progression between this maximum and minimum being moreover continuous and uninterrupted :- thus furnishing a new element in the attainment of physical truth; end, to quote the expression of a distinguished foroigner now prosent, which he uttered in my own house, when the subject was mentioned, "We are thus making astronomical observations with the baronueter"that is, we are reasoning from the position of the mercury in a barometer, which we can louch, as to the position of the heavenly bodies which, unseen by os, are indnencing its visible fall and rise. "It is no exaggeration to say,"-and here I use the words of my friend, the Rev. Dr. Robinson, "that we could even, if our satellite were incapable of reflectiog light, have determined its existence, nay, more, have approximated to its eccentricity and period."

Anibal Electricity.

In Physiology, the most remarkable of the discoverien, or rather improvements of provious diacoveries, which the past year has seed, is, perhaps, that conoected with the tabours of the distinguished Tuscan philosopher, Matteucci. I refer in this inntance to his experiments on the gepe ration of electric enrronts by moscular contraction in the living body. This subject he has continned to pursue; and, by the happy combination of the rigorons methods of physical experiment with the ordivary course of physioiogical research, Prof. Mattedcei has fully eatablished the important fact of the existence of an eloctrical carrent-feeble, indeed, and sach at could only be made manifont by his own delicate galvanoscope-betweeu the deep and the superficial parts of a muscle. Sach olectric currents pervade every muacle io every species of animal which tras been the sub. ject of experiment ; and may, therefore, be inferred to be a general pheno. menon of living bodies. Even after life has bean extingnished by violooee, these carrents contince for a short time; but they cease more speedify in the mascles of the warm-blooded than in those of the cold-blooded aofmais.

The delicate experiments of Matteacci on the torpedo agroe with those made by onf own Faraday npon the Gymontute eleciricus, in proving that the shocks communicated by those fighes are due to electric currents generated by pecoliar electric organs, which owo their most immediate and powerful stimulus to the action of the nerres.-In both species of fishes the electricity generated by the action of their peculiar organised batteries -besides its benumbing and stunning effects on iiving animals,-rendern the needle magnetic, decomposes chemicai compounds, emits the apark, and, in short, exercises all the other known powers of the ordinary olectricity developed in inorganic matler or by the artificial apparatus of the laboratory.

Ethenization.

This is the subject of the inflaesce of the raponr of ether oe the tuman frame-a disoovery of the last year, and one the value of which in dimiaish. ing human pain has been oxperienced in countless instances, io every varioty of disense, and especially during the performance of trying aod oflen agoniming operations. Several experiments on the tracts and nervo roots appropriated respectively to the fonctions of seasation and volition have beea resumed and repested in connexion with this new agency on the nervons system. Mesars. Plonrens and Lorget have shown that the gens eational functions are first affected, and are completoly, thongh tempurarily, suspended uader the operation of the vapoar of ether; then the mental or cerebral powers ; and, fually, the motor and excito-motor forces are abrogated. It wouid seem that the stimoins of other applied so largely or coas. tinuonsly as to produce that effect is foll of danger-and that weak comstitntions are sometimes anable to rally and recover from it; but thet when the infoence is allowed to extend no further than to the suspension of seneation, the recovery is as a geperal role complete.

Microscopism.

Is no department of the sclence of organlsed bodies has the progress been greater or more assured than in that which relates to the micruscopic strnctare of the oonstituent tissaes of animal bodies, both in their healthy and in their morbid states; and this progress is specially marked in this conatry daring the period whioh has elapsed since the commonicallon to the British Association hy Professor Owen of his researches into the intt. mate structure of recent and fosail teeth.
The result of these researches haring demonstrated the conatancy of well defined and cleariy appreciable characters in the dental tisucs of oach epecies of animal, (by which chartotors such species ooeld be determined,
in many instances, by the eramlation of a fragmeat of a tooth,) other abservers have been stimulnted to puraue the mame minale inquiries into the diveralties of strueture of the tissues of other organs. Buch inquiries, for ezample, hare been most ably and successfully pursued by Dr. Carpenter. in refereace to the microscopio structure of recent and fosall shells; and the anatomist, the natoralist, and the palanontologist are alike indebted to the zoal and the skill of that eminent physiologist: while, in another acnee, all are indebted to the British Association for aiding and stimulating his inquiries, and for the illustrations with which the publication of Dr. Car penter's Report has been accompanied in the Transactions of the Associa. tion.

Capillary Attraction.-Motion of Fluids in Tubes.

The hairs of the different mammalian animals offer to the microscopical anatomist a field of observation as richly and remarkably developed as the reelh, which formed the subject of Professor Owen's communication in 183s, and as the external coveringe of the testacious mullusca. which formed the subject of Dr. Carpepter's communication in l846. The struc:tare of the sofler tissues of the animal frame has not heen less soccessfully investigated by microscopic observers. One of the must extraordinary, perhaps, of the recent discoveries by the microscope is that which is due chiely to Parkingé and Valentin, and which in this country has been well established by Dr. Sharpey, relative to the important part in the motion of guids on interaal surfaces, performed by the vibratile action of myriads of extremely minute hairs or cilia which beset those surfaces. These ciliary movements, for example, raise the mucus of the wind-pipe to the thromt against gravity. Tbey have been detected in the ventricles of the brain, as well at ninny other purts.

The beantiful discoveries of Sir David Brewster have been carefully confirmed; and many intererting varieties have been noticed in the structure of the crystalline luas of the eyes of different species of animals.

The most brilliant result. perhaps, of microscopic nnatomical research has been the artalal observation of the transit of the blood from the arteries to the veins; the last fact required-if, itdeed, snch no expression be allowable-for the full proof of Harvey's ductrine of the circulation of the blood. Maipighi Girst observed the iransit in the large capillartes of the fros's web. It has since been observed in most other tissues, and In many other animals.

Ne pert of the animal body has bcen the subject of more, or of more succeseful, remearches than the blood itself.

Molluscs.

In no department of the living works of the Creator has progress been mere manifested than in that humble and, therefore, ferelofore much neglected. class of the molluecous or gelutinous animals which prople the aras around our island. Among the naturalists whu have rescued this branch of zootogy from neglect, the name of Edward Forbes deserves early and hooourable mention.

Steam Navigation and Botany.

In the diffaslon of the riches of the vegetable world, steam navigation has obviousiy been a most fuvourable auziluary; so that "even cnttings of plants" are now "actually sent succressfully to Calcutta, Ceylon, \&c." In speaking of tbe exports from Kow, it la nut unfiting to add, that " between four and five thousand plants of the famous Tussuc grass have been dispersed trom the Rosal Gardens at Kew during the past year."

Fecundation.

In Vegetable Physiology, microscopic ohservers bave of late been moch occupied in investigating the phenomen of fecundation, and especially as to the wode of netion of the pollen. On this subject, botanists are still divided. Several experienced ubservers adopt the theory lately advanced and ingeniously supported by Prof. Schleiden, of Berlin; while others of geat eminence deuy the correctoess on which this theory is founded. Among these, the celebrated microscopic ubserver, Pruf. Amici, of Florence, very recently in an essuy - comusuicated to the Scieatific Meeting held in 1846 at Genom-has endeavoared by a minute examiuation of several speoies of Urchis to prove the existence of the essential part of the embryo anterior to the application of the pullen, which, according to him, acts as the specific stimulus to its development.

This riew receives greal support from some singular exceptions to the general law of fecundution. Of these, the most atriking occurs in a New Holland shrub, which hys been cultivated several years in the Botanin Garden at Kow; and which. though produoing female fowers only, has constantly ripened seeds from which plants have been raised perfecty resembling the parent:- while yet there is no suspicion either of the premence of nale flowers in the same plant, or of minute simmina lo the femuie fower itself, nor of fecundation by any relnted plant cultivated along with it. This plant has been figured and described in a recent volume of the Linnean Society's "J'ransactious," under the name of Calebogyne ilicifolia, by Mr. J. Smith, the intelligent curator of the Kew Garden,-by whum, indeed, this remarkable fact was firat noticed. It is not the leat corious part of the history of the Caslebogymes hat mule lowers have lately been discovered in New Hulland unquestionably of the same species. Prof. Gasparini, of Naples, has more recently communicated to the scientitic meoting hrld in that city in 1845 his observations and experiments on the cultivated fig, which, thongh entirely destitute of male dowers, produced seeds having a perfectly developed embryo, indepeodeat of fecandution: accese to the
pollen of the wild fig, generally suppoeed to be carried by ineecte, being in his experiments, preveated by the early and complete shutting up of the only channel in the fig by which it could be introdoced.

Political and Sochal Inplegnce of the Electric Telegrape.
Distance is time; and when by steam, whether on water of no had, personal commanication is facilitated, and when armies can be trunsported without fatigue in as many hours an days were formerly required, and when orders are conveyed from one extremity of an empire to unouber, almost like a fiash of lightaing, the facility of governing a large atate bcomes almost equal to the facility of governing the smallest. I rewember, many years ago, in the Scotsman, an ingenous and able article showing how Engluad could be governed as easily as Attica under Pericies: and 1 believe the same conclusion was deduced by William Cobbett from the same illustratiod.

The system is daily exfending. It was, bowever, in the United Statea of America that it was first adopted on a great scale, by Prof. Morse ia 1844 ; and it is there that it is now already developed now extensirely. Lines for above 1,300 miles are in action; and conuect those Staves with Her Mujesty's Canadian provlaces; and it is in a cuurse of development so repid, that in the words of the Report of Mr. Wilkiason tu sir W. E. Colebrooke, the Goveroor of New Brunswick," No schedule of telegraphic lines can now be relied upon for a month In succession, as hundreds of miles may be added in that space of time. So easy of atiainmont dies sach a result appear to be, and so lively is the interest felt in its acromplishment, that it is scarcely doubiful that the whole of the populous paris of the United States will, within two or three years, be covered with a trlegraphic network like a spider's web, sospeodlag ite pricipal threads upun inportant points along the sea-board of the Atlantic on ove side, and upon similar points along the Lake Frontier on the oiher."-I an indebled to the mape Report for another fact, which I think the Association will regard with equal intorest: "The confidence in the efficiency of trlegraphic communication hus now become so established, that the most louportunt commercial transactions daily transplre, by its means, between correrpundrnts weveral bundred miles apart. Oc口lar evidence of this was affurded mue by acom. munication a few minutes old between a merchant in I'oronto and his correspondeat in New York, distant about 638 miles." I am naxious to catt your attention to the adventages which other classes alsu ming experience from this mode of communication, as I find it in the sane Report. When the Hibernia steamer arrived in Boston, in January 1847, whth the news of the scarcity in Great Britain, Ireland, and other purts ot Eurupe, and with heavy orders for agricultural produce, the furmers, in the uuterior of the States of New York, -informed of the state of things by the Magnetie Telegraph-were thronging the streets of Albany with iunumernbir ieamlouds of grain almost as quickly after the arrival of the steaner at Bostoa as the prws of that arrival could ordinarily have remehed them -I many add, that, irrespectively of all its advantages to the g. nera, cumaunity, the syatem appears to give already a fair retorn of laterest to the individoals or companies who have invested their capital in its application.

The larger number of the members of this Assuciation buve probably already seen in London an exhibition of a Putent Telegraph which priats alphabetical letters as it works. Mr. Brath, one of the pruprieturs, obligingly showed it to me; and stated that he hoped to carry it into etfect oo the greateat scale ever yet imagined on the American Cuntinent. Pruf. Morse, however, does not acknowledge that this syatem is susceptible of equality with his telegraphic alphabet for the purpose of ruprd communication; and he conceives that there is an incremged risk of derangement is the mechanism employed.

I cannot refer to the extent of the lines of the electric telegraph in America without an increased feeling of regret that in our own cuautry this great discovery has been so inadequately adopted.

In England, indeed, wo have learnt the value of the electric telegraph as a measure of police in more than one remarkable case: as a measure of government it is not less important; from the illusiratiou when I have drawn from America, it is equally useful in commerce; but wis a meacere almost of social intercourse in the discharge of pablic basiness it is pot without its uses also. But a few days since, I had an upportunity of examining the telegraph in the lobby of the House of Communs, by whict communications are mede to and from some distant committeo rovar. As a specimen of the information conveyed from the House is the fullowing :"Cummittee has permission to sit until tive o"clock;" and amuag the questions sent down from the Committee are the following:-"What is before the House ?" "Who is speaking ?" "How lung before the House divides?"

Smeltina by Blectricity.

For that process, I believe, a patent has been recenily taken ool. Aa yot, perhaps, suficient time has not elapsed to test its full value. We all know that an oxperiment succeeds perfectly in the case of a nucdel, or tha laboratory, which may not socceed so perfeclly when the minialure ateaco engine, for example, fo extended to its ordinary sise in a manufactory, or when the operation is transferred from ounces to tons. But if tbe bopes, expectations, and confidence of the discoverers be remlised, their plan will be of the greateat valne to this country, and of even greater pruporionate value to sone of the Queen's most impuriant colonies. It has been maid that 10.000 tuns of copper ore were sent last year from Austoulin to be ametred in England; and that they produced no more than 1,600 was of copper. It is evideot, therefore, that, if by this procese of smelluag by elactricity,

 demoliof frevery is ingecie.

Batrign Momad.

Onr-petional Colleotion mey new be compared, not onvetationely, but thandifity, with those of otter conatries; remembering, also, that our collections aro litife morv than halfa centary old. The ormithologiond, the cowehological, the mecranalian departmonte in the Boitich. Mumena are equal, I beliser, to those of any other anpital : greatly owing to the taleats adilabour of the emicent haad. of that department, Mr. Gray, -whom I sat here. The fomil divisions, under the care of my zealous, laboriona and able fricad, Mr. Könige mere parhaps superior-in some clames, boyond cmpariean. Last jear, ther was added to the palmontology of the Musan the uaiqne apacimang of the Holitherium of Kanp, the Cephalappis of Lyell, the Lepidote of Fitton; and the collection of asteology is, as it onght to be, the first in Englaed. The number of visitors, which six years aco was 819,000 , was last year above 700,000-und the collections of 00 m parative anatomy in the Henterian Musenm are, as they ought to be, the fint in the roordd.

Thie following are some of the more interestlag papers read in ttis various Seoturas of the A seociation, for which we are indebted to the Athenawim.
"Roport on Geological Themion of Elvoation and Earliquakes:" By W. Hopeins.
 givigg at prowet apydotailed anslysit. After beving tated ouradn. leading characters of volomors, both with reference to the fluid volcanic mese and it containiag cavity, the stathor proceeds to the exmminasion of theories of volcanoes. He regand the chmmical theory proposed by Sir H. Dav, and the theory more roeertly proponed by M. Bischotry 解 involvirg wechanied diflloultes of the gravent character. In constdering the theory' whictrsuppose exating volicanoes to owe their origin to the formerfiniofly of the earth, the author is led to the diveunion of the genernl theory basect on the hypothenis of meth tuidity. He examives tite evidence affirded in finour of thin hypothenis by the accordance between the present ellipticity of the earth, as determined by admemurement, end its mean demity as dotemieed by the experments of Cavendish and Baily, and the calculated ralee of their quantities. Hie then proceeds to consider the mode of the earth's rafrigeration and consequent solidification, and the probable extent to which the latter procese has already proceeded. Supposing the earth to consist of a flaid central nacleus and a solid envelope, it is concluded that the shickeses of the latter is probably not leas than one-fourth or one-fifth of the earth'i radius. Thin conclusion is drawn from the observed amount of the precesaion of the earth's pole with that calculated on the hypothesis just stated, respecting the conatitution of the earth; bat the anthor alsa indi. ested another method by which eridence might be obtained on this point. Be shawed that if it could be proved hy experiment that the temperatare of fuien of molld anbetances is generally increaced, even in a small degree, by bigh pressure, we should have strong reason to believe in the entire wolidity of the earth; and if, on the contrary, it should appear that high pressure bas do such efect on the temperature of faion, we should be led to conciude that the present temperatnre of the earth is not due to its original heat. He ceniakered such ex perinoeats necouncy for the furthor advence of this bresich of geology.

Tho eecond part of the report courtuint a theoretical inventigation and exioutantion into the nature and propertios of the mechenical effectio Which wall resuit from the aetion of sueh forees. The author propened to' comsider the subterranem foreo as heving the naturo of an explosion, producing vibrations over a mach wider space than that to which the origimel force wes applied. The vibraioms were compared to those produced by striting the end of a solid bur-which are of two kinds. The first atet are similar, but inflaitely less in extent to vibrations in air. They are produced by comprestion, and proceed in the direction of the ads of the bar. The second kind are perpendicular to the axim of the bar-like the vibratuons of a masical chord. In thit case the particles of the bar change their form, and the elatic force depeads upon their teadency to resume their orfginal shape. The velocity with which vibrations are propagated in the directlon of the arin, if mach greater than when their direction is tranaverae; and as both manlly co-exint, they will after a time separate and become diatinct,-both the velocity and the length of the waves of vibration being different. If the origigal ispplive, or earthquake sbock, is communicated at some distance below the sarface, the vibrations produced may be compared with the disturbgeen prodoced in water hy hlowing up a wreck. A wave will be produced by the alternate comprestion and dilation of the particles, which will diverge m spbeces, equally in all directions, with a constant velocity. In the earth, however, as in the solld bar, there will be two spherical waves procseding. outwards with anequal relocities. The apparent motion of these wres, whens they reach the aurface, will be different, from their real amount of motion below, dependiog upon the dintance of the place of obsernetton from'apoint fmmediately over the foens or origin of the force. Astaming the faterior of the earth to be homogeneous, and the vibrationt prodaced by earthonates to be of the kind described, it becomet a leading point to ateertefti, by observation, the position of the focus from which the vibrations

 they afighabed. The duptr bementh the surface might atno bercelcelatedy from the disteretice betwrenither appasent moverient of the wave on the surface and its real movement in the interior, at given by theory; of it migh beramortainod by compuring the relative apparent motion of two weven pater ceeding whith unequal relocitien, if metus were obtrined for receprinimpthe two kinds of weate by indeameats indiesttog the matase of the vibmations.

Sir H. Dr ca Becric observed, that if the focus of the enthqueke mive noer the gurfuce, the problem would become one of great conplexity, on cow count of the many brents in the strita; and their diference of componition : but if the focas were several hundred milles below the surfice, thove inequath ties world be of no connequence.

Mr. Mallet enumerated the different kinds of waves which do, of may take place, with every earthquake. When the focal point is inland, thero will be the shock-wave, either single or double; the sonnd wave in the earth; and the sound wave in the air, if the original impule is acoompanled with fracture: if the superficial ribration is aufficient, there will also be the sea-wave. When the focal point is under the sea, an in all great earthquakes; there will be the ahock-wave, the sound-wave under the sea, the somad-wave in the air, the great sea-wave, and a sroaller, termed the "forced sea-wave;" if, however, there is no fractare, there will be no sound-wives. It had bean ascertained that magnetometers were also "geinmametors" of a very dalicate" kind,-those at Dablin having indicated from 10 to 20 shocks latet year.

"Repert on chmacrilute Finear." By W. R. Brater

The author in introductag his fourth report on this rabject ofverved, thest in accordance with the revolution adopted at the last Meeting of the Amodstion, about thirty aets of observations had been obtained from various attations in the British islundy ; the extremen of the area embreced bedng the Of neys. and Jerrey in one direction and Galway and Dover in the other. As instentow of the increasing interest manifested on this subject, he remanted that he had beea furaished with carves from athtions in the north; where the bmoumetric movementy had been conddered to resalt from the triant of thegreat November wave. Bach of these curvos whe referred to the same pratod; manaly, from the 2nd to the 17 th of Novernber; and the obnerven invarathy
 dicating a well.marized retom of the great symmetrical wave. Mr. Burt, after notiotng the remartable circumstances under which the wive retorned lat autumn -0 remerkable that they had no smadl seadioncy to mark the wave in the south-embern part of the laland-atated that the projectod ourve at London atrifingty deviloped its encatial features ; the foe subordintion wave were woll seen, althougt the intexions were not strong, owing to the' small altttode of the wave on its lest return, scarcely exeoding half an inole -its whole development occurring above thirty inches prevented the botdo ness of the inferioms perticaleriy noticed on the oecesion of its retam it 1842. The anthor then proceeded to notice the eventinl fetures of the curres af obtained from observations at Ramsgate, 8 . Vigean's nemr Abroath, eant conat of Scotland, the Orkney and Weatern Iales, Applegarth MIato, Durnfies-shire, Largs, Limerict, Gidwry, Helstone in Cornmell, and St. Hellers; Jersoy. Oar limite will not permit us to give in'detdl' the rewowblancea ard dinerences of these curvet, exhibitiog, as they do, the ditivoution of premare around Great Britinin end Irehand, whoh the author mavedr from the sonth-eastern point towards the north. weat; bat the report will be printed in the fortheoming volume of the Tranesotions. We mey, howover, bere notice that attention was called to the princfple which the author lede down in his report of last jear, "that the baromotric curve; lncleding a courplete rise and fall at any one itation, does not represent any reatity in nature, but is the effect of two or more syatems of wares or carrente moving in differeut directions and crossing each other at varions amglea." He also pornted out the great extent of ocillation (nearly doable) observed in the northwest as compared with the south-easterly observations. The great wave commenced on the 2ad of November; at the northern atatiom it calminated on the 12th; at the south eariern on the 9th; and it terminated on the 17ths In explaining the differences of epoch as indicating the tramit of the crowebeing mach earifer in the moth-eant than in the north, Mr. Birt remarised that the observations cleariy showed that the barometer paseed two marime, one or the 9 th, the other on the 12 th; and that the whole extent of the British tales might be divided into two barometric arear, distingainhed in one case by the superiority of the maximum of the 9th, and in the otiter by the superiority of the marimum of the 12th. A Hine pasing betwren Arbroath and Newcatle, sonth of Damfties, and between Ireland and Wales, separates these areas. North-west of this line we find the maximom of the 12th superior : south-east of it we find the maximum of the 9 th ataperior. The mandmum of the 9th Mr. Birt regerded as the central wave forming the creat of the great wave, and the maximum of the 12 th be considered as the crest of the first subordinate wave on the pontarior slope. The author next proceeded to examine the distribution of presanre as manifested by these obeervationst from which, in connexion with the features of the projected curve, he deduced the following reaulte :-lat. The return of the great symmetrical wive. This oceurred in the anth-eastern angle of our island under very peculiar circamstances. The area of greateat aymmetry is closaly in accordiance with the reanlts of former diecuacions, and goes far to confitm the reanlt deduced
from the examinution of Sir Joha Ferschel's Boirily obeerations, "that Brassels is entitled to be considered as a point of comparatively gentle barometric distorbance, \# \# and may be regarded as in a certain sence a nodal point, where irregralarities are amootbed down and oscillatory movement in general is more or less checked, and anch movements incrense as we recede from Brussela as a centre, especially towards the north-west." The curve of greatest symmetry was obtained from Ramagate, the nearest station to Brossals. As we proceed towards the morth-west, the aymmetry is considerably departed from, eapecially by the greater development of the first subordinate wave on the posterior alope, by which the maximum of the 12 th became Euperior. Thic portion of the wave formed a atriking contrast to the similar portion in 1845, which was characterised by a considerable depresaion. It If not a little curioun, remarked the anthor, and goes far to show that we are approaching the true explanation of the nodal character of Brasecte to observe that movemente 40 disnmilar in their character, so opposite in their valne, and presenting themselves noder such a diversity of aspecta, should, in a certain locality and on particular lines of country, manifent, by means of the barometer, constant and well defined phenomena, that may be recognised jear after year, and which give to the curves of harometric rise and fall during the period of their occurrence a pecaliar symmetrical appearance. 2ad. Two syatems of waves or currenta, one having a general direction of progress from the north-weat, the other from the sonth-west, traveraed the area during the period of the great wave. This ts the ame retult to which we were conducted by an inveatigation of the symmetrical wave of 1842. The relative ponitions of the individual waves were somewhat different from those of the wide bi-dual waves of 1842 ; bat there were some striking pointe of reaemblance. The north-wenterly system in each case exhibited the largent wave, both as regards amplitude and altitnde. The intervali between similar phases of north-weaterly waves were nearly equal in 1842 and 1846. During the interval that elapsed between transits of these similar phases in 1842 and 1846 the same number of south-westerly waves passed over the area-and from the whole it appears highly probable that we have not only accerteined another return of the great symmetrical wave (the sixth) but have also detected the return of at least three of the individual wavas contributing to its production. 3rd. The very precipitons fall of the barometer characteriaing the posterior slopes of the north-westerly system, as developed by the ditcussion of the observations of 1842, is folly confirmed: in connexion with this, the deerease of acillation from the north-west towards the south-east is also atrikingly developed, as on former occanions. The anthor, in allading to the ares over which these observations extend, remarked that the British Ialea present afar too limited area for the parposes of examining thoroughly shere atmospheric movements; he observed that in the more extensive examination which the movement of November, 1842, are now undergoing, there are four atations at which the barometric changet are of an opposite character daring the first eight days of November,-namely, Christiana and Bt. Petersburgh in the north, and Paris and Geneva in the conth. The curves at St. Petersborgh and Geneva present the most decided opponition; rising at the one while falling at the other. The tarning point in each case occurred on the 5th. These opponite movements he conceived to be occasioned by the opposite slopes of two waves passing from the south-west, and that the half breadth of each wave extended at least from Geneva to St. Petersbargh. Such being the extensive character of the waves in question, in order to judge them in their totality it will be absolntely decessary to enlarge the area of observation. The centre of Rurope is well dotted over with barometers, from which aceurate results may be obtained; bat even the Britich Isles, in connexion with that portion of Europe now ander observation, form but a small part of the vast apace over which the waves themselves extend. St. Peternbargh ia an important northern station, from which we have most excellent observations ; but we require them also from Iceland, the northern parts of Norway, Sweden and Lapland, and also from Archangel la one direction, and from the nouthern papt of Prance, from Spain, Portugal, and the northern parts of Africa in the other; also from the Mediterranean they would be highly important. Observations stretching from the most western point of Africa to the extreme north of Earope would go far to determine the longitudinal directions of the north-weaterly systems of waves. In reporting the general progress of the inquiry, Mr. Birt stated that we are now in posession of matorials for examining the great aymmetrical wave, not only in particular years, as 1842,1845 , and I846, but also over the central parts of Europe and the dominion of the Russian empire, as far as Sitis, on the north-west coast of America. He has combined observations extending from the west cosats of Ireland and the Orknegs on the one hand, to St. Potersburgh and Geneva on the other; and ho appreheads that the whole of the barometric movements over this ares, which occurred during the first eight days of November, 1842, are fully explained by the transits of two large waves on two sets of parallel beds of oppositely directed winds-one from the south-went, the other from the north-west. The contination of the investigation will be submitted at future meetings of the Association. In connexion with this, the author observed that a most important point eppeared to be developing itself by means of there observations. Those from the north. west appeared strongly to indicate that somewhere in that direction the origin of the great barometric disturbances (a centre of oscillation) giving rise to the maves that pass onwards towards the sooth-enst is to be sougbl. We have alroady obtained the nodal point of the two great eystoms of European barometric undulations-namely, Brassels. Between the Orkneys, which appear to be the neareat station to the north-west centre of oncillation, and Bruasels the greatest decrease of oecillation occars.

This line of the greatest dimination of oscintition appearn to be well detar. mined. Theanthor cloeed hie report with an allunion to the American sybtem of atmospheric waves, ospecially those that accompanied the great Caba horricane of October, 1844, which has formed the subject of an elaborate inveatigation by Mr. W. C. Redfield, of New York; and whe of opinion that the revolving storm, so ably brought to light by Mr. Redfeld's labours, was produced by the orossing of two large long waves moving in difforent directions, as auggested by 8 ir John Herschel in his "Report on Meteorological Rednctions," preseated to the Assooiation in 1848.
"On the Decomposition of Water." By Dr. Robinson.
The affinity which combines the elements of water is lessened by any increase of temperature above that of the atmosphere, ap to 202 . If the Intensity exerted in opposition to that of a battery by water during electrolysis be measured, and again when the voltameter is heated, it is fonnd to decrease. In the first instance, its measore referred to my particular atandard, as deduced from a mean of 12 sets is $698^{\circ} 9$, temperature $61^{\circ} \mathbf{Y}^{\circ}$. The next by a mean of 13 gives

$$
c=567.5 \ldots t=135^{\circ} A^{\prime}
$$

and the third mean of 12

$$
c=531 \cdot 0 \ldots t=201^{\circ} 8
$$

Applying to these the theory of probable errors, so snecensfally uned in other branches of science, I find it is more than 10,000 to 1 that the difference thus shown is not all orror of observation, and an even bet that it is not 8 wrong. The expression of a is affinity of platinum for oxygen, minus twice that of hydrogen, or

$$
0=0 . p-20 . h
$$

and from this I compute that $0 . \mathrm{h}$ changes $23 \cdot 2$ for 100°.
This procesa is confirmed by a different process. The formule for the intensity of einc and copper excited by dilute sulphuric acid is
$\mathbf{E}=0 . \mathrm{s}-\mathrm{o.cn}-\mathrm{og}$
Ia Daniell'a cell you substitute 0 . cu for $0 . h$, and have

$$
\mathbf{E}^{\prime}=0 . z_{0}-20 \mathrm{cu}
$$

In the latter inatance, \mathbf{E}^{\prime} ondergoes no change by beating the ceil to 163°. The metallic affinition therefore do not vary within that range. Bnt in the former \mathbf{E} increases by heat, caused by the dimiantive of $0 . h$, and it gives the change $=\mathbf{2 7} \cdot 9$ for 100°; the mean of all being $25 \cdot 1$. It is curions that if this rate were uniform, the temperatore of decomposition by heat would be 2886° In these experiments the coaducting power of the electrolyte is greatly increated by heat. The oaly objection which I see againat this conclusion is, that perbaps these effects may be due to the action of heat in facilitatiog the escape of gases. An experiment which I made seems to oppose thia. If the apparatus he placed nuder the airpump, the removal of pressure should ahow a aimiler change. This is not the case : when it is reduced to 1 inch of mercury, the measure of eremuins nuchanged. I think thin a very curions resnlt; it is quite the reverse of what I expeoted, for I bad sopposed heat would exalt these affinities np to a certain point, and afterwards that its action would ohange character. But its infloence seems here alvays an antagonist to affinity. How then does heat ever produce the combination? The remark of Davy that hydrogen cannot be made to hurn except by contact with a solid heated so as to be duminous, makes me conjecture that light is the ageat which produces the molecular change of the three volumes of mixed gases into two of steam.
"On the Precipitate caused in Spring and River Watert by Acetate of Lead." By Prof. Connell.

Nearly all well and river waters are known to yield a white precipitate with acetate of lead. This precipitato is rarely due to any chloride, at silver salts bave too littie action to countenance such an explanation; and its ready solubility in acetic acid ahowa that it is not caused by sulphates, unless in so far as it is not dissolved by that acid. The ordinary course I have ascertained to be the presence of carbonate of lime; bat the romarkable fact is, that the reaction both of the acetate and of the acetic acid takea place even after the water bas been boiled and sltered, so that carbonate of lime remains diseolved independently of the presence of carbonic acid. The waters referred to yield carbonate of lime whea evaporated, after baving been boiled and filtered. To ascertain whence this carbonate of liwe bas proceeded, I paseed a current of carbonic scid through lime water, till the precipitate at first formed was rediseolved, and then boiled and filtered the liquid; but it did not affect lead salts to the same extent as common waters do. Neither did distilled water which bed been left some days in contact with finely pounded marble. I incline to think that the origin of the dissolyed carbonate of lime is double decomposition betweed an alkaline carbonate and a soluble lime alt ; and hare found, in all waters yielding the reaction, alkalies onited to acida. The common water of the town of St. Andrews contains mizy of carbonate of lime after being boiled and filtered. It also containg a trace of carboante of magnesla, which substance may occasionally be, in part, the carse of the reaction referred to, althongh to a far lest extent.
"On the Cauce of Ecaporation, Rain, Hailtorme, and the Wianis of Temperate Regiong." By G. A. ROwELL.

Mr, Rowell stated bis opinion that amongst the variety of theoriea given there is oone that will fairly explain all the phenomens of ovaporation. The theory of Dr. Hatton on rain may be thought sufficient to socooent for moderato rains, but totally fails when applied to ouch heary rain as that which fell in Loadon, Augast 1st, last year. Mr. Rowell endeavoared to ahow that the phenomen of eveporation, clouds, raix, lightnigg, hail, the
whals of tamperte regions, and storme of lower latitudes, may be fairly arplajed by the hypothesis he submitted; i, e. electricity having no wrisht and diffaciag iteclf equally over the sarface of bodies, the minote particles of water, oven in their most coodensed state being completely eaveloped in their matural coetiog of electricity, cooupy, togethor with their olectricity, nearly the space of an equal weight of air, and are thns rendered safficiently buoyant to be carried awny by the wind; but that When expanded by heat their spucific gravity being then rednced, and their apacity for electricity being increased by the increase of sorface, they are then baoyed up into the air by their eleotrical coatinge; that when the risiog particle is condensed it becomes surcharged by the contraction of its sarface; if this takes place near the aurface of the earth, the surcharge escapes and the particles fall as dew ; but if it is condeaned when above the electrical attraction of the earth, it is still buoyed up by the electricity, and on the escape of the surcharge, the particles attract each other and form cloads and rain. Hills and mountains cause clouds and rain by conducting the electricity from the vapour, and not by condensing it ; and on these grounds he again suggents, as a test of the theory, the experiment be proposed to the British Aseociation in 1840, i. e.. "To cance rain by nislog electrical conductors to the clonds by the ald of balloons." In sopport of the proposition be read an extract from a letter be received from Mr. W. H. Woeks, of Sandwich, dated Dec. 27, 1842, in which that sentlomen assores him that "It has several times happened that when his dectrical kite bas been ruised immediately onder a distended, light, feecy clond at a moderate elovalion, and a free cwrrent of aparks has passed from the appartas for some ten or twelve minutes, be has suddenly found himself bedewod with t deacent of fine minty raln, and on looking up bas seen the cloud upon which be was operating surprisingly reduced in mag. nitude." Electrical kites cannot reach the clouds, and can only be mised in windy weather, when the clouds must be overy instant paseing away from the infuence of such apperatas; and jf they have such effects, what may we not anticipate from the use of conductors which would reach the cloads, and could be raised in calm wrather? Mr. Rowell considered that from the reduction of temperature at the height of the cloods, the vapour in thoee regions must be always condensed, but invisible from being so difased; and thet the formation of clouds is not owing to condensation, bet to the escape of electricity allowing the particles of vapoar to attract each otber. In support of those views, and also to show that the ascent and support of vapour at grast hoights must depend on some agent which is iodependent of heat or cold, he exhlbited the table following-

Another cause of rain is the pressure of the particles of vapour upon each other; for it a cloud be of great depth, say the lower part one mile high and the opper part two miles, as the electricity of the particles would be equal, those in the upper part would not have sufficient for their support, and would therefore press downwarde, and those in the lower part woald have more than eaough to support them at that beight, and would bere fore preas upwarda, and thos press the particles in the middle of such closd into contact and form rain, while the electricity belag pressed out of the clood, would accumulate on the surface till it could force its way to tho oarth or other clouds, and thus cause lightning. Violent hail-atorms be attributed to the sudden equalization of the electricity of large masses of vapour floating at different heights in the air, and brought by cnrreats and verions circumstances the one over the other. The difference between the fowest mass and the top of the upper mess of clouds may amount to two or three miles. The violence of storms in such cases depends opon the donaity of the clonds and the height of their upper strata: as, the greater the beight at which the hailstones begin to form, the greater will be the degree of cold they will ecquire, and consequently the more powerfully they wili act in freezing the rapoor with which they come in contact doring their fall; the greater also they will become by the accumulation of vapour in falling; and the greater will be the velocity with which they arrive at the earth. The lightaing accompanying such storms may be cansed by the lower clouds forming conductors for the electricity from the highly-charged upper ciouds to the earth. The diminution of the pressure of the atmosphere previous to and doring rain, he ascribed to the escape of electricity from the invisible vapour or clouds; thus causing a racuum or rarefaction in the regions of the clonds: and the air from its elasticity rising to fill the space, decreases the presaure on the mercnry. Allowing that the trade winds, land and sea breezes, \&c., are caused by changes of temperatare, yet be contended that the more irregular winds are owing in a mech greater degree to the fall of rain and the escape of electricity from the cloud, than to any change of temperature; for as each particle of weter to be buoyant must, logether with its electrical conting, occupy the space of an equal weight of air, as water ie 860 times heavier than air at the level of the sen, every particle of water that falls to the earth must have occupied 860 times more space when suspeaded in the air: therefore, if in a given time one inch of raia falls to the earth, it mast, during that
time, have cansed a vacuem or rarefiction in the apece above to the erteat of 860 Inches: the vacaom would in fact be greater than this, for vaponr to be broyant must occupy a greater spaee rocurding to its elovation; bat as the density of the air decreases according to the elevation, the effect most bo the same, i. c. for every inch of rain that falls the vaccoum would be equal to the gradoal abstraction of the whole of the air to npwands of 70 feet in height over the whole district where the rain falls; which rarefaction most be filled up doring the time the rain is fulling by a rush of air from the sarronading districts, although such wind may not always be felt in the same locality in which the rain falls. He sopports his views by reforring to the storms of wind which awept over England from the northwest and west last antumn, at which time France and other parts of the continent were deluged with rizin. Ho exhibited the following table of heavy rains (mentioned by Prof. Forbes in his Report on Meteorology in 1840) to show that they are sufficient to account for violent atorms ; and had no doubt that if we had accurate accounts of the extrcordinary rains whioh sometimes fall within the tropics, they would be found sufficient to account for the most tremendons hurricane :-

Pract.	Date.	Depth of Rald In laches.	Time.		A verage Vicurm per eq. mile per mecond.		
Catskill, U.S.	July 26, 1810	18				1,381,96	t.
Geuom......	Oct. 25, 1829	... 80 in .	24	"	..	698,733	n
Joyeuse	Oct. 9, 1897	.. 31 in.	22	"	-	782,027	3
Geneva	May 20, 1827	6 in .	3	"	-	1,109,978	"
Gibraltar . .	Nov. 27, 1826	38 in.	26	,	- ${ }^{\circ}$	704,406	"
Naples . . .	Nov. 22, 1826	- iotin.	87	in	ater	809,980	"
Perth	Aug. 3, 1899	.. it in.	80	"	.	887,978	"

"The Progreas of Tides."-The Masten of Tainity Collzoe, Cambridge, delivered a report of a Committee consiating of himself and Capt. Sir J. Ross appointed at Southampton to draw up a plan for a naval expedition for completing our knowledge of the progress of the Tides.

The knowledge which we poseses of the tides, looking at the connection of the phecomena over the whole surfuce of the ocean, is oxtremely imperfect at prosent, and not at all likely to be completed in any material degree in any finite time, by the obeervations which voyagers mainly directed to other objects will sapply. The cousts and islands which surround or break the waters of the Pacific, are especially the seats of thit igrorance. We know the time of tide near Cape Hors, bnt cannot trace the progress of the tide waves along the weatern coast of 8onth and North America. We know the time of tide or the conets of Now Zealand, bat oannot connect this fact with the rise and fall of the water on the coaste of the smaller Lslands in the centre of the ocean. We know the tide hoor on the eastern coast of Now Holland, bat cannot trace the progrese of the tide to the Phillippines or to the const of Chinathough some observations of Admiral Lütke, made a few years ago, supply a valaable addition to out knowledge on this subject. The course of the tide wave among the ialands of the Indian Sen is likewise ontirely noknown. Observations made by voyagern mainly guided by other purposes appear oulikely to sapply this deficiency in our knowledge, for even when made with sufficieat care and for soveral weeks at detached places, they are rarely connected with each other or with neigbbonring places. It does not appear that while wo are thus left to depend on chance for our tidal knowledge, we shall ever be able to know from observation whether the tide wave in the Pacific does or does not move from east to west. But a ahip sent out on parpose to observe the tides could very soon ascertain a great body of facts of this kind. The observers would, of course, observe the facts of the tides in connection with each other; and would arrange their plan of operations 50 as to extend their lines of connection from known points to unknuwn. By such a mode of proceeding the co-tidal lines for every part of the Pacific and Indian Oceans might probably be drawn (omitting the minor details in the interior of archipelagos, \&c) in a year, at most in two years.

The tide observations made, at the request of Dr. Whewell, in 1834, for a fortaight by the coast gaard on the coasta of Great Britain and Ireland, prove how great an accession our tidal knowledge may receive from connected observations; and still more those made in Juoe 1835, for a fortnight along the coasts of the whole of Europe and the eastern coast of the United States of North America. By means of these observations the general course of the tides in the year thus explored has been determined. If an expedition were sent for the purpose of making tide observations, it would not be at all necessary to have, as in the inatances just mentioned, simultaneons observations along the whole line of sea observed. It would suffice to connect a few places by corresponding observations, in some cases for a fortnight, in others for a few days; then, to connect one of these places with others, and thus to proceed throngh the whole region observed. It appears by the experience of the surveys which we have referred to that the observations may be made by sailors, such as those employed on the coast guard, under proper directions. On those occasions the necessary apparatus was apeedily constructed by the persons omployed. It might, however, be useful also to employ, in ceveral places, self-registering tide-gauges anch as are already established in eeveral English ports.

We conceive that the project contemplased by the Association in its recommendation is very desirable; and might best be attained by ceading out a ressel which shoold have for the object of its royage to make tide
mbervileas mpan-aueh a compeotod mytem, For ahis pappea, the memel noght to carry, in addition to a exew surfabat to miork her, tien or theeo reon, who, by themselves (in paiss) or under the direction of patty offioern, -ight be trasted to make tide obsertations for a woek or a fortoight at mipeted points of ooent. The surveying remel orght to be provided with - lannoh to be employed in carrying these obsermers to their atation, vinittrg them while ongaged in their work, or fotohing them avery when their tank at each pluce is done. From one region to amother of the oosan, thendard atitions onght to be selocted, at whioh tide obmersations shoratd be continoed for a longor time, and the observations made in each rogion chould be cempared anith thove at the standerd atation. The comparisoo THo obsorvitions with caoh othor, as the survey peoceeded, would point ent the dimation in which it Frea dapirable to axtend the surver, and the epecial polntas to bo tignded to. We, thevofore, recompmend that applicisthan te made to the Admisalty that they moald appropriate to this service a. edtulde remed.

Mr. Onleman tuformed the meeting that he hod, while at Bombey, conducted a regaler series of observations on the progress of the tides; that duitar obeorvations had been made in other parts of India, and at Aden at the month of the Red Sea ; and that the Geogrephical Society hed seen the importance of those observations, and had lataly surbed thoir altention to then.
The Aernonomen-Roval inguired at what intermale the obserfatione at Beophay were takes?

Mr. Orlebar roplied that they were takenty a tide genge, and weme, therefore, continuous.
The Afrionomer-Royal gid thet frequency of iaking the observations vres most essential. Upon analyzing the observations he had lately superintended mand the Iriah coast, the oxtraordinary fact had been ascerGained that at some places fonr tides took place in the day; and the confinnance of the waves of these tides could be distinctly tracod to a considerable distance on each side south.
Mr. Onfgak mid that nothing had been done in the vay of analyais or meluction of the Bambay observations.
Dr. Whemsut pointed ont.eaveral pecnliarities of the tides in the Enest Todian apanioniably drelling on thone at Singapara. He also dren ettontion to tha ramemphes of Adminal Latike on the north ocacts of Amofien and is the Nerthern Ocean ; and hegsed to ank Prof. Strowe whelher thome mose bot cill montinnei.

Trof. frever replised that the remarches of Iuthe wrepe atill cootinued, partionlenty along the abores of the White San and Farions parts of the Nerthern.Ocem; ; and be believed bo macelanott the only anvigutor who had bestownd a farge partion of atteption on the cletermiontion of oouldal Anes.
"On English Meesarres."-The Astaonomer Royal atated that it would be interesting to learn that one of the chief objects of their illustrious visitor, Professor Strove, when coming to England, was to make a comparison of the Englisb standards of length with those of Rustia.-M. Srruve stated that one of the special commands which he had received from bis royal zaster was to make that comparison with minute zecuracy. A knowledgo of the English mindard was of much consequence in Russia, as the Sagene of thet coontry was exactly equal to seven English feet.-sir Johis Herscael said, that although England was at this moment without a Parliament standard of length, jet one woold soon be completed, as the oommisaioner for that purpose had nearly brought his labours to a close. The present was, therofore, a peculiarty appropriato time far both conntries that the comparison contempleted by Professor Struve should be instituted.The Astrononer Royal said that the atamdand now in progress under the superinteadence of the commissioner was being executed with such oxtrome acouracy, that be felt convineed that ft wonld not differ from what it wes imended to represent bejond the minute fraction of the 108,000th part of an inch. He begged to ask M. Btruve whether the relation he had atated between the English foot end Russian Sageme was strictly or only approzimately exact i-M. Staves replied that it was a metter detormined by law ; ard that hepce the Ruasian Sagene tad to the varied whenever the Engliah foot was changed. That hence the comparison had to be made with rigid accuracy when Captain Kafer's determinations had been conAuded, as wrell as on other occasions besides the present.
"On anace Recent and Bemarkable Enamples of the Protectionafordiad by Metallic Conducters againat Heany Strokel of Lightming"-By Sir W. A. Ravery.

The pasibility of grarding building and ofbor atroutores againgt the dowrective frepts of lightning, has troen made a grest quection in praction aieson-frea the time of Franktin to the present diaj; and it is of econsilerable poblic impertance, seeing the damage which occust to onr bmantiful chrerches and other edigees by strokes of lightming, to bring thim Imention complately onder the deminion of induction, obervation, ood expriment \boldsymbol{T} be geperal pripciples pribioh Sir W. B. Harris eubmitud as Almotble from the inquiries to theioh bo alloded mee theoe:-If we
 it would certainly be eacrie from any danage by lightaing; and for thin simple reason, that what we call lightning is the reanlt of the eleccicieal apouey foncing a path through aeninting mottar anch as the air, and asaricolios rith expleaise and axpancine feros, both lingt aod thent in its comme. Whep, pa the comtwary, it fills apen comprativaly nomencinting

 of an compmatively rqoimenent ourriut Dar ohjoct ithould be, itheralore, in defonding elay brilling or thip from lightaing, to briog thergonema man

 simple condition of ench an appliontion, mithont any reforemeonbutever to

 render il practical and appliseable to dl the duties which the agaend ctructare of a hip toguther with tis mats has to pefform, is now waivervally catriod ont in the mavy, with thomont porfect erseones; sothen
 quite oenced. The masts are made completely eondacting by oapeoiont pinter of copper, semohing from the highost points to the heel; and ure tied into one genaral connection with all the grat motallic rmane moployed in the conetruction of the hall, hand mited by the large thate of copper peasing threagh the keel sud aides, with the oopper ofgeondeat orer the botiom and with the sea. It in quite inpomible that a divohnige of lightring can fall on the vecel in ang place, mad not be at anoe teramemidted safety by the coudactors, not rendor the form of lightatiog, thot under the form of a ourreat anthout erplosion. Etr W. Hands then reforred to some reuparlablie vaces.

"On Azcient Sea Dfargins." By Mr. H. Ceamazas.

The existance of marine detritas containing repant chelly tht Farions haithts abovo the present can jevel has long been nell moown. These deperitis aro sometimos met with at an elevation of 1,290 or 1,500 foot and much more frequently at lover lovalo. They often apponer in the fons of ancient seanbeaches or terraces, marking periods in thich the relacive lovel of land and sea remained stationary. Indications of this kiod aboean on all the coasts of Great. Britain, Iraland, and Franca, and ana alco-sen more inland. The sen has left traces of its prosence sometianes by wemping away the coast into hollows and coverma, at others by elling ap bel lows with aand and abingle, or fouming rade platforms at the tanes of out in In shore of moderate inclination thase effects are most conspicrens ; sinoe on consts having i very small inclination the seas motres litule impresoian, shilit on a bold cones no accumalation ramains, The velleys of risal also afford memorials of the formor preserce of the ase. Mens of them Fere once estuaries, and atill exhibit terrace banks and platforms af detritus beanght down from distant anonntains. The natore of the depodit marking the margin of the anchent sean varies with situafion and circum. slance, being arenaceons or gravelly, clayey, or allavial. The author has eramined nomerons examples of these depoitits on the consts and in the valleys of Scotland and England, and measured theit clevation above the sea. He finds them most constantly and woll marked at certain particular lovels, which he has called, for the sale of dittinction, atter the places where the phenomenon is mont strikingly exhtbited.
The firtil level at which indiantions of the former motion of the see are found is only about 11 feet above high water. The second is from 29 to 10 feet above the sea, and termed by the author the Chichester Beach. The third terrace is 64 feet hige on the somward side, rising to 80 feet inlend, and called the St. Andrew's Beach, being well marked near that Univensity. The fourfh, or Kingstown Beach, is from 88 to 100 foet above tho sea, and is seen only in a few places-as for erample, maar Irvernest, and at Kingstomn, near Dublin. Tho ftht, or Pexton Beach, from 114 to 123 teet. The sixth, or Bourland Beach, is very generally fonod as 1 te8 foet above the sea. The seventh, or Paris Beach, from 180 to 186 feet. The cighth from 275 to 990 feet: and the winth, or Versailles Beach 298 foct

Besides theac, there are at tome localities indications of the ana fargin at other beights, and marking stationary periods of briefer ducation. One of these, at the height of 50 feet, is visible on the ahores of the Firlh of Tay and Forth; others occur at elevations of 118,180 , 180 feet, and nent Peebles there is one at 545 or 547 feet

The following districts wero described by the anthor as preseating examples of a succession of sea marging at many or all of their levels: Ghe valleys of the Ness and Spey, the Firth of Tay and Forth St. Andrew's, the Vale of the Esk, Preston, Liverpoel, and Bickenbead, at 64 to 90 feet, and again at 128 teel; Bristol, at 980 feet; Wenton-super-Mare and Brent Kooll, at 158 feet; Bill, at 186 fees; Chichester ; in the Isle of Wight, Osborne Homee stands an the Paris Beach at 181 feet; Exeter; Torbay; Landon, where Mary-lo-bone represents the Bt. Andrew's Beach, at 65 feet, and Deptord at 61 feat; Paris, along the line of the barriers, at 186 to 196 foet; Romen erhibiss the tit. Andrew's Beach at 69 feet, and the Parton Beach at 126 feet, whilat tae table land around is 840 feet; the Pont de l'Arde, a broed terrace at 185 feot, and Dublin, a succesoion of see margine at 60, 107, 189, 171, 279, and 380 feet.

The anthor considers it probahle that this nniformity in the lavel of the succesaive margins of the anciont sem will be found to astand almo to Nesway and perhaps to North Americe. On the chares of the Alea Ficm uro a succeasion of terreces, conejdered by Bravieis to form part of only a aingle line of see lovel, one extremity of which has rempined otationary, whilst the other has been elevated several basodred foet. He. Chombers, bowerer, statem that tho intermediale elovations ocrroping? is level with his meries of terraces, and believes thas mare bound at the mame mucceastve periods Aloag the shores of the great Anmert-

 rime, the anthor observen that these phenocruat rammot bea eoveruted
 - equable elovation of the tard (or mabidence of the sea) sinultameority over hago-areas: and he poitsts to the phains of Eloath timerten deeoribed

Bemarke.-Mr. J. Pillifps remarked that thoee who had accepted Mr. Darwin's or Mr. Hopking's views of the natore and mode or the force by which tracts of land were olevated would believe that the aurface of an elevated tract must incline from an axis, or point of greatest elevation. He mosidered many of Mr. Chambers's raised beaches, auch as those of Brent Finall and the Gloucestershire valleys, bad in reality been produced by tho remoral of softer beds of horizontal rook, and that as many terraces would De tood as there were alternations of hand avd soft materials.
Prof. Sedowica comended that it wes entremely imprabable that the Aheration of the land had taken place so aniformly all over Ragland at described by Mr. Chanbers; moch lean, that Franoesand Norway and Amarict would be raind the sanse number of foet at many ancocasive periods. The clevation of the bed of the sea and ifs convertion into dry lead had taken place repeatediy from the canliest to the latesthgeological pariods; and atsate were found in every kiad of pesithan, inclined, vertional and contorted, and seldom horicontal overiany wide space.
 should be oncofal toraourtain that the ibermees werernalty ratwed zewobos,

 Alesille.

Prof. Lyell descrived the elevated bemeh-lmes mround the Americmo lakes as being sometimes in the form of hills of sand and sometimes of low chfis. Allowing for these changes in character, they might, perhaps, be treced for hundreds of miles, and bud been seen on the opposite shores of the lakes. With respect to Norway and Sweden, whore raised beaches wre namerous and well marked, observation had shown that whilst the

Prof. J. Fosees stated that external form wan not enfficient to determine the existence of an elevated sea margin. All iastances should be oxoluded Where there was not an actual section to show the nature of the tersace or deponit. Much diffioulty wonid also be experienced in determining the mean level of a well-defined sea beach. The limit of doubt could not be within six feet above or below the line chosen; and as in Mr. Chambers's zotions there were nine sea beaches, oight of them onder the height of 280 leet, and three intercalary beaches besiden, there was only an interval of thout Imenty-five feet between each. It became physically impossible to sdentify dintant beaches where the fovels were so ill-defined and the beaches themselves no numerous. If the intervals had been very irregular, the comparison of one series with another would have been moch more atisfaetory. The terraces on the banks of the Alten Fiord were found at heights decreasing in such regular progression that be wes convinced they wore ooly portions of one torrace sloping gradually awny.

Mr. Dample referred to the peairies of North Amentica tasd the.great plaises of Patagonia and the Pampas of South Americe in rapport of Mr. Chambers's view of the occasional arifien olevation of large trats of land. The raised beaches in the Aades oecorred atirregalar intervals to a height axceedigg 500 feat, and mantaisoda m iform lavel for great dis. trecet.
 ention of ite details in his paper, which wreuld beve explaised or supported ahe partionlar canes, and had thrown ont his geveral viems to tavite diemintors cad further inquiry.

INETITUTION OF OIVIL ENGINRERAS.

Inne 89.-The Preaddent in the Chalr.

This was the last meeting of the sonsion, and several papers were read in abatract because there was not time for giving tham in axtensu.

 - Oprretion of the Etrot-mecoping Mechime." By Mr.J. Wintwonth.

It treated of the general advantages of strett cleanlipess, the comfort of - perdentring, the avoidance of impurity to the air from the decompesition of dift on the pavenent ; lese dirt and duat being curried into che houses, a -riag in the oent of meintenance of rondways, sod a dimination of the tenoght of oarriages. The annojanees of the cemmon method of cleansiag werv theo detalled-anith the importance of employing plenty of water in Le eletmang of streats, to liqnify the mud, to arase the dirt to swell and ningtrom between the stones, to eoch and parify the eir during hot weather, nan to provent the dast from beiog driven into the dwelliage. It then ghowed how much economy there reonitud from barizg forte enough to
 Hied arly by Whitworth' sweoping mandine, \#hioh ris o eartudnewniby one horse and managed by one man; it has on one of the awheets a boothed whoel wortiag into a piaion, wimh eires motien to a drum over and
 drum at the lower extremity of a light frame suspeoded at the :tell of the manhine, over an inaliged plane depanding from the drum frame: these entices shaias earry ateries of bread brushes fortsed of an. Imdina rash of peculiarly elactic and dorable natore; thay travel at a-rabeity che. peadiag apon the apeed of the horwe, and impinging npen thengronnd, with a foreo which in regulated hy a colled opiral opriag, earrgiag the dist mp the inolined plame into the oert, wheree it is emptind when the ceapptabite is full.

 San." By'Mr. Jnies Eluot, Jwn, the rewineteagiver.
Rowney Marsh, properly so called, lorwe a triangle, the'buse of fifith would•be a live trawn from Homaey to Appledore, and the spexat Hythe, and comprises about 24,000 acres. It is probable, that this marsh wes cansed in the frst instance hy the formation of a natural barrier of shingle, gearly where Dymchurch Wall now blands, by which the sea wan oxcluded, and that the first artificial works were executed by the Romans, when they held possession of the country. They consiated of the erection of cross walls runoing from the matural harier (the "Full") to the hills, at the base of which the encient river Limene ran. The chief of these (the Rhee Wall), ran nearly in a straight line from Rowrey to Appledore, and it was at that spot where probably the min work wes performed.
Upen the supply of shingle from the went being eat off by the extrwordnary accumulation at Dangeness Point, the natural barrier at Dymehurch gradaally became weakened, and it was necessary to take some steps to prevent its total destruction; the first meance adopted was the erection of an inland wall at eome litule distance, at the beck of the "Fall," and afterwards, the conetruction of large stone groins on this point or aea-aido, at riglt engles to the line of coast, in order to increase the deposit of shingle. Fiowever, at the supply of alagle gradually decreaned, on account of the constant moverent to the mentwerd, and as all that escaped in that direction was pormamently leat, theoe manas were fond tanuficieat, and a syatan of "arraigg," with bresbwood and timber.piling was adopted. This was found to anower the purpowe for a cousldorable period, but it also, in the courne of time, graduslly beeme isarficieat; and it was found me: cessary, at length, ater nameroms experiments, to adopt a atone facing with an average nlope of aboat eight to cee, up to high-water mark, gra. dually increasing in stoppans from that point, aed terminatiag in a curve of seven feet radias. The stones, which were laid in a bed of concrete, where they were most affected by the waves, were of different aices, averaging from eightoen to six incbes in depth, the lacgent of them being in the middle, where the greatent wear and tear took place, and at which plaep rows of sheet pilitag were also driven for additional security.
This plan wis Eudopted by the suthor after mature deliberation on tho reporta of Mr. 'Rennle and Mr. Walker, and a very carreful examinationóf the locality. Pert of the wall has now been standing for ter years, and hes required a very trilling amonnt of repair, while the annual expease has been reduced from 10,0001 . to 4,0001 ., with every prospect of a still further reduction being effected, as upwards of two-thirde of the work are now permanently compieted.
The last paper was, "On!Oceom Shemin Neitation," by Captain HexDRason, calling attention to the fact, that in this great maritime nation, naval architecture was neglected as a sclence, as was proved by the expertmental squadrons and some of the ordinary steam vessols lately built. Neither the public nor science had derived any advantage from these contiy experiwents, oflog to the abence of any foformation, in a eystematic form, that correety dowerfbed the relative nize, eapmetity, resistanee, power, or speed of ateacr-ships; the prosent tonsage and gemisal horse power; far all'purposes of analogy, being quite'fallacious.
The meeling was thein edjourced antil the 'eccond Treeday to Jevuary, 1848.

FOYAL FNSTITUTB OF BRIIISH AKCHIRECTS.

Junc 28-0. Fowlex, Eag., V.P., in the Chair.

 the tweith eestury, at Metz, heviog mo octagonarmave with a pyramithil roof, and a semicirentar apsis with asemi-contcal roof;-二aiso a Drawiag of a Tweinh Cewtury Ghurch rat Mathien, mear Caren, showing marth between the nave and choir of colliptionl form, and oncamented with thite rown of connterset deverions.
'A Letter'was read from BYpNEY'Bminme, Fellow, on some pecutiarithes in the Arehtteoture represented on the Bagaretiefs receatly brought from Nimpood, and mew in the Britimh Meneam.
A. paper was read : 4 a Bketch of the profeswional life of Groege

 Geareral Meeting wera prosemted as fohows $5-$

on Civil Arebitectare, by Gwilt; and for the beek Notes of Papers read at the Meatiugs daring the Session, Copy of Hope's Historical Essay on Arehitectare.

To Mr. S. J. Nicholl, for his Notes of Papers read at the Meetings during tho Soseion, Copy of Milisia's Lives of the Architects, trenglated by Mrs. Cresy.
A curious Model of a Chineve Chemist's Honse and Shop wero exhibited to the Meeting, and the several arrangements explained by Profensor Donaldson.

In annonncing this ae the closing Meeting of the Session, the Chairman adverted to the general proceedings of the Institute during the year, and took occasion to express the regret generally felt at the recent decease of their highly esteemed Honorary Member, Mr. J. B. Papworth.

I has been arranged to set apart an evening, eariy in ths ensning Session, for the discnssion of the subject proponnded in the paper read by Mr. Cmantarll, at the meeting of the 14th of Jane, "On the Geometric System applied by the Mediaval Architects to the proportions of their Ecclesiatical Structuree," by which time it is boped that those Members who feel particularly interested in the subject will be proparod to offer their opinions therron.

A STONE-LIFTER.

Being engaged in the construction of bridges, \&c., on the Great Grimsby and Bhefield Junction Railway, and the engineers abjocting to lewis-holes in the face of the coping, Mr. Joshas Oliver, clerk of the works, suggented

a plan to obviate the difficalty. The annexod sketch is a reprasentation of the apparatus, which is nothing more than a bar of iron, 31 inches wide and 1 an iach thick, with a sliding piece and screw; bat should it be nsed for rough stopes, the screw may be dispensed with by adding a key to the top of the sliding piece, as shown by tho dotted lines.-Builder.

SULPHURIC ACID.

At the College of Cbemistry, Jane 2s, a lecture "On the mannfacture, properties, and uses of Sulphwric Acid," was delivered by Mr. Henry M. No4D.

After alluding to the great importance of chemistry and its bearings on aimost every branch of social industry, the lecturer observed that it may even be classed among the principal elements of civilisation. In illastration of which, he adverted to the induence exerted by sulphuric acid on the manaflactare of somp-an article, tbe consnmption of which is not subjeet to the caprices of taste or fashion, but absolntely essential to cleanlipess and comfort. From the year 1829 to 1834 the arerage importation of barilla into tbis country amounted to $\mathbf{1 2 , 6 0 0}$ tons. Now, bowever, this ash is scarcely to be met with in the mariset:-nearly the whole of the soda consnmed in this country in the manufacture of soap and for other purposes being obtained from common salt through the agency of sulphuric acid; and the united quantity of soda ash and sode crystals annually manufactured is caliculated to excend seven times the largest importation of barilla ever made in one year. This increased consumption of soda is dae to the repeal of the salt duty, and to the improvements tbat have been effected in the manufacture of sulpharic acid.

Mr. Noad proceeded to review the sources and properties of salphur; and after showing how extensively this elementary substance is diffused throughont the globe and in all the kingdom of nature, he remarked on the imprudent policy of Sicily in granting to a French company, in 1838, a monopoly for the parchase and sale of sulphur-a course which, had it been persevered in, would, probably, ere this have entirely, or to a great extent, deprived Sicily of ber lucrative article of commerce. During the time the monopoly lasted (only two years) no less than fifteen different pateats were taken ont for methods of obtaining back the sulpharic acid used in the manufactare of soda. Hoodreds of thoamands of poands
weight of anlpharic acid were prepared from pyrites; and a prooean wea indicated for decomposing gypsum. Even at the present time large quantities of salphuric mcid continue to be made from pyrites; and in 1848 the importation of sulphur from Sicily was not one.third of the amoent im. ported in 1836. The lecturer described the various compounds of sulphur with oxygen; illastrating experimentally the properties of sulphuric acid. He gave a detailed acconnt of the present method of preparing sulpheric acin on the large coale;-imitating it on the lecture table by causing two strenms of sulpharous acid and nitric oxide gases to come into contact, together with steam and common air, into a large glass globe; and he explained the theoretical nature of the reactions which took place by means of diagrams. The leaden chambers employed in tome manufactories ware atated to be of immense size-upwards of 180 feet long, having a capacity of 35,000 cubic feet, and being capable of preparing ten tons of acid weokly. The great saving efected by the modern improvement of substituting vessels of platinam for thone of glass for the final concentration of the acid, notwithstanding the enormons price of the former, is manifested by the fall in the price of sulpharic acid from Ad, to $1 \frac{1}{2} d$. per ponad. The lectarer performed a series of experiments in illustration of the valaable properties of sulphuric acid. He adverted to its great ase as an elogent and economical means of refining silver-and to its introduction into asricoltare as a solvent for bones, by which phoapbate of lime is not only brought into a liquid stato-and thas more intimately diffused through the soil-but a portion of phosphoric acid is likewise set free to combiso with lime or olber basic matters in the soil. The lecture was concladed by observations as to the manner in which the sulphates act as manares-vir., by furoishing the neceesary apply of sulphur to those parts of plants is which this element is found-and of which it appears to be an essential constitnent-vis, the glaten and alhumen of the several varieties of grair, and the legumin of thoee plants which are called legruminems.

WARMING AND VENTILATION OF THE NEW HOUGE OF PEERS.

We have been requeated to give an acconnt of the system adopted by Mr. Barry, for the warming and ventilating the New Honse of Peert. We cannot do belter than give Profesmor Faraday's scoponat, read at the Royal Institation :-

Mr. Barry's plan of warming and ventilating the three rooms to which he has applied It (i. e., the royal ante-chamber, the house of peers, and the pablic lobhy), consinth, first, in causing a carrent of alr, of regralated temperature, to pass benenth the impervions foor of these apartments, and efterwards to rise to a chamber at the top of the building, from whence it it diffused in great abondance, bat imperceptibly, throughoat the three epartmente; and eocondly, in drawing off the vitiated air and discherging it with great rapidity into the atmosphere. To accomplisb theso ohjects, Mr. Barry has achieved expedients for,

1. Warming the bailding through an impervions floor, as in the case of a Roman bath. 2. Effecting a bystem of carrents. 3. Providing means of causing ten thousand cubic feet of air per minnte to proceed in a prescribed course, and with regulated velocity.

The warming is effected by a steam-cookle, supplied from one of Lord Dandonald's boilers ; it is traversed by a quantity of air-tubes frmly fastened into it. The air which passes through the tabes is the sonree of warmth. This apparatus, with its furnace, is placed beneath the publio Jobby; and the current of warm air passes beneath its impervious floor, then benenth that of the Hoose of Peers, and lastly, beneath the floor of the royal ante-chmmber beyond. With warmth, the air acquires a certaia degree of motive power in the rising parts of the pasages, which carrios it onwards till it reaches the reservoir chambers at the anmmit of the bnilding; from thence it is made to pass down into the apartmente by their walla, and so distributed, withont dranght, to be breathed by the iamates of those rooms. This gradual diffusion of the air is accomplished by a system of currents. It is cansed by subjecting the nir to inequalities of temperature. Descending by the walls of the building, it is cooled by windows, \&c., and thas its velocity downwards is increased. Arriving at the level, at which it is at once beated and deteriorated by respiration, combuation, \&rc.g the air again rises in the centre of the room, and passes through the ceiling into a foul-air chamber, which is in connection with a chimney. Through this chimnes the air is driven by the third expedient adopted by Mr. Barry, viz, draught of the flue,-and a peculiar motive power furnished by Bell's steam-jet [see Jowrnal, last month, page 2s0, a source of force which has so many philosophical considerations connected with it, that Mr. Faraday expressed it bis intention of making it the sabject of a future day's discourse. He therefore limited himself at prosent, to the simple statement that steam prodaced under 32lb. presasre on the square inch, will set in motion 217 times its bulk of air.

In the course of his communication, Mr. Faraday described the arrangements made by Mr. Barry to clear the air, and to regulate ite velocity, $\mathbf{E 0}$ as to prevent the possibility of draughts coming on any inmates of the apartments. He showed bow the stemm-cockle, employed to give warmeth in winter, might, by filling it with water from the Artesian well, become a source of coolness in snmmer. Tbeme, and many other important artangementes, were illustrated by sections in relief.

The adrantages axpected from this mode of ventilation, are, 1. The pre vation of local draggts. 9. The prevention of the stains and dinfigure. ments resulting from saob dragghts. 3 The avoidance of all movement and disperion of ditt and dast of the house by currents oceasioned in it, whoh carrents, if existing, would tend to render the air impure. 4. The avoidance of all sadden chango of temperatare. Fivally, it was noticed that all parts of the boase were fire-proof. Mr. Faraday then took occanion to remark that this scheme of ventilation was under a disadvantage in the present cave, as it had to be adapted to batldings which were not plannod with reference to it.

DREDGE'S SUSPENSION BRIDGES IN INDIA.

Major Goodwyn has andresced the following letter to the Editor of the Englishman (Published in India in reply to Mr. Dredge's remarks):"Sir, Adverting to a ntatement which lately appeared in your paper, and wheh, with certaln comments, has fonnd its way into the Star and Medrus Spectator, relative to the failure of an iron bridge on the taper chain principle, mannfactured by the patentee, Mr. Dredge, sent ont by him, and put up at Jescore, I feel mytelf boand to offor a fow words, as the measures of the Government have been misrepresented, and the facts of the case considerably distorted. The apan, width of roadway, beight of point of asapension, being neceseary data to farnish Mr. Dredge with, thase dimensions, and these alone, as connected with the required strength of the iron-work, were sent to bim, and he wan further particularly instructed to form the eyes of his links in a peculiar way (which, however, he did sot observe). Mr. Dredge, as I before said, required the above data on which to calcofate the strength of his ironwork, and the angles at which his rods were to be placed. Not one of these details was sent from here, yor was it likely he woold have adhered to them if they had been, for it was naturally his ioterest to protect his patent by every care he could bentow, and it is sufficiently evident he did attempt it when he made the lougitodinal beams 25 per cent; above what he was in the habit of doing, not "as the drawings warranted, for no drawing went from this conntry, saving a tracias of the masonry deaign, and coetion of the river, with sundry queries relative to the retention of the chains in the ground. To prove that the drawinge of the iron-work came ont from, inctead of going to Mr. Dredge, I send you his sheet of plans, which were accompanied by moat chborate injonctions, all of which were fulfilled, and the bridge was mont correctly pot up. Yet the bridge fell, though it might have been standing 50 If it had only been anbjected to the ordinary trafic of the country, and gatarded from the unasual crowd to which it was axposed.
"I have said aiready more than I intended; suffice it to add, that once a secore admirer of the aystem, I bave had experience enough to discover its defects; full explanations and refotations of Mr. Dredge's atatement hare been sent to the scientinc journals in England, and will appear in doe conrse, as will also an elaborate treatise on the syotem in all its bearfigs: let the discriminating public worit a little, and hear both sides of the quetion."

NOTES OF THE MONTH.

Coutre Pumch.-It is customary, in moving the "centren" of a piece of iron intended to be turned, to drive a centre punch into the holea previoualy zede; first, at an angle, in order to force the metal over to the side required, and then, to drive it in, perpendicularly, in order to give the bole the poper shape for the lathe centres. This is frequently repented, until the bole is matilated, or driven so deep as to be objectionable, and is absolutely berberowe on a nice piece of work. There are other modes of moving the cestres of accarate work, such the the scraper and centreing drill, but this is the mode generally adopted on acconnt of convenience, and hat done injory to mach fae machinery. The new plan adopted for this purpose, which I saw in a cmall shop at Massachusetts, appears to me to he equally convenient with the ordinary centre-panch, while it in quite as perfoct and onobjectionable as any of the more tedions modes. This tool is formed by making the conical point of a centre-panch on an angle Fith itt shaft. It will be readily seen that by using this punch, the hole will be more eanily moved laterally, that its uniform conical shape will be preserved perpendicalar, and thet the distance of moving it may be accurately managed by the blow of the hammer apon the punch.-P. B. Truex, New Orlomene.
Shaming Ladlee for Powring Catt Irom. -In a foundry at Connecticnt, there is a mode of skimming small ladlet for pouring cat iron, which is foed to be very useful. It consints in riveting a small ber of iron across the top of the ledie, juat at the back of the moath, and covering it with elay, the ame at at the bottom of the ladle, to prevent its cooling the malind iron. The bar should extend far enough below the top of the ladis to commance shimming from the ind, and near enough to the mouth to
continue mith all in poured. I atw some ten or fiteen persons pouring with these ladles, while not one wat required to aldim, and 1 was told that no objection was found to it in any reapect.-Ibid.

The mont Entensive Mannal Structure is, undoubtedly, the great Chinese wall. It is 24 feet high and 10 feet wide, and reaches to the ertent of from 2,000 to 2,400 miles, over monatains, precipices, and rivers, up to the ses on one side, and the inaccessible mountains of Thibet on the other. The Chisese traly call it one of their wonders of the world-as the stone used for its construction, if placed one beaide the other, woold suffice to encompass the whole circamference of the glohe. The eatire history of this construction is wrapt in similar obsenrity with that of the Pyramids of Egypt. Chinese documents ascribe to the foanders of the empire the banefit of a vast system of drainage and exsication of the land, after which came the great world-dearth of seven jears, \&re.

Malleable Glase.-Prof. Schönbein hat discovered a substitute for glasn. It cousists of pulp of common paper, made transparent, by cauning it to undergo a certain transformation, which the Profescor calle cafalytic. With this paper, made waterproof, ls manufactured perfectly transparent window. panes, vases, and bottles, which will not casily hreak.

Doeer Landing Pier.-The lords of the Admiralty have at length been plemed to sive their anction to the erection of a landing pier in Dover Bay, according to the plans prepared by Messra. Birch, and sabmitted to them by the Town of Dover. The commianioners of the harbour also have given their asenrance that the measure shall meet with every assistance from them. A company is, therefore, now forming for the parpote of carrying out this denirable work, and it is determined to use every endeavour to get the erection completed during the present seaton. The pier will extend 800 feet into the sea, and at its extremity will be a lozenge construction of four sides, affording to steamers not only unusual aceommodation in coming alongside, bat the certainty of a good lee in stormy weather. The advan tages of the pier will be greatly felt by the mail eatablishment of the Britigh and foreign governments, who have expreased their willingness to entertain the question of an ananal grant for its uea,- ${ }^{2}$ wrell an by the continental steamers, who will thus be ensbled to effect a landing of pessengers at low tide, which is a queation of great importance to Dover, and enablem it to maintain its high position as a point of emberkation to the continent.
"The Erppane" steam veacel, built for the Sonth Weatern Steam Navigation Company for the Sonthampton and Havre atation, by Meerrs. Ditchburn and Mare, and fitted with engines by Metirs. Maudalays and Fied, made an experimental trip on the Thmmes on the ith ult. It is stated she performed the distance from the Nore lighte to Blackwall, a distance of 47 miles, in 2 hours and 8 minates. ($Q y$, with tide.)

Briphtom and Contimental Stean Packet Company-The two bonta built for this company have been running from Shoreham to Havre since the lat alk., and have answered the directors' expectations in every respect. One of the boata man the distance (84 nantical miles) ln 64 homrs. When the Dieppe railway is open, Dieppe will be the port instead of Havre. When the works at Newhaven are completed, that port will be the place of departure instead of Shoreham, by which asving of $\frac{1}{\text { or }} \frac{3}{3}$ of an hour will be effected, and in fine weather the boata will frequently go over in about four hoart.

Rainway Opened.-On the 20th ult., a further extension of the Sonth Devon railwhy, from Newton to Totnest, a distance of 8 miles, was opened.

Short TYue for Building Operattoes.- Wo are happy to atate that a syatem of leaving off work on Saturdays at 4 o'clock is aboat to be carried out : it has, we underatend, been already adopted among the carpentera and joiners of London, in the shops of Mr. Thomas Cubitt, Mr. William Cubitt, Mr. Beker, Mr. Piper, Mr. Jackaon, Mr. Lee, Mr. Seth Smith, \&c.

Preoention of Irom from Rusting. -The Royal College of Chomistry offers a premium of $£ 1,000$ for the discovery of a method of rendering iron, when uned for ordinary parpones, as little liable to rust as copper.

Printing Typer.-M. Coblente, a topographic printer in Prance, states that type may be hardened by galvaniam.

Griadstomes.-M. Jules Pageot, of Hérimoncourt, has adopted a plan to prewerve his workmen from the ill effects presented by the use of griadstonet in his factory, by applying a ventilator to carry off the siliceous datt before it can reach the moath or noatrile.

Conversion of Diamonde into Coke.-At the meeting of the British Association, Dr. Faraday exhibited some diamonds, which be had received from M. Dumas, which had, by the action of intense heat, been converted into coke. In one case, the heat of the flame of oxide of carbon and orygen had been nead-in another the exy-hydrogen flame-and in the third the galvanic arc of fame from a Bansen hattery of 100 pairs. In the last case, the diamond was perfectly converted into a piece of coke-and in the othern the fusion and carbonaceons formation were evident. Specimens in which the character of graphite was taken by the diamond, were also shown. The electrical character of these diamonds were atated also to have been changed-the diamond being an iusulator, while coke is a conduccor.

Iron for Girder Bridges.-Mr. Marray, a valuable contribotor to the Mining Jowrnal, angeats that iron girders and similar sopports ought never to be made of catt iron, but of wrought iron, and composed of plate; twisted previously into a rope, and finally moulded into the required forms
 bundi indenta，brexperen breen．
 the treat cite of Mmino，is the Rhim Plap．It onmaran ecee of twolre cormes，paved nith madla forming on of the west braytiful prome－ neleminithe werth．Oin every，wide of thite grent．squere magnificent and

 palice axtoodethe whole length of another sidat The outhedral in：cesceteal
 lape os the gronad of the paleop of the great 3orttexume．The maneunt of menthin the catbodred is ineredtble．The alter it covernd with plestes of mavive silver and bematifed with orammenth of manive gold．The balus－ trade encloring the ultar extonds，a leagtr of 100 feet；mad＇fer made of a masive componition of gold，silvas，and copper；the veloe of whith is acesed－ inelygreat．．statuen vasem，send caudleatioks of gigantio size，are soattared thongh the buiffing：and whep．men kow that theos，too，are made from
 cathedral．There are about 80 churches in addition to the：cutbedrah，richly ornamenfed with gold，silver，and precions stones；and it is supposed that the wipalth whith is exhitbited in this manner is as nothing to the immente treasuren that are kept in concealment by the priests．The city of＇Mbxico can also boast of a＇rpleadid theatro or opera－house，which was erected at an immenge cost，and is capable of seating 10,000 perions cqmfortably．On the western side of the city is another aquare of 45 scres，with a fountuin in the centre．It is laid out into pleasant walks，and much frequented in the evering is a promenade．The city of Mexico，like the city of New York， has its fashionable drive－ita Third Avenue．We must，however，scknow－ ledge that our Third Avenue cannot be compared to it for beauty and ex－ test．Some idea of its extent may be formed from the fect that it is one mile wide；on which the most aplendid carriages，in innumerable numben， may be seen every evening．It is not unasual to see 7,000 or 8,000 horse－ men and 2000 carriages on it at the aame time．－Nen York Herald．

Inpmomed Locumptina Exgine－For some time part copsidorable attica－ tiea han been excibed among parties cornected with losomotive trimsit by the performance of an：eagine built upon a now principle by Mr，Cramp－ ton，civil engineer［see Journal，p．153］，and upon which ．vory extensive experimonts have lately been made on the Loadon and．Mortitw Weatera raitwry．The－engise in question whech has been for a few weeka taking the orprose，mail，and：orditary trains on that line，and performing its work in such en maner as to effect a saring of from 2θ to 50 miantes in a through distanee of 50 or 69 miles，was tried last weot without a train， for the purpose of testing its rate of speed ：Whise it whe found that with
 sietant－inspecior，and．the patontes．Mn Gmapton，on the engine，it at－ trioed the extreerdioery apeed of 75 milet per hoer，on a lerch，inmedi－ etoly after，surpomating a mradient；and that at this rato there was a toctal absepes of ull vibration，and a atoedinese of mevencot perfeotly seprisiog． Theee great adrantegen are effeated In Mr．Grmaphor＇s eagise by the centre of gravity being branght down to its loweet powible point；the boiler，in fact，being，in this maobine，within 2 feet 9 inabes of the raila， whilst in engines of the old conatruction it ran，at the very least， 5 inches above their level．The peculiarities of this engine consist in the driving－ wheels being placed at the foot－plate end of the boiler；the which means the boiter＇itself can be brougbt down close to the supporting axles of the
 driving－mben may be usnd without interfering with the positton of the beilen so that Jompar bailers ans be asod if，newemery．Aoother advantage seoured by thia molhod of building emgioss is，that no part－of the engine overhangs the wheels；issansech as the firebex is oxterded under the boiler and deiviog axle－by which also the distance between the oxtrome wheels is reduced 3 feet．The engine in question，the Namor，has only 18 feet between them，whilst in ordinary engines the same amount of power would require 10 feet．

LIET OF INEW PAYEATMS

Six：Monthe alloted for Buroiment，malow otherwise eapremex．

 meate in machisery and the arregeaneta thereor for fording，atamplng，prachisy，cut－
 producing madicat sounds．＂－June 28.
 in mavofacturing wheelf．＂（A compunication．）June 28.
 ＂certala Improvemenis in obialadig molire power，＂－June 28 ．

 the purpose of affodinp tight and other une．＂－JwI 3.
 July 8.

Hobert Weare，of Argyle－streth，Birkenhead，in the connty of Cheater，wateh amd clace maker，for＂Improvements in clockly or tumetreepetr．＂－July．
Alexander Mitchell，of Bricktelde，in the perimh of Ballymacarrell，I reland，cifil eagis． neer，of an extenalon of lebters patent grantid to him by int tate Majeaty Klis Wintry， teen years，frowi the th of Juiy， 184 ，for his invention of a dock of tmproved constrin．

 to other purpene．＂July 5 ．
 In langu．＂－July 8.
 Improved apparatus for the cultivation of land．＂－July S_{0}
John Funt，of Bifmlaghem，hrans－founder，for＂A certain Improvement or certindis＂

Jervetink Biown of thoy

 for the parpoien of fucilitating the delirering or remorlng irom ahiph，vemela，werehomen and other depotis，of the cergoes orcontratis thereof．n－J uty 3 ．
William Edwards Seaite，of Lombard－street，gentleman，for＂certiln Improvernantet

Theodore Claeys，of Oitend，in the Hingdom of Belgitim，and Louls Frapole strany
 from cork．＂一Juy 2
 loome for wendag ${ }^{m}-\sqrt{2}$ nty 3 ．

 zerehant，for＂t Improvens
communfation．）July 3 ．

Samuel Stokes，of Monkrell－atreet，carpiater，for＂an Imroroppd machion for teretis of engraving frtm solld bodies，of subjecteith reliet．＂之，July 10 ．

 pacear＂－Jaly 12．

 ments in the conftructon of anchors．＂－July 18 ．
Alfred Vincent Nowton，of 66，Chancery－Line，Middiean，mechandcal dranghteman，fint ＂certaln loprovemente applicable to locomotive engines and carriage employed on rili way．＂（A communicalion．）－July 13.

William Heneman，of Woburn，in the courty of Bedford，for＂certatn Improvenentes In thraahing machines．＂－July 17.

Pierre Armand Lecomte de Fontainemorean，of A，Bouth－男pet，Finsbory，tor＂certain
 17.
 provements in the mannfacture of plites，whetts，or panet of giase．＂－Jofy I7．
 tiof of rasore for sharivg．${ }^{24}=\mathrm{J}$ tly 17 ．
Robert Willam Sierler，of Htartette－atreet，Civendluh－Equare，Middeaer，gentlemat，

John Bykes，and Adam Ogden，both of BuddersAed，in the county of Fork，tor＂Iha－

 shire，for＂chir，colton，and other fbrous substances，＂－July 19 ．
 apparatu for oppporting or bnoyling up pertops boate，and other bodles whan in the wher．＂－Jet 19.
Joeeph Tan，of Brixten，Burrey，ballder，for＂Improvemente In mpporting for menter

zdward Slewtitar，of Avonside Irou Forky，Bristot，engiseer，for＂Improvementen：

 wheer．＂July 19.
Joeeph Jtan Barapowild，of 8，Bue Neure Clictry，in the city of Paris，8tactionment ： ＂a ready－rechonios machine．＂－Jaly 19.

BUCKINGHAM PALACE.

(With as Engraving, Plete XIV.)

Although we exhibit the Park front of the new rage of bailding which is baing added to the Palace, we are unable to speak as to more than its exterior, the desigos prosented to Parliament being naaccompanied by any description or any explanatory Report by the architect himself, notwithctanding that something of the kind, in addition to drawiogs, might properly esongt have been " presented to both Hoases of Parliament by command of her Majesty." Wo therefore, not being so intaitively magncions in matters of architectare as, it would seem, the two "Honses" are, are greatly at a lose to understand a variety of particulars that ougbt to be takeo into consideration, for wo do not get even so maoh as a single plan to make us sequainted with the geaeral interior arrangements, and to coable us to judge how far Mr. Blore has been controlled by positive exigencies of accommodation, to the injury of external character, 一which Latter, if the truth may be spoken, is but ordinary in quality and commonplace in regard to composition. Had it been for what is callod a "Torrace," or the side of a aquare, or any similar range of houses combined into a goneral architectural façade, the elevation might deserve tbe opithot "palatial," whereas being for the principal pablic front of The Palace, it partakes by far too muoh of "the dwelling-bonse" physiognomy, uudoubtedly of a saperior kind. Besides being divided into five markediy distinct portions, that have the look of being so many separate residences, each with its own entrance, the facade is in one respect, if up other, greatly less dignified than some of our clab-honses, the latter not havingat leat, not showing externally-any chamber-tioor, or one of lodgingrooms, ovor the principal lloor; whereas here, there not only is such floor, bot it is made quite as important as the other, so that except what distinction it receiven from its window-dressings, instead of plainly oxpressing tewolf es a lofty state fioor, that first-foor is made of no more importance than the one over it. For want of plans, we cannot nay whether soch is really the case or not, bat it does look very much as if, instead of containing a ball-room and other additional state apartmenta for public entertalamenta, the now building was intendod to consist ontirely of offices in its lower part, and in its upper one to afford the same cort of residence and lodgiog accommodation as bas hithorto been provided in the original wiogs of the palace ; and as if the latter-the south ope at least-was now to be cleared out and converted jato a ball-roum, \&c., so immediate connootion with the present grand ataircase. Ualess one of the wings is to be entirely re-arrauged internally, we do not see how there can be any soitable communceation between the present atate apartmeats and any others in the now building. By referring to the plan of Buckiogbam Palace, as given in the second edition of "The Public Baildiags of London," it will be seen that by forming an approech from the grand staircase into the apacions octagon room on that side, converting that octagon into an anto-saloon to a hall-room or other apacious and lofty hall for public antertaiomenta, made to occupy the whole of that wing and what will be added in depth by the new bailding (making altogether abont 250 feet from the octagon), a moat f mportant addition might have been made to existing state apartments, in their immediate propinquity, but at the same time so as to keep the one saite perfectly independent of the other, at the same time allowing them both to be thrown open at once, with direct commanication between them whenever the oceasion might require it. The arrangement we bave pointed out could hardly fail to be prodoctive of en unusual degree of architectural diaplay-of both offect and climax, even were the 930 feet of length from the octagon divided into two halle of entertainment, a larger and smallor ose, the former being of course placed lact. Bat wo ourselves are now buildiag-not exnetly a palace, but a mere castle in the air. Wo must therefore, be content to let what we bave been saying pass for mere moon.' shise.

Said, pertaps, it may bo, that after all, the poblic need not give themaelves any concern whatover about internal arrangement and accommoda. tion; since all that will fall to their share will be external appearance alone. One circamatance will oertainly be in favour of the Now BuildLag, aamoly, it being about ton or twelve feet higher, and being adranced so much forwarder it will abow itself more conapicuousiy; at the same tree, owing to its forming a single general mass, it will not poseess any play of perspective, nor any of that relief and contrast of light and ahade which now take place when the son strikes on one of the wings on ite side towards the cont while the rest is in abadow. The aspect of the Park

Me. 120,-Vol 1.-Stptemeer, 1847.
front of the Palace is certainly en unfortmate one, it being auch as to render that facade a mass of shadow, -an incourenience which it bas beon attempted to keep out of aight in the pictorial perapectiva view nocompanying the two elevalions by a device far more ingenions than praiseworthy, the sun being there made to shine upon the building from the north-east, which graphic fiction, besides retting off the east front iteclf to fall advantage, performs the very good-natured serpice aleo of throwiag into shadow the sonth alde,-whereas, in reality, the effeot will be just the reverse, since the latter, which forma no architectural fagade at all, but is, on the contrary, an arrant jamble, will be lit up by the san, while the Park façade will be baried in abadow. Nevertheless, such is the trathfulness of a drawlag "presented to both Houses of Parliament," in order to enlighten their masthetic optics. For our part, wo very much question if any of those noble personages who affired their signatares to what was presented to them, so maoh as noticed the fiction palmed apon them.
Having to contend with an unfavourable aupect, Mr. Blore ought to bave exercised his ingenaity by stadying bow not oaly to overcome that disadrantage, but elisit some nacsual effecta. He might have takena hint from those exceedingly pictoresque bits of arohitectore, the open logglas in the Terrace fagade of Eomernet place. Something of that kind, admitting a brilliant light through a doablo range of columns seen in bold relief agaioat the sky (for the buildings in the rear would not be visible), would have imparted no amall degree of scenle vivacity to the whole façade. Nor would such arrangement have necessarily destrojed all commonalication between the rooms on the principal fioor, beanuse such commanication might have been anfiliently kept up by means of a corridor practised bebind the loggia, carried op only so hiyb as not to be viajble from the Park. Had there been any opening of the sort throngh the centre of the Dew bailding, it would sarely have conduced very mach to the cheerfulaess of the janer coart and the view from the portico and rooms on each slde of it in the body of the palace, by admittiog a glimpre of the trees in the park, between the columas.t At present, an welcome as the truth may be, and ungracious as it may sound, we must say that the architect does not eeem to have studied the subject at all ; on the contrary, to have taken up with the very firat jdens that presented themedres. Moat asearedly, he hat stolea none from Inigo Jooes's designs for White. hall, nor-not to go out of our own country-has he caught any of that grandiosity which stamps Greeowich Hospital-a pile that, although not faultese in taste, has infaitely more the air of a royal palace than anything we now have, not even Wiodsor Castle excepted. Had Mr. Blore been compelied to adhore as nearly as possible to the character of what had been before done, that consideration might have mitigated criticism; but for oxcuse of that kind the has leß himelf do room whaterer, the now building being treated quite differently, yet in such mander as to leave it very questionable whetber the difference amonats upon the whole to much improvement;-it most deoidediy does not so much as the opportanity afforded. In ose respoct, there will be oven more litleness than before, owing to a low entresol with a series of amall windowa beiag hero introduced between the ground-loor and firat-floor. That entresol, no doabt, eopplies a great deal of accommodation for domestice, but in the front of a royal palace, and what is in this case the only public front of it, woch triviallies should not be allowed to intrade. In such, coavenience ought to give way to dignity, and be provided for elsewhere; jast as a sovereign mast frequently sacrifice his own comfort and personal indulgence to atate, and give an audience when he would much rather take a nap.

[^33]Conveniance 1-no doubt George the Foarth stadied his own convenience, and had he inhabited the Palaoo, might, perhaps, have boen perfootly satiefed with it; yot the pablic would not have been at all bettor satiafied with the bailding on that acconat. And surely, when paleces are bnilt or altered, the pablic, who provide the money, may very reasonably oxpectnay, may rightly demand that the atrocture shall be made a worthy public orament, and be, as a work of architecture, of a much higher grade than nsual. Extravagunce is not to be measured by the ordinary shop-keeping standard of mere cost, because there is far more extraragance in laying ont a handred thousand poonds on things wo are afterwards ashamed of, than in oxpendiag a million apon what we should have reacion to be prood of, as a peoplo. Don't lot us have to pay both money and repatation too, as we have so often done hitherto. We do not recollect to have ever seen montioned what was the approximating entimate for Jonen's Whitehall, bat enough to have erected two such vast piles has since been fung away -not, indeed, all at once in a lamp, but in handreds of thousanda, or so, at a time, in building up, altering, botching up, and in nome cases, anbuilding again. Conld we bat accertaln the oxnct amount of aggregate cont of the quondam Gotbic palece at Kew, the Parilion at Brighton, Cariton House, the present Buckingham Palace, op to the time of the additiona now making to it, including mome of our government baildings, the total woald be most atartling; and mont grievone, too, would be the refection that thero was never any thing at all adequate got in return for it,-which after all is the real griovance.

Whethor the public generally will now be satisfied with the Palace, we pretend not to say; we only know that we are not no ourselves,-quite the contrary, for if there be improvement at all, it certalaly falls very far short indoed of such as there might bave been. Intead of extending our remarks at present, we leave our readers to decido how far those which we have made are jastified by the olevation itself, in which we think they muat be atruok, if by cothing else, by the excessive meannent of the atate entrance through the centre. That arah way is quite dumpy in its proportions, as compared with the other two, and looks all the more 80 in consequence of the very differently proportioned square-headed passages on its sides. Noithor has the architect there provided places for the sentiaels, the he might have done, making them both very characteriatic and very ornamental features in the building itself, but has left it to the carpenter to put a conple of paltry wooden sentry-bozes to the priacipal eatrance to a rojal palaco.

According to the scale on the drawing, the whole length of the facade is $\mathbf{8 5 0}$ foet; and height to the top of parapet of the winga 77 feet, and of the ceatre 84 feet, or to the top of the coatre ornament, 100 feet.

CANDIDUS'S NOTE-BOOK. FASCICULUS LXXIII.

```
"I mone have Uberty
Withel, as large a charter at the wiade, To blow on whom I plenee."
```

1. There are some others, it seams, quite as free in opinion, and as andaclous in apeaking it out, as myself. In an articio in the "Britiah Quapteriy," entitled "Modern Palatern and Architects," the writer says: "If a truly absurd apire is wanted, we mast go the leagth of Fleet-street, where the atone pagoda dedicated to St. Bride has won the indiscriminate praise of ignorance for a centery past. A thing without thought, lavertion, grace, or any property of mind; but reared as a child does its castle of cards, story above story in monotonons auccession-jast as many as it will bear." Nor is this all, for it is added in a foot-note below: "Christ's charch, Newgato-street, with less monotony than St. Bride's, is a still worse apecimen of St. Christopher Wrea's belfreys." The writer has, however, the grace-which I have not-lo admit that Bow steeple is "a singularly beantifal specimen" of the klnd. For "aiagularly," read "comparatively beautifal," and the praise becomes juat.-After all, a steeple does not constitute an eatire church, and whatever their steeples maj be, the bodies of Wren's charches are 50 far from possessing any beanty, as to be absolataly ancouth, and atterly negative as to style, although all decidedly partake of one and the same manner. The excuse may be that mont of them are in such confined situations, 10 blocked ap by
surrounding hoases, that vory little of the general exterioss can be seen; wherefore to have stadied beanty for them would have been stady throwa away. The deformity of St. James's, Piccadilly, however, cannot be excused by any such extenualing plea,-and even those who profess to discern such rare beanty and oxcellence in the interior, are obliged to admit that the oxterior is agly,-oot merely a plain, homely atructare, for which no architectural pretension lo made, bat decidodly ugly and a positively disagroeable objoct. The design is that of a mere builder-or olse of a charchwarden.
2. That same master churchwarden reminds me of one thing : spenking of the present "orthodox movement" in charch bailding, it is obeerred in the article above quoted, that "Igoorant chorchwardene no longer go about with their pail of whitewash, beautifying, retrenching, and destroying, according to thoir notions of taste. Architecture has little that is really valuable, however, to hope for from this eccletiastical movement, beyond the conserration of what already exists. A spirit of venoration that banishes all thought of origioality, and all hope of pragress, is the atmont that it confers. When it has exhansted its models in the pitiful work of imitative prodaction, what then ?-the enfeebled emasculated copyist can only retrograde."-Bravo, "British" / Your prediction is in a fair way of boing speedily verified. Even the very best of our recent Gothje bears that nort of resemblance to genaine productions of Gothic art daring the period of its ritality, which wax-work does to lifo. At the first glence, the resemblance may be deceptive, bat at the next we perceive the thing itself to be a mere semblance, devoid of the living breath of art, -a mero pappet skilfally pat together to amuse eccleniological and antiquarian bigots. Alas ! for architecture in such hands and ander such infuesces ! While anable to comprehend art,-and at the botlom thoy are juat as mat-ter-offact in their ideas as churchwardena, the differeace being that thair matter-of-fact is of a different and more book-learned kind,-such protectors befriend architecture just as the man in the fable did the horse when It applied to him for assiatance, namely, by clapping a saddle on its back and patting a bridle into its moath. Thas far shalt thon go, may thoy to arohitectare, and no further, this way and no other, for it is this way which we know ; for it has been formed for us by "our forefathers," and wo have daly mapped it out by atadying chronicles and precedoats. Were we to suffer you to get off from the bealen road, we should of a certainty loee ourselves at once, and what fow witu we have would dewert us ontirely.
III. I mast be allowed to help myself to another alice of the "Britiak." The writer reproaches the "Onford divine" 1 as he calls Mr. Parker, for his total exclasion of Elizabothan architecture from hia otherwise amplo "Glossary," observing that such exclasion " is a sample of the very partial views that still prevail on all the great principles referring to art. The Elizabethan, forsooth, is no atyle at all, bat a mere corruption of the orthodox models that our modern Camdenists worship. In its origin, wo admit, it was so, just aa the Norman style was the offipring of the corrupt Roman; not altogether in either case, howover, by ignorant corruption, but by an adaptation of old architecture to new habits and the wants of the age,the lesitimate source of all architecture."-Precions word those last: if architecture has now become incapable of accommodating itself to the ideas, the habits, and the whats of our timen, it must be regarded as effote; or if it does not do no merely bocanse it is not permitted, it mast be reganded as onslared,-degraded to the servile and hamiliating offioe of building according to pattera. "But so little is this idea of adaptation of style to parpose underatood,"-I an again quoting from the "British," "_" that withia tha brief period of a dozen years, we bave soen this same Elisabethan style proposed by a carefally-selected committoe of taste, as one of the two alone fit for the halls of legislatare, and rejected in the best architectnral glosesry that exists, as no style at all! It is characteristic of the class which the latter may be considered at representiog, that it is not the architecture alome of the 13th and 14th ceataries which they thas exclanively soek to reatore. They are the same reformers who aim at the improvement of the people in the 19th century, by the revival of the maypole, and the mannert of 'the good old times ;' a spirit that has no onward nor opward gate ; Whose golden age lies in the past, and not in the future." Good old thmee, with a veageaoce, were thove same times of "our forefuchers"-to make ase of a cantiag oxpression-times not deficient in examples of beroic virtes, but also marked by the most atroclous crimen,--limes of spirital, if nut of intallectual darknews,-limes whose ranuted piety was composed of arro.
gent tyranaical prientoraft on tho ono hand, and of the moat grovelling and besotted superatition on the other.
IV. When he wae paying a tribnte to the artistic talent of Vanbragham architect gifted, if not with taste, with real conceptive power, and that to a proaxic age,-Rejoolds migbt very properly have throwa out a compliment to Hawksmoor, and quoted the campanile of St. George's, BloomsBury, as a most atrikiggly happy composition,-one on which the eye of a painter cannot but rest with delight. Happy as it is in itself, that masterly production has been made a martyr-not to criticism, but to stopid ridicnle, -To the prosing imbecillity of such old women as Ralph, and the schoolboy pertaess of such clever coscombs as Master Horace.-Criticiom forsooth 1-why criticism rejects auch grovelling, feeble-wit stuf, and leaver it to Puach and the penny-a-liners. Had he pussessed aught of critical faculty, it would bave eaabled Walpole to perceive how beantifully the statue poses opon, how admirably it completes, and how essential it is to the artistic completion of the ensemble. It is not an bistoric state, elevated to such a beigbt that the personality it is jateaded to fgure to us is metterly lost; nor is it hoisted on a pedestal of ita own, clapped apon the top-heary capital of an overgrown colamn-a truly unhappy combination, productive of the most harah abruptpess of outlipe at the general summit. Here, on the contrary, the stalue is incorporated with the architectural sase, of which it is the effloreacence, springing out of it as its finial or meroterion, and contiouing to a point the lines of the obelisk-shaped part of the etroctare which it crowns.
V. Thongh it does not say much for Allan Cunningham's diligence or atmese for the task he undertook, it is perhaps as well that be omitted a memolr of Ha wirsmoor, for it wroald, in all probability, have proved little more than a mere re-echo of such senseless judgments as that of him who bas prononnced St, George's steeple to be "a mastorpiece of absurdity"!Woald that our modern architectural absurdities were but balf as poetical, as gracefal, and as pictaresquel In regard to that stapidly calamniated church, there is another curioas fatality, for no one has ever bestowed even so moch as ayllable apon its north fagade. Indeed, it may be fairly questioned whether it is yet known to exist, for of the thousands who pass the portico, scarcely one, perbaps, suspects that the other side of the bailding showt a piece of architecture of no ordianery merit-certainly one marked by no ordinary degree of mrchitecteral enorgy; and so far affiording an excellent and moch-needed study. Still, I may be committing mischief by thns calling attention to what is by no means calculated to pnt wisto better conceit with what has since been dooe upon any similar cocaions. Improved we may have in some respecti-sach, perhaps, as mormal correctness of design, and normal attention to matters of detail; hat we seem, on the other hand, to have lost the valuable qualities of boldreas and vigour. If wo aro more rofined, we are also more emascaLated in our taste, and our baildiage show as opera castrati-Backiagham palace being one of the panient of them-by the side of anch architectaral *thews and sinews" as Vanbragh and Hawkemoor pat into their works. Unluckily, bowever, architects seldom iook to more than "orders" and ofber more matter-of-fact circnmutances, without perceivieg, or if they parceive, withont noting and investigating, artiatic qualities-some of them so subtile as to elude satisfactory expisantion; consegrently, much less are they reducible to oxact technical definition. We have, however, coly to compare any one of Wren's charohes with this of Hawksmoor's, to be able to accoant for one great difference of quality-the fagnese and poorness which set their mark on the former, and the energy of expresion which atamps the other. Although not entirely, this differenoe in a great measure arise from what is a very simple matter in itcelf, namely, the lemser or greater degree of relief produced according to the shaliowness or depth of the external embrasmres of the windows-fa other words, scoordingly as the plane of the glasing is approsohed to or sot back from the plane or external surface of the wall. In the wiadows of all Wren's churches, there is scarcely any reveal ; in Vanbrugh's and Hamksmoor's baildinge, great depth of reveal-a difference that does not show itself in geometrical elovation, but which is an exceedingly important and infoential one in perspective effect-consequently, in the buildings themselvee; for while the former mode is attended by the insipidity arising from the abeence of boldy-deflaing shadows, and of correapondiag lights on the opposito sides of the apertures, the other secures them. Berides which, we are improssed in the one case with the disagrecable iden of the wralls
being onasually thin, while in the other wo at once perceive that they are unasually thick and subetantial.
VI. The north aide or front of 8t. George's, Bloomsbury, has excuped the aotice of architectural draftsmen as completely as it has that of other people; wbich, to whatever elce it may be owing, most certainly cannot be because it wouid not show well as a subject for the pencil. In that respeot, bowerer, it is by no means singalar,for haodreds and haodreds of sobjects for architectural delineation in the metropolis might be pointed ont, which are yet abeolntaly antouched, although draftsmen go or appear to go again and again to very spofs and places where thoy are to be found. Entireiy fresh pictortal representations of them might eabily enough be made of buildings which, althongh thoy havo boen sbown again and agaln, are abown alnost invariably in just one and the same way, and that thoir mont formal and unpicturesque attitude. Now, it is all very well to have enoh a geveral view of a building as cerves to oxhibit it in masa, brat we do sot want so many repetitions as we get, of what is identically the mame view, -nnless, indeed, there be visible improvement also in regard to architectural delineation and artiatical effect. Instead of which, deterioration is far more frequent than improvement, and many views of the kind that are published are oaly wretched, vamped-up copies of better ones Which have preceded them.
VII. Many both extol the simplicity of Greotan architectore and speak of aimplicity itself in the abstract, as if it were the mont oxcollent and paramonnt quality in art, and which ought therefore, on every oocasion allke, to be the predominating one. Not content with edmiring simplicity themselves, they insist not only that others shall edmire it too, but that, like themeelves, they shall admire it exclusively, and be intolerant of the qualities opposite to it, even though they should be mopplied as to be merits. Of Grecian architocture, the simplicity was by far too much of ernctly the anme kind. The simpliaity of oae boilding jost resembled the aimplicity of another; end, in fact, the simplicity was in a great measure quite involnntary, and of a rather negative kind, ariaing as it did chielly out of the absence of compiexity, or any other counterasting circumstances. How conld it fail to be obtained in bnildinge conatituted like the templest of the Greeks, which edmitted of no oombination, mearcely any other variations from one aniform geoeral deaign than at they were tetrastyle, bexastyle, or octastyle, and deriving their individual character eatiraly from the particular order employed, and the anabeing given to it in its details and execution ? As far as we onreelves are concerned, pure Grecinn architecture is all very well for os in theory, but not to be thought of by us for actual practice. We may stody the Parthonon as wo study the Iliad, but would do woll to desist from copying the one until we begin eeriounly to think of imitating the other, and endeavour to bring the loffy Epic strain intu fashion again.
VIII. It looks very mach as if the decision of the Army and Navy Clab had been arrived at in deference to Conat D'Orasy's opinion, as expressed by him in a note to the Builder, coutradicting what had boen rumoured as to his being concerned with Measra. Parneli and 8mith's design (No. 46), but expressing his bearty approbation of the desiga itelf-of "the taste which selected one of the most beautifal palaces (palazal) in Europe for the model," and declaring, that for the embellishment of the metropolis he shoold very much like to see it executed. It is singaiar enongh, I may remart, that what is " one of the most beantfin" pieces of architecture of its Lind in Enrope-viz., the Palazzo Coraaro at Venlee, by Sansovino, should hitherto have obtained wo very little notioe-acarcely any at all, beyond the mere mention of its name-from either architectural writers or cognoscenti travellers. Woods, for instance, does cot even aame it. We onght, therefore, to be the leas surprised at the Cinb's not being atruck by its pre-eminent merits, until their eyes were coached by the Count,-and had they discerned them before, they woald doabtless have awarded the second premiam, at least, to Messrs. Parnell and Smith. All that we ourselves can now racollect of that designis, that we merely glanced at it and passed on, perceiving at once that it was a direct and very palpable copy of some Venetian architect of Sansorino's time; and we wanted not to look at mere copies and leaves ont of books, or pabliabed designs, bat to discover what fresh ideas had been produced for the ocemsion. In what position, then, do Messrs. P. and S. put themselves, if not in that of mere architectural trasacribers ? And in what position is architectural desige now pat, except that of mere copyism, to which a bonos is thas directly held out by the suocens of those who are nuable to produce angthing suff-
ciently paseable of thoir owb-anch, at least, is the very matoral inference, beonuse no ose who has any power as an artist would voluntarily forego the opportunity of diaplaying it, and take up with other men'a ideas, when he might bring forward his own,-least of all so, when that opportanity is one which dees not preent itself every day, but is, on the costrary, an exceedingly rare ose. Not Ittle ourioua it anroly is, that of two clubhoases, one partly execated and another aboat to be begno, the designs should be by Jacopo Tatti-or, to give him the name he is more generally known by, Jacopo Saneovino. Not leas extreordinary in it, that in what calls itself a Fine Art, wholesale plagiariso of the kind should be prectised without 80 much as any attempt at concealment, Just as if it were decidedly meritoriona instead of boing at all reproselfin. To endeavoar to appropriate to ourselves the excellencies of former morks is not ouly allowable, but praiseworthy; yet, to be legitimate, such appropriation muat be that whicb results from that thorough stady of the original, whith eaables ne to extract from it its better qualities and finer eseence, and to infuse them into what the express occasion demands.

HISTORY OF ARCHITECTURE IN GREAT BRITAIN.

\triangle Brief Sketch or Epitome of the Rive and Progress of Architecture in Great Britain. By James Elmzs.

" Epitomes are helpful to the memory, and of good private ase." Sir Hemay Wotyon.

(Contivaed Arom page 238.)

Wren's immediate successors were his cotemporary, 8ir John Vaobrogh; his friend and collengec, Robert Hooke; his pupil, Nicholas Hawkamoor; Gibha, who fintuhed the church of St. Clements Danes; and a few others of leas notability.

Robert Hooke was the ascistant and sometimes rival of Wren, during the greater part of that architect's career. He, like Wren, was an experimental philosopher; like bim, had received doctorial degree, when that honour whe conferred only apon men of first-rate talent. To ase a theatrical phrase, Hooke may be considered as Wren's double, and took the part of his principal whenever called upon. Hooke added much to the useful inventions of the day, as may be seen in his memoirs by Dr. Waller, and in the cotemporary proceedinge of the Royal Societs. He appears to have been more of as imitator than an inventor, for when Wren, or any other original genina of the day, brought forward ascheme or an invenslon, Hooke was always ready with another of a almilar natare.

The great and extenaive charge which devolved apon Wren after the fire of London. induced him to take to his anistance his ingeniou and ablo ascociato, Robert Hooke, the learned profesor of geometry at Greaham college; whove avocations, under Wren, were chiefly those of meanaring, adjusting, and setting ont the groand of the bouses in the private atreets to the ceveral proprietort, while he reserved the bigher and more important worke of deajging and anperintending the execution of the pablic worka to himnelf. Hooke, at the same time, divided the laboars and hononre of the Royal Society with Boyle, Moray, Wren, and other philosophical members. Among the subjecte submitted by Hooke to the Royal Society, wren a new method of making bricke, with leat charge and more speed than had been then practised, and a denign for a collegiate building for the use of the Society, to be built on a site of ground presented to them by their maniticent asnociate, Mr. Howard of Norfolk. Thin volunteer denign did vot plence the Society, nor did the manner in which Hooke appeared to trench upon his mater'a gronnd, for at a meeting of the conncil on May 4, 1668, the prenident (Lord Bronncker) moved, that the building of the Society's college roight be begun forthwith, and Dr. Wilkins was desired to procure, at the next meetiog of the council, Dr. Wren's design for the building.* This wha done, and Hooke ordered to get model made of the approved denign, to contract with proper persons for the execution of the work, at aleo to find someone to be conatantly present, and to see the workmen do their duty: thum appointing Wren as architect, Hooke at norveyor and valuer, with a resident clerk of the works.

Of Hooke's repeated invasions into his master's province, abundant proofs are found in the recordis of the Society, and Wren at last complained of

- Eirch's Hiat. Roy. Soc. Vol. 11. p. 273.
these intarforences. Pew men had more reacon to any wic won mon gokir than Wres. Hooke appears throughont to have followed, thruat, and attempted to anpersede in the poblic eatimation bis friend, patron, and principal, in every thought, invention, and discovery. Not content with his inroads upan Wren's repatation, he dared to impagn the philosophical theories of the then youthful Nowton, whose important discoveries were the constant there of the discusaions of that eminent Society of which he had juat been admitted a member. It may not be irrelevani to mention in this place, that thim greatest of modern philosophers was, at the commencement of his illactrions career, in auch atraitened circumstances, that it is recorded, in the history of the Royal Society for 1675 , that at a meeting of the conncil, Mr. Oldanburg heving mentioned that Mr. Newton had intimated his being in sueb circamatances, that be deaired to be excused from the weekly payments, it was therefore agreed to by the conncil that it should be dispensed with. Hooke's andecity in impogning the doctrines of our great philosopher is not without its parallel, even in our own times, when the truth of all his theories has been so firmly estallished. The late Sir Richerd Phillipe, anthor of many clever imaginative works, bas informed the writer of this article more than once, that all he desired after his death, was to be buried in Weatminster Abbey, and to have inacribed apon his tomb-a Heas wasa the Reyutar or Sia Isanc Newton."

Hooke'a attempts to aupersede Wren have been alladed to. Among the most prominent in that recorded in the transactions of the Royal Societp, of his aubmitting to the conncil on September 19, 1666, a model for rebuilding the city, with which the Society is said to heve been well pleased. It appears that he had previoualy shown it to the lord mayor and some of the aldermen of the city, as Sir John Laurence, the late lord mayor, addrened. himself to the Society, and expreased the lord mayor's (Sir Thoman Bludworth) and aldermen's approbation of the said model, and their desire that it might be ahown to the king, they preferring it very mach to that which was drawn op by the city aurvejor. The preaident anawered, that the Society would be very glad if they or any of their member could do any service for the good of the city; and that Mr. Hooke abould wait apon the king with them and his model, if they (the lord mayor and aldermen) thought fit to present it : Which was accepted, with expressions of thanks to the Society.

Dr. Waller, in bis life of Hooke, affects to wonder why this model wat not wecepted. The reason was, that the superior and more digested plan of Wien, to any nothing of Evelyn's, had been previously before the king and conncil. Wren had no opportonity to communicate hil desigu either to the Royal Society or to the city authorities, before it was sent to the king ; and it is probable that neither of theae bodies bad then seen it.

Hooke is believed to have been the arcbitect to the Duke of Montagrota house in Bloomsbury, afterwards the British museum, and recently palled down to make room for Sir Robert Smirke'a improvements. Of bis anthen. ticated works, the beat are the royal Hoapital of Betblehem, which formerly stood on the site now occupied by Finsbury-circus, Moorfields,-mad Aske's Hospital, at Hoxton, boilt and endowed by Sir Joho Aake, an aldermas and past lord mayor of London, for the use of aged and decayed liverymen of the worahipful company of haberdashers, of which he wras a liberal and distinguished member. The former of these buildings bad a Frenctiled palatial look, not in accordance with ite deatination-a bospital for lasation; and the latter, a colleginte appearance, with colonnaded ambulatories for the aged inmatea, a hall and chapel for their accommodation, and a achool for the education of orphan boys of the company, with a handeome atatee of ite foundar in the centre. The atyle of both these baildinge may be sean in the varions illnstrated histories of London; and a lagge pernpective draving of Aake's Hoapital, by the arcbitect, is among the picturet that decorate the conrt room of the baberdsebers' company, who are the trustees and governore of the hospital. This building has also been pulled down, and its plece applied by one of amaller dimenaions, and of lent archilectaral preten. sions.

It must be recorded, however, to the bonour of Robert Hooke, that he, Boyle, and Wren, formed that illuatrious trio of philowophere that paved the way to the important zeanlts established by Sir lasac Newton.

Ha died, after a long and uneful life, on the 3rd of March, 1705, in the 68th year of his age. He was buried in the church of St. Helen, Bishopagate, and wat attended to his reating-plece by all the membert of the Royal Society who were then in London.

Hawkamoor, the papil of Wren, one of the mont original and inventive architects that Eagland has produced, was born, uingular enough, in 1666, the vear of the sreat fire of London. He erected many ine and unbetentid
beirdings in the metropolis, and other parts of Bagland, which still remain to prove his skill sa brilder, $\begin{gathered}\text { a } \\ \text { well as his tasto and seience as an architect. }\end{gathered}$ In his eventeenth year, he was pleced as a domentic clert, or pupt, with Wren. Hil genias is unquestionable, but hin tasto not of the most refined order-mearer approeching the bold Aights of Vanbragh than the chatened correetacs of his master. Hin knowledge of overy science connected with his art is allowed, and his charecter has been apoken of, from authority, with commendation. He was deproty-survejor, vader Wren, at the building of Chelset coliege, and clerik of the works at Greenwich hospital; in which ofices he remained dering the reigna of Williem, Anne, and George I., at Kemsington, Whitehall, and St. James's. He was appointed anperintending arveyor to all the new churchet, and of Weatminater abbey after the death of Sir Chriatopher; and deaigned many that were arected in parinance of the statute of Queen Anne, for building fify new churchen.

Hawkemoor's best works are the churches that he built pursuant to the above-named atatute: among which ere, Christ church, Spitalfields, that was seriously injured a few years cince by a destructive fire-but which, owing to the subetantial nature of its countruction, did comparatively littlo damage to the body of the fabric;-the chnrch of St. George, Middlesex, called St. George's in the Rast, to distinguish it from ite namesake in Bloomsbary ; this is also a large and capaciona edifice, with a singular tower, which with its lofty fiag.staff, when viewed from the opposite side of the river, looks, amidat the forest of mants with which it appenrs to be encircled, like a tall ship with ite white sall dengling from the topmast;-its reighbour, St. Anne, Limehouse, alike distinguished for originality of design, solidity of construction, and atility of ite interior arrangements;-and St. George's, Bloombbary, which bas been condemned by haty critics, from not falling within their nerrow rules of art. This chorch is 1 bold, original, and striking composition, built in a masterly and scientifc manner, and denigned in a masculine style. The interior is commodious, appropriate, and pictu-resque-worthy of ite author, his mester, and his achool. The portico, of the Corinthian order, is remarkably handeome and well proportioned, and the tower is pleced in a jodicious and proper aituation. The steeple is novel, ingenious, and pictureaque; and the atatue of George l., In apite of the epigram, looks like the father of his peoplo, survoying bis good city with complaceacy, and bolding forth his protecting band orer it. Nor must his beantiful ehurch of St. Mary Woolnoth, Lomberd.street, be forgotion. Its exterior is siogularly aubstantial and well proportioned; its twin towers, resembling, in application only, those of some of our Gothic catbedrals, look particularly atriking from Manaion-bonse-street, aince the destruction of the old bouses by which it was formerly surrounded, and the opening of the vista of King Willimestreet, to which it forms a beantiful architectnral foreground. The interior is well arranged for the service of the Anglican cbarch, and is characterised by a most happy onion of elegance and aubstantiality. The proportions of the Corintbian order that aupport the richly. panelled roof and coffred ceiling are acarcely inferior to those in the interior of Wren's masterpiece-8t. Stephen's, Walbrook. A correct and well. engraved plan and section of this charch are given in Britton and Pagin's 8vo. work of "London Edifices."

Hewksmoor alco rebuilt part of All Sonls college, Oxford, but, I believe, from Wren's designs ; as also the manaion of Baston Neston, in Northamptonsbire; restored a defect in Beverley minater with great akill; and repaired the weat end of Weatminster abbey in a judiciona manner: and at Blenbeim and Cantle Howard was amociated with Vanbrogh. Ho died in March, 1736, in nearly his seventieth year.

The witty, but $t 00$ often indecent, Vanbrugh, of whom Pope asy-
"Van wanted grace, bat never wanted wit,"
contributed in a considerable degree to the architectural repatation, is well as the dramatic literatare, of his conutry. Blessed with considerable talents, good education, and manaers deteriorated by profigate age, Vanbragh Ggured at a gentleman, a dramatic anthor, a builder and maonger of theaurea, a berald, and a would-be engineer. Swift ridiculed this latter propensity and bis ladicrous imitation of a fortifed reaidence in his Vanbrugh castle, Greenwich, by asying, that be expected the queen (Anne) would

$$
\begin{aligned}
& \text { " make next year } \\
& \text { "mpor man chle enginer." }
\end{aligned}
$$

In 1696, shortly after the commencement of Greenwich bospital, Van. brugh was appointed secretary to the commisaionert, on the nomination of Mr. Evelyn. In 1716, he was appointed aurveyor of the works at Green. Wich hospital, comptroller general of his majenty'a worke, and surveyor of the gardens and waters: tbas superseding his illastrious predecessor, who whe still in the foll posecmion of his facultien. This wat not the only infult
that this eminent arehitect had to encounter, at a time when bribery and corruption exiated in a greater degree then ever before known in Bnghish history. Mr. Ker, of Keraland in Scotland, aseerts in his autobiography, that "it is very weil knewa that Mr. Benson wes a favourite of the Germans; and I beliere nobody had more occation to be oonvinced of the power of this infuence than myelf: 10 greet, indeed, that Sir Christopber Wrea, the famous architect who contrived the stately edifice of St. Paul's church, and finished it in bis own time, wes turned out of his omployment of beint master of the King's workn, which he had possessed with great reputacion ever since the Reatortion, to make way for this favoarite of fortigners." The influence of Bensen over the king and his German advisers, obtained by means to which Wren could not stoop, was 20 great, that oven Walpole, who reainted, with juat indignation, an open offer of a large sam, whioh Benson made to the miniater for a place for his 200 , was obliged to suecomb to this back-atairs infueace.

Benson and Vanbrugh were thes in full poeseasion of Wren's ofices, the principal of which Wren had held, with unparalleled honour and abilitien, for mearly half a century. Bat what a contrat did these diegracefol tranaactions present! Beneon held tho sitmation ecarcely etwelvemonth, with nnexampled ineapacity, and was diegraced by an ignominiona expulaion from his office to avoid a prosecntion, and by an immortality in the "Dunciad;" While Wren retired to a pescefal home at Hampton Coort.

In the first edition of the "Donciad," this architectural empiric is thos celebrated:-
${ }^{4}$ Bereath har rifa shall Evicder wear the bert,
Clbber prende Lond Chancellor of play,
BEneon sole judse of erchilectore sit,
And namby-pamby be praferrid for wit."

In the enbequent editions the poet altered thete linet to-
"See, eep, our own true Phomber wears the bays I
Oer Midas alts Lord Ohancellor of play !
On poets' tombs Banson'e dille writ
Lol Ambrove Phillipe it preferrid for wit $J^{\text {m }}$
And in a note he adds-" In favour of this man, the famous Sir Chriatopher Wren, who had been architect to the crown for above fifty yearn, who built most of the churcbes in London, laid the firat atone of St. Paul', and lived to finish it, had been displaced from his employment at the age of near minety yearn."

But of Wren our great poet asye:-

> "See' under Ripley rise a new Whitehall,
> While Jones and Boylels nnited labours fall;
> While Wmen with oorrow to the grere descepds,
> Ger diee unpendoa'd with a hundred friends."

Vanbrugh bailt the firat theatre in the Haymariset, and managed it conjointly with Congrevo. It is singular that this theatre has been rebuilt by the late John Nasb, himealf an ector, manager, and architect. An emineat comedian of the present day, who wat originally an architect and joint surveyor to a pablic company with the anthor of thin article, before he had quite abendoned his former profession, requented bim to state in his "Life of Wren," at an apology for hia uniting the two profemions, that in addition to Vanbrugh and Nahb, might be added the name of our great Eaglish Vitruvios, at being an actor an well as an arebitect. He informed me that in an old quarto play, tranelated from the "Platas" of Aristophanom, is the following manuecript remark, in the handwriting, and with the aignature, of Leasc Reid, the commentator:-"This is the play in which Sir Cbristopher Wren, our great Bnglinh architect, performed the character of Noenias, before the Blector Palatine, Dr. Setb Ward, and many others, probably in 1652."

The worke of Vanbrugh are molid and judicions; bat he neglected the ligbter graces of his art, and in, in spite of all his picturesque besuties, cumbrous and inelegant in detail. Swift's apigram on thit architect is well, and in nome inatances be merited the antirist's
"IN heary on blm, earth, for be
Lald many a heevy loed on thee.t
There in, bowever, another version in a rather better spirit, and more like the sit hevie of the ancient Romana, and in

> "Le Aght upon ham, earth, thoogh be lald many E heery loed on thee."

Yet, Cactle Howard and Blenbeim will keep alive the memory of the witty and accomplished Vanbragh among thow of our greatest arehitects. A fuir apecimen of his pictaresque and singular style may be gathered from his own hoose near the Privy-gardens, which was alco a subject of Swift's astire, Tho compared it to a dirt pie heaped ap by children.
Sir Joshua Reynolda, in bis inimitable discourses on painting, gives great and dearved pruise to the artiat-like compositions of this architect, particu-

Larly as to his mode of making his baildinge rine from the earth with judicious besements-not breaking abroptly from it, at if it had no foundation or connexion with the plot upon which it atende.
Vanbrugh was a bold and erratic genias in hia art, pietureeque and poatical in bis imagination; rather resembling the painter-arehitects of Heary the Eigbth's time, than a follower of Palladio, Jonen, or Wren. Blenbeim, near Woodatock in Oxfordshire, one of the beat of bis works, and the mont characteriatic of hir pecaliar atglo, was began in 1705. It was intended as a tribute of a grateful nation to their illustrious soldier, but servile intriguer, the Duke of Marlborongh, and was named after the greateat of his victories. The secret history of this transection forms mamusing feature in D'Larseli's "Anecdotes of Literatare;" bat appertias more to the political intrigues than to the architectural history of our country.

In thir period arose thowe prominent ornaments of our metropolis, the charches of St. Mary-le-Strand and St. Mrrtin's in the Fields, from the desigus of James Gibbs, who also thimhed that of St. Clementa Daner, begun by Wren. Gibba was an architect of the achool of Wren, but affected by laborious detail and saperabondence of ornament-as may be seen in his works, particularly in the interior of the charch of St. Martin-what Wren necomplished by more simple and scientifio means. The exterior of St. Mary-le-Strand is of two orders in beight, which presupposes two storios to the interior-a fault committed by Jones in his Benqueting-honse, Whitehall; and by Wren in his St. Paul's cathedral. The former has for an apology, that his building was part and parcel of an enormons palece, and corresponded with such portions of it that had two atories, and this required the omimion of one for height in the interior. For Wren it may be waid, that his two stories of coupled columns in the weatern front, have nearly the ame proportions of one ; and that riewing his cathedral from a diatanoethe beat position for seeing its beanties-the lower order is entirely concealed from view by the hoases that surround it. The circolar portico in the western front of Gibbe's church in the Strand, is a palpable and clamey imitation of Wren's bestiful semi-rotunds to the north and soath transepts of St. Panl's. The sammit of its cupola was to have been surmoonted by a farthingaled statne of Queen Anne, somewhat like tbat borrible monstronity in St. Paul's churchyard, for which wea anbstituted the present fonereal vase.

The exterior of St. Martin's in the Fielde is in a bolder atyle and parer taste. The columns in antis, or, to apeak les technically, the colnrans between the ante or pilaters, that form the retrocessed porticoea of the north and south aisles, are both novel and effective; and the Corinthisn herastyle portico of the western end would be unexceptionable, were it not for the cumbroas steeple tbat beara down ita aper. No anch monstroalty diafigares any of Wren's churches, whose ateeplea always rine from external and visible towers. The interior looka fine from a redandaney of ornament -divested of which, it would degenerate into common-place. It is, however, a large and commodious edifice, well adapted to the parochinl charch service of the establishment ; the arrengement of which, Chambere did not disdain to imitate in his German Latheran charch in the Savoy, near Waterloo bridge.

Of Gibbs's other work, the Ratcliffe library, Oxford, it can only be called a practical blander ; for devoid of the necemary ocientific skill in construction that is requisite to complete the character of an architect, he intended to have executed the capole with stone, bat it would not atand : it was obliged, therefore, to be taken down and to be built of lath and plester.

Gibbs published a treatise on the "Elements of Architecture," which possesses nothing new, and is to be considered more an a stadent'm gaide to drawing the five orders of Italian architecture according to tbat master's propor-tions-wbich are not anfficiently correct to be considered an modelo-than a treatise on the art of which he aopires to be a teacher.

The state of architecture at the end of the reign of George II., and for some time previous thereto, had been as low as at almost any period of the Bngliah history. From the deatb of Kent and the great Earl of Barlington, two accompliahed architects of the Anglo-Palladian school, to the commencement of the reign of George III., we have no eceount of any aative arebitect worthy of notice. The profession seemed almant to have been loat; and new buildingt, repaira, and alterations, to have heen performed by that anomaloas being, that sort of uno-dnal mixture of artiat and artian, the building aurveyor, or anrveyor and hnilder, as be generally termed himself.

The sebool of architecta which ended with Hawharooor, had left no dibciplet, and the only one who can lay elalim to the name was Archer, whom Falpole dencribet as holding the office of groom-porter in the royal palaces.

The church of St. John the Brangelist, Weetminater, which has been ficealy attributed to Vanbragh, in cherneterised by a bold originality in the quadrifrontal form, of an Italien-Doric order, aurmounted by four Corinthinn tarreta. It has been ludicrously compared by Swift, or aome other antirist, to an elephant on ita back, or a hage butcher's block reversed, with itu clamsy loge rising apwards. But had it been finished as intended, with a lofty copola or lantern in the centre, it would have had a different and perhapa a good effect.

As an example of the atate of architecture and its patrons at this pariod, may be cited the fect, that when the corporation of London proposed bullaing a manoion-house for the offinel reaidence of their lord mayorn, Lord Bar. Hington submitted to them an elegant devign by Palladio, which the citizens rejected as being the work of a forcigser and a papist, and executed the prosent building from a design of the elder Mr. Dance, who wat both a edtizen and a Protestant. This architect hat been asid to have been orighanlly a abip-builder, and the two lofty atrica that were formerly over the Egyptianball and the ball-room have been ascentically compared, from this circumstance, to the balk-heade or poopt of a deeply-laden Indinma. The plan in well arranged for the purpores it was built for ; come of the apartments are magnificent, though somewhat heary in style, and there is no feature in any part of it but what may be traced to some of the then exiating booka on Italine architecture. The Corinthisn orders of the portico and of the Egyp-tim-hall have more the character of the Stadt-bonse at Amoterdem, than thone of any of the fair cities of Italy; and the whole building bears more aftinity to the Batavian than to the Italian style of architecture.
Dance wat, however, a man of some genias, and exhibited much akill in his charches of Bisbopagate end Shoreditch. The Roman-Doric portice of the latter is as well proportioned and as bappily applied as any similar atrocture in the metropolia. The apire, though inelegantly placed behind the portice, which occamiona ita tower or basement to be hidden, and gives it the appearance of being monnted on the roof, is a free and succeaful imitation of Wren's St. Mary-le-Bow, and is one of the handeomestapires in London, The deeply indented acotis that supporta the terminating obelink is boldly original, is productive of a fine effect, and conld only bave been executed by a man of seience. The bodies of both these charches prasent the appeareace that theit author had atudied his Vitravias in a Datch tranalation.
Hogarth hea astirised the want of arcbitectural tate in England at this period in one of his inimitable pletores of Marriage a la Mode, whare the portico of the mansion in progress for the noble father of the bridegroom, is formed of five colomnt, the middle one being ander the apex of the pediment. The atairist littlo dreamt that hil pointed ridicule would and at imitator, jet it is so, for the architect, if so he may be called, of Bedfordsquare, has on two of ita sides perpetrated the atrocity of a aham portico of Ive attuched pilaten, the middie one being after the mode of Hogerth'n architect-under the apex of the pediment.
Batty Langley who fiouribbed about this time, had a sohool or academy of archistecture, bat hir disciples were all carpenters ; and although his laste as an architect was deserredly derided, he formed a school of excellent workmen, and gave torm to many a akiffal artionn in a certain line of art.
Bmlyn, in an aftar age, attempted the forlorn hope of inventing a now order of architecture, as if thone of Greece and Rome and Italy were not sufficient for the grapp of hil capacions mind. He used onk leavee lantend of ecanthus or parnley for follage, the star of the order of the garter for the rosette between the volates; the shaft wis single, one-third of its beight, where it divided itwolf into two, like a forked alm, and terminated of coorse with twin capitala. He was permitted to dedicate his book, entitled "Emifn'u New Oadir of Architservan," to George IIL., who with that good nature which alwaya charactorised that monarch's patronage of artista, allowed him to execate a apecimen of his biforked "Britiah onder," at Windeor: bat I believe it has been removed.
Batty Laugley however moared bigher, for he published his invention of so fewer than Ive new orders, namoly, The Gothic Twean! The Gorkic Doric 1/ The Cothic Ionic / / / The Golhic Corinthian 1/1/ and The Gothic Comporite $/ 1 / 1 /$ The principal novalties were mating the shafte of the colnmna treble, quadrapla, and quintaple, clastered and banded life the pillars of our ancient cathedrals, meking the topt of the trigljphs pointed like lancet windom, the friesee coved and alled with freta, and other equal absurd alterations. Some apedmens of these "Gothic orders of my inomemion" were, and perhape are, to be meen in a street mear the north-eant cormer of St. Jamen's-purk,-Fludyer-atreet, I think.
Daring this thate of transition, meveral elogant and mbetentin mansions of
considernble dimensions were erected in variove parte of the country. Wan-stead-hoose, a splendid ediace, with a magnifcent Corinthins portice and extenaive wingu, worthy the name of a palace, was built by the opuient and plebeinn family of the Longs ; and has aince been torn down, its picteres, stateen, and materials sold, and the park disforested of its lofty oakn, by an aristocratic parrena, who married and illtreated the last heireas of the Tilney Longa. Harewood-house, aear Leeds, in Yortrbire, one of the readances of the noblo family of Lascelles, in a fine imitation, withont being a servile copy of the manion at Wanstend, but with the adrantages of a fine aituation, and of being anrounded by a truly princely demenne, and commanding some of the fineat views in the conntry. The manaion of the late Sir Gregory Page, at Bleckheath, a truly Palladian villa, on a vast scale, wat too oxtensive for the fortnnes of his anceessors, and met the fate of Fanstend-house. Some others, ponsessing no originality of cbaracter, wero erected aboat thin time come of them from the deaigas of Giovano Battiata leoni, an Italian archi. teet of okill and taste : the beat of these are recorded, with plans, elevations, and sectiona, in the "Vitravius Britanniens" of Colin Campbell, himself an arehitect of indastry and talont.

Sach was the atate of architecture when George III. ascended the throne of bin German ancentorn, nelther of whom loved art or literature, and one of whone could see no merit in the transceadant works of Hogarth, and abneed him for ridionling, at he said, hin German guards in the eelebrated picture of "The march to Finchley;" this oftence the painter revenged by dedicating the print to Prederict the Great of Prusuin. Nor could he discover any genias in Garrick, bot talked German and took snut while the British Roscius was illestrating Shakepeare's Richard the Third; bat rose, commanded ailence, and made an obeisance to the low-comedy actor who personated the lord mayor, asing, "Gentlemen, we mnat pay reapect to my lord mayor." Such were the military goths who had the art, literature, and science of the kingdom, in an enlightened age, at their command.

Frederic, Prince of Walee, father of George III. received an English education, was a mild gentlomanly man of no great abilitios, but posseaced a real love for the amenitien of literature and art. He patronised Thomen and Gay, and his little conrt was divested of the rougher manners of his father's. He was npon ill terms with his father, did not live happily with his wife, a princest of coarse mind and manners, and died joung. The education of his con wat thus left to the care of his mother, who noglected the more solid parts of hin atudies, and applied the money entronted to her for that perpoee to her owe plemares.

Eing George III., fortanately for the arta, and particularly architecture, wat endowed with an inasto love for anch parsuite which soften and improve the hmman mind. He was also well ecquainted, for a prince, with both the theory and practice of the graphic arta. When Prince of Wales, he atadied architecture, mider Mr. Chambers, and was taght to delineate its proportions with accuracy from the rales of Palladio and Vitrovius. From the be-fore-mentioned circnostances, there was no Bagliehman who practised architecture as a profession. Chamben, who had been a naval oficer, was partial to the art, and had trarelled in countries where architecture wat better undertood then in England. The young Prince also atodied the secience of perspective, under Mr. Willian Kirby, whove prectical work, founded on the theoriea of Dr. Brook Taylor, wat formerly in mach eateem, and has obtained great celebrity from Hogarth's sarcastic frontispiece of fanlty likely to oceur froen the want of a lnowledge of that science Prince George contributed, is in anid, a design for his tator's work; and hin drawinge are reported, by persons who had seen them, and they were extant in the royal librery in the lise Buckiogham-house a few years aince, to have been correct in detail, aad, for their day and style of art, tanteful and elogant.

George III. accended the throne of Great Britain with more advantages thea moet of his predecesern. Born and edroated an Baglinhman, he gloried, as be meid in hin first apeech from the throne, in the name of a Briton. Un. prectised in the cruel ecenes of wrartare, he had been bred in peaceful retire-meng-perbaps too necluse for the government of a mation then involved in sueh momentous tramsetions. He loved art, wat fond of liternture, particu. larly that of his own country, wat slighty akilled in munic, and read Shakapeare with propriety and enthurisum. A speech from the throne, delivared in correct and elegent Rogtiah, wat a novelty unkcown to almont all its anditors. The exclamation of Qain, the tragedina, who had been his master in elocution, and wa edmitted to s plece in tbe House of Lorde to witness the debet of his royal papil, of "Bravol I taught the boy," was more ancere then eourtly. Artinte and iterary men were no longer huffed for their in. tradon into the paliee, aor debarred the royal presence. Chambers wat appointed to the outioe of royal architect. Bansay, a well known postriit
painter, was employed to depict the youthful sovereign and his consort; other artinss and their intereste were atteoded 10 , and the management of the mondemy, or asociation of artinte, in St, Martin'z lane, begen by HO4 garth, Thornhill, and othern, wet patronized, and ite concern inveatigated. The ling comearned himsalf eren with thoir little qaarrels, and anggested mesares for the enlargement of ite utility; it being then meraly a school of adalt antistr, for the atudy of the baman figure, and not an acadamy of the Ane arta, which the king deaired to see eatablished in Bagland. It had, however, fte series of annual pablic axhibitions of the works of its members, which the king duly honoured regularly with his presence.

Chambers, from the circumstance of being the royal architect, and repaira and additions to the royal palace being necessary, had more interviewn with his royal manter than othern; and their former relations of master and papil, had given more than uanal treedom of intercourse to these interviews. The king deaigned to etablinh a Royal Academy of paining, sculptare, and architecture, apon the plan of thome fonoded by the illustrious Colbert and Cardinal Richolien in Frasce, and to build a palece for ite oceupation. The king antered into this grand project, and Chambers became the organ of commaniantion between him and the leading artiste of the day apon thit important subject.

Haring now adopted architectare at a profeasion, and boing a Chevalier of the order of the Polar Star, his royal master honoured him with Bnglish knighthood, when anch an honour wat more rare than in later deys. Hence the origin of the Royal Academy of the fine arts and the building of Somer. cet-house.

8ir William Chambers threw no new lighte on the art over which he wes destined to preside. In ite practice and more scientife department of conatraction be wes, comparativaly with auch mon as Wren and Hawksmoor, sotally ignorant. His tasto met Roman, and, being noscquainted with the eublimer beantios of Grecise art, wea consequandy less refined; yet his works have a chastened correctness of detail of the best atyle of Italian art. He is less exuborant than Scamoxsi, Serlio, and Borromini, and oven then Palledio himself, except in his very best examples. He may be called the Palladio riformato of the Georgian erk. In the course of his travels he had vinited parts of Chins, and pablisbed a treative on the gardening and architecture of that strange people. The rogal gardens of Kew and ite lofty pagoda are among the reanlt of the Chinese phantary that he had inflicted on his royal mater, and led to the introduction of that fanciful and inelegant atyle. Tot the Somernet-honse of this architect has many redeeming beauties, and his work on "Civil Archilecture," in spite of bed tasto in reviling the architecture of anciont Greece, of which he knew nothing, aboonds with sound doctrinet, and is the best elementary work that we possess. A new edition, remarkably well edited by the late John Buosarotti Papworth, whoee recent death, full of yeart and honour, the profasion have to deplore, wat pab. liahed a few years since, and also asmallor one, with a treatise on "Grecian Architecture," by Mr. Joseph Gwilt.

The eatablishment of the Royal Academy by George III. in the next great epoch in the arts of thin conatry, after the fire of London, and will form the subject of the nert section.
(20 be continued.)

RAILWAY LEGISLATION, ACCIDENTS, AND INSPECTION.

A paper was published some short time ago, to show that if it had not been for the operation of prejadice, we might have been in as full possession of the railway aystem in 1817 as 1847, and that wo had spent some half cantary in keeping back and thwarting improvementn. Much the same kind of thing might be said of railway legislation : at this date me are fighting for the aame points at we have been for years. Surely no buntling ever suffered 80 mench from ofincions narses than has the railway ayatem; never were bandages, rollera, and go-carts more namercifully applied to hinder, under the name of fostering, growth.

The pages of our Jomrmal will show that we have always stood up agninst all legialative and government interferonce with any form of engineering enterprise. If this be a prejudica, we are quite willing to own it, and stand by it, and we have held most unflinchingly to it. It happene, however, that if we have atuck to a prejudlee, our opponents have not fared in the ieast well with their several legislative and inspectional messuret; and wo are at this late hour strengthened in onr views by their

Iflesuccest, which they have on many occasions acknowledged. At all eventa, then, they cannot say that experience has been against us, whatever they may choome to say and think about the soundness of our, theories.
-We believe by this time everything has been planned and tried aboat the railway syotem, except letting it alone, bat we very mach fear this is the only experiment with it that will never be tried. It in, nevertheless, one enconragement to pernevere, to ns and other friends of non-intervention, that tbe experience as to railways, and the enlarged experience of every aimilar establishment and inattution, resalts in oonfroning the propriety of our convietlons.
In the teeth of the traism, that all human andertakings are fallible and all new andertakings imperfect, no allowance is made for the railway syatem, but every accident is seized hold to authorise its condemnation and restraint. The resalt of sach interference has never been followed out, but a carefal examination of reilway accidents from the frat returns would show, that while many accidente are doe to carelesoness beyond the control of any authority, still more are due to the progresaive condition of the railway system, and still more to the attempts for the prevention of accident. Luggnge tracke ased at firat to be pat betwoen the pascenger carriages and the engine, to proride againat the possibility of injury from exploalon of the eagine. A train haviag been ran into from bebind, the laggage and goods trocks were then, on the demand of the pablic, put behind. This was followed by an accident, from a train being injured from the front. The pablio then required trucks to be pat fore and aft. Notwithatanding this, a train was cut in halres at a junction.
In order to give atability to the traing, it was an early practice to mlx goode and passengers. Thle was, on the pablic roice, given op, bat there whes a demand for empty horse-bores and laggage raos to be mixed with the trains for safety. We believe these have been the cause of very many accidents, from their naequal weight and construction leading to their, being thrown off the way, and to the passenger carriages riding upon them.
From the pablic demand for aiganls, signal-men, and pointemen, has rosolted certainly no greater safety, but certainly many more accidents from negleot of signals.

While the jumble of passenger carriagen, trocks, and horse-boxes might do very well for the $\mathbf{2 0 - m i l e}$ an-hour speed of 18s6, it is very ansuitod for the 50 -mile-an-hour speed of 1847 . A new system matt require new safeguards, and to no one can the care of these be more properly entrusted than to railway managers.

As non-interference seema to as the best mode of legislating for railways, co railway managers seem to ns to conatitute the best and only safogaard againat accident, and the only one on whick oo reliance has been placed. It cannot now be very well dexied, that a railway accident, whomeoerer else it may affect, inficte a certain, and nearly alwaya a very heary, lose apon the railmay company, exposes the directors to very great odium, bleme, and misrepresentation on the part of the public press, and subjects railway officers to the fear of losing their appointments. Pecaniary and moral responsibility of this kind in what our institations teach us to rely upon in every other case, but the word "railway" has the magic power of shaking our convictions and our projudices and banishing our common-sense. It is contended that reilways are only to be treated by exceptional law, and this has only to be assertod to be allowed,-so much the worse.

To tind out the means of avoiding accident is to fond out a means of seving money, and this is a forther inducement, which affocts railway managers and no other parties. The time is not $s 0$ far back when the engine-drivers on the newly-opened rallwaye were ignorant, dranken, bratal, ill-conducted, and deaperate barbarians from the coolpita of the north of Eagland, who were extravagantly paid, and who were ander no restraint. It is well known that having no fear of death, they have purposely risked accidents for the sake of the fon, as they onteemed it, whereby human life was perilled and property lajared and wanted. Finea they paid by common contribution from their large wages,--criminal punishments had no terrors for those whom death and danger did not scare. As to dismissal, it was only a change of employment-perbaps at higher wages. The man who was dismiseed from an old line went to a new one; and after having made the tour of England, accepted higher wages abroad. More enginemen were wanted than could be found, and, though wages were so high, respectable men could not be got to ealist themelves in a body the members of which were so desperate, the nature of which was then so bazardons, and whith the legisiatare were called apon to braod with a apecial peonl code.

Thas the liveq-of passengers and the property of the compacies were fully and troly at the mercy of a set of desperadoes. This is language which is strange now, but which was that of the press only a few years ago. The companies exerted themselves, they gradually trained a boter conducted body of men, and they have now engine-drivers more iatelli: geat and more trustworthy, at rery much less than the wages which they then paid. The saving to the conspanies noder this head is very great; so is the consequent saring which they have been able to effect in the coosamption of fuel and the wear and tear of the working stock. All this is over and above the greater freedom from accident.

It seema strange to look back and peruse the virulent attacks and abuee which were larished on railway directors at the time of which we are speaking, and the Times did not forget to demand that directors should be made criminally responsible for the engine-drivers. We believe there wes but a very narrow escape froun a Draconian code, whereby railway directors, officers, and eagine-drivera wonld have been lefl open to criminal pains and penaltles. This is an ultima ratio for railway abuses which is a great favourite now, though how it would work it neede no great cleverness to foretell. The office of a railway director at the present moment is one of much more honour and vanity than emolument -sometimes nothing a yeur and a vote of censure being the salary, bot most frequently tho liberal sum of afty or a bundred pounds a year; whlch latter is, we believe, the sum forming the civil liat of a rail way kiag.
The entablishment of a body of gentlemen, who are not to be well paid nor to be greally honoured, but who ara to be marked out for the application of the most hateful criminal proceedings for acts and permona beyoud their control, would be a novelty in English nociets. What class of persoos would succeed membera of the legislatare as railway chairmen and directors, we do not pretend to say : we ooly know that the present cless of directors would retire, and that a lower class would take their places. The nearest model we can get of the effect of such legislation is supplied by the newspaper press, wherein the wisdom of parliament has so hedged the proprietorship with criminal liabilities, that it is most rare for the real proprietor to be registered and published, and an ingenions deceit is practised which would do credit to China. In come provinces of that enlightened empire, substitutes are to be obtained for the price of seventees pounds in hard money, who will andergo the penalty of death or the greatest tortures ; and, in England, the Attorney. General is fain to content himself with a substitute, who, for a given consideration, will consent to be fined in the Exchequer, or sentenced to imprisonment in the Oid Bailey. Instend of the clase of nowspaper proprietors being raised by the presence of Sir John Easthope, Bart. M.P., or John Walter, Eaq. M.P., whoso pablic character and respoasibility might be brought pathicly to bear, the legislature bes offectually provided that pablic and pertonal standing shall be of no value, and a virtual protection stall be given to the libeller and acandelmonger, for whom under no circumstances has the law any terror, and whose calamnies now only have power, becanse personal oharecter is allowed to be of no weight in the decision. The same reanites would attend the application of criminal responsibilities to railway diroctoruhip. and the least of all consequences of such ill-advised legislation would be the sabsitution of men of strew for men of character and responsibility.
What benefit has resulted from Board-of-Trade-inspection we do not know, and we are hardly aware that the inspectors put forward any vory prominent claim. Indeed, so small is the appreciable beneft, that wo apprehend the days of railway inspection are numberod, and that many years will not elapee before it becomes obsolete. We have an example of this in gas inspection. It is aingalar that the progress of the ateam. packet, ges, and the locomotive ongine, was impeded by explosions at an earig date. The blowing-ap of one of his first engines in Wales was the trye cause why Trevithick's locomotive remaised unused, and it was charged with the two faulus of a dargerons coostruction and a want of bite, which in the present day do not presont themselves as common objects of fear. The dangerons explosion of a locomotivs in now one of the leansknown causes of accident, and two caces only have, we believe, cocurred of late years-one in the United States, and one on the Sheffield and Man. ohester Railway. The blowing-ap of one of the frat atenmbonte gave this mode of conveyance the eharacter of great danger ; and those who remem. ber the defeotive construotion of the boats which first ran on the Thames, enn bear witaens to their clumsiness and linbility to derangement. Witala two years of the establishment of a gas company in Londoc, a gacomeler blew ap with a terrific explosion, and so mach were the pablic clarmed at the seeming hamands of these magasides of dangerous combeatible, that an cot was pesced, which is we believe atill anrepealed, placing very grout
rematrictions on ges companies, and requiring them to comply with certain ragulations and to uadergo a goverament inspection, before they were allowed to open their works,

Whersas the Board of Trade now claim to be the inspecting department over pablic outablishments, the Howe Dopartuent was the one at that time to which the ges companien were subjectod, and in coaformity with the same predilections which now role at Whitehall, a millitary oficor was appointed as inspector-general. Thr firat inspecter-general of ges-worka whe the colebrated and ingerions Sir Williaun Congreve, bat, except as the means of giviog large fees to the gallant general, the inspeotion, evan in bis hands, became quite a nollity, and we believe that elnce his death, no laspector-geseral of gat-works bas been appointed; and at the present day, no one knows anything of the safoguard of gas inspeotion or places any faith in it, while the explosion of gencometers is so rare that it is not thougtt of.
If steamboaks and gas-works are now able to do tolerably well withoat impection, and are dally brought mearer to abeolute safoty, it may be expected, by cool-mioded men, that lo doe time railways may likewise be able to do withoat inspeotion. As, too, so many pablic eatablithements heve beon formed and matared withont pablio inspection, we can 200 bothing so peouliar in reilway undertakingi as to prevent them from adranaing to perfoction without government help.
As any rate, the pressat inspection is froitless and anoutisfactory. The caly persoo who has been able to find any find of atility in it has been Prach, who says that wheo an acoident tures place, and the public mind is in great alarm, General Pucley or Captaln Coddingtoe is sent down, and makes a report, complimenting evergbady and everything, and abowing that aobody is to blame; and therenpon the public terror is quieted. Cortaialy the inspeotors' roports coatain nothlog else, and it woold be vain to seek in them for any practical suggestion or any original contribu. tion.
Whetber this atate of affairs is attributable to the employment of military engineers we do dot allege, bot, nevertheless, whatever value we may attach to our mililitary brethren in their own department, we cannot, either a priori or from any acquaintance with their actions, place any faith in their civil capabillies. We very early pointed out the consequences of patting officers of the Royal Engineers in a fulse position, and pitting them in an anequal content with the beads of the eagineering profescion here, who are acknowledged to be the greateat civil engineers in the world. Civil ongineors have exercised the greatent forbearance auder the insolt to which they have beon exponed, of the intrusion among them of incompe. teat persons; bat opportanities have necescarily arieen, in which eminent wen in this conntry have boen compelled to express their contempt for the jndgment and attainments of the govemment fanctionaries. General Pasley, who, among all the proceeding: of the Board of Trade, has remained exempt from the suspicion of corrupt motires, and whose cha. ractar as a highly honoarable and well-intentioned man, recure for him personal respect, has lately, by an officious interposition on the subject of the Menal Bridge, lald himself open to the observation of Mr. Robert Stephenson, that he does not know anything about the plan, to which the General supposes he offers insormonntable objections.

One objeotion we made in the first instance to the appointment of goverament officials, wan the imposibibily of government paying an ade. quale salary to secure the services of individuals againat the competition of private enterprise. Sir Charles Pasley being a geseral no one of course wante, and Mr. G. R. Porter is coatent to be promoted to Mr. Kacgregor's place as joint secretary to the Board of Trade; but most of the other parties attached to the railway department have paseed over to the side of the companies. The celebrated Mr. Samuel Laing, who concocted the whole system of aggression on railways, and who was the ambitions spirit of the Board of Trade, bas for some time been a flourish. iag raliway parifamentary counsel, and is the author of a pamphlet againat the railmay department. Captala O'Brien is a railway mao; Sir Fredoriek baith is otill, we beliere, chalrman of the Belgian Eastern Junction Rail wry, mad we think in directorshlp; Captain Coddington has accepted the managerionp of a railwey. The time is perhapa dot far distant, whon the Railmay Board being disbacded, the Right Hooourable Ed ward Struth, M.P., may ancceed the Bight Honourable George Hudeon, M.P., in a chairmanship;-nay, who knows bat in time, wheo he bas seen a railway, and geta to know somothing as to what it is, the Right Honourable Bir Edward Ryan may be olected to a sent at some board? These things woold sot be more extraordioary than Mr. Laing writing pamphlets againat the Board of Trade.

In the men of the Railway Board wo have no coafideace, aod in their measores no more ; and we are very ititle disposed to trust a proprescive institution like railways to their mercies. In a dew age we have got a sow experience to learn, and we most bave time to leara it. The ooly thing we bave to feer is lest, by our projadioses and our illotimed medditity, wo keep back the benefits which are tendered for our enjoymenl. We have kept back railways and we have kept back electrio tolographs, bat we are still oa the verge of enjoying a vast extennion of the resocrese of ecience. This yoar the telograph will apeak with ta lightaing tomgue to the ends of the Laod; the word which is sald in London shall in the same time be known in the groet citios of the ialand, and ahall meet with its Instant answer from beyond the otmost limitts of the hearing or gase of man. The electrio telograph will be clalmed by the same denpote as the railway ; gentio duloese will find evils in the telegraph which demand its abantening care, and the conoencioms in railway inapection will be urged as a reacon for placing our correspoodenos andor the same inquinitorial regime.
The effecte of the eleotric telegraph pradence forblds as to llmit or asadga, but it is evideat a very great change must be prodnoed in our babits and associations. Not ooly mast the whole range of commercial trassections be affected, but even the oparations of the law mast be modified. It may be questioned whether, in the presoat atate of jurispradence, the benefajal use of the telograpt in arroting the course of criminals be not illegal, for it must often involve the abeence of a writ or trespass on a jorisdiction. We leave it to the lawjers to deternive what form of writ and what form of service they will adapt to the electric talegraph, in what manner a Master in Chancery in Sonthamptoo-baildingo shail take the examioalion of a party at Liverpool, or bow a Telegraph Aflidavit Office is to be organised in Papar-buildinge, Temple; but they are very likely to be called apon to provide for a new state of circumstances, cassed by the revolotionary infuence of the telegraph.

We cannot but think it fortanate in every respect that the monsirous Railway Bill of 1847 was not carriod, for it would have greatly aggravated the difficullies which now beset railway onterprise. How it can have been brought forward in a country claiming to have a great achool of politieal economy seems wonderful, still more so that it should have received the sanction of a department, which claims to be the scientific political department, and boasts of Huakiseon, Lord Sydenham, Deacon Hume, Macgregor, add Porter. We know no greater alur on the political economy of this conntry than the serien of riilway bille, and wo foar that it is to be attributed to the sacrifice of political principles to porsonal ambition. The foundation of political ocooomy as applied to trade is the doctrine of noninterference, which is violated by every rallway bill.

The provisions of the Jaoissery Bill of 1847 were intended to improve railway administration, and to preveat usdue apeculation : the resalt wonld have been to diminish directorial responsibility, and to favour the operntions of staga. Of all provisions, that immediately affecting the survegs is the one, which coming in our own line, most interests an, and we are able to affirm that notbing conld work worse. To require the deposit of 2001 . a mile in addition to the other exactions would bave the oxect effect of in. juriag mang good andertakings, of impoding all doriog timen of commercial diatress, and of promoting the viewn of the stags in times of apeculation. The demand of any deposit as a cecarity for the bond fide origiantion of an oudertaking is a fallacy, whiob has nothing but the imagination of its loventors to give it conutenance. It is evident that doring any tightneus of the money market the enforcement of a deposit must act as a strong check; but then it tonches good undertakinge as well as bad. In a time of specalation, whether the deposit be 6 per cent., 10 per ceat., 50 per oent., or cent. per cent., it is perfoctly immateriai, so far as the possibility of raining it is concerned, and the nafortanate experience of $\mathbf{1 8 5 5}$, before the time of railway manias, proves this. It makes a great difference to the projectors how mach they can get into their haode to apend, but it makes no difference to the speculatora, who are ianagined to furnish the deponit, at the deposit, in a financial point of view, is for the most part fictitions.
The famoas deporits of 1845, which were ased by the Times as anob a bugbear, invoived only a few changes of Ggares in the bankers' booka, and it may be said that they never were in existence. Even of those anme which got into the hands of projectors, the whole was not wastod, for cos they largely dabblod in scrip, and gambled with each other, to they in effect worked for socrip, which may be coandered an etherial mediam.
An acquaintance with the circamstances of railway engineers, marveyors, zolicitors, secretarien, and projeotors, will fully convinoe the in-
quiror that whatever the unpposed gains of these parties tn 1846, their present possessions, taken generally, are very small; and the solation of this is, that their wealth in 1845 resolved itnelf into that proverbial bubble -serip, the certificates of which, for that matter, they may atill possess, tut the imaginary value and premium of which they have loet for ever. Making allowances for sorip operations, the actoal waste of capital in the gambling of 1845 was very small, and certainly very far below that of 1825, when so much capital was suok abroad in worthless and noproftable operations.

That some few engiveers, lawyers, brokers, and oapitalists have realised money is lodispatable, bat the number of these, and the gross amonnt of their acquiaitions is very small, and the mass of specalators and operretors bave not reallaed anything.

What is the real amount of capital wasted or lost to the country in 1845, it is hard to calculate, bat we do not believe it can anybow be more then two millions, while perhaps it may be only one million-perhaps it may be that, comparativels speaking, it is nothing. In this conntry a great nomber of persons are always maintained in idleness, $e 0$ thet it does not meke moch difference if some of the funds of these classes are distribated for a time in making some of its members railmay commltteemen and serveyore, inetend of keepiog them, es they otherwise wonld be, cigar smoking, billiand playligg, of fox-hanting.
If, moreover, we consider that a larger amount of real and offective Iabour was performed by the population of Eugland in 1848 than in any previons year, aad a larger amount added to the fixed capital and resources of the conntry, it becomes still more questionable Fhether on the balance of transactions the conntry was in anywise a loser by the gambling share tranactions of 1846. We know that we are great gainers by the axtension of the railway system.

For whatever parpose the leading orgen of the world, the Times newnpaper, is pleased to devote itself to a crasade egainst English railways, Which it seems determined to injore per fas aut mefas, by any means, by any rapresentations, by their merits and by their demerits, by truths and by falcebood. With an igrorant popalation, and with railway managers not orentlled in polltical lore, a anbtle and anscrupalous adversary is able to represent every thing according to its own ends; and little mote than good fortane, and some want of faith in the objects of the Timea, has coconed this conntry from being victimised into surreadering a most valuable institation to the clamonr of a most andacione aystem of miarepresentation.

Without going back to the earlior efforts of the Tines, it may be enough to ifgnalise some of the later ascertions of the Times. The charges agningt the rail wiy syetem for its operations in 1847, loclode the following:-

1st. A large importation of foreign corn.
2ad. Au increaned consumption of foreigu luyaries daring a time of severe privation, when greater anving was the more needfol.

3nd. A diminution in the stock of cotton and other raw matarials of manofactare.

4th. An increased ase and higher price of fron at bome and leasened consumption abroud.
sth. Cagning the atock of gold to be ment abroad.
6th. Depriving goverament and the commeroial intereat of capital.
7th. Depresaing and raining the mannfacturing indoutry of the coantry.
Wo baliove this sample is such a one as the Tines will socept, es not going beyond the boands of its mecusations.

There was in this year a vory large importation of formiga corn, in oonsequence of the failure of last year's harrests. This failore conld oshy be supplted by import from abroad, and has no conneotion with railways.

It is quite true that in 1847 there was an increased import of foreign sngar, meat, butter, cheese, and other provisions, but which has no connection with railways. Had there been no such increase it would have been duly noticed by the Times, and charged against Sir Robort Peel and Lord John Russell, as a failure of their tarif measures, which were purposely framed to increase the consomption of angar and foreign provisions.

The dimination of the stock of cotton was oving to the failure of the cotton crop in the United States, and with a short crop there must be whort stocks and high prices. All this has no connexion with railways.

There bas been a greater demand for iron at home in consequance of a greater number of railways; but as these are very nsoful, we do not think this is any harm. A higher price of English iron in foraign markets is a necessary cunsequence. This charge has a connection with railways.

Gold wan ent abroed to pay for loreign corn, and nothing else could be eant. Whatever the Leagne partisans and currency theorista may pernunde
themelver, gold must a ways be ment out to meet a sodden demand togold. Mr. McCulloch ehowed this long ago. The filure of a harvent is a sadden and irregolar event, requiring a sudden and irregolar apply, which can only be mettled immediatoly in gold, and rot in goods, as the theorksts expect. The farmer on the banks of the Mississippi or the Vistula will not lay in a stock of cotton or ironwares enough for foor or five years' consamption, and take the hasard of fire, damp, and waste, let the goods be offered to him at any price bowever low. He will always prefer to take Englith goods as be wants them, and at the price of the day. The merchant of New York or Dantsio, though be mey be tempted to a small extent by chempness to lacrease his stocks, fill not do to to the fall exteat required, beamane the rinks ane not not worth the advantage. The Eagish mannfactnrer apd merchant will alwaye be left to bear the ricks of the utook, as he does now, while as a merceptile fact it is well knowo that from the greator wealth of Enginad the stosks are is ber hands. The gold therefore most go out, and it will come back, as the goode are altimetely tekes in the final liqnidation of the acoount, The gold always has coms back and always will, while the goods inctend of being sold at a depression are sold at are favoarable prices.

It is a recognised expedient of the Bank of England, sopported and tocolcated by the highest anthoritios, to raive the rate of disconat to a ratie pitch in the event of gold going ont of the conntry, with the view to forve goods abroad and prevent gold golug. It is supposed that by eanaiag enles bere at rainons pricen, foreign merchante are induced to take goods inotend of gold, and that thereby the gold is lept in the country. As, however, the larger stocks of Eoglish goods are alwayt in Engtish haods and pot in foreign handa, no great iacrease of sales can take place, bot only a deproclation in price. The goods offered in the market, however small, dotermine the price of the stooks, however large.

In the face of this admitted doctrine we assert that the effeot of refingeg the rate of dimconnt, or putting on the screw as it is called-

Does not cause goods to be sent abroad instead of gold.
Does not prevent gold from going out of the conatry.
What it does do is-
To canve sévere distress at home.
To depreciate all our stocks of goods abroad.
Our deduction is-
That the ecrew does not effect the proponed ond, that it doan no good, and does great harm.

If no "screw" were applied, the country woold anffer no posmible harrin ; no more gold would go out without the "screw" than with the serew ; but diatress would not be produced at bome, nor would our goods be disposed of at depressed prices abroed.

Although the "crrow" principle has paseed nuqueationed, it has we single statistical fect, and no solid mercantile experience, to recommend it. It is quite groundless.

Railways did not deprive government and the commeraial interest of capital. Government has got the capital it wants, and if it has to pay a bigher prioe it is not on eccount of the competition of railway companies, but chlefy in consequence of the "screw" having been applied by the Bank of England. The commercial interast, on account of the depresaion, has required a smaller amount of capital, and there is no statistion foocida. tion for the meertion of any interference on the part of railmays. What has been wanting during this year has been conflence and not capital, -the want of confidence boing greatly aggravated by the exertions of the Times newspaper.

The railways have not depressed or injurod the manufactering inlerest of the conntry in aay way. They bave not diminished the groes amoant of capital; they have not interfered with the maninfactorers' share; they have not diverted labour. The manafacturing intereat has suffered from the famine, the want of raw material, depression of prices, and want of confidence: the two latter circomstances made much more oppreseive by the "screw" and its votaries.

While the railway system bas boen falsely accused, it has hat no ace Enowledgement of the vast geod it bas deoe. Putting aake the large addition made to the fixed capital and permanent resouroes of the cogne. try, the railway system has, during a year of grierous famine and great commercial distreas, allowed an eficieut scheme so be carried out for the employment of a large body of the popolation. If no railway works bad been provided, the population of Eogland would atill have been fed; but it 1847 they would have been onemployed and diacoatented, and while their laboar would have been lost to the conatry, there is no saying what would have been the prolitical and social comsequencen; whereas in no year even
of promperity has there been less politionl agitalion that in 1847, whan a general election in hald, doring which party foeling is almost extinct.

The experience of every faot confirm the truth of that theory which secerts that milways are not made with now capital or new labour, bet by the incmeased energy of the labour of the conntry. This or something like it mast be the truth, and it is meither inconsistent, nor improbable; no more 20 than the admitted fact, that while the ratio of agricultural labourers is diminiahing, the extent of cultivation and production is focreasing.

If new laboaress and new food be not required tor railway purposet, sen capital cannot be required to the amount proposed, and the capital required sen ouly be the small mount of ready money necemary for the tom. porny repremotation or "clearipg" of the tranactions.

TIS may appear very difioth of betiof to theme who copoeive that every frupe $\mathcal{E} \& d$ pat forward magt be the repremention of solid bollion; whit has nevertholase the grarantees of trath. The development of the mechinery whereby a hundred millios's worth of railways is produoed in a year may elude analysis in our inperfeot ecquaintace with the true opera. tons of currency, but it does not invalidate the conclasions. We may expect that as the machinery acquires perfection the operations will enlarge, and it is iastructive to look back for a fow yeary and to witaese our present progreas. In 1840 a retura of railway calls, made by Mr. Earic Langston, a Mancheater sbarebroker, gave as the total for that year, $£ 7,491,390$. This anm, during the time of getting it in cansed the greatest alarm, the calls in the first quarter of 1840 amonnting to 50 less a sum thap $29,106,090$, and it was prononneed utterly imposeible for the resoarces, capital, incorec, and sarples revence of the country to prodece any such sum. It was, however, prodicoed.

In 1847 the amount of calls in ame single weoks whe as mach as the whole yearly amonnt of 1840 ; and we are not aware, notwithstanding what the Times anjy, thet the capital of the counstry is exhausted.

We canot cosceal the uneminem with which we contemplate the prospecte of the conntry in reference to railway operations, in comsequence of recent operalions and oventr. When the continnons period of depression arrives, and when it in most difficult to work the financial machinery, the construction of rallways will have so far diminiahed, that the mean of edequate employment and exerciee for the working popelation will not be found. If, in conuequence of this year's abundant harrest, and the fall in prices which will resolt, a period of speculation and share gambling should mant yoar arice, it canpot now be cirected towards milwaya, and will there. fore, is all probability, tate the only open feld of foreign mining, which is ender po such reatrictionat and therefore the evil of 1896 may be renewed.

We will only may few words by way of concluaion. "Lot rail wraya be free, and the less legialation and inspection the better for the country."

THE BRITIBH MUSEUM.

 No. II.The dispenion of the Greek and Roman antiquition comeoquent upen the demolition of the old rooms, and tine non-completion of the mew oses, crasen some confusion, and these is adfficulty in finding them , but this will noon be remedied. The arraggement is altogether 20 imperfect, that it leads at to remarks more diecurnive than they otherwise would be. It is, however, the temptation of a large collection like that of the British Musenm, to procont a great variety of objects to the gase, and to exdte at each moment rome new thought, little dependent on those which have fust gone before. This is the great modicinal power of anch collections to a mind dineaned or worn down; it is a quality of refrenhing the jaded tboughte, of awakening sew ones, of alluring the weary gase, a temptation now to clowe and busy serntioy, anon to sit down in quiet meditation. We may call such e place a amaforion for the artist and man of taste, while it is the best place of ex. errive and refieshment for one in the full vigoor of his powers. The Musenm in bowever mach leas vinited by architects and other artints than might be expected, though it is not neglected by the amatear. If we are to judge by their modes of acting, our English profeacors have strange Ideas an to the caltivation of taste, for they seem to think that it will grow and feed, like some exotic plants, on air, or rather grow withont feeding. How many men are to be fonnd not wanting in means, who have neither library nor maseum, Who sever read, and who never atudy works of art at home and abroad, but tratt to the daily plodding of an ofice as their only sebool.

In going round the Musenm, and neeing the nomber of nnintalligent, nty even of brutalized and debanched countenances anong the vititante, the quention is naturally raised, "Can the Mosenm do anch partiet any good?" Take, for instance, thowe least capable of appreciating tbe immediate worth of the object they see, who paes round, ecarcely moved by the wonders about them-the obeorver will not deny that even they feel a beneficial insuence. Novelty or atrangeness will alway operate apon every mind to awaken it to mome extent, and it is a great object to effect this in those minds which are most bratalined : to awnen attention is to coltivate the fint quality of the miad, and to lay the way for lit further exercise.

It is scarcely pomible to look at any department of the Museum, without finding come meful example, even if wendering amid the chaos now reignigg. Who, for inatance, can look at the calloction of tombs and aras, witbout secing the great anperiority of the Romans in sll ertiatic exercises over ourcelves? An Baglish churchyard is a set of atereotyped atone or wooden tablets, eametimes varied by a pile of monatronis uglineat. One bead-atone in like another, except in as far at it in necescary to inscribe it to John Thomea, instead of Thomas Johns ; for, could the inseriptions be interchanged, the spectators of the head-stones woold be none the wiser which is which. The cemetery syatem has in mome degree broken in upon this monotony, and created a greater variety of forms; bat atill they are limited, and confined, as we may say, to sets. The mourner may purchase a No. 1 obeliak, or a No. 3 urn, at he would select a knife from a Sheffeld pattern-eard, or a printed mulin from a numbered specimen. A large lot of number ones and nomber threen is manufactured and worked up; for at to individuality of deaign, it is out of the quention. It in not asked for, and the tomb-makers are guided secordingly. Any one who goes into a tomb-yard either in the New-Roed or elsowhere, will find that the trademan has an urn, an obeliak, a cross, a sarcophagus, a broken pillar, an altar-tomb, tonfin-tomb, and oue of ach of the recognined patterns.

In looking at the Roman urn in the Musenm, and which befing for one genorl parpoee, are in come dogree restricted in form, it is notwithatanding exceedingiy ploasing to notice the great variety of deoign. It would be hard to find an Buglish grave.yard which, with a greatar number of tombe, could show auch a pleasing application of urtistic tante. Umited as to adso, which goes little beyond a foot or fifteen inches cube, the Romans have made the most of their small material. The block of merble, alsbaster, or tone, is carved into various forms. Some are perfect rase, one is a circular temple, another a fragment of a column; this is a equars block deco. reted with a simple fentoon, another hat a fagade with pilasters tancitis; egain, the proportions being those of a donble cube, a raised oblong with fostoon and tablet is tienked by torobes at the corners; on some, the decesead is represented in various attitades. The form and decorstions very in each extmple.

The Roman urne mnat have been wroaght at little expence of materin and Httle cost for workmanship, and yet very pleasiug worta are prodoced: while with na, great material aod lavith workmanalp are unattended with artiotic eflort. The mane degree of habour which with pit beatowed on the mama's work, would suffice for that of the carver. While we acknowiedge the artistic qualitioe of the Roman exemplea, thoir devign is not alway the most attiog, and th is very ravely applicable for moders parpoeet; anme of the emblems are suitable only to Roman associntions, while some ceem to have no significance. Other designs are, bowever, pleanigg. An arn, which is not numbered, hes two very sharply out medallion half-lengthe of huaband and wife; others have high relief bonts of the deceaved, of of a married pair. Again, the deceased is sometimen represented reclining on a cooch is anch an attitude helf-raised a to cllow the likenem to be given. We, wholite cenblat pictures and eabinet worki of art, mifgt imitate this.

We have lowg thoogbt that the eatablighment among ar of peblio greveyarde and cemeteries in well celculated to promote the application of art to memorials of tbe dead, and though we have noticed above our present des. ciemeien, yet we are quite ready to acknowiedge the great improvement which has taken place of hate jeers. Wo believe the chiof obatacle now is the want of proper workmen, for the ezecntion of a common detign of foliage or flowers is still expensive. The Schoois of Design are partly remedying this, by appplying better trained men; bat the demand is atill great, and the remaneraHon in too great for a clast of labour which eannot be valued much higher than mechanical labour. Hed the prejodices of the academicians been $\mathbf{c o m}$. plied with in the entablishment of the School of Deaige at Somernet House, and the declaration onforced, we should beve been worse off than we are now. A decleration that astudent in a achool of design would not become a history painter or seniptor, portralt painter, animal painter, landecape or flower
plainter, whatever supposed mionopoly it woold have given to profeational artiste, would have depeived the problic of workmen, imatructed to execute at a cheap rate common carringt and decorations. Whatever the culptor academidian may arrogate to himeelf at his province, be does not undertake a cheap tomb-ntone or chimery-piece; and there in therefore no reason why the pablic are to have no choice between a contly work of art, and a work without any art at all.

It will be one result of the eatablinbment of a body of cheap workmen in art, that the man of taite will be able to auggent hin own deajgn ; and thus there will be a greater application of intellect and tante than can be onotributed by the artists alone. Hitherto we have been dependent for our applied taste on the body of artiste, and we can expect no greater progreas than we heve made with acoh a body, which is littlo in comparison with what might be eflected by the co-operation of the great man of the edncated community. To arrive at this will be to arrive at a new on in art, and it will likewise sopply a great defect in our artintionl economy as it now stands; it will bring to bear that retised scholarship and edocation, in whtoh oar artiate almont withont exception apt lamentably deficient. How few artint in the present day are able to take thelr stand se scholars and men of learning by the side of Miohal Angelo and Leonardo da Vinci, to ay mothing of artiatical proficioncy?

These in a atrong call for the bome applicution of at among us, bat thin can never take place until it coses to be an extravegant Iuxury, aud becomen an accesaible pleasure. If a gentieman of scholarly tastes and refined education have the disponition to suggent the decorations and fumiture of his house, he has not the pecuniary meass of accomplinhing it. He must at high rater choone furniture as cabinet-makers cbones to give it, chimney pieces mado by machinery, wood carviog from the patent proceat, tatuen in terracotta, monldings in canmaic, papier mach 6 , or leather; everything on the stereotype plan, and yet at prices for which he ahould be able to have something original.

What conld be more pleading to one of good tante than to have, from his own cugestions or designs, and at moderate price litile above that of meohanical or ready-made articlea, the furniture of a soom, the ohimoey pieon, are-gratet, cerpeting, and decorations made in harmony with his own hapits, anociations, and aympathies, the eveati of his life, the feeling of his home circle, or the traditions of his tumily? One who has the power maty just a well have for comblem and deaiga his own armonal bearinga, his own loved flowers, or even favourite objecte, as be dopendent on the good greee of the manufecturer, whoee object is perhap to cink individuality for gemarality. Wharever gentlemen, aven undar present circumstances, bave the meent, a preference is alwey chown to badividualice themselves, It in mach more agreable to go into a room in which the decorations are so formed then where they have no relevance. If family crests and bedgen are introduced in a cornice, or animals or flowers are adopted in ormment Which reoll perhapp some dintant climete where honowr has been schioved or Fealth attaiped, there are ifieas commanicated to the mind beyond even tha pleasme from woll derigned and well exocuted artintical productions, and the aniad likes what is most practical, mont individual, and most homan.

Pursuing the train of these refiections, we have little doubt, and with the ovidence there is, wo ought perhepe to may no doubt, that it was the co. oparation of all intolligent miods which among the Greeks and Romana gave a cetbolic lmpulse and progreacion to art. The suggeations of a Pericles must have been of value to Phidias; the inspiration of Micheal Angelo wee refreabed by his associations with the learned of his day ; the companionship α Johneon and Goldamith had its cham on the works and writioge of Sir Joshua; and wo believe that the eoerglee of Barry may be apheld by his copertacrehip with those who are mont eminent in scholarehip, most refined in taste, and mont illostrions in political setion. Looking at our group of tombe it is not diapleaning to imagine that cometmen the deaign was prompted by the mourner, or was a tribute to the fellings of the deceased; that there wis something higher than the compliance with a form of soolety, or the celf-atiafaction of paying a lant debt, and acopting a free diseberge from all farther claims on aympethy or rumembrance. If the ready wit of the carver mometimes prompted the design, we may allow that quite as often the hallowed feellaga attendant upon affiction and death may have infuenced the inspiration; at ayy rate, on looking aroand es we cannot recognise our Engtich iturch-yard characteriatic-" To beadstove at par pattern.'

Among the urns in a amall one to which wo should like to refor, bot which is now unnumbered. It is a square block, hes a bes-relief of a hoaband and wifo, each a half length in profle, looking the other. The detign of the
comb in the wifo's bead is worthy of notice, it in in alape rotiothons the the cratt of a helmet. The execution of these figures is grod.

No. 12 is a sepelchral vace or bowl of alabaster uninscribed, which is eloo gently covered with folinge. It wat foond in a tomb near Naplat,

No. 22 in a square block with a carved top. One face of the equare is carved, and bears a tablet surrounded with ivy folinge, frealy deaigned. It Is dedicated to Clandia Portonate, by her hurband, and wat at ooe time in Sir Hane slome's collection. As these urn were for holding the sohes of the dead, they mootly heve atop, which in the cace of cuble blockn, is deaigned like a pediment with reiturned ends

A tablet to Cornolia Servands (13) bas A fomale figure in relief sitting of lying on a couch, to that her free is ahown. On each side of the conch is a larger tised medallion, half loogth. The sise of the tablet is about 18 inches by 16. This small space is well flled by the several parts of the denifa, and is much more pleasing than the tablete manilly neen on our charch wall, end having more eurfece than wort.

Ietter-cutting seems to be the chici ant in tomb-mating hers, and eren in this mechanical parnatt we have pot gone beyosd the ameleate. Mout of the Greek rotive inecriptions in the Eigin roem are by profoned lateve-cutters, and are remarkable for their sharpees, neatnent, and remintity. The lines are straight and equiditant, the charseters miformly ent and placed in exsect eccordance with eech other. On the Roman tombe the inecriptions are often out by the workmen, and are not wo regular.

No. 11 in an nrm of a fit equare altaratape It is dedicated to Julia Attica, and was formerly in the Burioni Vills. The compocition is very pleasing, thongh the detail are fnappropriate. The top forma an uni a pediment.

No. 27 is a equare altar-shaped urn, dedicoted by Maran Juvins Bamillos to himeaif and his wifo, Junin Pieris. The ciec is about a foot cube. The compoaition represents a pediment mpported by two pilenteri, and in, the some others, of an architecteral charecter. The pfletteet are filled is with foliage. Fithin there there is an oblong tablet bearing tho fanclption, and supported by two grifini. Underneath the tallet, and between the gritine, is a wreath surrounding a medallion.

The urn of Pompelus Juminanus (No. 7), in origionL It may be carleit a allee of a cylader Anted, and having in front a large tablet with denteisted endis. The labour on this is not much, but it is recommended by the utoger larity of the derign.
No. 4 is dedicated to Vernedia Cyclan, the wife of a man of liberal mat. Thin in one cabe placed on the top of another, with a pediment cover. The compotition shows much variety of detall. The pedment is aupported by two jointed torches faming, and which rest on lions' claws. The upper part of the apace within is ocenpied by the tablet, which in inseribed. Hanging over thin is a featoon of fiowern, the ends of which fall down mearly to th bottom of the compotition. Below the tablet is a doorwey with a pediment; within are the figures of the buaband and wife in high relief. The whole reate on moulded bese, bnt which is perhape modern.

No. 18 wer presented, in 1837, by Mr. Mackinnon, M.P. It in dediaated to Tiberius Claudias Lopercas, a freedman. It is a square bloch with a pedimeat top. Within the front of the pediment are two birds peoking al a vase. The corners of the cover bave honeyanckle orne ment. The face below is filled with an inscription within an osken wreath, which is held up on each side by a winged genius, forming lifewise support to the corner. The plinth is moulded, but is modert.

No. 1 is remarkable for being solid and withoni any inecription, and therefore it can never bave been used. It is a square block, haviog on its front a bes-relief of a fgrare leaning on a couch and offering a fllet or wreath to a boy. This is said to reprosent a funeral feat. This onfioished urn was likewise presented by Mr. Mackinnon.

No. 8 is a square block dedjcatod to Titus Titalenus Iseariens, formerly in the Mattei collection. It has on its front a relief of a figare reclining on a conch, and below it an inecription. The pediment is enriched.
No 98 in a square block arn, with a plain pediment top. In this case, there is no artiatio decoration, and the simple inscription is the oaly matter of intereat about it, for the means of him who raised it were most likely loss than his affeotion. The inscription, which is in large letters oovering the front, is-an To Locretia, who lived xif yearm and vili moathe. Her father raised this to her manes."

No 86 is av arn dedicated to Decins Albicens Cilicinge. It in a lat eobic block, with a high pediment top, which is enriched with a vace ed which two rereas are pecking : they are tredy carred. Below is a tabet
 which are olber ravese.

No. 17 in dedicated to Cometia Prima, and was fonnd, in 1789, is tie groonds bologiog to the Villa Maroal, mear Rome. It is a cobe and a helf witboot a top. At each cornar is a pilater, flled in with foliage. Within is a large tablet, anrronaded at the top and aides by rich follage, or what is aalled arabesque. Below is a Copid is a car driving four borwes, perhaps thoee of the $\mathrm{Sua}_{\mathrm{u}}$. The whole io very pleaing. The sides of the ura we ornamented with ploc-trees.

No. 88 is a vase of a broed oval form. On the froat is a small tablot. Ou each side is a stork, botween which, whing arooed thetr beaks, is a serpent. On the back are two atorice dinking oat of a vece. There are other earichments. The ure wes dieevored in what is called the Lger Romenme, in the neighboushood of Rome. It is remartable as being dedieated to Pompey Locanto, aged 65, Actilis Clodis, Mis wifo, aged 00, and Pompey Locusto, their n0n, aged 21, who all died of poison in one day.

The introduction of the stork in thls monument suggests how freqoently and appropriately it might be used in oor tombs, we the omblom of filial picty, while the fabled pelican may be made to represent materal plety.

While apeaking of the uras, we cannot bat regret the deatrwetion of the 17o. V. Room of the Towniey Gallery, which was fitted op with nlabes 14ke Roman family veult. The niche was celled a columberime. One eopalchre sear Rome, that of the dependents of Livin, the wife of Augus. ten, broken open in 1780, comtaised at leat $\$ 00$ urns. Fabricius amerts thet the froedmen formed themselves into gailds for bullding theas tombe at a joiat expease, the niches being eppropriated by lot, or otherwiee. Porkape there were upeoulators amoes the Romand who sold niobes to the lowror ciamen, in the maseer of grave-yard trading in Loodon.

No. 6 is a spectmea of an alle or reond ure of cartheaware. Oee is dedieated to Apsiolega Bervilia. The clla were nsed for persons of the lower clasees, freedmen, and slaves, aod wero suok in the wall, within an ereh, the lide ouly boieg viubble. An incoription wis pat ta frout,

On the ure No. 18, a family are represented moarnias over a dead tranle. Under the coneh aro hor modals and a dog.

No. 14 is an urn formed as a ronod temple. The cornice in apheld by three Ternini and by alx Ioaic pilaters. The whole decorated with teetroses. It is dedieatad to Sorvilis Zosimenen.

No. 16 is sot remartable for its sulfect, bat as haring been eagreved so loog back as 1698 in Boiseard's "Antiquitates Romanse."

No. 21 is mot Romad, but Etroscan. It is of baked clay, with a bes srliof represeating, it is ald, Bohetles fighting for the Groeks with a ploaghahare at the bettle of Marathot. The top has a leaning fomale frure, lying on a pillow. This is rndely executed, and has an Etruscan inscription undeciphered.

No. 25, a plein urn or vase, dedicated to Flavia Valeatina, atill contsins the aches of the fomale to whom it in inscribed, and was found, in 1772, on the Latin Way, two miles from the Gate of the Lateran at Rome.

Mary of the oros are brought from the immediate nelghbourhood of Rome, and aro, therofore, speoimeas of the metropolitan workmanship. They are, however, ohiefy of late date. The locality of No. 4 is mot ctated, bot from its being dedicated to the wife of a Soribe Cwbicularit, it is moet probably Roman. In Gruter's time it wes in a collection at Rome. There has been sone diconcaion, by the bye, as to the lettore F.A.P. on this mongment. They are, perheps, the carver's fultials. No. 17 whe found, at alraedy staied, near Rome. Now, 20, 31, and 28, were foond in the Vilt Pellochi, near tho Pincian Gate at Rome. No. 28 was foand at Rome. No. 10 seems to be Roman No. 88 is already desoribed as Bo. Ena.

Some of the urns are Neapolitan, as Now. 18 and 59, from SIr WMinm Hamiltos's colleotion.

Beaides the urns are Roman cippi, in the form of a low equare or ronod columa, or rether portion of a columb. They resomble alaers in form, and were ased for otber parposes besides moomments. There are many in seribed sepalehral eippi in the British Mnseum, the deedgos of whioh ase equally worthy of attention with the uras,

Though wo heve alludod to Etrancen tomber, we thall not here give any dinoription. The collections of fuseral monvments is the Musome are hage. The Roman have been already extennively deecribed; the Etrateas are mo less iatoresting. The Iycian tombs in the new roome ars on large scalo. Many of the Egyptian relics are of a monumment charnetor; and the Etrucan paisting in the apper rooms are likewieo from tombe. Thore are varions speoimens of Greek mopaneats.

It is moeh to be regretted that the collootion of Doman bexis is anp
lerger, for a meries of this hiad is very interenting from its practioal and individal character. Sach an acomblage as that in the Louvre, the Vation, and other continontal gallerion, awakens very agreeable emotioss. The conntenances are truthfal and life-lite, while there is an indepeodent interest in the historioal associations they suggest. Thus there is a donble infinence of art and liberal atody, which is well worthy of cultivation. Whoever compares the two, will find far lean attraction in the most beantifal buets of the ideal-even in the Apollo, Venus, or Diana-thas in the company of a ferr plaln Romans. There is generally a steadiness and solidity in Roman features, which is agreeable to an English spectalor; be reems at bowe among a people who have been doad for foarteen hundred years, and nader the infuence of the conformability of charmoter he recogrices litale difference of rece. Strange as it mey noom, a gellery of Romans is not un-English, and is much leas strange than agallory of ancient Greeks of modern Freachmen. We should, therafore, much like to see the serien of heads and bante th the Munoum cxtanded, even by the addition of copies, which can be readily obtained, as so many buats of Roman emperoes and poblic charactars heve been fousd.

Whea put in comperison with portrait heads, the ideal buste of cods and beroes are tame, and they sugrest strong doubts as to the monnainess of idealisation in art. This is to be ecoounted for on simple pribeiples: in matare there is sothiog withoat its beanty, 50 there is mothing withoot its defcet; atill lese is there to be foand the unalloyed preponderance of any quality, for the balance is elways hept up. It may be sad that the idealiration of a Jupiter or a Venes in which imperfection is not to be fonnd, is therefore beyond humanity and godlike; but as the mind of man bay a greater aympatby for manly attributes than for godilize qualities, of whisb It knowe nothing, so whatever praise may be amarded to the ideal, it is dineachanted by referace to the matura, and a higher iden is comanicated by the lattor than by the former.

In the Museum, the buste are, for the present, arreaged in groups on shelves. Thus we have a gronp of gode, of heroes, of emperors, and of, empromes. Wo recommend the visitor to compare Minerve, Becehus, Apollo, Diane, and Juno with Jullis Cwear, Hadrian, Nero, and Severvs, or even with Otadilh, Babina, Fanstina, Domitia, and Olympia.

We belleve a greater development of the department of portrait basts would be found reofal in its infinence on the pablic eind, being congenial with the Euglish character. It is much to be regretted that is the meetropolis there is not as yet any large collection of ancient or modern batet, thongh the Palme at Weatminater promises in come degree to supply the low of the latter. This Palace will give us the example of an historical gellery, of which the Freach heve a specimen at Veraailiet, and the Bava. rians at Munich. A roalors ohlef comminsioner of the Woods and Forests might aheaply distingrish himeoif by colleoting together the portraits and historical pictares in the royal paleces and national musorns, and inyteg the fonedation of an hiotorical gallery. It is true we have fragmeatary collections now, as that of portraits in the British Mneena In the Nataral History Rooms, and of marine plotures at Groenwich. It might, parbaps, be worth the while of the Britich Institation, or some other artistic body to get op an exhibition of historical worke of art. The Society of Britect Artiets is ambitions of distinction-lit may take adrantage of the hint.

The Britich Museum collection of heads, athough amall, has many of tnterat. In the Greek serles aro two attributed to Homer and Pindar. No. 48 is Poriander, a tyrant of Coriath, one of the seven sages, who lived about 8470 gears ago. It may be questioned whecher this is a likeness. No. 28 is the tragedian Sophocles, the contemporary of Pericles, Thuogdiden, Phidias, Kechylus, and Eurlpides. No. 82 is Poricles, and theno two butts briog ns in association with the illustrions men of twenty-three centuries ago. It in to be noted that Pericles wears a helmet, which Plotarch says was adopted by the soulptort to cososal the bed proportions of his head, which was Heened in shape to that of an onion No. 20 is thooght to be Hippocerater, the phystctan. It is from Albavo, from what are thougbt to be the remains of the collection of M. Varro, who says Pliay collected nver hundred portratts of eminent mea. No. 83 givee ws Dloganes, the eynde, the contemperary of Alezander the Great; and No. 88 ts anotiver, the groat orator Demonthenem. No. 34 is the philowo pher Epicaras, the head of a seot. No. 8, Room XII., is the head of Arates, a poet and philosopher, and bearn the name of Erachite. Sophocles, Pericles, Demosthenes, and Epiourve are Athenians. Whoever vievist this collection cannot but regret that it in not larger, that we might become more familiar with the comatenances of the fevorred heroes of ans boyhood. We think it wonld be no unfting compliment to the memory of
an embeart promotor of art, to place the bust of Pecicles in the Elgin collection, the chief beantice of whjoh were creatod undor hic patromge, for Phidias could not have Fronght bat modor the tremanumbip of Pericles.

Tho Romen heads are happlif more macount hat fariven enough to satisfy curtosity. No. 81 is Augustus, Napolecaic constenance. No. 88 is an origioal bast of Marcellay, tho firourite mophew of Augastes, dedio cated by the body of Decemvirt. Tibertas Cesear followe Aeguetes in time. No. 65 is Mesealina, one of the wives of Claudius, and the mont infamous women of ber day. The fashion of her balr is worthy of potice, as indeed is that of most of the omprestes, soose of the modes of beaddress are far from inelegant, while othern are quite as peopliar as anythisg modern, as for instance those of Babina and Domitia. At any rate, Roman collection ls one of the lent pisces in which any support oan be got for the doctrine of classicality in beate. The Romms were quite content to be featered according to the fashion of the day-the women in partionler; while the greatest fear of modem seulptor is to pay any enoh homage to the costume of his time.

No. 44, Nero, pins attention. His low forehead, marked eyes and nose, and large lower jaw, countenance the unfarourable accoutts of bis ebermoter, and we confirm our prejadices and dislikes, as most probably the Romans did, by looking at the likeness of the man.

No. 18 is the glatton Vitellius. No, 1, Room IV., is Trajan, a vers business-like looking man, with a forehead not over large. Of Hadrian there are two busts.

No. 68 is Julia Sabina, nicoe of Trajan and wifo of Hadrian, a matronly lady with her balr plaited and netted, as alroady meationed, in rether a pecaliar manner. No. 18 is Antinoni, the notorions favourlte of Hedrian. No. 48 is Elius Csecar. No. 11 is the illustrious Antoninus Pius. As we have noted of the hair of the ladiea, so may wo of the other cer. There is moch variety in the mode of wearing it, which often approaches the modern style. No.6, Room IV., is Marcus Aureling, another philoeophic emperor. He is dressed at a Frater Arvalis, a priestly officer. No. 32, Annia Paustina, is bis wifo. Her hair is worn quite plain, timply parted. No. 7 is Locius Verns.

No. 29 is Severng, one of the emperors who vielted Britain, where he died at York. No. 51, Room VI., is Oaracalla, afting companion bead to that of Nero. No. 39, his wifo, Plantilla, has a fancifal mode of weaping ber hair, bat one not ungracefal. No. 86 is the elder Gordianos. No. 81, Room XI., is that of a Roman lady of rank, whoee beed-drese is remarkable and rich. As the iady to not known, it in mont valuable as an illuatration of costume. No. 54, the bust of a littie girl, shows one of the fashions of wearing the hair, made up into little plaits and tied in a toptnot.
(To be continaced.)

PHOTOGRAPHIC MANIPULATIONS.

The great beanty of photographic pictures and the varied nees to which the ut of photograpby may be applied, invest this wonderfal dieoovery of modern science with surpasaing interest, and to the succossfal operator it possesses greal fascination. As the manipulations, bowever, are aumerous, and require great care-for a defect in a single one may prerent any results from being obtained-the art hes not jet been so extennively practised as it deserves to be, and as we have little doubt it will be ere long. Many bave been prevented from commencing by the difficultien whioh encompass the process, and many, after making the attempt, have abandooed it in despair of being able to succeed. These obstacles are in a great measure owing to the want of clear and aatisfactory directions for conduct. ing the varions manipalations, and though it is extremely difficult to dewcribe the processes of an art requiring so much nicety so at to insure success, we will endeavour to give such directions that we trust will enable most persous, by a little practice, to produce good photographio pictures. We are the more induced to hope that we shall sncoeed in this attempt, from haviog worked ont the problem with such imperfect light oniy as the printed djrections afford, and having experienced by many failures the points wherein such directions are vague and imperfect.*

[^34]Since the orighal discovaries of the means of Axing the images of the comera obeours, by M. Dagaerre and Mr. Talbot, meny veriatioes in be
 dmeoription of the Daguerreotype and Caldype, which have hitberto beep uprivalled in practice by any. The distingaishing characterigtics of the inventions of M. Deguerse and of Mr. Talbot are, that in the former the image in impreseed on a metal plate, and is subsequentiy rendered viaibie by the vaponer of mercary; whilst in the Calotype process the pistare is prodaced direotly on paper, by the infinence of the raye of light on the selts of silver. We propoee in the first plece to deacribe the manipuiatione of the Daguerreotype.

The apparatus essential to the Daguerreotype artist, in additfon to the nilvered plates, consiets of the following articles : an achromatic onmern obscara fitted with appropriate slides for holdlag the plates, iodine and bromine boxes, a mercury-box, three or more " buffs," and a spirit lamp with atand for holdiag the plates. The chomical and other material are iodiae, bromine, spirits of wine, meroury, colton wool, tripoll powder, rowge or "finiahing powder," and nitric acid.

The plates are now so woil fintshed in the manufacture that with mew piates comparatively little preparation is required. Thers are two kinds aold by philosophical apparatus makers, the one Froach, and the other English; the former of which are cheaper, but the plating of ailver being mach thinner, it is advisenble for beginners to pay tho higher pries, as if the courme of cleaning the plates after failares, they soon come to the copper, and the plete is then ucoless. In order to clean the plate it must be pleced on a bolder of some kind, to keep it firm when rubbed. For small plates a piece of wood, searly the same sise, will asower very well, the plate being held by the edges. Then take a amall piece of propared cotton wool, freed from all grease and dirt, which form into a ball, and dip It into a mixtare of tripoli powder and of nitric acid dilated with oee fifteanth part of waler; a fow drops of tho mixture will be anfiedeat. In rabbing the plates, it is usual to direat that the cotton wool sboald be moved in a oircalar direction, forming circles on the plate of different cisoen ; but we believe the mont succensfal artints polish their plates by a motion directly across. In giving the lant polish, indeed, it is ensential that the motion should be in lines aoross the plate, otherwise it would look minty when held in the direction in whioh the plotare is to be viewed. This effect is owing to the minate scralohes which will remsin eves after the most caroful poliebing, bot when the plate is looked at transversely to the liees of the scratches they are invisible, and a black mirror-aurface in presented. After rubbing with cotton wool and tripoli, take some freah oottan wool, and rabtill a bright polish is obtalned. The finishing polish is givea whith the "baffe," which are pieces of rood covered with woll weshed cotton velvet. Some finishing powder, oonsisting of lamp-black and rouge, is dasted over the frat boff, and the plate is rabbed along it briskily, taking oare that the fingers do aot tomeb. This operation is repeated on two or three other cienn buffis, in order to remove the slightest trece of grease. When the polishing is fisished, the plate should have a fine bleck minrorsurface, when held io the direction in which the pietore is to be looked al. If the plate after use becomes soratched, it will be requisite to epply some fine emery powder and oil with cotton woot before applying the tripoli. In asse any drop of mercory ahould adhere to the silvered sanface, the plate should be beated by holding it over the epprit lamp with a pair of pliers motil the mercury is evaporated. Some operators, alweys boat the plates, for tho purpose of expelling greasy particles. It carmot indeed be 100 atrongly impresed on the Daguerreotype artist, that she per foction of his pictor es will depend in a great measure on the clonnmes of the plates.

The bext oparation is to coat the plate with iodine. The jodine mast be scattered evealy over the bottom of the iodioe-box, and the plate ex. posed on its frame with its ailvered corface downwaria. In about half a minute the dilver will beoome a gold colonf, is consequence of the rapoer of the iodina baving entered iotocombination with it, and formed an iodide of silver. Tho length of time requisite for exposure to the iodise depende much on the temperalure. At about 70° Pahrenheit, 80 aeconds will be rafloient for a amall plate, but it must remaln till 4 acquires a goldan tiot, diatioct from the brasey bue it at first assumes. If It remain longer, the colour changes to p ink and to lead coloar ; in which case the plate mant be polished afreah, and the operation reaewed. The ifght peed not be ezcluded daring the lodinfing procese, bot the plate ahould only be exposed to the action instantaneonsly. The iodised plate might now be put in the camers, and in the couree of five minutes, in a very bright light, a perfect pioture would be obtained aftar exposare to the vepone of mercory. It

Tes the this medo that M. Dagoorre operated ; for fa his origisal inventlen iodise slome was ared. The inooavenience of so loag an expesare to light, bowever, erpecially in takiog portrits, wal corionsly felt, and ater many inventgations for the purpose of quickening the process, it was discovered that broaidec in eddition to the iodine would aot with great efficeey as an secallerator; and now Daguerreotype pioture are by thie means somothees taken in less than a siagle socond.

In sabmitting the iodised plate to the action of bromine the greatent care in required; for If the bromine be deficient, the plate will not be erefietenty sommitive, and if the bromine be in excess, the picture will oither not be formed, or the plate will be corered with a mist. The simpleat way of operatiog is with the common bromine pan, which is a shallow fat-bottomed veasel, with a cover of glase, gropad tight to the edges, to keep in the anfocating vapour. A ledge jnside the vescel holds a anpport, usally mede of slate, for the plate to rest on with its ailvered side downwards. It is most desirable to ascertain accurately the strength of the bromine waler, and to have it uniform in all operations; a close approximation to uniformity may be obtained by mizing a given messure of distilled or rain water with satorated bromine weter. The saturated bromise water is eatily procured by pouring some bromine into a stoppered bottle of water, taknes eare that there is more bromine than the water will diasolve. A convepient solution for ase is $\mathbf{4 0}$ parts of water to 1 of the saturated solation, which will then be of the colour of pale sherry. As mach of this ditated solation mast be poured into the bromine pan as will cover the bottom, and then introduce the iodised plate. If the plate has been well selised, the rapour of bromine will impart a rose int to it in about thinty seconds or lene; but it in eafer to remove the plate before it has rocelved as much bromine as will give extreme senaitivences rather than ran the riak of giving it an ercess. The plate is usoelly retorned to the iodimebor for a fow soconds, but this is not aboolutoly secesaary. It must be obeerved that in the procese of bromining. the leagth of tume required will depesd in a great menarre on the iodising. A plate that has bat a pale gold tint will require lese bromise than one that has become of a darker colpar. The tove of the pictere is much improved by addiag aboat 50 drops of morintio meid to ench onnce measure of the caturated bromine. A proparation of bromine has latoly been made, called "accellerating powder," which is very convenient in use, and produces a pleasing tone of colour. It has aleo the advantage of greater cortrinty, if a fresh quantity of the powder be ased esch time; for this, as well as the bromine water becomes repidly weaker by exposare, therefore it is adrisabla for beginaers to renew the accellerating mixtore ench time of asing. When experiemoe has been gaiped, it wili be saficient to add a fow drops of the saturated bromine till the water attains the proper coloar. Care must be taken to exclade the light of day from impiaging on the plate after it hat received the sensitive eoatiag, ald it must be riewed only by the Hght admitted throngh the chiak of a door or of a window abwtter. The necestity for this precantion will be evident on considering that the ray of light which are enfificiont to prodece an impreacion in the cumera in E few seconds are admitted throngh bet owe amall aperture, and thet when a plate is exposed to the light it reeolves reys from all serroending objeotu.

When the plate is properly prepared and enclosed in the sllding cese Which eccompanies the pholographio camern, we have arrived at that part of the operation which requires the most judgment and experience-the exponare to the infigence of light. The first things to be done are to celeet the polet of view, and to adjest tha focns of the lenses so as to obtain a diatinct inage with sharp outlines on the trial sereen of groend glans. If the objeet to be taken be a building or a view, no direotlons need be given, as the judgment of the artist will gaide him ; but in taking a portrait much attemion to miante particolars will be requiaite to bring oat a eatdefactory revelth. The following general directions will be found useful aide is the eodenvori. Care mast be taken that no dark ahadows fall on one side of the fice, as they will be exaggerated in the Daguerreotype likeness and give great eternaes to the expreasion. To avold this, it is almost indipeasable to operate in the open air. The camera shoald be clevaled to the jeval of the fiec, in order to obtatn the greatect perfection in the delineation of the fentures. The drese should not expoec may large anifsee of white, for those parts wrould be solarised before other parts bave had sufficient lisht ; therefore it is usual, when collars or thirt-frosts appear, to cover them with black, which is withdrawn when half the time of intended exponcure to light hes elapsed. When the sitter has large ovorhangiog eyobrowe, it is extremely dificolt to prevent the eyes from belag thrown in shade, which gives a fearfally disagreamble expresion; it is best in theoe oness to thate the likencesen profle. The backgronnd shoald be suffioienty

Hight to throw ont the Agure and faee withont being too bright; but this is a point that the jodgment and taste of the opertior will determine, bearing is mind that the red rays make litslo more impresaion on the plate than black, and that the brighteens of yollow and orange is also greatly diminished. Avother point which it will be adrieable to attend to is the percomal appeararee of the sitsea If a child, or a handsome young persoe, be the objeet, the foons sbould be an acourate an prosible; brat for thoee advasoed ie age, or who have dofeets on the shin, it is advisable to adjust the foase of the lomess to as to obseure those deffocts by blending the raje of tifth. There are many other minor points that will require attention, bat thete and exparience will guide the artiot to perfection in auch detalls; and the gesoral directions bere given will be fonod anflieient for most occe:sions.

When everything is properiy adjusteri, the anee which contains the propared plate mast be subatituted for the soreen of ground glass, and the alide that exposes the plate to the image mast be drawn op, talking care not to shake the camera so as to alter its position. The lastant that the light impinges on the plate an effeot is produced on the sensitive iodine coating ; and it is the most artical pelat of the whole procesp to determise how long the aotion of light ahoald contince. As there is no visible imprearion made on the plate by the raye of light, to geide the operator, he can only judge by experienco-after anmorons failures and a fowisueceafol efiorts-when the light ahould be axcluded. To aid in gaining this experience, howrev, som general directions may lessen the number of fallares.

We will suppoee the artiot to bave propared pletes in a eniform manner, and of such a degree of comsitivenen, that they will take a building on which the sun is ehining in three seconds. When the sun is obscured, the plate will requite dix, eight, ton, twenty, or thirty seconds to sufficieatly recoive the impreasions of the ray from the same object, according as the oloads are rarer or more dense. As so much, therefore, depends on the state of the atmosphere, and as a mecond more or lass will effect a moch greater change when the sky is bright than when it is obscured, it is always much better, especially for tyros in the art, to oporate on a gloomy day, for theo the error of a fer secouds will not much impair the efrect; taking care to give, ander such circumstances, what is considered rather an aroess of light. In taking the lergest-atsed view that the cimera will edmit, a diaphragm is nsed to confive the raya to the centre of the glass, for the purpoee of avoiding the effecte of aberration; abd as the diaphragm greatly diminiabes the quantity of light, it will be pecessary to male allownes in the time of exposare in proportion to the covered surfece of the objeot-glass. For portralte, it is desirable of course to diminish the time of aitting to the lemst poseible quantity, and some portraits have been taken in the fraction of a cecond, bat the chances of soceess under sach eireumatances are greally dimiaiahod. It is hacardous, therefore, to eltempt to operato in 50 bright a light, and the effoot is not nearly so pleasing, even when mucceseful, as when the portrait is taken ander a more combre infaence. We have been most sucoenafol when operating in the open air, sbout air o'olock on a summer's evealng, with the enn obscured by light clonds, allowing the plate abont twenty-ite seconds exposure to the light in the camers, which is one of Mr. Rose's manvfacture, with doublo lenses and 18 -inch apertore. When portraits are taken in a roone, a longor time is required, becence the light is then screened from the sitter on all but one side. Much, again, will depend on the colours of the objects to be depicted. If they be light, the impreasions will be more quickly made, and if dark an additional time moald be allowed. The effect when a Daguerreotype plato has had too much or too litule light is eadly percelved. Too mach light will canse the white parts of objects to appear blue, the blacks become brown, and the finer demarkations of shading are destroyed. Snch a pictare is said to be "solarised" or " burnt." On the contrary, in a picture which has not had sofficient light, the lights and shadows are in stroug contrant, and the darker portions of the objeot are not developed. With a atill less degree of light, there is a goneral feebloness of impresaion, whith no length of exposure to mercury vapont will strengthea.
The plate haviag been withdrawn from the eamern, it is next transferred, In the dark, to the meroury-bor, to bring out the latent pictare. This is the mort interestiag part of the process, for now we have to ascertain whother all the troable and care we have bestowed have been thrown away, or whether we have suceeded in obtaialny a perfect picture mosi exquisitely finished. The improsaions made on the iodine and bromine by the rays of light, thoogh invisible, have jet such efilucy as to expone those portions of the silvered plate to the action of the vapour of
mercury; whilst the other parts are impervions to its motion, The mercury vapoun thus form the lighter parts of the piotore, whilet the dark polish of the silver plate comptitates the mbadows. The partioles of mereary deponited on the plate are to minute as to be soarcely fieible by a powerfal micromoope, and the evaporation of the liquid metal at the ordinary temperatore of the atmosphere is sufficient to bring out the Daguerreotype pioture when placed over it-bat this would require three or foar hours. To facilitate the operation a spirit-lamp is used, which ahould be carefully applied, that the mercury may not be too mach heeled. The mercuryboxes nanally sold have therwometers attached to them, and the tempernture should not exceed 150° Fah.; but a little experionce will teach how to regalate the beat without a thermometer, by applying the fiogers ocomsionslly at the boitom, which should not become too bot to be touched. In a miante or two the piotare will begin to devalope itwelf, and will then gradually come ont till it attains lts greatest diatinotnes. If it remain too long, the details become less aharply defined; it is better, therefore, to remove the plate when all the objects appear distinctly developed. It it generally reoommended to heat the mercary to tho highest point allowed, thea to withdraw the lamp till the mercory coole, and apply heat again, and to on until the deposition of meronrial vapour is completed; but we prefer lowering the tame of the spirit-lamp, 80 as to produce a mere gilimmer, and to allow it to remain burning for three or four minutes, after which to leave the plate ondisturbed till it cools. If, when thle procesa is completed, there appeare a perfect picture when the operator peept into the box with a taper's light, the pleasure he experiences amply repays all the trouble he has taken, and he will feel disposed to exult as muoh at the product as if it were the result of his elaborated skill, whereas his only achievemeat has been that of beving fixed the pencillings of Nature.

The pioture is now obained, but it is not yot eecored. Werv it to be exposed to light, the senailive coaling etill upon the plate would pass through a variety of changes of colour, and darken into a purple. To prevent the further action of light, the plate must be immersed in a solntion of hyposulphite of soda, in the proportion of not less than half an ounce to a pint of distilled whter. This solntion should be poured into a challow vescel-a soup plate will answer very well-and the Daguerreotype chould be lmmersed with its face upprards. Lif the plate gently up and down on each side, and in a fow seconds the iodine will be remored. Then take the Daguerreotype carefully ont, and Immerne it in another vessel containing distilled water, if warm the better, and agoin in another balh of distilled water, to remove all traces of the soda. If these wabhings be done carefully the picture will be quigjured, bat it will require great care in the anbeequent process of drying to avoid impaling its effeot. The plate mnat be held in a danting direotion for the water to drain off; care being taken to see that no particles of dust have settled on it, for if there have it must be again immersed in water. The apirtt-lamp should be applied at the upper edge of the plate, and by blowing on it the drying will be promoted. Shoold the wator collect on parts of the plate as if it were greasy, instead of apreading over the surface evenly, it must be blown away if posible before it dries, otherwiso a mark will be left on the plate that may spoil the picture. Numeroos annoying occurrences of this kiod will happen, and it may be obcerved that the more strongly the pictare is brought out, the more liable it is to be injured in the washing. It has occarred to us that one of the most beantiful pictures we have ancoeeded in obtaining, which was very distinct in details, forcible, and a pleasing likenese, was completely spoiled by stains in the subsequent process. The sode colution and water should not be twioe used, lest any iodine remaining in the vessel should cause a stain.

After washing, the picture is permanent, and in this state all the first Daguerreotypes were flaisbed. The thin film of meronry, howover, is yet easily removed by a touch, nor has the picture attained the brillinacy and tone which it receives from the subsequent process of fixing by gilding, which was invented by M. Fizean, to whom the Daguerreotype art is nach tadebted. For gilding the plate, a dilated alotion of chloride of gold and of hyposaiphite of soda is employed; in the proportions of 15 grains of the chloride to a pint of distilled water, and 45 gralas of the hyposalphite in the same quanity of water. These shonld be dissolved in sepasrate vemels, and then the gold solotion poored very grudually into the other, stirring wlith a glase rod all the, time. If this mixtore of the two solations be not carefally made, or if the soda solntion be poured into the gold, the resalting mizture will be black, owing to the deposition of anlphate of gold. The quantity indicated will serve to gild a great nomber of plates, and may be kept for use as wanted. The plate to be gilded
must be placed horimontally, with ita face opwards, on the lamp-atend. The surfice is to be theo floated over with upirits of wine, which may be poured oa it and quickly drained off,-the only ase of the spirits belag to fecilitate the fow of the gold molution. As mach of the dilated chloride of gold is poursd on as the plate will retain on its horisontal surfece, and then the spirit-lamp is to bo applied beneath to heat all parts equalis. Presently the ilquid will emit vaponr, the piotare will improve tn briljiancy, and soon afervards gmall bubbles will appear, at which point the process must be stopped. The gold is then poured off, and the plate washed with warm dintilled water, and dried with the aid of the apiritlamp, is the same maoner as after the firnt waching.

The operation is now completed, and if overy part of the process have been condroted with care and judgment, the artiat is in poseewsion of a picture whioh, in accuracy of outline and in the exquisite beauty with which it is finished, far surpasses any work of mere art. He may gate iong on ite wondrons \{delails with delight, which will be not a litthe enhanced by the pleasing salf-deception that it hes been done by bimeelf ! All his trouble seems recompensed - all his failures but increase the pleensore of this one complete snccesm-and the dificulties ho has had to enconnter in gaining the prize ouly add to its value. He seea henceforth all dlfficulties removed, and in fall confidence of bis powers be oven bopes to attain atill greater perfection.

Let not the variety and required care of the manipulations disconrago any who have a tave for the art from commencing the work, stace perseverance is almost sure to be crowned with succese. For two whale deys were we in our fint efforts without obtaining the trace of an inage; and when at length a perfoot pioture barst into view in the mercory-box, the delightfol foellings of the days of childhood teemed to be reatored. By aftending to the directions which our experience and recollection of difirculties surmounted anggeat, the way will be in a great measare cleared, and it will be a source of gratification to think wo have removed any obstacles that obstruct the attaimment of succeses.

THE HOUSE OF PEERS.

Sin-My Ideas and notions may be so very peculiar that there is no danger whatever of their contamianting public taste ; which boing the cese, you will, perhaps, allow pe to exprest my own oplaion of the Heam of Peers. In a word, then, I take It to be if not exactly a fallure, very far below what was to be expected-at lenst desiderated. As to comespition, it is positively noll: the character is that of a chapel, oot of a sonato-honse; such is certainly the general idea, without any attempt at further or difo ferent idea. No original and poetic grasp of mind has been exhibited by the architect, Who has merely appropriated to the oceasion what he foand ready made. The imprescive solemnity which befice hall in which are held the councils of a videly exteoded empire, does not there exprese itself. On the contrary, if there be too mach of the chapel in some rempecte, there is too much of the ball or banqueting room in olhers. There is by far too much of glare and garishness, and not a littio of meaquineric also Yea, I ventare to say it, of mesquinerie, which reproachfal epithet may, I think, be very justly applied to the throne. Instead of forming a priacipel feature of the general componition, that aeat-nut porhaps oxactly an "easy chair"-is no more than a piece of furniture which might be pnt into any room, -a mere gilded chair, instead of being made to form an important, and leading feature in the onsemhle. Judging from the one aiready executed, the fretcos will be altogether insignificant-mere apots in the general decoration, and by no menns brilliant onos; rather very tat and insipid specimens of pictorinal art, and will show all the more so in comsequence of the injurious contrast with the painted windows, which latter, in turn, owing to the same contrast, mast appear harsh and glaring in colour.

Such at least is my feeling ; and I must be allowed to any that I am greatly disappointed in the new Honse of Peers. No doabt it is caloniated well enough to atrike and aiso saticfy those who merely go into it, and jast look about thom; and who therefore giving themgelves up to the mere first impresoion, are captivated by the eramptuonsuess of the place. Yot the test of architectaral exceilodee is not the mere first impression atone, before the judgment has time to rally and collect itself, but the increased satisfaction produced on every freab vide If I did not exsolly expect, I desiderated and still desiderto more eeovincing evidence of artistic power and artiatic grasp of mind than I there discover ; for while on the one hand the "house" is decidediy too eoelosiastical in character, it is on the other more characteristic of a ball-room or a banquetiog room than of a senate-house where the anost monestont interents are to be discassed. I may be wrong; and if so, elther you or earae obe among your correspoadents will take the uronble to eet me righter is the meanwhile I remain,

Zeno.
[We have given lamertion to the above commanic ation, pot becence we mpee ath th obervations, but to give an opportinaty to war feeders for falr cridictam.]-Ed.

CONSTRUCTION OF SEA WALLS.
 (Contixued from page 354.)

BREAKWATER IN DELAWARE BAY.

Ammax (LL)-Roport of Commisrion of the United States' Enginetre and Neral Officers. an the Form which should be giren to Breaknoters, and Raport on the Comptruction of the Breakwater is Delavare Baty.

Section of Brachouter Delaware Bay, United Stator.

e, Top of breakwater, 30 feet wide. $-\delta$, Highert tide known.-c, HIghent
 tide-f, Bottom 27 feet below loweat apring tide.-9, Average bottom $29 \cdot 1$ teet ditto. -The dotted hines on the top show a parapet to be made, if cuedful, 22 feet wide.

The following dencription of the Delaware Breakwater is complled from the Report of Board of Commisaioners to the Socretary of the Navy, which wes approved by the Presideat of the Uaited 8tates in Febratary 1899. The commissios was composed of Commodore Rodgers, U.S. Navy; Bripadier-General Bernard, U.S. Engineers; and William Strlckland, architect and engineer:-
With respeot to liese objects, apon which the solidity and durability of the work so easentially depend, it must be acknowledged that theory and wore speculation are vitterly Incompetent to fix, within precise llmits, the degree of reaistance to be given to a work exposed to 80 many and auch ingaleviably vlolent efforts of the sea. But valuable inferences may be deduced from experimental resolts affordad by the coostruction of aimilar works in Earope, and dencribed in anable paper presented to the French loalitate by M. Cachin, general inspector of French Cjvil Engineers. Thos the stupendone works erected in Cherboarg in France, and at Plymonth in England, have been resorted to as gnides is the investigation of the leading principles upon whioh the breakwater ander consideration ahould beonstructed.
If the road of Cherbourg le of the highest importance to France, that of Plymonth is probably of equal importance to Greal Britajn ms, among other adrantages, it enables her to assemble al one point the fiects deatined to wateh the morements of her neighbours in the roads of Brest and Cherbours ; added to which, the conoexion of the road of Plymonth with an exteosive anval arsenal makes it matter of mach consequence that it doold be rendered perfoctly secure.
The works at Charbourg folly answering the purpones for which they wera erected, and demonstraling their Importance, the Government of Great Britain caused the erection of a breakwater to be uodertaken in the roed of Plymonth, which wes accordingly commenced in 1818.
At Plymonth the interior slope has an inclination of 87 feet altitade to 00 feet base, making an angle of 35° with the horizon. At Cherboart this alope is of 45° inalination; and, since it bas stood frmis vader an altitude of more thao 70 feet, it may be inferred that at Plymonth the interior alope might also have been kept at 45°.
The Board was, therefore, of optaion that, as the Delawtre Breakwater most be 18 feet lower than that of Plymooth, and 30 feet lower than that of Cberboorg, there shonld be no besitation in adopting the slope of 46°.
At Cherbourg, as at Plymonth, experience has tanght that, if buman power was abile 00 to beap op materials as to fill up such a sace in the deep, it required the ageocy of tempestuon waves so to dispone of them as to seoure their permasent stability. On this score it wonld reeen that the resalts obtaiped at Cherbourg from vicisaitudes in 1818 were but parthally known to the able projectors of the Plymouth Breakwater. Iadeed, the base of 180 feet of thimt work, and its aititude of 57 feet, have recelved preaicely the sama ratio as that which the action of the sea had fixed be-
 Cmerborg. The surface of the former work having been asumed to be a plase, while at Cherbourg the efforts of battering waves have produced a curuated surfiece, it is henoe to be apprehended that at Plymouth it may beome meceseary, in progreas of Lime, to add new materials to the lower pert of the slope.
The slope herein submitiod has been framed oat of the following fecte and priseiples afforded by the Cherbourg Breakwater.

1. The part abore the htghent spring-idde having been for a short time battered by the waves, which had loat by their ascension a portion of their monestum, received from the ection of the man inclination of pearly 2 seat baee to 1 of altinude.
2. The part comproheaded between the highest and lowest spriag-tide is exposed, durlog the time of its rise and fall, to the greatest violence of the maves. Thus permaneotly swrept by the sea, this portion of the slope thas rocetred an incligation of 11 teet bate to 2 of elutede.
3. The part ocmprised bstween the lowest spriag-the and a horisontal plame 15 feet below it, is expoed to the ahook of the waves ooly daring the interval between the termintion of the fall and the commencement of the rise of tide: It has, therefore, to withatand the efints of the cea mader a leas inollmation, vis., 8 foet base 101 of altitude.
4. The loweat part of the slope comprebended botween tho latter place and the bottom of the sea, remaining permasently subwergel, and to a depth at which the agitation of the waves has attaloed its minisam, has msinmed an inolination still loss than the proceding, rim, 5 feet base to 4 of altitude.

Theoe experimental reualts show that the effect of water egaimat loowe materials is to give to the mass in progress of time a alope, the inolination of which will increase in proportion to the force exerted against it.

It is on theae date that the profile of the Delaware Brankwater has bewe delineated.

This fact, with others not dissimilar which have heppeged at Cherbours, shows that the top of a break water mant be elevited boyood the reach of submersion, and loaded with the largeat and heavieat materials that can be procored, which should bo laid in auch a way that each shall present to the setion of the sea the smallest possible superficies, and to the lateral materials the largest surface of friction.
These considerations indoced the Bonrd to recommend for the Dolaware Breakwater a profile, or transversel section, of the following dimenaions:the inward slope at 45°, the top 30 foet in breadih, and at 51 feet above the higbeat spring tide; the cotwand slope of 89 feet altitude, and of 105 en feet bace; both dimentioas measured in relation to a horisontil plane pass. ing by a point taken at 37 feet below the lowest sprigg-tida The base bears to the altitude nearly the came ratio as aimilar limed in the prolles of Plyarouth and Obertourg Breakwalers.

The experiences sequired at Cberbourt has fanght-

1. That ctoses of amall sise are not snificient to withatand even a mode. rate action of the waves; for, boing constantly tomeod mbout, thoy megrire by aturition a roand and smooth surface, which prevents their asouming any sotuled place is the mass.
2. That sloves measuring 18 or 24 oubio foot, and wrighing $1 \frac{1}{4}$ to 2 tom, present a salitable resietance to the efforts of a moderale sea.
s. That larger blocks are required to withstand a violent aea ; and that In the more exposed parts of the work their aises should be still larger.
3. That if small materials were to be used, it would be indispenaable to protect them externally by others of larger siee.
4. That the amaller the extermal sarface of a large block, the greater will be its stabllity.
5. That the laryest blocks ahould be placed towards the top, in order to compengate, by their greater ateadiness, the loss of weight and of thability cansed by immersion to the materials locatod immediately ander the witer lise.
The foregoing deseription of the Dela ware Breakwater includen, with occasional alterstions, the Report of the Board of Commissioners. The work has been executed so far in accordance with the views and plans therets detailed. The dimensions recommended in the Report bave been adopted in its erection, with the exception of that portion desigoed for a breakwater, which is 1,000 yards in length; the length recommended was 1,900.

The work nay be coasidered mow so far finished as to have eceomplishent materially the parposes for whioh it was projected. Indeed, the plas of commencing the work at the adjecent extremities of its two portions has tepded to yield a sbelter to vescels daring the whole progreas of its comgtruetion.

CEERBOURG HARBOUR.

Ammax (M.)-Extractsfrow the Mfemoire of Moas. J. M. Cacuin, an the Breakwater of Cherbourc.
At the olow of the 10th centory, the Fremeh Growermment had rewolved to provide, by moens of art, ihose advanteges for Fragee which ueture hat conferred with such prodigality apon England, In the meay ports ahe peemones in the English Chansel
It was more particularly, hompver, afler the battle of La Hogue, that this necoseity was more atrongl folt, and the Governasoat dotermived to creato at Cberboerg a grand naral astablimmeant, which io providing a maf and convenient harbour for their foot, should give to the Preach mation the degree of powir boftting its maritdeo position.
The American war hed reanimated in the Fromeh mind the ambition of dispoting with Eagland the empire of the sean ; and at the general peace, immedinie steps were taken for fortifying the roadetead of Cherboars.

The Bay of Cherboars was selected as beics opposite to the many abmon mataral herbours which Great Britain poseosees in the Chanmel; as being in a very advaneed powition upon the ordinary trach of shipe, and ufering every deairable facility for watching the morements of the enemy, inter raptugg bis convoys, and for concentratiog all the detaits of grand maritime expedition.
The War Departmenta, which had been charged Fith propoaing the divers projects for this grand enterpriso, noglectod to sooed the ruadstead, and to observe its maritime properties; aod judging its extent as a harboar by its apparent sorface, proposed the adoplios of a plan which had bees submitted to the Prench Government in 1778, by the director of fortiliontiens at Cherboerg, for cloaing the rondeteed by means of caissons llied with masoary, forming a jotty or " digue" from Point Homet to PolGe Ialend.

This projeot was mont teanficiont i it left exposed and withoot defosce the moet esential portion of the bay, that part beet saited for the apchorage of large ships ; and the very ciroumsoribed area which it was proposed to protert against the violence of the sen and the attacks of an onemy, woald bave been acoemible only to trading reacele, privatears, and oher small cras.

In the your 1777, M. de in Bretonolere, capitaine de vaiseena, who was thoroughly ecquainted with the localities, had proposed to cover the roadmead by a breakwater of sunken rocks. He republished in 1798 a memoir containing moch valuable information in regard to the soundiogs, and other matters of great irterent in regard to the general adveatages of Cherbourg a port of rofuge for all clacees of ships uader all circumatances of wind and weather.
The project of constructing the break wrater in the direction of Point Romet, was abandoned at the remonatrance of M. de la Bretonniere, and, in 1780, it was resolved to adopt the direction which has since been given to it, vir., from the point Querqueville to PelGe Ieland.

After a long delay as to the means to be adopted for encloning the anchorage by advanced works, M. do Cessart recommended the ingeniona system of wooden caissons, io the form of trancated cones, 149 feet diameter at the base; 65 feet diameter at the anmmit, and 65 feet of vortical beight.

It was proposed to sink 90 of these cones in all, leaving a passage at the ent end of 9769 foet, and one at the weat of 7674 feet.
It was, in the first instance, intended to all them entirely with loose atomes, but it was subequendly determined to them ap with regular mamony, above the level of the equinoctial low sides, and to conaect the cones with strong iron chains, thas forming a sort of open net work, which should divide the action of the sea, and create amooth water in the roadstead.
The proposed constraction, mode of lannching, and immersion of these comea, appeared to promise every soccess. One was built at Havre, and llouted in 178s. It was then taken to pieces, tramported to Cherboarg, and after some delay, cansed by a gale of Fiod, was toated and suak, on the 6th of Jane 1784, at a distance of s8es feet from Pelee Island.

A second was gunk tengent to the base of the first, in a westerly direction, on the 7th July following, but a gale coming on on the 18th of Augast, before this second cone was filled with stones, it was carried away down to low water mark. This event was the cause of, or the pretext for, great changes in the dispositions which had in the first place been adopted.

It was fonad that the stomes, dispersed by the breaking of the second cone, would entail the necessity of sinking a third at such a distance from the first, that the interval would not be protected from the violence of the sea. It was likewise considered, that, as the cones could be sank only daring the spring tides, the complotion of the work would require 18 or 90 years consecutive labour, and would cost $80,000,000$ of francs. These considerations led the Goverament to direct that the coves shonld in future be only employed at intervals of 58 metres, 50 centimetres, and the intermediate space filled in with large blocks of atone, and thas to form breakwater, which was to be carried up to low water level. These intervals were subseqnently increased to 1880 feet; but after sinting 18 of these cones at different intervals, then isolated and imperfectly filled, they 8000 experienced repeated damage, and this syatem of constraction wes accord. ingly soon abapdoned. All the cones which the sea had apared being deemed nseless, they were cut down to low water in the year 1789 ; ane alone was left entire, to iodicate the limits of the pascage, but in spite of some care bestowed on its preservation, it feli to pieces on the 12th of Febraary 1799. The nuocesaive destruction of all these cones, led to the recognition of the system of breakwatars of sunken rock as the ouly procent calcalated to ensure saccess.

From this period the sinking of stones was carried on with sucb activity, that by the ead of the year 1790, the quantity of material anak was computed at $2,605,400$ metres cabe. Hitherto bat vague notions had been entertained of the depth of water, nature of the bottom, and of the force and Arection of the currents at different stages of the tide. These essential considerations were neglected, und the establichment of the digues was recolved upon, at a distance of about $\$, 088$ metros from the entrance of the merchant vescels' harbonr, in an eastorly and weaterly direction, forming towards the centre a salient angle to the north of 169 degrees, which divides the "digue" into two branchea, of whith the westerly one is $\mathbf{8 , 2 8 9}$ metres, that on the east 1,526 metres in leagth, measured from the oentres of the two cones which had been sunk at the extremities.

The angular disposition of the work thes determined, without regard to the principles which prescribed a confguration quite the reverse, in order to render it susoeplible of the greatest reaistance, was dictated by the neceasity of not obstructing the fire of Ports Royal and Querqueville, destined to defond the entrance to the roadstead.

At this early stage, it wonld have been possible to modify the dispositions in regard to these furts, of which the one was only plauned, and the other barely commenced; but the War Departmentinsisted on carrying out its own plan of defence, and the Marine Department saw itself compelled to renounce the advaotuges whlch would manifestiy have accrued from placing the breakwater more to the porth, thus jncronsing the area of the anchorage without any serious increase of expense, or angmentation of the dificulties of construction.

This frat error was followed up by a second no lesa grave, asd which leaves no doubt that the soundinge of the bay were then but very imperfectly known. The cone which was to form the eastern end of the digue was sunk in 25 feet (8 metres 12 centimetres) water at low tide, heace the water gradually aboals in the direction of Pelee Ialand, which is distant about 975 metres. This passage was thus narrowed with the view of obliging large ships to pase within good range of the fort on the island; but this pureiy military consicieration led to the neglect of anost ementival maritime condition, for the depth of water in this paseage is ingufficient for ships of the line at low water. It was likewise proposed, with the satmo defenive view, to narrow the western entrance; but after a careful eremination of the depth of water, it was fonod necessary to establish the western extremity of the digue at a distance of 2,339 coetren from fort Querqueville. But the passage of ships of the line thus eatablished beyond good range of the above fort, sensibly affected the utility of this fortreas ; and had the aaval and nilitary projects been well concerted, it is not to bo concealed, that the defences would bave been susceptibie of a more advantageons disposition, and that the greater part of the expense of the fort is queation might have been seved. But all these inconveniences were discovered too late.

It was only in the month of Jaly 1789 that ordere ware frat given for taking correct sonndings of the bay, and for ascertaining wilh accaracy the places accessible to veasels of all classas.

In 1792 the Legislative Assembly, convinced of the extreme importance of this great underiaking, procured a statement of the progreas already made at an expense of $81,000,000$ of irancs, inclading cost of eotablishmert and administration. Having fully recognised that the faults hitherto observed in the execution of the works proceeded from want of concert and combination in the different projects hitberto adopted, the Assembly ordered the Executive Government to name Commicaioners, chosen by the departmenta of War, Marine, and the Interior, to report apon the merita of the works already executed, and to propowe the best means of perfecting whet had already been commenced, and of completing this great undertaking.

This Commission, amongst other important suggestions, give it as their opinion that the stability of the apper part of the digue could not be reckoned apon without the empluyment of larger stones than those hitherto used, and which had become mach diminished in size by their frequent displacement and friction; that large blocks, 51 to 60 centimetres cobo had a presomed stability sufificient to resist the action of the sela, and that this Btability would iacrease with the volame of the blocks of sloae employed.

The general dispositions recommended by the Commission of 1792 were adopted by the Guvernment, upon the atrength of the advice of a committee, composed of aeveral general officers and admirals, and engineers of the greatest eminence in the three departmenta of War, Marine, and the In. terior.

It now only remained to determine the height to which it was necessary to olevate the breakwater, in order, not only to procure smooth water is the roadstead, bat at the same time to afford every possible protection to fleeta and convoye against the attacke of the enemy.

It was the unaniznous opinion of all the practioal persons who had observed the efiect of the sea apon the digue since its commencement, that at low water, in bad weather, from semward, the roadstead was per foctly calm; but that, as the tide rose, it berame troubled; and that, two hours before and after bigh water, when the wave appeared to acquire a greater force in breaking upoo the brealtwater, the vescels, panticalarly those near it, were much troubled by the sea.

After having noted the height above low-water mark to which the meat reached two houre before and after high water, it appeared a conatant rule, that when the waves became tronblesome to the shipe in the rondstead, the sea had risen 4 metres 70 centimetres.

Hence it was natorally concluded that it would be advisable to anrry the summit of the breakwater at least 4 metres 70 centimetres (14 it .6 im) below the level of the higheet lides; that is to aly. to 2 metree 44 eostimetres (7 ft .6 in .) above the level of the lowest tides, the rise in the mea outside being calculated at 22 feet, or 7 metron 15 centimetres.

But viewing the great advantages whioh would result from its being carried up to the level of the highest waves, it was aot besitated to propoee its elevation to D feet (2 metres 92 centimetres) above the level of the higteat wer ortside; that is to sey, to 31 feet (10 metres 7 centimetres) abore the lowest tides.

But the revolutionary tronbles put a stop 10 all further proceedinge connected with the recommendations of the Commiation of 1792 ; and the completion of this vast enterprise appeared to be indefioitely delayed, when, in November 1800, new government turned its attention to thin important object of public utility, and named a Commission, upon whowe report in 1802, the government directed that the ceatre of the break wreter should be elevated 2 metres 02 centimetres above the level of the higbeet tides, with a breadth of 195 metres, wherenpon ω construct a batitry of 20 pleces of artillery of the iargent calibre; and that the extremities of the breakwater should be, ultimately, similarly constracted for a like pappone.

This was reoommended in consequence of the great distance (7,017 mastren) between Forts Royal and Querqueville, which was deomed soo great to preveat enemies' shign from abchoring to tho north of the break water. thence firios on reacela within the rondstead, themselven beine boycod good range of the forts.

At this period (1808) thone works proviondy andentaken, withet hed
been enrifed ap to the level of low tides, had eatirely disappeared. Twe sea hed carried away from 15 to 18 feet of the summit, giving to the brean waler the following configuration:

$$
\begin{array}{lcccc}
\text { The interior slope, or that to the sooth. } & \text { Base. } & \text { Helsht. } 60 & 1250 \\
\text { Saperior slope, north } & \text {.. } & \text {. } & 47.50 & 6.20 \\
\text { Inferior slope, north. . } & \text {. } & \text {.. } & 9 . & 6.30
\end{array}
$$

Upoo this base, thos formed by the action of the sea, it was determined to atternpt the erection of actarifial island, expnsed to the most violeat afintion of the waves. By the ead of the yoar 180s, the ceatral portion of the work was completed to low.water mark of ordioary tides. The modification and changea which the original hreakwater had andergone, left Do room to doabt that the small stones of which the then elevation was composed, would aot resint the wiater gales; that it would be aecessary to consolidate the whole by a superatructure on the south side, composed of immense blocks of atose, to be raised to the height of the highest tides, as the only means of preventing the smaller materiain from being washed away into the interior of the work by the north-east and aorth-west gales of wister. As anticipated, this superstructure resisted the force of the ama, preveated the washing away of the smaller materinle, which, arrented by this barrier, gradually angmented the height of the breakwater, formiog a solld and compact surface at a new slope, of which the base was about quadraple the vertical height.

It was, however, soon nbeerved, that these amall slones pressed up, and, tramported by the northerly winds to a level above that of the sea, equally fiaded to the same action in north-oast and north-west geles. Uader these circumstances of weather, of frequent reourreace in the winter of 1808, a portion of the stones which had been thrown in on the sea dide becane subject to lateral displacement, and were deposited in great abmadance in a conical mound at each extremity of the receally elevated central portion of the digue.
It was romarked, that the winds and the curreats had both teaded to give theac mounds the preciec configuration of the tracing of the proposed batteries ; and theoce it was aaturally concluded, that the form proposed was that best adapted to insure atability, aince it agreed to perfectly with that which the sea itself had assigned to the mass of atoned set in motion in bed weather.

From motives of economy, the interior of the fort was composed of emall materials; but the whole was necessarily revetted with large blocks, eapable of offering an adequate resistance to the action of the sea. This was performed io a very pimple and onsy manoer: in had weather the blocke were cast overboard from the stone vessels, above the places which were dry at low water. In fine weather this was discontinued, and the stose veasels were moored over the required spot, or were suak, so as to rest epusa berm or slip Frich had been len in the slope at the foot of the revetmenta. From the vemels thas suols or moored, the blocks of stone were bainted by their own tackle clear of their docks, when they were transported by cranet, or derricks, disposed on the anmmit of the break. water, and deposited in thelr proper places on the revetments. By these simple asd expeditions means, the central portion of the break water having beas raiked to the height of 2 metres 92 contimatres above the level of high-water, spring-tidee, upoo an exteat of 195 metret in leagth, and 19 metres 50 oentimetres in breadth, battery was established thereon, armed, provisionally, with four 36 -ponnders and two heavy mortars.

In the anberequent coastruction of the terreplein and part of the parapet of the battery, owing to the bad weather and too great haste in constructiag it, the precantions becescary to ita thorough soindity were aegleoted, and a violont gale coming on ore the exterior revotmeat was completed, a portion of the temporary parapet, which had beea formed with small materials not cemeated, was destroyed. The mass of the battery anffered no injury; and the centre and the extromities of the terreplein resisted the action of the sea without the least alteration, and, notwithstanding the imsafinient height and imperfect state of the exterior revetınoats, a garrison of 60 men remained in the battory in perfect safety.

In May 1805, the works were sufficiently adranced to arm the battery with 20 pieces of heary ordanace within 94 hours.

The works soffered little material iajory uatil the 12th Febroary 1808, when, dariag a dreadful gale from the north-weat, the sea sobmerged the batiery, deatroyed and opeet the opaulemeats, and the wooden barracks of the garrisos.
The main effect of this violent gale was to put an end to any further displacement of the materials; and the work has ever since preseated the appearance of a antural elope of rocks, over which the ordinary "varechs" croms, and are developed in an unbroken nadisturbed mode which proves the perfect stability of the work.
The examination made at this time of the new conignration which had bees given to the mass of stomes, conflimed and rerified by subsequent experience, hus established the fact, that jetties thus conatructed, and exponed to the action of the sea, assume, between their sammit and their bese, four slopes essentially differeat, and which vary according to the violence of the waves, the duration of their action at the several parts in the rise and fall of the tides.

The situation of the exterior revetments of the battery being the effect of the natural action of the sea in its greateat agitation, was considered as that most suited to insure the permanency of the materials of which the work was composed; and accordingly, after the atorm of 1808, new bar. recke were constructed for 60 men; a new parapet was raised to cover
the artillery of the port, bat withont making any modification in the exterior slopes, which have ever since mulatained the exact degree which the was asaigned to them, thongh these slopes have, since that period, never had the least care bestowed on them.

The digue, thus completed in its ceairal portion, remained armed with 20 pieces of artillery doring the whole war. In the year 1811 it was decreed to substitate for this temporary fort a permanent defence, thus described in the decree dated 7th Jaly of that year :

The battery to be established apon the breakwater of Cherboorg will be constracted in an elliptical tour of masoary, of dreaned blocks of granite, of whicb the great axis shall be 35 toises, and the smaller 19 toises, in conformity with the plass and mections annered to the present decree, and to the following specifications.

The foundations will be esteblished on the rock-work at low-water level.

Upon this masoive fonndation, which will be 28 feet bigh, and at the level of the terreplein of the existing battery, will be placed a barrack, of which the walls will be pierved with 78 loopholes, capable of containiag a garrison of 60 men, water-ciateros, and powder-magazine.

The gorge of the battery will be defended by two fuaks.
A geaeral platform apoos the roof of the barracks, which will be bombproof, will serve for the site of a casemated battory for aineteen $\mathbf{3 6}$-poondors. The embrasures will be $\mathbf{3 0}$ feet above high-water mark.

A secoad platform will be constructed above the casemates, to serve, is anse of aecessity, for acother tier of gans.

That portion of the existing buttery wlthout the site of the tower will be preserved, and the slopes towards the sea, Which protect it, will be carefally kept in repair.

BREAKWATERS OF CHERBOURG AND PLYMOUTH.

Annex (N).-Report made to the Acadeny of Sciences. Paris, by M. Girard, in lie autive of the Commission composed of Mesars. Prony, Girard, mad Dupin, upon a Memoire by the Baron Cachin, Inapectore general of Bridzes and Ruade. entitled, "IHfmoire mpon the Digne of Chrr bourg, compared with the Jetty or Breakeater at Plymowth."

The perpetnal secretary of the Acadeny of the Mathematical Soiencos certifies, that the following are extects from the proceedinge reported in the eltting of Mooday, May 8, 1815.

The Commlasion appolated in 1792 asured itelf by an attentive obeervation of the effects of the sen upon the digue, that the materials of which It was constrocted had no stabllity uatil they were faced with large blooke of from 15 to 20 feet cube at least; but the most important modilcution which this Commiesion proponed is the cosentruction of the work wes, to carry the summit to the beight of three wetres above the highest spriag tides, as the ouly menas of guaractoelog the tolidity of the wort itaelf, which was the main objeot it was intended to effoct.

The old rigue or jetty, which had been provisiocally carried up to the level of low-water marik in the year 1784, had now offored an experiesoe of 20 years. It was mevertaived that the atorms during this interval of time had lowered the summit from foor to five metres; the interior slope bad preserved the inclination whiob had been origioally given to it of 15 degrees, but its exterior slope, which had been origieally formed upon a uniform inclination of three motres of base to one of height, was fonad to be eatirely changed, and preseated two distanet slopes; that of the lower portion was of 9 metres of base to 6 netres 80 centimetres of vortioal clevation, whilst the incliastiun of the saperior or apper slope bed beooree ive times less ; that is to say, of 47 motres 50 centimetres base to 0 metres 20 ceatimetres vertical helght.

These observations demonstrated what was the profile of the greateet stability, which was the most fmportant point to know; and as it wes remarked that the principal effect of the ection of the cen, in strong winds from seaward, was to carry from the oobislde to the inside of the breetswater the materials of which it was oomposed, it became necemcary, after haviag opposed a sufficient obstacle to this displacemeat, to abaadon to the action of the eoa itelf the tack of arranging the exterior sarface which was exposed to its force in the manner and in the wlope most saited to their object.

Accordingly, towards the ead of the jear 1803, M. Cachin cenaed to be raised on the top of that portion of the digue which had been already elevated, a sort of parapet, built with very large blocks, of which the summit was carried up to the level of the highest tides; thus the amaller stones which had been cast into the sea, by chance as it were, on the oxterior of the digue, at the depth of low water, were borne up by the foroe of the waves to the foot of this parapet, and were there disposed on a rogular slope, which, offering the least resistance to the movement of the waves, possessed the greatest stability. During the production of this effect, the horizontal base of the exterior elope became about quadruple that of its beight.

Besides the movement of the materials in a vertical direction, whenever the wind blows hard from the north, or perpendicalarly to the digue, these materials receive an impulsion from the effect of the winds which blow from the north-east and north. west, and in consequence of this impulsion two accumalations have been formed at the extremities of that central portion of the digue destined to support the battery, in the shape of twe conical mounds, which serve for épanlements for the work.
This peculiar confguration, the effect of nataral canses, is also forind to
colncide with that which the author of the Mfrooive had indicated for the two end batterien.
It is here meen how, in leaving exposed to the ection of the weves suob materiale as they can pot in movement, theso dispoes themselves in the manoer boot adapted to their stability and preservation in a vartical position ; but as nothlng opposes itself to the movement which would be givep to there materials is the direction of the length of the digue, the definitive effict of which movement would be the obatraction of the passea, it is iadispenaable, in order to prevent this effect, to face the whole exterior of the work with blocite of atone, soficientiy larce to resist thees oblique izapulaiops.

Afer having indicated the proceedings in detail, as well as the several modilicattons which it was judged expedient to edopt in the execntion and dimenaions it the central portion of the digue, M. Cachin given ala nocouat of the effeets which were produced on this, as it were, isolated moand by the gales of the 184 Pebreary 1807, of the 99th May of the same jear, brit, above all which, of that of the 19th Fobruary I808, from the northweat.

A combination of extraordinary oircometancee produced such a heavy sea that it sobmerged the floor of the battery, opect the parapet, and destroyed the wooden baildings which had been onnatracted on the terroploin of the work for the accommodation of the garrison.
The lant-menthoned storm, the most violent on record, stowed the large blocks of stope with which the digue had been feeed in fresh slopes, and with such regularity that they appeared to have been cemented by the hand of man; the soceesalve examinations which have since beea made have proved that, by the effect of this extraordinary overthrow, the mate. rials bave acquired a moet perfeot stubility.

These examinationg have alco taught, that this equilibriom onee establinhed, the transverse section of the digue, on the cell side, aseames forr easeptially different slopes from the sumpit to the bottom of the sea.

Thus, the epper part, which is only reached by the tops of the waves, presents a slope of which the vertical haight is to the base as 100 to 185.

The portion immediately bolow this, comprised between the high and low wrater (equisoctial) marks, is exposed to the most violent action of the sea during the whole flood and ebb; ite slope is likewise the montinolined, the height beiag to the base as 100 to 540 .

Below the low spring tides the aurface is only exposed to the agtation of the waves during the first moments of the food tide and the lather part of the ebb. The beight of its slope to its base is as 100 to $\mathbf{z 0}$.

Landy, the loweat part of the dIgre, which remains always sabseerged, aot boing exposed to the action of the waven, preserves a slope of which tho helght is to its bace as 100 to 125.

Aftor haviog pointed out the dimesaions, and having deacribed the means of construotion of the Jetty at Plymonth, M. Cuchin establinhen a comparison between the real quantity and extent of the works respeotively requiaite to complete tho Digue of Cherboerg and the Jetty or Breakwater of Plymouth; aod also between the probable expense of each. The result of this is very simple, and easy to oompreheed.

The leagth of Cherbourg Digue is 8,768 metres, and the area of ita traasverve section is 1,250 metres square. The expense of one metre of this profle, upon an experience of 16 years, is 8,717 francs. The length of Plymonth Breakwater in 1,504 wetres; its prosile, 988 square feet; and the oxpense of coantruction, 16,491 france the metre.

After the experience of theee two works, incomparably the greatest of their sort which the mind of man has ever contemplated to ondertake, M. Cachin concludes with the obeervation, that, if man be otrong evough to beep together rocks in the midat of the ooean, the action of the sea alone can dispose them in the manger mont likely to ensore thelr proper stability.

Yoor Committee, partaking in this opinion, consider that this able engiseor, in making known the reand of his obeervalions on the dificutioe Which he has encountered in the execetion of his important labours, the means he has pat in operation to anrmount them, aod, above all, hls observations upon the conflgaration which modiee of water, violently egitated, tend to give to obstaples opposed to them, has readered eainent service to those who may be hereafter called to the direction of similar operations.

We have the trosorr, is cossequesce, to propose the insertlon of 3. Cachin'0 Memoirt in the collection of the forelyn men of sciance.

DECORATION OF THE PALACE AT WESTMINETER.

Repoar of the Comimittee appotntod to eclect mubjects in Painting and Sculpture, soith a ciew to the fetmere Decenation of the Paleot of Weat. minater.

Your Committee have first to observe that the general plan on which aubjects were proposed to be selected has been defined by the Commisaioners in their sixth report to her Majenty, in the following words:-"In mocordence with the principles which have alrendy gulded us in deciding on the plan of Decoration in the House of Lords, vis., with reference to fresco-paintings, stalsed window, and statues, proposed for that locality; and also in the molection of stataes proposed for St. Stephen's Porch, 8t. Slephen's Hall, and the royel approaches: we conceive it to be the daty
of thin Commidetion, for the better gridanoe of preseat an futore arfinte, and In onder to maintain a character of harmony asd antity worthy of sweh a building, to determine a complett scheme for the futare decoration of the Palace. We are of opioion, that in determining such a scheme, the eepocial deatination of each portion of the building should be attended to; that in the selection of subjecte, the chief object to be regarded should be the expresaion of some speaific ides; and the secood, ite illastrution, by meane of some well-known historic or poetic incident adapted for representation in paintiog."

The duty which has devolved on your Committee being thes deined, their laboors have been directed to the selection of anbjects in accordance with the principle above explained. They have, for the preeent, given their attention to subjecta for painling ; a considerable onmber of names of distiaguiahed persons to whom statues might with propriety be erected, having been before proposel, and of these, some have been aeleoted by former Committices for partionlar localities.

St. Stephen's Poacr,

Containing two oompartments, one measuring 26 foet bigh (to the polat of the Gothic arch) by 10 ft .8 in . wide; the other measuriog 18 tt . in . high, to the polat of the arch, by 11 f 4 in . wide.

In this Porch will be four perdestals, ac two of which it hee been op oommended to place the atatues of Marlborough and Nelson; and jour Committer were of opinion that the subjects of Price and Wan would be appropriate in the two compartments intended for painting.

Er. Stephen's Hali,
Containing on the side walls, eight compartments, each measoriog 14 . 5 in. Wide, by 9 ft .8 in . high; and two end compartmeats, one meabring 90 f. 9 in . high, to the point of the arch, by 11 ft .6 in . wide; the other measuring 17 f. 6 jn . high, to the point of the arch, by 11 ft .8 in. wide.

An oplaion has before been expressed, by the Commiscion generally, that as St. Stephen's Hall stands on the spot where the House of Commons was, during many centuries, in the habit of aseembling, it should be adorned with statues of men who rose to eminence by the elogoence and abilities which they displayed in that House. Twelve personages selocted on this principle, were accordingly named is the fourth report of the Commission to her Majesty.
Your (Committee conceived that the walls might properly be decorated with paintinge, illustrating some of the greatest epochs in our cometitathonal, socinl, and ecciesiastical history, from the time whon the AngloSazon nation embraced Cbristianity to the acceasion of the House of Btuart; and that the following subjects would be well adapted for thls purpose:-
I. In TEE State-(For the 8ide Comparimeate).

A Bitting of the Wittena-gnmot. An early Trial by Jury.
The Feodal Bystem. The Ho The Bigning of Magas Ohate. mage of the Barons to WIlliam the Conqueror.
The origin of the House of Commons. The first Writ brought down to the City of London.

The termination of the Baronial wars. Blaniey and Oxford orowniag Heary VII. over the dead body of Richard III.

II. In the Chumon-(For the End Compartments). Weat Eed.
 Enat Eid.

The Conversion of the Anglo8ayons to Christianity. The Preaching of St. Augustine.

The Reformation. Queen Elismbeth receiving the Bible in Cheap. side.

The Central Hall,

Containing four compartments, each measuring 17 A. 7 in , high, wo the point of the Gothic arch, by 19 fl. 7 in. wide; and three amall panale underseath three of the large cosp partments, each meaturing 6 ft .6 in . high, to the point of the arcb, by about 4 ft .6 jm . wide.

Your Committee, bearing in mind that this Hall in the ceatral point of the whole building, wrere of opipion that the nationality of the comprenent parts of the Uniled Kingdoms should be the idea bere illastrated, and wonld be appropriately expressed by reprearntations of the four patron minte, 8t. George, St. Andrew, St. Patrict, and 8t. David, In the foer compant. ments inteuded for painting; and that in the three cmali specea modercenth three of the compertments the heraldic emblazoniags of the Ordere of the Garter, of the Thistle, and of St. Patrick, might be iotroduced.

Cormidone from the Cental Hall,
Consinting of the Peers' Corridor, the Commons' Curridor, atd the Ceplral or Public Corridor.
Your Committee were of opinion that the corridors which joln the two Houset might properly be decorated with painting illustralive of that great contest which commenced with the meeting of the Long Parliament
 ureme and deedry deknewee, burdened the conetiences of them whon ther had under

 sealut' beok in. E. 10.

The Abolition of Villeisages* A Lord, on his death bed, attended by the Clerny, manumitting his Vifloing.

The Privileges of the Commons aswerted by Sir Thomas More aggiost Cardinal Woleey. .
add fermalsted in 1000. It will bo ceon that the sebjects bave been macted oa the principle of parallelima, and that as attempt has beea ade to do juetioe to the heroic virteve which were diaplayed on both sidne.

The Prane' Conadpon,

Comatoing eifht oompertmeats inteoded for paintisg, each moasaring OR. in. wide by 7 feet high.

Overta I. ereeting his Stavdard M Nottinghan.

Besing Fouse defeeded by the Caratiort againat the Parliamedtary vary.
The Expulation of the Fellows of a College at Oxford for refuaing to ugn the Covenart.
The Barial of Charien I.

Bpeaker Leathal asserting the Privileges of the Commons againet Charies In whet the attempt wae made to seiza the ive Membors
The setaing ont of the Tria Bands from London to raice the Siege of Gloncester.

The Emberkation of a Puritan Fandly for New Eagland.

The Parting of Lord and Lady Ruseell.
The Commome' Conerpon,
Contiming oight compertments intonded for paintiog, each measuring 7 th. a) in. wide by 6 f. 6 in . high.

Charles II. assisted is his Eeceppe bJ Jane Lame.
The Executiooer tying Whathis
book round the neok of Montroes.
Mont deularing for a Proc ParLingent.
The landing of Charles II.
Allee Lisle cosconiling the Pugt. tives atier the Battle of Bedgemoor.

The gleep of Argyll."
The Acquittel of the Seven Bishopa
The Lords and Commons prenent- ligg the Crows to WIlliam and Mary in the Banqueting Honse.
The Central Conludor,
Conkining ds compartmonte, each measuring 8 t. 0 in. high by 7 foet wide.

The palatiags in 8t. Etephon's Fian, and in the corridors which join the two Romes, Hantrate the gradual pro\&rese of oor institutions dariag the ioterval which elapeed between the introduotion of Christianity and the Revolntion. It has been thonghe that the eentral corridor might whth adrastage be adorned with paintinge oxhioting io strong contrant the extremes which are separated by that interval. With this viaw, alx tubjeets have been selected : in three, Britain appeary sumk in igmorance, bealien superadition, and slavery ; in the ofler three, she appears inctroeting the savage, aboliching barbarowe rive, and therating the ateve.

The Phosnieians in Cornwall.
 A Draldieal sacrifies.

Aaglo Saxon Captires exposed for sale in the Martet-piace of
Rome.

The Upper Wamina Hall.

The sobjects for aix (out of oight) compartmente in this locally, have been before proposed to be selected from the following poets: Chavcur, 8peaser, Bhakespeare, Milton, Dryden, and Pope. The ebovee of anch mabjects being left to the artists appointed, or to be appointed, to execute them, after they shall have beep approved by the Commisalonert.

Tar Honse of Paris.

The subjects for the six compartments intended for painting, and the mection of historical personages proposed for statues to be pleoud in the 18 adches, as well as the decorations for the stained wisdowis, have been determined by former Committees.

The Peras Rosime Room,
Coutainiag three large compartmeate, two meenarias 80 foot whde by 10 ft 0 in , tish, the third measuring ge feet wide by 10 ft .6 in . high ; and is maller eompartmenth, ench measuring 7 foot wide by 10 t .6 in . hifg.
Yaar Conmitteo betor devirous to vary the groponed decorations, ind coneetviog that Soriptare auhjects, as affording ecope for the highets style of design, and as being especially eligible om othar groveds, shoald by no weas be exoladed, considered that the above-maned locality, in which the priscipal compartmecte iniended for paintieg, are of condiderable zenerilede, would be well adapted for such sabjeots. Yoor Comaittee were of optaion that the illustrations should have reforenoe to the iden of Justice on earth, and ita development in Law and Judgeome, and that the following enbjecte woold be approperimite.
In the siogle large compartment on the weet aide, 1. Mones briaging down the Tables of the Lavi to the Isreelites.
In the two emall compartments on the east aide, 2. The Fall of Man, and 8. His Condemnation to Labour.
On the sonth side, is the larger compartment, 4. The Judgment of Bolomoo; and in the two maller, 5. The Vidt of the Queen of Bbeba, and 0. The Bailding of the Temple.
On the sorth side, in the larger compartment, 7. The Jodgment of Dapiel ; aed io the two malier, 8. Daniel in the Lion's Den, and 0. The Vision of Dasiel.

Thi Royal Antichamber,

Contalaing in the upper part of two of the wralle, six large compartmente (three on each side), measaring 18 foet wide by 10 feet 9 inches hish. Twanty-elght mprigbt narrow compartmente, meanuring 5 feet 7 iuches high, by about 2 feet 6 inchee wide ; and 18 panels for carved work, foer maagaing 6 foet 8 laches wide, by 2 feet 0 inches high; and cight meesaring 9 feet 9 isebes square.

Your Committee considered that the six large compartments in this tocality, beiog at a considerable height, might be filled with copies in tapestry, of the defeat of the 8panish Armada, taken oither in part, or aliogether from the deaiges of the tapestry originally exietiog in the Bouse of Lords, which your Committee conceived, it is of great importance to preserve, as fier as poeatble, to the netion.
That the $\$ 8$ uprigtt compartmenta might be appropriatoly alled with portraits relating to the Tudor family:

1. Heary V1I.-2. Elizabeth of York.-8, Arthnr, Prince of Wales.4. Katharive of Aragon. $\mathbf{5}$. Heary VIII.-6. Aave Boleyn. -7. Jabe Sejwour.-8. Katharime Howard,-9. Anne of Cleyes.-10. Katharipe Part.-11. Edward VI.-12. Queen Mary.-13. Philip II.-14. Queen Elisabeth.-15. Lewis XII.-16. Princens Mary, Quept of Franes, Duchens of Soffolk.-17. Charles Brandon, Dake of Suffolk,-18. The Marchionese of Dorset-19. Lady Jane Grey.-20. Lord Gaildford Dud-loy.-21. Princess Marguret, Oneen of Scotland, Conntess of Augus.-29. James IV.-58. Douglan, Earl of Aagus.-24. James V.-26. Mary of Guise,-28. Mary, Qreed of 8coth.-27. Frapcis 11.-28. Lord Darnley.
That the twelve papols might be flled with the following anbjects in carved mork.
1, 2. The Fiald of the Cloth of Gold, and the visit of Charles V. to Beary VIII., in the two compartmente on the eant and west aides.
8, 4, 6. The Becape of Mary Queen of Scote, the Murder of Eizaio, and Mary looking back on Yrance, in the three compartments on the sonth side, weat of the door. The Escape of Mary Queen of Scots cocupying the cen. tre panal.

6, 7, 8. Queez Ellabeth koightiog Drake, Raleigh spreading his Cloak as a Carpet for the Queen, and Raleigh landing in Virginia, in the three compartments on the sonth side, rast of the door. The subject of the knighting of Drake occupying the centre panel.
$0,10,11,12$. On the north side, Edward VI. granting a Charter to Chritis Roppital, Lady Jame Grey at her stodies, Sebaitian. Cabot belore Heary VII., Katharine of Aragon pieading.

Ter Royal Gallezy.

A conaiderable apace on each side wall, measuring 77 feet 6 inches wide, bot boing subdivided into compartmente, your Committee were of opiofion that euch apece should be ocerpiod by one large, and two amaller subjects; the emaller corresponding in width with the width of one window, and measaring 12 feet 6 inches wido by 11 feet 6 inches high; the larger compreheadiog the width of three windows, and measuring 45 feet wide by 11 feet 6 inchee high. Of the remaining compartmente, defined by the architect, two on the side walls meanore each 18 feet 3 inches wide by 11 foet 6 inches high; four on the same lovel, in the ond wall, meanure 18 feet 8 inches wide by 11 feet 6 inches high; the elx remaining com. partmonts, three at each ead, in the opper part of the walls, moasure 12 Teet $\%$ inches wide by 19 feet 7 inches high. The compartmente would therofore be aigtteen in aumber.

Your Committee were of opinion that the subjects for the Royal Gallery shonld relate to the military bistory and glory of the conntry, and that the following sabjects woold be appropriato.

In the three apper compartmeats in the sonth wall:-

1. Boadicea indting her army.
2. Alfred in the Camp of the Danes.
3. Brian Boroimbe overcoming the Danes at the Bridge of Clootart.

In the three upper compartmente in the north wall:-
4. Rdith tiodins the dead of Barald.
5. Richand Copur de Lion coming in eight of the Holy City.
6. Elancer saving the life of ber hosband, afterwards Edward I., by weolding tho poison from a wound in his arm.

In the compartments noxt the proposed large compartment on the west wall:-
7. Bruee, during a retreat before the English, protecting a woman borne on a litter, and checking the parsuers.
8. Philippe interceding for the lives of the citizens of Cainis.

In the lower compartmente on the north wall:-
9. Edward the Black Prince entering London by the side of King John of Frasee.
10. The Meriage of Heary V., at Troyes, with the Princess Katharime of Frame.

In the oompartments mozt the propowed large compartment on the east wall :-
11. Elisabeth at Tilbery.
12. Blake at Tunis.

In the romainiag compartment on the eat wall :-
18. Marlboroagh at Blonhoim.

In the lower compartments on the north wall :-
14. The Death of Wolfo.
15. The Doath of Abercrombin.

In the remaining compartment on the weat wall :-
16. Lord Cornwallis receiving the Soos of Tippoo as hontages.

In the large compariment on the weat wall :-
17. Trafalgar; the Death of Neleon.

In the correspooding compartment on the eant wall :-
18. Waterloo; the meeting of Welliagtoo and Blacher.

Tas Queen's Robing Room,
Containing compartments of varions dimensions, adapted for painting and other decorations.

Yonr Committee, infuenced by the ooosiderations before expreased as to the expediency of rarying the character of the decorations proposed, were of opinion that a series of paintings, and other works of art, illustrating the legend of Kiur Arthur, woold be appropriate in this locality; and your Committee unanimously agreed to recommend to the Commission hat the execotion and eatire superiateadence of such decorations shond be entrusted to Mr. Dyce, who has already execnted a fresco in the House of Lords.

The Guard Room,
Containing two compartments, each measuring 18 feet wide by 8 feet high.
Yoor Committee conceived that thene compartments might be flled with the following subjecte:-

1. Young Telbot defending his Yather in Battlo.
2. Isebella Donglas barring the Door with ber Arm to protect James I. of Scotland.

The Lobby of the Guad Room,
Confaining one compartment, measoring 14 feet 5 inches high, to the point of the Gothic arch, by 10 feet wide. For thls locality your Commitsee selected the sabjeot of Bt. Edmand the Martyr dain by the Danes.

The Norman Porch,
Containing two compartments, each menaring 18 feet 1 inches high, to the point of the Gothic arch, by 10 feet 10 incbes wide.

It was the opiaios of your Committee that these compartmente would be appropriately filled with the two following sabjecta:

1. Cannte reproving his Courtiers.
2. Queen Elizabeth on the sea-side after the dofeat of the Spanish Armade.
Your Committee concoived that the sabjects in all the localities menconed should he accompanied with inscriptions, and, in some lastances, with appropriate mottoes; that in the last named sabject the motto might be "Afflarit Deus et dissipantar," and in the subject of Canute, "Nemo Dominus aisi Dens."

The Pezas and Commom' Refreshment Rooms.
The compartmentis in the two Rooms belonging to the Peens might be appropriated to views of places of the chief importance withis the United Kingdom. The compartments in the other Rooms to views of the mont remarkable places in Iadia nad the Colonial posecesiose of the Crown. Space might also be fonnd for abjects connected with reral soenory, the Harvest, the Chase, \&c.
Thr Paintbd Chamber, being the Hall of Conierence between the two Hodses,
Contains 13 compartments adapted for painting: two on the east side, measoring 10 feet 4 inches high by 7 feet 4 inches wide: five on the west side, the centre compartment meaauriag 10 feet 4 inches high by 16 feet 4 inches wide; two compartments next the curners measuring 10 feet 4 inches high by 9 feet wide, and two orer the doors, measuring 4 feet 6 inches high by 6 feet 9 jaches wide. Three on the north side, the centre compartment measuring 10 feet 4 inches high by 14 feet 3 jaches wide, and two smaller compartments, each measuring 7 feet 10 isches high by 4 feet 8 inches wide: and three on the sonth side corresponding with those on the north side.
Your Committee conceived that the subjects for painting in this locality might have reference to the acquisition of the conntries, colonies, and im portant places constitating the British Empire; and that the following anbjecte would be appropriato:-

In the centre compartment on the west side, 1. The Marriage of Strongbow and Era, daughler of Dermot, King of Leinster.

In the cenire compartment on the eonth eide, 2. Edwned I. presenting his infant Son to the Welsh as their Prince.

In the centre compartment on the north side, 3. James VI, of Sootland receiving the news of the Death of Queen Elizabeth; or Setting out for England as James I.

In the two compariments, next the corners, on the west side :-
4. Lord Clive in the Battle of Plassy.
6. Penn's Treaty with the American Indiads.

In the two compertments on the east side:-
6. The Colonization of Australia.
7. The Treaty of Nankin.

In the two compartments over the doors on the west side:-
8, 9, Incidents illustrating the Voyages to the North and South Poles.
In the emall compertments on the south side :-
10, 11. Incidents relaling to the acquisition of Mauritios and the Cape of Good Hope.

In the two small compartmente on the north side:-
12. Sir George Rooke planting the Standard of England on Gibraltar.
18. The Barrender of Malta

The entrance from Old Palace Yard is also intended to contaim some compartments for peinting, hut your Committee concelved that it woold be proper to postpone the consideration of subjects for this localisy is it is not get certain whether paintings can be seen in it to anficieat adrantage.

With regard to the technical method in which the paiatinge propowed shoald be executed, your Committee, although not prepared to ofter general recommendation on this subject, were of opinion that the pictmee in the itree corridors leading from the Central Hall, and the pictarea in the Refreahment Rooms shonid be paiated in oil ; and that the Queno's Rohing Roum, St. Stepben's Hall, and the Royal Gallery should be painted in fresco. The representations of the foor Patron Saints, from their sim and aituation, might be adventageously erecuted in Moatic (like the for Erangelists in the pendentiven of the Capola of 8t. Peter's), thas giving an opportunity for the introdnction into Eugland of an art highly valued ib other times and countries.
Your Committee bave further to observe that moveable oil paintiagn, not coming within the general plan proposed, might be placed in Comadtiet Rooms and in other parts of the building.

BRITISH ASSOCIATION.

(Continmed from page 261.)
"On Anemoncters and Resoloing Scales." By Captein Cooseren.
The advantage of a correat statement of the winds at sea has, for some years, been most appareat to me. Since the iotrodaction into the naval service of a certain formula for stating the furce of the vind, represented by nombers from 1 to 12, according to the sail carried and speed of a wellconditioned man-of-war, and this depending upon the opinion of the oficer of the watch, the notations are as varions as the opinions on such a subjeet mast be; and I dertainly hare seen great dicerepaocies noted on the ship's log-book. This evident evil is the Immediate cause of my attempting to make an anemometar which might correot it. The concave lorm of the revolving winge of this instrument was taken from a paper read on the cubject last meating. The coacave surface holding anc-third more wind than the convex, by theory it would revolre one-thind as fast an the wind; consequentiy, three times the distance described by a cup in a revolution would be the velocity of the wiad in the time vecupiad; this is supposing the form of the cap to be a perfect hemiephere, and no friction either in the mechanism of the instrument or in the air; but as there mast be friction and resistance from both these causes, this necessarily involves a correction, which must be determined by experiment, in order to establish the raloe of the revalutions. From the experiments I bave made on the top of rallway carriages and in ateam boata, the correction for the large sized cops is ${ }^{5}$ or $\frac{1}{1}$. I do not by any means conaider this to be decisive; the resalis have been various, from the unsteadiness of the wind during the triale, and from the mass of air oarried along by the moving body : this will make the multiple 3.5 instead of 3 . I am persuaded, also, that a differeat maltiple will be required at moderate and at great relocities; but 1 bave not been able to ascertain it. This value depends also upon the circuruference of the circle described by the cups, their form, and weight. I shall not enter into the relative adrantages of the forms and sizes of those I have had made : the diameters of each are, from centre to centre of the cups, including the arms, 12, 10, and 8 inches. Those simple multiplying wheels I bave ased may be substituted by the plan adopsed for gas-meters, which I think preferable.
"On Changes in the Position of the Tranait Instrument aceasioned by the Temperaturs of the Earth, from the Observations of Prof. C. P. Surtis, of Edinbergh." By Prof. Powell

Mr. Mallet, in an address to the Geological Society of Dablin, mantioned that Sir W. R. Hamilton had noticed certain changea of lerel fe the tranat instraments at bts observatories; and that Dr. Robinson had aleo found sech a change both in the general level of the obeervatory and alco a motion in asimath, recurring at annual periods, and apparently dopendiag on the temperature of the earth;-but no details of such observations were given. Prof. C. P. Sayth has pursued such obsarvations in detail at the observe. tory on the Calton Hill, Edinburgh, aided by the thermometric determinations of the changes of the remperature in the suhjecent soil, mede under the direction of Prof. Forbes, by thermometers suak in the groaod. The data he used were those obtaised at depthe of 5 feet, 8 feet, and in coatact vith the pier of the observatory. The morementa, both in the lawi of the tranait, and also in aximulh, are lald down graphioally in curves, apd acehibit a remarkabie agreemeat with the changes in temperatare, the wettern ond of the level beink highest in ammer, and the deviation of the meat end of the tramit axis being greateat sowerds the arelt in winter.
"On the Coloured Glass employed in Glazing the mew Pelm Hanat is the Royal Botanic Garden af Kew." By R. Hont.

It has been fonnd that plants growing in stove honges often suffer froes the scorohing intuence of the solar rays, and great expence is frequeally incarsed in fring blinds to ont off this dentructive calurific in ipesonFrom the enormous size of the new Palm House at Kew, it woahd be almost impracticable to adopt any system of shades which aboald be
efiective-this builifing belog 308 feet in length, 100 foet wide, and 68 feot htrg. It wris therefore thought desirable to ancertain if it would be poacible to eot off these scorching raye by the ase of a tinted glase, which shoald not be ohjectionable in its appearance, and the question was at the recomemedation of Sir W. Hooker and Dr. Lindley submitted by the Comanisiopers of Woods, \&ce. to Mr. Hunt. The object was, to select a slan which should not permit those heat rays which are the most active in acorebing tbe leaves of plants to permeate it. By a series of experiment made with the coloured juices of the palms themselves it was ascertained that the rays whicb destroged their colour, belonged to a class situated at that eod of the prismatic spectrum which exhibited the utmost calorific power, and jast beyond the limits of the visible red ray. A great nomber of epecimens of glass variously manufactured were submitted to examina. Lion, and it was at leagtb ascertained that glass tinted green appeared likely to effeet the object desired most readily. Some of the sreen glasees which were examined obstructed pearly all the heat raye-Dut this was not deaired, and from their dark colonr theno were objectionable, as atoppiog the pasaage of a conaderable quantity of light, which was easenilial to the bealthful growth of the plants. Many specimens were manafactiared perposely for the experiments by Mesers. Chapce of Birmingham, seoordiog to given directions, and it is mainly due to the intereat taken by theoe genilemen that the desideratum has been arrived at. Every momple of glaes was sabmitted to three distinct sets of experiments-lst. To ascertion, by mensuring off the coloured rays of the spectrum, its transparency to luminous infuence. 2nd. To ascertain the amonnt of obstraction offored to the passage of the chemical rays. Ard. To measure the amount of beat radiation whicb permeated each apecimen. The chemical changes were tried opon chluride of silver, and on papera atained with the grrea colouring matter of the leares of the palmat themelves. The caloritic befdeace was ascertained by a method employed by BIr John Herschol in has experiments on wolar radiation. Tisse paper stretched oo a frame woe smoked oa one side by holding it over a anoky fame, and then while the spectrun was thrown upon it the other aurface was washed with strong anlphoric ether. By the evaporation of the etber the points of calorific setion were most easily obtained, as these dried off io welf defined circlea loas before the other parts presented any appearance of drynesa. By these means it was not dificolt, with care, to ascertain exactly the condh. tions of the glass, as to its transparency to light, heat, and chemical agency (actinism). The glass thus chosen is of a very palo yellow-green colour, the colour being given by oxide of copper, and is 20 transparent that scarcely any light is lutercepted. In examining the speotral raya Throagh it. it is found that the gellow is slighly diminished in intensity, and thatithe extent of the red ray is affected in a smail degree, the lower odge of the ordionry red ray being cot off by jt. It does not appear to act in ay way opon the chemical priaciple, as apectral impressions obtained upon chloride of silver are the same in oxtent and character as those prodoced by the action of the rays which have passed ordicary white glass. This glass has, however, a very remarkable action upon the non-lumbous heat-rays, the least refraggible calorifc rays. It prevents the permeation of all that rlass of heat-rays which exist below and in the point fixed by Bir Wiliam Herachel, Sir H. Englefield, and Bir J. Herschel, as the point of mazinum calorific action. As it is to this class of raye that the ecorch. fag inguence is doe, there is every reason to conclude that the uce of thin glate will be efreetive in protecting the plants, and, at the sane tione, as it is onobjectionabla in point of colour, and trabspareat to that primeiple which is necesary for the devolopnonet of thoee parts of the plant which depend opon external chemical excitation, it is ooly partially 20 to the beat-rays, and it is opaque to those only which are the most injurious. The aberace of the oxide of manganese, commonly employed in all sheet dane is iosisted on, it haviog been found that glass, into the composition of which manganese enters, will, after exposure for some time to intense sanoljght, asome a pinky boe, and any tint of this character wrould completely deatroy the peculiar properties for which this glase is chosen. Melloni, in his inventigations on madiant heat. discovered that a peculier green glas, manufactored in Italy, obstructed nearly all the calorific rays; we may, therefore, conclode that the glase chosen is of a aimilar charecter to that employed by the Italian philocopher. The tint of colour is aot very different from that of the old crown glaes; and many practical men stato that they find their plants boorish mach better under this kind of glase then onder the white shoat glase, which is now so commonly employed.

«On the Potaccimm Battery." By Mr. Goodman.

An amalgam of mercory and potassiom was placed in a ressel cloced with a dimphrages at one end, and holding mineral naphtha. Thie was plogged into an acid solation, or a coiution of aulphate of copper, 000 zaioing a platina plate. By the action of the acid ihrough the skin, the oxidation of the potasiom was efincted; and by connecting these plates with a voltameter, water whas readily docomposed, or with a galvasometer a considerable defiexion produced.
"On E Syptem of Colowing Geotogteal Dfape" By J. W. Baltzr
Hitherto geologists have represented the British atrata by coloors takeo from the general hue of the rock, modifed by the necessity of asing bright timb and diattrguishitg edjacent formationd by coloors atroagly contrastiod. Contimental geologists have not enedruly edopted these coloarm, nor is there menfei eccordapee evee in the mape of Englishmen. Mr. Salter proposed to somedy the inconveniance amd uncertainty allending the prweal wethod
of colonring mape by introdncing a nystem capable of naireral adoption. The same colour, be says, should always be employed for the same gromp of rocks, varions shades of that common colour beiog sufficient to distinguish, and at the same time combine, all the subdivisions of that group. Again, the colonrs used to designate systems of strata should follow is mome constant order. The chromatic scale naturally suggested itself as The most barmonions gradation of colours, and accordingly Mr. Salter pro. prosed to represent the Silurian strata by Violet; Carboniferous, Bime; Triasaic, Green; Oolitic, Yellow; Cretaceons, Orange; Tertiary, Red. It was becessary to use a more intense red, with the addition of various markinge, for the granitic rocks.
Mr. Greenover referred to the pamphlet accompanying his geological Map of England, for an exposition of the principles by which he was guided,-which were approved of by the Englash geologista, and from which the Freach had departed with regret-Mr. Phillipa and Bir H. De la Beche recomzended the adoplion of one colour for each system, employing engraved lines of rarions kinds to distinguiah the subdivisions, thereby dimioishing the cost and increasing the accuracy of coloured maps. -Sir R. 1. Murcbisom said be had once attempted to apply the scheme now adrocated by Mr. Salter, but fouod it, practically, leas serviceable than Mr. Greenough's, which was the banis of all the other maps.

HYDRAULIC MACHINE FOR RAISING WATER, zc. Invented ly Michani Scott, Engineer of the Liverpool Water Worke. This machine was originally planned as a substitute for the common air pump in marine steam engines. As such I will first speate of it. Some years ago I was engaged in designing an evgine whioh it was desirable to compress into the amallest puasible bult. The obief difir. culty was the air pump and its attachments, which, if the ordinary airangement was adopted, would occupy valuable apace and make the engine complex. Ubserving this, 1 determined, if possible, to get rid of this pump altogether, and with this view, designed the machine as represented in fig. 1 , where Δ is a pipe paseing through the bow of

78. 2
the vessel, which, at a convedient distance aft, diverges into two bramebes, which branch pipes again respectively debonch into the sea near the stern. D in a double hinge valve, moveable by a brass rod pasaing througb a atuffing boz on the top of the pipe. By this rod the valve D may be thrown to either side of the chamber so as to shut the communication between the pipe A avd the pipe B or C, as the case masy be, on the one side, and on the other side, to as to opet the port betwoen one of the pipes B or C and the pipe E , which deccends from the condemer.

It will be observed, also, that there are two valves marked 1 and 2 , one in each pipe opening upwards, whioh allow the water to pase out, bot prevent ite retorn. These valves may be eqnilibriated, and alse opened or ahut, by a crapk joined to the axte which paceen through the side of the pipe. So mach for the configuration; now for the mode of action. Sappose the ship to be in motion (going ahead) and the valve D in the postion shown, then the water will ruch throngh the pipe A, and there being po obetruction offered, will pase throogt C and out at the stern. Bat let us throw the valve D to the other
side of the chamber, as abown by the dotted lines, the water entering at A now fows through pipe B, bat the water la pipe C baving been is motion its momentum will carry it onwarde in the origimal direction, leaving a vacoum behind; at the same time it will be obeerved, that the port has been opened between pipe C and the condenser, and the water of condensation and vapour will rush ont of the condenser into the pipe C. On again revering the valve D, the same effect is produced in pipe B, and so on altermately.

Having thas briefy explained the form and operation of the machine, we have now to inquire what extent of vacuous space is likely to be obtained ander ordinary circumatancea.
Let $P=$ the weight of the column of water in lbs.; $G=$ the conefficient of gravity $=32 ; \mathrm{V}=$ the relocity in feet per aecond.
Then the vis vive of the water $=\frac{\mathbf{P}}{\mathbf{G}} \mathbf{V}^{2}$ 。
Again, let $\mathbf{A}=$ the area of the pipe in square inches ; $R=$ the resistance due to the immersion at atmospheric presmare; $\mathrm{L}=$ the length of the vacuas in feet.
Then we have the mechanical effect orercome by the water while stopping $=\mathbf{A} \times \mathbf{R} \times \mathrm{L}_{\text {。 }}$ But this mechanical effect is equal to half the vis viva.

$$
\text { Hence, } A \times R \times L=\frac{P}{G} \times V^{2} \text {, or } L=\frac{P \times V^{2}}{2 \times G \times A \times R}
$$

Let us now apply this formula to a particular case. Suppose the vessel to be 110 feet between the perpendiculars, and the leogth of the pipe to be 90 feet, diameter 6 inches; say she la propelled by one engine of 30 -ineh cylinder, and 3 feet stroke, theo the air-pump would have a capacity of about 4,300 cubic foches.

Again, take the apeed of the vossel at 14 miles per hour, or 20 feet per second, then we have-

$$
\begin{array}{ll}
\mathbf{P}=1092 \mathrm{lb} & \mathrm{~A}=28 \text { square inches. } \\
\mathbf{G} \equiv 32 & \mathrm{~V}=20 \text { feet per secood. } \\
\mathbf{R}=17 &
\end{array}
$$

Heace $L=\frac{1092 \times 20_{2}}{2 \times 32 \times 28 \times 17}=14$ feet 4 inchen.
The contents of whioh is 4896 inchen, and with a velocity of 20 feet per second, the machine will make one stroke per second, whilat the eagive will not go above 45 strokes at most ; therefore, the machine would be one-third more powerful than the pump.

Though the above ezample proves the practicability of the applieation as a substitute for the air-pump in such caves an contemplated, viz., light river boats moving at a high velocity, atill 1 wish it to be clearly understood that in ordinary cases, auch as we meet with in this country, I would prefer the common air-pump, which is a mont effective instrumeut, but there are circumstances in which this machine might be adopted with advantage, and which may excuse the introduction of the foregoing.

Applied as a Slipo Pump. -The arrangement for this purpose is remarkably simple, being identical in prisoiple with that juat described, bot different in dotailo Fig. 3 , is a planand fig. 4 a verticalcection, abowing the valves. It will be obserred that the general form is simllar, bat the construction of the valves, unlike the maebine previously explained, is lew complicated. First, the ralve D is a single hinge valve, movenble as before, by a rod pasaing through the top of the pipe i wocondly, imeteed of the raire at E . Ggh 1 and 2, wo have two valves marked 1 and 2, opening npwards, being placed on the top of pipee Ey paming into the bilge; and, lastly, we diapense altogether with the ralves in the branch pipes. Presuming I have made myself underatood so far, let us suppose the ship at sea in a gale of wind, and leaking badly, and lei the valve D be in the position shown, then the water will rosh through the pipe A, pais through $C_{\text {, a }}$ ad out at the stern; then reverse the valve D, the water now flows through B, and at the same time we have the water in pipe C pacsing on by virtue of its owo momentum, leaving a vacuam bebind; when this takea place, the valve 2 will open and admit the water from the bige to fill the vacoous space. On reversing the valve D, the operation is repeated, 4nd os.

Let nos now apply the formala, that we may aequire some conception of the power of the apparatus. I shall take that celebrated ship. the "Great Britain," with a length of keal = 282 feet; and as it is an object to keep the perforations made by the pipes as amull as posaible, they must be situated where the line of pipe meets the bend at bow and itern, as pearly as may be, at a right angle. This condition will diminish the effective length of the column to, say 260 feet, diameter of pipe $=12$ ivehes, area 113 square idebee, ship's load, diaught 16 feet, immersion of pipe 11 feet, or 5 lb . presaure per square inch, speed of ship 12 miles per hour, 17.6 feet per second. Then

$$
P=12250 \mathrm{lb} . \quad V=17.6 \quad R=5 \mathrm{lb} \text { per equare inch. }
$$

$\begin{aligned} \mathbf{G I =} \quad 82 \quad A & =113 \text { equare iacbes. } \\ & \text { We have } L \frac{12250 \times 17.6^{2}}{2 \times 82 \times 118 \times 5} 106 \text { feet. }\end{aligned}$
The contents of which is 82.3 cubic feet nearly. Again, our velocity is 1056 feet per minute, and if we reverse the valre D, when the water has passed on, only 52 feet, then we get the jnitial velocity 1056 feet, and the final velocity 628 feet, the mean of which is 792 feet. The machine, at this rate, might mske 15 strokes per mioote, but if one-third be deducted for friation, \&co, of if we get 10 effective utrokes (that is 5 to each pipe) we shall have 411 cubtc feet, or dearly 12 tops of water thrown out of the ship every minote, equal to 180 pumpe four inches diameter, and 11 -inch atroke, going 30 atrokes per minnte, and if kept working during 24 bours requiring from 900 to 1000 men. This machine can be lept in operation during the same time by two men, and if deaired may be made self-seting.

If the machine be worked at a low velocity, ear four miles per hoor, it will then discharge 127 cubic feot per minute, which lo equal is efficacy to 60 pumpa, worked by 300 men.
With respect to the machlne as a aubstitute for the air-pormp, it will be observed by referring to fips. 1 and 2 , that on reversing the valve D , the branch pipe into which the water ia fowing is Dearly vacuous, that is, there will probabiy be a vacuum equal to 10 or 12 lb . per aquare inch (I speak of the lodicator), and the pressure being thus removed from the end of the colomn, the external pressure of the water and atmonphere will foree the water through the pipe with a great iderease of velocity. Suppose, for inatance, that the length of the vacuons apace (irreapective of that occapied by the water of condemation) was 10 foet, and the elasticity of the vapour filling this apace equal to 1 lb . per square inch, then, according to the law which reguiates the elasticlty of gases under premsure, if we take half the length-five feet, and half the difference between the initial and final pressures- 7 lb . per square inch, this will give the force tending to accelerate the valocity of the water through the pipe, viku 7 lb . per inch actling over a appace of 5 feet, and this power is available every time the valve D is reversed.
In the event of the vaporr being of greater elacticity in the oone demer, say 7 lb . per inoh, atill as It would tend to keep the water is motion in the after part of the pipe, it would reduce the quantity of reaistance from 17 lb . per ineh, ase it atood in the calcolation, to 10 lb , to that either view is favonrable to the machine. In fine, a conaiderable amount of the powor taken to produce the vacuum in agingive out.
Figs. 6 and 6 show an arrangement which might be used adras tageously to withdraw water from a cofferdam where there was a
7. 4.

Dea
corrent, proiluced either by the patural strease of a itver or the finer and efilux of the tlde. The apparatoe is supposed to be formed of four planks of wood allied together, and a enotion plipe commerated in a similar matreer. Op the top of thle suction pipe there in fued a
elack made of leather, with a plate of iron secured to the flap; and as a sabstitute for the hinge valve, formerly described, we have a piece of wood made to slide through the top, and in two groover, one at each side of the pipe. The machine belng immersed beneath the aurface of the river, and a communication made between the suction pipe and the interior of the dam, it only remains to raise the slide S, and permit a current to be eatabllshed inside of the main pipe or box; then by pushing the sllde down, a vacuum would instantly be formed, which, as before explained, would elevate the water from the interior of the dam, to be expelled into the river when the slide was again raised.

I have erected a machine of this form ; and as it can be constructed and put in operation in a few hours, and as it is both effective and couts but little, I recommend it to parties who have liydraulic works in progress, where the situation will admit of its being employed.
In conclusion, this machine is obviously applicable to the raising of water, or producing a vacuum, in every situation where we can command a fall or running stream; and experiment having proved it to be superior to the undershot water-wheel, for these purposes, whilat with this great power it combines simplicity, durability, and cheapnesa, in the higheat degree, I am humbly of opinion that it is likely to be extensively employed, in which case, the foregoing description will not have been written in vaid.

RAILWAY-CARRIAGB BRBAKS

At the lant quarterly meeting of the Institute of Mechanical Raginvers, beld at Birmingham, Mr. J. G. M'Connell in the chair, the following commasicstions were rend:-

Mr. G. Strmannson, Preaident of the Institute, "On a new Selfacting Broak, "" a beantiful model of which accompanied the paper.
${ }^{4}$ The rarions accidents on railway ariaing from concussions and collitions (ased especially the late accident at Wolverton) have induced me to draw my atteation to the construction of a self-acting break, which I have for several years had in view, a plan and model of which I have had made, and now lay before the Society, with my description of its action and effects. When a riliway train is moving at the rate of from 40 to 60 miles an hour, the morentam is so great that it cannot be atopped in any reasonable distance by che breaks at present in use; or if an azlo-tree breaki, or any accident happen to the engine so to to prevent ite progressing, the andden shake canses the carriages to overturn each other, and those noxt the engine are almost certain to be crashed. In an accident of thin kind, neither angine-driver, atoker, or guard can be prepared, and before there in time for any of them to put on the break at present in ase, so as to be in the leant degree effective, the collision or concussion has taken place. When the engine-driver thate off the steam or applien his break on the tender, the self-acting break is immediately brooght to bear apon every wheel attecbed to every carriage in the train so powerfolly, if necessary, as to bring every wheel into the condition of a aledse I think the train will be brought to a stand by this broak in one teath of the space in which it can be by the breaks at present used. My plan in as follows:-I attach a conple of apiral aprings to the levers of the break of every carriage, and also connect them with the buffert, and if the earriage requires gemtle breaking (which will always be the case when a train approachea a etation), the engine-driver, by shatting of a portion of the steam, or applying the breat gently, will have complete command over the train, withont any of tbose violent ancasy motions, which are very frequent and excestively diagreeble to passengert; and at the guard in frequently compelled to apply his break 10 powerfully at to make the wheels alide on the rall, and canse a contiderable amount of wear and tear on the tyre of the wheel, by which it becomes fat-aided, and maken the carriages uneany, and createt a jumping motion on the nil. Suppose a train of carriage moving at the rate of from 30 to 40 miles an hour, and a signal is hald out for the exgine-driver to stop; the moment he shnta off the steam, the whole of the breaise are brought into instant application of aledging the wheels, which will be more effectual than fifty men applying the common breake, as the miachief is frequently done before the gaard is apprised of the approach of danger. It is frequently neceseery for the trains to be backed into a aiding. When this is required, the train will fint have to be stopped, and in one minute the whole of the breaks can be disengaged from the buffers, as in shown in the model, and when the train proceeds they are again dropped into gear. The plen altogether appeara so simple that any ordinary mind can eanily understand the whole of it; and I think the cont of putting the breaks on each carriage would not exceed more than from 5l. to 102. Any effectual pian for increasing the safety of railway travelling is, in my mind, of anch vital importance, that I prefer laying my seheme open to the world, to taking out a patent for it; and it will be a source of the greatest pleasure to me to

* 4 rallway brenk, answering a dmilar parpoee an the one deacribed by Mr. 8tephene son, han been prlented by Mr. Bunnet, and described in the "Journal" for 1842, pege 72.
knew that it has been the means of naving even one human life from destruction, or that it has prevented one serions concuation."-In concequedce of Mr. Stephenson's absence, the invention was not discossed, it being ngreed that a special meeting ahould be called to consider the subject.
The consideration of Mr. Buckle's experimenta on fan blasta, now exciting considerable intarent, war then resumed. The chief object of Mr. Backle was to show that the prenent fan blaste were imperfect in construction and expensive in operation. He proposed, as the result of experiments extending over a period of nine years, to have a serien of fana, revolving in anch a way as that the blast of air thrown from one would be commanicated to each. He also showed the adrantages of having a large inlet-pipe. By these means he eatimated that not only would the bleat be itronger with less borse power, but it would also be uniform; thas improving the quallty of the iron, as well as prodacing it at a cheaper rate.

DRRDGR'S SUSPENSION BRIDGE.

Sir-I beg, in reference to an extract yon mede from a Calentta paper, in the last number of your Journal, to observe that I publithed no statement in the Mechamicr' Magarine that I have not documente and drawings by me to substantiate.
Bath, Ang. 23, 1847.
Jamer Drever.

ESVIENWE

Tablez for the Calculation of Earthnorke. By F. Basprorte, M.A.

In our last notice of Mr. Bashforth's tables, we explained to our readers the method of determining the volume of earthwork when the height of the slopes on either side was the same, and the calculation involved only integral numbers in feet and chains; we now propose to show how the tables can be applied to determine the amount of earth both in ordinary and side-long cnttings, when the heights contain decimal purtions of feet. Suppose, as before, the slopes of the sidelong cutting to be produced until they meet in some straight line below the formation level; then if the vertical sections of such a cutting be similar trianglen, we can apply the tahles to determina the quantity of earth excavated; all we have to do then in to determine the area of these triangular sections a chain apart, take the square root of the areas, and substitute them for the a and b of the tables. For the method of using the scale of proportional parts we shall quote the following example, given by Mr. Basbforth himself :-

4Suppose $a=97 \cdot 68 \quad b=12 \cdot 63$.

Therefore $\{37 \cdot 68,12.53\}=1669 \cdot$ neariy."
The mode of construction of the scale is 50 minntely explained by the author, that any illustrations of our own would be quite snperfluous. In conclusion, we cannot but express a hope that this will not be the lant time we shall have the pleasure of recording Mr. Bashforth's usefol labours. It is not saying too much to assert that no other member of the profession possesses an equal amonnt of scientific knowledge with Mr. Bashforth; and we trust that gentleman will not lllow the talent committed to his care to be idle. There js plenty of room, and plenty of occupation for men of science amongst engineers; and while we are willing to admit the paramount importance of a prectical acquaintance with details, we must firmly declare that unless the enginear combines with that knowledge of facts a knowledge of principles, the lives of the public will be jeopardied whenever they are intrusted to the stability of hid structures,

The Double Gauge-Obeeroations by Mr. R. Steparnson, on Mr. Bronel's report on the Dowble Gauge.
The public were greatly indebted to the scientific labours of Mr. Robert Stephenson for oppoing the fallacious reaconings of the advocates of the atmospheric railway system, in the height of its popu-larity-he has now, in a work recently issued under the above title, in a masterly manner laid the are at the root of the double gauge system recently promulgated and proposed to be adopted on the Oxford and

Rugby railway. He bas in his report exhibited in their true light the great danger and difficulties attending such a project. We shall here brielly give Mr. Stephenson's reasons for the conclusiona at which be has arrived.
Although Mr. Stephensou admits the possibility'of laying an intermediate rail, he entirely disagres from Mr. Brudel as to the number of crossings required. He states that on the 112 miles of the London and Birmingham line, 58 crossings are required, and where there is a mineral trafic a still larger proportion. Even on the Great Western no less than two crossings are allowed to the Slough station. Working out in detail Mr. Brupel's rough aketches, he shows that according to one plan there must be at each crossing two additional half switches, two additional crossing points, two additional pairs of overcrossing pointe, four additional gaps, and three additional meeting points. On another plan, two additional switches, two crossing points, two overcrossing points, six gaps, and four meeting points-all additional, to be passed over by traine of either gauge. On another, two automaton switches of dangerous construction, to be passed over by all trains-one of which being placed the wrong way, would meet all the trains in one direction-with two half switches, four crossing points, two overcrossing points, six gaps, and four meeting points-all additional, to be passed over by every train.
From this Mr. Stephenson argues that great difficulty and danger would be brought into railway transit, and that the increase of interruptions or gaps in the line would be as two to one in the present aystem. Mr. Stephenson concludes, lst. That the mized gauge system increases the complication very much, sC as to be inudmissible. 2nd. That it increases the danger greatly. Srd. That it increases the expense. His estimate of the increased expense per mile of a narrow gauge line added to a broad gauge line is 5,7941 ., and of the increased yearly expense of maintenance of way and working, 5001 . He calculates the gross capital cost as equivalent to 18,474 . per mile, while he denies that there is any equivalent advantage.
The drawings of points and crossings attached to Mr. Stephenson's report show the great complexity to which they bave arrived in the progress of railways, and the great attention now required in their study. Members of the profession will therefore derive great advantage from these practical examplea.

The Baronial and Ecclesiastical Antiquities of Scotland Illustrated. By R.W. Billings and W. Burn. London: Blackwood, 1847. Part IL.
The second part of this work illustrates the chapel of Holyrood, as the first part did the cathedral of Glasgow, and we can now recommend it with still greater confidence as worthy of support.

The Engineer's and Contractor's Pocket-Book, for the Years 1847 and 1848. London: Weale.

This work contains the usual very valuable information, and much additional matter that will be useful to the engineer; but we doubt the policy of leaving out the standing orders, which, in consequence of the alterations made this year, particularly interest engineers and surveyors.

REGISTER OF NEW PATENTS.

GAS RETURTS.

Richard Walzer, of Rochdale, Lancashire, cotton-spinner, for "Improvements in the apparatuy for the manufacture of gas for illumination, which said improrements are also applicable to the manufacture of other products of distillation."-Granted January 26; Enrulled July 26, 1847.

The improvement is for preventing the choking of the ascending pipe, which conreys the gas from the retort to the purifier, by the accumulation and incrustation of tar and other carbonaceous matter, and consists is breaking the immediate connection between the inner surface of the retort and the ascending pipe, by causing the latter to project inside the retort about two inches, instead of its being fush with the upper side, which improvement aliows free egress of the gas, and aliows the tar as it ascends the sides of the retort, instead of passing up the pipe, to fall from the top, and accumulate on the bottom, and from thence it is easily removed.

GAS METERS.

Thomas Fruend Dicienson, of Newcastle-upon-Tyde, sharebroker, and Joun Falrous, of the same place, gas engineer, for "certain Improvements in gas-melers."-Granted December 15, 1846 ; Enrolled June 15, 1847.

This invention relates to the construction of wet gas-metern, for preventing any tampering with the meter, by tilting it, to produce a greater flow of gas through the meter than indicated by the index. By the improved meter, if it be tilted, no gas will pass through it.

Fig. 1, is a front elevation of the improved meter, showing part of the interior, and fig. 2, a vertical section through the centre of the same; 1,2 , is the exterior case, within is the drum, 3 , on a horizontal axis, 4, with an endless screw on the front end, which takes into a worm at the bottom of the vertical axis 5. The apper end of this axis 5 , is also provided with an endless screw, gearing into the fint wheel 6, of the index apparatus. The front plate 2, has a chamber, 7, in front divided by a partition $8,9,10$; the space beneath the lowest part 8 , is for water, it communicates with the water in the case 1,2 , through two openings 11, 11, the space above the partition 8 , is divided into two, being for gas. An exit valve 12, with a float is fitted to an opening in a partition, so that if the water be at the proper level, the cloat will raise the valve to allow the gas to pass through the partition 10 , to the exit-pipe ; but if there be a deficiency of water, the float will decend and close the valve. On the top is a pipe 14, with a stopper for supplying water to the case under the partition 8 , to the required level. If there be any excess of water it will overfow as hereafter explained.
The above parts are similar to the ordinary gas-meters; but the following, indicated by letters, vary. a_{3} gas entrance-pipe communicating with the drum 3, by means of an elbow-pipe b, at the back of the case l, and protrading through the additional end-plate c, of the drum. The pipe b, rises a little above the water in the case, for the purpose of introducing gas above the water: the pipe b, is introduced into the space between the additional end c, und the real end of the drum, as in common gas-meters, excepting it is at the back of the meter, iustead of the front. a^{\prime}, is a continuation of the pipe a, w hich descends at the back of the case 1 , und is then continued at right angles along the bottom and again at the front, where there is a small hole at f. Any excess of water in the case 1,2 , will flow over the top of the pipe b, and pass down the pipe a, a^{\prime}, and escape at the bole, f, so that no water will stand higher in the pipe a, a^{\prime}, than the level ot the holef, and consequently no obstruction is offered to the flow of the gas frum the pipe a, into the pipe b. But if the meter be tilted backwards, the water in the case will flow through the pipe b, and the escape hole f, being raised, in consequence of the illing, the water will be retained in the pipe $a_{1} a^{\prime}$, at the same level as the hole f, and will prevent the gas passing through the pipe b, into the case 1,2 , and consequently the measuring will be suspended so long as the meter remains in that position.

The gas, which during the revolution of the drum 3 , is discharged from the compartments into the upper part of the case 1,2 , passes through an opeuing e, into the space above the partition 8 , aud then euters through a protection-valve i, into an elbow-pipe g, and is then conducted into the space above the water in the lower part of the chamber 7. From thence the gas ascends through the valve 12, then through the exit-pipe j, which extends over hie upper part of the case 1,2 , to the back of the meter; so that both the exit and eatrancepipes for the gas will be at the back of the meter.
If the meter be tilted forward, the water in the case 1,2 , will rise iu the front part of the meter, within the space beneath the partition $8,9,10$, and agaiost the upright part 9 , of that partition, where-
by the oped end of the pipe g, will be closed, and the flow of gas stopped. The same is effected by the valve i, on the upper end of pipe g; the stem of the valve being jointed to a weighted pendulum i^{\prime}, which closes the valve, on the meter being tilted forward, and stops the flow of gas. The pipe g, may be used without the valve i; or if the valve i, be employed, the lower end of the pipe may occupy a bigher position in the upright side 9 , of the partition, so that it will not be closed by the water on the meter being tilted.
There is a small nir-passage at k, bored vertically through the nozzle at the upper end of the upright pipe 14, to permit air to escape from the interior of the meter when water is poured into it. A washer of leather or india-rubber is applied beneath the shoulder of the stopper, screwed on the pipe 14, to securely close the orifice of the pipe 14.

STEAM POWER FOR CRANES,

Whlinm Jonnson, of Grosvenor Wharf, Milbank, Westminster, gentleman, for "certain Improcenents in machinery for raising or iffing and lonering retigh/s or ponderous bodies."-Granted Dec. 1 , 1846; Enrolled June 1, 1847. [Reported in Nenton's London Jourmal.]
This invention consists in a pecnliar adaptation of steam power to a drum barrel or cylinder, round which a rope or chain, for raising the weight, is passed. Rotary motion is given to the draught-barrel or polley by a steam-engine; the outer end of its piston-rod being attached to a chain or rope, coiled round a winding-drum, of small diameter, fixed upon the axle of the draught-barrel.

Fig. 1 represents the apparatus in elevation, a portion of the frame being removed to show the internal parts of the machinery more per-

Fig. 1.

pig. 2.
fectly; and fig. 2 is a horizontal view of the same. 4 , is a rectangular frame of iron, which contains and supports the machinery. It may be fixed firmly into the ground, or mounted upon wheels to admit of its being transported to different parts of a wharf or warehcuse. In or vear the centre of this frame Δ, the working cylinder of a steamengine,, , is fixed,-its piston-rod, c, \mathbf{c}, passing through both ends of the cylinder, for the purpose of rendering the machinery capable of raising and lowering beavy bodies, through the agency of cranes, fixed one at each end, when the machinery is required to be made doubleactiog, as it is supposed to be in the drawing, although but one crane is shown; but in a single-acting machine it is obrious that the dnplicate parts of the apparatus may be dispensed with. D, D, are the opright parts or standards of a crane, with the usual jib \mathbf{E}, and pulleys F. G, is a horizontal axle, turning in plammer-blocks, fixed upon the bottom of the frame. This axle carries a conical puiley H , which has several grooves formed in it, of different diameters, for the purpone of receiving severally the draught-chain or rope of the crane; the different diameters of the conical pulley being designed to effect different powers of draught. This pulley is enabied to slide laterally along the axle G, for the purpose of bringing either of the grooves idto a line of coincidence with the leading pulley of the crane; and the pulley is confined to the axle, when it revolves, by a key passed through a notch in the pulley; or it may be by the axle in that part being formed square. Upon the axle there is also a smaller palley I_{p}, fixed to the exle, and turning with it. This pulley is intended to
receive the coiled chain attached to the ead of the piston-rod c, so that as the piston recedes in the cylinder the chain may draw the pulley 1 round, and with it the axle and the cone-pulley a. It will be seen that there is a cone-pulley n , connected to a draught-chain, at each end of the working steam-cylinder B ; and that upon the axle to which this cone is keyed, there is affixed a small puller 1 , with a chain connected to the end of the piston-rod, as before described,-thus making the machinery double-acting; that is, when a heary weight is raising at one crane, a heavy weight may be lowering at the other crane.

In working this machinery steam, at a high pressure, is to be provided in a boiler contiguous, from which the steam is to be condocted to the working-cylinder B , by a pipe z , shown as broken off in the drawing. Tbe steam when passed through this pipe will occupy the steam-box L , and by the sliding of the valve within the box the steam will, in the usual way, be admitted into the cylinder at its ende, for the purpose of working the piston: the action of the slide-valve is produced by the hand of a workman applied to the lever M, so that the operations of the machine shall be always under command. Supposing that the piston in the cylinder B_{3} is, by the pressure of the steam, passing from the right-hand end of the cylinder to the left, the chain connected to the piaton-rod and to the pulley 1 , will draw ronnd the pulley 1 , its axle G, and the cone-pulley H; and the draught-chain of the crane being attached to the periphery of the pulley H , as the pulley revolves the chain will draw up the weight suspended from the jib-head. Now, to prevent the raised weight, suspended from the crane, from descending, the pulley 8 must be made fast; this is effected by means of a break, formed by a band N, and lever 0 . The band being passed round the pulley H, as shown in fig. 2, the workman by moving the lever 0 , will cause the band N, to be drawn tight round the pulley and prevent its rotation; the lever being beld in its position by a click or pawle, resting in the teeth of a ratchet P , as shown in tig. 1; and in lowering the weight the break may be gently released until the weight has reached its proper situation. The steam may be allowed to escape from the cylinder by a pipe Q, into the air ; and it will be seen that a similar arrangement of parts being adopted to the reverse end of the machine, beavy weights may be either raised or lowered by their reciprocating actions.

WARPING VESSELS.

Grorge Beadon, of Taunton, Somerset, a commander in the nary, and ANDREW SMITB, of Princes-street, Leicester-square, engineer, for "Improvements in marping or hauling vessels, which improvements are also applicable to moving older bodies."-Granted Jan. 21; Enrolled July 21, 1847. [Reported in the Patent Journal.]

These improvements consist in the use of certain machinery for warping or hauling vessels on rivers or canals, aud which machinery, with slight modifications, is also adapted for propelling carriages on railways or common roads by ropes or chains.
The first part of the specification consists of a description of the improved apparatus or machinery for moving bodies on water, and

which, by the aid of the annexed engraving, will be readily understood. a represents the hauling arparatus or whelp-wheel, mountud
npon standard bearings, in the usual manner, and fitted to the deck of a vessel, with a horizontal crank-shaft passing through it; this shaft is firmly keyed to the whelp-wheel, and receives motion from two reciprocating steam cylinders, in connection with double cranks, on the driving-shaft; each arm of the wheel which is employed for the purpose of receiving the whelp, is furnished with a slot, diverging from the centre to the periphery of the same, and forming in all six radial guides or channels, in which six adjusting whelpa, $c_{9} c_{c} c_{\text {, }}$ are to be fitted, and placed at equal distancen from the central driving-shaft, and are made fast by wedges, which can be withdrawn at pleasure, and allow the circumferential or radial distance of the whelps to be increased or diminished, producing thereby corresponding rates of motion when required. By this arrangement the whelpa form a reel, on which the coil of galvanised wire-rope or chain, d_{1} is woand, and so grip the warping-line, which is fixed firmly at each end to some stationary object or looldfast upon the land or water; so that when the wheel, a, is caused to rotate, the vessel, by reason of the rope aforesaid, alternately embracing and leaving the whelps forming the reel, is propelled backwards or forwarde, by motion being given to the wheel carrying the whelps in the required direction; $c_{1} e_{\text {, }}$ are horizontal rollers mounted is cast iron standards, fore and aft of the warpingwheel a, and serve the double purpose of guiding the warp-line and keeping it tight on the reel; f, f, are two paira of vertical guiderollers, mounted on bracket bearings. On the axle of each of the lower horizontal rollerm, c, e, a bevel-wheel, g, is mounted, which gears into others on the horizontal shaft k, h; the pair of bevelled wheele, g, g, at the forward end of the shaft k, is intended to be of a less speed than the aft pair, for an object bereafter explained. The friction of the warping-rope, as the vessel moves, will cause the rollen to revolve, and as the upper rollers, e, e, by their weight, press or nip the rope or chain againat their under rollers, and the speed of the fore ones is less than the aft pair, the latter will have a tendency to take up the rope or chain quicker than it is given off from the reel, and thus keep it taut.
In order to allow one ressel to pass another on a single line of warping-chain or rope, it will be necessary to throw one vessel ont of connection with the rope temporarily; for this purpose the rollers $e_{\text {, }}$, , may be readily lifted out from their bearings, which will admit of the warpingechain or rope being thrown off from the rollers e, e, when required.
A further modification of the above arrangement is next described, which consists of a roller, mounted upon uuitable bearings, having two smaller ones above it attached to the sume framing, the upper ones being pressed down by means of screws or springs, or otherwise made to nip the chain or rope sufficiently, so as to prevent its slipping when the lower roller is caused to revolve by the steam-engine or other motive power employed in the vessel.
The next mode described by the patentees for applying such arrangements to locomotive purposes, consints of placing in the front of the engine the whelp-wheel aforesaid, and attaching it thereto, causing it to be driven by means of comecting rods from the crank-shaft; in other respects, differing but slightly from the ordinary construction.

The fourth part of this invention has reference to different modes of nipping the rope or chain, and consists first of three or more cylinders fixed to the arms or periphery of the whelp-wheel, which is placed across the vessel, with its guide-pulleys fore and aft; pins are inserted in the periphery of the wheel a, for the purpose of receiving the coil of rope or chain around it, and preventing its slipping; the cylinders, which are placed at equal distances apart, are supplied with steam at different intervals through the same shaft on which the wheels rotate, having suitable valves for that purpose; every cylinder so placed has a piston and piston-rod, and, when in operation, receives the pressure of steam on one side of the piston only, while on the other is fixed an elastic medium, such as a spring or otherwise suitable contrivance, the effect of which will be thus understood:-The rod of the piston, which in this inatance forms the nipper, having a notched end for the purpose of holding the rope or chain, is pressed forward by the force of the steam acting behind the pistom, and made to nip the rope or chain against the off flange of the whelp-wheel $a_{\text {, }}$ through which the rod on one side pusses; when, upon the steam being condensed in the ordinary mode, the action of the spring being free to move, the piston-rod or nipper is again withdrawn and the rope wound upon the wheel. When the wheel a, having the warping rope or chain passing round, is employed for the purpose of propelling, it will be at times necessary, in order to ensure a firm hold for the rope or chain and prevent its slipping upoo its drum or periphery, to resort to other means, such as a bar of iron or any other arrangement for pressing the rope or chain in the running groove against the sides of the flange, until another nipper or wheel is bronglit to bear
upon the rope or chain, alternately pressing and nipping the rope or chain during the revolutions of the wheel.

The application of vibrating-levers with sliding-rods is next described, for the purpose of pinching or nipping the rope; these levers are mounted on centres resting on the sides of the wheel, to the outer ends of which two sliding bars are attached, and pass in a horizontal direction through one flange of the wheel, so as to press upon the inside of the other, against which the rope is wound ; the requisite action is communicated to them by means of a fixed cam, situated near the centre of the wbeel, whilst the re-action is effected by springa, the cam pressing the sliding-bars by the motion of the lever agaimi the rope, and the springs releasing them. Placed on the wheel are small bozes having springs, with a tendency to draw into their bozea the aliding-bar aforesaid, which, by being altached to one end of the ribrating-levers worked by the cam, keep the rope tight by throwing the hook or notob upon the same; thus enabling each bolt, nipping rod, or buffer (forced back against the chain in succession) to release its hold alternately as the wheels revolve.

The adaptation of the principle bereinbefore mentioned, when applied to steam tug-boats, consists io arranging the apparatus in the centre of the boat, and casing it in upon the top, that the central portion thereof may act as a bridge, and thereby offer sufficient resistance to the strain, at the same time enabling the steersman to perform his duty without any interroption from the warping line or rope.
Lastly is described the weans employed for raising boats and bargee from one level to another, and consists in forming at converient distances along a canal, a number of inclined surfaces or banks crossing the stream, between which the water of different levels is confined; each bank so formed being at an angle of 45°, and having on ita face trams or rails. The boats or barges on the lowest level, in order to be raised to a higher one, are mounted upon wheels for the purpose of traverning the rails; other boats or barges on the next level are then attached by means of ropes to the lower ones, and when the apparatus is put in motion from above hy steam or other motive power, the lower boats or barges are drawn up the incline, and thins caused to pass from one level to another by the use of the bauling apparatus hereinbefore described.*

- An invention slmillar to this better part has been adopted on the Morris Comal, U. S. Ameriet, and described In the Clill Engineer and Architect's Jomral, for 1842, page 104 -Ed. C. E. B A. Journal.

ELECTRO COPPERING, GILDING, AND SILVERING.

Louls Hypolitr Plaget and Phlup Henry Do Bois, of Wyayattstreet, Clerkenwell, Middlesex, for "Improsements in producing ornamental surfaces."-Granted November 12, 1846 ; Earolled Mas 12. 1847.

This invention consists of improvements in depositing metal, by the employment of a bath in the following manner, as shown in fig. 1. The bath consists of an earthenware vessel, A , with a similar plate B , perforated, and with one or more apertures C, to receive tubes D, and a long opening, E, in the centre, for suspending the model or electrotype plate.

Fig. 1.
Frg. 2.
For electrotype plates the bath is to be filled with a solution of 14 lb . blue vitriol dissolved in 7 quarts of water, and when it is cooled put on the plate B, with some pieces of vitriol laid on the top; then fill the tuben D with a preparation consisting of 5 pints of water, $\$ \mathrm{lb}$. common salt, t pint of fresh human urine, and 6 drams sulphuric acid. The tubes to be filled up every six hourg, until the third day, when they must be emptied and refilled, as before, till the deposited plate is as thick as desired. Care is to be taken that not a drop from these tubes falls into the bath.

The model to be used in the bath, either of gold, silver, or copper, is to bave soldered on the back a piece of copper wire, for a conducLor; and the model is to be well cleaned with plumbago and a bruah, and its back fixed in wood, leaving only the reguired surface exposed. Take a piece of zinc, about five ounces, and fasten on a screw, then attach the copper wire to the screw, and place the piece of zinc in noe of the tubes D, suspending at the same time the model through the centre hole, $\mathrm{E}_{\text {, }}$ of the plate B , into the bath; when the plate is taken out of the bath, and taken of the model, it will exhibit a burDish polish or dead appearance, according to the preparation of the model ; it will also be found to be good and pliable metal, bearing to be made several times bot without injuring or deatroying the copy of the finest engine-tarning or engraving.

Preparation for Silvering.-Firat dissolve 700 drams of sulphate of soda recently prepared in four parts of warm filtered water. Secoodly, dissolve 25 drams of carbonate of soda (when for use with electric currents, but when to act by simple immersion, 75 drams are used) in a pint of warm filtered water. Thirdly, diseolve 31 drams of moist carbonate of silver. When these solutions are cold, mix the sulphate of soda and the carbonate of soda together, then add the carbosate of silver, add stir all well with a glass stick till the silver is well incorporated. This preparation is to be used cold.

Badtery,-When electric currents are to be nsed with the above perposes, it is preferred to employ the battery shown in fig. 2, which is constructed as follows: a is a glasa jar; b, a tube of charcoal; c, a porous vessel; and e, a tube of amalgamated zinc. In making small articles of ailver, or of gold as hereafter explaiped, soch as watchcases, ithree such batteries connected together form a proper strength for the purpose; but for larger articlen, more such batteries must be osed. Into the ressel a, put nitric acid and water, mixed in equal quantities ; the tube of charcoal, b, is introdnced into such vessel, a, and the porous vessel, c, is introduced into the tabe, b, and the liquid should then nearly fill the vessel a. Into the vessel, c, put a mixture of $\frac{1}{2}$ oz. sulphuric acid, 102 common salt, and two pints of water. The copper bands, d, of the three or other number of batteries used are to be connected together, and these metal connections are to be made between the models which are introduced into the bath to receive precipitations thereon; the copper straps, f, are to be connected to each other, and the one from the last battery is to Lave a piece of platinom wire soldered at its end, and this platinum wire is to be dipped about balf an inch into the liquor of the bath.

Preparation for Gilding.-First dissolve 375 drams of pure phosFhate of soda in $4 \geq$ pints of warm filtered water. Secondly, dissolve 60 drams of recently-prepared sulphate of soda in half pint of warm filtered water. Thirdly, dissolve 7 drams of perfectly dry chloride of gold in half pint of warm filtered water. Take the solution of gold and mix it with the solution of phosphate of soda, then add the sulphate of soda. Care must be taken that they are well mixed. This preparation is to be used warm, but not boiling. This bath is to be ned with electric currenti, preferring to use for this parpose the battery above described for silvering.

Preparation for Gilding by Immertion-Fint dissolve 700 drams of pure pyrophosphate of potash in five pints of warm filtered water; if this solution is not clear, filter it and let it remain till it is cold. Secondly, dissolve 7 drams of dry chloride of gold in half pint of water, then poor this gently into the pyrophonphate of potass, taking care to stir it well. This preparation to be used warm. This bath is to be used in like manner to what hat heretofore been done when gilding by simple immersion, without the aid of electric currents.

To prepare an electrotype model plate for gilding or silvering, after it has been in the hands of the workman, first, put it in the essence of tarpentine for t hour, then wash and brush it well, after which put it in oitric acid diluted with water ($\mathbf{1} \mathbf{0 z}$. of nitric acid of commerce with two pints of water), to take away the oxide; then place it in cold water, and again brush it with rouge to give brilllianey. ; place it next in fresh-made buman arine for eight or ten minutes, and then again in cold water ; the plate is now ft for gilding or silvering by the bath above described. By tbis process a coating of gold or silver will be obtained, which when taken from the bath will only require to be brushed with spirits of wine and rouge, and in leas than balf-a-minute It will be as brilliant as when taken from the model. It is not necessary to use the scratch-brush, or to burnish any part of the plate, which is alwaya required after other modes of glldlog and silvering, and which alway injures fine engine-larning and engraving.

ROTARY ENGINES.

Winlias BaExnton, of the Inner Temple, in the city of London, gentleman, for "certain improvements in rotatory steams-engines." Granted January 21; Enrolled July 21, 1847. [Reported in the Potent Journal.]

This apecifioation is accompanied by a diagram (see the figure) illustrative of the principle on which the rotatory engines are to be constructed. A, B, C, D, is an ellipse, described with foci, E, and F, half the major axis, or transverse diameter of which, is represented by $\mathrm{O}, \mathrm{B},=a_{1}$ (a known number $=1 \cdot 5904$) whilot half the minor axis or conjugate diameter is represented by $O, A_{1}=b_{\text {, }}$ (another known num-

ber $=1 \cdot 5$); the focal distance is represented by O, E, and $\mathrm{O}, \mathrm{F},=c$, $(=-524)$. A, K, H, L, is a circle described with centre G, and radius, $\mathbf{G}, \mathrm{A}_{\text {, }}$ which radius, $=d_{1}\left(=\frac{1}{\frac{1}{2}}\right.$ of $\left.\mathbf{O}, A_{2}\right)$. \mathbf{X}, \mathbf{Y}, represents a circle described with centre, G, and radius $G, \dot{O},=e,(=\cdot 5)$; the remaining parts will hereafter be more particularly described and alluded to; but it may be as well to observe that N, S, represents a piston passing freely through the centre of the circle, A, K, H, L (and baving a sliding motion in the direction of its length,) whilat $m, x_{\text {, }}$ is intended to show the thickness thereof. In an engine comstructed upon the principle above shown A, B, C, D, then would represent the outer iron case as it would appear in vertical section, and which case, therefore, would bs of an elliptical form, although employed for a similar purpone to that part of an ordinary steam-engine knowa by the name of the cylinder; below, or at C, would be the fouodation-plate, upon which the said elliptical case would have to be fixed. $\mathrm{A}, \mathrm{K}, \mathrm{H}, \mathrm{L}$, marks the place that wonld have to be occupied by a hollow cylindrical shaft or piston-rod (of comiderable diameter), and which is placed at such a distance, it will be observed, from and above the centre of the elliptical case, A, B, C, D, as that the circumference of the eaid shaft or piston-rod shall come in contact with the inner surface of the elliptical case at the point, A, and at which would be the slide-valve 30 arranged, that the ateam might be introduced into the elliptical case, say at or near to such point, A, or at p, when by acting upon the sliding-piston, N, S, it must, thereby, impart a rotatory motion to the shaft, A, K, H, L, and the steap ultimately would be discharged throngh an aperture or eduction-passage, somewhere near also to the point, A, or at t; or the steam might be introdaced and allowed to pass off through the ends of the case, if found advisable. For reversing the engine, or causing the piston and shaft to move in a contrary direction, it would only be necessary to make the eduction-pipe available for the passage of the steam out of the cylinder, by altering the position of the cock or slide-valve, and in the usual way, the shaft, A, K, H, L, must pass through steam-tigbt stuffing boxes at each end of the case, and revolve in bearings in the upright frame attached to the founda-tion-plate. The aliding piston, N, S , will be rectangular, its breadth being equal to the distance between the ends or side-plates of the elliptical case, whatever that may be, and its length (as shown at \mathbf{N}, S,) equal, or nearly mo^{2}, to the shorter diameter of the same. This piston must slide through a slot or aperture in the shaft or piston-rod, so that whilst the rod moves in a circular direction, the sliding piston moving with it and through it, performs an elliptical course by reason of the pressare of its extremities against the inner surface of the case; and the ends of the piston, as the patedtee observes, should be kept in close contact with such inder surface of the case by aid of metallic packings and of springe, the elasticity of the latter, by exerting a constant outward pressure against the former, serving to accomplish such object.

The shaft or piston-rod may be of any proportional part of the shorter axis of the ellipse, the longer axis being varied accordingly, and so that the correct principle of action may still be retained; but the proportion, which the patentee recommends as having been found to be moot efficient in practice, is that the revolving shaft shall (us seen in the diagram) have a diameter of not less than two-thirds of the shorter diameter or minor axis of the ellipse, and which will make the longer diameter of major axis about 1.06 times such shorter diameter; for if the diameter of the revolving shaft or piaton-rod be materially smaller than this, the figure of the case must either cease to be a perfect ellipse, and thereby become very difficult to bore, or else the lincreased length of the piston will involve the necessity of the metallic packing moving through a very considerable space, and which would be inconvenient.

MAKING ZINC AND GAS.

Daniel Towrzs Serars, of Bankside, Southwark, for "Improtements in the treatment of zinc ores for the purpose of producing zinc ingote, which improvements are applicable to the reduction of other ores and metals." (A communication.)-Granted January 19; Enrolled July 19, 1847.

The invention relates to making zinc from ores in combination with the making of gas for the purposes of light and heat by using a blast higl furnace and anthracite, coke, charcoal, or other suitable fuel, and other metale may be made at the alme time.

Mg. I.

Fig. 1, is the section of the furnace and apparatus. The furnace a, in charged through a funnel b, at the upper part, there being slides to prevent the passage off of the gas which may be at the upper part of the furnace, the lower slide being closed wheo the upper one is opened at the time of introducing a charge; the upper alide being closed when the lower slide is drawn out to allow the materials to deacend into the furnace. The materials for charging the furnace are raised by an endless ohain C. If iron be contained in any of the ores or materials to be used (and uuch is found sometimes to be the case), then the lower part of the furnace is to be made suitable for tapping off the iron from time to time in precisely the same manner as iron fornaces have heretofore been constructed. No claim is made for the construction of sucb furnacea, but only the mode of making zine therein. At the upper part of the boshes c, the famace is contracted under which the $\boldsymbol{g}^{\text {as }}$ and the vapours of zinc accumulate and passoff through the pipe, d, into the receiver e. The pipe d, passes through the vessel f, which has a flow of water constantly through it, passing into it br a pipe g, at the lower part and off at the pipe h, at the upper part. Or oil may be used in place of water, in which case, as long ais the oil is kept below its boiling point, it will indicate that the gases are not carrying off zinc vaponfs, and the receiver is kept sufficiently heated to prevent the zine solidifying, which it is preferred to do by
a gas burner supplied with gas from the apparatus, and there is a tap bole at the lower part of the receiver to draw off the zinc. The gat passes from the receiver through a pipe i, in order to convey the gas to be burned for any desired purpone, whether for light or beat, and it may be used for roasting the ores before they are used by placing the same in suitable ovens or retorts, and heating such retorte with the gas. This furnace is similar to that described by Mr. Constable, in his patent for making gases from anthracite and other fuel in blawe or high furnaces, and would, if no ores or matters capable of yielding zinc be introduced with the fuel simply produce gas, but by introducing roasted zinc ores with the fuel from time to time, zinc will be made and be received into the receiver, thus beneficially employing the heat of the furnace. The quantity of ore introduced into the furnace may be varied according as it is desired to make a large or a smaller quantity of zinc. Any quantity up to one part by weight of roasted ore to three parts of the fuel employed is recommended. Iron or other ore may be introduced and treated with the sinc ore.

ELECTRIC TELEGRAPHS.

Alpred Bartt, of Holborn-bara, gentleman, and Grorge Little, of High-Holborn, electrical engineer, for "Improvemente in doctric telegraphe, and in the arrangements and apparatus to be used thercin and therenith, part of which improvements are also applicabie to timepieces, keepers, and other useful purposes."-Granted Feb. 11; Earolled Aug. 11, 1847. [Reported in the Mechanics' Magasine.]
The improvements claimed under this patent are ten in number. We shall give the claims in the words of the inventors; and such explanations of them as may be necessary to show their general scope also pearly in their own words.

First Claim.-"We claim, as an improvement in electric telegraphs, the use of a ring, or piece of metal, partially magnetised, in combination with a reel or coil of wire, whereby and wherein the electric current so acts, that the motions take place in a direction transverse to the axis of the coil, and parallel, or nearly so, to the planes in which the wire, constituting the coil, lies."
The electric fluid is made to pass through a number of coils of fine wire, properly coated or covered with silk, or other suitable nonconducting material; which wire is wound round a flat reel, or reele, of ivory, or other suitable material. The ends of these fine wires are alternately brought into contact with the galvanic battery, by suitable arrangements, whereby the current is made to act on and give motion to a partially magnetised ring, or piece of metal, suspended and moving on a fixed centre in a plane parallel to the side, or face, of the flat reel, about which the wire is coiled; that is to say, parallel to the planes in which the wire is so coiled; the motions of this partially magnetised ring being communicated to an indicator, or indicators, whose motions in cunnection with a peculiarly arranged dial-plate with symbols thereon, may be employed to designate letters, figures, or other conventional uignals, and transmit intelligence by means of electricity.
The patentres say, "We wish it to be perfectly understood, that aithough we bave described the foregoing, by the application of aircular coils of fine wire prepared as above described, wound rouod or upon a flat circular reel or reels, in conjunction with a flat metalie partially magnetised ring, woving parallel with such coils of fine wire for the giving motion to inductors, by which letters, figures, or other conventional symbols are designated; the same motion can be obtained, and the same principle applied, by other modifications and arrangements, but we prefer using and adopting the arrangement abore described."
Several exemplifications of such modifications are afterwards given.

Second Claim.一"We claim, at an improvement in electric telegraphs, an indicator, or indicators, deriving motion reapectively from a current of electricity transmitted tbrough a coil arranged and acting on a partially magnetised ring or piece of metal, as above described, and the adaptation of such motions to communicating intelligence between distant places."

Third Claim.-"We claim, as an improvement in electric telegraphs, the adaptation of an indicator or indicators to a dial-plate, constructed and arranged as described."
On the dial-plate are two vertical columbs containing numerals from 1 to 25. 'I'he centre of the plate is retained for the symbolic arrungement of letters and figures by which the whole of the letters of the alphabet can be denignated. When the indicators are in a state of rest they are in an augular position; but when put in action they move to a position nearly vertical, but are prevented from paseing tie vertical line by a pendaut baf. In transmitting a sigral or
signals the letters of the alphabet are desiguated by single or repeated motions of either of two indicatora (right and left hand), or both in conjunction. Thus the letter \mathbf{A}, which is placed opposite to fig. 1 , is indieated by one motion of the left-hand indicator; the letter $\mathrm{B}_{\text {, }}$ Thich comes opposite to fig. 2, by two motions of the same indicator; the letter E by four motions, two left and two right; and so on.
Fowrld Claim.-"We claim, as an improvement in electric telegraphs, the working two indicators, so as to give the requisite motions by means of a single handle constructed and arranged as deseribed."

Fifth Claim.-"We claim, as an improvement in electric telegraphs for giving audible signala, the use of a ring or piece of metal, partially magnetised, in combination with a reel or coil of wire, as above described, whereby and wherein the electric current so acts that the motions take place in a direction transverse to the axis of the coil, and parallel, or nearly so, to the planes in which the wire, conetitutfog the coil, lies, and actuate snitable apparatus for giving mach audible signals."

A bell or gong is substitnted for the dial-plate and indicators, and the signals expressed by striking one, two, or more successive blows on the bell or gong, uhich is effected by wheelwork, for which no separate claim is made.

Siath Claim.-"We claim, as an improvement In electric telegraphs, the ose of an apparatus for conducting the atmospheric electricity to the earth, in which the two semi-spheres of the lightningconductor, as usnally constructed for that purpose, may be adjusted w or from each other, as circumstances may require."

In lightning-conductors, as ordinarily constructed, there are two metal plates (say A, A^{\prime}), which are fixed to and kept apart by block: of ivory, and two semi-splieres (c and c^{\prime}), which are made fast, one to each plate. The improvement here consists in making the semisphere e fast to the plate A (an usual), but attaching the other by a screw to the plate A^{\prime}," by which means, and by the aid of a regulating screw-nut, the semi-sphere of metal may be brought either closer or farther distant from the semi-sphere c, as may be rendered pecessary by the expansion or contraction of the instrument, or other circumstances."
Sedenti Claisn-"We claim, as an improvement in electric telegraphs, the insnlator, and atretching of the long circuit wires upon and by meams of an insulator, bell-shaped in the interior, so as to prevent the rain establishing a circuit for the electricity from the wire to the sapport npon which the insulator is affixed, and so shaped on the exterior as to admit of a stretcher, constructed as described, being applied at pleasure, to stretch the long circuit wires from insulator to insulator."
These insulators are to be made of glass, earthenware, porcelain, or metal.
Eigha Claim.-"We claim, as an improvement in electrio telegrapha, a deflector, constructed and arranged as described, in combimation with an earth-plate to each instrument, whereby the electric carrent may be diverted, and the instruments insulated ln sucb manner as to allow the instruments at two or more stations on a long line to communicate with each other, independently of the other stations."

Ninth Claim.-We claim, as an improvement in electric telegraphs, the use of the apparatus called 'the hydraulic battery,' in which the acid to the sand, or other retainer of moisture, is supplied from above, drop by drop, and eacapes from below, drop by drop, so as thereby to seep up continuously a percolation throngh the sand, or other retainer of moisture, and, by such percolation, carry off the sulphate of zinc, and prevent its becoming crystallized on the plate; and we claim the asid hydraulic battery, both as an improvement in the working of electric telegrapha, and as applicable to the working of time-keepers or clocks, where electricity is emploved as a motive power, and for other purposes in which a steady uniform current of galvanic electricity is required."
Touth Claim-"We claim for time-keepers, in which electricity is a moving power, the use of a ring or piece of metal, partially magnetised, in combination with a reel or coil of wire, as above described, whereby and wherein the electric corrent so acts that the motions take place in a direction transverse to the axis of the coil, and parallel, or nearly 00 , to the planes in which the wire, constituting the coil, lies, and are adapted to suitable apparatus for measuring and indicating time."
As electric time-keepers require but a small power for keeping their pendulums in motion, "a sufficient current may be obtained from two series of any one kind of metal (for which purpose zinc
or iron is the most economical), buried in the earth;" and "when zinc is used for the series, the supply of electricity may be augmented by surrounding one set of the plates of the series so employed with a solution of ammonia."

[MPROVED EXPANDING DIE

for making Dran-Tilre, Conduts, Tubes, Chimety-Pots, and other articlise moulded in Clay.
Registered by Jusspa Salt, Brick-Maker, Uxbridge-Common, Middlesex.

The advantages of the improved die are, that with the sume machine, much larger pipes and tubes may be made than heretofore. The improvement is shown in the section, fig. 1 , whleh conaists of

PIS. 1.

three parts : A, the centre piece, B the expanding tube, and C the die, to be made of irom, brass, or other suitable material.

The centre piece, A_{4} is secured to the plate D by a spindle, and the extermal expanding tube B is also secured to the plate D by screws or bolts, and the die C is secured to the expanding tube by screws or bolts.

The clay to be monlded is forced through the aperture, $d_{\text {}}$ of the plate D, and then between the centre piece A, and the expanding tube B, and out at the apertare C.

Fig. 2 shows the application of the expanding die for making circular tabes or pipes.

NOTES OF THE MONTH.

Radlway Lifl Bridge.-In last fionth's Jownal we gave Mr. Rastrick as the engineer who designed the bridge; we have since been informed that it wat designed by Mr. Hood, the resident engineer of the Brightom railway, and that some alterations have been made in the deaign.

An "Arehitects", Builders', and General Fire and Life Insurance, ace, Company" is abont being eatablished; already a preliminary meeting hat been beld, and an "ad-interim committee" formed. Among the names we see Mr. George Smith, Mr. Donaldson, Mr. Salvid, Mr. Sidney Smirke, and aevaral other architecta and baiders.

University College.-The classea of Bagineering and Architectare at Univeraity College have been rendered more complete by the recent appointment of Eaton Hosgkinson, Beq., as Professor on the Strength of Materials, and on Mechinery. The leatures to be given by this competent experimentalist will inclade important reanale not previonaly given, and the theory will be illuatrated by a desoription of a great number of original experimenta npon most of the materials ased in constriction, such as cast and wrought iron, huilding atones, timber, \&ce., and the retulta of which have not been poblished. The distribation of prizes occurred on the lot of Jaly, Sir H. De la Beche being in the chair. First year's course:-Fine drt: Charle Poland, lat prize and lat certificate; T. Watta, 2nd prize and 2nd certificate. Science-Conatruction : H. Darbiahire, lat. prize and lat certificate; Charles Poland, 2nd prize and 2nd certificate; T. Watte, 3rd certificate. Second year's course:-Fine Art: W. Tarne, lst prize and lat certificate; G. B. 8mith, 2nd prize and 2nd certificate; J. W. McKenzie, 3rd certificate. Seinnee-Complruction : G. P. Boyce, lot. prize and lat certificate; W. Tarne, 2nd prize and 2nd certificate ; G. B. Smitb, 3rd certificate.

The Royal Italian Opera, Covent Garden, has now elosed, and the resulta of the season, while we hope they bave given every eaconragement to the lessee, have fally responded to the exartions of the architect. The arrangemente for hearing, seaing. ventilation, and accommodation have been perfect, and bave given a good example of the progreas of comfort in pablic buildings.

Kew Gardene.-The works at these gardens are proceeding, and Sir Willinm Hooker seems determined to carry ont a botanic garden, which shall be the finest establighment in the world. The grand palm-hone is in a forward state, 10 far as the frame-work in concerned, but we doubt whether the house will be in a fair atate for opening before 1849. A amall masenm ban been built, as a Museum of Reonomic Botany, which will in time rival the Mu seam of Economic Geology.

The Neo Parliement is now filled up. It includes many parties connected with the railway interest. Mr. Robert Stephenson and Mr. Locke represent the engineers; Mr. W. Cabitt and Mr. S. M. Peto, the railway contractors. What may be the political merite of these new members we do not know, bnt as practical men they will not be without their value.

Damp Walle.-Dr. Marray recommends when damp walls proceed from deliquesconce, in the case of murinte of sods, \&ce. in intimate combination with and in the mortar, it is only necessary to wath the wall with a strong solution of alnm. This converts the deliqnescent all into an efforeacent one, and the cure is complete. Or alom may be added to the plaster in the first inntance.

Portable Canmon.-The American papers make mention of a new sort of cannon, invented hy a Mr. Fitrgerald, which is so constructed that it may be carried by hand or on horseback over monntains, forests, or marshes, where an ordinary cannon would be altogether useless. It consinte of a seriea of circular perforated plates of the beat wrought jron, $\$$ to $\frac{1}{1}$ inch thick, with well planished faces, which are arranged in contact, and are connected together by wrought irun rods or bolta, panoing through holes near the periphery; the bolta having trong beads at one end, and a serew nut at the other, whereby the plates are hald firmly together. Soveral of the plates at the breach are, of conrse, solid, and withont the bole in the centre. The series being thus connected, they are bored and polished inside, and turned off to the proper shape onttide. While this cannon is stronger than those of common cast iron, it can readily be diseected, and anch section may be shouldered by eitber pedeatrian or equestrian artilleriate, and when required, the parta msy be put together and secured ready for action in ten minates.

A Wire Surpencion Bridge is now erecting over the Obio, which will be the largest atructure of the kind in the world, having a span of npwarde of 1,000 feet, wheren that of Fribourg is bot of 800 feet.

4 Raineay Club for engineers, architects, parlinmentary agente, and solicitors, is proposed to be eatablished in the vicinity of the Hooses of Parliament.

The Revee du Havre atates that a young chemiat of that town has invented a ajtitem of lights for ports and consts, conaisting of a thick globe of giant, in which is enclosed a preparation giving a light like that of the moon, and the cont of which for one year will not axceed it franc.

Improtements in Guer-Corton-Mr. Conthupe recentiy forwarded to the Chemical Society two specimens of gun-cotton, with a view to illastrate the greatjy increased explonive effect that are to be derived from a subsequent immertion of the gun-cotton, when properly prepared in the ordizary way, in a antarated sointion of chlorate of potash. "Having experimented with colations of nitrate of ammonia, nitrate of potash, nitrate of soda, bichromate of potah, \&c., for the parpose of increasing the explosive properties of this intereating aubatance, i can affirm that none of the results will bear the slightest comparison with those obtained from the solution of chlorate of potash, either in repidity of ignition, or in intensity of flame. The process adopted for preparing the enclosed specimens was as follows-riz. : iuto a mixture of equal meatures of strong nitrous acid, and of oil of vitroil, spec. grav. 1.843, the cotton was immerted and stirred with glas rod during chout three minutes, it wathen well washed in many waters and dried; a portion of it was then maked for a few minutes in asaterated solution of chlorate of protah, well squeezed and dried."

Naw Fulminating Pourder.-M. Sobrero in a paper to the Acodemaie Sciences, Paris, described what he calls manmits ailriyice; viz., the atance called mannite obtained from manea, honey, \&c., and treatedts pitric acid. The mamite nitrigue or falminating manoite, exploder on, the blow of the hemmer with the same violence as fulmiantiag merct. and produces ju ite decomposition sufficient beat to ignite guapowder. Sobrero has prepared capsoles in which, instead of falminatiag merne is placod a little nitric mannite crystallized in alcohol, and diecharge fowling-piece with them several times with the same certainty as with ordinary capsales.

GEANTED IN ENGLAND MEOM JULT 24 , TO AVEOET 23, 1847. sim Monthe allowed for Emrolment, mime otherwiee crpresead.

John Plett, of Oldham, Lancashtro, and Thomee Palmer, of the same plece, for wif
 uplaning cotion and other fibroves matertale, and for preparint and dreentre jarna, wearlog the eame."-Sealed Jaly 24 .

Charies De Bergee, of Arthur-atreet, Weat, City, for ${ }^{*}$ Imprownembis in butimet traction apparatus, and in springs for railway and other carriaqes."-July 88.
Alfred Ceal, of Aldgate, mannfecturar, and Beary Bear, of New-road, mannfucturef,
4 Improvements in the mapuficture of tobeceo."-Jaly 28.
Edward kjeo, of Park-plece, Beyswaber, Middiceer, for "Improvementa in coperout
 generally."-Jaly 28.
Jsmes Morison, of Padeley, shawl manafucturer, for "Improveinenta io epplytas Io propeliling or moring cariagea, and in giving motion to machinery."-Juf 29.
Jowph Pand, of Thorp Abbott's-hall, Norfolt, farmer, for "Improvements in e of forming dralne in land, and for ralatag anbeolst to the frurface of land."-July 29. Prancis 8tarr, of Waruick, for "a new jot for the dellvery of water and oflior it which he styles the 'Protana Jet.' "-July 29.
Whiliano Bainea, of Norwleh, inspector of rallwayn, for "Improrements in the an facture of parte of rallways, aod in the bearings of machinery, and in apparatas nate cosskructing rall wayn. ${ }^{n}$-july 20 .
Alfred Vincent Newton, of 66, Chancery-lane, mechenlenl drayshtsemen, for er a proved idin, or oren, for firting porselala and other almiler ware."-Jaly 29.
Whinm Phillipa Parker, of 48, Lime-streel, City, gentleman, for "ao Improved of mannfacturfof cigars."-July 29.
George Witherell, of Now Tork, Ametica for "Improvemeats to manathetartc morlidg tron for varion viefol purposea."-Inly 89.
stopford Thomat Jopea, of 8tamford-atreet, Sarrey, for " Improvemente in stit englons, and in machtnery for propelling veweelam-July 29.
Joha Haetle, of Greenock, 8cutland, engineep, for "Improvemeats to the appais.
 motion."-July 29 .

Hector Sandeman, of Tullock Bienchiald, in the coanty of Purth, bleucher, for

 compomed."-July 81.
Theodore Fhetcher, of Birmingham, brasi-founder, for as an Improped manathete epeculums for various purposee."一Augut 8.

John Tole, of Sapchlyhallistreet, in the eity of Cleagow, practical engineer, tor tain Improvements in rallway chairn aned on rallways, and io fring the manea; tur Jomeph Bourne, of Derby Pottery, io the connty of Deetb, for "Improveeneate it conatruction of rifing for buraligg atone ware and brown ware."一Ang. 4.
Arthur Boyie, of Birminginan, umbrelle-frame maker, for " Improvemente in the nofecture of battome."-Ang. 4.
WIllian Broedbent, of Manchester, for "Improvements in the Eapotictore of par -Ang. 8.
Jamen 8imioter, of Birmingham, marufecturer, tor "Improvemente ta the rasuateo of etares and belts.",Ang. 5 .
Thomea Birchell, of Mbbleton, it the coatety of Lancenter, for "Impeopemente folding newnpapera, and other papers. ${ }^{10}-$ Aug. B. $^{\text {. }}$
Benjamin Balley; of Leiceator, machinemaker, for "Improveonents In the manathetw of knitited fibrics."-August 6 .
Edward Wllliam Eaton, of New. Windsor, Berlry, bechelor of medicine, for weert Improved machioery for proventing eechdents on rablway."-Augrint 19.

Osborne Beynolde, of Dedhem, Eacez, elerk, for "Improwenente in malins hop-pol-
 Wllliam Becon, of Bury, in the county of Lancester, engineer, for wortala In prow ments in stemen-*n ginem." Augut 19 .
Wuliam Ratos, of Cambarwell, 8urriy, englneer, for "certaln Improvements in rat water and other Iqquids from one levil to another."-August 10.

Orlando Brotherr, of Blachbritn, In the connty of Lanconter, for en certath Irapion,
 mected therewith."-August 19.

Arehibald Tartlee, of Preaton, in the coupty of Lancuater, pentleman, for Imper, mente in propellins caritiges on common roede."-Angrett 10.
 in prevervigg snd colouring wood." - Aagunt 19.
Jame Webster, of Sneinton, in the county of Notingham, engtener, fore en ata
 August 19.
Aime Bours, of Bathbone-plece, Middieaez, dye and soourer, for ${ }^{4}$ Improvementat extracting colouring maltern. ${ }^{\text {"Ho-Anguitt }} 19$.
Alexander 8peld LVingtone, of No. 7, Bridseplece, Leriehem, Fent, drit engtome for "certala Improvementit in the conetruction of locomotire engines fintended to be en on rallwayn."-Aufort 23 .
Thomes Dawnon Pruday, of the Fremmeson'a Tavern, Great Queen- etreth, PTiditere cook, for "certaln Improvements in apparatus for reducing vegatmbis and echer stanees to small particles."-Anguit 23 .

$\underbrace{50 \text { feot. }}$

THE CARLTON CLUB-HOUSB.

(With an Engraving, Plate XV.)

8ince Mr. Smirke choee to forego the opportusity of exhibiting a production of his own, under such pecalisely edrantageons circamatances as the occavion afforded, wo are, for several reacons, very gled that for a wort of reproduction be bas gone to the example be has done. Independently of ite fatrinsic merit, we welcome that composition of Saporivo's as being likely to dibsbose us of many prejudices,-although prejudices are apt to be so dreadsully obetinate and inveterate, that it may be quentioned if even acolar demonatration will belp to correct them. The Library of St. Mark at Venice,of which, we presume, our readere are fully aware that the new fapude of the "Carton" it a direot copy, the original design being so well known by engravings of it in rarioas architectural pablicationa,-保 10 admirably contrary to all ruies and all aystems of the ordera, a quire to coafonnd them, end to nopplas that plodding sort of criticism which speaks according to book, orthodoxly enough, of courve, bnt nometimes very stupidly. Had Mr. 8 mirte himedf reatared to deviate in the ame degree, or even half as mach, from "approved recipes" for the orders, be would most asauredly have been taken to takk by emell critice for his extrangant lioentionspess,-rould perbapt bave been put into the same category with Borromini, at least have been oneered at hy the fribbles, for his conceit in presuming to make so excoedingly free with the estabished avd only legitimate proportions of the ancient orders. To one who is requainted with the orders only formelly, who knows them ouly by rote, at a schoolboy does hir grammar, Sensoviao's treatment of them must appear most extravagant, and little lesa than dotestable; to the eye of an artist, on the contrary, it will show itself to be traly admirable, because highly effective ;-and what, let us ask, is the parpose and object of architecture as art, except to produce effect ?-aince, take awny that, and it becomet mere bailding, than which common-sanse, If we are to abide by mere common-mense, demands no more.
In Sanovino the artiat predominated over the architect,-that is, over the regalary-trained one, he being less attentive to direet anthority and precedent -as far, at leant, as the ordera are concerned-than to artintic sentiment and effect He^{*} wes more of the scalptor, or we may any of the artist, than the mere arehitect. As if for the purpose of exemplifying that line of Pope's, which says:

"And sastch a grice beyoed the reice of art,"

be saupped his fingers at rales, and proportioned the entablatare of the Ionic or apper order, ratber to the entire eleration than to the columas themcelvee, it being, in fact, nomewhat more than half the height of the latier, in bold defiance of the regulations hid down by soch exemplary martineta as Meman. Vitruvina, Palledio, Vignole, and Co. In palliation of this enormity, is is alloged to have been in a manner foreed upon him by the necessity, at least desirableness, of making his bailding agree in beight with the adjoining Procaratic Vecehic in the Piazza di San Marco. Yet as no such consideration can ponibly bave infnenced Mr. Smirke, it maybe presnmed that he adopted the license for the aake of the happy artiatic effect attending it, knowing aloo that be himself wat well shielded from the reproncb of desperate innovation and dirregard of all aytem, since he has only adhered to his precedent for it.

Beaides serving as an excellent leason ageinat narrow priggish aystems respecting proportions-which some have laboured to redace to the "rule of thamb,"-sach an example as Sansorino's, and as bere carried ont by Mr. Smirke, may be efficacious in correcting that excessive tameness and pennriomasens in arehitectural deagn which we have been wont to dignify to oursedres by the sattering epithete of "charte" and " simple." It is trae, thanks in a great measure to Mr. Barry, the miverable "starration style"-more intolerable perhape than even the mere "hole-in-the-wall" atyle-has been brought into disrepate; still, wome apecimens of bolder, freer, and more copiosas modes of decoration than we have hitherto been mecostomed to in modernt arehitecture, are desirnble. We need something too to correct our reate for that flashy and frivolous mushroom sort of deaign which puts a shomg barreck-looking front to a milo-long range of bouses, and then dabs tach brommagem a "Terrece."
Not very many years afo,-when anch truly prowic baildinge an Staffordhonse were looked upon almoot as architectaral marvels, and as indicating

[^35]No. 121 -Von, X-Ocromes, 1847.
searly a seven-loagra-boot-atride forward in testo-she iden of such a fagude as in the sew portion of the Cartion Clab-house, would have been deemed mont startingly extravagant. It certuinly does make the orifinal Club-hoose, which atill atande by it entrea and intact, cut a more dowdy and dimmal igure than ever. The contrat between the two is positively carioss, and worth being recorded by the peacil, are the first-mentioned structare be removed to male way for the completion of the other. Not the leat curious circum. utance of all is that two such atrongly antithetical and antagonietic tantes should be exhibited in the worke of two brothern, who moot asuredly do not at all fraternise in their architectural sympathies. The contrast presented by the old (although not very old) and the new Clab-hoase may, besides, be taken as an index of the revolution in architectural tante gonerally, for perhapt neither would Sir Robert veatare to propose rach a denign now, nor would Mr. Sydney Smirke have thought of bringing forward Sansovino in the daye of architectard parity, innoceace, and water-gruel. Sir Hobert's work will, of course, be very shortly expanged; not vo, bowever, that of Soane in the adjoining dncal residence, nuless his Grace of Buckingham should now be apirited ap into contribating bis share towards the arehitectural eclat of Pall-Mall, by giving his mansion a new fagade in aristocratic palazzo contume, to which latter it makes no pretensiona at all at present, although when first erected it was perhaps considered both ducal and dignified enongh. Whether that be ever done or no, the ducal Backiagham-house in Pall-Mall will be lews shamed by comparison witb the new Carlton, notwithstanding that it is in immediate juxtaponition with it, than the roynl Buck-ingham-palece in the Park, the building addod to the latter being a contemporary work. Sansovino was surely wanted there, -at leant migbt have been consulted on that occastion.
With regard to what Mr. S. Smirke is dolng in Pall-Mall, we conid wish that as the design ia to notoriously a copy, he had adbered more atrictly to the original in one or two particulars wherein be has now deristed from it, not at all for the better. Some, indeed, there are which called for correction, -the balustrading in particular, for it in not of the beat proportions; and the balustern themselves are, at lesst in our ejen, decidedly ygly, and seem deaigned rather for wood. work than stone. But the omitting the moalded archivolte to the archee within the lower order is sasuredly no improvement, becuuse it does away with that attention to keeping and consistency of cbaracter with which Sansorino treated both his orders in that comporition, amimilating them an to general atyle. The Doric in of profescedly ornate, or we may say fiorid, desciption. It does not even no much as pretend to Dorichm, except normally and nominally, by having the asual indicial marks approprited by contom to that order. Quite as much do we regret the omission of scoulptare in the metopes of the friese; and regret it all the more becanse mach embellishment would have been a very great povelty here, there being, as fur as we are aware, not a aingle example in all the conatry of a Doric entablatare to ouriched-not even among thowe ultra-Greek porticos which modeatly call themselves "after the Parthenon." The only exeuse that might alse have been alloged for the omision-and a mont provoking one it in-is taken away by the bailding itself, which totally forbide the supposition that the retrenchment of such decoration, which contribates so mach to the anity of ememble in the original structure, was oecusioned by any mere money-aparing considerations. If the tone of docoration was to be at all moderated, it ought to have been done more nulformly, so as to preserve keeping. Happily, it ha still in time to amend the error in some degree; wherefore we would advise, that in the centre part of the composition the Doric frieze should have ite metoper sculptared. Such variation there from the rest of that entablature, while it would give as a very deairable specimen of sach embellishment, wonld be a difference conferring no more then a very allowable kind of distinction on the contral portion of the façade. At any rate, we would not only recommend, bat earneatly entreat Mr. Smirke to re-consider, ere it be altogether too late, his entrance porch and the door within it. How, with Saneovino bafore his eyes, be could have conceired the iden of ench a porcb is to us incompre-bentible,-a small loggia of that kind, with an entablature whose architrive is supported on columns alone, being quite at rariance with the mode to systematically observed for the reat of the facade. Why not all up the front of the porch with an open areade similar to those of the ground-floor in the original building? Beaiden keeping up conoistency of dengr, it would give the expresion of compactnem to that projecting feature, and boldness of effoct in regard to light and shado. It would produce greater richaess aloo, as the arch would, almost as matter of courso, have archivolt mouldinga, es ought aloo to have the window on each eide of the porcb in that division of the front; not forgetting senipture in the apandrels of the archet
an be tha uppor atory, at leant rot for thet of the porch. Hardly need we add that the doorway ought to form a courcoponding arch to that in front, of thet she coiling sheuld be kikewise semicirenlar and coffored. If thin would not materially improve the whole deaism, and render it nore trie to the eptrit of Saneovino's mori, we are willing to torfeit for the fatere ons pritamions to jadgment in anch matters.

With rogard to the apecies of polyehromy introduced in the axterior, by eaploying derk potished granite for the shafe of the colomas, it remains to be seen how it will bear the test of time, when the granite shall have loat its loutre, and the reat of the atone-work be tarnizhed and discoloured. At present, the effect-of which an oatline clovation conveys no iden-is atriting and vivecious enough, perhapp sompewhat more 00 than is exactly desirable for other neighbourisg façade. It is, however, a question whether colonr does not require to be carried out a little more, and whether, if they ware not to be sculptured, the metopes of the Dorle frieze might not very properly have been flled in with polimed granite alvo, like the panela on the Ionic friers, the form of which lant-memtioned ornamente might bave bean improved, they being now of more fascifal and arbitrary than tastefal de-aigo.-Our remarks are as impartial as they are free: whoover had been the erchitect, whether Mr. Barry or Sir Robert Smirke, we abould have opoken Of the "Carlton" fagade just the amm, exeept that had it been the latter, wo should have heartily congratulated him on his emancipation from pseadoGrecinm, and hif adoption of a atyle that, be it ever 80 inopure, recommends itwolf by drflotic spirit.

CANDIDUS'S NOTE-BOOK, FASCICULUS LXXIV.

*I must have Hberty
Withal, as large is charter as the windey To blow on whom I pleace."

I. Archanology may be likaned to fire, mot on acoount of any brillianoy aod vividity that it poseesses, for to eay the trath, it is apt to give out far mose moke than fume, but this it bas in common with fre, that it is a good servact, bot an intolerably bad master. So long as archmology is made oely an anxiliary asudy to Architecture and Fine Art, it is servioeable enough. With that, however, it is not content, or more properly speaking, those who call themsolvod archmologist, are not conteat to have it kept within ite proper bounds. They insist upon its being allowed to become quite dominant and rampant,-completely dictatorial. They themselves, knowing merely what hat been done, and limiting the powers and capabilition of art just to their own litule ne ples altra, beyond whioh they have not an Idea, ionist upon nothing being done that cannot be ubown to have been done before; thereby either insoleatly denying that we of the present day ponsess any eort of genius or talent, or still more insolently refusing os the privilege of oxerciaing it. And what do architects themselves do? They quake and-are silent, or else fawn and fatter, thankful, perthaps, that nothing worse than mere indiguities are cast apon thom. Mey, some. who would be thought to have the interests of architecture ehiefy at heart, seem to do all in their power to throw it into the shade, and bring forward in lieu of it the most anile rubbish imaginable,-such arrant rotten lamber that a sensible antiquarim is downight ashamed of it.
II. Unless it be restraised by that judgment and discrimination which will render it aubservient to the adrancement of Art, archwoological study comes to be considered an end rather than a means, as which latter alone it is of any ralue to the architect, quoad architect. It may, indoed, enable him to talk or write very learnedly, and to display a deal of recondite erndition and curions research ; yot, if he addicts himself to it in such manner as to make it at all hls hobby, it will play him-or else cause him to pisy, many strange hobbyhorsical pranks. He will be always looking beckwards when be should be looking forwards,-will even be afraid of getting onward a step forwarder than Precedent will permit him. Thet same Precedent-or rather the nonsensical and superstitious roverence sfiected for it, is made a positive dead weight-a millstove bung round the neck of Art. It is a chain apparently bestowed on it as a badge of honour, but mado use of in reality as a halter wherewith to strangle it. Nor is it an overweening fondness for medieval archacology alone that is
to be deprecated, that for clasaical antiquity, with its consequent blind and indiscriminate deference to clactical sathority, being equally apt to mialead —or if not exnolly to mialead, to fetter, impede, and retard. Far better, in all probability, would it bave been for Wilking, bad be never meen either Athens or Magas Grecia;-better at least had he dismissed them and Vitravins eatirely from hls thoughts whenever be eat himself down to design, and inatead of thinking of what had been dose, had studionsly ber thought him how to make the most of the sabjeot in hand, had considered what new idens it might be made to produce, and how artiatic effect might beat be seoured for it. But, alas! artistio composition and artistic effert were almost the very last things that he, like many others, over thought of. Had not ench been the case, Downing College wonld bave exhibited a very difierent piece of design trom what it now sotrally doen,-pmendo. Grecise in all its pedantry aod all ite dalness. Neither would the same architeot have rapoered so mach as he did about the mere intercolamniation of the portico of the National Gallery, but would have attended much more to the genoral componition of that facade. The eye of an archwologist, aod that of an artist-and an architect ought to be one-have rery diferent powers of vialou. The formor is $s 0$ myopic that it cannot disoern a winglo inch bejond Precedent, while the other-we are speaking of the true artist-can discern with prophetic ken, what will be Precedent to after-agea. It is all very well to underetand Precedent, but to be enslaved by it is equally eb and and despicable.
III. In a lettor from a friend who is now a tomporary residont at Ediahargh, I have lately recaived some exceedingly clever and Feloume criticiem on the srohitecture of the self-atyled Modern A thens, Which desigmation, by-the-by, be observes is a complete misnomer as far as architecture it conceroed, although Scotchmen may be sufticiently Greek in some respeots. After expressing a rather menn opinion of the Gothic architecture of Scotland generally, which, be says, afford no studies worth the attention of an Engliah architect, my correspundent adds, "the general rate of recent imitation of that style, in Edinbargh, is lamentably below even the local staodard of antiquity. The exterior of the Aseembiy Hall has unqueationably many fine parts, but where is the clisana which the ancient builders produced, in the interior? The Scott Monument again, the boast of all Ediabargh, obtrades itself apon you in twenty different aises in overy print-shop-is painted on every snufibox-graven in metaljea ! built up in confectionary; yet no architect would now get practice in England in the Gothlo Une, on the atrength of such a master-pioce-I might anj such a missy piece as that same Scott Monument ; $-\infty$ defective is it in detail, and most signally $s 0$ in the proportion and graduation of tas lower atory, which, from almost overy point of view, redaces its appareat beight one-third. Inctead of the thousand-and-one representations of thit precions Monument, 1 would far rather see one aatiffactory view of Donaldson's Hoopital, the finest building in Edinbargh, ancient or modern. In this struetare, designed for aimilar objects as Ceorge Heriot's foundetion, we have a very suocessful adoption of the combined forms known as Elizabethan, and exemplifed in Burleigh. Like Heriot's Hoapital, ita plan is quadrangular, with a tower at each corner, fianked by foor ogivodomed tarrets, and a corresponding tower of bolder and loftior desiga marks the ceatre of the principal or soathern front."-Thus mach by way of apecimen, and I hope my friend will be indured to work out his remarks fally in exteneo, and give them in some shape or other to the pablic, who will then for the very first time get any thing at ali like intelligent criticiam relatire to the architecture of the nortbern capital, and its public bulldiage Onething there is which the Edinburghers themselves might do, at least get done, which is, instead of publishing again and again ad rexuenm the Scott Mounment, to publish a collection of some of their best edifece, illostrated architecturally by plans and elevations, in come such economie form as the "Public Baildings of London," and Landon's "Edificea de Paris." Surely Playfair, Hamilton, Rbind, and others who bave shown talent in some of the recent structuren, would gladly promote an andertaking of the kind,-in which sections and interiore onght not to be quita forgotten-certainly not sucb as the hall and priacipal apartment in the new Commercial Bank, which last-mentioned epartment appears from description to be quite unique as a public "businees-room," it having a Corinthian colonnade on each side, and being moreover erriched with decorative palating, marbling, and gildlog, mont probebly by Mr. Hay-although that is merely my own conjectare. The hezactyle Corinthian portico of the exterior, with its pediment filled in with statuen in fall rellet, might pass for clasnical, were not such charucter aadly merred by the two ranges of windows withln; whereas had there been noae below, but ealy the doorfray there, the upper ones might have bean excmed.
IV. Leaving the queation untowched as to the propriety of making the palace of the logislature a cort of museam and galiory of art, we may reasomebly tope that when they come to be in the very atmonphere of art, the members of the Two Hoasee will be in come degrea infected by It. How much-that is, how little they now understand or care for ant is tolorably evident from the traly unfortuante mem. son. that anctioned the adoption of enoh a design for the new facade of Buckingham Palace as the one "presented" to them by Royal Command. Not a siogie voice was ralsed to protest against the architectural iniquity of inflicting upon ne suoh a piece of commonplace end even vulgar design-the sobject consideredfor the froat of a royal palace, at the present day; and after all the revilinge, ton, that have been heaped upon the original baildiay, as oncocted by George the Poarth and John Nash. To speer at their taste now would be akin to questloning the sublime taste of Queen Victoria and Edward Blore, and be compromising our loyalty. Nevertheless, 1 do wish that Ben D'Iaralifs excellent advice were taken, and that an arohitect wore banged is terroram to the reat of the tribe. And if sach wholesome example is to be made at all, lot it not be on some paltry Pecksniff, the architect, perhaph, of a gin-palace, but on mome bigher offeoder-even the architect of a royal palace.
V. Extolling the elaborate richness of the Palace of Westmionter, one critio has very naivoly expressed bis astonishment at Mr. Barry's berculenn task is haring to design anch a prodigious quantity of detaile, there boing hardly a square foot of plain surface in the boilding, either externally or internally. The manual labour and workmanship are of coarse prodigious, bat the number of drawings required is comparatively very moderate, those for one bay or compartment of the structure serving almost for an entire side of it; jnasmuch as a aingle portion of the kind once designed becomes the pattorn for an many others as are to be made slmilar to it. Or does the sapient critic imagine that an architect makes working drawings for every individual colnmn, window, and other purt that are repeated again and again withont variation I If so, be mast be first consin to the Irishman who went to a tailor to order two avits, and hariog being measured, stood waltigg the renewal of that operation, exclaiming, "I told you that I wanted two suits, and you have taken the measure for one ouly."
VI. Bome who, if not more talented, are cleverer than Mr. Barry-that Lu, show greater cleverness in sparing themselves trouble-make very short Fork indeed of desigaing details, taking them ready-mede, and applying them on every occation alike. One architect, who shall be nameloas-for proper names are sometimes highly improper things-bas had for his whole stock of ideas, in the course of a long practice that must have been a profitable though hardly can it be called a saccessful one,-jont a couple of patteras for columas, and the same anmber for windows, which he has served up again and again, with an abstinence of invention and imagina. tion truiy marvellous. Let us hope, however, that the day is approaching when it will be eracted of architects that they shall exbibit lona-fide design in their compositions, and also that their compositions shall be legitimately entitled to sach name, by being framed according to artistic principles, instead of being, as is now generally the oase, mere crude hap-hazard compilations, in which, though every one of the eoparate foatures may be good in itself, being taken from here and there, they do not well assort together, or else are not cosuitable as they ought to be to the express occasion. Detail ought to proceed invariably from the architect's own pencil; or if he be incapable of producing it, and be so far a mere mecheaic, by what right, or rether with whet specious show of right, does De usurp the style of Aariar i-rendering himself thereby a mere quack. Or if, as seems to be the asse, we really do not care for having Artisterohitecta, let na have the honesty to declare 50 at once, let us desiat from rapouring about the exeellence of architecture as a Fine Art, and let an sling ourselves into the arms of thoee two dorios-Camdenism with its visegar-viseged orthodozy, and Peckenifilem with its dronken, gin-palaoo seterodoxy.
VII. The following, from Donaldson's Maxims, oan not be too earnestly recommended to a great many, both in and ont of the profession :-"He who expects to be a good architect by knowing the bistory of all the styles, and the phases which it (architecture) hat assumed through each period, will find himself much mistaken when be begins to practise. He may be a good historian, and a judiclons critic, hut not necessarily a good artist." -Certainly not, for, on the contrary, be may be a very bad one-that is, so artist at all. Even with regard to criticism, too, mere historical knowlodge without mathetic feeling and intelligence will go but a very smail way, and prodnce nothing better then one of thoee very small critics who, profonnd in dales and anthoritios, are exceediogly shallow indred whon it
comes to quentions of real, enprejudiced critioiem; and, to give them their dee, they seem to have the grece to krow it, for most stadiously do they avoid approaching any queation of the kind. We have one learned Profeecor who goas about surveying cathedrals very much in tho apirit of an appraimer, and with just as mach oye for thair peculiar artistic beanties. For my part, I nover take up an acoonnt of a bullding without.most de. vently wishor that it had no history at all, and that there was nothing else to be apoken of bat the structare itealf, which is now generally converted into a mere peg to hang a tissne of munty goasip and aneodoten upon. Et ta Bruta / L apostrophised Jovellanos the other day, on turaing over his "Carta Historioo-Artistica sobre el Edificio de la Lonja de Mal-lorea,"-for it is as dull as if it had bean written by Dr. Dryasdast or Profemeor ——. Tbe Artistica is cortainly quite soporfluous-nay, moret, ponitively deceitful, and most maliciondy so, exciting an it does the most agreeable expeotations oaly to disappoint them, " Hewrens les ponfes," saya Voltaire, "dout l'histoire eat sannyeuce;" and if so, arohicootnre ougtt to be in a moat anviably happy sondition indoed, ainoe nothing can be dullor than its bistory as it is unually served up to on
VIII. Of detentable heresies in matters of Art, the most detestable of all is that which woald persuade us that Art can be tagght by roles, and ought to enbeerve to rales. It is the most detestable because the most grovelling and abjoct,-the most alion from the very apirit of Art, Ralea are for doli-witted pedanta aod echoolboys ; the artist, if he really be one, has got beyoad them, and abaodoos himself to those iaspirations. Inspira. tions !-if I smile, I also groan while I write that word in reference to archltectare. Inspirations ! where do we fiad them in ove Art? Nor may we hope to find them so long as a merit is made of the most barefaced copyiem, and of the most eervile regard to Precedent. Nuw, if Architece ture really be not a Fine Art, let it be expoeed as a mere proteader and impostor, and let us bear no more of it. For my own part, I would mach rather pronounce its doom at once, and any with the atern Roman patriot, "I, lictor, collige manns."
IX. While there in a great deal of verboce gabbling and proaing abont atyles, scarcoly enything at all is over anid or written upon the subject of what belogge or ought to be made to belong equally to all atyles, it being a sine qua non in Architecture properly so called in contra-distioction from Buildlag,—namely, Rathetic or Artistic eftect. Yet it seoms to be the very last thing of all that is either thought of or studled. The offoct that comes by chance-becanse it is, perhaps, just that which the forms employed mast of necesslty prodace under any circumatances-is bat of a feeble, ordinary kind, wheroas the higher quality of Artiatic effect never comes by mere good luck. If it is to be at all, it mast be provided by the arohiteot himself; nor can he pomibly provide it without understandiag it, atodytag it, and alming at it. He mast atody it, too, in regard to eomposition, adjnatment of massen, play of both plan-line and oatbine, and reliof and ohiaro-senro, as well as in regard to sabordinate parts aod detadle; which latter are now generally made all in all, although they are coldom more then borrowed; and, iadeed, such berrowing in now made a positive merit, and is accopted if vot exactly as ovidence of taleot, as an allsafifient sabstitute for it. In Fine Art of whatever kind, effeet is every thing, and all the rent no more than the means of producing it. Would, therefore, that architects woald begin to attoed to it much more than they bave hitherto done, end then we should have something very moch better than the correct dalness they now so freqnently present af with. And if they want a study for effect, they may find one in the north-wost corner of the Bank of England, which, if they have any eye or fooling whatover for offect, ought to inspire them. Neverthelese, most atrange to say, there is not one who has since caught an idea from that exquisite litto urohiteotoral gem-Soanc's best and traest monament. The Institute ought to bave a well-erecuted model of it, both as a most valvable study, a truly admirable precedent, and as a compliment to their benefuctor. Nay, withoat any particular affeotion towards the man, I should rejoice to see a atatue of Bonne himeelf placed within that classlcal loggis, where its effect wonld be almoet enchanting.
X. Ail-incredible as it is, it he nevertheless fact-a dismal and a damoing one-that at the late meeting of the Archmologieal Association at Norwioh, not one of the egregions architectural cognoscenti there maembled thought it worth while to pas a visit to Cossey Hall, although it is in the immediate neighbourbood of that city, and is in many respeots a chef d'ancure specimen of Ancient Eoglish Domentic architectare of the palatial class. It is true it is bot a modern production, still it is a charming artistic imitation, atrongly reminiscent of Thornbury, and other excellent axamplen of the ama period. Very ill indeed does it beoome arabaologints to farn
their beck apon, or torn up their noses at, modern works of that descrip. tion, when they themselves are all the while hboaring with might and main to bring modern-antiquity into general rogue among os. Such people bave a most atrange way of showing thoir gratitude, and an eqnally strange way of abowing their taste. As to the latter, both that and their admiration of what they do condescend to admire, appear to be regolated entirely by dates and registers. 8uch learned owls see beat in obscurity and darkaesa. The broad daylight of the actual truth quite daszles and scares them.-If it be strange that the archaoologists should have treated Cossey as they did, it is hardly less so that none of our architectural draftsmen, who sometimes seem very muob at a lons for freah and interesting subjects, sbould have exercised their pencil upon that manaion, which is cortainly not defcient in varied and bighly piquant parts. Bat the shadows of archasology are fast falling upon and darkening the whole land of Art,-enwrapping it in its own morbid gloom, till Delness, univeral Dulnees, raign. Then take my advice in time: Flbg physic to the doge and Precedent to the devil.

HISTORY OF ARCHITECTURE IN GREAT BRITAIN.

A Brief Sketch or Epitome of the Rise and Progrese of Architecture in Great Britain. By Jayrs Elmes.
"Epitomes are helpfol to the memory, and of good private use." Str Henay Wotton.

(Continced from pge 271.)

The four great epochs of architecture in England are, as hath beep shown, -I. The introduction of the art into Britaia by the Romans, natil ite decadence by the Saxons-II. The introduction of the Eccleatantical or Pointed styles by the Normans, throngt all the rich exuberance of the Iorid Plantagenet and Tudor styles, to the mixed anomaliet of the Holbein, Elizabethan, or pietoreaque stylea, which fell into deanetade shorily after the death of Klizabeth.-III. The revivad of the Roman and introduction of the Italian atylea by the Starte, to the absence of all style and scheols which marked the reignt of onr first two princes of the house of Hanover.-IV. The patronage of all the pollte arts which distingrished the tecestion of George III., and the eatablishment of the Royal Academy, to the present day; in which peried all the stylen bave been revived and practined, with varions degrees of succeas, and to which we owe the introduction of the pare simplicity and anrivalled elegance of the Greek style, as well as the eocentric arelitectare of the Chinese and the ponderons eternities of the Rgyptian. This latter epoch, so abondent in meteriale both in theory and practice, will form the eubject of the following section.

The overflowing exoberance of our English languge, which noars above the pare simplicity of mother tongue, borrows ite worde, phrace, and idioms from the Hebrew, Latin, Saxon, Normen, Germen, Prench, Dntch, and even from the Arabic and other Eantern tonguea, at pleanure; engrafta auch as are saitable for ite purpose, rejects the useless or thase which are merely pedantio, and thus renders it the most powerful and rich of modern langrager. So have the architecte of the Georgian-Victoria period, by a similar nufruct of every known atyle of their art, readared the architecture of our time more exuberant and nsefully elegant than any other single people. They have not used the Greek atyle to monotony, the Italian to littleneas, the Gothic to florid pedantry and heraldic exaggeration, nor any to atiety; but, with a few solitary exceptions, bave engrafted a freedom of atyle and an unfettered selection from the beantiea of every allme to their productious. Fence, although we have no etyle of architecture that ean be properly called Eaglish, we have a rich engrafting upon our parent wild stock, domeatic atility, a mired bat not incongraons atyle, rich and exnberast an in our langage. Therefore, the architecture of England, if it cannot be called Bagling architecture, it Hise the Venve of Prariteles, compoed of the choleest elements of beanty.

In the early pert of the reign of Coorge the Third, 8ir Witiam Ciambert onjoyed the royal favour and almost the whole of the arebitecteral employment of the dry. Fond of ease, he indutged in hid profemional reverien in hin office at the Board of Forth. Not being a regelarly bred architeet, or even brillder, he educated no pupils-fitet in to cty, so the word in mow mederatood: he therefore formed no achool, and lef lithe mere than hif

riety, his Chinese brildinge at Kew, and his "Tratioe on Civil Arehitecture," to perpetaste his fame; bat his name will alwaya hold a distinguinhed place in the lint of Britiah architects. His only followers or papils were bred in the office of the Board of Worte, in which be held the situntion of anrreyor general. Among the principal of these were his friend and aseociate, John Yenn, for whom he obtained from his royal master the diploran of R.A. and the honourable office of treanarer to the Boyal Acadecry; William Gaadon, who distingniahed himeelf by his able editing of the leat two volumes of the "Vitravina Brittamaions," his spleadid buildings of the Cuntom house, the four Conrts, and Parliament house, Dablin, and rame private edifices in other parte of Ireland ; the late Mr. Hardwick, father of the preaont eminent architect of that name; and the late Mr. John Brooerotti Papworth, who received sufficient directions for his profensional aindien and adrice in the selection of models, to warrant a small ciaim to that tithe. This gentleman's father and elder brother were the eminent platerers to the Board of Worke, and at they executed the beantifal ornemental plateriog and atucco work to the cornices, ceiliogs, coves, and panels of Somersethonse, some of which in the Royal Academy form frames for decorntioes from the pencils of Reynolds, Cipriani, Regand, Mary Lloyd, and other member of that institution, the young Buonarotti, who exhibited eariy in life a decided love and tante for ormamental deaign, had often eary acoes to the architect and to the building.

Of the trat of these, namely John Yenn, notwithstanding the howourthle addition of R.A. to his name, his only known work is that part of the Treanury which faces St. Jamea's Park, and grins horribly opoa Holland's pretty edifice of Melbournc-house, and Kent's picturesque composition of the Hore Guarda: and thin in hin only voucher to the honourable title of Royal Academician, in the newly-established Royal Academy of Painting, Sculpture, and Arehifec/ure! This extraordinary event the architect come. memorated by presenting his brotber academicians with a geometrical eleve. tion of hia deaign, abaded with Indian-ink and tinted with gamboge, in the manner of the day, and framed and glazed, with his autograph (Jolm Yemm, R.A., Architect). Of bis right to this tille Dr. Johnson bears witneas in his Dictionary, wherein be says that "Architect" in a noun aubatentive, and means a contriver of anytbing;-argo, John Yenn is an architect, for he contrived the north front of the Treasury. His ortgital (?) dealga for that contrivance is atill in the collection of works presented by the Royal Aemie. mician to the Academy, and it preserved, though rather in an obovere corner, in the conncil-room of that institution, honoured by a companionasip with the self-selected works of Reynolds, Weat, Lawrence, Hoppaer, Wyati, Dance, and other eminent cotemporaries; his succescors being puppedy omitted from the comparicon.

The first symptom of a regular-bred genuine archltect in the refge of George III. was James Wyatt. Being the mon of an eminent and opalent builder in the city of London, who was mech concerned in government and etber large building contracts, he received the clements of a cound ecientile edncation neceasary eitber for the bailder or the urchitect. Aftar beipg thus far qualited in his father's eatablishment, he refined and paritied his taste by inventigating the fineat ancient and modern atructures, and in vistiing the beat schools of a rchitecture in Prance and Italy. Foreige travel in thowe daye was abeolotely neceany for ono who aspired to the eminent profeasion of an architect; for, with the exception of Sir William Chambers's little Goshen in Scotland-yard, there was no achool or master of the art, properly so called, in Eagland. It it true, that at the commencement of the Royal Academy, Thomas Sandby, hrother of the facetious peinter Paul Sandby, an architectural critic and draftsman, read occaional leotares on architecture is the Academy; but of his worke and lectures we have mo records. His brother Paul, an momiahle, agreeable, and facetions man, and a conaiderable artint for his period, wha among the earlieat RA.'s, and dombeleas persuaded his brother Thomas to read Vitrarius and Palladio, and to tranamute their atern leanons on their art into agreeable easeyt, auited to the mixed asaembly of palnters, scalptor, incipient arohiteots, engraveri, draw. ing mastern, and others, who were admitted as members, associater, and stadents, to draw from the antique and living \quad gare, and to listen to the biennial discounctes of Reynolds, and the annual platitodee of Penay, RuAn, Profescor of Painting, of whom we have no more room than to any, that he painted the death of General Wolfe with all nude figures,modern drapery being in his opinion beneath the dignity of an historic paseil; the elever compilations of Thomas Sandby on architecture, and the fow but eargent prelection on anatomy by the celehrated Dr. Henter. Wisely shma did

[^36]Wyat determine to increase his atore by viatiog the scademies, schools, asd buldioge of Pranee and Italy; and the result was, that on his retorn to hin mative conntry he gave proofs of a taste that warted nothing but a riait to the still more refined elimes of Greece to have completed. Bat alas, a readdence in that country, owing to the wara between the Tarka and Venetiams, and other turbulencea, rendered it even more unsufe than it was in the time when Stant sod his fellow travellers visited that aflicted and longweftering cosntry. On his return to his native land, he autonished the connoiscouns and travelled patriciant of Bagland, by his ant work, the Pantheon in Oxfordeatreet, s wort which more deverred the rame of the balding it profesed to imitate than any other in Europe, an pictures and eagravinga atill extant sufficiently prove. It required but to have been bailt of more subatantial matarials than was the timber capole, nigsardly allowed him by the proprietors, to have rendered the Pantheon of London incomparabis the beat imitation of that of Rome. The beat part of this tine work, the capola and all its docorations, was unfortanstely deatroyed by fire, -and what nevar afterwarda adequately reatored. After ita ro-inatatement, it was used an a maloon for macqueraden, ridotton, and exhibitiona of pietures, and once of Lonardi's monster balloon, which wes constrocted to ascend with afty people. The apper half alone of this stapendous machine reached from the eye of the capola, from which it wat suapended, searly to the perement, wata witnemed by the writer of this article. The superior part of the balloon was to have represented the cupole of a temple, from which wis raspended a cireniar tamborr of eloth, painted in imitation of columas and entablatare of the Corintbian order, ta complote the peristyle. At the bees of this wat to have been attached a gallery with pedentals and baluaters for the seronanta, with doons to the interior of the peristyle, leading to the car which earried the farnace and fuel,-it being on Montgolier's principle, of rutifed atr prodaced and aupported by tre. The Pantheon was afterwards converted into a dramatic theatre, for the exclusive performance of Bagliah opera, but it was put down by the masagers of the patent theatres, by arreating some of the leading performert, of whom one or two had beon members of the Covent-garden company. After many vicisditedes, it has bean neerly rebuilt as to ita interior conetruction, and used as a bazare for the sale of works of art and fancy articles.

The frome of the Partheon next Oxford-atreet consiated of two alightlyprojecting winga, and an lonie partico projecting from the recoding centre, the opper part of which was finished by a beluntrade, and was covered by a terruce which was eatered hy a large central Venetian window. The whole fepade wat marked by a timidity of deaign more befitiong a student than a menter of his art; wanting boldness and a greater diveruity of light and shade. The Ionio order of the portico bore marka, however, of an attempt at lavention, being copiod from no known example. It singnlarty enough fell into the fiat volates of the Greeks, instend of the angular volates of the Bomane, proving that if Wyatt had not seen the temple of the Apollo Dedymemas, he could at least compose a more tanteful capital than he had seen in forme ; which he certainly did far above any Roman example, bat far indeed below the purity of the worat of the Greek specimens.

- Wyatt not only curprised the admirers of architecture by this work, bat aho by hin desigas and drawings that be brought from Italy, and the extenuive knowledge he possessed of the arta in general. Hie polished manners and numeroue polite mecomplishments gave facility to the development of his ideas, and recored bim a host of patrons and friende among the great. Ho became the principal architect of the day; was consalted by all the leedias peers and commonern of the two kingdoms who were about to build, enlarge, or improve their mandions ; corporations sent to him for denign for cown-halle and ascerbly-roome; blshops for new palaces; deans and chaptert for repaira of tbeir cathedralis; and playera for detigns for theatres. In tact, 8 ir Chriatopher Wren had searcely mare emplojers or more haildings is hand at one time, than had Jamea Wyatt in the zenith of his omployment.
At the death of SIr William Chambers, Wyatt asconeded to his chair in the offoe of arrvejor-general of the Board of Works, and wer admitted to that eary familiarity and conidential intercourse with he roynl manter, Ceorge III., surpesing even that of his predecescor, whom the king always regurded with momewhat of the reapect doe to a tater. Indeed, the intercoarse which is necescary between a sovereign and his chief architect was an comptete between George the Thind and James Wyatt ar wat poaible between two such persons; the king never desiring to be treated by any ona whem be condeacended to conault otherwive than man Buglish gentleman! and Wjati was too well bred to be elther cervile or part : Indeed, the farm:Encity that acioted betrees Charlee the 8econd and sir Chrimopher Wrai
moch resembled it, except that in this case the ting was ocesaionally too mach of a roisterer, and loved to indulge in a fow jokes apon his litile architect's want of reaquipedalian mitatare;-that between George the Fourth and John Nash was as profemionally perfect, except that here the king wan too well bred to notice, in his walks with hid little architect in the crowded alloons of Carliton-house, the difference of their atatare, any more than he did when he was walking with his little friend, Count Borawlatki. For these, if an apology be neceasary, we mant have recoarve to Chorchill, who saps-
${ }^{*}$ Betore sach merlts all deffeta mant 娄y,
Pritchand's genteel and Garrict atr faet hith."

The beforo-mentioned qualifications powesed by James Wyatt, till then unknown in one man since the days of Jones and Wren, had previoasly to the accession of George III. led to the omployment of Italian arehitects, now reverted through the infinence of that sovereign into English channals. Posseceed of genius, taste, and foeling, Wyatt revived a correct style, and introduced one still purer than any of his predecesuort,-remote, it is trae, from all the transoesdent parity of the gearine Greek achool, but nearer approeehing to it then the beat Italian known. The ancient architecture of England, the neglectod and almost forgotten Gotbic, came, by deafre of his sovereign, under Wyatt's inveatigation. Here whe a now fild opened to him ; but be hed seen many of the Aneat Gothic catbodrale of Prance and Northern Italy in his travels, and the itjle was therefore not so new to him ne to Wrea. Nor did he so thoroughly deaplece it at Wras: yot he never comprebended it in all ite exquinite niceties. The restoration of Windeorcastle and the repaire necousery to be done to the venerable cathedral of its diocons, Selisbary, led both tbe monarch and hir architect to close Vitravims, Palledio, Sertio, and all booke treating on the "ive orders of architecture," for a time, and to open Dugdalo and other mundy writars on the cathodrals and eacellated buildings of Ragland. The additions to Windeorcontle abow that Wyatt thonght that if be could not amend be would not alter the original ntylee of the boildings, and be completed theee leboura with grat credit to himsalf and to the contire antinfection of his royal and manifcent patron. The celebrated abboy at Ponthill, which was ereeted entirely from his dealgma, for the rich and tatafol Beckford, the calcbrated autbor of "Vathel," was a brilliant inmance of Wyatt's gealus, bat wis not oe pedantionlly correct in its detalls an to plemee the hyperceritice of the Camien sehool. The towor wat lofty and imposing in effect, viaible at a great dintance, an wat the intention of the proprietor; its apartinents were nemeross, gorgeous, and elogant, replete with all those exquinite micetien that so marked the fancies of Beetford, and was a vart ahrine, cabiset, or jowel-oeea, filled to every corner with gems of art and liternture of the mont prodion demeription that the tordy weesth of ite eplendid owner could cram into ith The design and execection of thit unique brifding refect the greateat erodit both apon the taleats and tante of its architeot. It unfortanate five is too wall known to be deecoribed bere, but the onquiring reeder many be folly gretified an to its plan, genernl effect, and detein, in Mr. Britton's elabornie and carrfal work on Yonthill-edbey.
Wyatt': greateat offences agalingt the rigid laws of Gotbic arebitecture aro the exterior of sbe palace at Kew, and the weat front of the Parliamentboness that were borsed down some few year sisce. Both consisted of a series of samh wiodows and plers, in the mannar of any common dwellinghouse, Gothiciond an plasterers call it by Roman cement, splayed reveals, Gothic water tables over the apertares, a aplayed cored moaldiog over the upper tier, and a series of little port-holes by way of a parapet. The arcaide or cloister to the House of Commons was below eriticimm. Althougt the atyle of these two buildinge receive the mbriquet of the Wyatt-Gothic, it in more thas roumised that a hisber power had a hand in it and Wyatt bore the blame. His houses, ville, and masilons are among the most conveolept, aplandid, and tanteful in the country, and bear opon their face that their ballden were not their own architecta. As an instance of his power of combining epleodour and elogance with comfort and conrenience, anitiog the state-rooms of the Italise palace (where one room is bat a passage to 20other) with the comforts of an Roglish mansion, which wes often readered intricate by too meoy panagen for the alke of privacy, Wyatt's own manalon, at the weatara ond of Poley-plece, with its two well projecting wingo that gave it the complete sppearance of a town honse, and its gerden-front nest Portiand plece looking like a coantry rille, in a forcible inntance. I have often ridied it in the architect's lifo-sime, when my late friend and fellow-etedeat, Joha Wertnacott, a jounger brother of Sir Richard West-

and cen bear testimony to the truth of this asertion. It in a pity that the nomily of this eminent architeot do not permit nome competent pernon of Lersura and talent to publisi some of the cholecest of their father's works, the nize of the "Vitruvitus Brittannicus," for the use of the arebitoctoral stadents of the present daj. In the eantern front of this mansion, Mr. Wyatt has ased that very elegant apecimen of the Corinthinn order without modillions in the entablature, and with the horns of the abacus of the capital coming to a point, imtend of being eat off immediately above the voloto, as in every other known apecimen, given in Stuart" "Antiquitien of Athena." This is the only inatance, I believe, of thin order ever baving been uned since the time of the Athenians, and is a proof of Wyatt's great taste in reeing the beantien of Athenian architectare through the worter of Steart The capital, however, loses mach of its fine effect by beting made the fintal of an attached pileater, inatead of a detached coloma as in the original. A poptalar logend was common, soon after the completion of this manion, among the ofice boys and funior puptis in architeen's ofiloen, which proves how mach it was the admiration of the travelled cognomeonti of Bagland,which was, that Mr. Wyat had as many rooma in his hovee at there were atyles in architeotare, each approprinted to an order or otyle; the Tuacan in the basemeat, the Doric on the ground.toor, and 10 on upwardu: which wan as near the trath as Iambey's belief that Puseli, who was notoriously foad of nice cookery, hived opon raw beefoteaks, to encounge thow hortible phantaties of the braln with which he stored his pletares.

Ove more inutance of Wyatt'e great power to arrange the apartments of an Engilsh mandion will suffice to show how mach this portion of his works would pay for their contemplation by the aspiriog madent for architectural fane. It is Ardbracon-horse, near Navan, in the connty of Meath, the palece of the biahop of that dioceso. In its exterfor it is a pluin, well-proportioned, gentlemanly-looking edifice, with the wiadow end thalr latervala in harmoniona relation to ench other. The customs of the Itish prolecy oftener cansee their renidencea to be filled with vilition on the ocemions of ordiantione, recetiags of the elergy at the cathedral (always near to the palace), and other pablic gatheringa, than in maal in Paghad. Iriah boepitality alvo leads them to follow the scriptoral exhortation for bishope to wo hospitality, who aot onty frvite their clorieal brethren to taire thedr bed and boerd at the peliece, an faritation which is always extonded to the wives, and sometimes to the brothert and otsters of the invited, bat lrish cuatom allows barrectrooms on sach funtive cocanions, which cameen a dozen or a acore perhape of utogle men being placed together, at olove wedo will edialt, ithto ove room, and a almilar extabithmant for single lasee on the women's side of the bouse. The whote ettablishment is, in faet, on thewe occmions, ille a barrack on a mall meale, asd good quartern foned for every oue, there beling ofter no inat in the place or for miles round. I was an inmate at this howse for some woeks, on the invitation of the late blshop of Meath (Dr. O'Beirne), whilut Witting my life of Sir Caristopter Wren,-Mine Wren, the groet gravddaughter of our illartrious architect, having been for many yeara domicied with Mrs. O'Betrne, in the bishop's family. The lady woald not traat her manuscripte to the ancertain riaks of perilis by land and by water in their tranamialons to and from Ardbreccan and London; therefore, as the mountain would not come to Mahomet, Mahomet wat obliged to go to the monn. tain. There it was I trat becume scequainted with this peculiar characteristic of Wyatt's architecture, and sorny am I now that I did not take a plan of at leant the principal story; but I was occopied eatirely with other objects. The worthy prolate, a tantofnal and a travelled man, the friend of the Dake of Porthad, Lord Shelborno, Charles Fox, Sberidan, and other illuntrious men of hie age, wes proad of his house and his friend Wyatt, and often pointed oat both to me as models to follow. He called his hoase an elastic, an arpasive, a contractile house, for when opening all ite apartmente and arranging thom acoording to ert, he could by cloning certain doors, and exclading certain pasagees and apartmente, reduce it it the vary moderate aixe that hif manall and unoufentations family required, and with at mach comfort as if regiding in a boose no larger than they wanted for themeolrea. My apartmeate, consinting of a aleeping and dreaniog room, and a sitting room, where I wrote and had all the Wren papers entrusted to me, communicated with the bishop's library. This suite of apartments, co complete in iteelf, was as priFate and detached from the other part of the house as a set of chambers in the Temple; and if I was ever called apon to leave my atody withoat time to put away my papars, I conld either loct that room or at the end of an orter pascage the whole saite, to that no one conld enter them but myeelf, and yet they could all be made subservient to the hospitable parposen of an Irish ordination.

Jamen Wyatt received and edocater meny prphit, some of whom obtatnod
ominerce, as may be mentioned hereafter, and not a fow are enrolled in the bint of gold and silver medallista, emblasoned originally by that elegant penman, Tomkin, and continoed to the preseat time, that hange framed and giazed among the records of the Royal Academy. The portratt of this eminent penman, who aurpassed all his predecessors in this line of art, and has beon eqnalled by noce since, was the last that Reynoide ever printed. Mr. Wyatt was never knighted, whether it was over offered is ualpewit ; bat it may have been declined on sceount of hin being a widower. He wae electod a fellow of the Royal 8ociety, mueh to the annojnuoe of Str Jowph Beaks, ita theen predident, who preferred tweddlare and tilled nementitles to men of genisa, whom he feared would discover his shallow preteactions to an the eburr, so glorionedy occopied in by-gone dayn by Brouscher, Wrman, and
 Academicime, as to which of their important melve should mapersede Beme jamin West, who wat then growing aged, is the preadentital chair, elewted president withoot his knowledge. It was apon this or a cimilar occmion that Paseli, who wapted a younger and more effective preaident than the aged plinter of the deach of Wolfe, wrote in his bellotting paper the name of Mery Lloyd. One of Weat's supporters anking the sercmictic Swiss why be voted for an old women, he replied, "Why should I not rote for one ald wooman as well as anoder ?" Wyatt proved a perfect King Log during his reign, for he never troubled cither himelf or them, and on the fow nights that he over took the chair at a lecture, he fell aleep daring ite delivery, to the great amasment of the atudents, who lenghed at every occillation of the presidential cocked hat from shoalder to shoulder. This propenaity to dome atter dinner wan unconquerable in poor Wyath, who indalgod it even at Beciford's table, the most entertaining mas of his day, when Neloon wes preent, interesting the Fhole parts by the recital of his hair-breedth 'scapea and gallent deede performed by bimself and his valiant brothert in arms in the then recently fought battle of the Nile. Howor eff didio; not mo thought the lethargic architect, for he dozed, and dozed, and dosed aguin.
This ecoinent man was unfortanately overthrown in his carriage, on a return from Windsor, from the effects of which be never recovered. The office of surveyor-general of the Board of Workn, as held onder the crown from Inigo Jones and other eminent architects to his death, has never simee been alled up; some of ite duties having devolved apon the offee of Woode an Foresta, and othera being filled up by apecial appointment of the cerown, or acta of parlimment, as in the casen of Str Jeffery Wyatrille, and Momers. Nask, Blore, add Barry.
(To be continued.)

THE BRITISH MUSEUM.

No. III.
The collection of Etroscan antiquitios carries the mind back to a most interesting period, that of a peoplo posesessing a high degree of civilization, and a groal extent of political power, the masters of the Iberian seas, the tenchers of the Boman commoarealth. Yet of anch a people the chiof reconds are those moanments now before as in the Maseam. Of their origin, their language, their political institutiona, and their history, we koow almoat as litulo as if they were pre-Adamites ; -so matablo in haman powor, so fickie is haman glory, so great the vicisaitudes of national progrese. Io this Musoum we have, however, before ns the liveliest paintiags of their persons, their dress, and their mapners ; and the acholar will be able in time to restore the Etruscans on the page of history, as be is now able to restore the Egyptiacs and the Acoyrians. Thas the jealowsy and neglect of the Romana, althongh for so loag they overshadowed the Etrecoane, will not be able to hide them from us for ever ; perhape also we unay in the ead make the monameats of Africa spenk of those other rivale, the Carthaginians, whom Roman envy has shroudod in darkness. Hed the Romane told as arore, we shoald have had leas to diceover, aed lese pride in the success of our eadeavours.
The origin of the Etruscana is at present involved in doubt-the legeade of the ancieats hare the air of fables, the discussions of the moderas want the support of facts. We onn neither admit of a Lydian origin dor cas we refute it, and we muat know more of the early history of Italy before we can ansign the exact value to fuets or conjectares. Neverthelows, it does not acem bejond the compars of eoand bistoric aynthesis to enable na to solve the problem of Elruscan origin ; and this ment be done to allow wh to
doternine that of the Romans, for notwithstanding all that has been written, this latter queation is by monean set at reat.

If we avail oornolves of the comparison of facts in other cogntries, we chall first have to learn the oveals afecting the Celts, for that these were settian bafore the Pelagians appears, from the names of the rivers and montains, and from other such sigas, very certain. It is moreover mach core likaly that the Pelargians and Etroconas should drive the Celts back, a the Cermeai did on the Rhine, and the Betglens in Britain, than that the Colts abould drive the Pelaggians from Cisalpte Garl. Although wo hape very stroog masertions of this latter event, whe have overy reason for not admitting them in their fult bearing. Gauls might have paseed the Aysa, and mottied in a Celtic corntry, weakened perhaps by war with the Preseaos ; and this will axtiofy to the fall the deciarstions of the Rovann Matcriane, while it will be in soeordance with historic seience.

The apread of the Polaggian tribes would canse the withdramal of the Goles; aed we can theo concoive, in accordance with what sook place in Greece, that the aev satcherents woald recoive the olements of civilimation trom the buay apifits of Pboenicia and the oentres of the att, who sought, enoeg roder people, the field of distinetion which at bome was already $t 00$ crowded.

If we allow for a Caltic action in Italy, we ought Iikewise to be prepared for a Germanic infinesce. This alone will aceornt for some of the phenomese affecting the Romans, for which Pelesgio or Greek oecuse are incompetent. Allowing to the foll for the indirect action of Greek eivellice. tion through Etruria, Bome certainly owed little to the Greak apirit.

That Etruria had a very close fellowhip with Greace is certain, and ber ses trade would help this, but we are not therefore to admit that Etrurian civilization is parely a Grook derivative. The people represated to us in the Musenm, particularly those in the paintings from the tomb at Vuloi, fouad in 1832, have eo little of a Europena oast, and 20 mach greater likeness to the Indo-Peraic and Syriac typer, that we can hardly refuse to acknowledge some eastern infinence. It might be said that the Erruscan artiste adopted an artificial or conventional type, as the Greeks for instapce did with regard to the form of the eye. Those, how. eroc, who will take the trouble to compare, will And that there is every difference between the grim ontlines of early Greek art, and the paintings of the Etrascans. In the aeveral apecimens we have of the latter, the mane portraiture is not obeerved throughout, and there is differonce enough between the permoneges of Vulci and those of Tarquinii to enable us to doteraise that the paintinge are in portraiture of a people, and not in simple conformity with a conventional type. The paintings from Valci present as with an aye, noee, and profic belonging to those people who now and then lived in the weat of Aaia, and the featnres in the Vulci paintiags are as stroagly zarted as the features of Arabs, in some of the Egyptian paintings of Bameses II. or Seti-Menephtha, in the adjoining rooms. It may perhape be anid that the represeatations of the Etrucan Charon in the Bronse Room are conventional, hut these are more strongly marked-the nose is a large equiline noee, like that of the Syrima or Arab race. The countenences rapresented is the Tarquinian paiatinge appromch nearer to a Pelnegie type, but are peculiar in their formation.
From what we know of the Etrucans, it is by no meane incompatible with facts, that they may have received a civilization independent from that of the Greoke. The Phosoiotass we know ranged the Iberian seas, as well as the Lonian, and it was quite competent for a Cedmos to earry Pheonician letters to Etruria as to Thebes, It is moeb more matisfactory to suppose that the Etruecan and Greeks drew from a common spring, thea to suppose that the Etruscans drow oaly through the Greeks. There whe an interconrse between the Phcenicians and Eitroscans as between the Pbonicians and Greeke-for anything wo know, a greater intercourne between the former, while the Etruscans were susceptible enough of caltiva. tion, that they were hardly likely to have beeu unimpreseed with their first viaitors, the Phoenicians, and to bave waited for the Greeke before they took the seeds of civilisation. There whe no sympathy of langaage to cause a greatar favour for the Greeks, for the Eurascane were decidedly not Greekz, whatever kindred they bore to the Polagic family. Commerce with the Pbeasicims would account for the likenesses between the Elruscans and Greeks, as well as for the differences. The Etrusoans would datw from the mame apriags of letters, arts, laws, manners, and beliof, as tha Greeks did, and it is as easy to picture the growth of Etruria, as of Athon, Corinth, er Theben; while after-intercourne with Greece woald

Aachion a greator likenen between Etruris and Greeee, as fatercoorme between the cities of Greeee brought them to one common form of civilizet tion. There conld have been no large Greek settlement in Etruria, or we should have had resolts equivalont to those of Megra Grecia or Masallia, instead of being able to treoe oaly general proofs of Greek intercourse and infuence.

Perhape a large foslon of Phoenician blood determined the formation of the Etrarian people, though we mant not expect to find an equal infineace thronghout Etroria. The provalence of 00 many large commonwealths shows that Etraria rose, as Greece did, from the gradual development of separate settjements, which would oach possess a distinctive charactor. Hence we are able, even in the fow remains we have in the Musenm; to trace great differences between the works of Tarquinii and those of Vulci. A Phoorician settlement would acconnt for the Etruscan taste for abipping and sea trade, and perbaps for other charaoteriatics. If wo allow of such a eettlement, jot we need not suppose that it would permanently infinence the langage or national featares; for a mall body of settlen among a larger people woald be ebsorbed, as the Longbeards were in the north of Italy, and the Northenen were in the sonth. Thio Is a simple explanation of a common historical phenomenor; but where the foreign population is comeentrated, as the Jews to the Ghetti, and the Greaks in Sonth Nepten, national chernoterictios may be long preeerved eveo among a mend commurity.

The atady of Etrucoen aniquitise is LItely to have apecial value as illastrating the early hintory of Rome, which is sow hiddea in mist. The Etraccase wore a highly-polished people whon Rome was a neat of robbers; and from Etreria was derived meoh of the lawh, learaing, mannern, and boliof of the Romans. It is an intersating historical inventigation to determine hom Rone, of lave growth, auceoeded in moderciaing and upeottios Etrusia, though we can coknowlodge that it was efiacted as muoh by the greater moral vigour of the former, as by any ocher ciroometanoen

The Etrumean collections in the Britich Musenm comprise soveral atose tombe, a vast number of vanes, and copies of large paintiege from the indde of tombe. In theso latter wo have reprecented, with all the vigour of Hfe, the domectic mannors and pablic gaves of the Etruscena, and there is mot to the Musenm any collection which is is this respect 80 corsplote of 50 tatoresting. The paintiogs and bac-rolicie rolativg to the Egyptien, Greekt, or Persians, we fragmentery, ezeept the friem from the Parthoson, a work woaderful in itwelf, bat teaching ws little of the Akteatams as a people. In the tombe from Tarquinil we hare however bengwete and pabile games, wherein men and women are repracented in all the brightness and distinctines of colour. We have the dremen, the froniturs, the veasels, the animals, the instraments, and these, as wall as the persons, drawe so antorally, as to leave nothing to be deuired for our well-understanding of the home life of this long-lost people. Sobjectes ver vied effer of course many illustrations of the habits of the people, and oe ooe of the Tarquinian tombe we have all the public gemes in which the people in. dulged. Alhough the represontations from the Egyptian tombe are paisted, and ofton eable us to distinguish portraits, national obermoteristion, and details of drese, yot their conventional execntion wants the aharm of the Etruccan designe. Seti-Menephtha, of a colosal alse, occupies the greater purt of a pictore, and attacks a chief of the Tabennu, who again overtops the people, who in diminutive shape are scattered in the corners of the panel. The Egyptiana, moreover, want lifa, even if in any degree they comply with the requiaites of a likeness to the homan form. They are curions, bat are not pleasing; whereas the workn of the Etrascana have both qualities, and are the expression of a rery agreeable type of civilian-

tion.

Tho Etrusean colleotion in the British Museum was chiefly formed by Bignor 8. Campanari, who explored many tombs in Etraria, and mede copies of the paintings. The whole of these were oxhibited for some time In London and other towns, mader the arae of the Etrascan Tombs, as will be remembered by thow who eat them iome few yeari ago. The Trostees of the British Musenm showed a very lavodable exercise of judgment in purohesing thin colloction from Signor Campanari, and eocuring it for England. Besides the Campanari collection there are great nambere of vaces of varions deten and styies, purchased or received by the Trusteen, and which inclode many Etruscan specimens.

The collection may be considered as forming three parts. let, The paintinge from the tosabs. ind. The sculptured tombe 8rd. The vaces and terracottas. It is to the painting we aball direet our attention ehinfy. on the prement cecmian

They inalode forr principal divistons, two In the Etrasean Room, and two in the Bronce Room. The paintinge are placed on the walle above the eases, bat the figures are of sufifient sise to allow of their boing well esen. Each subject contains the paintinge on the inner walls of a tomb, and above is shown the cailing of the tomb. The decorations therofore which once lined four walle, are now spread out flat lengthwise, which is well sulted to display the groaping. On account of the distribation around the wallis, the componition is arranged into a centre group, with one on each elde, the remaiaing apace being leff for the doorway.

In the Etroscan Rloom both sabjects are from the ancient city of Tarquinil. Wo are obliged to distingaish them as the Right Tomb and the Lef Tomb, according to their sitnation on entering the room. The Left Tomb inclades three couples banquetting, attended by ten muslcians and dancers, tive on each side. The Right Tomb is in two compartments, and inclades in the lower compartment three couples banquetting, attended by twelve mosicians and dancers. In the upper compartment, or over the heads of the banquetting party, is a long subject with smaller fignres, which represents all the varieties of public games, with two stages of spectators looking on. In the Bronec Room aro two tombs from Valci. That on the left has male figores, with Etruscan inscriptions, engeged in varions games ; that on the right is very much matilated, and the subject cannot be ascertained. Two seated figures seem to be Pluto aud Proserpinc. This is in a very different style as to conntemance and treatment than the othera, more nearly appronching the Greek atyle.

Besides these four principal subjects are some smaller. In the Etrascan Room are paintinge from a tomb at Corneto, inclading a woman paying the last offices to an old man stretched on a bier, two men drinking and dancing. and men drinking and playing on the double tibia. In the Bronse Room are two palntings of the Etrasogn Charon, from the entrances of tombs, with Etruscan inscriptions. Most of our readers are awrere that the Etrobean character is of a Greok type, and used in the method origioally obtalaed from Phoenicia, of writing from right to left, ingtead of the later Greek way of writing from len to right.
The Right Tomb from Valci is so different in style that we must speak of it separately, bat the other tombs may be classed together. Thare is a moothaen and ease in the style which is particularly remarkable, and great care in the drawing of forms, though there is no attompt at minute anatomical delineation. Whather the Agure is draped or naked, the same practice is edhered to of drawing in the ontlines of the Igare, which, when the figure ie draped, are shown under the drapery. This has a singular efiect, as however chosely or loonely the male or female figure may be clad, the naked body is shown through the clothing, not in the mere presance of the drapery, bat in the exact anatomy, however far the drapery may be distant. Thas, in the figares on the Left Tomb of Tarquinii, where the dancing women are clad in a klad of fall-skirted modern petticoat, the whole of the lower limbe are rigidly drawn.

This practioe sbows how sonaitive the artists and the pablic wore to a close and accurate delfneation of the human fignre, and how very different frem our modern artists and public. The frequent exhibition of the naked Ggare in public games made the Etruscmas more critical in human anatomy, and as we have no longer the same opportunities, it is only by a alose study of the antique and of the living model that we can hope to make up for oar deficlencies. The Etruscan paintings well illnatrate the sonndness of that law, put forward for all clasess of art, from high art to the least meobanical performance, that instruction must rest on the study of the homan Agure. Bohools of deaign may draw from architectoral casts as loag as they like, and make as mach ase as they please of the role and compasees, but we cannot have artists or an artiatic pablio without the tigure. Thls mast be at the beginning of teaching, and it must foliow it throughont. This fact was prociaimed ton years ago, and our schools of dealgn will never enable us to compote with foreign manafectorers in works of taste, until we carry it out fally and faithfully.

To make a high arlint, all will allow that nature mast be stadied-but What does this mean 1 Are we to draw treas and flowers, and to neglect that noblest organization, the homan form ? The Greeks and the Etruscans walked among trees and fowers an we do, they enjoyed the beanties of the lendscape-bat they did not thas become artists, nor could they have become artists. A floweris moet admirably organised, $s 0$ is an animal; but the perfection of organization, the adaptation of physical means to intellectaal ends, is man. It is in his form, in his structure, that we can stpdy the highest applications of godlike skill, -and to neglect this, is to sagleot the greatest and noblest school of art. Anything 0 perversely blind as Eaglish practice on this head annot be imagined, and it conveys
the causes of Engliah failere. In England, the artist is meohanic in painting, nearly on a footing with a Wolverhampton lockmaker or aniler, who goes on from year to year copying the same article, withont rafereace to any higher principles. The Commiscioners of Fine Arts, in foetering good drawing and correct anatomy, do most wisely for the interests of art; and it is to be hoped that all will oaite in the same purpose, and that in our ecademies and schools of design wo shall follow the only soned conrse of temohing and learniag. The great end and aim of all touching is to train the mind to the best habits, whatever may be the ond of the learner, whether high or low; and in a right edreation, the miad of the statesman and the porter, the artist and the workman, will be equally traised ia oorrect thinking, whatever may be the special object of their pursuits.

The Etruscan figures are of two clasces, draped and neked; but nope of the female fignres are wholly naked, though some are naked from the waist upward. The drapery is 80 various in its stroctore and adaptation, as to afford moch practice to the artiat, and he bat the whole range from the naked igare to the complex forms of modern fomale fanhion. The garmeat most need by meu and women is an oblong equare shanl of mawd, worn in various ways. Sometimes it is a shawl or scarf. Sometimes a cloak, with the men a waistcloth. As a scarf, it is sometimes pat on in the usual fashion, and the ends then put through the arms, so as to hang down. As all the garments are of rarions colourt, white, blue, and red, and sometimes with braiding, patterns, and ornaments, the effect is moch increased.

Many of the fomale dreases are very olegant in form and colonr, and they are of great variety. We recommend to the bullet masters, who are always searching for something novel, an Etruscan ballet, with some of the picturesgne costnmes of the Museum. In ench anbject a different geseral fashion is obsorvable. In the Right Tomb of Tarquinii, the women have a long and rather close drese, with a shawl; a cap worn in the farsion Pariaian women wear a colonred kerchiof, with short cerib. They have likewise sandals. In the Left Tomb of Tarquinli, the costnme is almont modern-a boddice with short aleevea, a ahort and vory full pettionat, boots or sandals, long hair worn with a wreath, earrings, bracelete. Tbe third fachion is in the tomb of Cometo : boddice, pelticost, pelisse, dome or shaml, loag-toed shoes, the hair worn in long tresses.

As an exampie of the mode of treatment, we may take the female playing the castanets, in the Left Tomb of Tarquinii. She wears a red boddice, edged with bright blue, short sleeves of the pattern of the akirt, trimmed with blue. The pelticont, ahort and in full breadthe or folde, ib of a reddith linge. The pattern is in red, and comsiats of three apots divided by horisontal atripes or braid of red, sometimes plain, cometimes dentelated. The pattern of the skirt would do eredit to Regent-atreot, and shows more design thun must of the prodncts of the Manchester looes. On her shoulders she wears a blae scarf edged with red, the onds betag, as before described, brought through the arms. Her hair is worn long. and around her head she has a blue wreath. Her boots are red. Bbe hae bracelets, and in her oars ringe with a large ronad drop.

Besides the practice of showing the ontline ander the drapery, there is another conventional peculiarity of Etruscan art, which conslats in ebowing all the fingers of the hands, which are arranged is perspective, fanfashion, but close together.

In the Right Tomb of Tarquinif, in the lower compartwent, the chief personages are three men and three women, seated in conples on three conches, which are laid in one row, so that the guests cas be fully seen by the spectator. Throaghont the subjects we notice that the women, ILte those of Rome, were treated with great deforence and attention, boing the companions of their husbands in their feasts and games, and that they beld the position of a Garmanic rather than of a Greek wife. In the baoquets and the games the women are present, seated with the men; and even of the slaves or attendants, none of the women aro naked. Two naked boy attendants stand near the couches, and there are small tables, of very elegant denign, bearing refresbments : the men and women are drinkiog. As if for coolness, the men and women are naked from the waist opmard.

Under aach of the conchen is a pair of ducks, painted in bue. Eech of the ducks is in a different poture, bat each is charactoriatic, and the artist shows a degree of skill and fancy which a modern rival coold ant surpans. The six dncks are pictures in themsalves. From the introdnotion of thens, it is to be supposed they were pets of the boucehold, thongh rather atrange ones.

It is to be petieed that the Etrasean artiste studiously strive to iotroduce as mach variety as posaible in the treatament. While ageneral symmetry of merangement is preservod, each figare is pat in a difforent dress or atti-
 fa reid ; flote hat a strowt, mother bas a cloak, aod so forth. In the Left Tomb of Tarquinii, the figures of the dancers are separated by trees, on which are birds or animals; but there is a different set for each tree.

At one end of the conches is the chief musician, playing on the doable tibim or pipes. This seems to have been the great instrument of the Etruscans, as it was afterwards with the Romans. It is introduced, likewise, in the Loft Tomb of Tarquinii. The instraments shown aro the double tibia, the lyre, and the cantanets. In each subject are two players of the double tibia.

Oa the left hand are three male and three female dancers, and as many ea the right hand. One of these latter plays the double pipe. The figures are separated by branches of trees. The mea are without shoes, and with eo garment but a waistcloth.
On the right-hand side is an elegant table with three white vases and ose red one. This is a pleasing furniture group.
The upper compartment of this tomb contains a great nember of groaps and fagures of small sise, ongaged in pablic games, and with two thads for spectatort. The stand has a platform, on which are the obief parr sonages, men and wromen. Underneath are some men lying down. The contumes of the spectators show a greater variety of fachions than the baguet ; some of the men have beards, and some are withont; some of the women are dreseed in white.

The pames represont leaping, ronning, chariot races, hurling the discus, boying, and the armed course, which are painted in a lively manoer.

In a kiod of pediment above is a large vece, and two perrons at an caterminament.
The eatranee to this momb is adorned with two panthers
The Left Tomb of Tarquiat coly inciades one subject- benquet; bet the ondinees are mooh richer. To this belongs the forale figure already elowaly deacribed. Here, likowise, the chfef personages arc throe couple sated on couches; but the arrangement is differcat, one of the couches being tarned lengthwise at right angles. This gives the opportanity of seeing the finish of the end-and indeed the design and finish of the cosches are well worthy of study, showing fitness, lightness, and elegance. Here are two small tables or stands, exquisitely finished, on whicb are placed the refresbments. A female attendant is standing. A naked page bolds in his hand a percolated vace or wine-strainer. Male and female ettendeots seem to have been employed at entertainments. Two of the lady guests wear a red veil. The whole of the guests are wreathed either with ivy or laurel. Under the couches is a panther, a cock, and a hev. The coek is a very gay piese of painting, and is anosher example of the attention to details. The panther seems to have been a great favourite of the Efracans, and here and elsewhere is frequently introduced. He was of course, tamed. The men in this group wear short beards, whereas, in the estrer Tarquinian tomb, the gueata are beardless. On the left of the couches stands the plager of the double tibia.
On the lefthand side are two male and three female dancers. One of the men is playing the lyre. On the right-hand side are likewise two male and three female dancers. One of the men plays the double tibia, and one of the women the castanets, or rather bones. At each end is a man, monated either on a male or horse. Each figure of the side groups is separated by a tree, chiefly lanrel, baving sometimes a flower at the bottora. On the branches, and flying aroand the trees, are birds of gaudy plomage. On some of the trees beasts are drawn, as the panther, rabbit, and for. These latter are painted spotted, like the panther. One of the panthers is climbing a tree, like a cat or a monkey. The men dancers wear blue mewds, and the women dancers red mawds. The fancy displayed in the arrangement of all the details is well worthy of note. The drapery is likewise pleasing.

The Left Tomb at Valci, which has Etruscan inscriptions, is of a more wimetal character in the featores of the people. There are no women in this subject, and the figures are employed in public games, as leaping, runaing, borse-racing, \&c. Some of the men wear a cap, like that of the women in the Elght Tarquinian Tomb. The Vulci Tomb was discovered in 189.

The Right Toesb at Valci is different from all the others in mebject, style, treatmeat, and physiognomy. The personages, who are more of a Greek or Pelasgic character, are closely draped in cloaks of one colear, as Diae, without ormaments or trimming,-more closely appronching whes from oor sculptural imprescions is convontionally required as antique, than the gay and lively costumes of Tarquinii. This tomb, however, had a chequered ceiling, like thoee of the Tarquinian tombs. These oollings are of a peculiar character, and are executed in varions coloars, showing, as usual, much fancy in the arrangement.

The paintings of the Etrascan Charon are coarse, and seem conventional carieatures or grotegques, quite different from the portrait-like character of the other desigas.
The Etruscan paintings will well repay inspection, and are some of the best illastrations we have of ancient manners. The student who wants a comment on Homer will best fiod it here, and after perusiog the book of gemes, he caneot do better than see them depicted in detail in the Bight Tarquiaing Tomb or Left Tomb of Vulci. The banquet scenea are fair illostrations of Roman lifo. Etrascan vases and Etroscan dencers, the double fiute and the lyre, were to be seen at Roman banquets, where the guests likewise reclined. What is given merely in form in bas-reliefs is here giren in form and colour; and what is in sculpture performed by the artist from imagination, long after the event, is here painted to the life from the men and women as they breathed and moved and dressed. Certainly, the Elgin frieze gives as a tamor ides of Athenian life, though oxecuted under the eye of a Phidias, than the Foaker paintings of the Etruscans do of Etrascan lifo.

In an artistical point of view, thore is a benefit in stadying the works of a refined people, for so the Etroscans mere. They possessed a literature, and inscriptions were common on public works, ahowing that reading was geserally diffesed. Their dresses, manners, and games show that they possessed wealth and caltivation, and the works they have left us are ample proofs of their advanced taste and of their love of the pictorial arts. Music and dancing were advanced to the rank of arts. It is always aseful to contomplate and analyse the progress of a people who had less ad. vantages than ourselves.

Tbe seulptared tombs in the lower part of the Musean do sot show so farourably as the paintings, though they exhibit traces of antistic development. They are generally carved in eoft, had atone, and somo are in coarse clay; yet, even in these, there is an attention to anatomy, to draving, and to drapery, which draws our motice. Some of the reclining figures show considerable eara in the arrangement of the mascles of the back. In the paintingu, minate anatomioal drawing is not attempted, but in the Right Tomb from Vulci the muscles of the abdomen are drawn is the Greek style in the Ggure of Plato, which is only half-dreped. From their progress in painting, from their sound principles of art, and from the indications in the rude sculptared works we have, we may rest assured that these latter are not fair amples of Etruecan art; and we may expect, that though most of the finer works bave perished by the effect of time or hy the hands of the Romans, that more farourable specimens will yet be discovered.

The rases commonly celled Etruscan, are now brought together in the Etruscan Reom, and arranged, which was very needful, for daring some years they remained in a deplorahle state of confusion, so that it was impossible for the stadent to get any benefit from them.

The vases are now arranged chronologically and accordlag to the localities in which they are fond. They form six groups, besides a collection of terracoties, chiefiy Etruscen.

The first group consists of vases of heary black ware, some with rude figures npon them in low relief, the work of the ancient Etruscans. Thewe are mostly found at Cervetri or Csere.

The second groap includes the raees called Nolan-Egyptian or Phcenician, with pale backgrounde and figures in a reddish maroon colour. The figures an chiedy those of animals. Tbese vases are mosly found at Nola.

The third group contaibs early vases with black figeres apoa rod or orange gronnds. These are rich in mythelogical sobjects. These vases are found at Valci, Cenino, and the Ponte delia Badia, to the eorth of Bome,

The fourth group is formed of veses more carofolly finiehed. The dise tricts from which these are obtained are Canine and Nola.

The fifth group is a later clase of works, more slovenly painted. The Eubjocts relate ahiefy to Buochus. The vases are got from the province of
he Basilicata in Naples, to the sonth of Rome. Indeed, most of the vases are got over a wide district, far beyond the confines of Etruria Proper.

The sisth groop is from the Neapolitan prorince of Puglia or Apulia. These are much like the rases of Nola, with pale backgrounds and figares of the reddish maroon.

The terracottas are of verious origin and require classification, so that the locality may be known. They are chielly Etruscan. In the centre of this groap are various divinities and mythological groupe.

Besiden the vases incloded in the Etroscan Hoom, are others in various parts of the Musenm. There is a large collection of vases and terracottas from Athens in the Bronze Room. In the Townley collection are Roman vases, orns, and terracotas. In the Egyptian Rooms are vases and similar works, of various times and styles.

Altogether, the collection of vases and terracotias in the Maseom is copious, but to make it complete it is very necessary that there shonld be s series of Chinese porcelains. The Mnseum of Economic Geology contains some specimens of ancient and modern earthenware, but the British Masenm mast be looked to as the chief school for artists.
(Tb be continued.)

DESCRIPTION OF A UNIVERSAL TIME TABLE.

By F. Bashforth, Ebo.

The calculation of Railway Time Tables is attended with considerable difficulty and liability to error, owing to the various velocities of different classes of trains and the variation of gradients and stations stopped at. The importance of the correctness of these tables, coupled with the diffculty of obtaining that result, have led me to contrive a little instrument which, when the stoppages and the time of starting and arrival are determined, will give the times of arrival at each station exactly as they appear in the bill, regard being had to varying gradients, and consequently varying velocities. There coold be no doubt of the perfect success of a mere geometrical contrivance, but to remove any donbt that might he felt, and to explain my notions to my friends, I have constructed a naiversal time table for the main line of the Mancheater and Leeds Railway, which is about 61 miles long, and ham 21 stations. The result is perfectly satisfactory. I employ two scales; the vertical is of 40 minutes-the horizontal of 8 miles to the inch, but they might bave been respectively 60 and 20. The instrument is arranged on a board 11 inches square. .

Mg. 1.

Hg. 2.

Let A B, fig. 1, represent $\mathbf{3 0}$ miles, and the perpendicular C B, 60 minutes, and suppose a train to be travelling along A B with a uniform velocity of $\mathbf{s o}$ miles per honr. The time of describing $A b$ will be found by applying the vertical scale to measure the perpeadicular $c b$; for

$$
\frac{\text { Time in } A b}{\text { Time in } \mathbf{A B}}=\frac{A b}{A B}=\begin{aligned}
& b \\
& B C
\end{aligned}
$$

But B C represents time in A B, and therefore berepresents time in $A b ;$ and so on for any other distance.

Sappose, however, that when the train comes to D, the velocity falls from 30 to 20 miles per hour. Draw E F parallel to \mathbf{A} B, and cut off E $\mathbf{F}=\mathbf{2 0}$ miles. Erect the perpendicular $\mathbf{F} \mathbf{G}$, and make it 60 minates by the vertical scale. Join E G. Then the time of arrival/at any point d, will be fonnd by applying the vertical scale to the perpendicular $e d$, and reading off the minates; and so on if there bof.more changes of velocity.

The above is applicable to a train travelling with varying velocities, bo
withont stoppages. If we suppose the train to loce 5 minates by stopping at a station at b, theo this time will never be recovered, aed evers point in the time line to the right of b e, mast be raised 5 minutes. If thern be another loss of 4 minutes at d, every point in the time line to the right of $d e$, must be raised through 4 minotes additional; and so on for ather atoppages.

Hg. 3.
Pr. 6
Soppose that on a railway there are atation A, b, C, d, e, F, g, i, I where A and I, are the termini, and C, F, first class. A to b, is 3 miles;
 h to 1,6 miles. The firat eight miles can be travelled at the rate of 25 miles per hoor, the next ten at 20 miles, and the remaining distance at 80 miles per honr. Fig. 3, shows a series of atrips of boxwood of equal length and thickness, bot whose breadths represent the distances betwist the atations, measured by the horizontal scale. The section at Ag. 6, abow the provision made at each division, by a pin and two holes, to al ow fo stoppages, an at C and F, fig. 4. The time lines, $x y, z w$, are hid down as in $\mathbf{6 g . 1 .}$. The former is for trains passing from A to I, the latter from I to A.

Fr. 4.

Fir. s, is placed on a level surfice at in fig. 4, and the separate pieces of wood are kept in their places by two fixed pieces X Y, with parallel feces. $O \mathrm{~S}, \mathrm{O}^{\prime} \mathrm{B}^{\prime}$, are two etraight bars moveable abont $0 \mathrm{O}^{\prime}$, capable of being clamped in any position. Fig. 5, represente the sca le mad in reading off the time. The hend moves along the bars $0 \mathrm{~B}, \mathrm{O}^{\prime}$ \$ like a T-square. The slide carries divisions for overy 10 minutes, and the circles on it represent the ivory atuda on which any required consecu. tive hours are written, as it would be inconvenient to have it of sumcient eagth to hold 12 hours.

als.
There is no necessity for baving the velocity per hour given for the rate of travelling over each particular part of the line, for the purpose of laying down a time line, as it may be plotted from the observitions of the times of arrival at several points of the line of a train travelling without stoppages. Let train be travelling along A D, ig. 7, and let O, B E, C F ,

Fis. 7.
and $D G$, at right angles to $A D$, represent the times of arrival at A, b, C, and D. Join A, E, F, G, which will be the time line. The time allowed for stoppages must include the whole loss consequent on lowering and getting up the speed.

Mr. J. Samuda emplojed diagrams constracted in a manner similar to Hge. 1 and 2, to explain the proposed arrangement of the trains on the London and Croydon, and Croydon and Epsom railwaye, which are given in the " Minates of Eridence," printed by order of the Honse of Commons, Juse, 1844. I have also seen in the Buidder, of August 21, 1847, a notice of a new time table, patented in Paris, bat the description there given does
not enable me to say whether it resembles the one above dencribed. I an not aware that the method of allowing for a stoppage at any given station, for varying the time of performing the journey, or for reading off the times ready for insertion in the time table has ever before been adopted.

ENGINEERING AND RAILWAY MEMBERS OF PARLIAMENT.

A dew parliament noder usnal circnmatances is not of much importance to professional men, but for once the case is diterent. Engineers and surveyors havenow moch at stake in the measures likely to be subjects of legialation; while the elections have brought forvard many men whose opinions on these subjects, or whose connection with our professional parsuite, create much interest. We have been handed over to the mercies of a Board of Trade already, while many measures deeply affecting professional interests are sure to come uuder discussion, such as the health of towns' bill, a general act for drainage, railway legislation, the survey of London, and steam-engine inspection. How these subjects are likely to be treated is not unaatarally a matter of anxiety.

The last parliament began the new class of railway directors, for we can hardly consider the election of Mr. Charles Russell, the late member for Reading, and chairman of the Great Western railway, as being of more value than a single and accidental circumstance. It was the return of Mr, Hudson and Mr. Chaplin which constituted the clams now so greatly increased by the late elections.

With some it has been a matter of fear that we should have a railway parliament, and it has been put forward, ander the authority of Mr. Dodd, that the present parliament contaius more railvay directors, engineers, retail tradesmen, and political lecturers than any former parliament, and fewer offcers in the army and nary, and landed gentry. If a parliament now have railway directors in it, it mast have more than in former parlia. ments, becanse as it may be said railway directors did not exist as a clase in former days. We might as well be told that in the streets of London there are more cabmen and omaibus-drivers than in former days, and that on the river there are more steamboat stokers and fewer watermen. Admittiog the fact that there are more railway directors and englneers in the house, we do Dot therefore see any ground of alarm to the country. As to the retail tradesmen we have little to do with them, except so far as they bave been mixed up with railway directors, and insomuch we are bound to say that we put no worth on the increase of retail tradesmen, for we believe that the whole body of retail tradesmen in the House of Commons consiste of one or two individuals. The injury to the country cannot at the worst be very great in having Mr. Williams, the haberdasher, instead of Mr. Alderman Waithman, the haberdasher, or Mr. Alderman Sidney instead of Alderman Sir Matthew Wood. We confess likewise to obtuseness as to the injury likely to arise from Mr. Alderman Sidney, Mr. Williams, or anybody else who makes money behind a counter, sitting cheek by jowl with the members for Wuterford county, Finsbiry, and Wallingford. With regard to the political lecturers, they mean Mr. W. J. Fox, Mr. Feargus O'Connor, Mr. George Thompson, and Mr. Wilson; and even though political lecturing bas taken the place of political pamphleteering, it grieves us little that Messrs, Fox and Thompson sit as members of the house to which Barke, Sheridan, O'Connell, Cobbett, and Hunt belonged. We neod not enlarge the latter list.

The only fact with which we have to grapple, indeed the bead and front of the grievance, is the number of railway personages; though we are bound to say, that when admitting the new classification of railway directors, we mast not forget that it strips Mr. Hudson of his quality as a landed proprietor, Mr. Glyn of his title as a banker, and every otber individual of his previons deacription of enrolment. One question therefore is, whether in accepting the new class of railway men, we admit a body less wealthy than officers in the army and navy, government functionaries, or landed gentlemen. We believe that on the whole Mr. Hadson, Mr. Glya, Mr Robert Stephenson, Mr. Cabitt, Mr. Chaplin, Mr. Parker, Mr. Looke, Mr. Peto, Mr. Waddiogton, Bir Joshua Walmsley, Mr. Jackson, Scc., have not too small a stake in the property of the conntry to diaqualify them from situing on the same bencbes with other gentlemen, whoee names it is unnecesaary to mention, as the state of thoir finances may bo learned of any
low bill braker er sherif's officer. If we were to give a cool and candid opialog, we shouid nay that the preeent parimanent containe as moch wealth, recpectabillty, and intolligonco me any partiamont which has orer eat within the precincts of St. Stephen's. We are quite ready to balisere that thore are adventurers in the present house, but we do not believe that there are more than usual in an assembly to which the mode of admission affords no guarantee of moral worth, still leas a security against moral corruption.
There is a class of persons in tbis conntry and in alt others, who so far from allowing that there is notbing new uader the sun, can sourcely believe that the night falls and morniog breaks day by day, and that the whole scheme of creetion, life and death, death and life, rolls on in the course of its accomplinhmeat. For them, everything that is new in a prodigy and an sharm, and thoy are kept in a perpetial state of worry by the untoward evoote of their times. No ben wan ever more alarmed at seeing ducklinga take to the water, no schoolboy was ever more annojed at a wet holiday When he had nailed the baroneter to "net fair," than are the clans to whom we bave alluded, at the obalisate movement of a state of society which in their mind's eyee they have nailed to stand atock still. For them, the irrop. Lion of railway mea into the House of Commons is a new cause of wonder, and we shall have a mew Sybil or a new Coningsby on a fact which sets itself so audacioosly agaiost the middle ages, and which is only a new proof of the material aapoot of theee degenerate daya. Alas! the House of Commone has been always in this state of revolation. It began by admining the small squirearchy, the manorial lords who rose undor the Edwards; it received an acoession of traders ander the Tudors, of Puritase under the Stuarts, and of arny colosels ander the Crommells. Queen Anne's people were taken aback by the admiasion of atook-jobbers and fundholders, King George's by the strange accummulation of nabobs; then we were frightesed by Weat India planters, by bankers, those who had onriched themselves with government contracts, and by horde apon borde of the nourcamx riches who had eariched theaselves tout nowrellement. The vested interests in the house are all inoovations: there were no army officers before there was a standing army, no conntry bankers within a centory, no fundholders before there was a national debt, and the staticians have made no allowance for the decline or extinction of lottery officekeopers, West Iodia planters, goverument contractors, and nabobs. The acosssion of railwas chairmen and directors is a fact, and "un fait accompli," but no more; the House of Lords will not be turned into a firstclasestrain, the Honse of Commons into a second-class train, nor will Mr. George Hedson be made First Lord of the Treasury, nor Mr. Chaplin Commander-in-Chief. It is a great pity for those who have excited themselves to the pilch, but there will be no railway revolution.

All that it amounts to, and the only real significance is this, that those who were before distributed among the squires, bankers, and merchante are now grouped as railway directors, and that we have admitted a new clanaifoation of men of weallh, ability and intelligeace. So far as invastigation may be entered upon, we are sure that the result will be to show undoubtedly that as a nation we are none the worse off than we were before ; though, by conforming with the wants and exigencies of the times, we may be in some degree the better.
Whether we will or no, conform we muat to the progress of events; we cannot fasten old habits on to new inatitutions; there is no travelling outside an express train, nor can it be made to stop for a parcel of game at a hall door, 一all that stage-coach sjatem has been done away with. The electric telograph will not frank ladies' gloves and fans, nor can we give West India pines a hot-house favonr. New eatablinhments create new institutions. Railway companies have created railway directora, and railway directors hare become members of parliament ; -wo mast sobmit, and not be snrprised wben the next change comee. We may noon bave telegraph men as candidates, and the soccessfal management of the correspondence of the country may be a claim for the honours of represeatation-and why not ? What harm is done?
By tome the mention of railway members of parlimenent is met by the counter-cry, "What ean the management of ewitches asd sidinge have to do with legitation, or why if aucosenful jobbing to be held as a proper training ?" Certainly, is England were a conntry of doctrinairen, which it is not,or an emonire of mandarins, whioh it is not,-or a Prumian police district, whion it is not,-siliway diractors would as such bave no qualification, and they would be bound to prove the extent of their political stadies and capacity. We are not aware of any froe country being succeasfolly governed by Ifternti or theoretion politiciens, and moth Rame and Bnginad are examplas
of conatries not governed by literati; ner do we think that the hatter eoustry is bikely to come under the oysum. We maxt therefore take it m we find it, and in so doing, it may be worth while to conaider bow fer rillway directact \pm swah ere litely to prove efficient law-makians and public commellors.

Bofland in a practical conntry, and a preference is always given to practieal training over theoretion training, and we quentioz whether Ragishome would not eny day much mooper elect a good brickmaker then tha greavent pout or dramatiot on whose fame they ever prided thensectres. Give a man a good practical training, and be may set his hand to auything-thet is, the Englisb teaching and schooling: and we are none the worse for it. It is perfectly national to see Richard Cobden and George Hudson in their present positions, and it would not be sarprising to fod them exercting atill grewter infuence. The atanding of these tro is an exposition of the national sympathies and character-not what some have been pleased to call it, the worthip of Mammon, bat the resalt of that innate apprecietion which the Baglish have of huainess habits applied to business purposea. We are vers certhin that as much would not be done for Cbarles Dickens, and we are not athamed of it. Dickens has his reward in another way. We give to a Cobden or a Hudeon political power and influence, bat we do not award to them the undying esteem of all ages. It is the pride of genios to labour for the applanse of ponterity; the politician has only a life intereat in the pre. sent. Whether it be better to become a Shakapeare or a Cobden it lies with the appirant to judge, bat he mut not complain if he do not receire the rewards of both. We know that there is a large party whu complain that in thit conntry literary and scientific men do not rective political rewards ; we cannot see that there is any ground for sympathy with thir complaing. We think a successful railway potentate much more fitted for a lawmakar than a profcient poet, phyician, or artist. A man who can look well after his own affairs is, in the common acceptation, best fitted to look after the affirs of his neigbbourn; and railway kings comply much better with this condition than poete, painters, mathematicians, masicims, or actors. The cample we have had of literary men in the House of Commons has not bren encouraging enough to indace us to wish for more; and while there is no apecific exolosion of them, and while they have the means of purchasing a qualification by the very liberal remuneration of their laboum, we are not disbeartened nor ashamed that Dickens, Ainsworth, James, Leigh Hant, and Sberiden Enowles, are not membert of the House of Commons. It is quite mopen to them as it is to Bulwer, D'Israeli, and Macanlay ; and when they can command the political confidence of the public, let them demand political bonoura.

We consider the trining of a railmay man as particularly qualifying him or parlienentary detrias. He must be a man in whose pecaniary sbility and trustworthinem a large nomber of permons have placed their confidence. He is trained in the habit and feeling of public responsibility and eccountability. He mast have working habits of business as the member of a board, for without he hae adequate command of temper and ability, he cennot cos. timae as the colleague of a dozen or twenty men of standing. The crotchetty, pratting, meddling, or ill-tempered man is either sifted out, or he has his rough points polished off. He acquires a considerable degree of Easpcial and fircal knowledge in dealing with large sums of money. He is compelled to onter upon the consideration and application of many newly dereloped principles, wbich require close discuasion and accurate compreheation. He is schooled in meeting the exigencies of new and progreasive inatitations. He is called upon to conduct important negotiations with able men, and to make arrangements which shall be applicable to circomstances of great difficalty and complexity. This is no exaggeration of the capabilities of a railmay man, and we consider it not a bad atock whereon to engraft, the reaponsibilities of a seat in the House of Commons.
Except among our Indian fanctienaries of the civil service, it will be dificult to find men wbo have had a mider field of administrative prectice than our railmay directors. Responsibilitien far exceeding thone of the finance minitter of many an independent nation devolve upon Mr. Glyn, or Mr. Hadion. The yearly expanditure of million, the managemant of a Aloating capital of tweaty millions, and of a curreat revenne perhapa of two millions, with the administrative control of a thoumand subordinatet, afford a wide field for the attainment and exercise of practical ability,-and wo opine that that is what is wanted in the Home of Commons. We have spoeken eneugh and writan enough; we want thiokers and doern, and the more of thene th better.

A fatr axamination of the quewtion cean only bave coe remal-the recogitien of the eligibillty of railway men, oven if we canmot get so far beyead the feer of ridicule as to allow their soperior cepmerity. We beliove the preass

Hocuse of Commons has been refrethed with new blood, and that Mr. Macgregor, Mr. Pox, and Mr. Wikon will not prove useless membern, still less Mr. Glyn, Mr. Hedson, and the many other gertlemen whom wo have al. ready eaumerated. Before leaving this part of the sabject, however, we cennot well refruin from making some remarks on a few of the individuals sont prominent in the relliway legion.
Mr. George Carr Glyn is the son and grandson of a barosetal family of that pame, and a member of the banking firm in which his brother, the present baronet, is a partner. Mr. Glyn made his debut in joint-atock companies during the mania of 1824 , at which time, among other such occupations, he was anditor of the Columbian Pearl Fishery company-one not among the brightest enterprises of that apeculative period. Of late jean he has shown less ardoar in his engagementa. In the next great period of spectlation, we find him chairman of the London and Birmingham, now the London and North Western ruilway company. For a long time he has been the head, out of parliament, of the railway intereat ; a mnch from being put forward by his colleagues, an from being recognised by many of the minor companies. His policy in this capacity is the index of his parliamentary policy, and it has not been that which in our view has been beat calculated to promote rilway interents. Mr. Glyn has no confidence in independent action, and has always been inclined to lean upon the government. He was the introducer and the chief supporter of the Board of Trade inspection aystem, and his last public act is a decieration of his adherion to the same principles, though he han already had reseon to regret the exercise of the power which he has entrusted to such hands. Mr. Glyn has no defined views as to the operations of rilway capital, the principle of private enterprise in joint-stock companies, or the principle of fares. What convictions he has are opposed to what is assumed to be the beat theory and the beat practice, and Mr. Glyn only acts in conformity with these latter, when be can no longer withhold his action, though he does not seem to give his acquiescence. With a very distinct delivery, and a reeming logieal severity of language, Mr. Glyn is a very indistinct thinker. As a riilray chairman, with the prestige of a great reputation, and with a case carefully got up, Mr. Glyn har been an impressive speaker. Whether be will be so successfal in the Honse of Commons, where be will no longer atand alone, but have to contend with other men, remains to be seen. Undoubtedly he hat great advantages: a pleaning persor, polished language, a confident but inoffensive address, and the amertion of high moral principle, when backed by puwer and repatation, are calenlated to prodace a favourable impresaion on an andience. On come pointa of religious profestion, Mr. Glyn is, we beliove, likely to take the same pert an his consin, Mr. Plomptro, whose atrong opiniods are well known. Success and ill-ancerens have been about equally balanced in Mr. Glyn's career : the resignation of the North Midland chair, defeat by the Great Weatern, and reeriminations with Mr. Mosn and Mr. Runsell, in which matmal charges of breach of faith have been bandied, have been connterpoized by Mr. Olyn's menintenance of the London and Birmingham chair, and by hin amalgamation of the Grand Junetion railway, after difficalties which might woll have been regarded an insumonatable. Mr. Glyn's maiden seasion will be anziouly wetched by many.
Of Mr. Hudsoo little need be said. He bas successfolly peesed through an amxions railway seasion, and the next series of balf-yeariy meetings cas acarcely present anything inanopicioas. The prestige of his reputation is untooched, while in the prevent temper of the Bentinck party, boing noshackled in his political movements, and reieased from his patrosage of protectioninm, be is likely to exercise great and useful infiuence in the bouse. Mr. Hodson is certainly the railway man of the most original powers of thought, of the mout advanoed mind, and of the most progreasive character. More consdence is to be placed in his single defence of the joint stock system, than in that of all the ruilway wembers put together.

Mr. Hayter is the representative of the Great Westers.
Mr. Chaplin is a man who will bereafler be better onderstood by the pablic. A sketch of bise in Fraser's Magazine, does hosoar to him and to the writor. Mr. Cbaplin is a man whe by great prodence has raimed himself to a very higb position, who undertahes nothing witboat carefal and laborioas thoaght, and who, although often behind hapd and not always in the right, commands respect from the known fact that his opisiosa we the resalk of a well-stadied conviction. Mr. Chaplin, we enoerive, is muoh mose likely for the precont to follow Mr. Glyn's line of policy than any other; for be is, like Mr. Glyn, only a forced followerwe cannot say coavert-of what may be callod the railway movement party.

Mr. David Waddington has not hitherto boen well koown in aoy imp-
peedent capacity. His chief claim heretofore has been the nobouoded confideace reposed in him by Mr. Hadson, and his administration under Mr. Hadson of the Eantern Caunties railway, againat the most difficult circummances.
Mr. Robert Stephenson, the som of the patrierah of the locomotive age. tem, bas been lene known by the public in his personal capacity than as an engineer. His ability in thoee alediatorial nombats bofore partiamentary committoes, his practice in negotiation and correspondence, and the coufidence repoeed in his diplomatic akill by leading railway men, are guaran. tees of his powers to those who know him. A good gigure and pleasing addrese will belp him in making an impression in the House of Commons. He has adways been acting in conjnaction with Mr. Glyn.
Mr Locke bas tried his skill in the same arena of the committeo-rooms, and with equal success. Mr. Locke at one time co-operated with the Great Western in their atruggle with the Londan and Birmingham, but atill mast be ranked among Mr. Glyn's followers.

Mr. Jackeon, of Birkenbend, has oaly a proviocial repotation. He is a fisent apeaker in the Liverpool atyle, bot is hikely to require a long traiaing in the House of Commoss before he will have weight. He has no decided viewt on geseral principles of railway policy, bot is an edrocate for nonrestriction in curreocy mettern. He has no weight among the railway intorent, and will nok be admitted by then as an expenent of their viows, whatever conrse he may adopt.

Sir Jowhat Walanaloy in a Liverpool morchant, a colleagre of Mr. Jeakson'a. He hac serred the ofino of major of Liverpeol, when be was knighted. He is likemiee a flaent apenker.

Mr. Willien Cubith, the contmetor and bailder, not the anginear, will dok, it is supposed, take any active part in parliementary proceedinga.
Mr. Samoel Morton Peto is considered a man of education, ability, intelligence, and practical bucinees habits. He speaks well, but hie railway principles ere not knowa.

Mr. Wyid has never had any intimate connexion with railway management, but is well moquainted with the general policy, and is supposed to be an advocate for non-interference.
Mr. Humphrey Brown was the founder of the Birmingham and Gloncester railway, and afterwards its manager. He enters with very strong feeling into every subject be takes up. He is not so well liked as a speaker out of doors, bat in the Hoase of Commons is likely to be well listened to, as be is a woll-atilled atationan, and can get ap bis case carcofolly and asudiously. He leans to non-interference in the managoment of joint-stock enterprise.

There are abondance of milway directors in the hoose, but very few others who are likely to take part in debatos in such capacity beyond thone we have named. As the matter stand, we fear the prospects of the rallway interests are very ancertain, for in all likelihood the roices and votes of Mr. Glyn, Mr. Hudson, Mr. Chaplin, Mr. Locke, Mr. Staphenson, and Mr. Waddington may all be given for a Bourd of Trado bill, or for more atringent standing orders to restrict new companies: This, however, is matter of speculation, for Mr. Hudson is far on the way, as already intimated, to repudiation of the Board of Trade, and he last year vehemently condemned their railway bill. If, then, they should bring in some mensure trenching too mach on the vested interests, they would outy bave the sapport of Mr. Glyn and Mr. Robert Staphenson, and the goverament would find iteolf attacked by Mr. Hadson, Mr. Chaplin, Mr. Hayter, Mr. Waddingtoo, Mr. Locke, Mr. Peto, Mr. Jackson, Mr. Hamphrey Brown, Mr. Wyld, and Sir Jonhaa Walmaley. This would make a graod reliway debate ; and a serere defeat of Mr. Stratt might jeopardise the ministry.

We mast insreat the railway members carefally to consider the mischiefs which have already accrued from Board-of-Trade interferences, to withatand every new bill, and to repeal or modify all the restrictions which bave been placed apon joint-stock onterprise by the ataoding ordera and eoactmente, such as the leagth of notices to parliament, the ten per cent. deposit, the limits on the payment of interest on calls, on the amonnt of dividends and fares, the power of suing for calle, the registration of jointstock companies, and all the otbor now-fangled dovices for impeding the five progreses of railway entorpriso. Old companies may be fearfial of enoouragiag compettion, bat experiesce mast bave alrendy pointed out that there is only one sound way of promoting rallway enterprise, otd and new, and that is by unloosing the fetters. The same argoment which authorises the fetteriag of eew schemes, antharives the fottoring of the old. What the companios have to fear is not comperition from ench other bat opolistion on the part of the goverament. As mettors are going morn, there will at an eariy period be a demand for a limitution of divideats
which is now ten per cent., to eight per cent, ; then to soven, then to six, then to five, then the commotation for government stock. Mr. Glyn and his party may think that ten per cent., uader the guarantee of the government, is the best thing they can have; but they can never have it, for a government guarantee is worth nothing. It has been shown already ; Mr. Hodson has denounced the breach of faith with the companies; but this is in time of peace and a mere ambitions movement on the part of Mr. Strott; but what will the government guarantee be worth, when the ministry of the day offer, for an election bait, a reduction of railway profits and charges t-which will be an eligible measure, as it will not be at their own expeose. An additional 1 percent. on the income tax may very well be met by a dimiaished 2 per cent. on railway dividends, -and chancellors of the exchequer are not scrupulous on such points.
The real enemy of railway and engineering interests, and of the public interests in such matters, is the government, and they have shown it. They have ambitious eads to serve, and they do not care how they gain them. They have traded upon the uopopularity of railwaya, they have created a great patronage and a great influence, but what single good have they done for the public? "They have dimiaished railway accidents." They have done nothing of the kind. The development of the railway system has diminished accidents; but government inspection has been found to be no safeguard and no remedy: bridges fall down after they are inspected, lines are obliged to be closed, and inspectors make reports after accidents to tell the public what the newspapers tell them much better. - "They have lowered fares and tolls, and obtained better accommodation for third-class passengers." They have done no such thing, for fares are lowered in consequence of the growing conviction that the lower the fares, the larger the trafic and the greater the profits; while, by interfering with third-class accommodation, the Board of Trade has created a prejudice and iudisposed the companies from extending accommodation. While the Board of Trade bave done no good to the public, they have unsettled railway property; and the first thing for its safeguard is to do eway with Board-of-Trade inspection altogether.

THE BLADE PROTRACTOR.

(With an Engraving, Plate XVI.)

Registered by Mr. James Basiex, Jod., of Red Lion Square.

We have much pleasure in introducing to our readers a new and useful instroment, invented by Mr. Basire, for the purpose of facilitating the ploting of trigonometrical surveys. It is a very important improvement on the protractor, and consiats in the addition of a blade fixed to the arm of the instrument, as shown at Gg. 1 in the Engraving, and by the aid of which the lines ary at once laid off, without the trouble of first pricking off the point, as shown iu fig. 2, which in the ploting of some survegs occupies considerable time; besides which, the work is done with much greater accuracy, as it is only necessary to fix the instrument on a meridian and draw the angles at once.

For military and mining surveying, or other work set out by angles, this instrument will be invaluable, and to architects and artists of great service for copying, reduciag, or enlarging drawings. In the Eagraving an example is given in fig. 3, showing how the instrament is applicable for marine survegs: the blade protractor is first placed on the station A, and all the angles at once drawn off; it js then shifted to the gext station \mathbf{B}, and the angles laid off bisecting A and C; and so on.

The inatroments are got up in German silver, and aro furnished with four blades containing various scales, and placed in a neat and compact case, and are to be had of tbe inventor.

Tumnel across the St. Lauoreace.-A project is spoken of in Canada, for connecting the railroad ronning to the Atlantic, by tunnelling the St. Law. reace, opposite the inland of Montreal. The funal at its narrowest part, near St. Helen's Island, wili be about one-third of a mile from shore to sbore, and about one-third the leugth of the principal tannels in England. The depth of the water in the river is 48 feet.

Dee Bridge Girders.-One of the pirders of this bridge has been tested, to ascertain tbe breaking weight. The experiment was made on the sth ult., by the offcers of the Cbester and Holyhead railway, by gradually placing railway bass over the centre division of the girder, ontil it reached 88 tona 6 cwt .2 grs. 18 lb ., which brake it, the fracture commenoing at the bothom liange.

SLUICE GATES AND RAILWAY LIPT BRIDGE.

Sis-At page 244 of No. 119 of your excellent Journal, is the desoription (taken from the Franklin Jowrmal) of a new sluice gate, invented by F. C. Lowthorp, civil engineer, of Penneglvania. Allow as to claim the priority of this invention for one of our conntrymen, long slace deceased, and thus discharge a debt due to the memory of one who directed the first steps of our profeasional career and who was to us both a friend and a master.

It is now abont 30 years since T. BLANEEN, Inspecteur general du Waterstagt in Holland, well known by his grand Capal of the Helder at Amstendam, erected in this country the first sluices with what are termed fan-gates (a coentail, waaijerdeuren). These gates are precisely similar to those described in your Journal, ercept that their application and the flow of water are arranged in a simpler manner than by the American engineer. The first experiments having perfectly succeeded, the king Lovis Napoleon decreed that these slaices should bear the name of the inventor, and gave then the tille-Blankensluizen.

A large number of the sluices of this country, of which the openings vary from 4 to 12 metres (13 to 89 feet), have been constructed on this principle, and their use has become general among us. M. Wiebeking bas given a description of them in his large treatise on bydraulic works.

Permit ng, at the same time, to claim the priority of the application of the Railway Lift Bridge, of which you give a description at page 241 of the same number. A moveable bridge, on this priaciple, was erected last year on the railway from the Hague to Rotterdam.

We trast, Sir, that you will have the goodness to insert this brief explanation, and beg you to receive the assurance of our perfect eateem.
(Signed)
Hagwe, Sept. 13, 1847.
F. W. Conrad,
L. J. A. Vamper Kon,
(Dutch eugineers.)

Ryvinwis.

Observations on Lime, Calcareous Cements, Mortars, \&c. By MajorGeneral Sir C. W. Pascery, K.C.B. Second Edition, Part I. London: John Weale, 1847. Pp. 209.

Both the engineer and architect are under great obligations to General Pasley for the very elucid manner he has set fortb in this treatise the result of many years' laborions researcbes and experiments on limes, mortars, and cements. When the first edition of this work appeared in 1839, we then perused it with great pleasare, and strongly recommended it to the profession; and as a proof of the correctness of our opinion, the work was very soon out of print, and has been since much sought after, which induced the author to publish a second edition. He may well be gratified to find that his laborious researcbes bave induced several manufacturers under differebt appelletions to manufacture the artificial cement recommended by him. The General observes in his introduction,-
"When he first published his researches on the subject, all the previous attempts to make a good artificial cement in this country had mo far failed, that only one sort, that prepared by Mr. Frost, had found its way into the market, which was of inferior quality, owing chiefly to certain defects in the mode of preparing the ingredients, pointed out in the First Edition of this work. At present there are three manufactories of artificial cement in England, which have all heen used more or less extensively in works of importance, and have given satisfaction; viz., first, that of Mesars. John B. White and Sons, in the parish of Swanscomb, Kent, the present proprietors of Mr. Frost's works, who, after gradually relinquishing the objectionable parts of bis process, have succeeded in making a good artificial cemeat, which they call their Portland cement, by a mixture of chalk found on their own premises with the blue clay of the Medway; secondly, that of Messrs, Evens and Nicholson, of Maochester, who make an artificial cement, which has been called the patent litaic crment, with the very same ingredients, and in the pame proportions nearly, that were used in the Author's experiments, but the most important of which is obtained in a round-about manner from the residual matters or waste of certain chemical works, instend of working with aatural substances; thirdly, that of Mr. Ricbard Greaves, of Biratford-upon-A von, who makes a powerful water cement, which be calls blog lias cement, by miring a proportion of indurated clay or shale with the excelleat blue liar lime of that neighbourhood, both of wbjch are found in the same quarries; the former being proviously bruken and ground, and the latter burned and slaked, which is aboolately necessary in making an artificial cement from any of the bard lime stores.

THE NEW YORE
FUBLIC LIBRARY

ABTOR, LENOX AMP TILOEN FЯHMBATHON

The auccess of this process, as a commercial undertaking, though the most expeosive of all that were soggested in the First Edition of this work, is therefore peculiarly satisfactory, considering the great importance of good water cement, and the probability of the nataral cement stonez of this country, which are only fonnd in certain localities, becoming unequal to the demand, or scarcer then they are at present."

We will now proceed to give a few extracts from the treatise, to show its practical character; first, as to the qualities of sand and lime, constitating Morlar.
*The sand used in making mortar should be sharp, that ia, angular, not round, and clean, that is, free from all earthy matter, or other than silicions particles. Hence Road Scropings alwaya, us being a mixture of arad and mud, and Pil Sand generally, as being scarcely ever without a proportion of ciay, should be washed before they are used, which is meldom necessary is river sand, this being cleaded by the force of the current which is the cause of its formation. None but clean sharp sand will ever form good mortar, and the intimate mixture of the sand and lime, which should be done with a moderate quantity of water, is of no less importance.

I have ascertained by repeated experiments, that one cubic foot of well barned chalk lime, fresh from the kiln, weighing 35 lb ., when well mixed with $3+$ cobic feet of good river sand, and about 18 cubic foot of water, produced abont 34 cubic feet of as good orortar as this kind of lime is capable of forming. Some readers may be surprised that this mortar should occopy rathor less space than the and alone originally did, before the lime and water were added 10 it . The principal reason is, that dry sand, and all dry loose materials generally, settlo into a much smaller space when wetted. Hence the same quantity of sand measured dry, then moiat, and afterwards wet, will occupy noequal spaces. The clean sharp river sand, rather moist, used by us, weigbed aboat 87 lb . per cobic foot. On gradually pouring water upon it in the measure it settled down from 12 to 9 inches in beight, thus occupying only four-fifths of the apace, which it had before filled.

Pure lime is so little capable of resisting the action of water, that it is unfit even for the external joints of walls exposed to the common vicissitudes of the atmosphere. For by degrees the beating rains, to which the ootside of such walls is subject, will gradually destroy the mortar of all those joints to a certain depth, as may be observed by inspecting old walls built with chalk lime mortar, which have not been meddled with for some yearn....... Walls built with the water limes settlo less, and those built with cement are entirely free from this action, because the cement used in the lower courses sets too soon for the weight of brickwork or masonry added above to make any impression on the joints. Now though the difference of settlement, even between those extremes, may be very small, it does not appear prudent to use more than one species of mortar in the same horicontal joints of a building, eapecially as it would give trouble to the workmen, and occasion loss of time.
Pure lime mortar bat sometimes been used for the backing of wharf walls, the front or facing of which has been protected by water cement, usually to the depth of aboat 18 inches, or two bricks thick, from the outside of the wall. Even this system, though it does not involve the entire ruin of the wall, is highly to be reprobated. The cement protects the pure lime mortar from the diract action of water in mass, bat not against wet or damp, becanse the moisture penetrates through the pores of the brickwork and of the cement, and alibough not in sufficlent quantity to dissolve the pure lime mortar, it effectoally prevents it from setting, so that it always remains in a atate of soft pulp, and is of no more ase towards the consolidation of the wall than so much moist clay."

The next division of the work treats of Plaster of Paris, as it is generally called. To teat its quality-
${ }^{6}$ Mix a amall quantity of it with water in the form of a ball, and it will set with moderate heat into a very hard fine white substance, and will even continue setting under water, but being partislly soluble in that liquid in process of time, it is not applicable to the purposes of hydraulic architecture."
The division on Hydraulic Limes describes the different limes called in London, " atone limes."
"The blue lias lime stones are considered the stroagest water limes of this conntry, and are foond on opposite aides of the Bristol Channel, near Watchet in Somersetshire, and Aberthav in Glamorganshire, and also at lyme Regis in Dorsetshire. The first of these, mixed with puzzolana, was used by Smeaton in building tbe Edystone Lighthouse. The Dorking or Meratham lime, and the Halling lime, so termed from a village on the left bank of the Medway ubove Rochester, but which is also found near Burham on the opposite site of the same river, though not possessing such strong hydraulic properties, are also much esteemed; and these two limea, the former of which is considered rather the best, are more used in the metropolis than the blue lias, probably from the greater proximity of the quarries where they are found, and from very litlle land carriage being required for either.

All the water lime atones are of a blaish grey or brown colour, which is communicated to them by the oxide of iron. They are usually termed 'stone lime' by the bailders of the metropolis, to diatingaish them from common chalk lime, but 80 far improperly, that the Dorking lime stone is pot mucb harder than chalk, and the Halling lime stone is actnally a
chalk, and not harder than the pure chalk of the same neighboorhood, from which it is only distinguished in appearance by being a little darker.

In fact, all the coloured chalks found in various parts of England, commonly termed Grey Chalks, which are the Lower Chalks of the geologists, and generally free from fliats, are possessed of hydraulic properties more or less powerful."

The chapter on Concrete contains some useful directions for mixing the ingredienta, which is followed by some observations on "grouting." Among architects and butidera there is a difference of opinion as to its advantages; our author's opinion appears to be favourable to its use.
" Upon this subject, I may be permittod to remark, that uoless every conrse be grooted, it appears to me that there ia a riak of the grouting not penetrating lower than the aingle course immerliately under it, for the beds of plastic mortar in the next courses below that, have sufficient consiatency to intercept the grouting, ubless those beds themselves should have been imperfectly laid, which seldom or never happens, even when middling or indiffereut bricklayers are employed. For this reason, one can scarcely expect sound brickwork, uuless every course be grouted, especially in thick walls, although the more general custom is to work with mortar ooly. When one of the massy walls of the new British Museum, after being grouted in the manner before described, was cut through for some temporary purpose, it was remarked that the brickwork resisted the tools of the workmen quite as much, and appeared equally firm in the jointa, as if the lafter had been filled with plastio mortar instead of grouting. Tue same risk of part of the vertical joints being left dry may ocour alco in masonry, and there can be no method of guarding against it more effectual than to grout each course."
Water cement, or what is called "Roman cement," comes next. This material, we consider, has been abused in its use more than any other connected with building, and from its repeated failures in exposed situations, and particularly when used near the ground for stucco and on the top of projections, such as oornices, make one doubt its boasted durability for such works; but whether its failure be owing to the improper mixing of too much rand, or the cement being of bad quality, it is difficult to say: we may instance as a failure the balustrade enclosure on the east side of Regent's-part, which has been frequently repaired. In the construction of brick-walls, cement appears to have stood well, and might be advantageously used to a greater extent than what it is; when all circumstances are taken into consideration, the expense is not very much more than lime-mortar. General Pasley observes, that "cement" is always weakened by the addition of sand, whereas every kind of lime is improved by it. For concrete foundations it is requisite to use double the quantity of cement than in required when lime is used, consequently it is not recommended for that purpose; but for the lower parts of a wharf-wall or pier under water, one measure of cement mixed with three, and not more than four, of gravel or sand, may be advantageously used.

The valuable information communicated by the General on the manufacture of Artificial cement made from chalk and clay, form the most useful part of the treatise, and deserves the attentive study of all parties connected with building. We will select one or two of the author's successful experiments, detailing the process of making the artificial cement, which we here suggent should be called Pasley's Cement, in contra-distinction to the numerous ceraents which are in the market; none of which, however, appear to be superior, if equal, to the one recommended in this treatise, and which the General found to be the best after a long series of trials and experimenta. The first experiment on a large scale is thus described :-
"Having, towards the close of the year 1898 and in the beginoing of 1829, tried as many experiments on a small scale as I then considered necessary, I determined to prepare a considerable quantity of artificial cement composed of chalk and blae clay, with a view of applying it on a larger scale, to tbose parposes for which the natural cements have beed used in architectore.

The chalk, after having been broken small and dried iu the air, was pounded in small quantities at a time, in iron troughs that had belonged to a forge, with irou rammers made for the purpose, and was passed through sieves with brass wires, having 25 meshes to the inch, being the finest used in the Ordnance gunpowder works. A large mass of dry pulverised chalk being thas provided, 5 cabic feet of it were laid on a wooden platform, and made into a paste with a moderate quantity of water, after which 2 cubic feet of the blue clay were added, and the whole intimately mixed together on the same platform by shovels. When a sufticient quana tity was prepared, the mixture was dext moulded in the same manner as common bricks, excepting that water was used instead of fine sand to prevent adhesion. After these bricks of raw cement, which were twelve inches long, became drier, they were cut into five equal parts, each forming a cube of rather less than 21 inches side, this being the average size of the lumps into which chalk is usually broken, before it is buroed, in the common open lime-kilns in Kent. I made my moulds exactly 18 inches long, and $2 \frac{4}{10}$ inches wide by $2 \frac{4}{10}$ inches deop, in order that 25 bricks, or 125 cubes, should be exactly equal to one cubic foot. Thus, by merely
counting the number of bricks, we could ascertatn the quantity of raw coment made, withort the troable of measuring it."

This experiment not proving so successful as was denired, tome experiments were again made on a small scale, and subsequently on a larger scale, in a small lime-kiln about four feet diameter at top, and six feet deep.
"In this little kiln, than which nothing could have answered better, we borned, at lonr seccestive periods of the same year, about 140 cabic feet of raw cement. In the first of these batches of artificial cement we used the same mixture as before of 5 meesures of chalk, 2 measures of blue clay, and half a mensuro of coal-dast ; and is borning it, after putting in shavings and wood at the bottom of the kiln, we inid half a beshel of coals over the wood, then foar bashels of the raw cubes, after which another layer of half a bushel of coals, then four bushels of cubes as before, and thos we continued applying the coals and cement oubes in alternate layers, matil thankiln was filled, osing one measure of coals to eight measures of raw coment, the former being broken rather gmall, so that no piece of conl meed exceeded an inch in thickness, and both being thrown loonely into the baskets with which we mensnred them.

In the thind and fourth batohes of rew cemoat propared for burning at the same kiln, we dispensed with the coal-dust altogether, nsing 5 mearcures of chalk to 2 of blue clay; and wo meroly poonded and sifted the ehalk, without grinding the powder afterwarde in the mill; and in consequence of there being no fuel combined with the rew cement in this mixtare, we used one meanre of coals to fire measures of the raw cement enbee in burning thom, which proportion we alvaya adhered to afterwards, as the best for this mixture."

The remainder of the treatise details the pumerons experiments made by the General to test the strength of all kinds of coment, to which we must refor our readers.

In conclusion, we confidently recommend an attentive perual of this treatise to every one who may be desirous of obtaining sound practical information on limes, mortars, and cements.

Heale's Quarterly Papers on Engineering. Part I. Vol. VI. London: John Weale, High Holborn.

The present number of Mr. Weale's journal consists of three papers-I. "On the Principles and Practice of the Application of Water Power," by Robert Mallet, President of the Geological Society of Ireland.-II. "Experiments on Locomotive Engines," by MM. Gouin and Le Chatelier--III. "Paper on the first Introduction of Steam Engines into Naval Arsenals; and Machinery set in motion thereby," by the widow of the late Sir Samuel Bentham.

The first paper contains an account of the projected Dodder Reservoirs, near Dublin, and of the Bann Reservoirs, now in course of construction. Mr. Mallet has likewise favoured us with a description of his self-regalating syphon weir, which seems to ns extremely ingenious, and perfectly correct in principle, whatever it may torn out in practice.
"Orer a common weir, or embankment, is thrown a large flat-shaped syphon tube, made of boilor plate, and for stinness divided into sereral parallel tuben by vertical plates. One end of this syphon (which may be extended indefinitely along the crest of the weir) dips into the water ponded above the weir, the other end lays open at the lower side of the weir. The under side of the syphon tabe reposes upon the crest of the weir, and the depth of the syphon tube, or distance vertically ooer the crest, is equal to the height to which the rise of water in times of llood may be permitted, (in the instance shown equal to it foot).

At auch a level below the crest of the weir as it is determined shall be the lowest to which the pooded water shall be wasted by the syphou, there is formed a range of air holes, or simple apertures through the upper plate of the syphon tube. The action of this arrangement is now very obvious. Whilever the water above the weir continues at the 'standard level,' nude rans over or through the syphon; as its level rises above this, a sheet of water flows over the crest of the woir, and also down through the fiat ayphon tube, as part of the weir. This continues as the level of the water rises higher and higher, until it reaches that marked as the limit for the 'highest floods,' that is, the level of the upper side of the syphou tube. The moment the water reaches this point, the syphon, being quite full, instantly commences to act as a syphon, and discharges a quantity of water, onormously greater than before-a quantity due, not to the mere crea of overflow through the partially filled syphon, but to the area of the syphon tube, and to the head of water now acting upon it as a syphon. This vastly increased discharge, now more than a match for the supply of the river itself, begins to lower the water above the weir, and its surface continues to fall until it reaches the point marked as the 'lowest level' that it ahall attain. Hore the range of air boles are situated, and the instant the surface of the falling water reaches these, air enters the syphon, and it directly ceaves longor to act as a syphoo, and becomes merely a part of the woir conducting the ordinary overlow. This procest, the sudden bring-
ing of the syphon into action when the water reaches a given level, asd sudden cespation of its action again when it has fallen to a siven level, may be eodlesaly repeated; and the effect of the ayphon, when in action and suitably constructed, is in fact very aearly the same as soddealy open. ing a slulee, equal to its entire area, at the level of the bottom of the wreir or dam."

Experiments on the discharge and How of water from orificen and throngh tubes are much needed. Eytelwein's formula in genarally adopted by engipeers, though we much doubt whether it would be found applicable if the leight of the bead of water were to exceed a certain limit-say 100 or 150 feet.

The second paper-a Experiments on Locomotive Engines"一hus rather a formidable appearance; the tables contain as many figures as Mr. Adams employed in the calculation of Neptune's orbit. We poticed an allusion to the fact of the difference of pressure in the cylinder and boiler being a function of the load, as a theory of M. de Pambour;-for this difference and the cause of it, we beg to observe that Nature, and not M. de Pambour, is responsible; altuough that gentleman, we believe, first correctly interpreted her laws on the gubject.

The last paper is a bighly-interesting historical sammary of the labours of the late Sir Samuel Bentham.

The Indicator and Dynamometer, with their Practical Applications. By Professor Mans, of Portamouth, and Mr. Thomas Brown, Engimeer. London : Hebert, 1847.

The object of this wort is to explain the nse of two valaable instruments for ascertaining the work done by the steam engine. The Indicator is one of the many of Watt's valuable instruments, and on which that great man set high value, on account of its simplicity and importance. By the application of the indicator the working condition of a stedm engine $2 s$ at once tested. The Dynamometer is introduced into screw vessels for ascertaining the amount of pressure given off by the screw shaft, and consequently the force the engiue is exerting to propel the ship. The use of both these instruments and their application are very clearly explained in the little wort before un.

Letter to Lord John Russell, on the Defonce of the Country. By Jorn Weale.
Mr. Weale's object is to train for soldiers all the able-bodied men who may apply for relief at the Union, and he very croakingly points out the great dangers to which England is liable from the audden invzsion of the French. We should be very sorry. to see England turned into a country of bayonets; we much prefer the epithet of "a country of shop-keepers." Let men be taught how to avoid war, and not teach them the use of the carbine, to murder and pillage their fellow beinge Knowing Mr. Weale's disposition, we must say that we never nonpected bat be would have recommended such a system as he has promalgated in the pamphlet before us.

COLONIAL RAILWAY PROGRESS.

Madras and Arcot Raiboay.-A companv has been started to effect the junction of these two important points in Ídia. The line has been highly recommended by Mr. Simms, the government engineer. Its length is 71 miles, and is nearly a dead level, the average inclination being only 1 in 633 feet; there is no tunneling, Dor any cuttiog of consequence. The proposed line is the first stage out of Madras on the great western lime of commonication with Bombay and the military stations of Arcot, Bangalore, Hyderzbad, Canmanore, and Trichinopoly; and is aecond in importance to no lise in India. It will be constructed at as low a cost as $£ 5,000$ a mile.

Australian Raihay and Sydney Water-Worke Compasy.-This colony being in such a fourishing condition. It has been determined to introduce rillway communication on the asme economical system as practined in Amerian. The line is intended to runfrom the port and town of Sydney to Richmond, pasaing through Paramatia, Castlereagh, Windsor, and other pleces of minor importance, with a branch from Paramatta to Liverpool; and it in aleo intended to supply Sydney with water from the hills. This is of great importance to that town, it is at prenent mupplied with water from a lagoon, which is almost dry in the enmmer season. The line is 45 mile io beagth, and can be constructed remaricably cheap, at government will find land, and the country abounds with a very hard and durable timber, called iron-bark wood, particularly woll suited for fleepers and rill, by merely arming the edge with angle iron.

MBASUREMENT OF ANGLES.

A Nev Method of Meaguring the Degrees, Minuter, \&ce., in any Reetttinear Angle, by Compases only, wilhoul using Scale or Protractor.

By Ourvez Brene.
Let it be required to find the number of degrees, minntes, \&cc, in the angle ABC $=0$ (Fig. 1). With any radius, AC, describe a circle: thon

take AB in the companes, and apply it from B to 1 ; from 1 to 2 ; from 2 to 3 ; \&c. (the nombers outaide the circle are referred to). If, in applying the arc A B, we find that on our return to B, after n applications, we have a coincidence, then it is well known that the number of degrees, \&cc. Will be $=\frac{360}{m}$. But, in the preaent example, after eight applications the point falls at 8, putting $\Delta_{1}=$ from 8 to B, continge to apply the ame are or opponing of the compasces from 8 to 9 ; from 9 to 10 ; from 10 to 11 ; \&ece, on to 16. This process is to be continued till we have the half or more than balf the arc A B between the last point found and B. In this case 24 in the point. Any error that may be involved in the process will be much neatralised by thos determining the points $8,16,24$, \&cc. independently. Theoretically, the arcs $B, 8 ; 8,16 ; 16,24$; tec are all equal, but practically they may imperceptibly differ. We might have taken the are $B, 8$, and applied it from 8 to 16 ; from 16 to 24 ; sec,, hat this procest would maltiply any error that might be involved in $B, 8$; while the process just deacribed has a correcting eendeacy. To leaven arror further, we are again to begin at A, and apply the arc AB in a contrary direction, from A to 1 ; from 1 to 2 ; from 2 to 3 ; ecc. (the numbers inside the circle are in this case referred to). 8 hould the pointe 24 and 16 coincide, as in fig. 1 , then we have

$$
\begin{gathered}
8 \theta+\Delta_{1}-360^{\circ} ; \text { and } 5 \Delta_{1}=\theta i \\
\therefore \Delta_{1}=360^{\circ}-8 \theta=\frac{\theta}{j} ; \quad \therefore 1800-40 \theta=0 i \\
\therefore \theta=\frac{1800}{41}=43^{\circ} 54^{\prime} \Leftrightarrow
\end{gathered}
$$

If the point 84,24 , overwrap or fall, as in fig. 2 . Then put $\Delta_{9}=$ from 24 to 24 : thin arc will be very small in most ceses-in this case it is the 20th part of AB;

$$
\therefore=20 \Delta_{4} ; 80+\Delta_{1}=360^{\circ} ; 6 \Delta_{1}-2 \Delta_{2}=0 .
$$

Frem thee equationa, which involve the unknown quantities $\theta_{,} \Delta_{1}, \Delta_{8}$ is readily eliminated.

$$
\begin{gathered}
\Delta_{1}=360^{\circ}-8 \theta, \text { from the second } ; \\
\text { and } \Delta_{1}=\frac{\theta+2 \Delta_{2}}{6}, \text { from the third. } \\
\therefore 2160-48 \theta=\theta+2 \Delta_{2}=\theta+\frac{\theta}{10} \text {, aince } \Delta_{y}=\frac{\theta}{20} . \\
\therefore \theta-\frac{21600}{491}=43^{\circ} 59^{\prime} \text { 维. }
\end{gathered}
$$

If the points 24,24 , do not overwrap, as in fig. 3 , and Δ_{1} be in azcess instead of defect, that it, that some multiple of 0 made leas by Δ_{1} make ap the circomference. In this case the three equations will stand thus :-

$$
50-\Delta_{1}=360^{\circ} ; \quad 10 \Delta_{1}+\Delta_{1}=\theta ; \text { and } 29 \Delta_{1}=\theta
$$

In thil example, the distance between 24 and 24 , or Δ_{g}, is found to be the 29th part of the arc AB.

$$
\therefore \theta=\frac{52200}{711}=73^{\circ} 25^{\prime} \text { nearly. }
$$

It is evident that the numbers on these figures may be omitted in prectice, as none of them axcept the firat is required; indeed, where the points of the compesses reat aeed not be noted, except those points that fall inside the points A, B.

Fig. 8.

This method of measuriag an angle is more aconrate and axpeditions thanmay at firat appear from the above lengthened details, and will often be found convenient when compases only can be obtnined. A general rule may be arrived at at follows: Let

$$
m \theta \pm \Delta_{1}=-260^{\circ} ; \quad \Delta_{1} \pm p \Delta_{2}=\theta ; \text { and } q \Delta_{1}=0 ;
$$

be the threc equations generally axpreased; p baing alway equal +1 or -2.

$$
\begin{equation*}
\theta=\frac{n q \overline{m q}}{\operatorname{mq} q \underline{q}} \tag{Q}
\end{equation*}
$$

In axample, fig. 2, this expression becomes

$$
\theta=\frac{6 \times 20 \times 360}{8 \times 6 \times 20+20-2}=43^{\circ} 59^{\prime} \frac{1}{1}
$$

In axample, fig. 3,

$$
\theta=\frac{10 \times 29 \times 360}{5 \times 10 \times 29-29+1}=73^{\circ} 25^{\prime}
$$

The ouly thing to be obearved in (Q) is the sign of q. In examplea like the latter it is to be minus, but in those like the former plus.

This method of measuring angles will be found more correct than the ingenions one proposed by M. De Lagny, which consists in mesuaring angles with a pair of compamea, and that too withont any ecale whatever, except an undivided semicircle. Having any angle drawn npon paper, to mensura it : produce one of the dides of the angle beckwarde behind the angular point; then with a pair of fine compases describe a pretty large semicircle from the angular point as centre, cutting the aides of the proposed angle, whicb will intercept a part of the semicircle. Then take this intercepted part very exactly between the points of the companees, and turn them succeadively over apon the arc of the somicircle, to find how often it is contained in it, aftor which thert is commonly some remainder; then take thin remainder in the compasser, and in like manner find how often it is contained in the last of the integral parta of the first arc, which will again moat likely give fome remainder; And in like manner how often this lant remainder is contained in the former; and mo on continually, till the remainder becomes too small to be taken and applied st meanore. By this menna M. De Lagny obtained a series of quotients, or fractional parta one of another, which being properly reduced into one fraction, give the ratio of the first are to that of a semicircle; or the ratio of the proposed angle to two right anglea or 180 degrees, and consequently the degreen and minutes of the angle itelf becomes knawn.

Suppose the angle A C B (fig. 4) be proposed to be mearared. Produce $\Delta \mathrm{C}$ towards D ; and from the cantre C , desuribe the semicircle $A B D$, on which AB is the meanure of the proposed angle. Take AB in the con.
pamen, and apply it three times on the semicircle, at 1,8 , and 8 ; then take the remaindar $D_{1} 3$, and apply to back mpon 3, 2, whloh in but once, gamely, et 4 ; again, take the remeinder 4,2 , and apply to three times on 4,3, at 5,6 , and 7; then take 3,7, and apply it twice on 7,6, at 8, and 9; lumb, tate the remainder 9,6 , and it will be foand to be contained just five tines, in 8,9 . Henos the ceries of quotionts in thit particular example is $3,1,3,2,5$, which give the continved traction,

give valgar froction fits and $\frac{18}{18}$ of $180^{\circ}=47^{\circ} 44^{\prime}$ aearly.
To thoee mequainted with the doctinge of continaed fractions this method of De Lagny in eany etrough, and very mocurnte considering the means emplojed. If great aceoracy be not required, our mothod may be much contracted, by only applying the are once round the circle, and then naing Δ_{1} to ind all the other required numbern Taking the ame angle as the ose

meatared in example 3, apply A B (48 . 5), from B to 1 ; from 1 to 2; from 2 to 3 ; from 3 to 4 ; from 4 to 6 . Then take $B, 5$, in the companes, and apply it from B to 11; from 11 to 12; from 12 to 13; from 13 to 14; and from 14 to 15 , near the middle of the are A B. With the ame opening $B, 6$, or 4,4 , or Δ_{1}, as we have termed it, lay off, 4,$6 ; 6,7 ; 7,8 ; 8,9$; and 9,10. Then the are between the pointa 15 and 10 in found to be contaised 83 times in the are AB; but before it was contained 29 timen, for $29 \Delta_{\mathbf{g}}$ was found equal to 0 . But by thit latter contracted procese we find that $33 \Delta_{1}$ is equal 0 . Our object in to ahow that this discrepancy will not alter in any great mount the result or moanure of the angle in degrees, minntet, \&ce. Prom (Q) we have

$$
=\frac{n q \pi}{m q \pm q \pm p}-\frac{10 \times 33 \times 360}{5 \times 10 \times 33-33+1}-73^{\circ} 25^{\circ} \text { 昣. }
$$

Thin reault was $73^{\circ} 25^{\prime} \frac{6}{5}$, when q was 29.
To obtain the divisor of (Q), the three numbert m, n, q, have to be multiplied together; to their product q is to added if min be too small, but subtracted if too great; to thit sum or difference wo mast add one if n be too great, but subtract two if in be too amall. In the latter case, (Q) becomet $\frac{10 \times 33 \times 360}{5 \times 10 \times 33-33-2}=78^{\circ} 33^{\prime}$ nearly, a reault which differs from the former raults only by 6 or 7 minutes. This circumstance points ont the groat value of the rule, for it is evident that the reault remaing nearly the same, whatever be the positions of the points between A and B. Orin other words, the carelcasnewe of the operator does not moch sffect the reault, for in all casea it comes nearly right. I most digreas, and add, what a pity tbat our statesmen, architects, engineert, \&en cennot dincover a few rnles of this hiod.

[^37]
ON HERALDRY.

A paper "On Heraldry," by Mr. Paeteidos, read at a meeting of the Decorative Society.

Heraldry was explained to be an organization of omblems and devioes, which, undoubtedly, moet have existed from the earliest establishment of order and civilisation among the haman race; and varions pasagee containing records of, and allunions to, its symbole were quoted from Biblien history, showing that it was the medium adopted for diatingriahiog frienda from foes, nation from aation, and tribes and families from each other, Mr. Partridge also referred to, and quoted pasages In, Homer, Honiod, and others, doacribing the shields of their heroes ; adding, that the abiakis of Achilles, REneas, and Horcules had, in his opinion, been deseribed with poetical license, but, nevertholese, supplied evidence of the custom of oramenting shields in the richest manner of the arte of that pariod. He likewise conaidered as fabulous the descriptions given by the Jewish rabbi of the standards pitched by the Ten Tribes of Israch. Bome roferences to the subjeat doring the Roman ert were followed by obeervations upon the great change made in the institutions of this country by William the Nor man; who modelled his conrt, as far as practicable, after that of Now mandy, and who, therefore, introduced the very remarkable ollicers whom duties were atrictly heraldic.-The Great Constable, whowe anthority in matters of war and chivalry, both in France and England, daring the Norman and Piantagenet reigns, was little less than that of the monarch. The Great Marshal was an important dignitary, whose influence was at its eenith at the time of the Conquest ; and the office atill remains, through all the changes of legislation and government, one of great power and influence. The third office, being, perhapa, the most singular of any adopted by the Conqueror, was that of Champlon. Mr. Partridge treced the hereditary descent of the championship from Marmyon, who received his appointmeat, with the manor of Scrivelsby, from Williem; and guoted verses from an ancient poem in which the changes in the families of Mar myon, Ludlow, and Dymoke, the present champion, are set forth. He then referred to Camden, Guillim, Bir Henry Spelman, and other eminent avthoritien, ahowing that although many of our nuble fumilies can prove thels descent from before the tjome of the Crusades, yet their arms or heraldia bearings had not become hereditary. Afler the crumades it was acconnted honourable to display those easigos which had been borne in the Holy Wars ; and heace the desoendants treesured them as their hereditary arma, and the opinion of Lord Chief Justice Coke was quoted ahowing that he considered this as one of the strongent proofs of a noble and wortby origin.

Mr. Partridge then recited the Roll of Cariaverock-a record in old Norman-French of the names and arms of the leaders who merved mader King Edward I. at the siege of Carlaverock Castle, Beotiand, in 1800 ; and explainod that at that timo heraldry was ombodied as a acience as nearly as possible to its form at the present day. Tonroments were alluded to as an important meens in sustaining the digaifed bearing and accurate tramsmission of armorial boaringe down to the time of Elimabeth, -When the eatablishment of the College of Heraldry and the viaitation made under its direction created a brond distinctive line bytween the anciont families and those who have risen to greatness by the facrease of civilization and wealth aince that period.
Mr. Partridge next drew attention to those arms and motton which from their relation to names have been ordinarily considered and tormed "panping arma,"-but which he said had been praclised in remote antiqnity; when namea had a symbolical sonrce and meaning. He mentioned soveral names derived from important olincinl dutien, auch as Usher, Mntler, 8tewart, \&eo., in which cases the previons family-name bad been disgsed,-a aleo that of Godolphin, in acoordance with tho signtication of which a white eagle is adopted as the crest by that family: and this was followed by notices of others of a similar nature.
The lecturer then proceeded to show that the great poels of modera Europe have fully appreciated the valee of heraldic distinotions; and said that in the deacriptions of their heroes thes are ueually as heraldically correct as they are poetically beautiful. He reforred to and quoted parts from Tasso's "Jerusalem," Bbakspeare's "Wars of the Roses," \&con Inportaot alluslons in many fumily mottos, \&c., were illustrated : and then be bronght the aubject to a gonerni summary by maintaining that the detreators of beraldic scieace are bound to admit one of those two thinge, either to prove that ali the honours and distinctions which the sovereige of this or any other European state can bestow on eminent men are etter trash, or else to admit that beraldry is one of the important inatitutions of civilised Earope, as being the recognised medium by which the soveroign一the fonntain of honont-bestows that honour on men who have deserved woll of their conotry. This part of the paper was concluded by remarke opon the shield of Baron Napier, and the beraldic bononrs which he quar ters by his descent from Scott of Thirlestase, who received them from Kim James for his services at the battle of Falkirk in 1298 ; and the verres by 8 ir Walter Scolt were recited as affording the mont eloquent and perfect illustration. Heraldry, be obeerred, would be touad intimately bleoded with the geoeral history of the middle ages-with the biogruphy of eminent persons and familion-with manners and customs-with poetry and polite literuture; -and, woreover, il afforde a key capable of explaiaing correctyy the meaning of many mysterions and important forms prevalent in embellishments during the foudal period. He alloded to woveral posats
of interesting and somerwhat romantic research, showing heraldry to be chiefly a symbolical art.

Mr. Partridge then directed attontion to those heraldic figures celled "supporters"-sach as the lion and onicorn of the royal arms; and he anbseguently noticed the analogy existing between heraldic and natural forma. Sopporters, it was eaid, cams into nse when tonrnaments and feudal chiralry assomed a scale of splendour requiring a system of discinctions ; and it became a practice for the nobles and knighta each to bang his helmet and shield, richly emblazoned with heraldic insigaia, on the front of his tebt when in the field. Two attondants or esquires, dressed in arpoor, or in a fancifol costome imitative of certain characteristic animated beinga, were placed to guard or support them, and also to receive challengen when they arrived. Under such circumstances, it was argued, it is absurd to represent supporters as lying down, walking away, or half nsleep, while the heraldic attitude rampant should be invariably maintained. Mr. Partridge observed that frequent instances may be seen in 8t. James's Street and Pall-Mall, and even in the Garette and the Times, in which the sopporters of the royal arms are represented as crawling in mean.spirited positions, instead of "rampant, guardart, \&c."-as set forth in the blasonry. Mr. Partridge remarked that he had not been able to detoct an abuse of this kind occurring before abont the commencement of the present centary; and the supporters were never found in any other position than rampant either in architectural remaing or in old works on horaldry. He attributed this infraction in a considerable degree to a volume of Peers' Arms, with supporters, by Mr. Catton, R.A.; who, being a akilful painter of animals, but quite ignorant of the science of heraldry (many of the arms, it was said, are incorrectly gived, geve the sapporters every variety of attitude, so as to contribute to a novel and pleasing pictorial effoct. This coarse was much calcalated to mislead many who possessed some knowledge of drawing, bot were ignorantly indifferent to the correot heraldio expression and meaning. Mr. Partridge contended thet, if one person may change the attitude of supporters for the sake of pictorial effect, another would be equally jostified in changing colours, or in making still greater deviations. Heraldry, he asserted, malnly consists of imitations of natural forms, but which are nearly mivays made amenable to aymbolic and conventional treatment. In cases such as a stag, horse, or eagle "proper," nature may be in many respects faithfully copied from natural bodies; but it will be found that each of these is frequently placed with a symbolic form, anch as a dragon, whicb mast be depicted according to the regalations of heraldry. Instances in illastration of these views were offered. The Duke of Devonsbirs has for aupporters "two stags proper," in which case colour and form must be trie to nature, but the attitude remains beraldic. The Dake of Northamberland bas one gold and one blue llonWhich, if painted green, belong to the Earl of Roseberry, or if red, to the Duke of Bedford, Beveral similar ceses were cited. A regard to proportion or relative size of the objecta, the lecturer observed, would also tead to produce absurdities; and this went far to prove that they were never intended as pictores for natural history, but as symbolical distinctions treasured by their possessors from feelings of high bonour. Examples were adduced of beings of nequal sizes which are often brought together side by side in arms-as a falcon and an elephant-a lion and a cock, for supporters ; and similar ones were given applying to crests, quarterings, ace. It was explained that anpporters are attached to all arms of peers ; and that, with a fow oxceptions, they do not pertain to those of commoners.

Mr. Partridge then noticed the opinion sometimes held that the extravagent forms of animals used in architectural decoration, as woll as in heraldry, are the efforts during a barbarous period, when the people employed could do no better-and therefore ought not to be followed in the present advanced atate of manipalative skill. But be argued that this is an erroueous view; and that the human figure and animale were depicted with great fidelity together with momall show of nymbolic art upon uncient embroidered vestments, stained glass, and in illominated missals. He considered that the apparent eocentricily proceeded partly from causes not unfelt at the present day; and that many forms were devised to be repolsive of evil apirite and demoniacal infuences. The form and sizo of whields and some other fealures in heraldry were pointed ont for the purpose of illuatratiog its importance historically,-reforring to Winchester School, Eton College, and other buildings-as well as to atained glass wiadows at Chenies, Bolsover, and St. George's Chapel, Windsor. As an example of family history executed in the present century, a view of the Dake of Bedford's Dining-room was exhibited; in which Mr. Partridge decorated the panelling with shields bearing arms deacriptive of all the marriages in the Romsell family. He also mentioned that he bad been empioyed by Mr. Macready to emblazon correctly the arms of each pormonage in Shakspeare's play of "King John."

The paper concluded with some auggestions for the appropriate introduolion of heraldic ornament:-and it was atated that before now a shield bearing the proper arms placed on the frame to a portrait had formed an important link in entablishing a complete chain of legal ovidence.

NEW ARMAMENT FOR THE ROYAL NAVY.

Report of the New Armament which the Board of Admiralty has ordered to be prepared for the shipe of War of all classes in the Royal Navy. The Retorn includes the new Complements of Men ordered for each class of Ships, and directs the manner in which the Guns are to be Mounted :

Firbt-Ratrs.

120 Gnns.-Britannia, Caledonis, Howe, Nelson, Neptnne, Royal Albert, Royal George, Royal William, Bt. George, St. Vincent, Trafalgar, and Waterloo; total 12 ; complement, 1,000 men; lower deck, fonr 8 -inch guns of 65 cwt., 9 feet; twenty-eight 88-pounder gons of $65 \mathrm{cwt}, 9$ feet 6 incbes; middle deck, two 8 -inch gans of 65 cwt . 9 feet ; thirty-two 82 pounders of $50 \mathrm{cwh}, 9$ feet ; main deck, thirty-four 39 -ponnders of 42 awt., 8 feet; quarter deok and forecastle, six 82 -pounders of 45 owt., 8 foet 6 inches; fourteen 38-pounder carronader of 17 cWt ; total, 180 gans, t

110 Guns.-Marlborough, Prince of Wales, Queen, Rosal Frederick, Royal Suvereign, Victoria, and Windsor Castle; total, 7; complement, 950 men; lower deok, six 8 -inch Eans, twentr.four 31-pounders; middle deck, four 8-inch guns, twenty-six 88-ponaders; main deck, thirty 39. pounders (3) ; quarter deck and forecastle, six 32-ponaders (2); and fourteen 32 -pounders of 25 cwt .6 feet.

Total number of first-rates 19, mounting 8,810 gans.
8zoond-Rates.
104 Guns.-Camperdown, Hibernia, Impregnable, Princess Charlotte, Queen Charlotte, and Royal Adelaide; total, 6 ; complement, 850 men; lower deck, four 8-iach guds, tweaty-four 38 -pounders; middle deck, two 8 -inch guns, twenty-eight 82 -poonders of 48 cwt .8 ft; main deck, thirty 32 -ponaders of $32 \mathrm{cwt}$.6 fl 6 in ., on compressor carriages ; quarter deck and forecastle, six 82 -poonders (2), and ten 82 -pounder carronades of 17 cwt.

92 Gans.-London, Nile, Princo Regent, and Rodnes; total, 4 ; com. plement, 820 men; lower dect, eighteen 8 -inch gans, fourteen 32 -poonders ; main deck, sis 8 -inch gans, twenty-eight 82 -pounders; quarter deck and forecastle, two 8-jnch guns of 52 cWt .8 feet, and twenty-four 32 -pounders (3).

90 Gade, Albion, Aboakir, Algiers, Exmoath, Hannibal, Prinoess Royal, and St. Jean d'Acre; total, 7 ; complement, 820 men. The armament of this class is precieoly the same as that of the preceding, with the exception of there being only twenty-six 82-ponnders on the main deck, inatead of twenty-eight.

84 Guns,-A gamemnon, Asia, Bombay, Calontta, Cenopns, Clarence, Cressy, Formidable, Ganges, Monarch, Powerful, Sans Pareil, Thunderer, and Veageance; total, 14 ; complement, 750 men; lower deck, six 8 -inch guns, twenty-four 32 -pounders ; main deck, two 8 -inch gans, thirty 32ponnders of 48 cwl .8 feet ; quarter deck and forecastle, siz 32 -poonder s (3), and sixteen 32 -pounder carronades of 17 cwt .

80 Guns.-Brunswick, Centurion, Collingwood, Colossus, Goliath, Irresistible, Lion, Majestic, Mars, Meeanee, Superb, and Vanguard; total, 19; complement, 720 men; lower deck, eight 8 -inch guas, twenty 38ponnders ; main deck, four 8-inch guns, twenty-fonr 82 -ponnders (1); quarter deck and forecaatle, twenty-four 32 -pounder guns (3).

Total number of second rates, 43, mounting 3,758 gans.

Third Rates.

78 Gons.-Achille, Bellerophon, Cambridge, Foudroyant, Hindoatan, Indns, Kent, and Revenge ; total, 8 ; complement, 650 men; lower deck, four 8-inch gans, twenty-six 32 -pounders ; main dock, two 8-inch gons, thirty 82 -poonders (2) ; quarter dook and foreomatle, six 38 -poanders (3), ten 82 -pounder carronades.
72 Guns,-Agincourt, Armada, Belleisle, Black Prince, Carnatic, Cornwallis,'Egmont, Hastings, Hawke, Hercules, Illustrious, Implacable, Invincible, Malabar, Medway, Melville, Pembroke, Pitt, Russell, Saitan, Wellesley, and Wellington; total, 22 ; complement, 600 men; lower deok, four 8 -inch guns, twenty four 89-pounders; main deck, twenty eight 32: pounders (3); quarter deck and forecastle, four s3-pounders (8) and twelve 32-pounder carronades.
70 Guns.-Boscawen, Cumberiand; total, 2; complement, 600 men; lower deck, four 8-inch guas, twenty-two 3s-poanders; main deck, two 8-inch gans, twenty-six $38-p o n d e r s$ (1 ; quarter deck and forecastle, sixtoen 32-pounders (3).

Total number of third-rates, 39, mounting 2,348 gase.

Fourth-Rates.

56 Gnns.-Ajax, Blenheim, Fdinhorgh, and La Hogre ; total, 4; complement, 500 men; lower dock, twenty-six 42 -poanders, of 66 cwt , 9 feot 6 inches; main deck, i wenty-two 38 -pounders (8) ; quarter deck and forecastle, four 56 -pounders, of $87 \mathrm{cwt}, 10$ feet, and four 10 -inch gras, of 86 cWh., 9 feet 4 inches.

50 Guns.-Alfred, Americn, Arethosa, Benbow, Conquestador, Con-

[^38]atance, Cornwall, Devooshire, Dublin, Eeqle, Gioncenter, Grampus, Indsfatigable, Leander, Liffey, Nankio, Octavia, Pheeton, Raleigh, Severn, Shannon, 8utleJ, Vercon, Vindictive, and Warspite ; total, 25 ; comploment, 500 men; main deck, six 8-inch guns ; twenty-two 32-pounders; quarter deck and forecnatle, four 8 -ineb gons and eighteen 38 -pounders (2)

50 Gons (cecond class).-Chichester, Java, Lancaster, Portiand, Proaident, Sonthumpton, Winchester, and Worceater; total, 8 ; complement, 450 men ; main deok, forr 8-iach guns, tweaty-tix 88 -ponnders, of 50 cwh , 8 feet; quarter deck and forecastio, foar $\mathbf{3 8}$-ponnders (2), and sixteen 32ponnders, of $86 \mathrm{cmt}, 6$ foet.

46 Guns.-Arrogant; total, 1 ; complament, 450 men; maio deck, nix8.inch gons, tweniy-two 3g-pounders; quarter doek and foreouscle, two 88-poanders, of 95 ewt., 10 feet, and sirteen 89 -ponoders, of $89 \mathrm{cwt}, 6$ foet 6 inches.

Total number of fourth-rates, 88, mounting 1,980 guns,
Fifth-Rates.
40 Gons.-Active, Owabrian, Cbesapeake, Flora, Pique, 8yblle, and Thetis ; total, 7 ; complement, 850 men ; main deck, six 8 -inch guns of $\mathbf{6 0}$ cwt., 8 feet 10 inches, eigbteen 89 -ponaders; querter deck and forecastie, sixteed 82 -pounders (3).
44 Guns.-Africaine, Andromede, Druid, Endymion, Hotspur, Isis, Leda, Madagascar, Meander, Nemesis, and Stag; total, 11 ; complement, $\mathbf{3 8 0}$ men; main deck, two 8 -iboh guns of $\mathbf{6 0} \mathrm{cwh}$., 8 feet 10 inches, iwentyaix 82 -pounders of 40 cwt ., 7 feet 6 lnches; quarter deck and forecsstle, four 82 -pounder gans (2), and tweive 32 -ponnder carronades. Note.Endymion is to carry twenty-four 38 -ponaders of $\mathbf{4 0 0 \mathrm { wt }}$. on main deck, and fourteen 32 pounder carronades on ber quarter deck and forecastlo.
42 Guns.-FElus, Blonde, Boadicea, Cerberus, Circe, Clyde, Diana, Fisgard, Fox, Hamadryad, Latona, Laurel, Leonidas, Melampos, Mercury, Mermaid, Minerva, Naiad, Proserpine, Resistance, Seringapatam, 8irius, Thalia, Thisbe, Undaunted, Unicorn, Venus; total, 97 ; complement, 810 men; main deck, two 8 -inet guns of 52 cwt ., 8 feet, twenty two 82 -pounders of 39 cwrt . 7 feet 6 incbes; quarter deck and forecastle, four 32 -pounders (2), four 82 -pounders of 89 cwt , 7 foet 6 inches, and ten 82 . pounder carronaden.

86 Guns.-Castor and Inconstant ; total, 2; complement, 850 men; main deck, four 8 -inch gans of 60 cwt , 8 foet 10 inches, oighteen 32 pounders; quarter deck and forecastle, two 82-pounders (i), and twelve 32 -pounders of 95 cwt ., 6 feet.

80 Guns.-Anphion; total, 1 ; complement, 330 men; main deck six 8.inch guns, fourteen 82-pounders; quarter deck and forecastle, in , 68pounders of 95 cmt , 10 feet, eight 82 -pounders of 25 cwt , 6 feet.
24 Guns.-Eurotas, Forth, Horatio, and Seahorse; total, 4 ; complement, 820 men; main deck, twenty 42 -pounders of 66 cwt , 9 feet 6 inches, on common carriages; qumrter deck and forecastle, two 56 -pounders of 85 cwt., 10 feet, on pivot slides and carriages, and two 10 inch gans of 86 cwt., 8 feet 4 inches, on slides and carriages.

Total number of \mathbf{f} fh-rates, 52 ; mounting $\mathbf{2 , 0 9 6}$ guns.

Sixth-Rates.

Class I. 26 Guns,-Alarm, Amethyst, Carysfort, Cleopatra, Creole, Dimmond, Eurydice, Iris, Juno, Malacem, Niobe, Spartan, and Vestal total, 13 ; complement, 240 men; main deck, two 8 inch guns of 52 owt. 8 feet, sixteen 32 -pounders of $40 \mathrm{cwt}, 7$ feet 6 inches; quarter deck and foreosstle, two 82 -pounders (8), and six 32 -pounders of 25 cwt ., 6 feet.

24 Guns.-Amphitrite and Trincomalee; tatal, 2; complement, 240 men; main deck, eight 32 -pounders, ten 8 -inch guns; quarter deck and forecastle, four 89 -pounders of 26 cwt ., 6 leet, and two 86 -poundert of 85 owt., 10 feet.

26 Guns.-Amazon; total, 1 ; complement, 240 men; main deck, twenty-six 82-ponaders (1)
24 Guns.-Aigle and Curaçon; total, 2 ; complement, 280 men; main deck, twenty 82 -pounders of 40 cwl ., 7 feel 6 inches ; two 32 -pounders (1); quartor deck and forecastle, two 8 -inch guon of 52 cwt .8 feet.

80 Guns.-Brilliant; total, 1 ; complement, 930 men; main deck, ten 32-puunders (1); xix 8 -inch gons of $52 \mathrm{cwt} ., 8$ feet; quarter deck and forecastle, two 56 -ponnders of $86 \mathrm{cwt}, 10$ feet, and two 88-ponaders of 25 cwt. 6 feat.
19 Gans,-Havannah ; total, 1 ; complement, 880 men; main deck, ten 82 -pounders (1), six 8 -inch guns, of 52 cwl ., 8 feet; quarter deck and foro. castie, one 58 -pounder, of $85 \mathrm{cwh}, 10$ feet, and two 88 -pounders (1).

19 Guns.-Dredalus ; Lotal, 1 ; complement, 230 men; main deck, twelve 32 -pounders (1), six 8 -incb gone, of 52 cwt ., 8 feet; quarter deck and forecatie, one 50 -pounder, of $85 \mathrm{cwt}, 10$ feet.

Class II. 86 Guns.-Actroon, Andrumache, Calliope, and Conway ; total, 4 ; complement, 195 men; main deck, two 8 -ioob guns, of 86 cwt , 5 feet 4 inches, sixteen 32 -poundert, of 25 cwt ., 6 feet; quarter deck and forecaatle, two 32 -prounders (2), and six 32 -poundet carronades.

18 Guas.-Calypso and Coquette; totai, 2; complement, 195 men ; mein deck, two 8 -inch guns, of $52 \mathrm{cwi}$.8 feet, fourteen 82 -pounders, of 40 cwt., 7 feet 6 iacbes; quarter deck and forecaslle, two $\mathbf{3 2}$-ponnders (2), on dides and carriages, to pivot.

18 Gans.-Dapbone, and Dido; total, 9 ; complement, 175 men; main deck, two 8 -inch guns, of $82 \mathrm{cwt}, 8$ feet, fourteen 38 -pounders (3) ; quar. ter leck and forecastle, two 82 pounders (3).

22 Gans,-Herlid, North 8tur, 8amarang, Talbot, Tyne, and Volnge;
total, 6 ; complement, 175 men; maln deck, two 89 -pornders, of 85 ewt . 7 feet 6 inches, sirteen 82 -pounder carronaden; quarter deck and forecastle, four 32 -ponader carronades.
Total number of sixth-raten, 85 , mouating 846 gras.
Sloopl.
18 Guns. -Arachne, Modeste, Narciesns, Nimrod, Pearl, Tweed, and Terpsichore ; total, 7 ; complement, 146 men ; two 82 -pounders of 80 cwt . 7 feet 6 inches, and sizteen 82 -ponoders of $26 \mathrm{cwt}, 6$ feet, all on slides and carriages.

16 Guns,-Atalanta, Camilla, Frolic, Helena, Siren, and Zebra; total, 6 ; complement, 130 men; the armament of this clase is precisely the anme as the lat, with the exception of there being oaly fourteen 82-pounders instead of sirteen.

14 Guns.-Champion, Comus, Electra, Favourite, Hazard, Hyacinth, Larne, Orestes, Receborse, Rose, Satellite, Scout, and Wolf; toral, is; complement, 180 men ; armament nimilar to that of the first clase, but the aumber of 38-pounderi reduced to twelve.

12 Gans.-Acorn, Albatross, Arab, Bittern, Columbine, Contest, Daring, Dispatch, Eik, Espiagle, Fant0me, Flying Fish, Goahawk, Grecian, Heron, Kangaroo, Kingfisher, Mariner, Martin, Mutine, Persian, Pilot, and Recruit ; total, 23 ; complement, 180 men; armament the same at the fret class, but the number of 32 -ponnders reduced to ten.

12 Guns.-Childers, Croizer, Harlequin, Liberty, Lily, Pelican, Racer, Bingdove, Sappho, Serpent, Saake, Sparrowhawl, Squirrel, Wanderer, Wasp, and Wolverpne ; total, 16 ; complement, 180 men; two 32 -poundert of 32 cwt., 6 feet 6 inches, and tra 32 -pounders of 25 cwt ., 6 feot
8 Guas.-Cyguet, Ferret. Heroine, Hound, and Pbilumel; Lotal, 6 : complement, 80 men; armament as in the last class, hut the number of 8 ; pounders reduced to six.

8 Guns.-Alert, Linnet, Ranger, and 8tar ; Lotal, 4 ; comploment, 80 men; two 82 -pounders of 82 cwt ., 6 feet 6 inches, and six 82 -ponader carronades.

8 Gans.--Britomart, Pantaloon, Rapid, Sealark, and Waterwitch; total, 5 ; complement, 80 men; two 18 -pounders of 20 cFi ., 6 fett, and ciz 18 pounders of 15 cwt ., 5 feet 6 inches.

Total aumber of sioofs, 79, monating 984 gons.

Beige.

6 Guns.-Camolion, Curiew, Espolr, Nautilus, Rolle, Royaliat, Baracen, Buvage, Bcorpion, and Wizard; total, 10 ; complement, 65 men; two 85 pounders of $82 \mathrm{cwh}, 6$ feet 6 inchos; and four 18 -pounder currunades of 10 cwt .

8 Guns.-Bonetta, Dart, Dolphin, and 8py; total, 4 ; complement. 65 men; one 82 -pounder of $89 \mathrm{cwt} ., 7$ feet 6 inches, and two 89 -pounders of 38 cwt., 6 feet 6 inches.

3 Guns.-Grifiu, and Lynx ; total, 2; complement, 00 men; ope 32pounder of $39 \mathrm{cwl.}$,7 feet 6 inchee, and two 94 -pounder Carrogades of 13 cwt.
Total number of brige, 16, mounting 78 guos,
Summazy.

		UN	Y.		
	19 frst-rates,	ting	. . .	$\begin{aligned} & \text { Guns. } \\ & \text { 2,210 } \end{aligned}$	$\begin{array}{r} \text { Men. } \\ \mathbf{1 8 , 6 5 0} \end{array}$
	43 second-rates	"	. \cdot.	8.758	38.260
	32 third-rates	"	. ..	2,348	1960
	38 fourth-rates	"	. \cdot.	1.940	18,550
	52 fifth-rates	"	. . .	2,406	16,610
	35 sixth-rates	"	886	T,470
	79 sloop:	\%	. .	984	0,675
	16 brigs	"		78	1,030
Grand total,	314 ships of war	"		14,220	124,848

Steam Veaself Proprlled ey Screws.
The return published in the Journal for May lest, of the armament of tho screw ateam vessels remains maltered uoder the preseat return, the only difference being that the narne of the Pegasus is now altered to that of the Greenock. The complement of men has, bowever, gince been Azed, as follows :-Simoon and Vaican, 800 men; Termagant, Daundess, Eophrates, and Vigilant, 250 men; Megara and Greenock, 200 men; Confict, Basiliak, Draperate, Enchantress, Falcon, Florentia, Nıger, Eneonnter, and Harrier, 140 men; Hutter and Phoenix, 190 men; Archer, Coseack, Parthiad, Rifleman, Sepoy, and Sharpahooter, 80 men; Biter, Boxer, Mins, end Teazer, 80 men.

The steam frigates with anxiliary power, and the steam guard shipe, bave been taken out of the catalogne of the steam navy, and piaced with the sailing vessels.

Steam Vegsela Propelled ay Paddlel.

Some slipht alterations have been made in the clussifcation of the steanvescels propelled by paddles; but the armament being for each clase anbstantialif the same as given befure, the fullowing arrangement of the vessels, and their complements is all that it will be necemary to give : Terrible, $16 \mathrm{guas}, 800 \mathrm{men}$; Peuelope, $16 \mathrm{guns}, 270 \mathrm{men}$; Odin, Leopard, and 8idan, 12 guns, 270 men; Avenger, Birkeabegd, and Retribution, 6 geas, 250 men ; Cencaur, Cyclups, Drage n, Firebrand, Gladiator, Smmpeon, atad Vulture, 6 guns, 195 men; Scourge, 2 guns, 160 men; Balldof, Cormorat, Devastation, Driver, Eciair, Furs, Geywer, Gorgon, Gruwler, Infezible,

Sphyax, 8pitefal, Styz, Stromboll, Thasderbolt, Veenvias, Virago, and Vixeo, 6 gups, 160 men; Hecate, Hecle, Hermes, Hydra, Moden, Sale. mander, and Trident, 6 gons, 125 men; Ardeat, Alecto, Folyphemos, and Promethens, 8 guns, 100 men; Janas, 2 guns, 100 men; Acheron, AntoLope, Columbir, Grappler, Oberon, Ploto, Triton, and Voleano, 8 guns, 60 men: Blaser, Firefiy, Flamer, and Tarıarus, 3 gans, 56 men; Aron, Corset. Gleaner, Eite, Loeifer, Lightning, Meteor, Porcapise, and Shearwater, 8 guas, 40 mea; Alban, Dee, and Rhadamanthus, 4 gons, 60 men.

ENGINEERING EVIDENCE.

Extracta from Unpubliched Evidence girem by Ma. B. Exepheypon ofore the Hower of Commons' Stowr Valley Committice. [Reported in the Railway Chrovicle]
 OOODS AND COAL tRAFFIC, \& 8 .
The Fowr-rail Syatem-Economy.-In coosequence of our fixed eatablishmeat we aball be able to carry the additional tratise we obtain cheaper than any olber company can do. At present, as joo converge towards Loadon, the trains become more nomerous, and when any of them are not in time they give rise to great disorder; not becanse the railway is incapable of carrying them wheo they keep their time regalarly-for the Loodoa and Birmingham are capable of accommodating three times the amount of their present traffic, provided abeolate paactaality in insored. More towards London the valoe of ponctaality begins to tell anoet, and we want more lines. A loop line from Tring to Banhory [ibo Buckinghamshire, dece passed] would accommodate local tranic, and conld also be made enbervient to heavy trafic mooing at slow rates. Four lines of rails from London to Tring woold receive and divide the great tide of trafic flowing comard the metropolis (at present flowing on two llnes of rail ooly), and by enabling os to serve the poblic botter aturnct more traffic to us.

Competition.-Looklog at the past, we may axpect for rome time to come that the bontile companies will go on devonring each other, thongh I bold the opinion very otrongly that permanent competition is impossible. The object of companies who are in competition in laying out lines is generally for the purpose of maintaining the groond, in order that when the time does arrive for adjuating their differences they anay not be trampled on by their oeighbours. I have the strongest possible opinion that perpetual competition is imponable, and that after the conntry is occopied There will be an adjugtment. The Great Westorn are great preachers of competition, yot it is within my own knowledge that treaties have been going on between them and the Londian and 8onth. Western, of which a cerritorial divlsion has been the besis.

Quick and Slow Trafic (London and North-Weetern).-At present wo am obliged to force ou our goods trains to make room for our passenger trains. The cost of conveying goods is aggmented in consequence of that apeed. The public will never get the full advantage of rail ways natil they can separate the slow traficic more or less from the quick traffic. Up to a certain extent the mixture does not add to the expense of convejance, bat when the mixture becomes very rreat, or the income of the raliway is derived as mach from goods as from passengers, then, in order to coovey goods most economicully, it becomes denirable to convey them at a apeed \mathcal{G}, may, from 16 to 18 miles an bour, conls at a speed not oxceeding 15 miles an hour, for it is impossible to conrey them at Id. or Id. per ton per mile if they are to be hurried along at 25 or 80 aniles an bour; the cost and the wear and tear are 100 great, betides coal is damaged very moch by velocity. The clogging of the London and Birmiagham line reforred to has arisen from the tolla having been very much luwered. Many persoas thought that the reduction of tolls would not increase our tratio. Now, I beid a diferent opiniun. I always thought that by reducing fares on railways, especially the charges on goods, they would become great instra. ments of conveyence for the heavy class of articles: and so it tursed ont. oo that a great increase came upon us soddenly, without our having either wagons or eugines adequate for the lecrease.

Weor and Trar on Broad and Narrow Gange-Q. Is there no differeace of preseare on the same weight of engine at the came epeed un the bruad and narrow gange?-A. None ; the orushing effect is precisely the same, or rather the crashing effect of the vide gange is greater at the curves than on the sarrow gange. If there was any diference is the teadency of the heary weighte to crush the ralls, it would tell agalast the wide groge at curven, becanse the wheels are keyed on the axle, and they consequently move roand with the same velocity, and when the angine is going roond a abarp curve there in a greater dietance to go round upoa the ontside, so the inaide wheel has to slide a litule back and the outside wheel has to slide a little forward; and, inasmuch at the difforence of gauge increases the amount of slidiag, the heavy weighis will crush the rails more in the oue case than is the other, but in a perfeetly straight lipe the crushing is equal.- Q. Is the rail stronger on the broad or the narrow i - A. The raila are laid by Mr. Brupel on lungitudinal timbers. He takes the strength of the timber as well as the iron. In the uanal mode of conutracting the marrow gauge you do not use the longitudial timber, bet you lay heavier rails instend. Yon get the bearing atrength eetirely on the rily in the oae case, aod to the other gase partly on the timbar.

Speed-We are now is posession of speed that no permaseat way in existesce, broed or narrow, will be able to cland lung. The wear and tear of the rails has been, in any opinion, mearly as the square of the speed. If it were perfeot machinery io overy respect, the wear and tear ariaing from concusaions, onght to be exectly as the square of the apeed, and I presome it ought to be directly as an engive weighing doable the number of toos woald canse double the amonat of crushing. Indeed, I know that apeed is the great trial of oar present permanent roads. The proof is that we have been obliged to Arengthes them about 16 or 18 lb . per yard, and 00 w there are some of aboat 90 lb . This iscrease of speed, the weight remainfog the same, ba direct and large macrifice of the protits of the company, which has operated and it now operning with the Loedon and Birmingham, and has led them to consider the propriety of daplicatiog the lines where they are compelled to run the beavy trains so quickly-that is between Tring and London. The intereat of the capital they are about to oxpend to duplicate the line will be aboot 40,0001 . m-year, the cont will be about $780,0001$.

The origin of the Oxford, Worceater, and Wolvorinampon-Q. Is it a fact that this district applied to the London and Birminghum for acoommodacion and was refosed, and was it in consequence of that refosal that the Oxford, Worcoster, and Wolverhampton lipe was origioally projected ?A. That, perhaps, is a rather harab mode of reprecenting it. But some of the London and Birmingham Board entertained a notion that time that railways were not really fitted for the conveyance of heavy goods, and they did not erek to oblain the trafic which the ooontry demanded; and then again their accousts wero kept in such a way as to make it appear that they lost money by the conreyance of goods. This was done by charging the goods with a portion of Exed expensea, which would hare been neoessury under any circomstanees even for coaveying passeagers. Therefore, when you debit the goods department with its proportion of the fixed entablishmest of the railway, then it does appear a bow to carry goods. There may be one or two of the Board now left who eatertain their old opinions, but I know the management and aystem has ondergone a complete revolation in that respect. I have always entertained tie opinion that they ought to come down with thoir fares and carry beavy goods, and bave orged it on the Board. Bnt I do not more out of the ongineering department of the compasy. I think that rallways as instruments for the carriafe of heavy goods, have not reached balf their perfection or extent, and will not until we are permitued to separate the fast and slow '-ains. If we convey heavy goods at 16 miles an hour, I believo it will use the coet of conveyence to considerably lower then one balf of What is Dow; so that a large quantity of coal may come to Loedon from the : . idland districts. At present it conts us three farthinge per ton per milc. In the North at stookton and Darlington, where they coavey the coul at 9 miles an hoar, every charge is included, and they carry it at one halfpenay per ton per mile. The breaknge of coal is co much iocreased by rapidity of movemeot, that it becomes imponible to wove ondinary coal wagone when they are on any of the main lises without aprings. The speed brouks the coal all to pieces. Experience has shown that the multiplication of railroada facilitates and creates much greater trafuc than was aplicipated. They reach on each other. That is one of the moat remurkable features in the oxtenajon of the railroed system-the extraordiany reciprocation of trafic. If by the multiplication of railroads, and the adoption of econumical modes of transit, you ean reduce the price of coel, the dcwand for the article is London would be mont prodigions, and in the country it woald be very large. There are many agricultaral countioe where they do not know what conl is now.

REGISTER OF NEW PATENTS.

AMERICAN PATENTS.

PNEUMATIC HYDRAULIC ENGINR-

Specification of a Patent for " an Improvemeris in the hydraulic ram, called 'Strode's pmeumatic hydraulic engine;'" granted to Joseps C. Strods, of East Brad ford tomathip, Chester comily, Slate of Ponnsylvaria, March 27, 1817. [Reported in the Franklin Jowrnal.]

The nature of the invention and improvement consists in making nee of a colamon of condensed air between the propelling flaid and the fluid that is to be raised; said air being condeneed in a pyramidalshaped chamber, by mease of the momentum of a desoending column of Waterg; mid chamber having a communication, by a small opening at lis top, with another chamber, into which the spring water or flid to be ralsed is introduced, called the apring water abamber, and upon which the condenstd air in the first-numed chamber is made to act, causing eaid fluid to rise through a tube placed in the apring water chamber (open at its lower end, and closed alternatoly at its upper end by means of a valve), into a large air vesell, or receiver, of the nasual form and conatiuction, being conducted thence to its place of dentination by pipes, or boee, in the usual manoer.
Simillar lotters in the eeveral figurea sefor to eorrepponding parth.

A is the main pipe for conduoting the propelling water from the head, or reservoir, to the pyramidal air chamber. Ithis pipe doscends

Fig. A. Perspective viow. 5. 9. Transverse section. Fis. 1. Lougitadinal nection.
below the level of that portion of it which connects with the air chamber just before it reaches the said chamber, and then ascends, in a carved line to it, forming a curved bend in the pipe, as at A^{1}, for the purpose of preventing the air received at the valve B, during the time in which the vacunm is produced in the air and water chamber, as hereafter described, from filling the pipe A, as the air will not deseend at said bend in the tabe, so that the surplus of said air, after heving filled the condensing chamber $L_{\text {, }}$, may be carried off; by the current of water, through the valve \mathbf{B}.

The pipe A is enlarged below the air chamber L_{4}, as at A^{2}, and has an opening O into the air chamber S, through which the water passes when the valve B is closed.
B is a valve attached to a curved, vibrating lever C, turning on gadgeons D, in boxem, as its fulcrum, having a set serew E, for regulating the descent of the valve, and a counter-balance F, for adjusting the valve. When this valve B is down, as shown in fig. 3 , the water from the head flows through the opening, which it closes; when it is up, as shown in fig. 1, the water rises into the pyramidal chamber L_{4}, through the opening \mathbf{O}, and condenses the air therein.

H ls a pipe for conveying the spring water to the apring water chamber. Is the air chamber jnto which the water is forced. J is the valve for holding it. K is a pipe or hoose, for conveying the water to its place of destination. The above-named parts, lettered from A to K , inclusive, are made and operated in the uasel manner. The improvement are as follows:
L is a pyramidal chamber into which air is admitted through the valve B, when it descends by the preasure of the external air, to sapply the partial vacuum created in the pipe A, and chambers L. and N.

This pyramidal chamber has a communication, by a small opening \mathbf{M} at the top, with another chamber N, called the spring or pare water ohamber; through which opening \mathbf{M}, the air, so condensed, is forced, and premes on the spring or other water, introduced into the same through the pipe H , by which pressure, the water in the spring water chamber is forced upward through a tube P, reaching to near the bottom of the chamber N , through the valve J , into the air chamber $I_{;}$said valve being represented as open in fige 1 , and as closed in fig. 2.

To raise water with this machine, open the valve B, and let the water flow out; then, by closing the valve B, the water, which is now in motion in the pipe A_{4} will pass tbrough the opening O, into the pyramidal condensing chamber $L_{\text {, }}$ and condense the air the same as before; the condensed air will force the spring water up the tube P, (which had entered through the pipe H during the continuance of the partial vacuum above spoken of), into the chamber L, and condense the air therein, until its density is equal to that in the condensing chambers $L_{\text {, and }} \mathrm{N}$, below; at this time the spring water will cease to flow into the air chamber I, the valve J closes, and the air in the chambers $I_{1} L_{4}$ and N, commences expanding, that in the lower chambers, L and N, g givg motion to the propelling fluid and driving backward, producing a partial vacuum in ine machine, and the air in the apper chamber l, forcing the spring water to its place of destination.
The said partial vacuum in the machine, caused by the racction of the machiue, as aforesaid, and the pressure of the exteral atmosphere on the valve B , will cause it to open again. The water from the head then flows through this valve with an accelerating moverent, until it has aequired that degree of velocity as to cause the valve to close. The water having no longer any vent through the valve B, passes through the opening O , into the pyramidal chamber L_{4}, and repeats the operation above mentioned succeasively.

In this manner the operation will continue as long as the machine remains in order and there is a head of weter to propel it. The valve

V is for the purpose of aupplying the chamber I with alr, by admitting the air into the tube P. The said air is admitted during the time that the partial vacuum above mentioned takes place. The air thua introduced into the tabe \mathbf{P} ascends to the top of the same, and is forced into the chamber I at the next stroke of the machine; said Valve V is represented open in fig. 2 , and may be closed, or regulated, by serewing the thumb-screw \mathbf{V}.
The prinoipal advantages thil machine possesses over other machines are,

1st. In case of forcing ap pare water by the propelling power of a rubning stream of water less pure, there is no possibility of the impure water mixing with the pure, there being at that time a ooluma of condensed air between the two waters.
2ad. The water being forced into the upper chamber I, by the condensation of air in the lower chamber, the valve J opens more alowly than when water alone is made the propelling medium, and also ahuts more slowly, thereby preventing the wefer from escaping baak through the valve J after it is forced up-the valve J being nearly closed when the water ceases to flow upward into the chamber $\mathrm{L}_{\text {. The }}$ This advantage upon trial is found to be of considerable importance, enabling the machine, thus operated, to force, with a glven quantity of water, several barrels more of water per day than it would otherwise do.
3rd. There being no valve between the condensed air in the lower chamber and the driving water, or at the opening O, the said air is permitted to act a looger time ia forcing back the driving water, and thereby making a more complete recuncm than in other machinea, and readering uselese the spring for opening the outlet valve B, an used in several machines.
It is not necessary that the spring water chamber N , and the air chamber L, whould be enclosed by the same envelope, but they may form separate chambers, and they may be arranged in any convenient way or manner most acceptable to the constructor, provided that the capacity of the air chamber does not exceed a due ratio between the propelling power and the water to be raised.

LOCOMOTIVE AXLE BOX.

Description of "a vibrating box for locomotive axlen," by Nowris and TuLL, of Philadelphia, U.S., June, 1846.

The arrangement of this box allows it to revolve ina vertical plane, at the same time that it floats up and down, the joornals of tha drivers baving, at all timea, their full bearing upon the box; let the arle assume any position from a hurizontal line caused by inequalities of the road, or the consequent raising of the outer rail, in passing carves, which must necessarily reduce friction in a great degree, and insure the more perfect working of the engine, without prodncing any undue strain in its several parts, and has only to overcome the friction which

is due to the surfaces apon which it works. This evil has alwars been overlooked in the construction of locomotives, and which most oocur when a bon Boata verticaliy in a pedestal. Fig. 1, elevation of
pedestal with vibrating box; $6,2,2$ arose section of the same; fig. 8, borizontal plan; fig. 4, vibrating box; fig. 5, bearing of vibrating box.

7is. 8
78.4
A, A, pedestal forming pert of the wrought iron frame. B_{1} vibrating bos reating with the two pivots b, b, which are firmly attached to
7. 5
 it in opeoing of the two sliding pieces, c, c. Fig. 5 , shows an end view of one of the latter, with its fingen, m_{1}, m^{\prime}, and the bole, a, which is to receive the pivot, b. These sliding-pieces are consected, by mean of serewh, x, x, with the arone-piece, d, the lower surface of which is cylindrical, and forms a bearing for the upper convex surface, $t_{1} x^{\prime}$, of the box, B. f, wedge, kept by the set-serew, f ', in a position which allows the boy to slide in the pedeetal, without being too loove or too firm. g, oil-boz. In fig. 4, this oil-boz is omitted. The same parts are marked by the same lettors in the different viewn-Franklin Jomreal.

ENGLISH PATENTS.

LOCOMOTIVE ENGINES.

Grozer Foenct, engine-builder, Thomas Hackworth, engineboilder, and Tromas Euisotr, superintendent of locomotives, all of Stockton-upon-Tees, for "certain Improvemente in locomotive and ether Doilers."-Granted March 8; Enrolled Sept. 3, 1847. [Reported in the Patent Jowrnal.]

The improvements bere specified relate, first, to the form or shape of the fire-box of locomotive and other tabular boilers ; secondly, to the arrangement of the tubes; thirdly, dividing, in boilers of large diameter, the fire-boz into two portions, by means of a vertical division.

The patentees in the apecification of their first improvement state : We make the fire-box of a semi-cylindrical shape, correaponding in form to the cylindrical shell of the boiler, the top or roof of the fireboz being alightiy curred; this roof is to be mpported and sustained by the addition of wrought-iron stays, placed acrose the upper aide of the roof and rivetted thereto; as with firebozes of the nalal copstraction the end of the fire-boz is closed by a thick flat plate, generally termed the tube-plate, through which the tobes pats as usoal. The outer or open end of the fire-box is closed by double or treble plates, having a door formed of double or treble plates made therein, and an opening to the anhpit beseath the said door; a bridge is pleced, as usual, transversely in the fire-box, and the fire-bars are properiy supported by bearing-bars, at a suitable height in the fire-box, as is usual in boilers with tubular or enclosed fire-places; the shell or case of the boiler is stated and represented by the patentees as cylindrical the whole length of the boiler.

The patentess state their second improvement to be the arrangemeat of the borizontal tubes through the boiler from the fire-box to the smoke-box; these tubes the patentees place in vertical rown, and not, as they are asually arranged, in diagopal or horisontal rows; this arriogement of vertical rows allows a free space between each row of tubes, thereby allowing a free and aninterrupted pasage for the escape of the ateam, generated by the lower tuben: the patentees aleo state the fucility this improved arrangement possesses of allowing the cleanaing of the tabes from incruatation and sediment from the water, by a proper coraper or cleaner, being paswed down the opening between the vertical rows of tubet, and thereby remoring any sediment or incrustation from them.

The patentees atate their third improvement to be the employment or introduction of a vertical division of water space, placed within the semi-eylindrical fire-bon, and thereby dividing the said fire-box
into two separate compartmentar this arrangement the patentees propoes adopting when boilers of increased diametor are required.

The patenteen after describing the above improvements claim, first, the forming the fire-boz of locomotive and other boilers of a memicylidedical shape, but slighty curved upon the upper side, and carrying the tobes from the said semi-cylindrical fire-box in such manoner as agreeing with the general form of such fire-box, as hereinbefore detcribed. Secondly, the patentees claim the arranging the tobes in locomotive and other boilers known as tubalar boilem, in vertical rown, whereby a free and nointerrapted passage is obtained between anch vertical rows from bottom to top, as hareinbefore described. Thirdly, the patentees claim the use and arrangement of vertical divisione, within the fire-box, of boilers, dividing rach fire-boxes into separate compartments or fire-plesee, as hereinbefore desoribed.

IMPROVEMENTS IN FURNACES.

Grorez Grondr, of Manchester, in the connty of Lancaster, manager, for "certain Improrements in furnaces, and in the fuce and tiles waed in the construction thereof:"-Granted February 8; Enrolled Ang. 8, 1847.
This invention relates to a novel arrangement of the flues and other parts of a furnace, whereby the beat is more effectually applied ; and also in certain tiles to be used in the conatruction of the farmace. The annexed engravings sbow a furnsce, constructed according to this invention, containing four fire-clay or tile cylinders or retorth, for generating coal gas.

Fig. 4

7. 8.8

Fig. 1 is a longitudloal vertical section of the furnace; fig. 2 is a transverse vertical section thereof; fig. 3 is a horizontal section, taken on the line AB of fig. 2; fig. 4 is a similar section, on the lipe $C D$; and fig. B is a section on the live E F. a is the brick work of the furmace. b is the fire-place or chamber, wherein the fuel (which in this case is coal-tar, bat other fuel may be osed) is introdoced; it extends the whole length of the farmace, and is nopplied with air through the openinge e, from two parallel fluen d, whioh extend from one end of the fumace to the other, and are farnished with doors at each end to regalate the supply of air. The oreb, in which the tile or fire-clay cylinders or retortse are fixed, is of the ordinary shape; and the course of the fame avd heated gases, penerated below, is indicated by the arrowe in the horizontal sections, figh. 3, 4, 5, which are taken at different levels, in order to show the continuous traverse of the heated gases from end to end, or from end to centre of the retorts e, until they encape through the opening f, in the crown of the oven. The cylinders or retorts are made of tile or fire-clay, and may be strengthened, if considered requinite, by imbedding metal hoops in the clay. Each eylinder is oped at both enda, and consiats of several piecen, which are jointed together, as seen at g, fg. 5 ; the joints betog made good with fire-clay, and supported by the fre-ctay tiles h. The number of joints in each retort will depend apos its
length; but the may greatly exceed the length of ordinary retorts, ov account of the facillty of working at both ende, whieh the patentee conaiders an itroportant feature of his invention. The retorts have caps i, fitted on each end, furnished with exit-pipes j, for the gas. Any ecoumalation of coal-tar is removed from the retort, by partially opening one end of the retort, and applying an extra pipe to the opposite ead; which pipe then acts an a flue, and the draft of air through the heated retort completely removes the carbonaceons deposit.

The patentee states, that the deucriplion of the manner of applying his improvernenta to a furmace for generating gan will enable a person to apply such improvements to furnaces for other purposes. He coaims the general arrangement of the furnace and flaes as described, which consists in a continuous fire-place from one end to the other, supplied with air from parallel air-fues-thns allowing the heat to be conducted from end to end, or from end to centre repeatedly; together with the peculiar form and construction of tile or fire-olay tubeen and the tilea forming the jointe, as above desoribed.

COOLING COKE OVENS

Fridericic Rameome, of Ipawleh, Suffolk, for "Improvamente in working coke and other kilat or overe."-Grantad Feb. 24; Earolled Aug. 24, 1847.

This invention consints of improvements in cooling coke and other kilns or ovena, by canaing air to circulate by mechanioal apparatus through the cooling flues or passages.

In the workligg of coke ovens the cooling has been extensively done by having air pasaages arranged so as to allow air freely to circulate in contact with the inner liniog of the oven, the air not comiog in contact with the charge, such circulation being caused by the rarefaction of the air by the heat of the fluen. Such mode of working coke ovens is according to a patent granted to Jabes Church, December 20, 1845. This mode of making coke la very superior to the old mode where the charge is drawn when hot, and cooled down of water, In working of such coke ovent, it has been found that the time of cooling an oven is very nncertain, depending on the state of the outer atmosphere, and that it is important to coul down the charge as quickly as pousible, so long as the atmosphere is excluded from the charge. In coke ovens constructed according to Church's patent, the air after passing through the flaes simply rises through a short pipe into the air by its levity, the pipe having little, if any effect, in cansing the circulatiou or prasage of the air through the flues. Bat it bas been found that by hastening the draft in ovens arranged with flues, the cooling procems may be materially quickpoed. And this the patentee prefers to do by connecting the cooling flue with a rotatory fan, in such manner an to continuously withdraw the alr from such flues, by which means the external air will rush into the flues or passages, and thus cooi the same quickly, and by these means the charge in the oven will aleo be quickly cooled.
The patentee does not confine himelf to the fan, as other known arrangements of blowing and exhausting apparatus may be employed, or iu place thercof the atr or cooling flues or panseges, or the pipe thereof, may be conducted into a high shaft or chimney; thus adding additional power of exhaustion to that which results from the beat of the passages or flues.

CAOUTCHOUC.

Stzpaem Moulton, Escq, of Norfolk-street, Strand, Middlesex, gentleman, for "Improvements in ircaling eaoulchouc milh older wraterialf, to produce elastic and impermeable compounds."-Granted Feb. 8; Enrolled Aug. 8, 1847.

This invention consists in treatiog caoutehouc by combining there. with calcined and carbonate of magnesia and byposulphate of lead and the artificial sulphuret of lead, and submitting the combined compound to heat, which process dispenses with the use of solventa. After the caoutclouc has been cut and cleapmed, one or more pounds weight, as can be conveniently ground or mixed at a time, is put between two revolving lron rollers, heated internally by steam, when it presents a rough, uniform sheet, and in then ready for the mixing it with the following ingredients.

If the goods are intended to be elastic, and to be unaffected by heat or cold, mix in with 1 lb . of caontchouc, from 1 to 8 oz, of the hy pusuiphate of lead and the artificial sulphuret of lead, both or eitber, but the patentee prefers them in equal proportions ; but if they are used separately, then the whole quantity meationed will be naed. If the goods are intended to be hird, of greater tenacity, and of leas clasticity, mix in from 2 to 8 oz . of the calpined or carbonate of mag-
nesia with 1 lb . of caoutchove, and then add both the hyposolphate of lead and the artificial sulphuret of lead, or either, in lize manner and proportions, as used for elastic goods.
The materials above-mentioned and the caoutchouc having been passed repeatedly between the mixing rollera, so that the whole compound may be well combined, it is then removed to another pair of rollers denominated the grinding rollers, and treated in like manner, which rollers are placed nearer to each other than the mixing roller, in order that by these rollers a more perfect mixtore of the compound may be effected. After this second process, the compound is again removed to the third pair of rollers, also heated by steam, denominated the softening rollers, and again ground or mixed thereby, when it soon becomes fit for its removal to the spreading machine.

The spreading machine comprisen two or more iron cylinders, which are heated internally by steam (the machine preferred consists of three rollers one above the other), and of a amoother and finer surface than that of the rollers before-mentioned. The componed is placed between the upper rollers and passes to the lower one, upon which the cloth for its reception passes round, and thas receives on its surface the different contings of the compound required. If sheet rubber is desired, the compound is placed in like manner, dispensing with the use of the cloth, and the sheet tuken from the lower rolier. Both the coated cloth and the sheot rabber in passing off the lower roller are rolled up in dry cloth to keep the surfaces apart, and is then fit for making up into such goods as may be required. In manufacturing goods from the compounds thus prepared, when manufactured, they are dusted over with parified pipe or other clay of similar quality finely powdered, to prevent the surfaces from adhering together; but they are-as yet still liable to the action of all the solvents aud other influences whieh act upon caoutchouc, and would accordingly become rigid in cold, and soft and sticky in warm weather; to free the caontchouc therefore from these, ita natural characteristics, it has been combined with the salts of lead above-mentioned, and the goods manufactured from this compound have now to be subjected to heat in a suiluble chamber or cylinder, and heated either by ateam or dry beat (the furmer is preferred) of from 220° to 280° or 300°, according to the quantity of the goods heated at one time, and also as to the thickness of the compound put into the sheets or upon the cloth.

The time required for heating goods will likewise vary according to the circumatunces lant mentioned. Some heats may require three hours, and some five hours or thereabouts, and which is easily determined by any practical man acquainted with the businem. After the gouds have been beated, as last mentioned, they become elastic and impermeable, as set forth in the tille above recited.

RALWAY SWITCHES AND TURN-TABLES.

Charles Hzard Wild, of Mortjmer-street, Caveadisi-iquare, civil engineer, for "Inprovements in constructing parte of railmays," -Granted Feb. 24; Eurolled Aug. 24, 1897. [Repurted in the Patent Journal.]
The improvenente here specified relate severally to the form of the points of the moveable tongue rails of railway awitches, and to the construction asd application of certain mechanian to turn-tublea, to facilitate their action. The objeal of the patentee being to remove, by the first of his improvemenis (oumely, that improvement relating to railway switches) the objectionathendant upon switches of the usual construction. These objections being, as atated by the patentee, of two kinds;-one of which as an alternative it has hitherto been necessary to adopt, as foilown- When the point of the moveable tongue rail has been mude sufficiently broad and strong to support the weight of the wheel and the load of the carriage, it beanme neceasary to have a noteh ln the fixed rail to alluw the inner edge of the point of the tongne ruil to coinside with the inner edge of the fixed rail, so that there might be no impediment or interruptioa to the flange of the wheol upon pasaing the point, while the switoh in closed; thus far, while the asilch is closed, no important objection exinta, as nsuaily constructed, as they present an unbroken suriace of rall to the pascage of the carriage wheels; but the contrary is the case, when the switch is opened t the noteh now premente its objectiona and disadvantages to action, the carriage wheels in passing otriking againat the side of the notch. The ulternative of this objection is making the depth of the nutch moob less ; but to sllow this, it is necessary to reduce the thickneas of the point of the tongue rail, thereby reodering it too thin and weak to support the pasving weight. These objections and disadrantuges the pateatee propomes to remove by the improvements in question, and which consiat in cutting away an much from the upper table, and from the outer side of the middle webb of the movenble torgue rail, at the immediate point or extrem-
ity of such moveable tongue rail, as to enable the end of the same to pass nnder, and be houged beneath, the upper table of the side rail of the main line of rails, when the switch is closed. The wheels of the carriages in passing along the switch will not press vertically upon the moveable tongue rail in consequence of the end of the tongue being below and beneath the upper table of the side rail; but the flange of the wheel will press laterally against the side of the tongue rail; the wheel will pass a considerable distance along from the end of the tongue rail before it commences pressing upon it vertically, the upper table of the tongue rail being gradually developed as it recedes from the side rail, till, at a considerable distance from its point, it is of safficient bulk and strength to receive the vertical pressure of the wheel without injury. The tongue rail still continues to develope itself for a further distance, where it is of the usual and proper form.

By theso improvementa, the patentee obviates the necessitr of having a notch cut in the upper table of the side rail for the reception of the point or end of the moveable tongue rail, or the alternative of having the point or ead of the tongue rail cut so thin, and thus so reduced in strength, as to be unable to support the pressure of the wheels and load when passing over it. Fig. 1 is a plan of a railway switch, made according to the most approved construction usually used, but with the points of the moreable tongue rails, D and D^{\prime}, made aecording to the patentee's method; A, A^{1}, the rails forming the main or through line of rails; B, B', the rails forming the branch line or siding; C, C, the chairs supporting the same; D and D^{1}, the two moveable tongue rails jointed to the jaw chairs, $E_{\text {n }}$ and sliding or moving laterally upon the table chairs, F, as usual ; G, a rod or bar connecting together the two moveable tongue rails, and connected with any apparatus for the purpose of opening or closing the switch

in the nsual manner. The ends or points of the moveable tongue ralis, D asd Di, being made and constructed, as represented by the dotted lines, in addition to the full lines in the plan, fig. 1 , and alico by fign. 2 and 3; fig. 2 being an elevation of the tongue rail D, showing the inclination of the top surface of the upper table of the tongua rail, D; fig. 3, a diagram upon an enlarged scale, representing, as will be hereafter explained, the contour or form of the tongue rail, by the sections represented, as taken at the points ahown by the numbers $1,2,3,8 \mathrm{cc}$. By reference to the above, and the following description thereof, the form or contour of the moveable tongue rail will be at once apparent. $1,2,3, \& c$. (fig. 3), represent the point or end; and the sections of the tongue rail, D, figs. 1 and 2 , taken respectively at the corresponding numbers thereon; thus describing and showing the form or contour of the said tongue rail, D, from the point or end of the same to No. 10, where it is the full size of the general body of the rail. The right-hand tongue rail, D^{1}, is precisely of the came shape or form as the rail D, but reversed, to suit the opposite side rail, Δ^{\prime}, of the line; should, however, the thickness of the upper tuble, or the breadth of the lower table, of the side rail, A, or A, exceed, or fall short of, or otherwise vary from the dimensions or proportions shown in the patentee's drawings, the patentee directs the moveable tongue reil to be made to conform to the form or contour of such side rail by cutting away more or less from the upper or lower table of the said tongue rail, so as to allow the point or end of the and tongue rail to pass under, and be housed beneath, the upper table of the said side rail; or a portion may be cut away from the under aide of the upper table of the side rail, if sufficiently thick to allow this reduction, for the same object, without unnecemarily reducing the strength of the tongue rail.

The second improvement of the patentee relates to supporting and balancing the upper or moveable portion of turn-tablea, and thereby leasening the bearing weight, and consequently the friction upon the moving parts; and it also relates to the position of the friction rollers or wheels placed beneath the outer edge of the revolving table or plate, by arranging them in such a position that the upper edge of the rollers shall be in one horizontal plave, or plane at the right anglea to the centre line of the axles of the turn-table. Fig. 4 , a sectional elevation of the turn-table; A, the lower or outer curb firmly bolted to the foundation, B , and fastened by the radial bars, C , to the centre plate, D; also firmly secured to the foundation $B^{2} ; E_{n}$ a block of. metal moving freely within the oentre plate, D, and acted upon on the under side by the inner ends of the levers, F, F, of which there are two; the other end of the levers, F, F, carrying the counter-b.lance weighte, G, G, adjustable upon the levers, F, F; upon the block, E, within the centre-piece E, reats the brass step, H, in which works the centre axen, I, of the turn-table; upon the exterior of the centrepiece, E , revolves loosely the disc, \mathbf{K}, to which are bolted the radial arms or axes, $L_{4} L_{4}$ carrying at their extremitien the friction rollers or wheels, M; N, N, washers placed upon the axes, $L_{4} L_{4}$ for adjusting the ponition of the friction wheels or rollers, M , thereon; these friction wheels or rollers revolve upon the raised portion of the curb, A, and carry the outer edge of the revolving table or plate, $\mathrm{P} ; \mathrm{O}$ is an iron ring bolteri to and connecting the radial arms or axes $l_{\text {, }}$, logether : the counter-balance weighta, G, G, acting through the levers, F, F, upon the toe of the axes, I, of the revolving turn-table, P, relieve the friction rollers or wheels, M, from a very considerable portion of the weight of the revolving turn-table : thereby the friction is considerably lessened, and the turn-table moved with greater facility than by
the usual methods; the upper edge of the periphery of the frietion roliers or wheels, M, being, the whole of them, in the same borimuntal plane. The object of the arrangement and invention the patentee states to be, to allow any lateral motion of the upper or revolving plate of the ture-table to take place, without in any way affecting the pressure or position of the said revolving plate upon the friction pollers or wheels.
The patentee also states, the third part of his improvements to be, the arrangement of the rails upon the turn-plates, and the arrangement of turn-plates upon parallel lines of railway, to facilitate the removal or transit of carriages from one rail to another. Thia improvement simply consists in placing the torn-plates in such a position that a line passing through the centres of such turu-plates shali be at such ap angle as shall divide the circle. The patentee giving two examples, thus: one in which the line paning through the centre of the turo-plate is at an angle of 60° to the line of rails; by their being placed in this position the patentee fixes upon the turn-table tbree lines of rails, and a carriage placed thereon has to be moved twice through 60° only, or one-sinth of a circle, instead of by the usual arrangement 90° or one-fourth of a circle. In the other example of the patentee's, the said lines passing through the said centre of tine turnplates are placed at an angle of 45° : in this example the patentee arranges upon the turn-plates fur lines of raila; and a carriage requirea to be moved through one-eighth of a circle, or 45°, twice, to place it opon another and parallel line of rails. By these arrangements, the patentee states, the turn-table is in a position to receive a carriage upon it, whether from the inclived line between the parallel of main lines, of from the main or parallel lines themselves.
The patentee, after specifying and describing bis invention and improvementa, states bis claim to be; 1st. The construction and application of moveable tongue rails of railway switches, as bereinbefore described. 2nd. The construction and arrangement of railway turntables, by which the upper edges of the peripheries of all the revolving friction rollers or wheels are in one and the same plane, that plane being horizontal, or at right angles, to the centre line of the axes of motion of the upper or moveable plate of the turn-table, and thereby allowing lateral motion of the said upper or moveable plate upon the said revolving friction rollers or wheels, without injuriously affecting or deranging the perfect action of the said arrangement and apparatus. And the patentee also claims the construction and application of the lever balancing apparatus to the said turn-tables, as bereinbefore described. 3rd. The arranging and fixing the rails upon turn-tables, and the arrangement of the relative positions of the said turn-tables to facilitate the removal of carriages from one to another line of rails, as hereinbefore described.

HIGH-PRESSURE MARINE BOILERS.

The explosion of the boiier of the Cricket steambont has given prominence to the question, whether high-preseure steam can be used with safety for the purpose of navigation. In consideriag the subject, however, at such a time, there is some danger that the judgment many be prejudiced, and a too-hasty deciaion given againat the principle, when only the mode of carrying it into practice hes been defective. It is most desirable to view the matter as freely as possible from the influence which such a divester is calculated to produce, and to consider all the circumstancen atteoding it, for the purpose of ascertaining whether they disclose any inherent danger in the use of high-proseure steam that no procaution can remove, or whether the accident wes the result of recklessuess on the part of thoee emplojed, or of want of case in the manafactoring engineer;casualties altogether independent of the nafoty of high-pressure steam. We will in the firat place complle a brief narrative of the event, collected from the evidence of those who witnessed the explosion.
The Cricket was one of ihree steamboats built on the same principle, and employed in conveying passengers to and from the Adelphi-pier and Loodoa-bridge, at the low fare of one halfpenay. On the morning of the 27 th of Adgust, the Cricket was at the Adelpbi-pier, waiting for pasoengers. She had been waiting for ten minutes after having cone from London bridge, with the steam ap; jet, during that time, neariy all the with nesces declare thal there whe no ateam blowing of. The captain had gone ashore, and the person in whose charge the eagine wes for the day-not the regular engineer-was standing on deck near the fannel talking to the atoker. The call-boy was in the afier-cabin, and not one of the pernons belonging to the boat was in the engine-room. The number of passengers on board is variously stated at from 100 to 200 . Saddenly a loud nois,
was heard, which is desoribed by some of the paseengers to have resembled the soond of rashing steam and reading iron, rather than a sadden explosion; others, indeed, compare the noise to the discharge of a canson. The boiler casing was projected with great force through the after-part of the boat, which was completely destroyed. The whole fooring of the deok was blown ap, the cabin was stripped bare, and the inon sides of the vessel, where it narrowed at the ran, were laid flat, and the boiler casing was carried into the water. The steam chest wal projected opwards, carrying with it the funnel and the outer case of the boiler, and abattering the bridge which connected the two paddle-boxes. The front plate of the boiler and the tubes were driven against the frame of the engine, which was mach injured, bat it fortanately arrented the progreas of that portion of the boiler, and thus preservod the fore part of the boat.
An explosion attended with soch destruction on the vesall must, of necossity, have told with disastrous effect on the numerous passengern. Those on the after deck were blown into the air : some fell into the water, and others dencended among the rains of the veasel. The number killed, however, is wonderfully amall considering the destructive effects of the explosion. The lives lost were only five, and among them was the callboy, who was boiling coffee in the after-cabin when the boiler casing swept through it. Even he, contianed to live sometime after the explotion. It is a remarkable circumatance, also, to which we shall subsequently direct attention, that not one of those who were killed had boen injured by scaldiag, and among the many who have sastained injuries by the explosion, very few have been scalded, and none of them seriously.
The foregoing is a brief resume of the principal facts givan in evidence before the coroner, reapecting the explocion of the boiler and its offeets; we have now to inquire for the canse of the disaster. The engine was constructed in accordance with a plan (patented by Mr. Smith, one of the proprietors of the boal,) in which the principles of high-pressare and of condensing engines are combined, and the result is reported to bave been a great saving of fual. The engines wore made by Mr. Joyce. The boilera were tubular, having the fre contained in a tube three feet diameter within them. The boiler casing, which was cylindrical, wes about five feet diameter and aix feet long, with a hemispherical ead at the after part, and it wea made of f -inch iron. The ateam-chest was cylindrical, with a hemispherical top, and wes composed of iron tiths of an inch thick. There were 66 tubes of 2ξ inches diameter inaide and 4 ft 9 in . long. The safety-ralves were $\mathbf{2} \mathrm{f}$ inches in diameter, being fat and resting on fint seats. The length of the levers was 27 inches, and the fulcrina $2 \frac{5}{4}$ inches. Of theso ralves there was one on each of the two beilers, which freely commanicatod by ateam and water passagas; and besides theso lever-valves, each boiler had a Salter's apring-valve sapposed to indicate 45 lb . on the index : there was also a mercurial gauge, for the additional guidance of the engineer as to the pressore of the stemm. Neither of the boilers had any stays above the tabes, nor in the steam chest. With respect to the boat itsolf, the following specifoation Yor its conatruction, an agreed between Mr. Smith and Mr. Joyce, shows that it was intended to be put together in the beat manner:-
"Specification of an Iron Steamboat.

Leagth on deck	$:$	126 foet
Breadth of beam	$:$	13 feet
Depth of hoid	$\quad:$	7 feet

Draft of water 9 ft. 6 in., with machinery and coais oc board. Is to be built of the beat plates, fush jointed, and conatersunk rivelted.

Plating of bottom lower atreak, one-fourth thick;
Second, third, and fourth streaks, threo-sixteenths thick; Fifth streak, one-oighth full ; sixth streak, one-eighth.
Angle iron frames 2 in. by 8 in., and 18 inches apart in centre of vessel, and towards the eads the angle iron to be lighter, and 24 iuches apart.
Sleepers about 12 inches deep and one quarter thick, and of aufficient length to distribute the weight of engives and boiler over 30 feet length of vesael.

Keel and stems 8 inches by $\frac{1}{2}$-inch.
Bulkheads and coal bunkers $\frac{1}{f}$ full, $\frac{1}{3}$ bare.
Suitable half-round iron all ronnd that portion of the boal desigatied the plank shear or gonwale strenk, including sponsons.

Woed Work.
Shelf piece of bett red pine . . 8 in. by 21 in.
Beams, 24 inches apart
Plankshenr of Quebec oak
Deck, best yeilow pine
Shear atreak of beat red pine

Paddle beams, spring beams, and rim pieces of Quebec oak.
Cabin floors of good yeilow batuens, one inch thick, on suitable bearera of red pine.

Cabias to be fitted up similar to the Ant and Bee, and the joineri" wurk
and attiags，skylights and companions，to be equal and similar to those ves－ sels．

Glazing of the best character（with best bull＇s eje acuttles）．
The whole of the wood and iron work to bave three good coats of paint．
This ressel is to be fitted with a pair of engines of 16 －horse power，eacin similar in principle to those on board the Ant and Bee，witha moch im－ proved and very powerful boiler．A good cabin stove in the after cabin．

And to be eqnipped with anchor，ropes，and everything for her station． A amall winch at tho bead for her anchor，and all necessary fittings com－ plete to go upon her station for work，and to include an eztra donkey－ prap，steam pressure gauge，vacuum gauge，and a Salter＇s balance on one safoty－valve；the other safety－valve to have a weight in the usual way， and all necessary fire irons and spanners．

Speed to be equal to the fastent of the above bridge boats；consumption of fuel not to erceed $41 \mathbf{l b}$ ．of good Welsh coals per indicator borse－power of（ 66,000 ）per hour．

Time of completion－All，May 1846.
I．William Joyce，do hereby undertake to make，construct，finish，and supply you with the whole of the before－mentioned works，viz．，the iron steamer complete，with her engines，boiler，and fitings，in all respeots ready to go to work opon ber station，of the very best quality，best of materials and workmanship，and without any extra charge whatever bepond the anm now agreed upon，viz．，Two thoasand five hondred and苗等 pounde sterling．＂
［The periods at which the money was to be paid having been specified， the agreement concludes as follows］：一
as In consideration of receiving the above onder upon the terms specified， I aleo agree to put the engines and boiler which I have already been paid for into the new steamboat building by Messrs．Ditchburu and Co．，called the Cricket，and to complete the same ongine and boiler in every respect fit for work apon her station（with the exception of half the cost of a don－ key pomp，pressnre gange，and Salter＇s balance，which has been settled at E12），before the expiration of the prosent month．

Signed by both of as upon the 11th
day of February， 1846.
O．H．Smith，
W．Joyce．
Witness to the above signature，Bn．Nasb．＂
The agreement，it will be observed，stipulates for one boiler only，bat Mr．Joyce afterwards andertook to put in two smaller boilers instead of it， as be considered they would be safer．Mr．Smith，when examined before the corocer，said he had every reason to believe that Mr．Joyce had ad－ hered strictly to the terms of the contract，and that the boat and the engives were constructed according to the specification．It appears，how－ ever，from the terms of the agreement，that nothing was specified as to the form or strength of the boilers，which were left entirely to Mr．Jayce，under the stipalation that the engines wore to be of 16 －horso power each，＂with a mach－improved and very powerful boiler，＂and to work with a given quantity of fuel．Whether Mr．Joyce took any and what precantions to test the strength of the boilers before he put them Into the boata，has not at the time we are writing been given in evidence；bat the lever－valves were weighted to rise at a pressure of 40 lb ．to the square inch，and the spring－valves were screwed down to 45 lb ．During the whole exami－ nations not one witness has spoken to having soen the stnam blowing off at the spring－valves．

The circnmstances that bave been elicited daring the investigation tend atrongly to throw the blawe of the accident on the grose mismanagement of those who had the charge of the boat．More careless and reckless coadnct was scarcely ever disclosed，and the surprise is，not that the boiler barat on the 27th of Angust last，but thal it did not hurst at any time daring the last six months．Clark，the engine－driver，who was appointed to the Cricket at Easter last，appears almost from the first to have pursued the plan of tying down the lever safety－valves when the boat was in motion， and the fact seems to have been so notorions that many persons avoided going on the boat，and a＂blow up＂was spoken of as an occurrence to be daily expected．Notwithstanding the notoriety of the fact among the persons connected with the Cricket boats，that Clark was io the habit of tying down the valves，the managing proprietor seews to havo been 80 blinded by the plausibility of that man＇s statemente，and by coofidence in his veracity，that he dismised Edwards，the stoker，who had complaised to the captain of the danger of the practice，without any inquiry．Tbere is indeed en attempt to deny，ou the part of mome of Clark＇s friends，that the valves were tled down；but the evidence of the fact is too strong to be doubled．Among others who deposed to having seen the levers tied down， was Mr．Meachem，the foreman of Mr．Joyce，who was driving the engine one day in the absence of Clark，and when he fonnd the levers tied he instantly cut the strings，remarking at the time that he koew what the boilers would bear better than Clark．The boat seems to have been fre－ quently entrusted to the care of persons quite incompetent to the daties of managing the engine，and among othern to whom the charge was commit－
ted wan E man who six monthe hofore had been the porter at a seed ware－ house．

The evidence of the stoker who secoseded Edwards made the case still atronger against Clark than his predecessor．He eaid that he had regu－ larly tied the valves down by the order of Clerk when the boat got under－ way；that the pressure indicated by the gauge was sometimes 80 ，and that the boiler and condenser often became so bot that the steam would not condense，and the engine－room became filled with steam．All parts of the boat became hot in consequence，and it was no ancommon thing at such timen for the people on deck to call ont，＂All hot，all hot！＂He further stated，in confirmation of the preceding ovidence of Clark＇s recklessnest， that he woold sometiones start the bout before the water in the boiler was up to the bottom cock，and that on Sundays，when the boat was most crowded，be would have friends drinkiag with him in the engine－mon，and ＂practising driving eagides．＂As an instance of the strains the boiler sus－ tained by the extreme pressare cansed by tying down the valves，this wit－ ness said that，－
＂On one moraing，about three weeks after he had been on the boat，on proceeding to light bis fires，he found the water sll gone out of the boiler helow the first row of tubes；in fact，below the lower cock．The water escaped through a tube which was aplit the previous day by a pressure of steam．On oberviog the want of water ho began pomping，and pumped an hoor and a half，when he foand the water continued to ran out as fast as be pumped it in．He did not notice anything particular the provious day．The valves were tied that day under the general orders．That was one Sunday morning．Clark had not arrived at the time he found the de－ fect in the tube，having gone down to Greenwich the previons eveaing． Witness went on board the Bee，and told Mr．Buttrise of the aplit in the tube，and while Mr．Bnttriss was looking at it Mr．Clark arrived，who proposed to caulk the tabe，but Mr．Buttriss said that as the pressure would be the same as on the boiler，it would not answer the purpose，and proposed that it shonld be repaired by an iroo bolt and washers．That plan was adopted．A round iron bar as thick as his finger，was placed through the tube－a wasber placed on each end，and a joint made between the washer and the boilor．Witness pamped the ongines to fll the boiler after that，when it leaked a litule at first，bat whon they were running and the water got hot，it did not leak at all．Four days or a week after that ocen－ sion，ho foond the water leaked from a joint of mother tube，where it was made fast to the boiler．There was no split in the tube．After pumping an hour，Mr．Buttrias came on bourd，and with the assistance of Mr．Ball， the mate，the danger was ropaired，so that they could run．He believed it was hammered round．＂
In addition to the wanton sporting with human life on the part of the engine－driver，which the evidence discloses，there appears also to have been oulpable misconduct by the persons employed to manage the affairs of the company．The engineers and stokers are repremented to havo been kept at work from five in the morniag till twelve at night，being exposed during a portion of the time to a temperature of 100° ．The incessant working of the three boats belonging to the compauy caused also greater difficulty with the boilers，there not being time to blow out the water and examine the boilers，as in other steam vessels；and the dismissal of Edwards，without inquiry，for complaining of the conduct of Clark，seemed effectually to pre． vent other complaints from being made．
It will be obeerved from the anmmary of the evidence we bave given re－ lating to the cavse of the accident，that the question of the comparative safety of high－presane and low－pressare engines is in reality scarcely in－ volved by the explosion of the boiler of the Cricket．By tyiog down the safety－valves any boiler might be barst，and a low－pressure boiler would have the lesn chance of escepe under such treatment．We bave as yet no minate description of the constraction of the Cricket＇s boilers，as Mr． Lloyd，the engineer appointed by the Board of Trade to investigate the matter，has not at the time we write made his report ；but from the account givea by Mr．Galloway and others，there appears to bave been a want of proper atays in the steam chest and boiler casing．The safoty of tabular boilers arises from the comparative weakness of the tube fastenings，by Which when the pressure becomes dangerous the steam escapes through some small rent，and the pressure is relieved by the eacape of steam．This principle might be still further applied，so as to render an explosion，in the ordinary meaning of the word，next to imposaible．

There is one point that especially deserves notice with respect to high－ pressure steam，whlch renders it in some respects a much safer force than steam of low pressure．Hinh－presoure steam dors not acald．Among the deaths and serious injuries inflicted by the explosion of the Cricket＇s boiler，we do not find that any one has been serionsly scalded．One person who was blown from the deck，eays，that he fell bimself struck on the head by the steam，but be experienced no sensation of heat．We are aom
qaciated, by experieace, with the fact that there is no beat girea out by high-presure stean when escaping lato the air, having often held our had in a jet of stenm imadigy from a premenre of too lb. to the aquare inch. It is oaly when surh steam regurgitates, if wo mey so exprese it, that it stres out beat and scalds. Whea, for example, a jet of steam strikes against a solid body, and its lssuing force is arrested, then it scalds; but when it has troe room to expand, the censetion produced is that of cold, and not of berning. It may be remembered that when by the separalior of the pipe of the boiler in en engiae cosedructed by Mesers. Sasanda, at Black wall, ceveral persons were tilled, thes all loet their lives by the scalding of the low-premare steam. The high-pressure steam of the Cricket's boiler, on the coatrary, did not seriously injore a single individual. This extreordinary property of high-pressure ateam should form an important coasiderstion in determining the comparative anfots of the two kiods of cogines, jet it has hitherto been disreganded.

Since the foregoing remarks were written, the evidence of Mr. Llogd, chief engincer and inspector of machinery of the Royal Navy, has been given at the adjoursed inquest, held on the 28ad September, and we sabjoin the greater portion of it, divested of the repetitions consequent on examinatice by different counsel. Some parts of his statements relative to the constraction of the boiler and the pressure boroe ondifferent parts are not very clear or compreheasible, but his evidence proves that the boiler, however defective, was capable of bearing a presare twice as great as that which would heve lifted the weighted ralres, if they had uot stack or been tied down. The correnpooding boiler of the Cricket geve was under a preseure of 186 lb . to the equare iach, hat it had previously suffered a great strain by the presence which cansed the explosion, and therefore ite atrength at the time must have been mach greater. Mr. Lloyd is of opinion that the other boiler must have tad a preasure of at least 186 lb . to the aquare inch before it exploded.

Clark, the eogineer, wes examised aftor Mr. Woyd, and he declared that the statements of the other witheses against him were false, and that be perer gave directions to Edwards nor to any ose to tic down the ralves. He seeme to make a nice distinction between tying them down and twisting tbe ead of the atring fastened to the lever round a anil. He denied, however, that the string was ever tight, and he maid that the object of twisting the ends round the oail wes to prerent them from dungting and being in the way.

Mr. Leord's evidence was to the foliowing effect:-
The Engivea.-"With regard to the engibes themselves, I do not thint many observations necessary. They are high-preseure engivet, on the principla well known as Wolfe's. Ench engine has two cylinders; in one the steam is used at a high-prepsure, and, instead of passing into the open air, as in an ordinary high-pressure ongine, it pasees lato the second and larker cylinder, wheace it passes into the condenser, and is there condensed in the ordinary way. The object of this arrangement is of course the save ing of fael, by effecting a saving of steam, and, therofore, of fuel. $\mathbf{S o}_{0}$ far as I saw, the materials and workmanship of the engines were good. As compared with high-pressure engines, there is nothing objectionable in these engines, in point of danger-mothing bat the ordinary construction. There were attached to the engines two pomps for feeding the boilers; avother pump was worked by an anxiliary engine, which was commooly called the "donkey;' and there was a fourth pamp, to be worked by the band, for foeding the boilers. These appeared to be all that was neces--ary.
The Boilera.*-There were two boilers, consisting of an exteraal cylinder,

five feet in diamoter, haviog a hemispherical ond at the back, and the freot being composed of a flat plate. To this flat plate are fixed a cylioder, forming the farnace, and all the small tubes through which the prodacts of combastion pase. The internal part of the boiler, consisting of the furnace, tbe 8ro-box, and the small tubes, were eecured to the shell by the rivotiong foond the circumference of the front plate, and by iwo stags, one fised between the end of the fre-bor and the end of the boiler, and the other ficed obliquely bet ween the top of the front and the opper part of the thell. A steel dome was aleo rivetted to the top of each boiler, on each of which were two affety-valves, pressed down by levers, one lever having a woight at ite end, and the other a spring-balance-Salter's bulance. The thickpese of the tube plates was $\frac{4}{4}$ inch; of the front-plates, those on the top and bottan of the tobe-plates, $\frac{8}{\mid}$ inch ; the sbull $\frac{1}{1}$ inch. The front of the boiler cossisted of three plates, one of these being the tube-plate, and the others the platen above described. The steam-dome is titinch; the angle-iron roond the front of the boiler is inches by inch. All the other angle-iron is $2 \frac{1}{2}$ by $\frac{8}{1}$ lach. The rivets in the boiler are ${ }_{3}$ inch diameter, and the riveta in the steam-dome rather amaller. That includes the rivets in the ahell; all the rivets of any importance are $\frac{z}{z}$ inch. Assumiog each boiler to be of the power of 16 bormes, the total beating surface in the boiler is 148 square foet par borte power. The area of the fire-grate is $55-100$ ths of a foot per horse power. There is nothing objectionable in these proportions, einher in the amonnt of area of fre-grato or of heatiog surface. The quantity of water in the boiler up to the middle genge-cock is aboot $38 \cdot 1$ cubic feet per horse power; aod the steam-room abont II fool per horse power ; that is jucludiag the dome and the other part of the boilor.

The Valoes and Pressure.-I bave calculated the pressare opos the safely-valves, supposing the wreight w be at the extremity of the lever, at very nearly 68 lb . per square ioch. Taking the spring-balance as it was when I saw it, the pressure per square inch when the valve whas just about to open, would be 40 lb . per square incb; but if the valve were as wide open as it could be, this apring-balance would prodace a preseore of about 170 lb . per square inch. Both valres are lever ralves; one is palled dowa at the end by the spring-balance, the steel-yard, the other is operated oa by a weight. As the lever of the spring balance rises, by the valve opening, the pressure on the valve increases, and rises to 170 lb . at the bigheat. One poand on the spring-balance produces a presesure on the valve of searly two pounds. These valves operate jointly on the boiler, bolh earving tw empiy it of steam; but they operate separately from each other. 1 think if thes had all becn properly in operation, the steam could not have accumulated in the boiler to any dangerous oxtent-that is, supposing them not to have beed overloaded. I do not approve, certainiy, of the arrangement of this spriag-bulance valve; it is objectionable because, when the valve bas been raised to such a height as to relieve the boiler considerably, the pressore brought opon it is very greatly increased, the power of the lever being nearly as 10 to 1 . This is not the usual way in which springbalances are qued, so fer as 1 know. I think the priacjple wrong, on account of the pressure being increased when the valve opens. I think it wrong in principle to pot a spring-halance at the end of a long lever. I altogether object to ralres being in the power of the engineer to load at his pleasure, especially the high-pressure oses; but it is only fair to atay that this is $t 00$ commonly the ense. It can scurcely be a matter of opinion that this is wrong in principic. Nothing in the weighted valves called for observation, except that if it had not been Intended to work these boilers at a prossure of 06 lb . to the square inch, such a weight as that ought never to have been put apon the lever. The same remark applies to the apriogbalance valve, because it can be serewed down or up to any extent. The weight being upon the lever was objectionable, as it would be an indica. tion to the eaginear that be might ase it in any way he thought ft, so es to obtain that pressure, namely, 66 lb .

Opinion on the Strength of the Boiler. - As to the construction of the boiler, I may eay that, in my opinion, it is dangerous to be used as a highpresare boiler. The whole of the pressure of the steans within the bouler is brought, either directiy or indirectly, upon this flat plate in the frout. I find, when the pressure of steam is 66 lb . on the \quad quare inch, the direct pressure on this plate is 88 was, which is withstood entirely by the stifferea of the plate itself, with the small addition of the two stags before. mentiuned. I do not believe that 66 lb . on the jach would havo burst the boiler at present, though it might have done so when the boiler was somewhat older. The objections wbich naturally lie aguinst a lat plate of tbis kiod ara these: In the first piace, yon cannot calculate what it ought to bear; tho prossure on the inside of it tends to produce three different effects. First, there is a strain brought apon it at right angles to the aurfaee, and, if the plate were perfectly rigid, there would be no other effect; this not belat the case, an enormous pressure is brought upon it in its own piane, which may be iliustrated by considering the effect produced on a musical striug when pressed sideways, the force brought to bear upon it leagthways being far greater than when atretched in that direction. A third action is produced by the bending of the plate, the outer circumference remaining nearly

Iry the poiltion of the two stay, the aniy ones in the boller. A 1 , ta the atay the froot, leadigg from the tront plate, in a diagonal directlon, fownrde the strem docer: this stay belag formed out of if inch square bar-iron, tiattened out at the end whith an tart hole, and supported by a pit paselng through two 24 lach apite Iron.e. A $\Sigma_{\text {. Kppemeris }}$ the other stisy, fedlos frum the beci of the boller to the eod of the fap, wheh eoperenicetich with the tubes. A, the furmace, about 3 teet in diameurr. B, the stean dome to Which two mafery.vilves were sinised. C, steam. pipe, teadiog from ithe bax of thy efety

in the aame plane, and the inner part being coosiderably bolged. From the bent examination l can give the subject, I have come to the copclosion that the atrength of this front plate, aided by the two very jmperfoct stays which wore put in the boiler, was not gufficient to bear, for a length of timo-that is, doring the usoal time a boiler may be suppoeed to last-a pressure of stewn of 60 lb . on the equare inch. At present it would bear it eo doubt; there is no question of that. If any person wished to tie down the waighled valves he would, most likely, prevent the springbalace valves from worting, which he might eacily do by putting in a pioee of wood.
I have calculated, in a rongh way, what would be the effect of keeping dil the valves tied for five minutes. Supposing uo steam were permitted to escape, and the promare was 60 lb ., at the end of five minuten it would increase to more than 90 lb ; and, at the ead of ten minutes, be between 180 lb . and 140 lb . ; in a quarter of an hour, at least 180 lb . That is, sup. posiag no steam escaped, that the fires were burning briskly, and the boiler in fill operation. I canuot conceive four valves getting out of order, or aticking, at the same time. One valve, supposing the other three to be fast, would not relieve the boiler of steam as fast as the stenm was generated, looking at the sime of the steam-pipe. If two were in operation, one of Salter's, and one of the othery, they onght to relieve the boiler; but the srea of the steam valve is larger than that of the waste ateam-pipe, which is nof a good arrangement. The area of the former is nearly five inchen, of the latier, ooly $\mathrm{g} \cdot 7$ inches. If the two weight-valves were tied, and the epriog-balances free, I think a dangerove pressore would be broaght upon the boiler.

Trst of the Truacity of the Plates of the Boilers.-After making an eramination of the boiler, I thought it proper to test the goodness of the materials; for which porpose I took pieces of the plates of the boiler which had been rent by the explosion. These plates, as I said before, are inch in thickness. I cut strips of two inches in width from them, both witb and aguinat the grain, and tore them asunder by a machine for that parpose at Woolwich. Four of the pieces produced are four of the atrips of the boiler; two torn with, and two ageinat the grain; the other four pieces are good metal from Woolvich, with which I compared the former. The former, are, in fact, part of the plates which were rent in the explosion. Withont tronbling you with the details of the experiments, I may mention that the average tedaile force per square inch of these plates was 17 tons, that of plates of the rame thickness, of the best kiod, which I tried at the same time, was 21 登tons. Specimens of those are also produced. They are Low Moor plates, of the same thickness, but of a very soperior quality. The plates of the Cricket are very much laminated or abelly, not only in one part but all that I saw. This is owing to the bad qualty of the metal. It will happen sometimes in plates of the best quality, but it is very much to be avoided. This piece exhibits the fracture actually made by the explosion, the appearance of which proves it to hyve been bad iron-that is, for the purpose to which it was applied, to a bigh-pressure boiler, and considering that it was employed in the part Which was most likely to break. I tried also some common 8taffordshire plates at Woolwich, and found their strength nearly the same as that of the Cricket's plates. Thoy bore 10 tons on the average, which is very low.

I do not consider the workmanship of the boiler to have been anch as it ought to hare been in a boiler of this kind. The rivets generally did not Gill the holes, and they were generally not sufficiently long to make a good rivet. The boiler does not appear to be serionsly deteriornted by wear, except st the lower part of the front, and poesibly the bottom too may be 00 ; but I do not attribute the explosion to that. The part which exploded was the whole of the front, which was torn out bodily. Of comme the part was weaker than when quite new, but not materially so. The experiments I have mentioned are not tests of the pressure of stoum on the plates. All we cas in, that a presause of 60 lb . ought not to be permanently put upon them, say for three years. From these experiments, and another of beoding the iron, I should say that the metal was not such as ought to heve been employed. It was good common metal, such as is usually emsployed in the boilers of the navy fur parts where there is no great strain; but not such as ought to have been pat in the front of the boiler. The plate was torn where it was weakeat, and in the stronger part it was torn from its fecteninge

By consent of Mr. Smith, Mr. Joych, and olber parties interested, who have afforded me every facility, I have made experiments on the unexploded boiler. I brought on it a pressure of 186 lb . to the square inch, wiowing that the other mast have been subjected to a very eevere prossure. In the unexploded boiler both the stags were separated, and a part of the angle-iron, which unites the front to the shell of the boiler, was cracked. Upoo this boiler I brought a pressure of water of 180 lb . ou the square ioch, and then the boiler leaked to so great an extent that a greater pressure could not be obtained. My opinion is, that the pressure of steam which caused the explosion could not have been less than 186 lb . to the square inch. That is, of course, a matter of opinion; bat it is the eonelu. gion to whioh I have come. I should not have expected it to burst with a iess presenre; but, as I said before, it is utterly imposaible to calculate it. You can calculate perfectly well what the shell of the boiler ought to bear. I shook say it was not less than 186 lb .; how much more I cansot say. I do not believe there is ang reason to suppose that there was any deliciancy of water in the boiler. It is called a tubular boiler, from the cir-
camstance of a number of small tobes being introduced, for the purpose of absorbing the heat. We consider them rather a afe botler. The businet of ove or two of these tubes is a matter of no importance. The tubes meemed to be all perfectig good. Two or three of them were bent, bot the cance of that was very ovident from atriking against the inside. My great objection to the boiler is its form, the front being fat, without proper ataying; and, in a far less degree, the quality of the materials and the workmanchip.

Cause of the Explocion. -There can be no donbt as to the cause of the explosion-namely, the improper increase of the pressure of the steam ahorty before and at the time of the explusion. If the presince was gradaally increased, aty from 60 lb , to 180 lb . or 140 lb . in the coorse of ten minutes, that would be enongh to account for it-certainly, if the pressure rose to 150 lb .; but that is a mere matter of opinion. That the boiler had sever before been aubject to anch an extreme presare is evident from the fact that the other boiter leaked considerably at almost no pressure at all : and I consider that it had been rendered thus leaky by the extreme pressure on the day of the explosion. The boilers are connected in the water apeces and in the upper part of tie steam, so that the pressare on both would be the same at the same time. If only one valve was io operation on one boiler, the pressure on both woold be the same; and even if both valves of one boiler were secured so an not to work. To show the great pressure brought on the unexploded boiler, I may mention that the dat plate in front was bulged to the ertent of $1 \frac{8}{8}$ inchea before I commenced my experiments. After it had been aubjected to the water-pressure of 136 lb . on the square inch, the bulging of that plate incressed to $9 \cdot 16$ inches; and the lower front plate of the boiler began to break exactly like the one that was broken in the exploded boiler. Had all the four valves been at liberty, it appeara to me impossible that the pressure of steam conld have so increased as to canse the explosion. Had both the balance-valves been open, I think they would hardly bave asved it ; they might have deferred the time, and prolonged it from ten to perbaps twenty minutes. I think the valves must have been closed, or open only to a small extent, when the explosion oocurred. [Here Mr. Hoyd exbibited a plan of the veasel and boiler, and explained to the jury how he conceived the explonion to have occurred.] When the front began to bulge the staya would be the first to go; the plate would then bulge more and more, and the moment the separation took place the inside of the boiler would be projected in one direction, and the shell in another. The former was driven against the engine, which resisted $i t$, and to this the people is the fore part of the vessel owed their safety. The shell of the boiler was carried in the other direction, and tore away everytbing in the sterd part of the vessel. Assuming the actual gross pressure at 180 tons, and adding a ton and a half for the weight of the shell, it would give a force a huodred times greater than that of gravity, which will account for the enormoos power azerted in a comparatively sbort space of time.

Yon can always raise a valve io a well constracted boiler, bot oot poll it down. The engineers in the Royal Navy have not accers to the valves; in locomotives the engineers have access to the affety-valves. I foond the apring of the unexploded boiler correct; as bearly as can be calculated, it was about 40 lb . per square inch when the valve was shut, but as the valve opened the premare increased. For anything I can tell, the safety-valve was not permitted to rise in the unexploded boiler. If both the Salter's balance-valves had been in a fit state, a longer time would have been necessary to get up the steam to the barating premure. I cannot tell whether they would have opened sufficiently to let unt the steam of themselves; I doubt very moch whether they would. The waste pipe of the Cricket is small, and is a bent pipe, and all that impedes the passage of the steam into the chimney, but to what extent it is impossible to say. The noise would have been very great if any of the valves had been acting, and the steam had been $\delta \mathrm{lb}$. above 40°. There were two atays to the un. exploded builer; both had been separated. Either sudden or gradual pressure would have acconated for that sepuration. The stays themselves were atrong eoough; it was the fastenings that had given way. If the valves were closed at 60°, the pressure woold in five minutes have got up to 90°. I know very few engineers who uoderstand these matters thoroughly. I wish we could get people who did understand thens but no man is allowed to drive an engine in the Royal Navy who has not undergone such an examination as may from time to time be considered neceseary. I think that yon ought to get the best men that can be got as engineers, and the ooly conrse to pursue is to fncreaso the wages, if any difficulty urises in obtainjog qualified men.

In the dockyards some high-pressure engines are nsed for particular purposos. I should prefer low-pressure engines, if they were suitable for those purposes. I should say the boiler that exploded must have been weaker than the one that remains, because the presoure would be alike upon both. The boiler that I tested did not stand a very severe tost for a high-pressure boiler. We tried it without the ordinary atays; and it was then bulged in consequence of a previous atrain. The maker of a boiler ought to allow for any weakness that may be cauced by corrosion. I bave been told the boilers were proved before they were put in the Cricket. Mr. Joyce, and everybody connected with the vessel, afforded me every faoility. Low Moor iron is sume of the best lrun that can be got. It is not ased much for the boilera of commercial steamers; but it ought to be used for high-prensure boilers, 1 think the pressure a stenm boiler ought to be worked at should not exceed oneotenth of its calculated atreagth, supposing it to be made of the very beat materials and wurkman.
ship.* Almost all tabular boilers have fat plates in froct. If I used a fat plate, I shopld construct it in such a manner that the thays themselves might snstain the entire presware. If the valves were tied down and the boiler was subjected to a strain of considerably above 66 Jb ., the effect would be gradually to weaken the boiler. All the parts of the boiler made to resist the straining would be acted upon by such a constant pressure. The dume would not be affected by the pressore of 186 Ib ., which I applied to the unexploded boiler. The valnerable part of the boiler is the bad plate in front."

The inquest was again adjourned, and was resumed on the $\mathbf{2 4 t h}$, when several addltional facts were elicited. Heasman, the porson who acted as engineer on the day of the explosion, denied positively that the valves were tied down, and he and that only a minate before the explosion the gauge indicated a pressure of but 88 lb . to the square inch, and the ateam was blowing off slightly from the loaded valve. He was equally positive that there was no string whatever attached to the lever of the larboard boiler at the time, as it had been shaken off on the Bunday moraing previonaly, and bad not been replaced. Mr. Lloyd was again called, for the purpose of explaining a few polnts of his former evidence. He stated, in confirmation of his opiaion that the presare at the time of the explosion must have been at least 186 lb . to the inch, that the companion boiler bad been so much strained at the same time, that it could not have worked afterwards, owing to the leakage; and yet, in this weakened condition, it bore a pressare of $\mathbf{1 8 6} \mathbf{l b}$. to the inch before it gave way. IMr. Joyce and tis foreman, Mr. Meacham, gave evidence. The latter states that when the bollers were delivered from Mr. Trotman's, of Whitecrose-street, Borough, they were proved to a pressare of 150 lb . to the square inch. The boiler was again proved to a pressure of 150 lb . on the 8 rd of August, when the tubes were repalred. That pressure was not observed to make any imprescion on the boiler. When be visited the boat on the 23rd of Angost, he ordered the strings on the levers to be cot away, as there had been a talk about Clark having tied down the valves; but, having bimself confidence in Clark, he did not believe that he "bad ever done 80 wicked a thing." Had any one of the four valves been in operation, be was of opinion it would have been enough to relieve the boiler from dangerous pressure. The weight on the lever would be equiralent, as atated by Mr. Llogd, to a pressure of 66 lb ., if placed ut the end of the lever ; but it never could be brought within three inches of the end, owing to the waste steam-pipe, and the pressure could not then exceed 66 lb . or 57 lb ., or, with the lever and valve, 69 lb . Mr. Lloyd's proof was made after the boiler had lost its stays. Had it been mado when the boiler was new, and with the atags in, he believed it would have snpported a pressure of 250 lb .

Mr. Joyce said that Mr. Trotman had his own price for the boilers, and he had reason to believe they were quite sonnd. In reference to $\mathbf{M r}$. Lloyd's opinion, that boilers onght to be proved to ten times the working pressure, Mr. Jojce observed that he never knew a boiler that would stand such a test. The front plate of the Cricket's boiler was made of B. B. H. iron, wbich is of very good average quality. The boilens of the Ant and Bee are of good Staffordahire iron, and the tube plates are not so thick as those of the Cricket.

Mr. Trotman, the maker of the boilers, gave the following evidence :-
"I have been a boiler-maker from my youth. I furaished the boilers of the Cricket. Mr. Joyce maid they were to work from 40 lb , to 80 lb , but vever to exceed 50 lb . I proposed to prove them to 100 lb , and Mr. Joyce said he shonld be very weil satisfied. When they were done, he offered to prove them himself, after they were delivered, and I consented. I filled them with water, to discover any leaks, but did not prove their strength. I saw the exploded boiler the Sunday after the accident. I concluded there had been some unfair work. I don't think that any ordinary pressore could have bent the plate and torn the angle-iron, which was very strong. I had the irou from Messrs. Moser, in the Borough: I paid 152. a ton for the tight iron, and 20l. a ton for that of the two plates. I have worked tons of the B. B. H. iron, and consider it next to the Low Moor. The engineers fix on the safety valves. With fair pressore and fair work, those boilers would have worked for years. They have been known to work at 80 lb ., and that is much more than I was told would be required, I have uever known a boiler so strong as to resist a pressure ten times the ordinary amount. This accident must have been occasioned by pressure, which must have been excesaive to send part of the boiler, weigbing perbaps a ton and a half, through the stern of the boat, and about forty yards througb the water."

Mr. Robert Rettie, of Ham, civil engineer, though he admitted he bad never seen the valves nor the boiler, spoke confidently that the canse of the explosion was the overheating of the flues, that the stoppage of the

[^39]valves was quite inadequate to account for the explesion, and that the pressure mast have been nearer 300 lb . than 150.
The evidence having been concladed, the coroner (Mr. Bedford) anmmed up, and the jury, after doliberating for an hour and fify minates, delivered the following verdict :-
"We find that Thomes Shed, John Blnnt, John Litlloton, George Shute, and John Buckley came to their deaths by the bursting of the boiler of the Cricket steambont, on the 87 th of August, 1847. We fird a verdict of manslamghter against Henry Heasman, the engineer on that day. We consider Clark highly culpable, and nufit to hold the situation of engineer. We likewise convider Mr. 8mith's conduct shamefolly neglectful in not properly investigating the complaiat made against Clark."

The foreman stated that they were ananimons in thoir verdict. The inquiaition was then signed by the jurors, and the coroner made out his warrant for the commitment of Heasman.

Thus has terminated this important inquiry, which lasted seves deys, and on the lagt coonsion the jory ant from ten in the morning till ten at aight. In ap engineering point of view it possesses great interest, and the evidence given respecting the explosion, and the experience gained by it, will, we trust, operate in giving additional protection to the public against such disasters in future.

CONSTRUCTION OF PENITENTIARIES.

The following propositions on the constraction of prisons were diacussed at a meeting of delegates from the different European Governmenta, met last month at Brnseels, to take into consideration Penitentiary disciplize. The meeting was attended by Major Jebb, sent over by our Goverment, Mr. Roteb, and Mr. Pearson, from England :-
ca The buildings should be disposed in such maoner as to facilitate the various duties, withont any confuaion. To that effect it is indispenmable so eeparate the prison, properly so called, from the accessory localities deatined for the directors and other persons employed. The external consmonications may be maiatained without exercising any inflnence on the preservation of order within. With that view messengers. purveyors, se.. shonld never come into contact with the prisoners. Each branch of the service should be carried on in some respects in an independent manser, with reference, however, to the principal direction from which it recaives its impaleo.

Cemtral Observatony.-The varions parts of the buiding should bo connected with a central point of inapection, from which the head of the establishment may inspect, without being under the necessity of moving, all the esweutial branches of the service. Begard mast be had to the internal distribution of the localities, to the arrangement of the galleries, and to the choice of the materials of construction, in order that no menterial obstacle may thwart that inspection.

Cells.-In the disposition and arrangement of the cells, regard mast be had to the following conditions:-lst. The cells must be large enough to allow of the prieoners' taking exercise, carrying on trades, and enjoying sumicient space and air for the preservation of their health. The space shonld vary from 28 to 85 cubic metrea. 2nd. They should be lighted up, ventilated, and hested in a suitable manner. sid. Their constraction should be such as to allow of po communication belwreen their inmetes. 4th. They should be fornished with bed and bedding, with a fired washhand basiu with a tap, with a water-alowet and with other necessary articles. The prisoners should also have the means of giving the alarm to the attendanta in case of illmess or accident, or under any circamatance in which their presence might be nocessary. 6th. The prisoness should be subject to an easy but anperceived inspection.

Sprolal Cella,-In penal pricons it to necesgary to have a certain pupber of apecial cells for the infirmary, for speoial punisbmeots, for the difiereat callings, and for prieoners on their first arrival. The ceils for jofirmaries, chielly reserved for patiente who canaot be suitably atteaded to in the ordinary cells, shonld be more spacions than the former, and shonid be disposed in sach a manner as to allow of the froe access of the attendeats. One cell of that kind for every 40 or 50 prisoners would poesibly be suffcient. Cells for paniahment should be stronger than others, aod should be built in such a manoer as to be easily darkened, if neceatary. One rech cell woold be sufficient for abont 100 prisoners. The dimensions of the cells for the exercise of certain trades chould correspond with the ase to which they are to be put. They should be situated in preference on the lower stories, and their number mast dopend on the aatare of the trades carried on in the prison. In prisons where prisoners are constantly eriving, a certain number of cells ahould be made in wbich anoh prisoner may be placed temporarily, provions to being seen by the earreon, and rech cells might be of smaller dimeadoas than others.

Heatimo and Ventilation.-Whatevep the systed of reotilating by beating may be, its reanltes should be the following:-A sufficiency to ench
cell of fresh air, or, if necessary, of air tempered for each prisoner, without the incoavenience of draughts. The extraction from each cell of a quantity of foul air equivalent to the quantity of pure air introduced ; and the carrying on of the heating and ventilation without facilitating the means of commarication, whether of mund or otherwise, between the differeat cells."

IRON VESSELS.

The followiag report of a survey for the purpoee of ascertaining the injories suatained by the Great Britain, has been delivered to Captain Claston. It clearly shows the snperiority of iron over wood for constracting cea-going ressels.
"We, the uadersigned, certify that we have at jour request this day been on board the stemmer, Great Britain, now Iying on the gridiron in the Prince's Dock Basin, and both inside and ont bave examined the means adopted by the foreman boiler maker, Mr. John Crev, for stopping the leaks in the bottom of the veasel whilst lying in Duadrum Bay. We find the principal holes to have been six in number, varying in dimensions from 2 ft . by 12 in. to 5 ft .9 in . by 16 in .; and there are other formidable holes and cracks of smaller dimensions. From their sise and position, under the keel of the ship, we are of opinion that it must have been a work of extreme difficulty to make them in any degree water-tight. We are informed that, beaides the water in which the ship lay, there was never less then 21 or 8 feet of vater and sand in her bold after the damage she sustained from the geles in the early part of the winter; and taking this fact into connideration, with the other difficulties that had to be enconntered, we are of opinion that the greatest ingenuity and perseverance must have been exercieed to stop the holes in such a manoer as to enable the vessel to toat. The method adopted by Mr. Crev for this purpose was as fol-lows:-A plate of sufficient size weas passed edgeways through each hole from the isaide, having a screwed bolt attached to it as nearly in the centre as possible. This plate was then adapted to cover the hole on the outside, and was drawn tight up by a sorewed nut and crosshar from the inside, being packed with felt to prevent leakage as much as possible. On the whole, as boiler-makers' or iron ship builders' work, we consider it to be a mot extraordinary performance, which, regarded from beforo-hand, must have appeared of almost hopeless execution, and must have been one of the greatest amoagat the numerous difficulties over which the onergy and determination of the rescuers of this vessel have ultimately triumphed. We do not concelve that it would have been possible, under similar circamstances, to slop holes of the size mentioned in the bottom of a wooden vesuel; and we may farther remark, that the iron of whioh the frames and plates are made must have been of mont excellent quality.

Fa fretr, Pregton, and Co.
E. Ross, engineer.
T. Bayre, engineer.
E. Parceter, foreman boiler-maker.
N. Pualong, engineer.
W. B. M'Allester, foroman boller-maker.

Linerpool, Sept. 2, 1847.

ARTIFICIAL MINERALS.

The experiments of M. Ebelmen, to produce minerals artifially, com. monicated to the Academy of Sciences, Paris, are thus given in L'Inatitut: the immediate subject being chiefly the varieties of the rabs.
${ }^{4}$ The method I adopted to crystallise these compounds, depended upon the property of boracic acid to dissolve all the metallic oxiden, and upon the great volatility of this ecid at a high temperature. I thought that by diasolving, in melted boracic acid, alumina and magnetia, mired in the proportions that constitute the spinel, and by exposing this borate in open reseck to the high tomperatare of the porcelain kiln, the affinity of alamine for magnesia would determine the separation of a crybtallised alumimate, and the complete expulsion of the borecic acid. In abort, I em. ployed boracic acid, at a high temperatare, as vreter is aeed at ordinary temperatores, to obtain crystallised malte by evaporation alose. The proportions were abont one part of melted boracic acid to two parts of alumina and magresia, mixed synthetically to constitate the compound, $\mathrm{Al}^{2} \mathrm{U}^{2}, \mathrm{MgO}$; with the addition of a small quantity of the bi-chromate of potah. These materials, well mired, were put on a platinum leaf, in a biecuit-cnp, and exposed to the heat of a porcelain blecuit-kiln. I obtained a surface oovered with crystalline facets, presenting in their interior reticu. lated cavities, the form of which was eatily distinguished with the lens. Thowe crystals were rowe-coloured, trasparent, readily scratching quarts, and presenting the form of regular octobedrons withont any modification, They are quite infusible ia the blow-plpe. These charaoters, joined to the composition of the orystals, ay athetically mecertaised, appear sufficiently conclusive to establish their identity with the spinel.
"By subatitnting for the magneaia its equiralent of the pretoride of manganese, a orystallised product is obtained in lerge lamin $\mathrm{m}_{\text {, }}$ in the form of equilateral triangles, or of regular bexagona. These crystali, also,
readily soratah quartz. I consider them to be the manganesiferoos spiael $\mathrm{Al}^{2} \mathrm{O}^{3} \mathrm{MnO}$, which has not yet been met with in the mineral kingdon.
"Oxide of cobalt, sabetituted for the magnesia, equivaleat for equivelent, gave bloish black cryatals, regular octohedrons. They again scratch quartir, but with more dificulty than the preceding."

In employing alumina and gluoine in the proportions that constitute cymophane or chryeoberyl, $\mathrm{Al}^{2} \mathrm{O}^{3} \mathrm{GIO}$, a bristling mass of cryatalline asperities of great brilliancy is obtained. This product readily cuts quarts, and very cleanly topas. It presents then a hardness comparable to the crystallised cymophane.
Certain silicates, iafusible at the temperature of our furnaces, appear capable of being reproduced by the same process. Thas, in meling the elements of the emerald with half their weight of boracio weid, at the same temperature as in the preceding experimonts, substance is obtained, which easily scratches quarty, and the surface of which presents a great number of facets having the form of regular hexagons.
"I content myself," M. Ebolmen adde, in conclusion, "with submitting to-day these first indications, hoping, however, soou to presens to the Acmdemy a more detailed and more complete work. Bat 1 am convinced, at present, that it is possible to produce, at temperatures below those of our iron amelting furnaces, diaphanons crystals the hardnoss and exteroal characters of which are analogous to those of precious stones. It is probable that in repeating these experiments in apparatis of certain dimensions, like reverberating furnaces, by operating on large quantitios of materials, and continuing the application of heat sufficionliy long, mach larger crystals may be produced than those I bave obtained, working with a few grammes only. Another conclusion to be drawn from the proceding facts is, that many species of minerals have the power to produce themmelves and eryatallise as temperatures much below those necessary to melt them."
Speaimens of the products mentioned in the communication were sub milted to the Academy.-Lilerary Gazelte.

NOTES OF THE MONTH.

French Proof Engravinge.-At a recent meeting of the Rojal College of Chemistry, Prof. Taylor explained the manner in which Prench pristeellers are enabled to increase the number of proof copies, to the great detriment of the parchasers. He showed that they had adopted the system of giving the paper a alight costing of carbonate of lead, which rendered the impres. sion more perfoct after the plate had become deteriorated; but that this wes very soon converted into sulphide by the action of anlphuretted hydrogen constantly loating in the atmonphere of large towns, and by which interchange the print whe dentroyed. The presence of lead on thin paper was showed by experiment. Prof. Taylor then stated that the brown coloar of Valenciendes lace was due to a similar cause; the manufectarers apriakling it with carbonate of lead, to make it look clear, -which being changed into sulphide on expeaure to the air, gave the leoe the dingy appearance so much prized by ladies.

Test for distinguiehing Iron from Stesl,-To distingaish iron from atcel by a chemical process, tate pure nitric aoid, dilute it with so mach water that it will only feebly act apon the blade of a common table koife. If a drop of the acid thus dilated be suffered to fall upon ateel, and allowed tw remain upon it for a fow minutes, and then washed off with water, it will leave bebind a black spot. But if a drop of this acid be auffered to act upon iron in the same manner, the spot will not be hleok, but of a whitishgrey colour. The black alain is owing to the conversion of the carbon of the ateel into charcoal, which thas becomes predominant; and iron boing nearly free from carbon, can produce only a grey stain. The utility of thie teat is not conflined to finished articies manufactured of steel, but its application enables the workman in iron and steel to ascertain aloo the quantity and uniformity of texture of uafinished articles.

Sheathing for French Vessels.-The Minister of Marine has given ordera that several experiments shall be made to test the quality of copper sheath. ing employed in England and France, for the coppering of vessels, as that at present used in the Freach Navy end merchant service soon corrodes, as has been proved by the recent report on the state of the bottoms of the ateamers, frigatel, and other ships of war, where French copper bas been employed instend of British, as hitherto, and will have to be recoppered as soon as the superiority of the one over the other is fully proved. The copper manufactured in France is of a very soft nature, very corrosive, and but lituie adapted, either for marine purposes, boilers, or steam-engimes, if not mixed with Euglish metal.

Stagmant Water.-M. Flenrian de Believue states, as the result of his obsorvations and inquiries on the effecte arising from atagnant water, that in marah lands which are covered with water to a considerable depth during the great heats of summer, the inhabitants of the localities in which they exist are not more unhealuy than in other localities; but that where the stagnant water is of slighs depth the decomposition is attended with frightful consequences, and the mortality is great. He recommends that in all low lands where there is water during the summer of so alight a depth as to reader decomposition certain, the inhabltants should form one
ceneral reservoir into which the different masess of water may be conveyed by means of channels of eommenication.

Furion of hifrcury.-The result of M. Person's experiments on the conkelation of mercury, and the latent heat of fosion, is that the heat requisite for the fusion of mercury is about eight times that required to chagge the temperature of water one degree. M. Person observes that the quantity of beat pecessary for the fosion of metals is according to the order of their tenacity.

Steam Power.-It appears from a recent official retarn that the total nomber of ateam engines in France in 1845 was 207 ; in 1840, it was only 109. Another retorn respecting the prodoce of the iron mines states that in 1845 the quantity of lron cant was 489,000 tons, whereas in 1895 the quantity was only 190,000 . The price of bar iron, which in 1825 was $48 f$, the $\mathbf{1 0 0}$ kilogrammes, was in 1845 oaly $84 f$.
Removing useless Fences.-The following remarks are from a correspondent of the Salisbury Journal:- MI coatend that thoosands of sacks of corn may be grown annually in this coontry more than at present, were Iand-owners and tenant-farmers to turn their attention more than many of them do to the remoral of nseless fences. I am of opinion that many of the landowners have imbibed the ootion that farmers are anyious to tear up their fences for the purpose of destroying game; but this is very far from beiog the greatest evil arising from having too many fences, hedgerows, \&c. By allowing too many of these nuiances (for I know no better term for them) to remain on your farm, yon not only lose the crop the land which they occopy woold bear, bot also the produce of several yards of land on each side of the same. One farmer has a field of 40 acres to get sowd to wheat; another has the same quantity of land, but in fonr or five different tields. They both begin sowing on the same day, and follow the work till it is completed; and while the one is plonghing his beadpieces, and turning about his horses so many times, the other completes the work; and the farmer who has his 40 acres in 50 many fields is a day and a half or two days later than the other. This is another very great advantage arising from having felds large. Some landiords will eay, If they allow their tenants to break up so many of their fencea, they shall have no cover for their game. I would say to every landowner throughout the kingdom, get goor tenants ont of the detestable practice, which many of them have got into, of sowing barley after wheal, or any sort of giraw crop, in two succeeding gears. Let them keep their furms well filled with lurnips and every other sort of green crops, and this will make plenty of cover for game, and be the means of keeping the land in a fitate to sow corn on. I woold again reiterate the ery throughont the land, ©Down with all unnecessary fonces,' as it will ultimately prove a very great benofit to the landlord as woll as the tenant. And where fences are really noceseary on arable lands, let them be kept neatly shorn down, so that thoy may not shade the groond on either aide, vor prove a harbour to aparrows, linnete, and many other destructive birda, which deatroy anoually in thia conntry hundreds, and I think I shoold not be going too far if I were to sas thousands, of ascke of corn."

Free Trade. - Among the importations from Antwerp lately, was a oargo of roofing tiles. This is anderatood to have been the first imported from abroad, and it appears to be the compencement of a new trade, as it is said there is another vensel on its way, and that a large quantity is atill ready for shipment.
Irinh Instiute of Arciitects.-A depotation of the members of this body waited on his Excellency, the Lord Lienteont of Ireland, headed by Sir Richand Morrison, with as addreas in which they deplore the coadition of Irish architecture. His Excellency, in reply, said :-" It is not for me, gentlemen, to analyse the caves which may have led to the state of things of which you naturally complain, however atrange it mast appear to me that architecture should not be doly esteemed in Dublin, one of the most piotareaque oities in her Majeaty's dominions, and adorned as it is by 20 many noble pablic edifices, or in a country where such magnificent man. slons exist, where genius is not rare, and taste and talent abound; but if happier daye, as 1 ventore to hope, are in atore for Ireland, they most bring with them that eocouragement of art and science which alwaye marks a nation's progress, and they will strengthen a conviction, now on all sldes manifesting itself, that the social coodition of her people muat be elevated. Towards carrying out this presaing and national objoct, the Royal Institute of the architects of Ireland may, as it seems to me, powerfully co-operate; for when it is considered how moch requires to be done towards the improvement of towns, and therehy ameliorating the eanitary condition of the people, and how little care has hitherto been beatowed apon the'dwellings of the hombler clasece of our follow-sabjects, that the places of religions worship, schools, hospitals, and asylnms, are ingnficient for the wapts of the country, a wide ephere of usefolmess is manifently open to a scientific and practical body such as yours; and I foel sure that the architects of Ireland, like the most eminent men of their profesion in every conntry, will at all times be fonod ready and enxions to aid the great work of acial improvement."
Mititary Cemetery, - It is stated that the Duke of Welliogton, as Com-mander-in-Chief, has given bis senction to the formation of a graud cemetery and mansoleam on Shooter's Hill, for the oficors of the British army and aary, as well as those in the East India Company's Service. The masolenm will rise in the centre of the gronnd, on the apot where Sevendroog Casille now tands. It is to be raised in a series of terraces-the sybstruction of which will afford space for ten thousand catacombs.

Great Nasam Twnel.-The great tannel through the mountain on which stands the town of Weilhurg, in the Duchy of Naman. formed for improving the bed of the Leha, bes just been terminated after five years' continoons labour. The watery of the Lahn were to be let Into the tonnel on the 12 th , and 2,000 gas lamps were to bo lighted, and alwaye kept burning. The formal inauguration of the gigantic wort is to take place on Oct. is.

The Fortificatione of Shecrness, says the Kent Observer, are fast approaching completron. With the exception of a few yards towards the sea the whole lioe is finished, the gun-carriages fixed, all the smaller gues monated, and several of the larger ones are to be seen peeping over thon parapet. Last week exoavations were commenced in the open apace op posite the dockyard chapol, preparatory to lagiog the foundation for at oxtensive range of barracks, and the rond between Mile Town and Biuc Town has beeo closed for five or sir weeks past, a temporary road baving been made round by the beech, whilst two new drawbridget, with bastioed and other defences, are being constructed.

gramted in emoland from September 2, to Siptemben 23, 1847., Sir Moutlis cllowed for Berolment, malese otherwiet ecrpresel.

Heary Davj, of Ottery, 8t. Mary, Deron, gentiomen, for "Improvenemes for mparatia copper and other mevale from their ores."-Sealed $\mathrm{S}_{\mathrm{s}} \mathrm{p}$ tember 2 .
Hobprt Oxinod, of Pymonth, chemist, for "Improvementa in dyelng, parta of whick

Mlehard Medigan, of Hevorntock-Hill, Middleeex, etril engineer, for " Improvemene rellwiy turn tholei, -sept. 2.
Charies Chabot, of 8tinner-wtreet, 8now-hill, Clity, sincogrepher end engraver, for "In
 soch carriagen."-september 2.
8ykes Ward, of Leeds, for is Improvements in commualenting motive power whteh ard

Thomas Foater, of Streathan, Surrey, manufecturer, for ${ }^{m}$ Improvements in mechiner for cutting ladis-rubber, in readering fabilca waterproof, and in makiay erticlea frem
 tember 2.
John Mitcholl Rome, of the Arm of Mudall and Bose, of Trimtock-atreet, Covent-garden, wualcal lastrument makers, for "certain Improvementis in fution, ciartoosth, sad othe amilar whad-lastramente."' (A corsmunlcation.)-Soptember 6.
Heary Vint, of 8t. Merp's Lodge, Colehester, tentieman, for "Improvements in prow pelitug abipa, and other veapels."-Seplember 6
John Barke Guataris Ferryman, of Cheltenham, gentleman, for "certajn Improved meate in hadies to be applied to variove artelee for oontalaing liquids or other meleser Ulable to be apllt." - Saptember 6 .
Jacrea Leadbetter, of Over Darwen, to the conaty of Lapender, braster, and wille: Plerce, of tbe same place, mechanic. for "certaln Improvementi in mechipery or appee ratas for raluting water and other Aulds."-Septamber 6 .
Thomen Maraden, of 8alford, in the county of lavenater, mechine-maker, for is in provemeate in machulnery for dreatity or comblng tax, wool, aed other dibroces mers atasces."- September $6 .^{\text {. }}$
Jowph Cliston Robertson, of Fivet-ithet, Loedon, for or certedn Improvements in the meocfictare of metals trom thelr ores:" (4 commanlcation.)-Beptember 9.
Jemon Slims, of Redrath, in the county of Cornwall, ctril eagloem, for "sertato In. provaments in athem engipes."-September 9.
Whliam Gibhona, of Corbyn's Hill, near Dudley, Worcester, for "certala Improme mente in trubelog beams and girdera."-septembar 9.
 talning the wriat of the human body in a dearable form, whout prodactas the ioonter venience reatiding from too tightilecing of stays or corseth, or buckling of belts, wated bends, or girdle."-September 9 .
Joba Biyth, and Alfred Blyth, both of 8t, Aan'm, Wmehouse, engloeers, and Johm
 provemente in apparalas for distiling and reetlifing." - September 9 .

Frederict 8tetper, of Hyodhura-cottage, Laoometer, for "Improvements in the mumel fecture of anger." - September 9.
Connor Willam O'Leary, of Trilee, in the county of Eerry, Ireind, for "emerth Ibed prowementis ta the methode of produciog power for the diceharge of wreapons and mer rilest, and other proposen. ${ }^{n}$-september 9 .
 beadng rooms or apartmenta."-September 9 .
Clarence Aurustin Kurts, of Maschenter, for "eertaln Improvements in the mode of preperias and ualng Indifo in the dyolog and printing of woollea, cotion, and other prepariag and ueling Inct.
 Jewee Fith, of Cheyre-milk, Cholsee,
holding down teowert."-September 9 .
Devid Morgen, of Morriston, in the county of Clamorgan, copperamith, aed Jobm Boriax Jealios, of Middie Bank, mame ecounty, copper ageof, for "certain Improveremtion In the manuficture of copper and other metal cylindert of rollery for the printing of thit and other fabrics, and for other samilar parpoeen, and to castiog eopper end othar manir cylinders, tabes, or rollera, holiow and free from eir bubblee."-Eeppember9.
 locks, and other factenfaga."-September 16.
George Bell, of the city of Dublin, merehent, for "e Improwemente in gas tar, by maman of which improveroentais may be need as a substitate for oll patit. Fhich he inteode te

John Dteidneon, of 66, Oid Balley, atationer, for " certain Improvements in the mana thetrare of paper."-Sepiember 25 .
Arthur Hery Jobneoa, of Gracham-atreet, efty, enayger, for "In provements in relithe diver leed by tueclag a matig in ove of the materiale und."-september 23.
 and doubiling cotion and other Abrone embetances."

ELEVATION IN PICCADILLY.

TEE MUSEUM OF ECONOMIC GEOLOGY.

(With Two Elenatione, Plete XVII.)

That species of astylar composition which is now geveralis qualleed as the Italian "palasso" mode, admits of very great varioly and freedom of design, asd of no lese diversity of character is regard to the degree of taish and decoration bestownd opon it; whict latter many be earried if required to the point of the most iatence riebnese. Unfortamialy, howevor, variety of design in regard to minor featares and detail,-wbioh conatitates almoset the only specien of variety a mere pleme street.facende edmits of, -seems rather to have been shunoed than aimed at; it has beoe $s 0$ either without doe atudy or elve too timidly. The dew Musenm we are now soticing has, therefore, caused us somewhat of an agreeable aurprise, there being mach in it that is quitu oot of the beaten tract. In one respect, it certainly performs more than was to be looked for, since it gives ms two totally distinet piecess of architectore, its two fagades contribating - very marked arohiteotaral foatare to reperate streats-vis., to both Jermyanatreet and Picoadilly. That seither froat beapeaks the actual purpoce of the building at all diatinctly mast be admitted, for there Is more of Club-house phyologeomy, espocially in the Jermin-atreet froat, than of what expreseses soch a pablic institation as a Museom. It will besides be objectod pertape by some, that the Piocadiliy fromt in defeetive as a front, there being there neither entradee nor the appearadee of any, but the eatrunce must be songht for in anotber and far lese pablio street. Another circomatance, whioh, if not exsolly a faolt, is not in secordance with the lawe of composition for what shows itwelf as a dibcieot facade, is that the Piccadilly froat having an oven number of apertares (six) on a door, presents no coolral feature. Still there is merit coough to concterbalance, or more than counterbalance, what only very rigorous criticism iodeed is likely to take exception to.

To begin with the Jermyn-atreet froat, as the entrance ase, although the design cossists of what seem, when described in worde alone, very commonplace features and arrangement, it exbibits a far greator than neunal degree of artistic treatment. In fact, the door, or we ahould term it portal, is almost an unique example here,-noble and even imposing for its amplitude, and though simple io its gezeral oomposition, singolarly rich in design. An example of the kind was much wanted among as, the entracee doorways and doors, even in our priacipal publice buildiage, being, if nut all of them exactly insignilicant, deficieat in gruadeur. Even the beot of our ciab-hooses are not distinguiehed by any excellence in regard to soch foature; in some of them, on the costrary, the entrasoe doors aro altogether of the most ordinary cbaracter. Mr. Pensethorse, thes, has taken an equally decided and happy step forwarde in astylar componition, by making bis door the foons of it as it were,-the principal feature in it of all, on which the eye reass with contentment and malifection, it fiodigg there sufficient to interent and detain it. In addition to richDess of the arohitectural dreasiag, the doors themselves will be decorated by elaborately carred panelling; wherefore we porpose showing them and the doorway, together with some other details, drawn on a larger seale. The opening of the door measures 6 foet 6 inches, by 16 foet high, and the entire composition 11 feet by 28 feet, which proportions are as remarkable as the dimensions are unusual, -that is, except in one or two buildiags where a single largo doorway, or else a central one accompanied by two leaser ones, is placed within a portico or other columonr composition. There is, as far as we aro aware, but one other astylar fugade which is at all remarkable for the importunce given to the dour, namcly, the Hall of Commerce, in Threadneedle-street, unless the large door in the weat frout of the Bank may also be quoted as an instance; although with regard to the lattor, it shoold be observed, it belonge to what, if in that part of it it mas be termed astylar piece of architecture, is not a fepentrated one. Both those examples, however, are of very plain denign, mpore especially with regard to the doors themselves. Exquisite taste of embellishment, together with perfect completeneas of decoration, is to be found in the doors within the portico of St. Paocras' Chureb, which ought to have led not, indoed, to direct imitation-and they themselves are ooly direet imitations-bat to similar landable ambition on other occasions.

Perhapa it will be thought that we dwell, if not too long, too exclasively upon that single foatare in the Jeryma-street front of the boilding; yet bardly cas its value be too forcibly insisted opon, more especiaily as there is pothing in the mere name of "door," as in that of "portico," to charac. tarise or appear to characterise a design when merely apoken of. Yet we world readily give half-a-dozen of our usual Doric or loaic porticoes for
ose mach a portal as that wo are motioing. It gires a deoided physiogromy to the whole ferude ; which, if thet were taken a way, beoosees comparativaly tame and onintersecing. This last romart may seem to imply something Hike an unfarourable opiaion as to the geperal design, taken independently of that eingle feature. Yet it ouytht not to do so, seolag how many buildings we have whose sole morit-or we should rabler say whose architectaral protenaion altogother-mossiste in its having a fow columas put up againat it for a portico, and without which there would frequently be nothing whatever at all answering to even the most ordisary notions of dosign. There are, benides, many Gothic bulldinge whose fronts would be almost vacant and fentarelese were it not for a doorway or portal which imparts interest, and sometimes a very peculiar and piquant charm to the whole. For makiag this observation we are not to be anderstood as in. tepding to insisuate that it so far bolds good bere, that, with the exception of the door, the other foatures pomese very iitule ralue or interent. Many of them, on the contrary, afford evidence of hadable atudy of detail, and highly commendable attention to those minuter bat not ieast precions tonches in design, which beapeak the artist.
The Piccadilly fachene-but no, we will reserve that till oor pest number, when we hope to be able to enter iato some description of the denigns for the interior also.

HIETORY OF ARCEITECTURE IN GREAT BRITAIN.

4 Brif Sketch or Epitome of the Rise and Pragrese of Architecture in Great Britain. By Jamga Elugs.
" Epitomes are helpful to the memory, and of good private use." Bie Henay Wotton.

(Contimed from page 302.)

Abont the same time that James Wyatt fouriabed ander the patrooage of George III. and the ieading aristoorncy of Eagland, the leash of architeotoral brethers, the Adelphi Adaens, aroee and took their ground on the arotiteotaral battle-field, with distingaisbed auccesse. They have $50-$ corded their relationship in the Aaglo-Hellenic torn of the Adelphi buildingen botweon the Strand and the Thames; and their names by Robert, Jamen, Joha, aod Adam stroets, Adelpbi. Ooe of these, the author sod dolimentor of "Dioclesian's Palace at Speluico," had Lravelled to, and enriched bis country's literatare by his description of that oece gorgeous ascemblage of architestaro, scolpture, aed paintiag. Like W yatt, be endeavoured to lstroduce a new atyle, but it whe not derived from so pure a source. Neither of these able men were imbued with momany a tacte an Joose, Wren, Lord Burlington, and Keat; the latter of whom has boen befure notioed in connection, as an artist, draughsman and peister, with Lord Burlington. Io fuct, he was not solely an erchitect, bat the able and not alwaje tantefol escintant to his nobie patron. As a painter, be masy be clasoed with the Verrio, La Goerre, Thorahill, and Knoller schools. He was comaidered a man of tasto, was en abie laodscape garlecer, and was moch coosulted as swah by the nobilits and geatry of his time. Ae editor of Jones's architectaral works, and joiat editor wilh Ripley aod Wure of "Sir Robert Walpole's ceat at Houghtoa, in Norfolk," he showed great indastry and talent, particularly in the corroct way io which be delineated the ormameatal dotails. From his intimacy with Lord Burliagton apd other distingulahod men, he was often consulted by the fasbionable world upon affairs of art; asd is said to bave sent a lady to court in a brocaded silk drese of his design, apos which were wroaght temples, statnes, fountains, triamphal arches, in all the glories of the five orders of arcbitocture; makiag the lady a walking Palladio in petticonta, and ber booped rotanda a veritable temple of the Cytherean goddess. He was also occasionally omployed as an illastrator of books, among which was Tonsoa's edition of "Gay's Fables." Io these his profencional knowledge is abown to advantage in bis interior of the theatre which forms the bead-piece to the fable of the two monkeys; who, gravely seated in one of the stage boxes, are ericioislag the effurta of the rupe-dancer on the stage to imitate their agility, anking-

> * How can thewe ctomery tatago, Hhe me
> Fly whil a bound from teve ta tree pe

The interior of the library wherein are the leerned elephant and the book-
seller, the oick man's chamber, and the court of Denth, exhibit his arohitectural knowledge; whilst the decorated gardens in which are the poet and the roee (said to be a portrait of Gay), and the gardener and the hoy, show him as a deasigner of gardens.

Wgatt, as before remarked, was an architect; so was orgioally Robert Adam; but the firm of "Adam brothers" were speculative betiders. The district called by them the Adelphi, is the greatest of their works in this department; and their overgrown upeculations in Bdinburgh left the modern Athens for many years almost as much a heap of architeotural roiss as was its ancient namesake.

The style of architeotnre aimed at by the brothers in their Adelphi buifdings was the psendo-Grecian ased in the decline of art by the emperor Diocleslan and bis artiste. The great difference of level between the high street of the Strand and the left baok of the Thames, apon which they orected these buildings, was filed up by a range of warehonsen and wharfs covered by arches, which formed the basement of the terrace and dwelling houses above. The range of houses bailt apon the lerrace facing the Thames is planned with great skill for domestic ane und comfort.* So are the two atreete at the eastern and western extremities, which form detached wings and connect the ceries of dwellings into a whole as a composition. The street which runs from east to west on the northern side of the main bailding, and carried on by a range of similar design into the Strand, contains the mansion, moseem, and great room belonging to the Society for the Encouragement of Arts, Mannfactares, and Commerce, and some honses of a larger sive than those which face the river, osed as privato botels, offices, and chambers for professional men. The leading decorations are a series of very narrow pilaaters between the windows, supporting cornices of no precise order, bat all profusely eariched with foliage and arabesques in low relief, of the Dioclesian style. The most striking defect of this design, considered as an architectural composition, is a lack of boldnese in projeotion and recession, which canses an uninteresting tatness, for want of a doe proportion of light and shade, that mars the whole design. The projections of the pilasters are too small, and the reveals of the windows too shallow, to produce that artistlike effect which could alone give ite author the name of architect. The whole mass bears more the appearance of a building specnlation then the work of an architect who sought for an euduring name. These defecte are the more to be lamented, as they occupy the fonst sitantion on the north bank of the metropolitan part of the Thames. The buildinge not ooly appear fragile, but are actually so, and exhibit mang aymptoms not only of decay, but of anseientific conatruction and ill-anlected materials. The plain and ornamental ataceo work that ambellished the axterior of thene houses, formed of lime mired with oil (the original of Harelin's mastic), digritied by royal letters patent and the sonading name of Adam's coment, has failed in many plaoes, and been replaoed by plain pilasters, unormamented capitals, and tat surfeces of Roman coment. The eadenvour to give an arohitectaral cbaracter to the shop frente, by sabstituting termini, busta, and cemi-curyatides, instead of the coammon atall-board and storyposts of their London predeceseors, not ondy decarves prise, but followers.

The south froat of the edifice belongiag to the Society for the Encouresemeńt of Arts, \&cc., is in a more manly and architectural style than any other on the Adelphi estate. The prinoipal or one-pair story consists of a tetrustyle attached portico of three-quarter eolumas, enpported by an appropriate ground atory. The colamas are of the Ionic order, rather too elender in proportion for the intermediale cheraoter of the order, which should bear a just mediam between the robert Dorit and the delicate Corinthian. They aspport an ontablatore and pediment, which being carried into the two fiat winge of the adjoining portions of the building, poasess no artiatical meaning, and are a mere ornamental appendage stuck on to the plain front of a large house conisting of windows and piers only.

Brother Robert denigued and executed many buildiaga of a similar character in Sootland, and published a rotume iliestrativo of ibeir details in 1764 ; and also a folio volume, marked with industry, pains-taking reaearch, and graphic correctnens, of the ruins of Diocleain's palace at Epala. tro. He was patronised by the Eari of Bute, throngh whese influence he whe appointed arohitect to the king for Scotland; and was for some time saperialeadent of the works al the Roymi-hospital, Greouwleh, and erected a pavilion in the Dioclesian etyle at ewoh end of the terrace, one inecribed with the name of George III., and the other Queen Chartotte.

The brothers Robert and Jemes publinhed thair foint arobitectural works

in three volumes folio, of whicb the first two were pablished in 1704, and the third in 1828. Of brother John we have no ilterary records but that of his name at the corver of one of his streete in the Adelphi.

Among the best works of the Adams in the metropolis are a mamion in the north-west corner of St. James's-square, mach resembliag the etock-on psendo portico of the Society of Arts; Lansdowne-house, on the worth side of Berkeley-square, a large and commodions mansion with a body and two wings, the former decorated with the same lank and meagre attechod columas of the Ionic onder that disfigure all the works of the Adams. The spacions conrt-yard in front lef ample room for a real portico, bot they did not arail themselves of the opporimalty. This mansion was celebrated in the lifetime of the late marquis, by whom it was built, for that collection of anciont statuey, busta, and rellefs, kaovn by the pame of Lanedowne marbles. The Royal Academy, abont finy years ago, thought the princtpal elevation of this structare to be of safficlent importance to form a stady for fts arohitectural students, and gave a silver medal for the best geometrical elevation, tinted and shaded, with a daplicate in ontline, correctly finished from ectual measurement. The Adams aleo erected the street front of Drapers'-hall, in Throgmorton-street ; some well-built houses opporise, whose interiors bear marks of a better archilectural character than moet others of their period; and the atreet-front of Bkinners'-hall, on Dowgateo hill, in the City, marked by a aimilar tameness of character as the beforomentioned works in the Adelphi.

If the Adams left no followers of their vitiated Bpalatro style of decorstion, they have been followed in their peendo-Greek, which, like the lady Anglo-Gallic of the circulating libraries, has invaded our natioaal cock. neyisms. Some learned Thebans at Waterford, who bailt a large were-house-like row of hooses on the right bank of the beantifal river Sair, bave named it, after the mode of the Adams, the Adelphi-terrace; so almo did two comedians, who agreed lite angthing but brothers, alter the name of tha Banspareil to that of the A delphi theatre ; and a widow, not to be ortdone in Greek by her neighboura, named her stall the Adelyhi oyater-roome; and a clascical gia-shop on the other side has asenmed the name of the Adelphi wine-vaults, by an only brother.

James Stuart, who received the honourable addition of "Athenian" proixed to his name, returned to Eagland about the time that the Adaens were fourishing in Dioclesian glory. This eminent man wes more of an artist than practical arohitect, although bo delineated the geoveretrimal details of the art with mathematical precision, and drew the human figere and sculptaral ambellishments with correctness and taste.

The first accurate knowledge which the people of Earope receired of the Athenian antiquitios was given by the poblication of Dr. Spon and 8ir George Wheler, who both fortunately travelled before the Venetian niege. Travels and deacriptions of that part of Greece afterwards became moere namerous and more sought for. In I751 Stuart, assisted by Pars, a painter, and Revett, an excellent geomotrician, ompioyed three gears in measorieg and delineating the principal antiquitita in Athens and its vicinity. In 1784 the Loodon Dilettanti Society commisaioned Dr. Cbmodler, a learned and invastigatiog man, to oxamine and report npon these onedited antiquities. Le Roi, a French artist of some ability, visited Athens aboat the seme time as Stuart, and foisted erroneons acconnts and delineations of them upoo the public.

The drawings and delineations of Stuart and his companions soon became znown among the higher and learned classes of England, who duiy appreoiated the high taste of refinement and purity exhibited in thia grand atyle of art, Dow known to them for the first time. Preparations were made for their publication with such rapidity, the progress of which was mach asaisted by the perfoct atate in which these artisis brought over the drawinge, that in 1768 they were presented to the poblic under the tille of "The Antiquities of Atbens, measured and delineated, by James Stuart, F.I.s., F.8.A. and Nicholas Revetr, painters and architecta," 4 vols. fol. 1768.

On the occorreace of a vacancy he was appointed by George III. to the affice of architect and aurvegor of buildings to Greenwich-bospital, whloh afforded a comfortable leisure to the industrions Athenian traveller. Dering the time of his bolding this office, the chapel and a greal part of tite bell-tower were cousumed by fire, and Staart desigued and soperinteadea their restoration. The whole of its exterior he rebuilt, with due regard to the honoured name of Wren, precisely in the manoer in which that great architect ien them; but the iaterior he remodelled anter the Atherlan styie, which is acarcely 50 suitable for such an interior as was the boider and more decided etyle of Wren. It is, however, to be admined as the int ectual oxecotion of Athic detail in England, as well as for the chantomen parity which pervades the whole dange. Badamin Weat, thea a yumer
man, whose powers as an historical painter were so0n parceived by the king, painted a large piotore for its altar-piece; the subject selected by bit mes josty was St. Paul's esoape after his shipwreck on the inlaod of Melta, and his mireculons shaking off the viper that had fastened npon his hasd, withoot injory. This picture is generally esteemed to be one of Weat's master-pieces; another being the stoning of St. Stephen in Wren's neglected gem of art, the church of St. Stephen, Walbrook. The chapel of Green: wich-hospital also shows West to advantage as a scolptor, in some low reliefs of the bistory of St. Paal in the panels of the polpit.

No event that ever occurred in the history of architecture in Eugland, and thosce throughout all Europe, produced so sudden, decided, and benefi. cial an effect as did the works of James Stant. li surprised and delighted the learned and admirers of art; the majestic grandear and simplicity of form exhibited in the general outline of its beautiful temples, and the arquisite purity and elegance of detail shown in all the profles of his mouldinge, fascinated the eye of taste. The antaral form, in whiob everything was subeervient to ntility, proved how pure was the taste of the elegant Athenians. Nor did the contrast between the works of these ancient architects and their successors and self-called followers strike the mind with less force. Unlike the Romans, there were $n 0$ pediments under pediments, or ander porticoes, or in the interior of boildings, -to which absurdifies the Romans were so partial, as to draw down the rebuke of Cicero, that his conntrymen wore so fond of pediments, that if they had to erect a tem. ple in Olympus to the "Jupiter Implavins," they woold cover it with a roof and decorate it with pediments.

Nor was the contrast greater in the detaila of their monldings; those of the Romans being all subservieat to the circle and its parts, whilst those of the Greeks defied the mechanical slavery of the carpenter's compasses. Ellipees, parabolas, and other elegat sections of the conp, are the elements of all their curves, and their Ionic volates bid prond defance to the compasses of Batty Langley and the ingenions mode of striking the Ionic volute invented by those eminent Italian architects, Scamozai, Vignola, and Andrea Palladio. Let the eye of taste decide between the echinus of Athenian architecture and the ovolo of the Roman ; the cymatium of the Greek and the ogee (what a name l) of the Roman ; the bold, manly, and elegant ourvatare, amenable to no compasses but those which the artist carrles in his eye, of that type of the lonle order in the temple on the Hiseas, or the more beantiful compliceted sweeps that form the elegant curvatures of those of Minerva Polies, one of which is in the British Museom, with any Roman or Italian erample that ever existed in type or in book, from Vitravins to Borromini.

It has been the fachion of late with certain scloliste to decry Greek architectore as a heresy, a mare ophemeral fastion, a atyle of bygone times not worth reviving; and among others, calling themselves architecte, that it f good for its remote antiquity, but has been greally improved by the Romans and Italians. Have we not, say they, added two ordera, the Trecan and the Composite, to the origiasl three? Plated and oabled and pearled and olized and bedizened the Corinthian, making it as fine as a May-day queen: Angularized or Scamozsied the volutes, lengthened the shafs, bolstered the frieze like the side of a Dutch cheese, and modillionized its coraice, that Ictinus would not know bis own invention; added ogees and asnulets and colarinos to the unfaished capital of Mlaerva Parthenon; and a haodsome base to ite shaft, like a buckted shoe to a naked foot, -and call yon not these improvemeuts and additions to the bald Greek style P-Bahd it is, indeed, as used by some of modern times; making a miniature model of the majestie temple of Minerva an entrance stuck opos the flank of a hage dead wrall, or,

> "To what vic usee may we come, Horatio,"
to serve as the pasage to a atinking atable-yard. To transform the bean. tiful atyle of the temple of Bacchus at Teos-the god who rivalled Apollo in yonth and beanty, and shared with him the attentions of the mases and the graces-to the embellinhments of gonrmandising eating-houses, or to the will more debased temples of intemperance, the Bacchus of the gia-chop; the god to whom Gay in his fable of the "Court of Death," geve the wand A pro-eminence before all his other faithful sobjects, saying emphatically,
" He ahares their mirth, thelr soelal joys
And as a courted greent, destroye;
The charge on him munt justis fall,
Who ands empioyment for you all."
Fusell, on being asked whether thera was not much breadth of style In one of these Anglo-Greco plagiaries, replied, "that if baldness was breadth, It was broad enough in all conselence."
See, sany the Romanists to the Grecians, how gaily we have dressed your anked Veung-how nobly we have altired your alim Apollo-how we have
fed and fruotifed your barren Teian god q-You have, indeed, sighs a veperable Greek, clothed the Venus of Prexiteles with a bead-dress of wool and powder, like Ramas's portrait of good Queen Cbarlotte; given her a boddice, hoop, and farthingale, with high-heeled pointed-toed shoes, like Blrd's statue of Queen Anne in St. Paul's churchyard; transformed the Hyperean curls of the Delphic god into a periwig of George the Second; cut and concealed the rest of the manly beauties of the son of Latona in attire, like one of Hogarth's coxcombs ; and fructified the Grecian Bacchus into a genuive city Sileaus, burstiog with dropsy, gout, and apoplexy.

Greek art may be reviled, but let its revilers equal it if they can,-to surpase it is beyond their powers: hence the cause why they traduce what they cannot underatend. Samael Johnson, on finding a Greek quotation amidat some modern trash, like " a grean Oasia in a desert world," exclaimed, "So much Greek, so much gold." So does the man of true tante oa viawing the arcbitecture and sculpture of the godlike Greeks.

About the asme period with Chambers, Wyatt, and the Adams, Iouriahed other architectaral start of lesser brillinncy. Ware, who ausiated Kent and Ripley in the delineations of Walpole's menaion at Houghton, and known by his ponderous folio, "A. Complete Body of Architecture," published in 1768, —as bulky and as little read as the atatutes at large in an alderman's library. Brattingham, the architect of Holkham, in Norfolk, the plans, elevations, and sections of which, together with a description of the stataes, pictures, and drawings, he published in a folio volame in 1773. He also designed and executed the handeome mansion oear the couth-west angle of St. James'sequare, London, now the town residence of the Bishops of Winchester; and a few other work of less importance, but none marked by any distinctive cheracter.

Amorg the arehitectaral publications of this period, useful alike to the atudeat and amatenr, may be enumerated the works of the collected designs of Ioigo Jonea, Palladio, Scmmozi, Perrault, \&ce., by Kent, Lord Barlington, Leoai, James, and Ware, which were, however, for a time swallowed up by the magic wand of Stuart, as that of Moses did those of the Bgyptisns before Pharoah.

James also Llourished sbont this period, and is beat known to architectural crities by his Hawkemoorian chnrches of Greenwich and Deptford; the former of which was judiciously selected, a few years since, by the Royal dcedomy, as architectaral competition for it silver medal stodente,

Ptine aleo enjoyed a portion of the royal and noble patronage of the coantry in the same era; be bailt the pretty bridge over the Thames at Richmond, and made some pleating addition, in the Blisabethan atyle, to bis own residence at Addlestose, near Chertsey, Snrrey, which was for many years the hospitahle rosidence of the late Sir Charles Wetherell, of legal and facetions memory. Paine wat one of the attached aurveyors of the-crown in the Land-revenue department, and had considerable practice as an architect among the nobllity. None of his works, however, entitle him to the name of a master in his art, nor bave dintioguinhed bim from the herd of cervile imitators of the Italian achool. The plans are all well arranged asd commodious, sonnd In conatraction, and well bailt; bat as meagre in originality of atyle as the moat servile copyiat of the common-place sehool to which he belonged. He did tbat which it would be well if botter architects would imitate-namely, pablished bis worke; ore entitled "Pians, Elevations, and Sections of Noblemen's and Gentlemea's Houses, \&ec. \&ce.p execnted in various parts of Ragland," 2 vols. folio, 1767, 1783; and the other, "Plans, Bievations, Sections, and Oraments of the Mamsion-House of Doncaster," folio, 1751.

The early part of the reign of George III., so prolitio in werks on art, produced Cameron's elaborate treatice, "On the Baths of the Rommon," in which be auccenafully explained and improved the "Restoration" of Palladio. It wet pablished in 1772. Colio Campbell also problished his very usofal work, the "Vitruvins Britannicun," in foar consecutive volnmes, between the years 1715 and 1771 ; to which Wook and Ganden respectively added anpplementary volumes, of equal skill and correctnees. More recently, Richardeon added another volmme, $t 0$ moch inferior to ite predecessors, that the work was diecontinued.

The latter part of this fertile period produced Robert Milae, a popil, I believe, of Robert Adam; at all events, he wam of the anme conntry and school. Like Wren, he exhibited precocions talents; for acaroly at the age of manhood, he triumpbantly bore away the firet prise in the firat clans of architecture at Rome, and had the houour of being the firat Briton who obtained a promium for art in that city. He was not ouly a Protestantand concequeatly a beretio, in the astimation of the profescars of the primitive fulth-but wel alvo of that anti-Pupintical seot, a Soctch Calvinint. The
mperabuadant ceremoninis of the church of Dome which he mitaemed in this very hotit of popery, the profigate manaers and livet of its profeesors, and the onceremonions style of worship of his own church, perhape led to that coatempt which Milne always fapatiently oxhibited, oven at the decent ceremonles and more simple garb of the church of Bagland. Before he had completed his atudies in Rome, he seat over in competition, end conquered all his opponents, for his Bleckfriare'bridge, work of skill and some originality. Milne's style wat too decidedly Romen for the day; but, to his honour be it epoken, his love and affection for our great metropolitan atructare, St Paul's, of which be long beld the place of sarvejor, was auch, that he never would see it dofaced or eltered, or spoiled in any wiy; and scarcaly a week of hir long life passed without him giring it a personal survey.

Milne never did anything bettar than his Roman deaign, which was in every way worthy of one of the beet dieciples of one of the best architectural ecboois the world has ever produced. It formed a becoming ornament of his atudy or anctum sanctorwin, at his residence at the New River head, Clerkenwell. I have often admired it in my jouthful days, with its Italian inseription-" Primo promio Roberto Milue, Scorrece, Roma," with ite date and something else which I have forgotien, or perhape never nudertood,Itelien being in those day atgrent atumbliag-block to me an St. Paul's doctrine wat to the Greakn; and I feared oven to ank thic architectoral Aristarchas anything more than the mere subject before us. He was a man of anstere manaers, of violent temper, and appeared to have a contempt for overy art but his own and for overy person bot biceself. In some of his eballitious of temper, he hes been known to kick the olothes and toole of workmen, who have dared to reply to him, out of window and into holes is the streets, and has been obliged to ty from the effects of their excited wrath. One of these, an Irishman, atd that "Mr. Millen," at he called him, "wata rale jiptleman, but as hot at pepper and as proud at a Lucifer." Peace be to his remains, which quietly repose by the slde of hit great predecessor, in that noble cathedral which was built by the one and suatained by the ather.

This arohleet is not known for many other works than his Blackfrian'bridge; a few bridgen, and perhape one or two mansions, in Scotiand; tho buildinge end machisery of the Now River company; and a very commonplece elevation to the eant front of Stationeri'-hall, Ludgate-hill. The priscipal employment of his latter years wat that of architectural curator to St. Paul's cathedral, architect and survejor of haildinge to the stationers' company, and engineor to the New Biver company; dividing bis time between his two official recidances at either end of that river-ite opring or sonree at Amwell, near Ware, in Hertforduhire, and its other end at ClerkenFell, erroneonaly called the New Biver head,-it being the reserroir which supplies, by ateam machinery, aroh parta of the metropolis that are served by the company.

Sir Robert Tajlor, a man of great capacity, occupied a distingrished atetion in Tertio-Georgian ers. He wat one of the chief architects to the orown, and architect to that opuleot boly the Governor and Company of the Bank of Bagland, when it began to expapd its buildinge to the right and to the left of that comparatively manall edifice which wat more than adequate to ite necensities on lts ortablishment in the reiga of William III. He had mach private practice, and was knowa for three-fourthe of a contury to overy architect, surveyor, builder, and lawjer in the matropolis, for his celebrated, incomprebeastble, and contradictory Building Act, which is only anpassed in litigious abeardities by its succeseor. He educated many pupils, to whom he geve either dintriot ander the Building Act, or appointments in the offico of the Beard of Worts. It is true, that none of them proved to be men of tacte; but they ware all thoronghly men of bosineas, high honour, and ategrity. It is probable that be intended his son to be a great artist, for he gave bina the powerful mame of Michael Angelo; an did anolber more recent architect name him acion Christopher Wren. Poor little Chriatopher, how. ever, died yousg, and destroyed all hopes of his rivalling bis oameake: but Michael Asgelo Taylor lived to be a reapectable whig member of parliament -the beat tempered whis that perbapp ever lived, and the giver of the beat dinners that ever did bonour to Spring-gardens.

The etyle of Sir Robert Taylor was founded upon the beit Roman examples, resemblisg in ita finest points those of hin cotemporary, Sir William Chambers; bat be far excelled him in scientilic conatruction and ronod beilding. He foand a pretty deoiga for a tetrastyle portico and pedimgnt, with leteral columsis of a very elegantly-proportloned Corinthinn order rained epor pedeatals, in Chambers's work on "Civil Architecture," confessedly borcowed from as anongmons Italian architeot. These he ropeated on cither cide of the come Ionis earatre of the Bapk of Engiasd in a very presty but
unconsected manner. The whole of thls front, which extended from the cormer of Princesestreat to Bertholomew-lane, bat been repinced by the masive and masterly componition of Somac, of which more will be wid bereafter. Is another part of thin building it a quadrangie on the mesters side, which is still preserved in almost ita original freshsess, a very choles example of Taylor's cilifal sdaptation of thin tantefol precedent of the Corinthisn order. In the centre is a pleasant city garden, whth a fow verdant lime trese that give variety to the pictare. The former facede, aest Threadneedle atreot, being a screen wall to the intornal odilices, had mo apertures, and was more a copy from Chambert's work than the one in question; which, beint an interior court, and giving light to the directorn' parlour and other important rooms in that edidice, is decorated by a eerien of exquiaitely-proportioned Venetian windown, which adds a charm to the compoaition that the original deaign is much in want of. There is eot an enecated building of the decorative Greco-Romano otyle in Europe, that more deserves the titlea of tanteful and elegant than does this pretty compoaition of Sir Robert Taylor.

The two island of bouses that stood between Threedneedle-street and Corahill, called Bank-buildinge, that wero taken down to make way for the Rogal Erchange and the open area on its weatern front, and which wert occupied by some benking-honses and insarance companies, were a masterpiece of atreet architectare, pattiog situstion eside, not surpassed by any in Eorope. Upon a masive stylovate, that gave height and light to the basement stories, wat raived an athehed colonnade of at elegant a Roman.Dorie a ever emanated from the peacil of a modern architect. The intereolous. niations were flled with doors and window as neceasity and internal convenience required, deeply recessed and with bold reveally that served for every parpose of office or shop. The upper part consinted of a lotisy elevation of well-proportioned window: with architectaral stome dremingi, with tbat brealth between them which charactarise all thin architect" works. This peculiar characteriatic is particularly noticeable it the lofty masaion on the weatern side of Tower-hill, in which the proportions of the windows show the loftiness of the mtories within. This charscter, which gives sach harmony and grandeur to the elevations of Sir Robert Taylor, whe 80 perplezing to the architect (?) of Phillimoro-place, Komington, that be flled the interval between the one and tro-pair stories whdowe with little pasele, which, if left open, might have intimated that they mere Findows to that bangling Italian contrivance, a measanine story; but which he rather chose to fill with ormamente (I) of eculptared awagt, roprementing wet cloths hung opon pege;-he would doubtlealy bave filled Sir Robert's brond spaces with similar imitations. King George the Third, who often paseed through Kensington in his ronte from London to Wisdsor, named that apecimen of Kensingtonian architectare, Diabciont-row.

Another the specimen of Sir Robert's tantefal design is almont loot in the narrow but wealthy way of Lombard-atreet. It was originally erected for a benking-house, but is now ocoupied by the Peliean Life Amenrance company, and it situated on the north side of the atreet, noarly opposite Abebureh. lane. The basement story is formed of a solid stylovate, which serves for a base to the Doric order of the lofty ground atory. It is of the aarse clespieal Roman-Doric that he need in the Bank-bralldinge. The one-pair story if lighted by three wall-proportioned cemicircnlar-beaded windowt ; and above, a row of sttic windows. at anch a distence from those below them as woald bave induced the Kenaington architect to have hung out his fiage of distreme. Every admirer of archilecture should teke a view of this excellent deuten, before the genivs of wide streeta takea it away. The well dealgaed gromp of aculpture by De Veare, which designates the nature of the office, aad disfigures the design, must not be talen iate conuiderntion in the entimution of the architectural beanties of the odifice, to which it does not belong, and can only be considered as a good thing ill appliad.

A amaller, but not less tastoful, example of this architect's peocoliar atit is to be found in the pretty villa which be erected for Sir Charbea Angilh on the mergin of the Thames at Richmond. Without a coloma, witheos a pilater, withont anything appertaining to the five ordern, with nothing that can be atrictly called architectaral bat the cantalived cormice, such m ased by Inigo Jonea in Covent-garden chureh-he han composed an edifiee 30 picturesque in form, and playful in light and shade, that may defy competition from such simple materials. The centre stands forward and rise higher than the two athached winges a three-windowed bow projects frem the centre and rises the entire height; the ground atory is rusticated and nurmonnted by a atringeonrte and dedoed moulding, upon which retat the wiodows of the one-pair atory; aquare attio windows mark the upper atory of the centre, and the profecting comico crown it in frost and atden; the
wiagt fors samb-pedimente, reating mainst the fanke and ceatre, lookine y eontreforts or battreses to the main bailding. The ensern and westara front--for there are no flack walls-have similar bowe to the ground story, oaly the upper parts of which form baloonios to the superior story.
Looking at this rill from the oppente nide of the river, or from the siver itelf, the pyramidal form of the componition, aded by the beautifal trees and acenery which surround it, give it an indescribable grnce of pictareaque beanty, that most And value in a painter's ege. Had the architeet separated the villa from the roed by a parapet-wall or balusarade, half ite pietareaque beanty would have been lost. Instead of which, he has onclosed ito lawa by a mere protective row of iron rails, which maket the river appear to be part and parcel of the denign. Nor in ita appearance from the eant or the wen, on the Richmond side of the river, leas perfect or beantiful, showing that the architect muat have deaigned it m masee and in perspective, lite a painter; and not on the drawing-bourd, with a T-equare and compasses, like earpenter.
Surely Sir Robert Taylor must take his place anong the greateat of Engliak architects.
(Th be continued.)

CANDIDUS'S NOTE-BOOK.

 FASCICULUS LXXV.> "I must have liberty
> Wultal, as hage a charter ts the wipden To blow on whom I pleace."
I. Now that Pruek has pouneed apon the pelace, people will, perbape, bugin to open their ejes to that architectaral enormity, and also to open wheir moxths pretty freely on the sabject. At least so it is to be boped, abce it ia onily by elamouriag, and clamouring very loudly indeed, that we en bope to pat a atop to similar delinquencies againat tanta, and similar minmenagement for the fatare. Ove would have thought that just after the outcry aboat the "Arch and 8tatres," all those who wert in any way concermed with the projected alteration of the Palace, would have exercived a Hittle discration, and pald nome little nhow of deference to poblie feeliag. lacteed of which, the ouly ceation taken wat the mont nahappy one, at it sow proven, of precipitating the buainess in the mont harried manner,-mot altogether withoat reecon, though a very bad ome, for never would the pablic volice have anoctivned such a design for the occarion an that which recelved
 eren any one of thoee who affred their nignatures to the designa precemted "to both Hoases"-beatowed any sort of examination apos thom. If they really did do so, what is to be thought of their judgment? Or was it haken for granted that the desigas had been duily examined and fully considered by some reeponaible anthorityt Where reaponaibility for the choice actanly bien, it is casier to graes than it may be exactly decorona to seg. Amuredly not with the architect himeolf, for his iscapectity would have beea barmiest, had it not been for the incupecity of jedgment or careless indiscretion which seffered bim to be employed. The lady who candiennine a miniater from her coumail board, can sarely diemine an arebiteot from ber service. At any rate there wat no mocasity for ber eaploying that particalar architect on an pecenion that did not fall within the coorne of his nasal official datien.

IL. Buckigghem Palece looky if not exsectly more insigaificant in atyle, of far more plebeian quality than before, and is, besides, greatiy worse than eversan en architectural componition, the addition to it forming a lampiah mane, which, owing to ite jatting out abraptly from the two low winga which are left standiag, seems to encrosech apon and disfigare the Park. Previona to the alteration, the principal mase of boilding had at any rate an architectral framiog to it , whereas the prowent "facude" bat noze. Not only do the above-mentioned portiona not belong to it, bat they cease it to appear more lumpish-more of an excreacence than it other wise might do.-Were rogal palaces erected evary day, we conld tolerate a few blandens mow and then, in the hope of obtalinigg something very mach botter the nest time; bat noch not being the cave, the atmont ought to be made of the opportanity which actually occurs ; every poudble precanaion ought to be taken to inaure mos a merely good, bat a very superior decign; and Mr. Blore's most asarredty does sot anewer to such character, simen apart from all ite other aumerove
deforimalet, it doan not exhibit a siagle toach of imagination, or fancy, or artistic feeling. In and and sober troth, the dealgn is mothing more or leas than the production of a Pectrenifina draving-board. Altogether of the mot ordinary quality, it menifonte impotence of coseeption, asd total want of imagination and fancy, whether ategerde the whole or the separate parta. Yet, as the bailding stood before it wes began to be doctored, there wal moch in it to prompt contrivence, siace it beld out many tolerably obvions hints for improvement, all which have now been overiooked. As far at the pablic are copoerced with it, the Yalece is worse than ever-a more decidediy offondive architectural object than before, and the very reverse of ay improvement to the Park. And what rendern the matter ali the more provokiogly verations is that not the allghteat paiss wera taten to endeavour to catiofy the pahlic. Vastindeed muat have been the opialon of, and the con. Adence in, Mr. Blore's talent, to abide by auch a "Hobeon's choice," withont letting there be even so mach as a chance for anthing more worthy the occasion being produced. One thing at leant ought to have been merionsly conaidered, namely, that little less than assured certainty of succeas warranted the riaking such a decialve step as the one taken, \rightarrow one that only the mont complete success conld justify. Had we been taken by an agreesble anrprise,-had-After all the mingiving and apprehensions excited by very susplcions mysteriomsues-the new fagade burst opon us arrayed in beanty and magnificence, there could then have been no question to the propriety of a mode of procedure that might up to that time have appeared both arbitrary and injodicioun, both of which, we conceive, it will be considered now. As the patron of the Institute of Britioh Architects, her Majesty might surely have afrorded thote whom the 10 royally and gracionaly conatenances, the opportunity of exerting their talents on an occasion that ought to have inspirited and inspired them. There are persons in the world who are e oxceedingly clever and Machiavellian that they over-reach and chent thomselves; who has done 20 in this particular instance, we will not say; nor should we to much care, were it not that John Bull pays for all is more ways than one, not in pocket merely, but in rapatation aleo. Foreigners will now have freah canse to aneer at his tante, or the tante fointed apon him. They-happy doga! may grin, while we can obly groan. As to Mr. Blore, he msy console himself one way, since he may now truly remark with Byron, that he got op one morning and foand himself famons-his aame fa everybody's moath, from north to eouth,-his fame (not quite the beet) spreading wide from east to weat, or what's the seme, apreading at leant from weat to eant. Still no one cries encore! to the achlevement of the fer-famed Blore.
II1. Bhould the Architectoral Association act up to its profesaions and intentions, mach beneft msy be anticipated from it. It promises to call the attention of the student to what is so greatly neglected, or rather altogether overiooked, in his ordinary profeasional edncation-anamely, aristic apprebension of architectare, as distinot from mere bariding, in its quality of fine art. The A seociation conaiste chiely of junlors, -and it is to the juniors and the rising generation in the profession, that we must fook forward for more liberal, enlarged, and worthy notions than thone which bave hitherto prevailed in these latter times, when the art has degeoerated into what is little more than empirical routine on the ooe hand, and twaddling pedantry on the other. Since they neem so diapoend, let the eeniors in the profession go comfortably to sleep, provided the juaiors are awake, and awake a better atate of things. Let then boldly break the trammels in which their art bas so loag been contued,-fetsers of unbend. ing jroo to the timid and the weak, but feeble a cobwebs to the firm aed the resolute,-the mere filmsy spider-spinninge of pedantio brais.
IV. The nation is, it seems-at least, ecoordlag to some peeplo's fane cies-very much ricber than it was a short time ago, in consequene of the prodigioutly valuabie sequisition of Shakspearo's Hownemethe oely boase, by the by, that can be called hia, be being now efooted aad kieked out from bis legitimato dramatic domioile-the theatre. gtakepeare's House ! what an immense quentity of driveling eentiment was poured oat juct before the time of the anle of chat robblehly old temenomel Yet we langh and aneer al, ead ridionie the reveromoe of Romace Catholics for reltes as besotted superstition,-war own Protestant upperstitions beling at the same time not a whit leas abourd and crasy. However others may be affeoted at the sight of them, I know not; but awch ralger shjeets as Witide's pelette, in the pedestal of his matue at the Nacboeal Gallery, and Nelmon's comt, in the Painted-hall at Greepwich, oply ezcite my thorongh cobternt, as the veriost buffoceery aping roverential admination and aftestion. This species a coperstillon becomes lithle las ithan downright intueillity, whan the objects of it are ebsolately ismigaifonat and miverer-
outing in themselves, and bave so other value than their very problematical genainepen, -a fs the case with the two religues aforenamed, it being just as likely as not that that Identioal palette was aever in Wilkie's haods, or that ideatieal cont apon Nelsoa's back. Again, as to Shakepeare's Hoese, it in quite certain that no suoh inviolable preoantions were takea to prowerve it for ovar and a day inteot, as were bakea by Soase to maiotain hit domicile in all ite priative excellence.
V. That our late Greekomania chould now be greally chilled, in no wonder, for our Grecianian had fairly worn itcelf out. It wes in a manser starved to death, owing to its not baving received the slightest mourishment from any gew idene infared into it. Nothing more wres ande of it thas juat what it was at frnt. Instead of attempting to treat it with froe astistic greto, to mould it aceording to actual circumstances, and also to keep up coomistently, through every part of a building, the atyle 50 diotated, we contented oarsolves with little more than copying in the mont hamdrum maner the fronts of ancient temples for classical porticoes, with no other variations than Doric, Ionic, and Corinthian-tetrastyle, herastyle, and octastyle. Nearly one and all were the mereat mechanical copies; and precisely the ame examples were repeated over and over again, in the most wearisome mander. It seemed as if we were ambitious of rendering the scanty resources of design afforded by Greoian architecture, even when availed of to its fullest extent, still more ecanty, by oxploding all but one or two of the most familiar examples. Nor was penury of ideas and inventive taste all, there being aloo, for the most part, great penariousness in the general design of the baildings themselves and their execution. In many instances, even the ordinary decencies of dosign were wholly diaregarded,-wherefore, in spite of their Greek columns, the would-be classical structures proclaimed themselves to be arrant Cockneyism, and that of the very worst and most vulgar kind of all, becauso accompanied by despicably paltry affeotations. Nevertheiess, such things were admired,-wore complimented in newspapers, and ortolled in guide-books, which exuitiogly called the attentlon of vinitors to What they desoribed as "a great ornament to our town."-In a word, we had, by the unhappy use we made of it, converted Greek architecture into the mont humdram sort of design. Ney, it seems to have paralysed our powers of design and composition altogether, so that the only alternetive left us was to escape from it by planging headlong into the Gothic and Italian styles.
VI. No one can say that I do not encore Buckingham Palace, after one fashion at least ; for my pen is itching to twitch at it again-le voici /

> One most difilurepe, I ween,
> Ititle Yloreace betiveen
> And our haye overgrewn efty:
> It-to speak more in grifor than in mailice-
> The Arat has the palice whone tame is the Ftut, We, a petty and plitiful pelace.

We gromn, we grin by turns at it, nor grom the less when we consider What our neighbours have lately made of their-not royal, but muaieipel palace, the Hotel de Ville at Paria, whome Grand Gallery, or banquettingroom, quite eclipeos our House of Peers, and all else that is coatemplated for the interior of the Palace of Weatminster.
VIL. A Beal Architectural Dictionary is a denderatum not lizely to be speedily sopplied. By real is to be understood one which treats of things; one therefore, which, lastead of confining itself-if not exactly to mere definitioas, to a very brief account of the respective mattors, should enter fully into the sabjects connected with the terms explained, and supposing a work to be execuled satisfactorily, some of the articles would require to be of considerable length. And to be well erecuted, it onght to be excinaively architectural, otherwise it would exceed all convealent bounds, there being a very great deal, bitherto soarcely touched at all in aoy shape, that woald come under cognizance in auch a work. In fect, as compared with its macs and the namber of pablications belooging to it, architootural livernture is remarkably meagre as to substance, and in regard to iaformation to be derived from th. The greater portion consists of whet is very little more than repectition, and that mere compilation, with soarvely 50 much as a frosh thoaght or remark infused into it. What work cen wre and which goes ioto the subject-and a very jmportant and highly intereating one it is-of arohiteotaral Composition i In faot, the term itsolf is altogethor ignored in dictionaries calling thsmeelves arohitectoral ones, although it would afford matter not merely for pages, but for entire volumes. Novertheless, not so muah as a single one on it has been prodaced. "Effoot"whioh, by the by, belongs to and is incladed in Composition-is another term that would form an article of some longth in a diotionary of the khod in quation. A great nomber of other lenne, expromive of atserent
qualities and characters, bot now readered almont enmeaning by the indisoriminato and igooreat manner in which they are applied-often at mere random-would require to be introduced, and to be most carofully analyced and explained,-explained moreover by copious instances and aramples; becanse, withoat such express elacidation, criticism becomos mere fumbling in the dark, whereas in architecture it cannot possibly be readered too defnite and exact. Take "Simplicity,"一atk any man supponed to be tolerably an fait in arabitecture what he understands by it, and instend of an intolligible reply you will get a vast deal of homming and ha' ing, and perhaps at last the very profound information that Simplicity is-Simplicity; and so throughout the entire lish. Not least etrange of all is it, that in dictionaries, glossaries, or whatever else they are styled, of the ciast alluded to, no notice is taken of such exceedingly obvions terms as Cinque.cento, Renaissance, Hococo, Louis Quatorse mode, or Italian style generally, with the Florentine and Venctian in particular. What exemplary atteation Nicholson bestowed on his Archltectural Dictionary may be conoeived from the almoet incredible fact of his omitting, inter alia, the term "Spire;" one which, if properly drawn np, would bave brought together some account and description of all the principal atructures of that class. Both "Campanile" and "Belvedere Tower" might also bo mado to furaish very interesting articles. Thero are besides a prodigious number of similar matters and terms, which, if not exectly passed over altogether, have hitherto been dismissed with exceedingly jejwe notices of them. As far as it goes, Parker's Glosgary is the beat work we have of the kind, is economical in form and admirable in some of its wood-cut illastrations; but it is so exclusively medizaval, that it would have been better had it conflued itself entirely to the architecture of that period, withont pretending to embrace "Grecian, Roman, and Italimn," which are treated so very begrudgingly as to be made to appear comparatively quite secondary, if not actually quworthy; whereas, in a work of the kiod, whatever is introduced at all, ought to obtain due aod impartial attention. Had the lact-mentioned styles been omitted by Parker, as not coming withln his plan, there would then have been en opeeing for a slmilar illastrated " Glossary," exclusively deroted in tarn to therm.

VENICE; AND HER ARTS.
 By Frederici Lubr.

Oltaly, the Rllen! ovoe thy Bool

Of high and noble impaisea was frill.
And in ite lofty might conid apurn controul,
And And s place for all thlags beacintol.
Noble and lovely In thy pride thou wert;
O Fherefore coald'st thou bear to stoop se low?
Better have died thy treedom to estert,
Than tamely crouch 'newth the degrading blow I
But the vant Emowiedge whick o'ep earth'a wide platin.
Is a weeping live mighty rushing wind,
Hes reach'd e'en thee, and in thy langold vefas
The pulse is quiolrainet-to thypolf be Idod,
Call beck the oid high feelinge to thiop heert
And let It glow once more with Freedom, Trith, and Art
AnNE A. Panmort.
A oity, like Veaioe, so extraordiaary in its position; risiag out of the nee as if by enchantment ; prosenting so many pietoresque appmarascen; and unfolding in the pagen of its history 20 much of the fairy-tale and romance, cannot but be beteld with emotions the most lively and enthmaiastic. In many respecte, she is rot anllike what we concolve from descolp. tion ancient Tyre to have been, and fully deserres the euiogium that wes pased upon that colebrated capital:-"A Thou art a merchant of the people for many islen. thy borders are in the midst of the seas, thy bullders have perfected thy beanty.... princes were thy nerchants, and ocenpiod in thy fairs; and chief of all spices, with all precinus stones and gold and chests of rich apparel, were amonget thy merchandinc....thon wast $50-$ pleaished and made very glorious in the midst of the seas."e
The sensations which Venice produces are the more powerfolly proserved, from the fact that the spot, which has witneased some of the mont intereating events that have occurred in Earope, and which displays some of the moat wonderful and curious creations of the ingonuity of man, receives a considerable degree of its splendour and attraction from the beantiful climate and glowing san of the Adriatic, in which it was cradied. Viowed when her spires, her cupolas, and palaces are suffused with the

[^40]mbly reys of the eattiog sun, or repeec in the wilvery meombight; at Ase Maria, when the bells prociaim the hour of prayer, or music meade forth tis streams of harmony from the crowded Plezen ; or at midaight, whea the impastoned notes of some gondolier's song or lover's soremade slowe break the prevailing tranquility;-the sonnds and the emotlons which are then heard and experienced-the parity and inteasity of which are increased by a profound silence and a still atmosphere-mmpress this oity of poetry and song for ever upon our recollection.

Venice is proverbial, even in Italy, for the beanty of her sunsets, and it will not be a matter of surprise to those who consider the infuence of external objects over the feelings and imagioation, why the Venetina painters-Giorgione, Titian, Tintoretto, \&cc.-acquired sach perfection of colooring, and warmed the subjects depicted on their canvas with the reaplendent hues of their native skies. A clear perception of the beantiful in mature; a lively fancy easily captivated by the charms of that colour which surrounded them, joined to a power of imitation which enabled then to express it in their productiona, making their pictures look as theogt the suo shed its dyes of gold, vermilion, and parple upon them,utamped the golden period of the Vonetion school of painting with a magical brillizncy and spleadont of colouring, whith, as it eprang out of matural feelings, and was grounded on the most poetical asociations, so It was the beantiful and striking feature that oharacterized this school; a paim of merit which none other has been able to dlopote with them Although belonging to the ornamental style-pleced hy Reyooids in the second rank next to the grand style, and considered inferior to the Romapyet "the aational genius," as Lanel says, " alprays lively and jojous, monght to develope itself in more brilliant colours than those of any other anhool;" and we trace this feeling not only in their architecture and in the architectaral accessorion of their pictures, bat find it ontering into every thing they oudertake, and investing with greater show and pomp their faroarite festivals, their regattas, procestions, and all their public exhibi. thons. Besides, the climate and scenery of Veaice-withont even referring to those popalar games and fentivals, which were so many theatren for poetry and opportunition for displaying the artistic talent of the peopledamanded from the arts a degree of aplendoar which in other phaces woold have been deamed anperfinons and oatentations. Those arte, moreover, in contributing to the scenery, were in retarn beightened by the dimate; all received additional lostre from the pare light noder whieh they were exbibiled. It is this which so atroagly augmento the offect of very feature of the lasdscape; and, at the same time, leaves such vivid impreations on the apectator: whioh makea the folisge of the troee glow like amerald; and the falands and gardeas seem as though they floated is a sea of aspphire.

It is this climate-the Imainons, pheaphoric hase that warmes eod gilds ad shines apon Venice-as well as the oriantal aspect of the citywhich the travaller greing opon knows to be the ahomen abode of the genias of the arta and poetry; and as moth, athough the tackneyed conede of the world are removed from it-though it never hears the trapp of horse or the " oar rattling 0 'or the stony street" -yet he will not expereace the melancholy and deprestion that is engendered benenth the gfoom of the leagthened areades of Bologen, or the solltary, deserted streets of Ferrara.

The poet or artist, yiolding to the oharms which are scattered over Venice in snch profusion; looking upon the pearls and precions stones which shine in the crown of the Queen of the Adriatie; the dassling robe in which she is arraged, as she sits "enthroped on her hundred inles;" as the llatoas to the tones of sweetest melody, and catches the perfone of delicions fragrance as he glides over canals meandering

$$
\begin{aligned}
& \text { " Monque-lire, bud many a dome antily portico, } \\
& \text { The itatuea rang'd nlong en esure inty, } \\
& { }^{\text {By }} \text { many a plle in more than Eastern pride } \\
& \text { of old the readence of merchant-klogs ; } \\
& \text { The fronts of sompo, tho' These had sbaticerilt themen, } \\
& \text { Bull glowing with the richent toen of arth } \\
& \text { At tho' the wealth Fithint them bind rain orer, we }
\end{aligned}
$$

will feel that this oity, selocted as it was for enactiog, as it muot here eahanced, those pageantries and ceremonials for which it was rebowned in the days of ite republio, most suggest to the Venctims of the premeat day, when thinking of ite faded glories, the lamentation, so applicable to macy other cities of the pact-Vemerial Fencria! Venerfal Vumrate, mond pid com' ara prima!

* Bogeri'u poen ol " Itaty."

It cancot be uoprofitable or uninterviting to allude to some of the arts which adora this beauliful city,-arts of which it has beqn miserably despoited by wert ; yet of whith, sufficient remains to coovioce te that they were cultiveted and brought by the Venetians to a vary high degrea of splendour. Bansorino, thair historinn, ecquainte ne, that in the mont flourishing period of Venice, there wat sot a city in the world which possessed so many works collected from antiquity, or could boast of such large galleries of pictures, statues, bassh-rolievi, broncee, engraved atcoes and metals, mosaios, tapestries, and all kinds of inlaid work; and that the opulent oitiseas and wealthy patricians, ambitious to amass everythins that was a token of wealth, indication of commerce, or evidence of refinement, ondeavoured to ontvie each other in the number and beanty of these productions. But these were acquired, perbaps, more from foreigo, than from the sonrces of their own conntry : and the slightest investigation into the history of this city, and the causes of its greatness and wealth, coen lays open to as the beneficial tendency of commerce upon the arts-and through this channel, a way to their increase and prosperity. The onterprising and "devoted hands of patriots," who, driven by Attila, set to work, like beevers, and bailt Venice on wooden piles in the ebbing and fowing tide, would not be wanting, nor their sons neither, in their command over the riches of the East, \&ce, by ploughing the oceas and navigating along the ancient seats of the fine arts upon the Aastic and Grecian consts, the shores of the tropical peniosoles, and the islands which stad the Archipelago, for the purpose of there fonnding colonies and emporiums of commerce-by means of intercourse with which, their firat city would grow rich, bematiful, and prosperous. And such wes the case. The tremsares of art and the relics of antiquity, accumolated from foreign conatrien, wero contrihnted towards the adorning of chorches and pablic edifices; were the canse of that oruamental character, yet heterogeneous mixtare, which we wee in many of the buildings ; and many of them enriohed, and still exiat in, the galleries of the old palaces of the Pisani, Contarini, Cornari, Grimani, and of other ancient patrician fami-lies;-each of which, whilst displaying an example of ourions aod beantiful architectare in itself, contains also anseum for the study and admiration of the antigue,

The infuence of commerce over the fine arts of Venice was great; and although the state conld not boast of much extent of territory, nor a large amonet of popalation-jet, by extending their commercial relations with other conntries, and imitatigg at it were the example of ancient Tyre or Oarthage, their fase and thoir covereignty was conspicaous, and excited the envy of many a cotemporary repablic. The skilled pilots who treffioked in the marts of the Levant, and broaght home canning artificers from Arabia, and Grecian artists from the Lower Empire, were the true ploseers of civilization. To the labours of these foreigmera, Venice and the Venetians are greatiy indebted,-not ouly for the Byeantioe arohitesture of it. Mart (of which they aro so justly proed), and of many other of the earlier edifices in this style, bot likewise to the curious art of mosic and rarions tessalated work with whioh it abounds. These piotnro-like representation, so particalarty appropilate to the decoratione of either Gothlc or Byrantine chusches, posesss distinguigbed advantages over frosooes, ia point of permanenoy of coloor. Many vary ancient apeoimens adll remain-aven arch as have been axposed to the action of the open air, although their durability is seldom pot to this trial; yet, in the came of fraco-paintiaga which have been exposed to the siroceo and tho seabreeses, the vividness of their origian tints has entirely faded awny,-the subjest, under soch infinences, being sometimes ecarcely disceraible.

The early mosaics extant In Venice are comidered by some writers as boing the first esays of the art of painting is that city; bat, an Lane remarks, in bis aceount of the Venetian painters-cthe artificers, however rude, mast have been acquainted, in some degree, with the art of paintiag; nons being enabled to work in moetic who had not previonsly designed and coloured, apon pasteboard or cartoon, the composition they intended to areoute." ${ }^{\prime \prime}$

The same anthor mentions some moeaics of Grado, wrought in the sinth century (a century or more after the fonadation of Venice, whioh wee about A.D. 461), those of Torcello, and a fow other specimens that appeared in Venice, in the ialands, and in Torra Firma, prodoced at periods suberecuant to the increase of the grandenr of the Venctian state, whlah attaised ite cllmax moon after the taking of Constantiaople, in 1904. About the
year 1070, the Doge Bolvo invited mosalo-woriera from the oapital of Bycantium, to adorn the basilion of SL. Mark, for in that the Venetians were destrons to emulate or surpase the charch of S. Sophin. Andren TuA, Fiorentine, cotemporary with Oimabue, studied nader those Grecian artists; from whom he obtained the materials of that fame which he afterwards acquired in the momaies execated by bim in the baptistery of his aative city: and hence it is the opinion of Flaxman,* that the olements, at well as the perfection of the arth, have always boen received, eitber immediately or intermodiately, from the Groeks, by Western Europe ; although, he adda, thia has been deaied by Vasari-and, as far an concerns the Greek Christian paintings, does not coem to have been even suspected by Wiockelmann.

There are two sorts of mosaics, as they are also referable to two different epochs. The most ancient belong to the fonadation of the banillea of St. Mark (at the clone of the tenth renturg), and to the first introdnction of this art into Italy from the Byzantines. The famous Pala d'Oro was executed by the mosaiciati of the frst period, and which, entirely com. posed of plates and figures of gold and silver upon enamel, offers a benotiful example of the rich and elaborate workmanship of the Greeke of the Lower Empire. The mosaics which for contra.distiaction we might call modern, were commenced in the latter years of the ifteenth century, and are attribated chiefs to the two brothers Zaccati, Francesco and Valerlo, soas of the palater Sebatisno Zuccati, of Trevisa, who inatructed Titian in the elementary lessoss of drawing. The Zuccati execnted thene mosaice by means of cartoons, orwwn by the best artists of the time, and from copies furnished by Titian or Tintoretto. The sabjects are generally conceived from the descriptions of the Old and New Testarments.t

What, even at the present day, is so rich and apiendid in St. Mark's, are the vaolts of boroished gold; and it is these, with the sheen of various metala, bronze, silver, and aparkling atones-rielag with the most brilliantly.painted ornaments, Moorish and Byeantine-which give snch a atrong oriental character to this aingolar and interesting pile. The inlaging of agures in colonred pieces of stone on a surface of gold, perfectly corresponde with, and is analogous in effect to, the pictures of the Greeke, which were invariably painted on a gulden backgronad. Covering wood and other substances with this valuable material was common among the Egyptinns, and was extensively practised by all the nations of antiquity. Vestiges of gold leares and gilded ornaments are atill traceable in the ruins of many ancient edifices in Greeco, Persia, Arabia, Italy, and other conatries; and are often foand in a bigh state of preservation. Although the golden raults of San Maroo may be tarnished by time, stlll it is easy to imagiae how very beantiful must have been their appearance in by-gone daya. The early Venetian painters osed gold in their pictores, as if thoy thought it indiapensable to the due reprenentation of the gorgeous fltes which were celobrated in their city: Gentile Bellini may be mentionod as an instance, in bis palating of the religions ceremony of Corpm Domini, in the Pinsea di Ben Marco. For a loag time afterwards, the Italians employed gold for the glories of their saints, and the friages and oraments of their costame.

Painting on glass and in enamel, anotber art in which the Venetians excelled, was alco in ancient times carried to a very great extent. The giase-houses at Alexandria wero celebrated for the skill and ingenaity of the workmen. The Alesandrines wore foad of oxhibitlag glame caps, which aparkled with colours of every kind, at their grand festivals. This art was thence imported into Veaice, and down to the present moment has had a great deal of attention devoted to it ; for none can be insensible to the magioal brilliancy relected from the ancient windows of foreign or British cathedrals. When it was but litlle known, a tranaparent marbie or alabaster of beautifol colours, called lapis opecularis, was sometimen ai a subatitute introduced for effect in the wiodowa of charches; at we see, for one, in San Miniato at Florence.
The Sarecens introduced into Venice tapestries from Cairo, an tbat city was famous for the manufacture of them; and the procesaions which conreyed thenoe to Mecca the moat beantiful hangiags which Cairo could produce, was quite a roligions affair, and was got up entirely regardleas of expense. This ceremony is described by bishop Poencke in his "Travels in the East."
Tapestries were and are at this day the great ornament of chorches in Italy and all Roman catholic countries, the finent being copien of cele-

[^41]brated piotares, sometinnes insued from the Gobelin manufactory, aed are oxbibited to the pablic on the ocossion of any great featival; and nose so fond of doing so as the Venatinss.

In Veniee, and in all other states-eapecially in the early periods of their history and civijization-those artists and artificers were at a high preminm who excelled in mosaic, in silding, in the working of differeot metals, in weaving cloths and silks, in colouring glass, or in painting on walle; and these arte, valued on acoount of their curions and elaborate oxecution, which far sorpassed the material, as weli as for the effect which they imparted to civil and religions odifices, obtained the universal and lasting favoor of all civilised and enlightened countries : the knowledge of the priaciples and processes employed in them spread rapidly throughout the whole of Enrope; the moderas contributed to their perfection; and they were most asoidooally cultivated by the mooks during the middle ages. The greatest artiste have not disdained to make researches into these subjects, being sensibie of their utility ia point of decoration, and at being anxiliaries to more noble arts : Michael Angelo tarned his allension this way ; and Ciamplai, in his "Veters Monumenta." prefeces bis history of the ancieat bacilioas with an enquiry, illuatrated by plates, fato the antiqnity of moneich, attributing their invention to the Groeks of the Lower Empire.

We have above alluded to come of the arts which originaliy beloaged to, and were introduced into Venice from, the Asiatic and Arab coonatrien, becanse of the orieatal physiognomy which she Grat assumed from this connesion and infleance; and purasiag this track, we ahall now mention the vestiges of Saracenic arohitecture which she presenta, together with ite charnoteristics,-before speaking of Venice ater the Italian invacion of the new but beeutiful style of the cingue-cento.

St. Mark's deserves our fint consideration, being the most oriental of all the edifices in Veaice, and the most remarkable in Chriatendom. Come bining, as it were, the mosque or Mahommedan house of prayer with the Christian templo-loaded alike with the productions of art and the trophies of conquest-there is probably no other edifice in the world which appeals to the spectator by so many powerfol ascociations, or is suggestive of auch extraordiaary refleclions, as St. Mark't. It is the primery and princlpal object which exciles the ouriosity and fills the imariantion of the traveller in Venice: let him have visited what wooders he may, ite stragge bot beautifal façade will strike him an something that has no paraliel. Although there are miagied together details the most helerogeneous and strangely sorted, still the effect of its colours and proportions enchant, as if the beantifol Byeantine and Arabic styles compensated for and concealed the boldness of a work which was produced in contradiction to the cevere rules of art. Then, singular enough, although the Venetians oan boust of no hippodrome, neither indulge in bormemanubip or ateoplochanes, yet they cas point with national pride to the four bronze ateede over the central porch of their cathedral, - for they are moonmente of their former greatness, though not, unfortunately, works of a frat-rato character.
The extorior of St. Mark's, with ita domes and minarets, its height from the gronnd, and its profacion of ormameat, resembles a monque of the Saracens ; whilet within, it is more like a Muscolman than a Christiea teomple. There ita narrow navee, instend of terminating in light and lofty arches, are confined and roofodin by fow, heary raults. Yet these vaults, covered over with gold, are supported by apwards of five hundred colamis of precions marblo, voined, black, and whito ; alabastor, broaze, serpentine, and rerdo-antico; and the tencelated pavement is formed of most exquisite jasper and porphyry. The arabesques, chivellings, bas-relieft, and statary-the works severally, of antiquity, of the Byzantine artists, and of artists of a subsequent age-here appear as if in competition of their respective merits; whilat those portions of the walls and the vauitings which do not glitter with burnished gold or precions atones, contain the mosaics (already mentioned) of two reparate epochs-thowe attributable to the Greeks, and thowe produced by the Italians.

With all that has been said in praine of St. Mark's, much hat been caid in censure, and we can imagine such would be the case. There are some objects so entirely out of the aphere of the usual roatine and exercise of the underatanding and taste, that the mind, occupied and absorbed with others more congeniul to its inclinations or habits, feels for the former to
" "It in notoalebtoge" wrote Bapdon, "that the creat priseiplen of natare should have ben to nealy lont in the thme between Phidite and lyal pprs. Compare thee two beade [the BLis head and that by Lyaippui]. The kigin head is all touth: the other all magger. In the byappus' head, the prest characteristics of natare are vialaled for the selve of an artiticial eflect; In the former head, the stat and taherest charncteriatien of ature: are elevated without violation. Imanmuch as the Etpta horme's head differs crom and ba
 enpertor 40 all other atetmet of this and urniy mbequeant age."
interest or concern; rejects them, perhaps, with indifference and contempt; probounces them as useless or absurd; or, at least, does not receive them as it and welcome objects for its atody and contemplation. Even the educated eje and cultivated taste of the real connolssenr before st . Mark's, may fail to see and discern its beanties, and may err in the judgment and opinion he forms of it, by a mind uafavourably disposed towarda it ; incapable, from its condltion, of becoming the reciplent of, or yielding sesent to, its pecultar merits; and alike incapacitated to understand and enjoy them. Instead of teating a work and the qualities associated writh it by the particular frame and constitation of onr own minds, and some rtandard of our own therein set up, it is essential in all criticism of tine art, to feel as the anthor or ertiat felt, to know with what ides and intention be whe animated and possessed, and to judge according to the circumatances of the age in which it emanated,-if we would renounce partiality end aroid misinterpretation. Heace, Schlegel said: "No man has so deeply penetrated into the innermost spirit of Grecian art as Wiockelmann ; be tranformed himself completely into an ancient, and seemingly lived in his own country, namoved by its spirit and influences."0

Admitting all the faults of St. Mark's; admitting that semi-barbaric character impressed upon lt by the extraragant nse of contly materials, we must, at the same time, confess that to our eyes this very wildoess and exuberance caused much of the pleasing emotion we experienced. We thought that its architeotonio forms and ornaments (fanlty as they are often considered to be by many Enropeans) were extremely effective; and, although the boldest that the hand of man ever ventured to employ, that they were as appropriate and significant to the intentlons and purposes of St. Mark's as could possibly be conceived. Long familiarity with its pecullarities ouly deepened this conviction. Long familiarity did not make it look ordinary or tame. But long, frequent, and intense contemplation only developed its beaties, and manlfeated its deep aymbolical agoificance.
It Is dificult, if not Impossible, to do anything llte justice to St. Mark's with the pen; nor is it intended to offer a complete description;-pictures and dioramas can alone convey an adequate representation of its splendoar: to these we refer the reader, and we thlnk that he will therein see a corroboration of our remarks-namely, that its architecture is in admirable keeplog with the buildinge which surround it; and that its effect, in its place and in relation to its scenery, is everything that could be desired, and the priocipal ornament and attraction of the great Square in which it is erecled.
(To be continued.)

- Lectures oa Dramatle Art and Literature.

MUNICH IN 1847.

Somewhat extraordinary it undeniably is that no English artist or publisher should have thought it worth while to give us any illustrations of the capital of Bavaria, for besides that no engravinge of the kind-that is, views of the modern, especially the recent structures at Munich, have been brought out in Germany, they would have a chaoce of being very much better execnted here, there being in Germany itself no medinm, apparenlly, between very expensive and large-sized works-consequently the very reverse of popular in price or shape, and the most paltry productions con-ceiveable-the very doggrel of the peacil. Munich, as it now presents itself, bas been stgled the Paradise of Architects,-perhaps somewhat incorrectly, at least as far as English architects are concerned, since it must excite in them sundry very unpalatable comparisons with not build ings alone, bat the general system of architectural management here at homethat is, if what seems to be conducted upon no systematic scheme of management at all, can so be termed. What has been achie ved of late years at Munich with comparatively limited means is almost incomprebensible to Englishmen; but the great secret is, that if the means bave been limited, the inteliligence and the will that directed them have been great and energetic. We, on the contrary-but comparisons are odorous, as Mrs. Malaprop saya, therefore, perhaps, we had better drop them altogether, and forego any allasions to royal taste and royal mympathy with Art, bere at home.
Among the more recent and as yet incomplete works at Monich is the "Wittelsbacher Palast," in a style partaking of our own later medisoval urchitecture. The edifice is described as a quadraggular pile with four
octangular towers rising at ito corners, and with a projecting pavilion in the centre of the principal façade. The whole is partly of a warm red and partly of a decidedly yeliow tint, wherefore the building shows very forcibly against a clear blue sky. Another bailding designed by the same architect (the late Professor Gärtner) is the Neue Friedhof or Cemetery, forming a quadrangular inclosure or Campo 8anto, with forty-three urches on each of its longer, and forty on each of its shorter sides, consequently nearly a equare in its plan. All the arches are thirteen feet in width, semicircular, or, to speak accurately, something more, the curve being just returned below the chord, whereby a pecnliar expression and lightaess are imparted to the arches, which rest upon octangular pillars. In the spandrel surface between the arches is a medallion, and the elevations are finished by a console cornice. Internally, these arcades or cloisters have rich open-work timber ceilings, and their walls afford adequate apaces for botb plctorial and sculpturesque decoration. How vastly superior, we may remark, such a well disposed ensemble to the paltry higgledy-piggledy appearance presented by our own modern cemeteries -that of Kensal Green especially, with its atrociously valgar, not to call them profane monuments, recording such worthies as Pill-Morrivon, St. John Long, and Ducrow the equestrian-company in which no one would care to be buried, lestthe readers will supply the hiatus.

Not the least important huilding of all now in progress at Munich is the Nene Pinakothek, which is intended for the reception of productions in porcelain and glass-painting in the ground-floor rooms, and for pictures by modern artists in the upper ones. This second Pinakokhek, the architect of which is Professor Poit, will not be so extensive an edifice as the first one, its length not exceeding 868 feet, while that of the other is 520 . In regard to atyle and general form, also the arrangement of its plan, it will be somewhat similar, but in the physiognomy of ite principal façade will be almost unique; it being intended to decorate the whole of that its southside, above the ground-floor, with mural painting. Thet surface, about $\mathbf{3 6 0}$ feet in length, by 26 feet in height, will be divided longitudinally into compartments, so as to form a series of historical compositions, the cartoons for which have been already prepared by Keulbach. The entrance is in the east front, and beyond the vestibule will be a double staircase-that is, two ascents, one on each side, conducting to the upper floor, first into five spacious exbibition rooms, with as many smaller ones on the south side, all of which will be lighted entirely from above. On the north side of the middle suite of rooms, will be fourteen cabinots, each having a side light, and these will, of course; be accordingly appropriated to pictures of cabinet size. On this foor the western end of the plad will be occupied by aingle room upwards of 90 by 60 feet. It ls intended exclusively for the reception of a series of landscepen by Rottmann, -a set of views in Greece, which be was commlssioned to paint for the king. And that Rottmann's-Saal, as it is to be nemed, will be so peculiar in character-so ualike all other picture-galleries or exhibition rooms, as to deserve bere such an account as we can at present give of it. It will be divided by columas into twenty-four intercolumns or compartments around its sides, ead of those compartments-which, we presume, will form distinct recesses, after the manner of those in the Glyptothecs of the Colossenm here in London,-twenty-three will beoccupied by as many landscapes; and besides that such uniform architeotural arrangement is altogether uncoumon in a gallery of the kind, the effect will be extraordinarily enhanced by the entirely novei mode of lighting adopted for it,—one that will realise an idea which we ourselves have ere now entertained. No light will be admitted direculy into the centre space or room itself, but only upon the walls withio the compartments, so that while the space in which the spectator stands will be in demi.jour, the light will be thrown upon the paintings, each of which will be completely framed in, as a separate view, by the two columas between which it will be seen, whereby a considerable degree of illusion can hardly fail to be produced. Here then is an idea that might be turned to excellent account for a Panorama, since it would andoubtedly be an improvement were the "platform" at such place of exhibition enclosed by columas or pillars of some kind supporting its roof.

The Rottmann's Saal, and the five-rooms in the south-side of the building, as also the cabinets on the north-side, will be 26 feet high, but the five rooms in the centre of the plan will be about 50 feet high to the summit of their sky-lights, wherefore that portion of the structure will form a lofty mass towering above the rest of it. Besides what is going on in public works, a fresh field for thelr talent is now opening itself to the Muaich architects, ceveral of whom, including Metager, Bürklein, Branomübl, Moninger, and Erenter, have erected varions private mansions that deserve to be acconated among the embellishments of the Bavarian capital.

Would that we could look to Sir Edward L.ytton Buiwer and some of the other English visitors who are now there, for their bringing bome with them a litule of the cordial love of architecture which there prevails.

THE BRITISH MUSEUM.

No.IV.
The collection of Greek and Roman domestic antiquities in what is called the Bronze Room, is at present in confusion and unlabelled, so that the examination is not very easy.
Such a collection is particularly nseful to the student, as it enables him to get better ideas of the domestic life of the Greeks and Romans than he can from books and artiatic works, and to correct his ideas as to their state of social advancement. The progreas of the fine arts and of the mechanic arta is not necessarily correspondent ; and we may find a people producing the moat beautiful sculptnre and paintiog who want common comforte, or another whose paintling in barbanous, but whose domestic arts are well caltivated, as for instance in the case of the Chinese. While the A thenians made a great stride in scalpture between the time of the Egias marbles and of Phidias, it may be taken for grasted that the progress of the useful arts was not so great. The invention of a new machine would have been needful to effect any great change. While we louk to the cnltivation of the fine arts, as haviog an equivalent effect on the manners of the people and in the advancement of artistic manafactures, it is evidently naequal to the production of mechanic skill; and we must be carefal not to rely too much opon artistic instruction, nor to push it too far. The existence in a country of a general and refined taste is not inconsistent with the promotion of mechanical pursuits, and is favourable to them, but we most not try to give an artistic bias in education. At present our people get a good mechanical training, which makes them the best workmen in the world, and in trying to do more we must not lose this.

One reason why the flon rishing state of the fine arts is no index of the state of the mechanical arts is, that the former are chiefly handmaids to wealth, and are employed either by a rich state, or by a few rich men, and are littie eqjoyed by the people individnally. While the Athenians were raising the Parthenon and pouring ont opon it all the riches of art, they themselves were living in wretched huts, which had no share in the largess. While the head men of Rome were filling their palaces with the greatest works of old and now art, the people were as ill-lodged as when Romulus and Remus began the town. The mechanical arts cannot, however, be porsued without all getting a share in their works. Sawed timber and wronght iron were luxuries among the ancients; when towns were taken by the Greeks, the planks and beams, the hinges and the naila, were carried off as the worthiest part of the plunder, but as the stock got bigger all dasses were able to get a share. The husbavdman willingly gave food for a plough, an axe, a bolt, a kettle, or a pan; but he would unwillingly have given food for a carving or a painting, from which be coald have got nothing back. The fine arts became the serrants of the rich, the mechanical arts the servants of tbe poor.

The fine arts are but one page io the history of civilization; the Egyptians could raise pyramids, the Russians have built a city of palaces, and have flled them with the choicest works of the west; bot as in the former the people were wretched serfs, so they are in the latter. The state of the mechanical arts and their employment by all classes is a far better index of the conditlon of the people. Where the mechanical arts are degraded, as among the Romans, a slave-class must exist, and the free-class must be paupers, for idleness will do its work on all. In Ireland, if we have not slavery in the name of the law, yet alavery and pauperism are the lot of the people, and neglect of the mechanical arts may be reckoned among the concarring canses. Where so many hundreds of thousands of beggars are fed by the pauper-people, carpenters, amiths, quarfymen, masons, brickmakers, potters, bricklayers, and weavers might be as well fed. The English beggar-class are the hand-loom weavers, the lace makers, and strav plaiters: those kept at the common charge break stones, grind bones, pick oaknm, make and mend the roads. In Ireland the beggar-class do wuthiug to keep up the common stock.
So far as words go, freedom and the fine arts may be spoken of in wider terms at Abhens or at Corinth, than in London or in New York; bnt to
judge we want something better then words. When we look at the handi. work of the Egyptians, Greeks, or Romans, although we may acknowledge in some things very fair workmanship, yet on the whole we canot but feel that the people could not have had the same comfort, and therefore not the same health and length of life as ourmelves. The bearing opon the man in the measure of civilization, words do not give it. There ta the same air, the same soil, and the same lavi In Ireland, as in England; and yet the former is as well known for its beggary, as the latter for its wealth.

The reader of Thucydides, of Livy, and of Tacitus, may find in a hioge or a staple, a great commentary on the text of his author. He may seo how painfully and bow clomsily the commonest hardware was wrought, and he may learn with what toil, with what time, and with what cost an army or a feet was fitted up, and how great was the wreek when is was lost. It vas shameful to lose a shield, because it took more to buy a shield than a man; the warrior who loat his armour, lost, like a knight of the middle ages, what it would take many rich fields to buy again. A part of such spoil was hallowed to the temples, an offering as rich as gold and silver. With os gold and brass are not linked togetber, for they are as the top and the bottom wide apart ; with Homer, gold, bronze, ailver and tin rank as costly metals, for the workmanship of all being alike, the disproportion of the price of the material was loss. To burn the town was to ruin the commonwealth which held it, for the mason's and carpenter's tools were costly, the work was slow, and an unsheltered people conld not raise another town. Hence we find towns, once powerful and thickly peopled, which never rose from the wreck which had been made of them; and others were ooly able to do so because the walls were readily patched ap, or because the foe had gone away by sea. It is for such reason that we have Cyclopean cities left to us as relics, which had been ruined in remote ages.

The best beginning for a sound knowledge of history and the progress of civilization is to be laid down by carefully reading the works of Homer and Hesiod; not the smoothed down Louis Quatorze Iliad of Pope, but the rough and rugged originals. From their works we get a knowledge of a people, afterwards highly polished, who beginaing as wild robbers were then going through the firat steps towards civilization. Not merely are the manners drawn, but the houses, the fields, the tools. We see the king, the warrior, the priest, the soothsayer, the husbandman, the brass-smith, the potter, the honsewife, the Phocoician trader, and the sea-rover; but we see moreover the rongh tillage of the fleld, the early seeds of art, the beginning of wealth. Wo have a lively painting of the dawn of civilization, such as Cook saw it in Tahiti or Hawaii. In the Britisb Musenm we have the tools of the Maori and the paper-cloth of the Tahitian ; but we have like. wise such weapons and such ornaments an the Phoenician merchant sold to the Homeric-Greeks. Those who well study the Iliad, acknowledge a truthfulness in its drawlogs, which is the best seal of its antiquity, an antiquity not forged by Pisistratns, or in any later times. Those may who Ilke believe there never was a Homer, or that there were many, but that the Iliad is a work of the time it holds forth to be, no well-thinking ana will deny. To be able to feel this it is not enough to read the text-it is useless to read the Byzantine commentators or the scholastic commentaions of thene later times : what we have to stady is the remains of ascient ert and the relics of modern discovery, and not less those written records wo have of those who, in our own day, have been eye-wilnesses of all the phases of civilization.

The lump of iron which Achilles gave as a prive in the death-games of his friend, would be of little worth now, though the giver boested of it as enongh to find all the icon a husbandman might want in a long life. In the Museum we have spike nails, so highly thought of, that they are stamped by the maker; some with writing at a great length. A bronze tripod vase or brass kettle given by the aame hero, raised the mirth of Voltaire. Such vessels in the Museum show that with the rough tools of the workmen they must have been made with great labour. We must not look through the spectacles of a Voltaire, neither is there any reason why we shouid read with less interest what Homer has sung of king Agamemnon or Achilles, than what Cook has written of kiog Terreoboo or of Omai. In the latter case we have the record not a century old, in the former a quarter of a hundred centuries old; yet both are eqnally fresh, trothfol, and pleastog to a healthy mind.

To understand the state of handicrafte among the Greeks and Romam, is to anderstand the polition and cocial condition of the molddie ages, and of those nations whlch in the prosent day are most behindband. In the orerfowing of our material wealh we are not ready to conceive how mooh
the commonest institationa among ourselves are hindered in their progress anong people less favoured. The wisdom of those missionaries who teach their people the arts of life first, and religion afterwards, is approved by the ovidence of experience. When a great change has been made in the social condition, habits and thoughts of a people by material improvements, they are prepared to receive a great religious change. The old French lady who sew a balloon rise in the air for the first time, sorrowed that she ahoald die before the art of living for ever would be found out. It is the nature of the homan mind when struck by one wonder, to look out for others, and to give trast to the powers of him who has created the wondor. It has, however, been well observed that the Christinn missionary in the Pacific, beginning in the wrong way, shakes the faith of the islasders in their old worship, without giving them faith in a now worshlp. A Daedalas, a Cocrops, or a Cadmus, who tanght the Greeks a new art, might give them a new belief, or even teach them to worship himself. Among a rough people, litule better than wild men in a wilderness, the clever workman became a lawgiver and a god; the use of a saw, the forging of a breast-plate, the weaving of a sail, were means of wealth and power where all others were without still.

When robbers overran the land and sea, a well hammered helmet, breastplate, and apear, were among the best goods of every man; the king and the warrior were atronger in their armour than their conrage; they trusted more to the dread they raised in their ill-armed foeman, more to the boast of power than the thrust of the sword. When one of Homer's kings gights among the crowd be slays his many, but when king meets king the war becomes a war of words; Hector and Achilles strive which can outboast and frighten the other, and they only meet hand to hand when they canoot help it. The deeds in the Iliad do not come up to the words, and fall far short of our measure of heroism, but they are quite in keeping, and Homer is none the less a true painter of men and manners.
In Case 45 are several belmets, some of whlch are Greek, made to cover the face, with a nose-piece and slits for the eyes. These are made in one piece without joint, and some of them reem to be cast. The metal is bronse, and the workmanship is good. A phalany so well armed and thoroughly trained must have formed a powerful force, well able to achieve the battlea of Alexander. The work is among the best there is, and it hardly seems as if the light bronze swords could break through the thicknes. This gives a reason why the soldiery tranted to the heary spear and javelin. One of the helmets bas a sheath to hold a nodiding orest, and others are alightly ornamented. When polished theso helmeta mast have shone brightly in the battle-field, as the poot tells ns. There woold be no harm In polishing one to show the effect.

In No. 46 are two helmets and a shield, very richly emboseod. They might stand in the Tower Musenm without being outdone by the finest Milanese workmanship.

In Nos. 42 and 43 are spear-heads, macea, swords, daggern, knives, and arrowheads. From the confosion, it is impossible to soparate Greek work from Roman,-though this is not of $s 0$ much moment, an whatever the Greoks could do the Romans had the edvantage of. Rome had all the resocrees of Egyptian and Greek skill; yet how far was it behind the Rome of these days.

In No. 46 are Roman weights, mostly of a solid bell-shape, with a ring or handie at the top. Some of them are large. There is nothing noticeable in them. There are likewise scales of two kinds, the scalebeam and the pair of scales. The workmanship is good. The remains of Pompeii show that the Roman tradesmen were as well supplied with scales and weights as ours. The Roman weights have enabled antiquaries to ascertain the Roman poond, which is the original of the modern system of weights. Here are some large adze-heads of fair work.

A tripod stand of bronze, in No. 49, is a large and good piece of brass work. It is $2 \frac{1}{2}$ feat high. Another is about 2 feet bigh, and of smaller proportions.

The bigh tripod stand in No. 50, is a light and pretty design. A frame reats on three sphyaxes, each apheld by a caryatid, ending in the curved leg.

The chandelier in No. 51, is a large piece of work. It is for twelve lights, made to hang up in a ball or large room. The trimming of such lights must have been very troublesome. A hook, jointed on to a steple made to fix in a wall, is a good piece of smith's work. The joint is well made. Lamps were hung ap against walls by such hooks.

In Nos. 82 and 53 are caodelahra and stands. Some of these stands end in hooks, and are made to hold lamps, sance ladles, \&o. They may be called Roman épergnes.

In Noe. 54 and 55 are candelabre with fat tops, some 4 or 5 feet high, made to stand on the ground ; and others a foot high or so, to stand on the table. The small earthenware and bronze lamps were pat on the top of these candelabra. The lamp of the well-known shape, turned in our potteries into a milk jug, could be carried about is the hand, or be used on a candelabrom upon a table, for reading. For carrying about, they are moch more coavenient than our candlesticks or oil-lamps, which are cumbersome. Unless, however, there were some catch on the top of the candelabrom, to hold the lamp, there must have been fear of its being upect. The short candelabrum and lamp are elegant, and might be imitated.

The bronge lampa are in Nos. 66 and 57, the earthenware lamps in the middle of the room. The bronze lamps are many of them well finished Some of them have lamps by which they can be bong up, either in the middle of a room or on a hook againat a wall. The latter seems to have been preferred, as Roman wulls were better than roofs. Many of the lampe are table lamps, made to stand flat or on a candelabrum. In these cases are two chandeliers or lampa with eight lights, and one with seven lights. With these chandeliers of seven, eight, and twelve lights, the Romans had full means of lighting large rooms.

The most noticeable article in No. 58 is a bronze cullender or strainer, of seven inches diameter, very well finished, and with the holee oleanly drilled.

No. 59 contains some large oopper kettles and basins, some of which are two feet acrose. Here are many bronse handles, some of hendsome design: two of them have a man's head and a woman's bead, beautifolly chased. A swinging handle is cleverly wroaght. There are some small tripod stands, well finished.

In No. 60 are several sancopans of a modern chapa, some finished by tnraing, and some by the hammer. The mmith's work is geperally not well finished valess turned. This seems to be for want of good files. Where the surface is ornamental the fault in not seen; bat a plain surface commonly looks clomsy, like Chinese work.

There are likewise bronse atewpans and fryingpans with haodles in No. 61 : aleo pots.

In Nos. 62, 63, and 64, are broase joge of varions mizes; some of theee are engraved, and some ornamented in relief. There are many 18 inches high ; some neatly finiabed, but mostly rongh. They are not equal to the pottery. Although the sancepans in No. 60 are finished inside by turning, the lathe does not seem to have been used to the outsides of the jugs; yet it seems quite as easy to have made a chuck for one as the other, and the Roman lathes conld take a large and heevy article.

There is some ornamental chainwork in No. 80, much of which is ela. borate, bot seldom well finished. A large piece of double-linked cable chain, of a watchguard sire, is the best. There is llkewise a square chain, seemingly plaited with wirs. Some of the lamp chain, in Nos. 66 and 57, is also very good. There is not mach fancy in the patterns of chainwork. A favorrite pattern is a piece laid wavy, with a ruand coil at each end, the coarcs being linked to the corresponding parts of other pieces. This makes a flat chain, nsed for belts and other purposes. In this case is the rowel of a spar, rather large, but a very good piece of workman. sbip.

The case No. 98 contaias mixed Greek and Roman artioles: some of the former from the tomb of a warrior at Athens. There are knucklebones or astragals of varions sizes, in glass, metal, and iron, for plaging the favourite game of the ancients. There are counters and medals of ivory and bone, but the engraving and finish are not good, except in some of the plain turned ones. The ascortment of dice is numerous; they are of glass, metal, wood, and stone; a variety with the corners cut off, and one set with pentagonal faces. Some of these are very large. In this case are likewise connters and ornements of cut glams. The glass is clear, weil and sharply cut.

In Nos. 09 and 100, the articles are likewise Greek and Roman mixed. Here are bone spoons, like common salt-spoons. Bodkins, needles, pins, and hair-pins of ivory and bone, and likewise of metal, are numerous. The eyes of the bodkins and needles are long and well cut, but otherwise they are oot neatly finished. The smallest needle is two joches long, and thicker than a darning needle. In metal needies, the eye ceems to be made by splitting the bead and then welding the ends together, so as to leave a slit for the eje. It seems likely that finer needles were made, but
they must have been very dear. They were perhaps made in a soft state. In this case are amall jugs, phials, and rases of coloured glass, made for toilet use. Likewise earthenware imitations, painted or enamelled. The pattern is chiefly a wavy line, each line of a different colour. One phial is to be noticed an inch long, but thick, and of a brown colour with white streaks. It is a very pretty toy. The glass blowing and cutting are good, but do not seem to have been carried out on such a large scale as among the moderns. The opecimens in Case 40, found in Eagland, are very good.
The case No. 93, gives some very interesting apecimens of Greek wood work, a lyre and two flutes from a tomb at Athens. Each flute has a mouth hole and four finger holes. One flute is of a single piece, about a foot long, and the thickness of a piccolo flate; the other is rather longer. The outside is smoothly turned, and the holes are cleanly bored, seemingly with an auger of the same size. The lyre is much broken.

The contents of Case 86 are montly Greek. They are anall bullze or balls of glass and stone, chiefly blue. There are some bone bodkins, large but well flaished.

In No. 104 are small metal ladles, scoops, spoons, and spatula. Hereare also a small pair of pincers or tweezers, jointed like scissors, and a fish-hook.

In No. 105 are several pairs of compasses; among them a small pair of carpenter's compasses, four inches long; a pair eight inches long, with jointed legs; and a pair of double compasses. These instroments are not so well finished an in those days, but the joints and workmanship are good. A large assortment of Roman atamps and brands is of various goodness; some very neatly cut. Here are some spike nails, well forged. The staples are goud. The hinges are among the most interesting specimens of Roman smith's work. Some are as well finished as can be desired, particularly a large and heavy pair made with a double joint. There are some strong door sockets.

In No. 106 are locks and keys. The keys are very clumsy.
No. 112 contains a variety of signet rings, some with stones set. These are mostly common things, not equal to the jewellery of gold and silver in other cases. A chain or necklace, enamelled gold and blue, is one of the neatest pieces of work in the whole collection. Every plece is of the same pattern, and well linked together.

Tha assortment of buckles is large. They of all shapes and sizessquare, oblong, round, oval, and horse-shoe among others; some few ornamented, one with two rams' heads. Many are embossed, but badly. A ring buckle, of the size of a shilling, is neatly wrought. The tongue of
the buckle is often made of a bit of wire, with the head twisted round. The rivetting is often clamsy. There are buckles made to sew on; one like a good stock buckle. There are many brooches with a spring calch; some very large and clumsy, as if made by common smiths.

The collection of metallic mirrors and mirror-cases fills several cases, The mirrors are from three to eight inches diameter, and cleanly turaed. It is a pity that some of them are not polished, to show the use of them, for most of them are dull and rusty enough now. All the mirrors are made with a handle to hold by, so that some look like fryingpans. Some have their faces and cases engraved, sometimes done in the lathe and sometimes with the graver. The cases are often beantifully embossed or engraved, though some are very common. In No. 74 is a mirror-case of broneze, found at Toscanella. It is nine inches across, and delicately chased in very high relief. Two women are sitting opposite to each other. They are dressed like Pallas Athene, with a Medusa's head and snakes on the breastplate, and a saake on the ahield. This case is much damaged. Another case, also found at Toscanella, is five inches acrons. The subject is Bacchus and Ariadne. Both are oaked, Ariadne with her back turaed clasping Bacchus roond the neck. He holds in his left hand a large wine jar. A panther is behind him. There are sevaral cases engraved in the style of the vases, some with Etruscan countenances. The eagraving is moslly a bad attempt at anatomical drawing. In No. 75 all the engraved cases show bad drawing. Here is one mirror-case seemingly cant, which is a piece of beautiful Workmanship. It represents Hercules and Om_{m} phale, in the early Greek style. The drapery and details are highly finished.
In No. 90 are mirrors from Athens and Ithaca, all of them small.
The above remarks, though they embrace only an imperfect view of the collections in the Museum, may still give some idea of ancient workman. ship. It will be seen twat they were acquainted with hammering, forging, turning, filing, casting, boring, drilling, rivatting, polishing, tempering, die-sinking, glass blowing and cutting, and enamelling. In many of thesa they had made mach progress. It is impossible to avoid reflecting how much the work of the ancients was limited by their waot of power. The difference is great between the mecbanical resources of the Romans and what the steam-engine has done for us in the forge-hammer, the saw, the boring, the planing, and the rivetting machines. We cannot, however, help admiring how much they did with amall means.
(To be continued.)

STONE BRIDGE OVER THE RIVER MEUSE POR THE NAMUR AND LIEGE RAILWAY.

The ahove engraving is the centre arch of a handsome stone bridge now in course of being constrocted on the Namur and Liego Railway, over the River Meuse, in Prance, from the denigas of George Rennie, Bsq. The bridge consiati of five arches, 82 feet span, with a rise of 10 feet ; the piers
are 8 feet thick at top and 11 feet at bottom, and 24 feet high from tha top of the footings to the springing of the arch. The roadway is 26 foet wide to the outside of parapets, and will carry two paire of rails.

THE GOVERNMENT AND THE RAILWAYS.

Not a month passes but we are urged to take notice of the onfair way in which civil engineers are treated by the government, in the preference given to military engineers In civil employments. We have professed aften enough onr eateem and regard for our military brethren in their military capacity; bot wo cannot withhold our belief thal they are not the beat fitted for civil office. Whether we go by theory or whether by facts, we come to the same end,-that as civil eagineers the military have not shooe, neither are they likely to do so.
We may be told that the Royal Engineers have the guarantee of a good collegiate education-bay, further, that they are the picked men of a large body of atudents, of whom the least endowed are left for the Royal Artil. lery. This may sesm a guarantee of qualifications, as against a profession, that of the civil engineer, which is an open one and subject to no exami. nation. It is tolerably certain that there are very many civll engineers far behow menbers of the Royal Eagineers in knowledge;-but bere we come to a stop, becanse we do not get the converse of this proposition. We hare no hesitation in saying-nay, in laying down a challenge, that the body of civil engineers has exhibited a much greater degree of knowledge and of talent thea that of the Royal Engineers. A preliminary examination might keep ont many men of inforior attainment; but with the civil engineers it would have this disadvantage, that it would keep out many men of superior attainment. Being an open profession, civil engineering is always receiving the accession of large numbers of men, whose general proficiency and abilities make them valnable associates; but who might be either nuable or onwilling to pass a schoolboy oxamination. These recruits juclode mans men of middle age, or of mature age, who have already gained reputation in their previous career, and who bring it for the eshancement of thelr new profession. If othera, either from sheer impodence or from an over-estimate of their own qualifications, likewise dub themselves civil engineers, it does not matter; for neither will professioal men give them conntenance, nor the public give them employment. This is the real ceasorship of the engineering profession, and it is one much better than a scholastic examination, which at the beat can be got through by a abort griading, and the matter of which l , in all likelibood, forgotten everafter.

Subject civil engineers to a prellminary examination, as many in their real have proposed, and what must be the consequence? We should lose all those men who are most valuable, and on whom we moat pride onrselves. We shall first exclude those most practical men, who begin their career as mechanics, and who so often rise to the highest distinction. The workshop will at once be closed as a nursery for engineering. We shall likewise lose those who being engaged in mining, in draining, in shlpbailding, and in factories, have ealarged their sphore of operations by onlarging their experience. We should lose all those men of active miad, whose inventive genias is our great glory. We might, perhaps, keep those who have begun as mathematicians; but, in keeping one branch of ecience, we shonld lose all others. We need not begin a list of those who, if a system of examination had been adopted, would now be loat to the profenion: the acquaintance of every one will furnish him with a long list, aodithere would be more difficulty in deciding who would remain, than in deciding who woold be struck out. What the ongineering profession would be under such circumstances we leave the public to imagine; but we believe it would be filtered of its knowledge, its talent, and its repatation. All this would be done needlessly, becanse the exclnsion of those who canoot or will not pass the scholastic examination, comes to this-it excindes persons not Incompetent for the exercise of their profescion, and who in the pursuit of it acquire, if they have uot already done so, all such cholastic knowledge as is necessary for them, in the same way that they acquire so much other knowledge, whlch can never be made the subject of scholastic education or examjnation.
On whatever point, except that of military engineering, on which the Royal Engineers can challenge thelr brethren the civilians, the latter can catwatch them. The mathematical sieve throngh which the Royal Engimeers have to pass, has not been very successful in making great mathemalicians or philosophers; and If it came to a contest on this point, we can sopply the military with plenty of champions weli able to contend with them. Messrs. George Rennie, Eaton Hodgkinson, John Scott Russell, Hobert Stepheason, Isambard Bronel, George Parker Bidder, W yndham Harding, and Joseph Bameda, are well able to compete as philosophers or mathematicians; and bere we have only put down such names as most radily occarred to ms, without taking the trouble to choose the most
proficient, or even to pnt down all those who are weil deserving of being named in snch an enomeration.

If attainments are to be known and shown by their exercise, an advocale for the Royal Eogineers would heve little to show for them. The civil engineers have been greater contributors to the cause of science, as much as they have been greater contributors to professional literature. The works on professional subjects by officers of the Royal Engineers, who have the best means, are few ; and even the volume of "Transactions of the Corps of Royal Engineers" is eked ont by civil contributions.

The examination is no guarantee of the snperiority of the Royal Engineers, for it is $\mathbf{n} 0$ guarantoe against mediocrity in that body. If the practice of their profeasion be a claim of the Royal Eagineers as against civil engineers, we ask what are their works ? We know what civil engineers have done; bnt neither the public nor ourselves know what the Royal Engineers havo done, uolese it be the Ridean Canal, which cannot be considered as the most fattering testimonial of snccess. We can show too that their recent career in combesion with the Board of Trade has not been such as to raise them in the eyes of the poblic.

Before saying more on this latter point, we are tempted to enquire on what grounds military engiocers should be at all employed in a civil capacity. We know of no reason why civil engineers should not be so employed. When the two bodies are considered in connexion, all impartial persons will acknowledge that civil engineers are far superior in knowledge, talent, and reputation, as much as in the works they hare executed. Indeed, nothing can be said in favour of the military eugineers. The government, however, heve tried civil engineers, and have not fonnd them wanting. If our dockyards are examined, we shall vainly seek for proofs of the capacity of the military engineers. The works and ma. chinery, on the other hand, give anple proof of skill and ingenvity other than military. Whether breakwater or block machine, whether steam engine or lache-whatever is best, whatever is cleverest, is by other hands than those of the military.

When civil engineers are sent on missions of enquiry by the government, wo are sure they have not been behind their military brethren. No one, we believe, will deuy that Mr. James Walker, Mr. William Cubitt, and Mr. Hodges have proved quite as good commissioners as Sir Charles Pasley, Sir Frederick Smith, and Captain Coddington; although the latter have rarely acted ont of harnens, or without Mr. Airy, Professor Barlow, Mr. Amsinck, or someboily else, belng attached to them, to help them throngh their work.

Why a military engineer should be employed at all in a civil capacity we cannot comprehend : the publio never think of so employing them until they have had a good civil training; and we know of no reason why the goverament should do so. We cannot believe that it is on the ground of cheapness, for wo do not consider the Royal Engineers as cheap-wr think they are a heary drag on the conntry. At any rate, the government does not always find civil engineers so dear, inasmach as they are able sometimes to employ them. When Royal Engineers are employed as railvay commissioners, or for other civil purposes, they are paid salaries, bot which do not represent the burthen on the nation. There is the cost of their educatlon, of their training as juniors, of their sick-pay, half-pay, retiring peasions, and widows' pensions, besides the cost of colleges, houses, barracks, and many other items of considerable expense, the mode of charging which cannot be readily nacertained. Taken allogether, the Royal Engineers are a very expensive body, while the outlay, instead of going, as in the case of civil engineering, to reward talent, goes only to foster mediocrity. Stephenson and Jack Noakes, Brunel and Tom Styles, are put on a par under the system of military engineering; and the Royal Engineers are more to be praised for such abilities as they have shown uoder such an unfavourable regime, than blamed for their inferiority. This, however, is only so far as it conceras themselves, for it does not acquit the government of blame in employing them on occasions when they can avail themselves of the superior services of civilians. We believe no one out of a goverament office deludes himself with the belief that the employment of General Pasley was any financial benefit to the conntry; it was oaly an encouragement of aystem noder which men of ability, or of no ability, are brought up to be made Inspectors-General of Railvraya, and then shelved off on half.pay, at length to be pensioned off. Whenever Sir Charles Pasley or Sir Frederiok Smith is paid one thousand a-year, it must be always worth while to pay a competent civilian two thousand a-year, for money would thereby be sared.

At whatever class of works we look-railways, canals, harbonrs, docks, or bridges; at whatever class of machinery, we find all constractord by
civil engiveens-tho one elass clatmed by mililary engineers, and no one great work which bears their pame. Assuredly, therefore, the ctandard of quallication belonging to the Rojal Engineers cannot be a matorial one; we have shown that it cannot be on their scientifio or literary attainments; and we do not $k n o w$, in fact, upon what it reste.

The employment of military men in clvil affalrs is asaally beld to be ill-advised, because from their training they are not suited for sucb parauits. From the pecaiiar natare of their employment and aseociations, they do not acqnire bosiness babite or ideas, and we have always estermed it anfortunate when they were pleced in civil positions, because they have been atterly uuable to respond to the call made epon them. The removal of Major-General Pasley from the office of Inspector-General of Railways, is ope objected to by himself, and on which be has pursned the extraordinary course of appealing to the poblic. It shows that there is no nympathy between him and the government. The enployment of military engineors brings them in comparison with their civll brethrea, who are partlcularly well trained in matters of busineas, and who hold their groond among the acutest men of basinese in the country. The most important and complicated affirs are left to the negotiation or arbitration of Mr. Robert Stephenson, M.P., Mr. Branel, or Mr. Locke, M.P., by capitalists fully capable of appreciating their practical abilities. It will be found that the engineers have taken as great a part as any class in the organization and development of the railway system and its admintatration.

So far from oxhibiting any such pablic proof of their capecity, military men are well known to be onfitted for the understanding of businoss matters. A lad is taken from school, sent to Woolwioh, gets a commistion, is omployed at home'or in the colonies, and at length is made a railway inspector, without knowing as much of basivess as any young man in the city of London. He can give orders to sergeants and corporals, build harracks in places where ho has it all his own way; but as to any usofol intercourse with society, it is perfectly out of the question. He has not, in most cases, that ascociation with professional and practical men, which might put him in the way of acquiring a proper degree of professional experience. A papil in Mr. Stephenson's office knowe very much more.

It wonld be very hard for the Board of Trade to furnish the pablic with any afficient juatification for appointiog aged or middle-aged geatlemen, tricked out in blue, gold, and scarlet, as inspectors of railurays, of which the inspectors know nothing. It may very well happen that an officer, who has apent his time in Now Zealand, or the Isle of Ascension, or in the baokwoods of Canade, building barracks and convict jails, may be perfectly guiltiess of knowing what a railway is ; and it is no reflection upon the unfortunate individual who is made a railway inspector, that he should know nothing about them. Major-General Pasley han the rare merit among military engineers of having written on several professional subjects ; but no one ever thought of his knowing anything of railways, uatil be was brought forward to be the arbiter betweeu Stephenson, Bronel, Locke, and Cubitt, as Inspector-General of Railways. General Pasley conld scarcely refuse accepling the appointment, though it pat him in the very painful position of interfering with the master-minds of the world in matters of which be knew nothing at all. This position must hare been one very painful to Sir Charles Pasley's feelings, and every one will syme pathise with him, for his own merits and bis gentlemsoly conduct have secured for him much good will. The government cannot, bowever, be pardoned for putting him in a false position. The same is to said of the orher geatlemen, who were similarly ill-used.

The appointment of raw soldiers to jnspect railways made engineers and directors familiar with their ignorance and incompetency. As they did not understand anjthing about railways, they had to be taught. Some of then were conscious of their ignorance, very willing to learn, and taking much trouble to learn ; others, in the supercilious arrogance and self-conceit ongendered in the almosphere of a barrack-ronm, have rendered themselres ridiculous by the oxhibition of their ignorance on points of which they supposed themselves well informed. How many of our readers have been witnesses of their follies, and bave laughed at the presumptuous incapacity of the Mentors set over them by government! Not oven an engine-driver can be brought to hold a favourable opinion of men, of whose emptiness he is well aware. The visit of a government inspector is a joke, whlch nothing bat the prodeace or good sease of the reilway authoritiea prevents from beiog made sensible in manner very undignifed. The pablic, too, and the public press want faith in government inspectors, and the Times and Punch, the two magnates of the pen, have held them up to wolldeserved ridicule.
The officers of the Royal Engineors, and other partios employed by go-
vernment for railway purposes, ase the employment for their own convenionce; and if they happen to loarn arything, tarn their knowledge to acoonnt by going into the service of the railway companies. So long as they are worth nothing, the government is at the cost of keeping them, and has to pay for their blandering out of the pablic parse, and to encoonter the ridicule of their incompetency; but when the officers are worth aything, they sell their knowledge in the best market.

Anything 50 onsatisfactory as the position of the railway officers of the Board of Trade, and their relations with railway compaoies, can soarcaly be imagined. Some needy son of patronage, who has scraped throogh his examination at Woolwrich, and who is always more of a dandy than a geotleman, and more of a schoolboy then an engineer, geta into the railway department. He is dependent apon the chairmen, ecrelaries, saperistendents, and eagineers not to expose his ignorance, and to give him the information he wante. He gets very eociable in his intercourse, and very familiar--for many of hls associates are muoh better gentlemen than himaelf, and none is reads to give way to esmonptions of barrack superiority. On being bronght in contect with the world, free from the hallucimations of mess pomp and self-ooncelt, he finds out bis own troe position, apart from his batterfy livery, that he is a nobody, and rather a poor one. He wants the means to keep up his own dandyism and his wife's millinery, and he wants places for his sons and portions for his daughters. The ambition to live a usefal lifo comes upon bim, and be cannot resist the temptation of asking for the first railway appointment which comes in his way.

Some very hononrable men may do their best to withstand corrupt action; bot at any rate the government officer is placed in a false position, and cannot give satisfaction to his omployers. Some, it may be, give way to positive corruption-nay, anggest and carry it uut; and al any rate, those who do not give way lie open to the imputation of it. The ovents of 1845, and the parliamentary diecussions on the condact of the Board of Trede, will occur to every reader, and the result of them cannot by any means be considered as satisfectory.

For a public officer to be suspected is always bad, because when honest it trammels his own mode of action, and the jealous pablio will never be satisfied of the independence of the officer, when they know how readily he may turn his trust to bis own private parposes. The communication of valuable information may so easily be made a matter of profitable barter and apecnlation, that the pablic can never be satisfied it is not done, asd unfortunately before now circumstances strongly corroborative of suspicion have occurred. The poblic have every regard for tho bonourable character of military men; bot it does not esteem the character of one profession, or of one body of gentlemen, as higher than another; and at any rate it does not judge very favonrably of human nature when exposed to temptation.

The Board of Trade officer, when once determined to place bimself ont, has the mean of preparing the way by rendering such services to his future employers as may well be considered the price of his employmeat. How easy it is for one so determined to make such arrangements for the favoured line, and to make such reports opoe it, as may be very valaable to the company, and in the end very valuable to himself, but which canoot in any way be held as the best meane of forwarding the public incerents. This is certainly a poasibility-nay more, it bas a probabilits, aud there are those who believe that it really has occorred, while there is no goarantee that it may not occur over and over again.

The temptation to companies of using parties concected with the Board of Trade is very strong, as they not only get an immediate service done, but they also have the means of communication whemover they may want it.

Often as the Board of Trade have been subjected to public censure, we are oot aware of any defence which has been made for them-we might any of any defence which can be made. The railway departmeat is uttarly useless for the purposes intended; its inspection is a joke, which is now 00 well known, that it ceases to tranquillise the public mind; and it is ooly operative for mischief. The department is an incubus on the railway intersat, whlch does not give patronage enough to a government to juatify ils continuance, and which is well calculated to bring a ministry into jeopardy. In the first seasion of a parliament in which a railway interest will be combined, Mr. Strutt is pledged to bring forward a bill, which has beem denounced as an aggression on a vast amount of private property; and this railway directors bave determined to resist to the utmost. With the nomber of new and hostile members in the bouse, the defeat of Mr. Strutt by the railway ioterest, assisted by the opposents of the miaistry, is one among the dieaters of the next year which appears most likely to be acoomplifhed,
and which will greally aggravate the difficulties with which the adminisIration of Lord John Russell is already threatened. A blow once given, we hope the railway intereat will not rest till they have swept away every veatige of interference.

TEMPERATURE OF STEAM.

Sir-The following empirical formala for determining the temperature of stemm is new, accurate, and may be interesting to some of your readers.

If $n=$ the number of atmospheres, then
$212+\frac{72}{3}+y+\frac{7_{2}}{3}, 8$ c., till $\frac{72}{2}=$ the tezperature in degrees of Fah. reabeit. Thus, for

Atmospheren.

$$
\begin{aligned}
& 2=212^{\circ}+y^{\circ}=248 \\
& 3=212^{\circ}+y_{2}^{2}+\mathcal{Y}=272 \text { or }=248+y_{3}^{3} \\
& 4=212^{\circ}+32+32+32=290 \\
& 5=290^{\circ}+\boldsymbol{\psi}=304 \cdot 4 \\
& 6=304^{\circ} \cdot 4+\gamma_{8}=316.4 \\
& 7=316^{\circ} \cdot 4+{ }_{7}^{72}=326.7
\end{aligned}
$$

The following are the results of Dr. Ure's experiments, and those of the Prankliu Institute, as far as ten atmospheres, contrasted with the resulth obtained by this method of calculation:-

No. of Atmoaphere.	Calculated Temperature.	Dr. Ure'a Calculation	Nean of Tempertture obtalned by Pranklla Institute.
1	212°	212°	212
2	248	248	250
3	272	272	275
4	290	290	$291 \cdot 5$
5	$304 \cdot 4$	305	304.5
6	316.4		315.5
7	326.7		326
8	$335 \cdot 7$		336
9	$343 \cdot 7$		345
10	351		352.5
11	357.5		
12	363.5		
13	369		
14	374		
15	379		
16	$383 \cdot 5$		
17	388		
18	392		
19	395-5		
20	399		

I am, Sir,
Your obedient servant,
Williay T Matier,
Civil Engineer.
Dublin, October 16, 1847.

MEASURBMENT OP ANGLBS.

How to lay off an Angle of any number of Degrees, Minutes, gac, with Compasses only, without the use of Scale or Protractor.

By Olifrr Byrne.

First allow me to correct a trifing mistake involved in the solution of the converse of this proposition, pablished in the Journal of last month. Page 313, col. 2, line 10 , for ${ }^{"}+1$ or $-2, "$ read $"+1$ or -1 ;" and the expression (Q) becomes

$$
\theta=\frac{m q \Phi}{m q \pm q \pm 1}
$$

The same correction mast be made at page 314.
Let it be required to lay off an angle of $36^{\circ} 40^{\prime}=\beta$.-Take any amall openiug of the compases less than one-tenth of the radies, and lay off any
number of equal amall arci, from \mathbf{A} to 1 ; from 1 to 2 ; from 2 to 3 ; sc. (ig. 1), until we have laid off an arc, $A B, B$ reater than the one required.

Draw B b through the centre 0 , then will the arc $a b=\operatorname{arcA} A$, which we ahall put $=20 \phi$ in thin example, and proceed to measure $a b$ as in example fig. 5, page 314. Lay off $a b$ from b to c; from c to d; from d to e; from e to f; from f to g. Putting $g a=\Delta_{1}$, then

$$
\begin{aligned}
6 \times 20 \phi+\Delta_{1} & =360^{\circ}=\frac{108}{11} \beta ; \text { beouse } \\
\frac{360^{\circ}}{36^{\circ} 40^{\prime}} & =\frac{21600}{2200}=\frac{108}{11}
\end{aligned}
$$

Lay off, as before directed, $g a,=\Delta_{1}$, from a to h, from h to s, and b to t; then calling $s t, \Delta_{g}$, we have

$$
3 \Delta_{2}+\Delta_{2}=20 \phi ;
$$

and we find that st is contained 28 times in the arc ab;
$\therefore 120 \phi+\Delta_{1}=\frac{108}{11} \beta_{;} 3 \Delta_{2}+\Delta_{2}-20 \varphi ;$ and $28 \Delta_{2}=20 \varphi$.
Eliminating Δ_{1} and $\Delta_{\mathbf{a}}$, we find

$$
\beta=\frac{29205}{2268} \varphi=12 \cdot 9 \text { times } \varphi \text { nearly; }
$$

$\therefore 36^{\circ} 40^{\prime}=\angle \mathrm{AON}$ is laid off with as much oase and certainty as by a protractor.

As a second example, let it be required to lay off an angle of $132^{\circ} 27^{\prime}$.Prom $180^{\circ} 0^{\prime}$ take $132^{\circ} 27^{\prime}=47^{\circ} 33^{\prime}$, which put $=\beta$.

$$
\frac{360^{\circ}}{47^{\circ} 33^{\prime}}=\frac{2400}{317} \text { when put }=\frac{v}{8}, \text { then } \frac{v}{8} \beta=360^{\circ}=\text {. }
$$

Fig. 2.
Referring to fig. 2, we have laid off 29 small arcs from A to $29=4$. $A B=a b=$ $b_{c}=c d=d e=e f$. And $a g=b h=a f=\Delta_{1} ; \lambda g=\Delta_{2}$.

$$
\begin{align*}
& \therefore 5 \times 29 \varphi+\Delta_{2}=360^{\circ}=\frac{y}{8} B=m \in \varphi \pm \Delta_{2} \tag{1}\\
& \begin{aligned}
2 \Delta_{1}-\Delta_{g} & =29 \phi, \text { or } n \Delta_{2} \pm \Delta_{q} \\
13 \Delta_{g} & =29 \phi, \quad \text { or } \quad q \Delta_{g}
\end{aligned} \tag{2}
\end{align*}
$$

Eliminating Δ_{1} and Δ_{9}, we have
$\beta=\frac{\{m n q \pm(q+1)\}}{v n q} \phi=\frac{\{5.2 .13+(13+1)\} 29.317}{2400.2 .13} \varphi=$
$\frac{1323792}{62400} \varphi=21+$ times ϕ very nearly. Hence the line ON determines the angle a $\mathrm{ON}=132^{\circ} 27^{\prime}$.

In the expremsion

$$
\begin{equation*}
\beta=\frac{\{m n q \pm(q \mp 1)\} \cdot \delta}{v q} \tag{R}
\end{equation*}
$$

substituting the numerals of the first example, then

$$
B=\frac{\{6.3 .28+(28-1)\} 20.11}{108.3 .28} \phi=
$$

$\frac{29205}{2268} \varphi=12.9$ times ϕ nearly, the result before obtained.
The ambiguous signs of (R) cennot be miakaken or lead to error, if the manner in which it is deduced from (1), (2), (3), be attended to. From (3) $\Delta_{g}=\frac{\varphi}{q} ;$ snbstituting this value of Δ_{g} in (2),

$$
\Delta_{1}=\phi \mp \Delta_{g}=\phi \Phi \mp \frac{\bullet \phi}{\varphi} ; \text { which, when aubsti- }
$$

tuted for Δ_{1} in (1), gives

$$
\frac{v}{\delta} \beta \quad m \in \varphi \pm\left(\varphi \mp \frac{\varphi}{q}\right) ; \text { from which (R) is casily }
$$

found.

ON MODRL EXPERIMENTS.

Until this present ers of the "railway and the steam-ship and the thoughte that ohake mankind," the studies of the engineer, like those of the lawyer, were confined to the acquiring of details of precedent, while the knowledge of the scientific principles of his profession wat neglected as of comparatively little importance. Thos, although the recogaised modes of constraction were numerons, the laws of atructural equilibriam wore fow and but imperfectly developed; the builder was antiofled if the edifice he was about to raise were similar in character and magnitude to others which had been raised before;-this fact at least he knew-they had been found to stand, perhaps for ages; and the most ordinary, pariter paribue, style of reasoning might be sufficient to asoure bim that his own work would be no exception to the ganeral rule. But with the railway arose a new epoch in the history of engineering: works were required to be constructed of naprecedented magnitude and solidity, and for the execution of which a higher amount of mechanical science and a wider range of experience were required. To sopply the latter of these two desiderata, numerous experiments bave been conducted of late years on the atrength of materials, and on models of the whole or most important component parts of proposed structures. It is to these last class of experiments we would now direct the reader's attention, particularly with reference to the difference of amount of thrusta and strains in the model and its original. We ahall firat consider the case of a simple horizontal girder, composed of a web and an apper and lower flange, and loaded with a given weight;-to this case may be referred almost all the cast iron railway bridges now completed, as well as the proposed tubular Menai Bridge.

Let $A B$ be the girder, snpported at A and B, and composed of the lower flange $A B a b$, the upper flange $C D c d$, and the web cabd. Let $A B=a u$; $\mathrm{AC}=\mathrm{b}=\mathrm{A} \boldsymbol{\mathrm { A }}=\mathrm{cw} ; \mathrm{Cc}=\mathrm{Cu} ; \mathrm{Cv}=\mathrm{hw}$.

Lat the weight at $w=w w^{3}$ (because the weight varies as the cube of the acale 4) ; the weight of beam and girder $=w^{\prime} w^{3} ; C E=7 x ; R$ and R^{\prime} the reactions at A and B.

Then first considering the equilibrium of the whole girder, we shall have $\mathbf{R}+\mathbf{R}^{\prime}=\left(\infty+w^{\prime}\right) \cdot \mathbf{w}^{\mathbf{a}}$
$R^{\prime} \cdot a w=\left(* \Lambda u+\frac{w^{\prime} a w}{2}\right) \cdot w^{3}$; the girder being supposed nniform and rymmetrical throughout its mass.

$$
\therefore \mathbf{R}=\left\{v\left(\frac{a-h}{a}\right)+\frac{w}{2}\right\} . x^{n}
$$

For the equilibriam of the portion C F, if T be the tension and thrust of the lower and upper ianges, Y the vertical force at F, z the diatance between the points of application of the thrust and tension, we have

$$
\begin{aligned}
& T=T ; \quad Y+R=\left(w+\frac{l}{a} w^{\prime}\right) \cdot w^{s} ; \quad \text { and } \\
& \bar{T} I w=\left(w h x_{4}^{\prime}+\frac{w^{\prime} \cdot r^{3} u}{2 a}\right) \cdot w^{3}-\mathrm{T} \varepsilon . \\
& \text { Whence } \mathrm{T} x=\left\{\left(\frac{a-\eta}{a}\right) \cdot h \varepsilon \sigma+\left(\frac{a-\eta}{2 a}\right) \cdot \Delta v^{\prime}\right\} \cdot w^{4} \cdot
\end{aligned}
$$

Now, in applying the resulte of experiments upon a model girder to its original, all we have to do is to vary the scale a from the acale of the model to the scale of the origiaal. Consequently, we find that $T z$ varies as the fourth power of the scale or dimensions of the girder. If the web of the girder be very thin compared with the breadth of the flanges and their vertical depth,-and if their vertical depth, w $c, w d$, be amall compared vith $\approx \delta$, -and if $w h, u \boldsymbol{K}$ be the width of the apper and lower fanges respectively,t and t their thrasts and tensions per square inch reapectively-then we shall have

$$
\begin{gathered}
\mathrm{T}=t k c u^{2}=t^{\prime} k^{\prime} d w^{2} \text { nearly } ; \text { and } z=a w \text { nearly. } \\
\therefore \mathrm{T} s=t a k c w^{2}=t^{\prime} k^{\prime} \text { ad } u^{3} \text { nearly. }
\end{gathered}
$$

$\therefore t$ and t^{\prime} both vary as w nearly; that is, approrimately, the tension per square inch on the lower flange. and the thrust per square inch on the upper flange, of all similar and similarly loaded girders varies os their seale of linear dimension. This we consider so important a fact, that we shall andeavour to give a proof of it in popular language.

Suppose a vertical section made of a loaded girder at E P; then sopponing F the fulcrum about which the mass $A E$ is turned,-A E will be prevented from turning about P by the opposite action of the tenaion at \mathbb{F} and reaction at A, and the weight wand thrust at E, and the weight of $A E$ collected lat the centre of gravity of CP. Now the weight $w_{\text {, }}$ the weight of $C P$, and the reaction at A, will all vary as the cube of the dimensions of the girder, if we suppose the girder loaded proportionally to its mast. And tho leverage of these forces varies as the linear dimensions of the girder; consequently, their moment about P varies as the fourth power of the dimensions of the girder; tberefore, the moments of the tention and thrust at P and E, vary sis the fourth power of the dimensions of the girder; therefore, if we suppose $\mathrm{A} a$ and Cesmall, the tension and thrust vary as the cobe of the roale; but as the tension and thrust are composed of the anm of all the tensions and thrusts per square inch at a vertical section of the flanges, and as the area of this vertical section varies as the sqnare of the scale,-in order to make up the fourth power, we mut have the tension per square inch varying as the scale \%.

We next propose to determine the amount of the load $V u^{3}$ which can be supported at the centre of a girder of the dimensions u, in order that t and t at the centre may be the same as in a girder of the dimenaions $m=1$ supporting a load wot its centre. We have proved $T z=C t w^{*}$, where C is some constant independent of u.

$$
\begin{aligned}
& \text { Making } l=h=\frac{a}{2} \text { we bave, therefore, } \\
& \mathrm{C} t u^{2}=\left(\frac{\mathrm{V} a}{2}+\frac{w^{\prime} a}{4}\right) w^{4} ; \\
& \text { and } C t=\left(\frac{2 a}{2}+\frac{20^{\prime} a}{4}\right) \text {; } \\
& \therefore \frac{\omega a}{2}+\frac{2 \omega^{\prime} a}{4}=\left(\frac{\mathrm{V} a}{2}+\frac{20^{\prime} a}{4}\right) \approx \\
& \therefore 2 \mathrm{~V}=\frac{2 w-(u-1) \cdot w^{\prime}}{v} \\
& \therefore 2 V u^{s}=\left(2 w-(u-1) \cdot w^{\prime}\right) . w^{2}
\end{aligned}
$$

If $(w-1) w w^{\prime}=$ or axceed $2 w$, it follows that the girder in scale u will not be able to sapport any weight at its centre, without the tension and thrust per square inch being increased.
Erample.-A model girder, length 80 feet, weight 10 tons, breaks with a weight of 30 tons in the middle: what weight will break aimilar girder 480 feet long ?

$$
V_{u^{\prime}}=\frac{\left(2 u-(u-1) w^{\prime}\right) w^{2}}{2}=\frac{(60-50) \cdot 36}{2}=180 \text { tons. Ans. }
$$

We have been especially induced to call oar readers' attention to the aubject of model experiments, from the fact that the proposed tubular bridge over the Menai Straits is to be constructed, ts to ite dimensions, according to laws developed in a series of experiments, conducted by Mr. Hodgkinson as Blackwall. We much fear that the edormone width to be crosed withoat a support will prove too much even for the known ingenuity of Mr. Stephenson. If, however, the talents of that illnatrious engineer should prove equal to the magnitude of bis conception, none will feel more satisfaction than ourselves at his success ; and with mingled wonder and pleasure shall we witneas-st a respectful distance-his aerial tunnel quivering and bending beneath a load of "moral agents," happily unconscions of the laws of equilibrium and of the depth of the cold dark watera ebove which they are being whirled.
(To be continued.)

REGISTER OF NEW PATENTS.

NASMYTH'S PATENT SCREW COCKS.

The accompanying engravinge show an important improvement in sluice cocks, aa patented by Mr. Nasmyth, of the Bridgewater Fonadry, near Manchester. In consequence of the facility with which they are manufactured, the cost of them is considerably less than that of the ordinary sluice cocks, and at the same time they appear to us far more effective; but the following teatimonials, coming as they do from gentlemen well known as practical hydraulic engineers, will show the value of the cock far better than anything we can write.

Fig. 2.

Fig. 8.
H. 1.1.

Fig. 1 is a side view of one of the cocks; fig. 2, plan above the level of the pipe; Ag. S, plan of cover; fig. 4, a tranaverse view; and fig. 5, asec-
fional elevation of a cock fally open, -the dotted lines show the position of the valve when closed.

Mr. Nasmyth claims as new-lst. The valves being formed with double faces; 2ndly. The screw passing down through the valve; and 3rdly. The casting of the cock in one piece.
(To Messrs. Nasmyth, Gaskell, and Co.)
Gentlemen,-I have great pleasure in complying with your request, to give an opinion apon Mr. Nasmyth's Screw Cack for Water Works. I have examined and proved two of the cocks, and am quite satiafiod that they will answer, in an effioient manner, all the purpoees for which this kiod of Cock is intended

One important featnre in your Cocks, as distingniahed from those ordinarily naed, is, that they are all double-faced, and therefore, there is no occasion to have two sets, one single-faced, and one double-feced, and the cost is considerahly less than that of the ordinary single-faced Cocks, which are chemper than the double-faced.
Screw Cocks form no inconsiderable item in the first and annual oxpen. diture of a Water Works, and not nofrequently a single-faced Cock is introduced, on scoonnt of its cheapness, where a donble-faced would otherwise be preferable.

A comparision between the cost of your Cocks, and of ordinary, single, and doable-faced Cocks, in equal proportiona, should be made in order to show the anperiority of yours in a commercial point of view, whicb, after all, is the most important view to bertaken in the introduction of improvements.
The value of Seven single-faced Cock β, of the ordinary constructions, and of the followlng sizes, viz.-3,4,5,\} 4418180 $6,7,8$, and 9 inches, will be
The value of the same number, and of the same sisen, of

The mean cost of the two clasces

- • • 4650

The cost of the came namber and of the same sizes of yonr improved Cocks, which are all double-faced, and therefore will answer the purpose of single or double faced, will be
$31 \quad 15 \quad 0$

Difereace in favour of your Cocks $1410 \quad 9$
Thus it appears that your Cocks are 80 per cent. cbeaper than the ordinary Screw Cocks, and equally efficient. I have therefore great pleasure in recommending their use.

I anderstand, that if a contract is entered intw by you, for the supply of these Cocks, that you undertake to gaarantee them for twelve monthe after they have been placed in the ground, and to take upon yourselves the responsibility of all costs and chargen which may be incurred shouid any of them prove defective daring that period, and farther, that your prices
include also the cost of delivery upon the Companies' Works. These canditions I always introduce into my specifications.
You may make any use you please of this letter, my object being in this, as in all other instances, the introduction of an article cheaper than those ordinarily in use, and equally efficient; and thus to reduce the expeaditare in Water Works' Eatablishments.

I am, \&c.,
Thoma Wickstesd,
Engineers' Office, Old Ford, Eagineer.
Not. 18, 1843.
(To Messra. Nasmyth, Gaskell, and Co.)
Gentlemen,-min reply to your request, I will gladly bear testimony to the superiority of your Wedge Cocks over any other form with which I am ucquainted: and I think they might be employed with advantage not only or Water Works, but also for many other purposes. As you desire it, I seg to offer the following observations in support of my opinion.
1st. Your Cocks coat considerably less than the common single-faced Jocks.
2ad. The form insurea both strength and durability.
3rd. They are tight, and as the attrition or wear is equal at every part of the faces, I thiok they will remain so.
sth. Being double-faced, they will stop the water either way, which is a great adrantage.
sth. The stuffing-box may be packed withoat shatting off the water, or emptying the mains.
64h. If, as I sugrested, they shoold now be made with a simple Nut, instead of the Glund, the packing in the staffing-bor can be acrewed up at any tima, without openiog the ground.

Tih. The ordinary sizes employed for Service Cocks, even nader a pressure of 150 feet, are very easily opened and shut; after the first few turns they may be moved without the aid of a bar, but simply by applying the hand to the key; should the pressure be great, it may be partly balanced by causiog the water to act against the taper side of the slide.

8th. As a consequence, the keys cartied by the Tarucocks may be made much lighter than they generaliy are.

9th. As we cau at all times depend apon your Cocks, being assured they will not allow the water to pass, 1 can rely, with confidence, upon the indication of my Instrument for discovering faults in the Pipes.

I may mention, finally, that your Cocks also possess the advantages common to some others, such as a free uninterrupled Water-Way; opeaing and shatting gently and gradually; standing low, so that they may be employed even where the Pipes are near the surface; \&c.

It appears to me that there is bat one objection which may be arged grainst them, which is the probability of the faces rusting or corroding. if they were seldom opened or shut such an effect might take place, bat if used frequently I consider there is uo risk. I have this day examined a Cork put dowa in August, 1845, and 1 round it in excellent condition, with no appearance of injorions currosion.

I will bat add, that you are at liberty to make any use you please of this comenunication.

I remain, \&ce.,
Micharl Scott,
Liverpool Water Works,
Engineer.
Pebruary 4, 1847.

PIGMENTS OR PAINTS.

James Murdocs, of Staple-inn, Middlesex, for "an improved mode of preparing and employing certain colours and materials for painting." (A commanication.)-Granted Murch 10 ; Enrolled September 10, 1847. [Reported in the Palent Journal.]

This invention has for its object the substixution of certain aubstances unacted upon by sulphuretted bydrogen, instead of the compounds of lead and copper at present in use, ua pigments or paints, particularly with reference to the greens, yellows, and reds. The patentee describes lis invention under different heads, as follows:1st. In a certain process for the manufacturing, upon a large scale, of zinc yellow (chrumate of zinc); barytes yellow, antimony red (sulphuret of antimuny), and zinc green. 2nd. The employment of these colours for painting, in general, upon cloth, wood, wall, paper, \&c. 3rd. In the misture of these culours with others, unaffected by sulphuretted hydrogen. 4th. In mixing the oxide of einc with other unalterable colours. 5th. The manufacture of a new dryer, in wbich certain perosides act the same part as litlarge in the common process. 6th. A process of polisling painting with oxide of zinc and unalterable colours, combined with the dryer above mentioned. 7. The application of the above-tnentıoned colours and oxide of zinc in printing and colvuring paper-hangings. The patentee then proceeds to deacribe his procesyes; and, in the first place, his cinc yellows. This process is divided into three purts. By the first be obtains what be
calls marigold yellow. For this parpose be mixes in a boiler 120 lb . of bichromate of potase with from 700 to 800 lb . of water, and 60 lb . of "zinc white." The boiling is continued for from 24 to 36 hoors. The precipitate is then separated and washed, and the first washings added to the solution from which it was precipitated. When perfectly washed the precipitate is dried, and either reduced to powder or made up into cakes. By the second be obtaine lemon yellow, by adding to the solution which remains from the first process, together with the washings which were added to it, sulphate of zive, formed by adding to 75 lb . of oxide of zinc, 45 lb . of sulphuric acid of commerce, of specific gravity 631°. This is to be boiled as in the frst process, and the precipitate separated, washed, and dried. To the solution remaining from this last procens, together with the first wasbings of the precipitate, be sdds sulphate of zinc, formed by adding to 15 lb . of oxide of zinc 7 lb . of sulphuric acid of commerce. This is to be boiled as before, and the precipitate washed and dried. Thi gives a pale yellow, of a tint between the marigold and citron tipt above described. The baryta yellow is furmed by adding to a solation containing 100 lb . of chloride of barium, 84 lb . of the double peor tral chromate of potass and soda, boiling these tugether, then separating, washing, and drying the precipitate. From these yellows the patentee saya le can obtain any shade of yellow required by adding, if necessary, raw terra sienna, or the antimony red hereafter described. And greens in the same manner may be obtained of any ahade, by adding to the yellows a blue, unacted upon by sulphuretted hydrogen. The antimony red, or orange red, is made by dissolving the native sulphuret of antimony in hydro-chloric acid, in such proportion that is will just dissolve the whole of the sulphuret ; this proportion the patentee finds to be about 6 of acid to 1 of the native sulphuret. The solution is then filtered, and water or acid is added to it until its specific gravity is between 13° and 17° of the Frencls ariometre. Tbe patentee prefers 15°, but claims all degrees betweea 13° and 17°. When the solution has been brought to the above density, it is placed in a suitable vessel, and sulphuretted hydrogen pasaed through it. The sulphuretted hydrogen may be that evolved in forming a second solution of the native sulphuret. The tube by which the gas is conducted into the solution should be of glass, and wide enough to provent its clogging; the vessel should be cuvered, and the gas made to pass through a series of vessels, and at last conducted into a vessel of milk of lime; during the process the solution should be stirred ocessionally with a wooden spatula. The precipitate is to be wasbed thoroughly, and dried at a temperature of from 100° to 120°; at a higher temperature than this the bydrated sulphuret would lose its combived water, and become black. To form the zinc green, the patentee dissolves in hot water 49 lb . of pure dry sulphate of cobalt, and to this adds 255 lb . of oxide of zinc alaked with a little water; tho whole is then boiled to dryness, and heated red-hot in a muflle. The calcined mass must then be cooled and thrown into water, thuroughly washed and dried. The patentee claims this lis process of neutralising the sulphate of cobalt with oxide of zivc. The patentee dext describes the process for making a dryer, or drying oil, by boiling for 6 or 8 hours 200 galluns of purigied linseed oil, and then adding to this 10 lb . of peroxide of manganese in fine powder. The mixture is to be boiled for 5 or 6 loours, and filtered whencool. Peroxide of iron will answer the purpose, but it is not so effective as peroxide of manganese. If desired, the protuxide, sulphate, acetate, or carbonate of manganese may be used. This dryer may be mized with the paint in the proportion of $1-10$ th to $1-20 t \mathrm{~h}$. lnatead of the dryer above described, the peroxide of manganese may be ground up with the paint in the same manor that litharge is now employed. It should, in such case, be used in the proportion of $1-10$ th to $1-25 \mathrm{th}$. In applying his patent colours for the purpose of polished painting, the patentee lays on, first, several coats of zinc white, and when dry the surface is rubbed down with pumice till it is brouglat to a dead polish The colours, whether for marbling, graining, \&r., previously mixed with the dryer are then laid on, and when dry will not require Varaish. In applying these colours to paper-hangings no aiteration whatever is required to be made in the common prociess, and fur the purpose of satining or watering paper, or enamelled cards, the zinc a hite is employed instead of the white lead now communly used. The patenter claims:-1. The particular mode of manufacturing zinc yellow, baryta yellow, urange red (sulphuret of autimony) and zinc green. 2 The application of the above colours to painting pictures, buildings, and other objects, upon stone, wood, plaster, canvas, paper, \&c. 3. The manufacture of compound colours made of zinc yeilum, antimony red, baryta yellow, "zinc κ mite." 4. Compoundiog the abore colours with linseed or other vils, and the dryer above deacribed. 8. The mixture of the dryer above described with unalterable colours, whetber those above mentioned, or others containing neither lead nor copper, or coupounda containing those colours above deacribed, and other un-
alterable colours. 6. The application of the above-described colours to the process of painting and printing on paper-bangings. 7. The application of the above-described colours and dryer to the process of polished painting. 8. The mixture of the above colours with other unalterable colours, with or without the dryer, for the purpose of obtaining any desired shade of colour.

JAPANNING METALS.

Freozrics Walton, of Wolverhampton, Staffordshire, japanner and tin-plate worker, for "an Improved mode of coating or covering, or of coating, covering, and omamenting the surfaces of articles which are of may be made of norought iron, or of other metal or metals; which improved mode may be used in eubstitution of japanning, tinning, or other nodke, now in common use, of coaling, covering, or of coating, covering. and ormamenting such arlicles."-Granted February 24; Enrolled Aug. 24, 1847.-[Reported in Neroton's Lordon Journal.]

This invention relates to coating the sarfaces of wrought iron, or other malleable metal that will bear a strong red beat without injury (such as brass or copper), so as to form a glazed enamelled surface either plain or ornamented.

The first preparation is to clean the surfaces of the articles, by first sabjecting them to a red heat in an annealing oven, or in a muffie, according to their size, for about half an hour, to dissipate all liquid or greasy matter, and oxidate the surfaces. The oxide is removed by rubbing with sand-stone, or scrapers. When cleaned, the articles are to receive a first coat of partially vitrifiable materials, which is poured in a semi-liquid state over the surface of the article, and distributed evenly; the article is then placed in an ordinary ja panner's stove, beuted to 180°, and left therein until all moisture is gradually dried away, leaving the same in a state of dry whitish composition, which will adhere to the article, without it in roughly touched with the fingers.

The composition for the first coating is prepared as follows :-6 part, by weight, of fint-glass, broken into small fragments, 3 parts of borax, 1 part of red lead, and 1 part of oxide of tin, are to be well mixed, by pounding in an iron mortar, and "fritted" in the same manner as is usually done with the materials for making glass. 1 part, by weight, of the "frith" so made, is to be mixed with two parts of calcined bone, ground to powder; and the mixture of fritt and bone is then to be ground with water in a "porcelain mill," until a semiliquid, of the same consistence and appearance as thick cream, is produced, which, after being passed through sieves of fine lawn, is ready to be applied to the articles, as above mentioned.

When the first coating is dry, the articles are ready for firing, in order so far to vitrify the materials, as to harden the coatiog, and fasten it on the surfaces of the articles. The firing is performed in a furnace of the kind used by painters in enamel. The muflle having been brought to a fuli red lieat, the articles are introduced, and are left therein until the earthy composition lias undergone so much of the commencement of fusion, or partial semi-vitrification, as to render the earthy particies of the coating firmly adherent to one another, and to the surface of the articles, which are then to be withdrawn from the muffle, and laid on a flat iron bench to cool; when cold, those parts of the surface which have been coated, present a dead whitish appearance, resembling earthenware in the state of "biscuit:" the time that the articles must remain in the muffle, varies from a few minutes to balf an hour, according to the beat of the muffle, the size of the articles, and the number of articles in the muffle at the same time. After the articles have become cool, the coating is wetted with water, and a second coat is then applied over the first coat, and dried thereou in the japanner's stove; it is then tired in the muffle in the same manner as the first coat. The cowposition for the second coat is prepared as follows:-A thick paste is made, by mixing $\mathbf{3 2}$ parts, by weight, of calcined bone, ground to fine powder, 16 parts of china-clay, 14 parts of Cornwall stone, in fine powder, and 8 parts of carbonate of potash, the latter being dissolved in water; the tnizture is fritted for two or three hours in a reverberatory furnace, notil it assumes the appearance of biscuit-china; and then it is to be reduced to powder. 54 parts, by weight, of tbis powder, are mixed with 16 parts of flint-glass, broken sinall, 52 parts of ground calcined bone, and 3 parts of ground calcined fint; and the mixture is reduced to the consistence of cream, by grinding ia a porcelain mill, in the manner deseribed for the first composition. In firing the secund coating, care must be taken that the heat of the muffe is sufficient, and that the articles are kept in long enough to effect the thorough incorporation of the second coat with the firsh and to harden both coats. After the second coating, the articles will bave a stronger and whiter colour, and bear a more decided rememblance to articles of good eartheuware
in a state of blscnit; but in case it is desired to give a very white colour to the second coating, in order that it may resemble the finest earthenvare in the state of biecuit, then, in place of the 16 parts of fint-glass, last mentioned, the patentee substitutes a like quantity of a componition, formed by mixing 4 parts, by weight, of pulverized felspar, 4 parts of white sand, 4 parts of carbunate of potash, 1 part of arsenic, 6 parts of boraz, 1 part of oxide of tin, 1 part of nitre, and 1 part of whiting, fritting the mixture, and then reducing it to porder.

When the articles have become cool, after receiving the second coat, this coat is wetted with water, and a third coat is applied, and fired in a similar manver ; and, when cool, the article will present the appearance of glazed earthenware of good quality, or of the bert quality, in case the composition, last mentioned, has been aubstituted for the flint-glass amongst the materials for the second coat. The materials used for forming the third coat or glaze are, 12 parts, by weight, of pulverized felspar, 41 parts of china-clay, 18 parts of borax, 3 parts of uitre, $1 \frac{1}{2}$ parts of carbonate of potash, and 14 parts of oxide of tin: these ingredients are treated in the same manner as those for making the aecond coat. Instead of the materials and proportions just mentioned, the following may be used:-9 parts, by weight, of pulverized felspar, 2 parts of china-clay, 9 parts of borax, 2 parts of nitre, 8 parts of carbonate of soda, and t part of arsenic. In case there are any imperfections in the glaze, after it has been fred, then, when the articles are cold, another coat of the glaze may be applied, in a aemi-liquid state, and dried in the japanner's stove, and fired in the muffle in the same manner as the frat glaze: in like manner, a third coating of the glaze may be applied, if requisite.

The articles that have been coated on one side, may have the opposite side coated witis black glaze, applied with a sponge when in a semi-liquid state, dried on in the japanner's stove, and then fired in the muffle. The black glaze may be composed of the mame materiale as either of the compositions, before described, for the enird coat or glaze, with the addition of 2 parts, by weight, of oxide of manganese, and 1 part of cobalt; which materials are to be added to the otber ingredients, previous to the mixture being fritted. If \boldsymbol{a} deep blue glaze is preferred to black, then the oxide of manganese may be diminished or omitted; and so much as is omitted may be replaced, weight for weight, by cobalt, in addition to the quantity of cobalt above mentioned. Or, instead of the back or under side of the article being coated with black or blue glaze, it may be fipished by japanning, according to the method usually adopted by japanuer3.

ELECTRIC LIGHT.

Thomas Wriget, of Cooper's-hill, Thames Difton, Surrey, Esq., for "Improvements in apparatus for the production and difficeion of ligh."-Granted March 9; Enrolled Sept. 9, 1845.

This invention consists in producing a permanent light, by preaenting one or more fresh points or surfaces of carbon, or other suitable material, continually to the path of an electric current, by an apparatas similar to the annezed engraving. a_{1} is a donble annular frame

of wood, or other non-conductor of electricity, with five (or more) dises b, c, d, c, f, tuming on axes with beariogs attached to the frame a. The disce consist of two circular plates of brass, or other metal, with a disc of plumbago or carbon (he latter being preferred), between them, somewhat larger in diameter than the brass plates, about one-fourth of an inch thick, and baving an angular or V-sbaped edge. Thefazes of two of the dises c, e, are mounted in sliding
carriages, and can be moved backwards and forwards by the serews g. g. The discs are made to rotate slowly by means of an endiess band, with pulleys and wheelwork, actuated by a weight or other prime mover; a current of electricity being then passed through the series of discs, a brilliant light will be produced at those edges of the discs that are adjacent to ench other. A current of electricity may be caused to pass through the disce, by connecting one wire of a galvanic battery with the axis of the disc b, and the other wire with the axis of the dise f; but, in order to economize the power, the patentee prefers to separate the battery into four parts, and transmit a separate and distinct current to each pair of discs, by means of the wirea $h^{1}, h^{2}, h^{2}, h^{4}$, and $i^{1}, i^{1}, i^{3}, i^{4}$. In order to produce the desired effect, the discs $c_{,} c_{1}$ are to be bronght into contact with the discs b, d_{1}, f, by torning the screws g, g; and as soon as the electric current is established, and the pointe of contact sufficiently ignited, the discs $c, e_{\text {, }}$ are to be moved out of contact with the other discs, when a brilliant and permanent light will continue to be evolved at the adjacent parts of the discs, so long as the discs are kept rotating, and the electric current continues to pass. In order that the electric light may be uniformly diffused, the apparatus is enclosed in a ground glass globe j.

SLUB CHAINS.

William Bayles, of Bilstod, Stafford, chaid-maker, for "a machine for fattening and furning iron links for fat-mpod slub-chains." Granted February 20 ; Enrolled August 20, 1847.

In forming the links of flat-wood or slub-chains the sides are flattened while the ends at the connexion of the adjoining links are cylindrical. Such formation has hitherto been accomplished by hand forging. In order to the well working of such chains, it is necessary that considerable uniformity should exist between the separate links, which require much ekill and consequent expense in their manufacture.

Now the object of the present invention is to produce the required flattening to parts of lengths of iron, and partial bending of the same by mechanical means, so as to facilitate the formation of the links, and lessen the cost of the manufacture.

The annexed engravinge show a machine for making the links. Fig. 1 , is a side view; fig. 2, a plan; and fig. 3 , an end view. a, the framing of the machine; b, the driving axis, to which motion is

Fig. 2.
given by a steamengine or other power; on the axis b, is a pinion c_{1} which takes into and drives the cog-wheel d, on the crank axis, a, and gives motion to the arm f, by the link g, and carrying the upper face plate h. i, is the lower face plate, upon which a length of iron A, for the intended link aud heated to a muderate heat, is to be held so as that by the descent of the arm f, a flattened part, as shown at B , is produced, and then the length of metal A, is to be put end to end, so in to produce another flattened part B, as shown at B,C. The lengthe thus formed are then to be placed against the rollera k_{1} when by the coming forward of the forcer, l, they will be bent into the shape shown at D. Motion is given to the forcer, f, in the fol-
lowing manner: $m_{n} n$, are arms which at the upper ends are connected to the connecting-rods, n, n, which receive a to and fro motion from the shaft; the lower ends of the arms, m, m, are affixed to the shaft, to which is also affixed the arm, p, which by means of a link gives motion to the forcer, L. The links produced, as shown at D, are alterwards to be welded together in the ordinary way.

STEAM ENGINE IMPROVEMENTS.

Whllam Knowflden, of Great Guildford-street, Southwark, engineer, for "improvements in aleam engines."—Granted December 31, 1846 ; Earolled June 30, 1847.
Thisinvention relates to obtuining two revolutions of a shaft of a reciprocating steam-engine for each complete stroke of the piston.
Figs. 1 and 2, are an elevation and a plan of a reciprocating steain.

ETR. 1.

7.8. 2.
engine, showing the improvements. a, a, is the framing. b, the ateam cylinder. c, the piston rod. e, the cross head; and f, the side connecting rods which are at one end in connexion with the cross head $e_{\text {}}$ and at the other end in connexion with the connecting rod g, which is forked so as partly to embrace the cylinder and to allow of its being in connexion with both of the rods f, and this connecting rod is at the end, g^{\prime}, in connexion with the beam or lever g, moving on an axis in the centre, by which the end, g^{\prime}, of the lever, g, is controlled to move to and fro in nearly a straight line, which is one peculiarity of the invention, and such beam or lever at one end moves on an axis at g^{\prime}, its other end by a connecting rod, i, gives motion to the crank, j, on the main shaft k, of the engine; thus will the crank shaft be caused to make a complete revolution each time the piston moves from end to end of the crlinder, and therefore two revolutions for each complete stroke of the piston. l, l, are two arms from the axis, F, one on each side of the cylinder, in order that they may be io connexion with the two side connecting rods, f. These arms are for the purpose of controlling the working of the parts, and to ensure the end g^{\prime}, of the connecting rod g, making a uniform to and fro movement each time the piston passes from one end to the other of the cylinder; bur it is obvious that the sume result would be obtained if the ends of the rods, f, g, were controlled by guides to move in the sume direction.

The claim is for combining the parts f, g, i, with a crank shaft or axis so as to obtain two revolutions of such shaft or azig for each complete stroke of a reciprocating steam-engine.

SMELIING COPPER.

Janzs Naping, of Shacklewell-lane, Middlesex, operative chemist, for "Improtements in smelling copper or other ores."-Granted March 2; Enrolled September 2, 1847.-[Reported in Nerton's London Journal.]

This invention consists in improvements in smelting copper ores by treating them with fluxes, consisting of common salt, lime, and carbonaceous matters; and also in improvements in smelting ores, containing silver, or gold, or both those metals, by the addition of alkaline subatances, coal, iron, and galema.

The first ohject is to facilitate the separation of the earth from the copper; and to effect this, when st veral ores of different deseriptions are to be operated upon, the patentee mixes them insuch proportions, in relation to the earthy matters or gangue they contain, as will cause the earths to unite in the furnace and form glass: the ores have been mixed in suitable proportions, when the silica in the mixture ranges from 50 to 75 per cent., in relation to the other earthy matters, which are generally mixtures of alumina, lime, baryta, fluor-spar, \&c, -the presence of oxide of iron greatly facilitates the fusion of the ores. Should the mixture (or the ore, when only one dencription of ore is

- being treated) not contain silica in the above proportion, the deficiency is to be supplied by the addition of sand; or, if the silica exceeds the above proportion, lime or fluor-spar is to be added.

After the above preparatory procese, the operation is conducted in the following manner:-If the ore or ores should contain not less than 1 part of iron and 1 part of sulphur, to 2 parts of copper, an addition is made to every ton of ore, of 56 lb . of common salt, 40 lb . of slaked lime, and 100 lb . of coal, and the whole ia fused in a melting farmace. When fused, the alag or acoris is skimmed off, and the fursace is tapped into sand moulds: the ingots or pigy, thus produced, are treated as bereinafter described. If the ore or orem ahould contain less than 1 part of iron to 2 parts of copper, the deficiency is to be sapplied by the addition of sulphuret of iren; or the ore is to be treated as before mentioned (omitting the coal); and after the fused mass has been skimmed, 30 lb . of scrap-iron are to be dispersed over the aurface thereof, as equally as possible, and the door of the furnace is closed until the acrap-iron is melted; the furnace is then to be tapped into sand moulds. When the ingots, ohtaiped in the above manntr, are set, they are thrown into water, whereby they become disintegrated and fall into a fine powder; this powderis throwninto a beap, and allowed to remain for forty-eigbt hours; after which, it is removed to a calcining furnace, and treated in the manner describod in the specification of a patent obtained by the present patentee, July 20, 1846. The addition of black oxide of manganese, instead of iron, has been found to produce a similar effect, but not with equal advantage.

When ores containing little or no sulphur are operated upon, the above-mentioned processes of disintegration and calcination are omitted. The patentee commences, in this case, by mixing the ores, in relation to their eariby matters, so as to form glass, as above described (the ores, when containing no iron, might with adrantage have a small quantity of ozide or carbonate of iron added); and then 80 lb common alt, 50 lb slaked lime, and 100 lb , anthracite coal, finely pulverized, are added to each ton of ore containing 10 per cent. of copper. If the ore should be richer in copper, a smaller proporLion of alt and lime will suffice, ard a greater proporion of anibracite of coal will be required : the patentee says, he has found, that for an ore containing 25 per cent of copper, 56 lb , common salt, 50 lb . slaked lime, and 150 lb . antbracite coal will answer well. The mizture of ore and other materials is fused in a melting farnace, which, for a charge of 25 cwt . of ore, will take from five to siz hours; und then the iused mass is tapped into sand moulds : the copper, thus obtained, will generally be ready for the refining operation; but should a portion of the produce be regulus, it is to be roasted, and afterwards refined. Soda and several of its salts may be used instead of common salis; and so likewise may potanh and several of its salta, or miztures of these, free from sulphur.

Sulphuretted ores of copper, containing silver, or goid, or both these metals, are treated io the following manner:-The ore is firat calcined and fused, as in the ordinary smelting process, so as to produce a regulus, containing abont 50 per cent. of copper; with every ton of this regulus, 56 lb . soda-asb, 40 lb . sluked lime, 1 cwt . cosi, 1 t ewt. iron in scrapa, and 4 cwt . galena (sulphuret of lead) are mized, and the mixture is fused in a fusing furnaee until the iron disappears; the fused mass is then well rabbled and tapped into aand moulds. The lead will be found reduced at the bottom of the first and second ingots, and will contain all, or the greater part, of the silver, or gold,
or both, which the ore previously contained; these metals are afterwards separated from the lead by the ordinary methods of se parating silver and gold from lead. The copper is treated in the ordinary manner, or as described in the specification of the patent before alloded to. Instead of galena, the oxide of lead may be employed; in which case the iron is dispensed with; but the patentee prefers to use galena.

When treating ores of silver, or gold, or both, which do not contain copper, or which do not contain it in the atate of a solphuret, the patentee adds copper pyrites thereto, in the proportion of 4 cwt . of the latter 1016 ewt. of ore, and then proceeds in the manner above described, viz, bringing the material into a atate of regulus, and fusing it with soda-ash, lime, coal, irun, and galena.
Io conclusion, the patentee says, that be does not confine himself to the precise details, or proportions of the ingredients used, so long as the peculiar character of the invention be retained.

LOCK FURNITURE AND SPINDLES.

Mr. Pitt has obtained a patent for an ingenious improvement in the mode of fixing the furniture on locks and shatter knobs, as shown in the annexed engraving; by which, it will be seen that the spindle is not fastened to the knob, but is merely let into the socket. Tbis method obviates the neceasity of driving on the handle with a mallet, which frequently mutiates the furniture. Another improvement is the doing away with the small screw in the neck; instead of which, the spindle is first placed in the follower of the lock, and then the knob put upon it, which has connected with it the brass plate of the rose; this plate is firmly fixed to the door by small screws, over which there is a cover rose furnished with a collar with a female screw, and which is fastened by two or three turns on to a screw round the neck of the brass plate: thus the screws and brass plate are completely concealed. The improved furniture is manufactured by Mesors. Hart and Sons, ironmodgers, of Wych-street, Strand, and may be had either in glass, china, ebony, ivory, or other faney ftting.

KING'S COLLEGE, LONDON.

Introductory Addrass; read to the Stzdents th the Department of the Applied Scionces, at the commencement of the Sestion, on Tmeadey, October 6th, 1847, by D.T. Aneted, Esq., M.A. F.R.S., Professor of Geology to the College, and Dean of the Department

Gentlemen-Occupying, as I have the honour to do, the office of Dean of the department of the Applied Sciences for the ensaing year, I have thought it expedient, following the example of another departmeat of our College, to open the business of the academioal year by an address, in which I shall endeavour to explain to yon briefy some of the objecte, peculiarities, and benefits of the education which is here offered, and of which, it is to be hoped, you will take every advantage.
The object of this department of the Applied Sciences is to give keneral education, as disting nished from profespional edocation We wish to give this general education, however, in auch a manner and to such an extent, that special education in engineering, architecture, and some other very important professional pursuite, may rise naturally from it and be intimately connected with it. It has been endeavoured so to arrange the course, that the required practical knowledge and manaal dexterity for sach pursaits shall be connected with and arise from the sound educational principles inoulcated in the lectore-room.

Education is, iu one very important sense, the serions occupation of every thinking and acting man. It commenoes with our entrance into the world ; it is carried on, whether for good or evil resalts, with great energy and incessantly, through early childhood and youth ; it is contioued, also, whether we will or not, as we advance into manhond; and solong as we remain on this side the grave, so long do we continue to learn,-io acquire new habits, new thoughta, vew ideas, and to exercise some indnence over nur follow-men. It is only the idiot who can escape-although it is the privilege of the idle and the inactive to approach in the nearest degree to this lowest condition of our human pature.

But althoogh education-or the training of the haman intellect to accomplish the purposes of man's natare-is thas a process constantly going on, there is a particular period of life when the faculties are in their early vigourand the physical powers as yet unworn by the pressure of mental excitement ; when the memory is fresh and not bardened with the experiences of a life; when the light amuements of childhood pall upos the seases, and thonght begius to take the place of simple, unthinking obser-vation;-chere is this period io the life of every one, in which it is possible to sketch in simple ontline some trathful delineation of the fature, and when, therefore, it becomes of the most earnest importance that the sketch should correspond with the intellectual and mental pecaliarities of the individual. This is the time when achool gives place to college; when more routine, imposed from without, is to a certain extent changed to voluntary, and in many cases more severe, mental oxercise; when new, powerful, and lasting impressions are made; when new associations are formed, which will probably long infuence the habite and the character; and when, in a word, what there is of intellectual and moral in the character begins to expand, becomes leas dependent on circumstances, and takes some special direction which is rarely afterwards chaoged.

In the great majority of cases, the part in active lifo that is to be taken by every individual is determined for him by external circomstances, over which be bas litule control. In such instances, it is bowever not anusual that, in addition to and beside the direct oocupation or business of an edacated and intelligent man, there is some one subject or department of knowledge pursued quietly and as an amosement, to the infinito adrantage of himself and his family, aod by no means to the detriment of his business. In other and rerer cases, the occupation is at the same time the amosoment. Both of these cases may be greatly affected by the education of the youth, as be is passing into manhood. Both therefore should enter into every scheme of education; for, however we may conclude from philosophioal speculation, no one accustomed to observe will doubt that there are certain tendencies that are peculiar to the individual ; and that as no one man so aocarately resembles another, that we cannot determine some point of difforence, so no one intellect is without its individuality-cepable of being directed more easily in one path than in any other.

Thus, as there are differont objects to be attained, and human intellects differently constituted to attain them; as society requires all powers to be developed, and needs the exertions of ali her members, it is only just and reasonable that in that transition state of which I have reminded you, and in which you are, there should be varions ways of arriving at the required result-Damely, the providing men adapted to carry out fully the objects of society in all departments. The attainment of the poblic good in this sense is, I conceive, the practical fulfiment whioh a dation is requlred to attempt of the sacred maxim-" to love our neighbours as onrselves." It is acting with a view to beaefit mankiod at the same time and to the same degree that we are ourselves personally and intellectually benofitted. The establisbment of places of education, such as this College, and of this College especially, has resulted from the endeavour to carry out this parpose; and yon who are about to profit by the course of instruction here alforded, are bound to recognise with gratitude the opportunity which is thus offered yon; and placing yoursolves, or being placed, under anch obligation, you will be responsible, each to his own conscience, for the result.

The tind of edacation offered in that department of the Calloge to which
you are attached is peculiar, and acarcely rasemblea any syatem previoualy adopted. It has already proved most successful, as an attempt to exiend the advantages of college education to many whose special object in after life was likely to be mona distinctly actice, than either contemplative of dependent on the constant and exclusive exercise of the intellentual powers. Some modification seomed needed of the ancient and not unusefal syatem adopted in our uaiveratities of Oxford and Cambridge, for the time required and there employed in the cultivation of language and pure mathematics, had, during the lapse of years, gradually stolen on from the period of boyhood to that of manhood; and for this reason, thase whose pursuits wonld remove them entirely from the further prosecution or application of such aubjects, were necessarily deprived of the advanlages of college disciplime. They were also wishout the opportanity of acqulring, by any good syatem; the gronndwork and elementary knowledge which should be really aseful in their subsequent employments.

The endeavour to determine whether in our own conptry, as on the continent, it might not be possible to entablish a system not less sound and based no leas on the peculiar nature and requirements of the human iatotlect in a certain stage of its development, than that system which bea produced so many and such great divines, lawyera, and natural philosophers, -whether, I say, it might not be possible to modify that system, wo as to produce men no less useful and no less distloguished in the paths of active and business life-whether we could not by auch modification bring forth energies hitherto dormant, and induce a more systematic and philowophic application of thought and intellect to every-day life and ordinary basineas,-rendering men beteer able to apply science, because they had been taught to know it properly;-this, I repeat, was the object of the experiment that has been first tried in this place.

It is my intention in this introductory address to explain to you momething of the nature of the system we bave adopted, and the spirit in which it should on jour part be received. You are those on whom we depeod for success-We must be supported by your exertions; and we are bound, therefore, to tell you what are our real views and feeling with refereace to the working of our plao.

Now, one of the first things that it is necessary to observe may seem, perhaps, somewhat paradozical : we wish rnther to educate than to commanicate knowledge. Knowledge in itself is no doubt good; but, in our opinion, edncation is better, and of far greater importance to you. Our whole system-the College system in the best sense-is a course of traiaing adapting the intelleot to acquire knowledge, bat oaly teaching knowledge incidentally. This, it must be anderstood, is not merely a theory, bat a pervading principle. It is nut eeen in the individual lectares, but it is felt in the general condoct of the whole.

The course of study in the department extends over a period of three years, and in each year the sabject of Malhematics is expected to oceupy a considerable portion of the time and thoughts of the student, the time however diminishing a little as he advances.
The experience of many years and many lives has shown, that for the purposes of mental discipline the peculiar habits of thought and accuracy of expression demanded in the pursnit of mathematical soience are in the highest degree valuable. For this reason, as well as becanse mathematical knowledge is absolutely required in the practical applications of science, you are conducted step by slep through that perfect chajn of reasoning which has been handed down for more than twenty centuries as the foundation of geometry; you are taught the oature and meaning of that symbolical language, by which, in the hands of a master, the most difficult and obscore problems are ingeniously solved; and you are further made acqnainted with the principles as well as the methods according to which this aymbolical language of algebra may be applied to the determination of problems in geometry, the thinking out of which by continnous argument would be exceedingly dificult, and in some cases perbaps almost imposaible.

I allude thas briefly to the fondamental principles of pure mathematics. which form an esseotial portion of your early studies in this place, io proof of what I have already stated ooncerning the nature of the educuicon offered. It is based on oo bypothetical or speculative novelty, but 00 m mences, as all useful education must do, by training carefully the reasoning faculties ; and it selects for this training the subject of pure mathematics, as that most likely to be afterwards useful. Be assured that the time and labour bestowed on this part of your studies will never be regretied in after-life, and that whatever your pursuits may be, this mental trajuing will belp you to succeed io them.
In thus speaking of the principles of geometry as tanght by Euclid, and the nature of ulgebra as introducing a knowledge of sycubols, I have said all that is oecessary to illustrate the views adopted in this departmeat of the nature and use of mathematics in education; but I canoot leave the subject without reminding you, that bowever inportant it is to uoderstand folly and clearly the bearings of any subject that concerns us deeply, nothing in the whole of education is so importaut as the having a distinct and clear appreciation of the oature of the argument in every demonstretion in geometry, and the meaning of the symbolical expression in every elementary proposition in alpebra. Your progress by help of memory is of absolutely no value without this; fur nothing is less useful or lece important than the mere learoing by heart the propositions of Enclid, or performing, wilhout uuderstanding them, the iogedious transformations by Which problems are sometimes sulved.
While the study of pure mathematics is thus insisted on as the first element in your education-and in this respect the course of iastraction is
simpty a transcript of that which has been foond useful at one of our older univeraties-there is also iotroduced at the same time another subject, diffaring much lese in reality than in appearance, and of searcely inferior value as means of education. I allude to that elementary view of Chemistry which is presented in your first year. For if the pursuit of mathematical investigation is valuable in its lasting influence on the condoct of the jntellect and the reflective faculties, the elements of chemical philosophy form a subject equally well adapted to improve the facalty of ubservation and the nature and use of experiment as a means of acquiring knowledge. The ono science teaches us to reason apon assumed data; the other to interrogate natare from observed pheanmena. The mathematician commences by assuming and defining, the chemist by observing and eaperimenting: the former is independeut of nature and external phenomeon, the latter deals only with that which is-with matier in its varions formy, and the lews according to which those forms are modlied and matually related.

The introduction of chemistry as a subject of elementary instructlon is ane of the peculiarities of the course of stody here adopted. It is a distuct and marked recognition of the value of experimental science; not merely for its direct resnlt in a certain amount of asefol knowledge acquired, but in its effect on men'al culture. And in this reapect I would have you consider it and avail yourselves of it.

Chemisiry is the link by which pure mathematical science is connected with natoral history. To understand clearly in what way and to what extent the result of that abstract cultivation of the refective facolties requiring theoretical certainty in every proof--differs from the babit of erriving at results by the comparison of various observations and the weighing of probabilities, would involve a disquisltion much longer and more metaphyyical than 1 am at present inclined to offer: but I am sure that no one, who is aware of these two very different ways of convincing the human mind, will deny the ralue or the practical necessity of the latter method in the great majority of cases that present themselves for determi. pation. For this reason it is that the evidence of experimental observation, es taught in the first and simplest operations of chemistry, is of ex. treme value; and for thls reasos chiefly-whatever may be your occupation sobsequently-yon will always feel the benefit of having been taught the prinaiples of chemical science.

And what is perhaps the most beautifal and most interesting polot in soch oducation, is that we learn these importent habits of mental diseipline without effort, and almost without being aware of it. No one whoee intellects are fresh and bealthy, can enter on the porsuit of aatural science, expecially in this its most attractive form, without being charmed hy the mimplicity and beauty of the renalts obtained by the chemist-exhibited as they are in experiments that command altention by their novelty, no leas than by their manifest neefulaess. The method of experiment is the first method of nature, - the child and the boy pursoe it onthinkingly, and the philosopher differs from them only in arranging and directiog his inquirios with reference to some definite and important object. Moat of our ideas, if not all of them, are lntroduced by those inlets to knowledge whioh we call the senses; and the infant, stretching forth his tiny bunds to touch that object which is beyond his reach, and which is only recognised by the ege, is a type, and no onworthy type, of the great master of chemical acrence, exerting his powerful and well-trained intellect to bring within the rapge of comparison varions results of observations varioualy made, and to counect phenomena apparently distiset by discovering the nature of their difference and the laws by which they are alite governed.

While the study of mathematics thos tends to cultivate the rasoning powers, and teach the pature of abstruct trath; and the pursajt of chemisiry quickens the ubserving faculties, and proves the value of experimen. tul trotb, -there is one depurtment of natural history to which your atten. tion is also required doring the first year of your academic studies. It is Hineralogy; and by it you will learn sometbing of the methods of recogaisiog important and characteristic peculiarities in which various natural ubjects differ from or resemble each other. You thus learn to discrimioato sod to compare; and you learn also wby certain characters are more imporinat than others, and how best to seize the true distinctive marks. Nor is this introduction to the classificatory sciences itself unimportant as a mental exercise; but, on the contrary, you will do well to pay careful ateation to the reasonings bere presented to you, and to the conclusions deduced. As bearing upon chemisiry, and leaching the aature and value of the combinations of matter presented in the structure of the earth's crust, mineralugy also presents a large and interesting group of facts, many of which have still to be referred to their legitimate places in ecieoce; and many auch facts, which at first seem isolated, will be found to bare a bearing on questions afterwards presented, concerning the mode in which vature works in her vast subterranenn laboratory. Mineralogy is aleo intimately related to the sobject of Geology, to which is the second sear of your studies your attention is also directed.

The remaining sabjects of study for the first year involvo eome departments of nataral philosophy not requiriog mathematical koowledge ; some of the elementary practice of surveying ; instruction in drawing-naseful to sill, and absolutely necessary for every practical man; and familiar knowledge of simple machines, and the use of tools in the workshop; sinoe without practical knowledge no one is qualified to superintend the Fark of others with regard to such subjects.

I can hardly dwell too atrongly or allude too often to the practical value of jastruction like this. To appreciate the ideas of force and motion by reference to actoal examplea, -to learn the nature and calculate the effect
of tawe of foree and motion by the rule and compast,-by the scale aod the masare:-to see exemplified to the seases the reality of those effects which by abstract calcalation ought to be produced-these are viows of natural philosophy which anose whilat they instroct, and which are enaily remembered and cosstantly put in execution. This system of combining example with precept is well adapted to carry ont the objects of the conrse of educeation adopled, for it necesearily suggests a ready means of applying experiment to theory; and thus shows at once the value of mathematical calculation, and its mont direct and a valable use.

Nor is it leas interesting er less usefol to the active spirit of the young student, that he shorid be shown and bear explained some of those more complioated contrivances which form the boast of our age and have 20 largely contributed to the greatness of our country. To be ablo to examine not merely machinery and models, but machines and factories, to be tanght the principles of their construction whilnt they are sean in fall activity and performing their appointed tank,-to watch the reanlts when not the success of a lecture-room oxperiment, but the fortones of many and the lives of thousands are dependent-thia kind of iastruction cannot fail to be as permaneolly valuable as it is deeply interesting.

But, as I have already reminded you, geoeral instruotion in machinery is here accompanied by a special and manual instruction in the workshop. The nee of tools, the dexterity required in overcoming mechanical diticulties, and the habit of regarding detail, thus introduced, muat be of the greatest value to every man, whatever his position in life may be. And this kind of education, it should be remembered, is not less valuable to the conntry gentleman, whose object it is to improve his own property or advance the interests of his fellow creatures, than to the engiDeer, the architect, or the surreyor. The ingennity which has recently been brought to bear on the manufactore of an astronomioal instrument, perhaps the most remarkable that the world has ever seen, is a striking, but by no means a solitary, oxemple of the value of this mechanical knowledge to all. The Marqeis of Worceater two centories ago, and Lord Stanhope ia more recent times, are singular instances of men, who, from their position in socioty, might seem removed from anch employment, but whose mannal derterity in the workahop was not less romarkable than the inventive geoius they exhibited is machivery. The workshop will not, therefore, be neglected by any ono who wiahes to occupy a distingoished or even a reapectable position in his profession as an engineer or an architect.

It is equally imposible for any ope to sueceed in such occupations without a familiar knowledge of the principles of geometrical drawing esd surveying. Both are required; and both, as thes need much practice, must be commonced early and continued steadily. Aa you advanoe, and ezhibit a taste for one or other particular mabject, it may be advisable to turn this instrnction in seme sperial direction: bat for the first year, the acquiring a eseful habit is perhaps of more importance than the extont to which advance is made.

Dering the second year, the nature of the instraction communicated and the metbode adopted do not vary greatly from the scheme I have already ex. plained, the extent of the instruction and the introdaction of new and more edvanced portions of the varions subjecta making the chief difference. But there are swo points in the education of this year which I wish to direct your more especial attention. They are the coorse of lectures on practical chemiaty y, and that on phytical geography and descriptive geology.

The instruction in mathematics, which for the first year was confined to those departments which chiefly involve principles, now includes some of the higher brancbes, and involves an inreatigation of the methods according to which pare mathematical science is applied to solve important and compicated physical problems. The instruction in natural philosophy corresponds with and asomes this adrance, apd involves a consideration of some of those important thearies on which depend the working ont of practical mechanical problems.

But in chamistry a new view of the subject is taken. From chemien principles you ajvance to chemical practice, and to the nature of those changee prodeced in various ways on the raw materials employed in the arth, and dependent on the action of what are called chemical forces either directly or indirectly.

In this way you are introduced to the anme kind of information connected with the laboratory and the principles of chemistry, as you have in the loetures on machinery and manufactaring art; which may indeed be considosed at the practioal and beat illustrations of natural philosophy, as the others are of chemiatry. When you look around and consider the infinite value of a knowledge of chemical science in the vest maltitude of delicate and important operations carried on in our manufactories, you will recognise the value of this part of the corrae. In all those employments in which colow in introdnced or required, not only in dycing but in bleaching, is well as in the arto of thnning and coap making, in the mannfacture of alte and acids of verious kinds-a knowledge of practical chemiatry is the fonodation of the whole knowledge needed. In brewing also and distilling-in metallurgy in all its departmenta, and of late jean in many extremely important operatione connected with the mixtures and alloys of metals, the same dependence on chemistry obliges every one whone business connects bim in any way with them, to atudy the theory and the practical applications of this selence. It is not without reason then that I urge the advantage of this part of your education of the second year. It involves chiefly, as you will perceive, the accumulating a vant number of important facts, and thus to a certain extent differs in character from the edecation previouly afforded.

In the progreas with regard to natjaral philosophy and chemistry wilt be
recognised at once the nature of the education at this pert of the course You will also perceive that the education, although eminently practical, is at the same time founded on principles previously incalcated, and that its result is by no means to form premature engineers or professional men of any kind, but in hitherto confined to creating a clant of well-instructed persona, fit for any practical employment whatever.

Together with the applications of chemistry, the aubject of geology in now introduced, as a science to which the attention of the studenta of the second year is especially directed; and as this is the sabject on which I shall mysolf have to address you, I will ouly at prement dwell upon it so far wa to give a sufficient idea of ite relative importance amongat your studies, and the place which in my opinion it ought to oceupy.

The puranit of goology may be considered to involve three distinct suh. jecte-a mere deacription of the earth's crust, and an acconnt of the order of arrangement of the materiain regarded almply ms matter of fact- history of the earth as deduced from such obnerved fact, and applied to account for the appesrances-and a statement of the practical resulta of knowledge of this kind with reference to the practice of engineering and mining, agricalture and architectare. Following in some measure the plan adopted in chemistry, I at firat introduce to your notice the principles of geology, and describe the facts observed. I afterwards explain the direct practical applications, and the mode in which these are best made. The former is the subject of a coarte of lectares given to the stadents of the second year-the latter is now confaed to the third yemr.

Geology is essentially a science of observation; bat as all facte must be grouped and laws obtained from them before they are practically available, a knowledge of the history of the earth, as deduced from the observation of phenomena, is necessary before the facts themselver can be applied. This history I endeavour to give, avoiding as far as possible mere theory, but always heving reference to general principles; and, st a department of netural history, pomesaing all the adrantages that belong to the details of that acience, and at the same time offering a yot wider and more important fiold of philosophical speculation, I believe no subject is betrer adapted for edacational parposes, or more likely to enlarge the mind and atreagthen the expanding intellect. The vastuess of the operations considered; the extreme duration of time involved; the siagular variety and the mysterious succossion of organic beings ; the evidence of the action of chemien forcea on a ecale $s 0$ grand that the mind can with difflculty graap and apprecinte it, $\mathrm{alll}_{\text {all }}$ this tends to give to the anbject a hold on the imagiation; and has in aome cases given alarm, and in others extravagent wildness, to the well meaning, but not well informed pursner. A calm and diapassionate view of the facts, and reasonable deductions from them, forms howrever, as I have said, a anb. ject not ill adapted to instruct and improve the atadent, and is absolately neceasary for a fair appreciation and efficient ase of the acience of geology, as applied to engineeriug and mining operations.

It in considered important that the atadent, who has thas carefolly acquired during two years habits of thought and observation, who has become acquainted with elementary principles, and is to a cortain axcent familiar with methode, ahould terminato his edncational course by a third year apent in the sequirement of the higher branches of knowledge, and in the obtaining practical information on varions subjects connected with engineering and architectare. The higher mathematica, and more eapecially the geometry of solide; the principles of mechanism ; the modes by which strength of matarial is tested, and the force of complicated machines eatimated; the arts of conatruotion as exemplified in extensive and important pablic works ; the details by which the engineer is easbled to superintend and eatimate the coat of sach works,- -11 those enterinto the course which is thus provided, and they must neceasarily be excluded from the lustruction given to the less advanced atudent. In addition to this, however, the art of chemical manipulation, in which each atudent in himself engaged in practical ansiysis and research, and in which he has the advantage of the laboratory and the anperintendence, in this case permonal and direct, of the profensor, cannot fail to be of the greatent value even to those who will hardly again be called upon to inventigate personally in this branch of science. With a view to asist in carrying out mont fally the high practical charscter of the education afforded, I have mymolf uadertaken to deliver to these advanced stadents a special courte of lectures on the most important prectical appliostions of geology and mining. We thus hope that at some time the aftention of those interested in the progreas of education, and who have the ability as well as the inclination to do good, may learn the advantage of inculcating science an a neceanary adjnnct to practical knowledge; instead of leaving practical men who would wiilingly recoive a cound education, scmecely any means to obtain even technical knowledge, except by iacurring great expease and serious loss of time,

In thos apeaking of the various branches of instraction afforded to the students of each year, I have not hitherto alloded to that religious instruction which forms a characteristic feature of this as of every orher department of our college education. The lectures of the Principal and the Chaplain on some of the more important subjects of divinity, are not only in themselves easential, as keeping op that association of religion which is so ralusble, but must also be regarded as a portion of the scheme of education.

Tbe object of all our efforts here is, as I have already reminded yon, easen. tially collogiate: it is to form the cbriatian and the geatleman-the urefol member of acoiety as well as the efficient and intelligent engineer and man of buainess. The discipline of this plece and the good fealing for which it has ever been remarkable, is the carliest fruit and moot gratifying foretanto of
ultimate meces. It in a proof of well-rogulated intalleot as well asood foeling when the natural liveliness and exuberant spirits of youth are confined within decent bounds, and do not feel tremmelled by wholesome regulations.

Por this reason 1 regerd as an interesting and useful part of our system, and not a anbject supersded and independent of it, thir portion of religions instruction. It is not only a part of the college aystem, bot a portion of the special instruction which belonge to the department of the Applied Sciences ; and it serves to bind together-foanded es it is on the best principles of our nature-many pursuits and interests which might otherwise appear disconnecsed and incomplete. This portion of instruction is continned thronghoat the throe jears of the college course.

Such then is a general sketch of the plan of education which many of you are now commencing, and which others have alceady partially followed. As a plan, it is safficiently distinct and comprehensive : it aims at one object which is kept constantly in view; it makes use of simple means which are throughont of the same kind.

Our plan is to prepare men for the ordinary brainess of life-not so much by foraing kuowledge apon them, as by indacing them to acquire it. We believe that the kind of education we offor is not less adapted for the country gentleman than for the eagineer and the architect. We think that the banker and the merchant would be the better for having had the training we offer; and we are conflent that society would be greatly benefitted if nome auch plan were adopted in the education of the middle classes generally.

We appeal rather to the common sense than to the iatellect, when we ask if nuch information as that we endeavour to teach is not likely to bo nefalif such training is not adapted to practical men?

If this our plan is shou distinct and comprehensive, we may venture elso to bolieve that it is kept constantly in view. We do not mean, indeed, to asert that it is talked about daily in the lecture-room, or that we individually endesvour to refer our instruction to it ; but we do asy that the syetem adopted in auch as to demand and insure perpetual recurrence to it. Our scheme of lectare-attendance-the examinations held from time to timethe rewards offered in prizes and scholerships, masy be mentioned as proofs of this: and we may eafoly point to the workshop an well as the leeture-room; to the fectory inspected, and to the musenm visited, as the most cortain and convincing tentimony to the aniform working of our pian.

The means that we adopt are also very simple. We require regularity of attendance; bat we find no difflcalty in enforcing order; we encourage the timid; we are anxions to the best of our power to antist those who help themsalven.

And the resalt is seen at present in the satisfactory natnre of our ennan examinations, and will in time appear in the harvest of useful men who have gone forth from our ranks. Time is necesasy to crown us with this reward; but indications are not wanting of our stadents in this department being likely to attain similar distinctions to those which have already characterised other departmenis in the Colloge, the period of whose daration hats been greater.

In bringing thin addrase to a conclasion, it remaine ouly that 1 point ont once more the easential and peculiar features of the plan we have adopted, and the importance that each one of you should keep in view the anity of this plan while parsaing any subject that may seem to have a more eagroasing interest than the reat. We desire to give an education essentially practicaltechnical, indeed, for tome who may require it, but general and natechnied for the greater number. With thim object in view, we insist much and pay great and continned attention to those elementary subjects of instraction Fhich chiefly encourage and produce sound meatal culture:-the elements of geometry of chemistry and of mechanics serving chiefly for this parpose, and being employed instead of the principlen of grammar, elsewhere resorted to, an having more diatinct application to the clans of facte aftervarde engrafted on this stock.

In order fally to benefit by our aystem however, you will readily peredive the necessity of limiting the pursuit of pure mashemation, which we wish you to employ as a meann, not regarding it as an end. Do not therofore permit yourselves to dwell too exclusively on this aubject, if you would edvance to the ultimate objects we have in view.

The theoretical application of paro mathemation to natural philosophy is enother subject to which we invite attention, and require you to obtain mome proficiency. But let me warn you, as practical men, against the danger of pursaing in too great detail thir portion of mixed mathematics.

It is the especial object of the instruction we give to send men out into the world, not to rotain them in the closet. Study all those eabjecte thas come before you minutely if you will, and by all meana study them so ats to have clear and secarate notions of what you are about; bat regard them always in a practical light-refer tbem conatantly to some immediatoly uteful object-think of them as men of business rather than as philosophers.

There is, 1 beliere, no danger of your knowledge in other departments of science becoming too contemplative; zuless, indeed, you should be inclined to pursue chemintry, mlneralogy, or geology, rther for the amusement they afford than for their distlnctly prectical reanlts. With regard to my ows science, I always have endeavoured, and always ahall endeavour, to prement it to you in its most practical light; and the paranlss of chemistry and minoralogy are so directly connected with the arts, and with mining and metal. lurgy, that few of you probably will be tempted to puraze these sciences at objects of excluyise research.

The remaining eabject of inatraction are emisenty practical, and need no wersing of this kind.

Quiting for a moment any reference to the eapecial nature of the subjeets tanght, there are two errors diametrically opposed to one another, but towards one or other of which almont every person is oceasionally tempted. These are idlences and over-exertion. It would be difficalt to determine which of the two bas been more fatal to the progreat of the stadeat. I need hardly tell you how mach danger there is in giving way to the idea that when the immediste tast is learned, idlenens is permisaible. In the schoolboy, indsed, we excuse this, becanse in most cases the mental eflort reqnires to be sacceeded by phytical exertion; but for you there can be no auch feeling. Yoa munt advance ateadily, constantly, and incessantly, if you would attain that diatinction and suceess which ought to be the object of yoar ambition. Relaxation no doubt is neceasary, bat your relanation muat not be idlemest.

On the other hand, you will be tempted in your competition for the honours and prizes offered as the rewards of exertion, to parsue your studies with an onreasonable and excentive ardour, without regard to prodence and health. This is no leas an evil then the opposite vice of sloth. Yon are no more juatified in excess of this kind and in the indulgence of mental exeltement, than you mould be in the nureasonable indalgence of any other passion. Nor can you really beneft by this kind of intemperance. A steady and anmavering progress is mont valuable, and mont permanently aseful; and you bad far better fiil in obtaining the prize than obtain it at the cost of bealth.

And now that you have been informed of the nature and extent of the education here afforded-what we offer you, and what we expect from youmy tank, that of introducing you to your mork, is for the present at an ond. I have myeelf no fear as to the result is your cases individually; and whatever may have been or may be the toil and the anxiety of those who have mperintended the growth of this department of the Applied Sciences, of which you are now members,-whatever atruggles and dificulties we may have had in earrjugg out our viewh, with reference to the subject of general scientitio edication, -however alowly it may have taken root, and however it may have been checked by the apathy of those whose other occupations were too presises to allow them to do justice to this,-we are all, I think, satisfied now that as aystem it is eatablished; and that we who bave laboured earnestly in the came may fairly expect to see the result in our days-although one of thowe to whom the aystem owes mach, and who would hare rejoiced to sea its present success, has unhappily been removed from his sphere of usefulneas before auccess dawaed upon us. I canaot forbear here this allusion to onr late lamented Professor of Chemistry, for I feel that without his exertions we should not this day have been able thus to offer congratalation, at well as to exprest hope; and he would, I repeat, have been amongat those mont rejoiced could he have seen his views thus far carried into sucossaful operation.

- Profemer Dantell.

BETMETV.

Mhathematical Physics; or the Malhematical Principles of Natural Plilosopily: wilh a development of the causes of Heat, Gaseous Blasricity, Grapitation, and olher great phenimena of Nalure. By Joan Eirzapate, Esq. London: Whittaker and Con, 1847. 2 vole, royal octaro.

It is not long since that a Mr. Isaac Froat procinimed, trump etmonthed, a discovery of the most stapendous importance-Tis., that the Newtonian Theory was as untrue as it was blasphemous; that the san was not the centre of our cystem, but revolved round the earth at the distance of about 20,000 miles ; that the moon was a block of ice, distant 6,000 miles; and, "as to the longth of the diameter of the uniderse, if any gentleman were to ask me that quastion," says Mr. Frush, "I should answer - 'It is as long as God pleasea.' "'

Mr. Froat's objections to the theory of gravitation were certainly very plausible. "Newton," observes that astute philo opher, "accounted for the force which drives the earth up the ascending node of the ecliptic, but does not account for the furce which rulls it down the descending node;" and again, "if the stars are iufoitely distant, bow is it that their light does not interfere to produce darkness F^{\prime} This latter objection we consider especiully profound,-an opinion which we the more confidently express for two reanons-first, because we entertain it in common with one of the most popular jonraals of the day; and secondly, because we can't understand it-a suffieient proof with most people of the profundity of an idea.

About the same time that the unscientific public was ustonished by the theorles of Mr. Isaac Frost-in opposition to Sir Issaad Newtonthe scientific public was gratified by the discovery of a aew planet, apon which no telascope bad yet been turned -on which no eye band
ever gazed; which, too remote and obecure to be apprebended by the faculties of sense, wan reached by a grasp of intellect not unwoithy of him who first interpreted the laws which made neceasary the existence of that distant world. How rich must have been the reward of its silent and nobbtrusive discoverer! How intense his seorn of the pedants who surrounded bim! With what quiet mirth would be tum Prom their sesquipedalia verba, their "hemiheratedrabedrone" and jargon, to those eberished results of his toil, the final completion of bis Principia! Day, in all her Iodian maganficence, had for lism lesa glory than the Night; for Night held the treasure be had staked years of thought to win. Mighty was his ambition-mightier his success.

Somewhere in the wide gap between these two great philosophers we would rank Mr. Herapath, -and in justice to that gentleman, be it observed, nearer to Mr. John Couch Adams than to Mr. Isaac Erost. If our author had succeeded in aecomplishing all that the lengthy title-page of his work professes, we should consider bim by far the greatest man of his age : profession, however, is not practice, and although we admit that some of the theories he has developed are extremely ingenious and supported by a great deal of beantiful reasoning, yet we confens we are not disposed to accede to the truth of any one of them-simply because they explain ouly a few, and seem to un quite irreconcilable with the greater number, of the phenomena of nature.
The cuuse which Mr. Herapath assigns for heat, gravitation, and the other moleculur forces of the universe, is a very simple one-the assumed hardoess and iuertia of the molecules of matter; and the subject of our present review professes to be a general treatise on the action of forces, whether finite or molecules. The firat part -on the action and laws of finite forces-is nothing more than a jumbled comepilatien of certain statical and dynamical propositions. Moreover, although the results of these proponitions, which are all old aequaintapces (such as to find the centre of gravity, centre of percussion, and the like, are correct enough, the means by which these results are arrived at are very questiunable, and to us in most instances whotly unintelligible. Mr. Herapath has adopted the very common error of assuming the fundamental laws of motion to be axionatic;-no fact can be axiomatic which the mind can conceive to be otherwise than it is: but it is very easy to conceive the laws of motion to be differeat from what they really arp; therefore the laws of motion are not axiomatic, and consequently depeod on experiment and induction. In the theory of collision, Mr. Herapath is at least original:-having presiously admitted that a perfeolly hard body, sneh as he defines it has never been the subject of experience, and moreover that other bodies, usually termed hard, with which we are aequainted, such as iron, granite, \&epy are as distinet from perfectly hard bodies as reat is distinct from motion, he proceeds to argue on what would happea supposing two perfectly hard bodies to impinge on each otber. He asserts that under such circumstances, the two bodies would each retrace their pathe, with velocilles equal but contrary to those which they possessed previously to impact. We do not attempt to disprove Mr. Herupath's assertion, but in lawyer style we set up a counter-plea or assertion of our own: wo assert that two "perfectly hard" bodies, after impact, would poika together "for an hour by Shrewsbury elvek," and thea turn green, -uud we defy Mr. Herapath to disprove our assertion.
To riew the subject more seriously, the phenomena which take place during the impact of two ordinary bodies may be well illuetrated by the followiug problem:-Suppuse two bulla, with maseses A and B, io iappinge directly on opposite ends of a apiral spring, the mass of the spring beiug neglected in comparison with either of the masser \mathbf{A} or \mathbf{B}.
Suppose a were the original length of the spring, sits length at time Ifrum comoneneement of impach, x thie space one end bas pussed over at time $/$. Them, since the muss of the spring is indefinitely small, the furces tending to compress it at both ends ure equal. Lot T be this force at time $t ;-$ thea we luave fur the motion of \mathbf{A}

$$
\frac{d^{2} x}{d t^{2}}=\frac{-T}{\mathbf{A}} ;
$$

for the motios of B

$$
\begin{aligned}
& \frac{d y+s)}{d t^{2}}=\frac{T}{B} \\
& \frac{d x}{d t}=c=\int \frac{T \cdot d t}{A}
\end{aligned}
$$

Let m be the velocity A had at firsh then $c=m \quad \therefore$ the velocity of A coulinually decreases, and at tirae $\&$ is dimiaished by a quantity $=\int \frac{T d t}{A} ;$ and the veloelty of B cominually dimiviahes by $\int \frac{\Gamma d t}{\mathrm{~B}}$
atitime t, the welooities of A and B previonaly to impaot, baing mpp peech eontsary in divection. Iet $s=\delta$ be the value of α whan the speing has remohud the limits of its comprexion; then ts a minimim. $\therefore \frac{d y}{d t}=0$;

$$
\therefore \text { if } x+x=x, \quad \frac{d x}{d t}=\frac{d x}{d t}
$$

If, now, the spring has no power of recovery-i, e_{0} if the force T_{1} cerases, the balls will move on together with equal velocities, $\frac{d x}{d t}$ and $\frac{d E^{\prime}}{d t} . \Delta \log _{0} \frac{d x}{d t}=x-\int \frac{T}{A} d t \quad \frac{d x^{\prime}}{d t}=-0+\int \frac{T}{B} d t ;$

- treing the velocity of B previeus to impect.
. eliminating the $\int T d t$

$$
(B+A) \cdot \frac{d x}{d t}=A x-B y
$$

This is the formala for the impact of what are generally termed hard, inelantic bodies-i. e bodies of which the particles have no tendepey to restitution affer displacement. If, however, after $\frac{d x}{d t}=0$ the apring recoils with perfect elasticity, the integral $\frac{\pi}{A} d t$ daring the lime that ε increases from $x=b$ to $z=a_{1}$ will $=\int \frac{T}{A} d i$ taken during the time \approx decreased from $z=a$ to $z=b$;

$$
\text { but } \int \frac{T}{A} d t=u-\frac{d x}{d t}=u-\frac{A u-B \theta}{A+B}=\frac{B(u+\boldsymbol{B})}{A+B} ;
$$

\therefore the final velocity of A will be

$$
u-\frac{2(B u+B v)}{A+B}
$$

which is the formula for the collision of perfectly elastic bodies.
The most important part, however, of the "Mathematical Physien" is that in which the aathor developes his theory of heat and the molecalar conatitution of ganes; and it is hat justice to hia to ubserve that moch of the frot part of bis wort is confessedly a juvemile prodaction. Whether bis inveatigation of the motion of a crank, in Which he bas falk into the commonerror of neglecting the mans of the convecting-rod, is to be reck aned anoong his youthfil performaboes * got we ompot my,-we trant, bowever, for the anthor's credit, that is is. We mow eome to the theory of lueat and the corstitution of gaces:-Newton conjectured that beat might arise from an intestine action of the particies of matter, and that temperatere might vary athe valocity of the partioles. Mr. Herapath, on the other hand, mpposes the temperatore to vary as the momentua of the particlen; ad combining this theory with hiside of the perfect bardness of the particlen-or ratber, ns we ahould sty, their perfect elasticity-bo Arows very clearly and beautifillgr how the pressure of gases varies with their temperature; and how the specific beat of bodies rantiplied by their chemieal equivalents is cociment There ara, however, many phenomena of beat, which appear to ns etterty incapable of explantion on Mr. Herepath's tbeory 1-we allude to radiation, condeotion, and polerization How is it that bodies which radiate the bent conduct the worve, and wioe arraf And how are we to account for the intricate phenomens of polarization? Surely these facte depend on semething eore then a bwleses motion of the particles of matter mang thernaetves. Tbat the particles of matter, or the maclei of material tarces, are continually in motion is highiy probathe -may, ahocot certain; but what that motion is-on which heat light, and electricily, witb all their varied get definito phenomena, depend -remains yet, we think, to be discovered,

Various theories of the molecular constitution of matter have, inindeed, been put forth from time to time, none, however, that merit moch attention, with the exception of the undulatory theory of light $;$ and even in this, the great result arrived at-viz. the form of the wave surface,-although it satisfies mont, and has suggested some facts of polarised light, is deduced from considerations dynamically unsound. We may here obsetre that Fresnel (see "Airy's Trncts," p. 357), in determining theoretically the polatising angle of a reflectfog surfmef, bas adopted a hypothesis for the motion of the partieles of ethes dearly the sane as that of Mr. Herapath.

In tepelusion, we cordially recommend the work to theae of onr reoder frio have soficiett letitare toctmathematicad knowledge ta do
juntice to the mathor, thongh we canat halp exproming a wish that Mr. Herapath had devoted half the time and ability to the mandeater tien of engineering that be has to ctre mente-boilding of hy pethatioal speculations, and we might theo hage had the plearme of reoiendto a work of leas pretemion but of far more cotid wefolsem. Ifte most profound mathemeticians of the dey with whon whe bave thed the bonour of conversing on the subject, sbrink from the difieution attending an theories of molecolar constitution, and is their vildent dreams we believe have never so mach as dared to hope for a cohution of even one of those grand mysteries - "Heat, Gaseous Elaticity, Gravitation, and other great Phenomena of Nature.

Railmay Locomotion and steam Navigation: thetr Principles and Practice. By Jorn Corr, of New South Wales London: Williames 1847. 8\%०., pp. 181.
"Oh that mine adveramy had written a book," oried Job in tiltors neat of apirit. We, who are not mearly wo patient an he are induced by the perval of the wost before ws to eaclain-Oh that mine advere sary had to review a book! Mr. Curr bas come all the way from New South Wales to have his bark and his bite at modern engiveering! A man does not travel 16,000 miles for a trife; and accordingly Ir. Carr bow-wows pretty loudly.

First, our excellent contemporary, the Mecharics' Magazime, comes in for a smarl. From "a careful examination of two volumes and two odd numbers" of that work, our author is matisfied that "the present actan and scientific knowledge of English enginaers" is in a mont deplorable condition; and so in order to enlighten tham he resolved on quitting "a peacefol bomestead in the fair clime of Australin" embarked on board the good sbip "St. Geonge," for England, errived safely, and forthwith pablished the present polome. It is orr privary conviction that Mr. Curr is the coanno man who has been so bong and $s 0$ atriously expected.

To attempt an intelligible andysis of bib doctrinea were es vide to essay a systematic arrangement of the Sibyllive leaves, or an interw pretation of the oracular teachings of a Pythonissa. Science and satire, analysis and adventure, are so strangely intermingled that dim mortal vision frequently misses the line of demarcation. Mr. Curr sets of with a grave bit of theory about motion of lluids, or a pet doctrine of gravitation, and interrupts himself to tell a personal anecdote. An many "most disastrous chances of moving accidents" have befallen him as Othello, and they are set down in this book, in the very thick of philosophical propositios and algebraical symbols. Our author seems to entertain the idea of combining the truths of science with the "intenge interest" of a melodrama. For example, be begins to talk about latent beat, and suddeaty tops to tell a startling story of his father being on a certain occasion "reduced to the necessity of concealment in a wood for three dape and nights to escape the fury of the populace." In apother place, he records a dispute between blmself and somebody at Norwich, which somehow or another induced him to go to Margate, where he "issued throngh the town a privied placard;" \&e. Further on be tells us that his father was disowned by bis grandfather on ancount of a difference of opinion on eusineering subjects, ${ }^{\omega}$ and the letter to that pffect was retained in bis family for thirty years or more." Our author is as rich in family apecdotesan fo scientific discoveries, and passes from the one to the other with surprising facility. Every reader of Hudibras knows that

> "Th' adresture of the bear and Addle, In eung, but breaks of in the aiddle.

Buf the excursions and imaginative fighte of the politieal satirist, Butler, are nothing to those of the puilunopbical astirist, Curr.

Poor Doctor Hutton comes in for a more than ordsoary share of abuse. Various errors and inconsiatencies in his theoretical view are pointed out. Hutton wrote at a time when the principles of mechanics, and especially the practical application of them, were much less understood than at present : and we are quite ready to accord to Mr. Curr the easily acquired merit of having proved that Hutlon is not infallible. He was a much betuer arithmetician than mathersatician, but the time at which be wrote way excase some of tha imecers-cies-and it is but a pious task to areage bis memory by showing that bis antagunist commits errors equally grave without the same exemo for them. For instance, Mr. Curr propounde varieus formule for eatculating the motion of railmay thains, seaming the modulas of friosion to be constant; whereas the evidence of uniform experience shome that the resistance to the motion of the wheels on the rila increates very repidly with increase of relocity. The percusion in panang over the juints of the rails, and the vibrating motion of the raits thomaçlyes, render accesary a great expenditure of power. And as shem
pexennioms and vibotions; and elber inegolarities of the mation of racins, are elweys obuerved to be muets greamer at high, then at bow, velocibien it is quite elpar that till their sebation to the weloaity be meortioned it is impoceible to make the epreed of trains a matter of methematical oalcolation. The lam of resintamee, or the degree in which the resistapes fnereases with increase of velocity, bas not yet been discovered, notwithatanding the efforts of namerons excellent experiments. The self-sufficiency with which Mr. Curr decries the taboars of Mr. Scott Russell and othera, who are unefally employed in the experimental investigation of the subject, is rivalled only by the ignosagce of first principles displayed in the attempt to solve a proHen of which the data are not given.

Pationee and spmee mald fuil us to point out all his other ezversyet one or two inatades way be cited. In ose place ho tells wes that the convumption of cote necemary for the converance of a given load by a feat traic is the same as by a slow one. "If the velocity be doabled," says he, "a given distance is passed over ia half the time :" the supply of steam must be donbly fast in the second case, but will be required for half the time. Hence he cancludes that in both cases the same quantity of steam (and therefore of cake) will be conaumed -iotally overlooking the fact that the increased resistance to the tratr's mation in the second oase renders is necemary that the stean should bo compumed in the cylipder at a greatly inoreased presmare. Ela motion is moret the sume thing as asserting that the easient wry of trevelling fifty wilen on borsebiok is to ride at full gallop.

In another place we are told that " the bite would be leseened on sacending a gradient according to which end of the engiare might be moving foremost, as thereby the centre of gravity of the engine would approach or recede from the driving wheels." It were useless to attempt a serivus refutation of such nonsense.

4 The a pthy wher charning women
Talk of thinge that they dost and
Talk of things that they doe't onderstendt"
and similar objects of compassion may be found among the sterner sex.

Here is another specimen of our anthor's mechanical ideas: "Actual collision of trains moving in opposite directions is a subject scarcely deserving of attention, but as there appears a vulgar notion amongst persons who ought to know better, that if two trains meet, the shock is proportional to their joint velocity, or to twice the velocity of each train; it may be said the shock sustained by each train is proportional to its velocity, and the same is true as respects each person conveyed in it." Does Mr. Curr mean to aseert that the shock to each train is quite independent of the velocity of the otber train?-that if a man ran against a moving cannon ball the injury sustained by bim would merely be proportional to his own velocity, and not depend on that of the ball ! If that $w=r e$ true, it is obvious that if he stood quite still he would receive no injury were a whole park of artillery fired at lim; and, similarly, that when a train is at rest the passengers need not be at all alarmed at seeing another train drive full tilt againat there.

To qnit theory, let us take a specimen of Mr. Curt's practical knowledge. The following is a proposition for ascending very steep gradient. "Let the engine be stopped near the foot of such inclined plape-let the driving wheels be removed and a pair sabstituted being of such diameter as will enable it to ascend." Take off the driving wheels, Mr. Curr? Pooh, pooh, man! what if it were proposed to you to take off your head and substitute that of Newton whenever you came to a stiff bit of mathematics?

Divers other equally rare devices bath Mr. Curr for the improvement of railway locomotion. One especially there is, which is calcalated to effect a complete revolution in engineering, but ita nature is kept a profound seeret. We are tormented with curiosity to find out what it can be, but, No-says Mr. Curr-I have told you a good deal for nothing, beyond the cost of buying and reading my book, bot for this maseer invention I demand a far higher recompense. And thea le offers to reveal it confidentially to a committere of the House of Commons-io fact, repeate the Warmer story in a new form.

The work conclades with a magnifieent peroration, of which the folbuwing in a fair specimen:-3
"But who proclaims bimself my critic-the shadow of a ponendity whome only koowledge of the subject is derived from the book he intends to criticise : so - it will be left to future ages to find the trath The pripciples are ONE-so break one link of the videulam, and downgoes my book to the shades below. The philowpher and the mathematioian have been bollly attacked: whether they will oontinne their projudices I will not decide : but to convince a man that he bat played the foo' is not an easy tank."

Here, at least, we entirely agree with our author. The "tack" is diffendt-so diffinalt that we relinquish it in despair.
 tive Painting applied to EnglieA Arekitecture during the Middre Agw. By G. L. Blackbosify, F.S.A., Architect. Lordon: Fillisme and Con 1817.

Mr. Blackborne proposes to do for the polychromy of the middle ages, what has been done for that of the Egyptians, Greeks, and Arabs, and to give us a special work of reference for architects and decorators in all that' relates to the coloured ornaments suited to works of the medimval character. This is certainly essential at a time when the taste for such decoration is extending, and when buildings of a bigh class are in progress. We have had many books on Gothic aarving, bat few illontrations of painting in that style, mand fon the reamon that until lately the produgtion of ilinminated boake wess wexy expensive. The new procesess for printing in coloors come neot opportunely in aid of the extended stady of the decorative arts. In the works by Mr. Jobbins and Mr. Colling many useful examples have been already given, and no doubt Mr. Blackburne will fiod many cooperators before he gets to the end of his series.

Mr. Blackburne's text does notseam to us to be of so much value as his plates, although he inas undoubtedly taken much pains; but in the attempt to publisb a series of examples be will lay the foundation for a history of decoration io this country. He is therefore not to be blamed because he does not sbine $s 0$ much as an historian, an he does as an artist. The atate of art among the Eroglinh befove the time of Bede should be examined in comparison with Byzantine monameath, for it cansot be doubted that from Greees and what was then the Byzantine city of Rome these new arts were brought into Eagland, as we have express testimony to that effect.

Mr. Blackburne begins his work, in fact, from the thirteenth century, when the construction of so many larger edifices, now existibg, and the practice of painting on walls, as well as on tablets and hanginga, gave a more darable character to the labours of the painter and decorator. In the first anmber wa have a choir ceiling from Maivern abbey, with its details; a acreen from Aldenham church in Hertfordshire, in the Perpendicular style; 2 plate of details from the tomb of Lord Boarchier, in Weatminster abbey ; wall paintings from the chapel of St. Erasmus at Weatainster, from Tewkebbury, and from Rochebter cathedral; and a lectern stand from Littlebury, Essex. The tiles we think may be dismissed very briefiy, for they have already been copiously illustrated in special works.

It is a matter of much congratulation that we shall now possens a body of English works illustralive of medieval art, and calculated to foster the growing taste for that style. In the works of Carter, Stothard, and Shaw, in those already named, and in works on tombe, furniture, glase painting, fonts, and tiles, the architect, and we may add the artisan, of the present day, finde resources in which his predecessors were wanting.

The Ecclesiastical, Castellated, and Domestic Architecture of England, from the Norman Era to the Sisteenth Cenlury. By Jaxps Hadrichd, Architect Vol. I., Part 1. London: Williams \& Co., 1847.
Mr. Hadfield has begun an undertaking, the completion of whioh will require a life of labonr, if carried out in the spirit of this apecimen. Having fchosen the county of Essex as the frret, be makes a review of the churches, pointing out all the positions valuable to the architect as examples, and illustrates them by plates full of dimensions and working details, and of a aniform scale. We know of no work, which, with such strictness of plan, hat equal practical value.
Four parts are to form the volane davoted to the county of Eesers and these are to contain aighty plates of the churches and manaions and their fittings. We think Mr. HadGeld is uadertaking more then is required at his bands in proponing to give plates of staiped glam, which forms a special art, and the labour, time, and expease bestowed on which may pertaps deprive the architect of what he will value infoitely more-drawings such as those in the present namber.

The text is of a very limited character, simply explaining the architectaral features, with little antiquarian detail, the object of the author being to keap up the practical nature of the work, and to throw his strength inta the platen. This is a very taudable endeavour, and though the price of the part is large, it is, an account of the number of plates, very cheap. We think, too, that Mr. Had6eld has decided rightly in pablishiag large parts like the present, rather thas aplitting them into moarthly mabers with two or three phates. There is a certain appearance of completenese about the part even at present which seems to make it of a more practical character.
Mr. Hadfeld apportions his laboar according to the importance of his work. Some charches are without notice; others, like Danbary, with four or five platen. The author has carefully eachewed perspec:
tive view, and there are no elevations of bulldinge, but a musemm, as it were, is formed of details so carried out, that working drawinge would be searcely wanted in copying these examplea. The plates, which are filled as much as they can be, are desigued simply to help the architect, builder, and workman, and explain themselves so fulty that the text is scarcely required. Indeed, the bcok, on inspection, carries with it its own recommendation, and is likely to meet with soch support as to pable the author to proceed with coafidence in his praiseworthy undertaking.

A History of the Archilecture of the Abbey Chureh of St. Alban's, wilh eapecial Reference to the Norman Siructurc. By J. C. Bucxlea and C. A. Bociler. London: Longmana, 1847.
This is a work of sach commendable industry, and of no much ino terest, that we must reserve it for a longer notice in a future number.

HIGH-PRESSURE STEAM.

The greatest obfeet remaiaing to be secomplished in pavigatiog the ocean by steam, is unquestionably the acving of frel, and this, to any great extent, can obly be effected by asing high-pressure ateam expansively, by which not only one-had of the tonange occupied at least will be liberated, but enchalf the cost of the fuel will be saved. We oeed dot expatiate upon the immense importance of anch a reduction, both to the naval and commercial marine of this coontry, partcularly where distant depols lave to be so frequently replenished, becanue that can be duly appreciated by every person practically experienced in steam navigation. But no cooner, however, is the proposition mooted, than a ferce funilade is opened againat mo dangerons an innovation, which that is presumed to be,--as if any inherent property existed to reader high-presaure steam more dangerous or deatructive than steam of low-pressure. This, however, results from preJudice rather than from calm and dispanaionate rensoning; in the face, too, of daily esperience and the successful operation of hoodreds of locomotives gliding over our iron roads at something like 60 miles an hour, notwithstanding the very high power ewployed, which marine purposes do not require,-that it is really gratifying to read your judicious and pertivent remarks in the case of the late explosion of the Cricket steambont. [eee Jnurnal, p. 380.]
With properly cooatructed safety-valves, to limit the pressure with certainty, placed beyond the control of the engineman or driver (which is a matter of equal importance io both syatems), high ateam will prove as vefe, nay safer than low.pressure, if generated in suitable boilers ; which, we trest, we shall be able to show. We are not aware if there existe any collected record of the namber of explosions which bave occurred, distingoishing the class to which each belongs, together with the probable caune aod circamatances attending them, bryond the transitory and imperfect accounte given in the news of the day; or we believe it would be found, that not only are the most destructive effects produced, but also that twothirds, possibly three-fourths, are occasioned by low-prensure steam, or by boilera so denominated (see the frightful account of the explosion in the gewapapers of to-day-October the 7 th-as detailed before the coroder at Leeds). And what would have been the consequence if many low-pressure marine boilers had been subjected to the fool-hardy and reckless treatment prectised on board the "Cricket?" Would they have resisted ono-balf the time those boileras did?-we presume to think not.
Marine boilers of the usual form of construction and magnitude are the worat to resist pressure; and, therefore, in examining the comparative anfety of the two syatems, we will assume that the boilers are of the same form-vis. cslindrical (where the tension of the metal is wost perfectly applied), and the preacure in one to be fonr pounds the square inch, and that of the other to beffit, while the thickness of metal in each shall be in the exact ratio to the strain: thua, multiply the pressure by the radius, and divide the sum by 400 (equal to one-lenth of the strength of the plate for every eighth of its thickness), and the quotient will express the thickness in eighths which the plates of each of the boilers should contain.
Thus, we have two boilers whose power of retistance in relation to their contents are exactly eqoal ; hence, if the fifty pounds steam were to be doubled, the pressure would not be one iota more dungerous than the foar pounds steam being increased to eight, und vice reras ; consequently, in relation to streagih, one boiler is as likely to explode as the other: but as neither is likely to take a tight if duly supplied with water, and their cafety.valves be in good order, we will proceed to consider the resull in case of neglect-firat, with regard to a deficiency of water, and next to the valves becoming fixed. With respect to a deficient supply of water, the chance of an explosion would probably be pretty neurly equal, and so would be the foree, from the larger volume necessarily peat up in low. presuure boilers; indeed, we are nut aware that there is any distinction observed in this particular, but in effect the low steum may be assumed to be more disastrous from its sealding property, as sou very pruperly remark, than higb-pressure. In respect so the safety-valves, wo bave thowa that each boiler is capable of realdiog the doubling of the workiot
proseare of its contenth, or any olber ertent in the same retio in an equal degree. Now, it is quite posaible for a low-pressure valve to adbere to mo seat so firmly as to resist the additional foar pounda par inch, and evea a much greater increase, ere an explosion casour; bat for a valvo of a bighpresenre boiler to resiat an addition of ffly pounds per inch withont being naseated, is acarcely wilbin the bonads of probability. All boilers require careful and efficient superinlendence most unquestionably, and casualies from neglect will sometimes occur without doubt; but onder an eqvel degree of supervision and skill in conatruction, we thlak we are jantilied in the conclasion that bigh-pressure ateam in regard to safety bas the advantage.
The quanlity of fael saved depends apon the just application of the expanaive principle : the usual practice is for the presanre in the boiter to be conetant, and the amonat of expansion varied by expansive gear, aocording to the exigencies of the service. To prove that this is an error, we have oaly to imagine a cylinder, aty four inchen long and one in diameter, with steam of four pounds cat off at one quarter its length and allowed to expand to four times its volume, which will ezert a mean force of two pounds and a fraction; this we will assume to be the minimum working power of lie engine. Now, if circnmatances require the maximum power to be applied of four pounde during the whole stroke, it is manifest that a four fold amonnt of steam will be required, and expanyion mast be abandoned allogether to effect it when its saving effect is most requisite, as the larsest amount of fuel is being consumed. Now, if we reverse these functions, by making the amount of expansion constant, and work with a rariable presaure, it will be found that the steam required will be exactly in the ratio of the work done; thus, if we raise the preasure to cighs pounds, and cut off the steam as before, we oblain a mean of over four pocrads, with just double the quantity of steam, inatead of quadruple as above, and of course at one-hulr the expense of fuel. The pressares bere assumed for illustratiog the two modes of application are not those, of course, which would be adopled in practice, but the result would be the same in effect if the banimum pressure were sixty. Gve ponnds above vacuum, and the minimum one-half that mmount, working with a conctant expansion of eight or tea times its original volume.

Now that competition is so strong in rates of apeed, every degree of pressure is employed and steam gencrated in all kiads of boilers, saitable or uasuitable; the temptation is su great to ran dangeross risks for the sake of victory, that some power of control is beconie absolutely necessary -a matter, however, of no very difficult accomplishment, thongh it might be opposed by the proprietors, possibly, as exposing the secret of the doings in the engine-room, with regard to the real working pressure; but that is a matter of no weight, nor can it be honeslly objected to or denied. We would suggest then, that a competent person should have the power to inspect all sfeamboats periodically, as to the fitneas and condition of the bollers in relation to their working pressure, add to see the following precautionary checks adopted-viz.: One safety-valve, at least, on ench boiler, placed beyond the control of the engineer, except as to baving the power of lifting it occasionally, to insure its duly operating ; or by a alight easement effected at regular intervals by the eogine itself, but no power of adding weight. Next, that two graduated gages be fixed in one case above deck; one showing the pressure of steam in the boilers, and the other the level of the water and ibe excess or deficiency jn either case from the fised working points on the scale. These gages to be open at all times for inspection to every person on board, and minutes made in the log at regular intervals in sea-going steamers, particulurly during the night, stating the beight of the water and pressure of steam. The sound wort: ing cundition of these gages to be nuaintained at all limes, and cases of neglect, or tampering with thens in any manaer, to be visited by a severe tinu-perhaps tine and imprisonment, where so many lives are eudangered, which would at once put an end to the recklens tampering with the pres: sure, and insare careful attention to the suppiy of water, and consequent's zafety wall on bourd.

Londen, October 7, 1847.
C.

pULGURITBS AND FULMINARY TUBES.

We have found in a Prench periodical some remarks on the action of the electric Auid when atriking the ground, which do not seem to have attracted mach attention here, and which havo led us to look into the anlject. It in observed that in the beginning of the lat ceatury, a hollow tube was dibcovered, which formed branches, in the ssady plains of Silesin. This tabe was placed in a museum under the name of an "arboreucent fosuil." SomeWhat later, aimilar tubet were found in the neighbourhood of Paderbore, Dreaden, and Manster, likewise in Camberland, in Hungary, on the duab near Bordesux, and on the plains of Bahia in Brazil. We do not remember sny apecimens of this kind in the British Musean, althongh there is an extensive coliection of meteoric stones in the mineralogicai department. Ttis saggeste the propriety of a separate collection, which athould inelude meteorites, fulgurites, mineruls and vegetables affected by electric action, rob canic substances, dic. There would extend our knonledge of new braphee of actenee, thuse of meteoriter, geological action, and coralline growth.
Ali the localiten in which fulminary tabee are foond, although far apat,
man a thallurity of charsoter in the mil in which the fulgurites are fonnd, having a fipe mand, conthining a lage proportion of silex. In this and the tabes are alway sonk vertically. Their diamoter varies from gith of an fach to 34 inches, and the thickaces of the coating or well of the tube trom toth of an inch to 1 inch. The diameter diminishes according to the depth of tabe, particularly when the tube ramifies; and these ramifications are mometime very namerona, giving the fulminary tube all the appearance of the root of a tree.

Some fulguritea have been found six yards long. The external surface of the tubes in composed of grains of sand cemented together; in the inside these grains are melted, vitrified, and mired with little bubbles, forming a cort of pearl-grey enamel, with which the inner part of the hollow cylinder is lined.

In the Bracils, fulgrarites have been found with facettes and completely vitrifed, and in Comberiand a vertical falgurite was found cemented to a porphyritic boulder, at a depth of eight yard. At this point the fulgarite deviated, going off at angle of 45° and being about $\frac{1}{5} 8^{\text {th }}$ of an inch in diameter.

Though several hypotheses as to fulgurites have been formed, that of Dr. Fiodler seem beat to meet the casc. He has sbown that these tubes are caneed by the calorife action of lightaing, which pasaing through siliceous asad, molts it in ita way. This melted part becomen the inner wall or bore of the tabe, and the onter wall is formed by the cementation of graina of quartz imperfectly melted, and joined by water in atate of vapoor arising from the great heat developed by the lightaing in its passage through the soil. This action of lightning has been determined on eeversl occasions. On the 3rd of September, 1789, lightaing struck an onk in the Earl of Ayleaford's park, and killed a man who had taken shelter in the tree. On digging up the ground to erect a monnment on the spot, a quantity of melied tint was found, and naderneath where the poor man's atick had stood a vertical tabe of melled and. Some seamen having noticed lightning fall on the sandy isle of Amrum, off the Danish coast, found, on looking there, a fulminary tube. On the 13th of June, 1841, Dr. Fiedler found a similar tube in a vineyard near Dresden. This tabe divided into three branches, and went to a deptb of five feet. Artificial fulgurites have been formed by pasaing the electric fiuid throngh siliceous aand. It may be oheerved that there are anthenticated cases of rocks oren being melted by lightning.

DRAINAGE OF LANDS.

Hydraulic engineering connected with the drainage of land becoming daily of sach vast importance, induces us to present to our readers the very interesting discusaion that took place last moath, at a meeting of several bighly intelligent and practical farmers and acientific gentlemen collected logether at Drayton Manor, at the invitation of Sir Robert Peel. For the report we are indehted to the $\mathbf{A g r i c u l t u r a l ~ G a z e t t e . ~}$

Mr. Woodwand aaid that in his opinion thorough drainage was the foundation of all grod hashandry, without which manarea and skill are thrown away. Some undrained land had come iato his occupation, heary Land, which only produced $10 \frac{1}{2}$ bushels of wheat per acre; he immedistely drained it 3 feet deep, subsoiled it, dressed it with burnt clay, and the first year obtained from it 51 buchelo. He regarded the oxtensive buraing of day land as a most important practice. It rendered the soil so much more friable and convertible, and enabled the farmer to work it with much less horse labour. The effects of burut clay apon all green crops was wunderful, a most important fact whicb could not be too strongly impressed upon the mind, as being rery emential to the growth of corn, especially when consumed upon the laod by sbeep, eating at the same tume a little oil-eake or refuse corn. He had not, bowever, found adrantage in the use of Italian rye-grass, which he thonght uodeserving the praise it bad received. The treading of sheep was highly advanuageous to the wheat crop, providerl the land was thoroagbly drained and subsoiled. In order to secure the requisite amount of pressure, he bad not ooly emploged sheep, but horses, or even men, who he found coold tread down land for 1 a . Od. an acre. He had also found advantage under tome circumstances in the use of an iustrument which he called a peg roller. This was formed of an elm-wood oylinder, stadded with oak pegs aboot four inchet apart; it proved to be a zoot effectunl implement when drawn over the land, imitating as it did the consolidating power exercised by the feet of a fock of sheep. He regarded pressing down the land as opposiog an inviacible obstacle to the operatives of grubs and wireworma. As to dead fallows, he entirely objected to them as wasteful and useless. On his clay land, when in tura for falluw, he planted vetches, and on his gravel, rye, and rye and vetcbes. For cleanlag his atubbes, after barvest he employed the implement called a twoedged "akio," which be atrongly recommended as a cheap and most valuable modern invention. Mr. Woodwerd then pointed out what he regarded as the beat manner of breaking up iaferior peatures and converting them jato arable; and coocluded a very inatructive speech by forcioly pointing out the abeolute necenity of reading beck to the land whatever is romored by a crop, and by expreasing bis eutire agreement in opiajoo with Mr. Woolryche Whitmore, Mr. Haxtable, and others, that farmios, pro-
periy and efficiently carried out, with oapital and shill, may be made as profiable an iovestment as railways or other branches of commerce. Betag asked whether he beld his land on lease, Mr. Woodward replied that be did. But evea if he had not, he, neverthelens, was of opinion that the expenses be incurred in the improvement of his land woald have anawered bis parpose, for his improved wheat erop repaid those expeases immediately. As to leases, be attached litle importance to them, provided there existed something like teanat-right, which would by law ensare to the outgoing teanat the whole uneshansed value of the improvements he had made; whether this was to be paid by laodlord or incoming tesant wat, he thought, of no importance. He trusted that the leginlatare would $s 00$ the necessity of passing some enaotment that would seeare this right; otherwise it wat not to be expected that tenanis would expend their capital on land. Mr. Woodward having exprensed a desire that Mr. Meobi woald bring under the notice of the meeting the result of his bigh farming in Essex,

Mr. Mechi responded to the call. His preotice in agriculture coincided so nearly with Mr. Woodward's, that it was only necessary to asy that he grew alternately grain and root or leguminons crops, endeavouring as moch as possible to grow wheat alteronte years. He had originally drained his land 2 foet 8 iaches deep, with pipes and stones, at a considerable expense; but since be had had the good fortune to meet with Mr. Parkes he hed ameaded his errors, and was drainiog more deeply and effectually with pipes alone at one-third the cost. He rented come land adjoining his own; althoggh he held bat a seren years' lease, he drained it 5 feet doep with 1 inch pipes, at a cost of from 35s. to 60s. per acre. He could not afford to deprive himself of the benefi of druinage. He found it very naprofitable to farm such lend undrajaed. The very frst wheat crop remanerated him for the whole cout. The result of his improvementa at Tiptree had been to doable the produce of his ferm and of bis labour. A portion of it was formerty a evamp, not producing 5a, per acre. He had boen entreated this year by a gardener in the nelghbourbood to let thoso 4 acres to him, at an ananal rental of 51 . per acre. He had removed aif miles of uanecesmary banks and fences. Taking the arable acreage of the anited kingdom, he thought they might safely dispense with 500,000 miles of unneceseary fencing, which, with ite timber, displaced much food and labour. Ho considered the agriculture of this conuiry in a very beck ward and ansetiafactory state compared with its manufactures. The agricultoral mechanical appliances were rude, cosuly, and approfinble. The furm buildinge generally were bad, and ancentrically placed, causing a national losa of some milliona ; each ton of produce or manare costing an average carriage of 6d. per mile, renders the position of the buildings an important national consideralion. Wagons were a most unphilosophical cootrivance. It was quite clear that a long, light, low cart on two wheels, having as aree of capacity equal to a wagon, and ooly costing half as mach, was a much more sensible and profiable mode of conveyance. The question was not now sa open one, haviag been thoroughly diseussed and decided upon at the London Farmers' Club; ther-fore, the sooner the wagoos were got rid of the better. With regard to the quantity of seed, his ex periments (conducled now for three years and publicly recorded) had uniformily been in favour of thin sowing, say from 4 to 5 peoks of wheat, and 6 to 7 pecks of barley and oate. Some of the best furmers in his neigbbourbood adopted this system successfully. It was highly important in a national point of view that this question should be settled; for if the quantities he had named were urailable, adieu at once to the necessity for foreign imports. It appeared to be aldmitted on all hands, that if a bushel of wheat vogetated, it was an ample seeding; and it was reasonable that it should be so, because if each good kernei produced ooly one ear, containing 48 kerpela (and that was not a large one), there was no allowance for incroase by branching or tilleriag, which we knew would take place to a considerable extent in well furmed land, containing an abundencie of organic matter. Thin sowiag delayed the ripening three or four days; coneolidation hy pressure prevented the development and action of wireworm aod slug. He had found salt tended to a similar result. He salted all his wheals at the rate of 4 to 8 bushels per acre, and was determined to use muclu more. He koow a gentleman in Northamptonslise whose wheat trups could searcely over be kept from going down, until be used sult, whioh had effectually kept it standiag. He (Hir. M.) salted the manure in his jards. He fouod that it sweetened them; he supposed it fixed the ammonia. It wat a sirgular fact tinat whitst ault tended to preserve acimal substances, it on the contrary rapidly decomposed vegetmble matior. It was a cheap alkall of nutive production, costiug only about 20s. to 30s. per ton, whilat all other alkalies were nearly eight times as dear. He strongly recommended the abundunt are of boaes, with and without acid, for rwot and greon crops. It was evident that the bones formed in our growing animals, and in our cows from the produce of the farm, cost us sd. per pound, or 45l. per ton. Now, if we could replace these, as we cun do, by bone-dust, at 74. per ton, it was cleariy good pulicy to use them. He considered the waste of the liquid portivas of the manare in most furno-yardsa great national calanity. It was a grent mistuke ever to allow wuter to full on manure. Wuter was a very heuvy article. A thousand galloas weighed $\mathbf{1 0 . 0 0 0} \mathrm{lb}$, a ad were expeosive to cart. He had heard furuers say wheu rain was fulling, that that they should then lituer their yarla and make manure! Straw and water, in fuct. Ho found in pructice that anloals did well on their owa excrempats and struw unuer cover; that they consolidmed the mans notil it was four feet thick, when it would cut out like a good dungheap, nad be fit to curry oo the limod. But if rain water were allowed to wait this make, an injurious effios renolved both to uligeaimal and to the masure. Ho

 dig It did avay with the acoeseity for matarearts and tanto; tha liquid pation of the escrancots baigg jost suffeieat to molaten the atraw and varint earth, or other aheprbeat material. He admired and proclised, to a pertain extent, Mr. Hustable's ystom of placiag asimals on boande. It reold asawer is a pompact from with geod roacia, and in cold clinalets, to foed sheap in the grads an roots. In mild climates, and dry friable apils, it Wer most advantageons to connmes the rools and green crops an the lasd bJ falding trith shaop. Thore ras mo appance of carting of asd cariag boak anoure. Fargope hod fomed ont that tha whole of the es crements were thas applied to the land, whereas in open yards wich sumonchad hoildings, moin rat manad ont and montrd. He hapod to nee tho time whes topants would comidiar it to bo thois ioterset (as io pata of Siapthad) to pay 10a, per acre more reat fol properh firnued, permenent, and aparenient huildion and draisege, in liag of the minerable and min. flaped dilopidation of the present time. It wea no daubt partly this difiprance that eaybed the Soatch rentes to eppay higbar than ear own. He was a decided sumaciler to the depth of at leact two fcot. It was a oheap and effeotive way of getling rid of atrong roeted weeds, their erowns boigg enarally juat below the ordinery depth of plonghing. He did this in dry wather, and with the maigtange of a beavy Crosstil roller and saacifint, made hia fallowt abeaply, quickls, and efinoientls. He drillad his wheate at intervals of about 0 ischeen 80 as to hoe thes with Garrelt's horg-hoe. It cost abont ls, per acres It wan far more aspeditious and efficsoioos thap the hand-hoe, and only cont one-fourth the anonot. He stroegly ad. voasted the shasdant use of oil-caka, and also of chalt on heavy ciega defiaieat in calcaseose matter. It had been proved that mach more prodoos bad resulted from ail-ake folding than whara an equivalan ampuat was expended in corn. Good bigh furming wes by for the mont protable; the starvation prineiple was a losing game. If we borrowed from the earth we must repay, of we should noon find an empty exchequer.

The Rev. A. Hoxpable then rose and spoke to the following effect:I think this by far the mosi intereating agricalingal meetiog that I have ever altended, on aceount of the variety of important views and practices Which have been broaght under onr notice. For my own part, at so late a period of the day I mest oontept myself with adducing a few facts that have come witbin my owi farming exporievce, and delending one or two poipls of my farming practice which have been glaneed at by the precedine epenkers, An I wee so many lasded proprictors aronad ma, I moset bog permisaion to impress on them the duty of allowing their tenants to breat up, under proper reatrictions, the poorer laads now Iyiag in great. I thinh that I can abow from my own experience that aational wealth, the profite of the teanant, and the interats of the labourep, are deeply concerned in copvertiog poer pasture into tillage. Thos, in m own pariah, five years ago, there being many labogrers ont of employ, I obtained the concent of my landlord, M r. Sturt, to break up the whole of the greas Lunds of a saedl dairy farm. It oonginted of 95 acres, 10 of which only ware then nader the ploggh. When I entared on the oceupation the farm oupported 14 dairy cows, and grev 48 buabels of wheat and 40 bashels of beans. Now it anpually produces 1,600 bunhels of wheat, 40 head of catle, cowes, yearlings, and calves; and 100 shaep are fasted, and 80 pigs, and where 31 labourers were employed, 12 are mow sustaised all the yeur roond. But the furm, geptlersen, Jabours usdor ane emherrasment, such a one is I wiab you all felt-such an soenmulation of manuse that, with the foar of hid wheat orops before ray eyes, I ksow not where to place it Allow mo to dotail briefly the ateps by whioh this surely happy resolt has been brought about. I began at the begioninge 1 first drained the land; but of drajing you have heard to-day so mooh, thal I will only sey that thongh it has been most soccesafol, I yet heartily wiah that I had earlier known Mr. Parke's deep drainage. My fields would have been far more econon mically and effectually rid of their bottom Freter. I tried when this was done to improve the herbage of some of the bettar pastures, bot meither liming, por sheep-folding, per guavo, enabling me to cut more than 15 cwt . of hay per acre, I paned and burat if all, and cut down, by my kind landLord's leaye, all the hadge-row timber, and grubbed up all save the bonndary hedge, and have now a glorious farm. The next object was to provide for the permanent fentility of tha soil by keeping a large exeount of stook; for I hold that a farm onght to be mado self-nupporting as far as possible, and the purahace of mapores ehould be regarded as only a temporary expedient ma neceseary avil. My first effort to oonsame the grean crope grown on half my farm was very expensive, and therefore nosacceseful; for with regard to the beast, I was forced to purchace a rainous amount of straw, and the abeop ealing off the Swedes on clay land in winter poddled the fielda, and were themsolves amidat good food ohjeots most pitiable. Bnt when our principles are good, we must not allow elight difficalties to stop their application. I therefore determined to place my milch and stora ontlle on boarla, an wood is an excollent mon-oonduotor, abd after a meries of devices I have ancoeeded in making them tolerably comfortahle, to that I am no longer dependent on my straw for the quanlity of catle whieh I Leep. I am only limited in the number of animals which I keep by the mount of green food grown. In lite manner, but with a variation of are rangement, the sboep were pisoed on small boarde aboot $3 \mathbf{i}$ inches wide, with an interval of about \bar{z} lagh botween each, to parmilt the manere to fall
fraly into propacly pragaped tank below. This is by fas fine ment and cenatul provision which I have made. Of 1,000 aheep so placed I heve never hod one lame. The pigs, ia like manner, when fattened, sleep on a boarded atage above their foedliag-place, and oxcept in very cold wreather require nostrat for littar. Thus I have dispenced with a lagge expendin ture of straw, whigh my cernals (half the farm) could not gnofleimotily provida. But I hear eome ope azcinim, "What do you make of your ttraw ?" First of all, a good deal ts still required for bedding the horaeg, and the young slock which are in loose boxen; and as they never tread the grees Gields, they require a great quantity of white bedding. Secondiy, a great deal is wanted for food, belag mlxed with the greea leaver of the root crop and the masbed tornips. Thirdly, a tor per acre is used ln makiog clover and vetches into imperfectly dried hay, with a due admixture of salt to arrest fermentation. These uses fully take np all the straw which I grow. I think the methode omployed in preparing the manure from the " boarded" catale deserve mention. First the liquid manure lows into large tanks: below them is another, which I call the mixing tank, for in it the manare is dituted with waler to any degree waich the state of the weather may require, the rule being that, io proportion to the increase of temperature mant be the lacrease of dilution; i e. the botter the weathor, the weaker shoald be the manure apphed. In order to avold the expensive and ofver injurious water-oart, I have laid down over the highest part of my firm a main of green elm pipe, of 9 inches dimactar, bored in the solid wood; thevery 100 yards distance is an apifit post, bored in the same maneer, with a nowele. A foreiog pacup fred at the miriog tate disoharget alogg these pipee, boried 9 foet ia the groand, the fividi with a presance of 40 feet; of coanse it rusher ap these pierced colurms, asd will disoberge itcetf with great velooity through the nosele; to this I stiach flrst of all 40 yards of home, and thorowith wecter all the graes whied it cala reach. To the end of thls boeo aoother 40 gards of boea is attaohed, and a still larger portion of the surftee is irrigated, and 30 on for as masy 40 yards as are required. When eeough has boea irrigated at the first upright, the nonale is plagged, and the fuid is disoharged at the nazt 100 yands dintaneed collama, and so on. For this application of the hose I an ontirely indebted to that moet able man, Mr. Edwin Chadwrick; the green olm pipe is my own contrivance. The cost of the prepared eanvas bose, which was obtained from Mr. Holland, of Manchester, was ls. a yard; the wooden pipes oost me ouly lan, and belog andergromad they will he most enduring. By an outlay of $\mathbf{3 0 1}$. I can thus irrigate 40 ecres of land : and see how inezpensive, compared with the use of the weter-cart and horae, is the application. A lad of 15 works the forcing pump; the attaching the bose and its managoment require a man and a boy. With these, then, equivalent to two men, I can easily water two acres a dey, at the rate of 40 bogsheads per acre of the best manure in the wrorld; i say best, because all chemists will seoure yon that the liquid contains the principal aitrogenous and solable salts, and therefore is far more valoable than the dang, and it is plain enough to every unat, thengh he be no chemint, thet plants can onjy take up the manure in a ligoid fara. The prinoipal nse which I make of the bow is to waler the clover, and, above all, the noble, but this day mach-decried, Italian ryo-greas. How hard Mr. Woodward was upon ils soft sweat herbage! Yet his own ax. cellent princlple, that you mast carry back to the land an equivalent for what is taken away, may be successfully alleged in defence of this ment prodactive and notritious of all grames. It is dertainly trae that if yon cut and carry awny Italian ryongrate, and do not also earry bact the menure made in eating it, you will not be able to grow wheat after it. Bat from my own observation I know that if, after cach outting, the tow imperdiately follows, you may cut it withoul wrong to the land es of ten as you like, and an anomat of fodder will be oblained which ae other platil can approach. It comes the earliest, and it grows the leagost of all the grasses; and I feel confideat that with snoh appllances as I have meteLioned, you may secore fifty tons per anoum of this milk-giving, fato produoing, muscle-making, grese. I refer to Mr. Diokineon of Curmos atreet, as as anthority for growing at least this woight of green food, and I beliove far more. That you can cut it, by the holp of liquid mansre, tix tlmes a-jear, adeaits of 0 doubt. With regard to the menure made by sheep, as previouely described, you will radily perseive its value if you reflect that when you give flock in their honse twenty toms of Swedes and their tope, you have miaus only the increese of their bose and woel made during the thrwe monthe of thoir happy conflament, all the inorgncile and most of the organic ingredients of the orop being under the bonrds; in fret yeu many say that on the boards you hare a fatted foot, aod below tho boards yet twenty tone of Swedes and thoir tops. I think that a good deel of misappreheasion prevaile respecting this mode of ched-feeding sheep, for you bear frequent comparicon suade on the coporior oytuem of feedios off crops in the fields. I have so dombt thet in the summer montbs evee fatting shoep will * do woll" ont of doors, and at the mame tire fortilise and coesolidetie the land; but I speale of feeding of winter orope by sheop which you wish to fat; and here I capnot thiok that the two syeteme admit of compartion, so seperior are the resalts of the bonse and boand syatem, But the conditions mader which an antmal is to be rearad aro quise difirunt from those which yoe would observe in laying on fat Is the oos onece oxeroise is absolately neoesary; in the other case, the quloter and more ethl the orpatore in leept the better. Bricly, theo, my own prectioe, which science surely juatifies, te this-the grember proportion, abont two-thirite, of my boet roete are carted to the sheds, and givee to the animals preparing for the butoher, whereas the tops and smaller thridps

 kept in healthfol exercise. Lastly, I must advert to the treatment of the deog made by the cattlo and piga, That on the bourds is hourly swept down, and wheoled amay to a long covered shed; contiguons to this is enther whed cootainias a lurge otove of borat earth and othor achoen The dang is worked up with the ashes, aed therewith is wital the ether maturbe, fiswotved bones, soot, powdered chatit, teo. This, aboat 8 or 10 cart-loads per acre, is carted to the field ready for turntp sowtag. The manare is drfiled in by one of those that deliver molet masare, and thas oighte aceen cea bo grot over in a day drilled on the that. If the fold is very peor, the drity gees over foer ecres is the morning whent aned; in the afternoon the same quantity is again deposited in the mate rnet, ard the geed upon this doable disobarge. The advarth of of this in, thet the darg is mever axpoed to the dryligy of the son or air ; that the gend boing do ponited over a moiat bod, germipates immodiately in the drinat measen, and cares not for the fy, though for the prevalent grab it is certaioly no rowedit.
 feed them on is in the shape of beans, which contains the tevt mineral togredient for growing Swedes, as I have endenvoured to set forth in wy "lecture on manuren." Tbese, geoclemen, then, are the principal points of the preotice which has browght we toto that plotidot amberrasemont of which I spoke before, and which I with mey beadl you all-mere manie chan you cat eafoly pot oe yoor arable laced.

THE REGENT EXCAVATIONS AT POMPETS

Kansma, Oct. 2.-In the magnificent street leading from the ancient seanchore, in the neightoourhoed of the thestres, to the merelled eroesway of the Fortann, and thence in a direct line to the northern etty walt, there hes been excavated a house that surpasees in richnest and degance all that has been discovered previously. The apace of the court-yard is open, has a mosaic parement, and on the whlls fantantic pictures of the richeat and mont tastefal teyle. At the ades of the atriam (coart-yard) are amell sleeping reoma, whit to following wall paintings:-Polypheme, who recoives a letter frow Galatea by an amorino riding upon a dolphin; Venus occupied with fshing; - Narcissus; few awimming gode of Love; : Victoria open acar; and several landecapes. In the beckground of the atrium opens a teblinum (the seopption-didl), with chequored marble pavement. On the Falls of this reots must have been wood paintinga, at the spaces whieh they once filled are still pisinty seen, as alco the charcoal remaiss of thowe paintinge. They were, perheph, from the hande of those celebrated matert who, nceording to Pling, preferred peinting upon wood. At the side of the reception-hall is a dining-room, where are seen three large paintings of full-size figures. Thoy roprowent Horoules with Oonphalo holding hin ciot, wad wrappud in the stio of the Nemean hon. Next, Bacchns at a boy, and arm-in-arm with Silenus, on a car drawn by two oxen, and followed by Bacchantes. Thirdly, a Bacchanal proceasion of triamph. Here were almo the Triklinimn reposiag beds, richly edorsed with silver.

Behind the reception-hall is the garden, with a foontain at the ead, which as adorned with mosaic and a moll marble atatue of Silonos. In the centre Is the water reservoir, sdorned with rich marble scolptures. This dwelling joine a second opon atrivan where the servente lived. Here was found a four-wheeled wagon with iron wheels and much bronze ornament. The
 were in many places still visible, after the lapse of efrbteen centories.

The dwelliag had-what is very rare-gecond aod third stories, to which led a wide staircaso. Upon a smail picture close tu the staircate lies a Zetior with the (ecarcely logitole) mane of the ownor of the booee, is oblique
 or senators of Pompeii.

The touse has tberefore been christened, Cass della Sonatrice, or dell' Ercole Ubbriaco. It is the newest excaration of importance

NOTES OF THE MONTH

Royal Imatitute of Britieh Architects.-The fordinary meetings of this Intitnte, for the seasion 1847-48, cemmonce on Mondry, the lat inat, and wit be continned es follows:-

1848

Tithotraphy.-Messrs. Hallmandel and Walton have feronred as with some apecinens of their,now process of "stamping" in lithography, showing its adzantages for represeating architectural engineering, plans, and mechandeai sabjects. The tints approaab nearer the nature of a wash than ordinary lithography, and the stifle-aion the advantage of forming a com-

 from the irfertor spectite gevily, stritien above the cheth Aoofico great

 bulkhead, or on pascing through it. Tho ungrester, thoegh obly the

 How, oon prestion, fiction, onage of owadition, it will be dest the the

 cimeted onfer the torm onlorto, are nothing more then the ofiesta of monowa This prioctpits dievined and properly widerticed, fovoiver a modinetion

 change in the stemmarine would result.
 Paris, the result of a series of esperiments with a view to eseertain the proportion af motala to be oned in clocks in order to entablish a perfect compensation. Hiherto, although very targe sums have been expended in experiments for the prodaction of compensation clocks to keep true time, no really satinfactory result has been arrived at. M. Laugier deciares that perfect compensation may be gained by employing the following metalay and in the following propertions: iran, 100 ; copper, 135 ; zinc, 109 ; plestina, 147 .
Atmospheric Rays-Colours of the Herizomond paper wes likewise reo ceived from M. Choron, on the peculiar colours visible on the horizon before the rising and after the setting of the sun. These colours of orage, yellow, red, green, and blet have bitherto beew ascribed to atmospheric absorption of certain coloured rays. M. Choron ancribes them to the earth acting as a screen, and shetting out the whole of the white light above the horimon: He give a meries of oplical axperiments in support of his opinion.

Fortifications of the Southern Coast.-It is reperted that, in consequence of a determination of government to put the whole line of the southera cosst into a more efficient state of deferce, there are to be sereral powerful bacterios ereoted aloctg that strotok of land comemenoing at the Oactle port at Dartsoratb, at the bartori's moth, to the Stert Yofat; ard that the men now on the Coast-gnard daty whl be regularly trained and angmented in number, so as to constitote a discipltned body for the immediate. duty, if required to work the oowly-formed batleries.

Vatue of Land rectubned from the Sed.-A fev duys age wore offeren for sate, thy the Nene Oofiall commistonert, at W iabech, 900 acres of lath, in 27 lote, being their portion of between 8,000 and 4,000 acres gatod from the sea, by the completion of their great work. The lots varied from 7 acres to 180 ; and the reserved bid varied from about 45l. to 801. pet ane ; and thougt nooe of the lols were sotually sold at these prices, above 60l. per acre was bid for ote lot, coatelaing 109 cares, and for come of the canaller lots higber prices were civered. It is but a fow years age that the whole of this valuabio land formed the bed of the \mathbf{V} tsbech river, and from the rapid deposite now going on beyond the barrier bank, another portion of freen 3,000 to 4,000 acres mey be added to terra firma in the course of 4 fow jears.
The Lau of Atmonpheris Resistance.-Professor Davies of the Fuyal Military Acedemy, bes promalgated is the Mochanice' Magazine, the following law of atmonpheric resistance (the afmonphere being homogereon whinin the limite of the problem) to the aight of a projectile :- " if o bo the velocity of a shot at any point in its path, and P be a constant deperdIng on the physical condition of the atmosphere; then the resistunce of the atmosphere the progrese of the chot will be $P(c-1)$: and $f x$ is guch a fanction of x as to vanish with x, and which is under ordinary conditions but slightly different from x itself, In fuct, I am led to think thok the errors arising from to lakiag $f x$ are 00 ecoall te to be loes than the probabia error of experiment, as this class of expertmeats lise beva hitherto made."

The Ectipse．－The meteorologioal observations made at the Cambridse obervatory during the eclipee on the 9th October bave been published，as fothows：＂The changes in the bafoneter and hygrometer were very imall， bat suffiejently considerable to show them to have beed in some measure affected by the phopomeson．The observations were taken at interrals of from 10 to 15 minates．At $\mathbf{6 h}$ ． $\mathbf{O m}$ ．the barometer read 89,938 in．，and until the conmencement of the eclipse showed an inclisation to fall．At the time of the greatent obecuration，it remained atationary，and immedi－ atoly after it continued to accend ；foally，at 8 hb ． 45 m ．，it read $\mathbf{2 9 , 0 6 3} \mathrm{ia}$ ．， having thas accended $0,030 \mathrm{in}$ ．in $2 \mathrm{~h}, 45 \mathrm{~m}$ ．With three common thermo－ eeters，one with the bolb blackened and exposed to the non＇slight，anothet with plain bulb in same position，and the third in the sbade，the readinga were plainly affected，thougb to a small amonnt，remaining mostly station－ ary as the sna became obecored，and rarying repidly as the phenomenon paceod off．With hygrometers es posed to the sun＇s light，and io the obade， the differences were uniform，followiog the alame range as the common thermandelers．Owiag to the mointure in the atmoephere，the wot and dry balb readiage were pearly the same，the differencen being at commence－ ment of ealipse－Wet below dry； 0.5 deg．；at greateat obacuration， 0.4 deg．；and at termination， 1.0 deg．＂

New Reilemy Carrige．－Mesgrs．Adams，of Fairteld Works，Bow， have jost constructed some improved carriages fur the North Woolwich bradeh of the East Counties rilway．They are 40 feet in longth，and 9 feet In width ；the extra width being gained by bailding the carriage fremes to the width of the ordinary atep－boards．More is thas accomplished on the narrow than has yet beea on the brond gauge，where the earriages are ooly 8 ft .6 in ．in width，by 28 feet in leagth．The extreme axles are 30 feet apart，and being on eight wheels，these carriages are obviousily safer than those on six wheels or on four．Notwithutanding their length，they will pass a curre of 200 feet radius by means of the flexibility and arrange－ ment of the aprings，which permit the wheels to traverse laterally．The boffer heads are also made to rediate with the springs or curves，so that they preas Armoly under all circamstances．The carriages are fitted up in Soor compartments；one first－clase with couches all aroand，and a table in the centre ；the other three second class．They will carry about 100 pas－ sengers．

Obitwary．－Mr．Cottingham，the architeet of several cathedral reatora－ tions and other public works，died on the 1ath olt．，at his realdence in the Waterloo－bridge－romd．
Death of Vasques．－Senor R．Vasques，member of the order of the Jesaite，and of the Acmemy of Fine Arts，the most able architect and engineer in the Peninsala，has just died in Spain．He entered the order of St．Igantius，but continued ardently to parsue his profession，in which he was extremely succeasful．He wos eagaged in the immense ouder－ taking of opening a tanael in the mountains of Gundaran，a much more dificult task than cven the tnost celebrated tunael of Europe，when he was soddealy atlacked by an illsese which carried him off．

HIEX OF zUEW PARBITY

obaytid in mxeland foom Beptimaer 24，to Octobiz 21， 1847. Sir Mouthe allowed for Bincolment，wilmes otherwise espresod．

Charlen Bancoetz，of Brorapton，Middiewex，geotlemen，for＂Imppowementis in the pre－ partion of gatta percha，mod In the epplicatioo thereof，alone，and in comblation with other materiali，to verious manufucturios purposen．＂－8ealed Beptember 84.

Thomen Noore，of Burnley，Lascater，for＂certaln Improvernants in looms for meare ing．＂－8eptember 80.
William Edward Newton，of Chancery－lane，Middiesex，for＂Improveneota iv me－ chtinery for the mannficture of nete and nettiag．t（ 4 eommupleation．）－8ept． 30.
Eichard Jobneon，of Mapchetter，wire manufacturer，for＂certain Imprevemente to the mamuftecture of wire cloth．＂－8ept 80.
Charies de la Saluede，of Parls，geptleman，for＂Improvemente In the brasolng and bropsiog the aurface of steel，iron，sloc，lead，and an．＂－8ert． 30 ．

Robett Hawling Nicholls，of Thuriby Grange，Boorme，Hocoln，gentleman，for＂Im provemeat in machinery for dintribatiag corn and otber grain on land，and aleo troprove－ ments in giving motion to egiculturil and other machloery．＂一8ept． 80.

Ignado de Barroe，of LAsbon，Portushl，geatlemen，for＂Improvemente in mechunery for mating late for boote and shoes，buttit or etocks for surearms，and other irregular forme＂（A comprovientlon．）－Sept．80．

Charles Jey，of Bathurst－atreet，Byde－partz Gardens，Midilearz，gentieman，for＂cer－ taln Improvetueute In epparatus for evapornting and concentrating saccharine and ealipe coluthons，and which may be slio applicable to the evaporation and concentration of ngetsble and other entracts．＂－8ept． 80 ．
Pherte Arguate Bagatume，of No．11，Bue do Cretroant，In the City of Parle，Futileman， for＂a new proceas for the preparation and engraving of piater，adapted to the priatian of cotion staifs，peper，and ofher anbetacers．＂－Oetober 7 ．
Nathaniel Porteacue Teylor，of Yaurbsll Walk，Lamberh，engloeer，for＂Improve－ aepta in machinery for prinilog and atalaing paper and other nobrica．＂－October 7.
Jomeph Wye，of Alfred Place，Saint George＇h，Sonthwark，angineer，for ${ }^{4}$ Improwe－

James Pearroa，of Monlegut Terrace．New Crom，englaer，for＂Improvemeate in ocomolive englact and carriores．＂－October 7.
Alezander Bala，of the Wifiernese，Banpton Wick，gentleman，for＂Improrement

Str Semuel Brown．knight，of Vaplorugh Lotge，Bleckhmalh，Xent，In Fer Majasty＇s Havy，for ${ }^{4}$ Jmprorementa in profeling and ateerto vesaels，and improvements is the marliet＇s eonspase＂－October 7.
Cears B，Dodse，of A tileborough，In the gunte of Memachnceito，of the United gins－
of Amerca，for＂certain new and nuefal improvemanis in machnery for spinaing and wiading yara．＂－October 7.

Thomas Hunt Barber，of King－etreet，Cheapoide，gentieman，for＂Improvemath in machinery for propelling vescels．9（A communicmtion．）－October 7.
John Tyrrell，of Greal Ormond－gtapet，Queeo－equase，Mlddlema，eatof for＂cmitaln In－ propemeats in the manatuctare of olante findics from maleanised indian mbier，cute perchis，of certalo abronas materials．＂（A communication．）－October 7.

Jame Eartley，of Sunderiand，gites manufactorer，for＂Improvetnente in che masa tacture of gimen．${ }^{\circ}$－October 7 ．
Jales Jean Baptinte Martin de Wiganc，of Portland－atreet，In the connty of Midilease． geptleman，for＂Imprevements in preserviog mlli，＂＂－October 7.
Bichard Peil，of Wluchenter－street，Loudon，engineer，and Jamen Pell，of Ostemd，is the kingdom of Belfium，centleman，for＂certain Improremeoti in obteining and apply in mollve power．＂－October 7.
Charles Froderick Ellerman，of Brompton，in the comaty of MMdleser，gantleanan，for ＂certaln proceanat or method of rendering feculent，eccremental，and other mettert ipodorous and dibinfecting，and also of retmriligg the putrefactlon of andmal and vegetable eubstances，and certato chemical re－agente employed in the sald procences or mohods．t －October 7.
Mathow Towneend，of the borough of Lefcenter，trmanewortc－knitter，for＂Improve－ ments in the manufacture of looped or traltted febrice．＂－October 7.
Alfred Vincont Newhos，of Chancert－inne，mechanlcal draghtoman，for＂erialn Im－ prowneote applleable to the conatruction of hoors and ofber partis of balldinge，and also to certaln kinda of furnitare and Atinge for buildingu．＂－October 7.
Plarre Antoine Joeeph Dajardin，of Lile，in the hingiom of Prasee，doctor of medicine， to＂Improveosents in electro－mpretle telegraphic apparatas．＂－Octeber 7.

Mathew Pierpoint，elq．，of Worcester，for＂certalv Improvements in the diatribution of artibctal lishi＂－October 7
Sacnuel Cunalace Later，gentleman，and Iateg Hokden，worted－aplaner，boch of Brad－ ford，for＂Improvements in carding，preparing，and eplaning wool and other fibona anbitances，and aleo in mating heak and Genappe yards．＂
SIr John Scott Llllk，of Folhan，in the eonaty of Middleser，lruight for＂Improve nenta in machinery \quad qplleable to tllage，and for agricultural parpoees．＂－October 14.
Thomas Horne，of Birmingham，for＂certain Improrements applieable to cardere Findome＂－October I4．
John Thang Farradiae，of Hollywell cum Noedintworth，In the coanty of Hantiogion， John Thang Harradine，of Eollywell cum Noedintworth，in the eoanty of Hantiogoo； farmer，for＂an Improved acricultur
agricelcural peponet．＂－Ochober 14．

David Fisher，of Clerteoureld Green，Middienex，for＂certin Improvemants th the manufacture of boote and shoes．＂－October 7
Prancls Loyd，of 8now Hill，in the connty of London，tobecco mannfocturer，for＂cer－ tala Improvementa in the preparation and manaficture of tobeceo．＂－Oetober 14.
Mathow Corts，of Manchester，machinist，for＂certaln Improveneat in machione
 preparing to be woven and weaving mabetancea when span．＂－October 14.

Bartholomen Bealowalt，of Bow－streat，Covent gardea，Middleses，for＂certin Int． provementa in the apparation for and proces of prindog．＂－October 14．
Joueph Maudgiay，of Lambeth，Surrey，for＂cartain Improvenente In the marugetime of eandles，parts of which top provementa ase applicable to the manafictare of ofler moulded subatancen．＂－October 14 ．
Alfred Vhacent Newton，of 66，Chancery－lane，Mldilesex，for＂an Improved machinery for bloomlag Iron．＂－October 14.
Arthar Wall，of Indin．row，Rast Indin－rond，MIddlesex，for ${ }^{34}$ E pew or improved apio－ atwi for a method of eeparsuing oxides from thelr componnds and ench other，＂－Octaler 16

Robert 8tirilat Newall，of Gateabeed，Durhan，for ${ }^{\circ}$ certafo Imprevements in me chanery for grinding Eraln，palath，and other mubatances．＂October 14－
Patriek Playfir，merchant，and Laurence HiH，Jan．，civil engineer，for＂Improvements In the manufferure of eogar．＂－Ortober 21.
 meats in the manufacture of paste boxen，and other dimiter articing，is chtan and carthers－ were，or other platic materinis．＂－October 21.
Whiliam Geouwych Gard，of Calstock，Cornwall，engioetr，for＂certaio Improveraete In machloury and Implementa for boring and ainlivg．＂一October 21.
Bobert Richandion Banth，of Great George－ntreet，Westmionter，for＂a new methed
 31.
 mulcatlond from one part of a railway treln to cociher．＂－October 21.
Broote 3 mith ，of Birmingham，manafactorer，and Blichand Ford Burges，of the mat place，for＂E certalo Improvement or certatn Improvemeata in apparatis for ititerione＂－ October 21．
Jemes Beville，of Walworth，Sarrey，for＂errain Improvenents in corverhas anede and paegengers on rallioeds，parts of auch las provementh belot applisable bor woricing er drifing other dencriptions of mechlnery．＂－October 81.
Rlehasd Sbaw，of Gold＇s Green，Weat Bromwieh，8taford，rallmay bar Anlaber，for as Improvement in the manafectare of wrourhtifon millery bariand nallmey chatite m October 31.
 ratus nied for ironing．＂－October 31.

 fibrles and in moalding vation articles therefrom，${ }^{\text {h }}$－October 91.

A QUERY．－Suppose（P）ponads raised oese foot hist per misate represented the power required to roll a certain cylinder over a certaic unilorm infexible road at a given rale．Also suppose（p）pounds raised oina foot high per minute represented the power required to cruch a certain uniform substance piaced equally throughout upon that road．［That is， the power required to croah just so much of that subintance in any sivea time as the oylinder came in contact with duriag that time］．－Qmentim． Would（however great the dimmeter of the ceid cylinder，and bowever greal ita weighl）as nuch power as（ $P+P$ ）pounds raised oos foot high per minute be reqaired to move the suid oylinder on the said rond over the said substance at the given rate，that substance being crushed thereby？

J．W．

THE NEW YORE FUBLIC LBRARY
 ABTOA, LENOX AND TKOEN" FOUNOATIOMA

RAILTAY SUSPENSION BRIDGE.

(Frid an Engraing, Plete XVIII.)

At the lant meotiog of the Institution of Mechunical Engineart, beld at Birmingham, s paper, by Mr. A. E. Cowpis, of the London Works, what
 Alvin purpomen"
In briaging before the lantitution of Mechanical Engineers a paper on a peceline form of bridge, I ought, perhape, to apologise for introducing matter Whint mas by come of our friends be thonght to beloug more atrictly to our drll brethran; bat poetibly before the concludion of the paper, I shall have anticipated amy objection which might have been made on that soore by abowing, is point of fret, that I have only been axpiaining a piece of hoiler. miners woik, ad which may antainly be considered to be fur onough renoved trean divil engioepring. The objeet of the preeent paper is to call the ateman of endiovert, and milway dirsction geacrally, to a mode which I Heve fereated of comatrocting ampeaion bridges in meh a wey that they shall not be throws ont of chape, or in any way distorted, by the weight of a papiag load, whether it complete of a rallway traia or oaly of the ordinary teatice of a coremon roed. It is well known thet ampeasion hridges are doeidany law canly than any tome bridgen, and we may add than most iron beldytu, whea the apan in at all above the leagth of an ordiang sirder; and although many persoas have turned their attention to theon, particularly Which regurd to thair nue on rilway, I am not aware that any nupponion bidey hin ever been made, or propeed, that vee at all competent to carry the wiffet of a railway trein is motion, or, in othor worde, that should be anfo te a rillway bridge, My attention was perticolarly ealled to ancpension butiges by the propoeal of cerring a rallway over the Hengerford-bridge, or over a bridge pleced alongide of it; and it appeared to me that the wright of a paodisg tria would so move and distort the chaing as to canse the road very soon to get ont of ordex, if not sctrally to give way; and I then schemed the plan of meling atoln of spoh depth as to fadede any altarntion in the carre of the strain that might take pine.
The corve which the chaing of an ordinary mepeacion brlige take is Eall known to be a catenary, or rather a curve between a catomary and a parabols; tt would be a true paraboin if all the weitht were in the platform, and a trwe entenary If all the wrefght were in the chais. Ab, bowever, the difterence between soe eatemery and the parabole is very alight indeed is that pertion which would be used for a brides, we may amome it to be a catenary for all practical parponea. Now, on loading an ordinery aupeasion bridge with eren a amall weight, it at once aspomes a dinterent carve (uolem the weight be equally dintriboted over the bridge, and If the weight be large, it will temame s very difierent curve; so mech, indeed, will the form be altered as to injuse or atrin the material of Fhich the platform or road is cemposed. Now, it is evident that, if the road has to dictribnte the weight, it munt be a Fery strong and wilil bean, or, in fact, a girder of the full length of the beldge; and the etrength of this girier would very nearis be equal to carry. tige a quarter of tha wrifht of the lond in the centre; it in, therefore, ovident that the plan of formint a stif platform or roed for a rallmy sumpanion bridge, althoagh by me manas impoulble, mut be at loast helf abandoning the suspeacion priacipio, and be the cana of greater ontlay. The plan of leoping the roed in elape, by dintribating any weight that adsht come upon it, by meage of atrong diagonal ties, was the funt Ides that I had; but it will be foand by calculation that there diagonals would have to be very stroag, and of coeaiderable helght, thereby cauring the total depth of the bridge to be mench greater. But the plan on which I propoee to construct suspeasion bridges eapable of carryiog railway traloe whont baing in any way injured theroby, faply to construct the chain of such depth an to include the arre of arnatu whea the wotght is placed on the bridge in the most unfe. verabis poettions. With this object I construct the chains of bolter plate of copatimable depth-acy three or four feet, or more-and rivet the whole Noll together withoot ans moveable joints, or moparate links, and at the top and bottom edges of the ehins (I etill oull them chaime, that I mey be cloarly radanatoed) I rivet or otherwise attech bars, etther fint, half-round, or asgle froa, so st to give ate mecomilation of metal at thowe parta, and at the seme tinas to reader the edpes of the chnins perfectly secore againat any tendency so rip or teat.
In the eagraviag, fis. 4 , it will be obwerved that there are two chalne, ewoh 4 feet loop, which mapport the ende of eroes wronght-irou girdort, in the pontion of sieepers, anch chain being compoed of fore bellar-platee, rivetted togother
in peirs, each piate being throe-efghthe thick, and at the top and bottom edfee there are eemrify rivetted strong anglo irome the suspeacion bere hase between the two phire of plates forming the chain, and are supported by a small aaddle, which bears on the top edgee of them. The eads of the eroen wroaght-iron girders are trmly secured to a light ith of boiler-plate, which rua along each side of the bridye, at shown in the crose cection of the bridge; the lower ende of the suspension-bas are secured to the ende of the girdera, with meant of adjuatment, so that the roed may be trimmed perfectly level when the bridge is Axed. There are alvo light diagonal tiee introduced, as shown in 18. 8, for more perfeetly staying the roed to the chaios, particularly in case of the breaky being appiled whitet the traln is pacsing over the uridge. The ralls, cither of the ordinary form placed in chairn, or of that form commonly called the bridge-rail, are anpported on belk of tim. ber ecarphed together, which ran loagitadinally throughout the bridge, and theac are supported by short balke of timber ranning from girder to girder, immediataly under the first. There are a meriee of diagonal tien pleced in the platform, 4 chown in plan, fig. 8. These act at a mean of atiffening the platform, and preventing any vibration or ahaling of the parth. There ano also diagonal tiee or stay-rode, by which the bridge is prevented from moriag or minging sidewayn. They are atteched to the piarn, and are very cimilar to tome used by Mr, Bruncl, cenior, in a bridge at the Isle of Boar. ban.

The ongraving thow a bridge 200 feat span, hatios the crom girders dight feet from centre to centre, and the chaiss four feet deep, which depth ban been arrived at by ectunl experiment; the weight of the roed from one line of ralle and the train is one tom per foot ran, and the wright of a train of locomotire 1 have manacd at one toa por foot rua, and this is allowing some margin for the continved growth of locomotives; and I have taken as a proof laed, two tons per foot rup; thus the wright of the loed, or dinturbing aver, will be jont double the weight of the bridec. I find the groatand diatartion of the curve etrain taike plece when the bridge is ealy half loaded-4 en from one end to the contre ; the earre then appronchen the bottom of the chala, very gearly in the contre of the louded half, and approaches the top of the chain in the contre of the unloaded half, whilet at the plow it apprometree the top at the loaded ond, and the bottom at the unloaded ead, as ehown by the detted Hine in Ag. 2. Again, if the atne load be pleond in the comatre of the bridge (covering ome-hall of the lameth), the curre of etrain will epproseh the bottom of the chain in the contre, and will epproweh the top of the chain at very mearly ope-ith from aech pier, whilet at the plere it will he maar the oeptre of the chain, bot rather sbove it. Take owe more onee, and we shall have diapoced of all the heary dinturbing tenciancien-ris, that of the eady loaded, and the centre lof unloadod; the carve of atrain will then approech the top of the chais in the cantre, and the botiom of the chain at about ono-drth from each ples, whilst at the piers the strin will be alightly above tho ceptre. I may add that, when the bridse ts fully locied througtoont, the curve of strifit is In the centre of the chain, throaghont ite laegth. I propoee to call bridgeo made on this pilan, "Inverted-Arch Bridren."

Phongenie E2perimente.-M. Clandet, it a paper lately read at the Acmímip des Scionets, Parta, containiag an acoonnt of varions photogenic experiaseth, atates that the solar apeotrom is endowned with three difiorent photogenile setions, which correspond with three croope susceptible of beigg ettribated to the three groope of red, jellow, and blve righ. Theee three sotione have distinct charnoters; each of the radiations has the effeot of Axing the vapoors of mercury in Dagnorreotype plates, but they are in otber reapecte so difforent that they canmor mingle or aunden anch other; on the contrery, they deetroy ench other. The effeot commenced by the bioe rays is destroyed by the yellow and red rays, and that which is produced by the red rays is dectroyed by the yellow. The offoot of the yellow rays is deatroyed by the red, and that of the last two is deatroyed by the bloe rayh. These chagges appen to lodicate that the chemical componad which covers the plate remaing alwaye the amo vader the verions infuepce, and that there is no ceparation or isolation of the cose stituent princtplee. By a proper applioation of this theory, it will be pose able to erince any image upon a plete, and yot lonve it is anch a efate as to receive a bew tropremion.

WOREING STBAM RXPANSIVELY.

When a steam-engine is working at any given speed, the preasure on the crank-pin is equal to the pressare on the piston resolved into the direction of the length of the connecting-rod, minus the force of inertia of the reciprocating parts when their velocity is increasing, or plus the vit insita of those parts when their velocity is decreasing :-it is required to ascertain the amount of this \pm pressure.

If the square of the velocity of any mase of matter increases in an elementary space n times banch as it would increate by falling through that spece,-then the force for that point or elementary apece must be n times the force of gravity, or n times the weight of the mane; that is, patting - = the velocity due to falling a given epace, and $\overline{\mathrm{V}}=$ the actual velocity,

but $v^{2}=2 g s$, and differentiating $v d v=g d s$,
$\therefore \frac{V d V}{g d s} m$, and for the destruction of motion $\frac{-V d V}{-g d s} \cdots m$
Let $z=$ the anglo passed through by the erank;
$r=$ the length of the crank;
s a the space travelled by the piston;
$V=$ the velocity of the piston $=\frac{d s}{d t} ;$
0 - the velocity of the crank-pin in the are $2=\frac{r d x}{d t}$;
$\mathbf{C}=$ the leagth of the eomecting-rod;
$c=\frac{C}{r}$, or the value of C in terms of the length of the crank;
$n=$ the force of isertie or insits in tarms of the mefght;
$P=$ the presure on the crank-pin carsed by the insita or inertin, or the valus of a reduced to the meaboaiont conditiong.

The space described by the piston is $-a b$;

$$
\begin{gathered}
\therefore s=r\left(\text { ver } z+c-\left(c^{2}-\sin 2 z\right)^{\frac{1}{t}}\right) ; \\
\text { differentiating } \frac{d z}{d t}=\frac{r d z}{d t} \times\left(\sin z+\frac{\sin z \cos z}{\left(c^{2}-\operatorname{din}^{2} z\right)^{\frac{1}{2}}}\right) \\
\text { therefore, } V=0 \sin z+\frac{\theta \sin z \cos z}{\left(c^{2}-\sin ^{2} z\right)^{\frac{1}{2}} ; \text { and differentiating }} \\
d V=0 \operatorname{con} z d z+\theta\left(\frac{\frac{4}{} \sin ^{2} 2 z+\cos 2 z\left(c^{2}-\sin ^{2} z\right)}{\left(c^{2}-\sin ^{2} z\right)^{2}}\right) d z
\end{gathered}
$$

The theorem $\frac{V d V}{g d a}=n$ may be pat in a more convenient form, for $\frac{\mathrm{V}}{d s}=d t_{1}$ and $\frac{v}{r d z}=d t_{i}$ therefore, $\frac{V}{d s}=\frac{v}{r d z} ;$ and, by subatituting, we have $\frac{v d V}{g r d z}-\infty$

The motion of the piston-rod and appendages is vertical; therefore, n mast be resolved into the direction of the length of the connecting-rod. By the mechauical theorem sometimes called the triangle of forcen, we have

$$
\begin{aligned}
& \frac{\mathrm{Ac}}{\left(c^{2}-\sin ^{2} x\right)}-\mathrm{P} \text {; or } \frac{c \theta d V}{\left(c^{2}-\sin ^{2} x\right)^{\frac{1}{2}} g r^{d z}}=\mathrm{P} \text {; consequatly, } \\
& P=\frac{c v^{2} \cos x}{32 r\left(c^{2}-\sin ^{2} x\right)^{t}}+c v^{2} \cdot \frac{\frac{1}{2} \sin ^{2} 2 x+\cos 2 g\left(c^{8}-\sin ^{2} x\right)}{32 r\left(c^{2}-\ln { }^{2} x\right)^{2}} \text {, the }
\end{aligned}
$$ weight being comidered nnity.

For the beam, let o be a fraction expressing the distance of the cenire of gyration from the centre gadgeon when the length of the radius of the beam is 1. Let n^{\prime} represent the force of Inertia of the beam at the point g : then

$$
\frac{g \nabla g d V}{g g r d z}-\frac{g v d V}{g r d z}-x^{\prime}
$$

hut of this force, a portion $=(1-8) n^{\prime}$ will be sustained by the centre gud. geon; the remainder, or $q n^{\prime}$, will be sustained by the top of the connecfingrod, which, multiplied by $\frac{c}{\left(c^{2}-\sin ^{2} z\right) \frac{1}{2}}$, gives the pressure on the ernant-pin due to the inertis of the beam, which wo will call P^{\prime}; therefore

$$
P^{\prime}=\frac{8^{2} c o d V}{\left(\alpha^{2}-\sin ^{2} x\right)^{\frac{1}{2}} \operatorname{gndx}} \text {, or } P^{\prime}=q^{3} P \text {, on the sapposition that the }
$$

end of the beam describes a staight line instead of an arc, which apponition hate been made by all writers on the theory of the crank.

The conneeting-rod has a componad uotion-namely, vertieal at the top (neglecting the arc), and circular at the bottom: theae two motioas may be resolved into verticel and horisontal. The ane of the inertis in the vartieal and horizontal direetions, rewolved in the direation of the length of the rod, will give the vilue of $P^{\prime \prime}$. Let the centre of inextia, in the vertical sener, be supposed to be eoncentrated in an andetermioed point p; thin point, when the upper ond is moving vertically with greater velocity stren the lower end, will be between the top and the centre of gravity; and when the lower end is moving vertically with greater velodity than the repper eed, it will be between the bottom and the centre of granity-practicelly, tit may beossidered to be in the centre of gravity.

The upper end will have pasced the opace s, tead the lower end the verticel upace r ver z, the point p will have pased a vertical apece δ, and

$$
f=s-p(\varepsilon-\operatorname{ver} x)=(1-p) s+p r \operatorname{ver} s
$$

when p is a fraction expressing the dintence of the aforemald point from the top, the length of the connecting-rod being unity; inserting the value of o, and differentiating

$$
d \theta^{\prime}=r \sin z d z+\frac{(1-p) \sin z \cos z}{\left(c^{2}-\sin ^{2} z\right)} d x
$$

and the vertieal velocity of the paint p will be

$$
\nabla^{\prime}=\frac{d \theta^{\prime}}{d t}=\frac{r d x}{d t} \times\left(\sin x+\frac{(t-p) \sin z \cos z}{\left(c^{2}-\sin ^{2} x\right) t}\right) .
$$

Sabatitating of for $\frac{r d x}{d t}$, diffurentiating and reduciang by the w triapole of forces," we have

$$
\begin{aligned}
& P_{v}=\frac{c \theta d V^{\prime}}{\left(\rho^{2}-\sin ^{2} x\right)^{\frac{1}{2}} g r d x}-\frac{c v^{2} \cos z}{32 r\left(\rho^{2}-\sin ^{2} z\right)^{\frac{1}{2}}}+ \\
& \cos ^{2}(1-p) \cdot \frac{\frac{1}{\sin ^{2}} 2 x+\cos 2 x\left(c^{2}-\sin ^{2} x\right)}{32 r\left(c^{2}-\sin ^{2} x\right)^{2}},
\end{aligned}
$$

which needs no farther redootion, inamach as thare is no vertical support to the top end of the conneoting-rod; coneequently, the whole of the isertia or insits concentrated in the point p in anstained by the crank-pin.

For the horizontal motion of the connectingrod, the inertin is concentrated in the centre of gyration, and the apece described hortzontally by that point will be groin z : differentiating and anbatituting, Te have
$V^{\prime \prime}=80 \cos 2 ;$ and ultimataly we obtain

$$
\frac{v d V^{\prime \prime}}{g r d z}=-\frac{v^{2} 8 \operatorname{sta} z}{32 r}=n^{\prime \prime} ;
$$

which will need redacing, because $(1-8) n^{\prime \prime}$ will be supported by the end of the beam laterally; the remainder, $g \boldsymbol{n}^{\prime \prime}$, reduced into the direction of the length of the conneoting-rod, by multiplying by $\frac{\operatorname{tin} z}{c}$ gives
$-\frac{(g \geqslant \sin x)^{2}}{32+c}=P_{\lambda} ;$ tharefore, for the connecting-rod we have $P_{0}+P_{A}=$

Let $W=$ the wight of the piston and rod and appendages; W that of the beam; and $\mathrm{W}^{\prime \prime}$ that of the connectiogriod;-men collootioy the adere reaults, we have

$$
\begin{gathered}
\pm P=\left(W+g^{2} W^{\prime}+W^{\prime \prime}\right) \times \frac{c v^{2} \cos x}{32 r\left(c^{2}-\sin ^{2} x\right)^{2}}+\left(W+g^{3} W^{\prime}+(1-p) W^{n}\right) \times \\
\cos ^{2} \frac{\frac{1}{} \frac{\sin ^{2} 2 x+\cos 2 x\left(0^{2}-\sin ^{2} x\right)}{32 r\left(\cos ^{2}-\sin ^{2} x\right)^{2}}-\frac{W^{\prime \prime}(2 \theta \sin x)^{2}}{82 r c}}{} .
\end{gathered}
$$

In the next month's Jownal, I intend to give a table of the value of \mathbf{P} for different anglet of the crank, when $W=1, v=1, r=1$, and $c=4$, which vill be about meditm value of c. This will reduee the above to the fallowing form : -

$$
\mathbf{P}=\left(W+i^{2} W^{\prime}+W^{\prime}\right) \times \frac{T v^{2}}{r}, T \text { being the tebolar number. }
$$

The practical inferences will also be attempted to be thown.
Roemdale, Now. 15, 1847.
M. N.

CANDIDUS'S NOTE-BOOK. FASCICULUS LXXVL.

"I muat swe ubuty
Witbel, as larger a charter an the windes
To blow on whoa I plemes."
I. It is an in wind indeed that blows nobody good. Penaye-liners . Lhrive apon accidents, "awful ocourrences." and disasters : a famine belps to keep them from starvation, and " a most tragical musder" from cutting their own throats. In like manaer, the "Arch and Statue" was a windfall to the critics-eapecially the small-fry gentry, who heving got their cue, roared out as lustily mencking doves. To that enormity, however, we seem to be now reconciled,-perbaps, by the irresistible argument advanced for suffering the Statue to remain, although the reason assigned was such an to canse some people to quote Johnson, and exclam-
"Prom Madbocough's aje the Leary of dotage Iow."
It is now the Palace which is the general butt of criticiem, or rather is beginning to become 00 ; for although it has been censured severely, ceasure is not as yet so nuiversally expressed,-many preferring, for reasons tolerably obvions, to be silent, and take no notice of it at all. Their very sileace, however, is most significantly condemnatory of tho Palaoe, since they would be fulsomoly lond with their praise, were it poseible in any way to commend it. Their silemee, moreover, betrays what sort of solicltude it is with which they so basily intereat themselves, and affect to watch over the interests of Art. Criticiam-honeat and genulno criticiem -is no respecter of pertons: it makes no distioction between Prince or Pecksniff; or if it made distinction at all, it would be to animadrert with most severity on bad taste and paliriness of taste in the former, as being decidedly inflneatial for mischief to Art.
11. One presumption strongly in farour of those who betake themselres to the practice of any art to which they were not at first educated in their yoath, is that they have been impelled to do 20 by a natural irresistible impulso towards it and a sincere affection for it. Accordiogly, when Mr. Blore abandoned his original profession of engraver for that of architect, there was reasonable ground for supposing he was instigated to do so by the conscionsaess of possessing not only a preference, bat auperior talent for the art which be thought proper to make bis new calling. It was not, indeed, to be supposed that be woald distingaish himself by any particalar ability in construction and other mechanical and technical matters, or in what comes onder the general term of business, yot it was rather to be expected thas he would display some tonches at least of geuins and imaginationsone of those felicitons noborrowed idens that not all the profestional training in the world will enable any one to produce. Nevertheless, it is preotsely in the artistic and imaginative that Blore faile, and faila most egregionsly; wherefore he may, so far, be said to signalize himself ogregionsly also. Reversing what the satirist says of Perrault, he has turned from a good dranghtaman and engraver, a wretchedly bad architect. Fondneas for architecture he may have; although even that may be questioned, since con amore feeling never impels bim to oxhibit at the Royal Academy,-a piece of forbearance in which be emulates another ahining Blory of the British school of architectare. He will not, it may be progumed, break through his rale of non-exhibiting, even out of compliment to the Palace, and yet he might talse the opportanity of ehowing his "nevr bailding" to very great advantage in a drawing, by representing it just as it sbows itself throngh a very dense fog.
III. An article in the New Monthly, parporting to be a "Secret History of the Coprt and Times of George IV.," contains the following intereating contribution to architectural history. "During the time the unhappy man
[Canhman, the sailor,] was anffering the senteoce of the law, the Priace [Regent] was oceppied in the inspection of a survegor's [!] estimate and plans for the erection of a bopse for the Duke of Wellington. 'A palace it shall be,' exclaimed his rogal highness. Lord Burghursh detailed to the Prince all its proportions, it occopying four fronte. The architect of this deaign is young Cockerell, and bis oxtimate five hundred thousand pounde, overg farthing of which, the Prince eays, shall be expended upon it Horf the mosey is to be rained is another question." It is still a question per. haps if this ame piquant anocdote be litula better then one of thome madore bite of goentp which the aqncoctors of "scorvt historios" so greedily swallow aod se oomplaceatly divalge. At eny rate, "young Cockeroll" mast know something of the matter, yot he seem disposed to keep the secret; motwithutanding that a deaign which would have requiped balf-e-milliga to excosto mast have beon comothing magnifiue, -the mere farne of whiols onght to have overwholmed the author of it with comajacions. It did not howevec, belp him to the patrooage of George himself, for when Bucktogham Hurse was to be metamorphoed into Buakingham Palace, he gave the job to Natb. While a to the Dake, be, perhaps, finding that the intention of building him 'a palace' bad cloan eveporated, bethought of building for himeelf a ang little hoose, for which he employed Ber Wyatt as his Vitrovius, and whiah, if not an arohitectaral "lion," demerves vary wall to pass for an architectural sheep.
IV. Another bit is at any rele curions, as ahowing after what fashion the writor underatood what be was speaking of.-W New Inaprovements! Watertoo Plece, opposite Cariton House, is beginaing to amume momething like an uniform feature with (the) fapade of Carlton Houes. The columat are compoend of belak sopporting a motelalding pole (!), and the latter aupports the entahlatare (1). Now, when the pole zots, down will came the mhole atrnotupe. So minah for the ecomony of the archilech." And to much, also, for the mene of the critic who discerned sonfolding poles supported by the colntans, and supporting the entablatere.
V. Without earrempondiag worthinces of design, vilee and geodneen of material ouly incrmace dimatinfection-that is, of the intelligent; for the npeducated in art-and who axe so far the valgar, the uninitiated profarmm oultwe, let them boloses to what clase of coelety they may-bave no other standard of excellemes than size and eat. Aak such persons their opinion of a bultilag, and thoy will perhepe tell you it is a very grand one, beasuse it is very large and all of stone, akhough it man mevertheless be in ifeolf a complete eullity, if cosadored a a prodmotion of arohiteotare, and bardly worth lath and plapter. So far from afordieg any anticfaction, it is truly martifying and verationes to fad, as is frequontly the case, saperior material amployed for what is exceedingly poor, if not positively bad in point of dosign. Mare than one structore aight be mentioned that, owing to the nofortanate durability of its materials, will latt to dingrace its anthor, nulan it abould have the rood lack to be metamorphoend --of whioh there have lately been one or two ingtances-into something quite different. More market-value is the criterion by which mont pernons steer their criticism. Tell them that a ploture cost a thousand gujpeas, and-O, the bypocrites l-thay will instantly pretend to admire it-to diecera a thansand beautios in it, although, in all probability, thay had actually turned op their noses at the very samo performance bed they hoard that it cost only twu ponnds, or that it was painted by eome Mr. Smith. Almost the very first question or remark of all which people aak concerving what ought to be estimated by its artistic value, relates to cont and prioe,-which is both exoeedingly valgar, and exceedingly English. It is the ordinary reverence for mere cost and sumptuouscess that has obtained mo much fame for Vorsailles, that monument of a taste at once frivolous and prosaic,-poetic only in the wastefal prodigality that stamps it, abowiog what reckless pro: fusion can do for utter barrenness of imagination, and how eaceedingly litule the utmont it can accomplish is. All that the most extravagant expenditore of money could effect was there done. Of money-power there was rantly more than enough to have produced the motelgcions moon. ment of architecture the world ever beheld, or fancy and conceive, if ther be any foundation for the almont fabulons atatements that have been put forth relative to its cost, some of which give a total of Five Huadred, others of Tuceloc Hundred, Hillions of france ! Of ant-power, however, there was none ; neverthelems great influence for perverting tasto thropghout all Europe.

V1. Thom who are so exceanjuly rigid in their notions as to tolerato no imitative materials for decoration, bul would promeribe them altogether an "sham," and of conrec very pultry aleo, so matler how artistically they; may be employed, and how excellent tbe effect produced,-such persons, I may, mant feel quite scendalised at Sir Walter Scolt's taste in carrying
"sham" to the eutri exeem which he somotimes did. Verily the great novelitis love of fotios ment have beea quite overronafag, when be directed Mr. Hay to palat him danat fremes to pletares-a specion of deception to inartictio-or rather a mere altempt at deopption, which fortantly betrayl ftrelf to the eye, that adwoek any ooe would, on seeing it, exclain with Mncbeth: "Unreal mockery, hoerce !" Leat I myself should be fancled to be here rumanoing, by iapating the etrange freak in question to 8tr Waltor, I will quote Mr. Has's own words coccerciag it After eaying that geott had direeted him whore to ix op form pioturee-two small oees (ove of them $=$ viaw of Melroec Abbey by mooalight) boing to be placed coor doors, - moet unft altcation for palatings of mall dimenaloas, twe proceeds to state that: " theve, ofter bolog fired to the wall by a baprow moslding of oak, were to bo sorroosded with an imitation of a carred
 Now, bowover ably arecoted-with how edmirable so ever bravars of reHef the appenrace of cotem oarving projeotiog from the wall might be reedered, the eye could oot fall to deteot the deception apon almont the very frat ahenge of poalion; and if they happened to be viewed sidewsys, ft woold af once be percoived that thoee fraves were only fat painted bordert, withoat may projection at all, while the real " marrow moaldlag of onk" would by fis projection on the wall show fteelf vory awkwardly. Baoh a mixtore of the imitative and the real must have bees in very bad and paerile tanto-both exommble and to be accoanted for ooly as a mere Whim oa the part of Sir Welter, for the fan of "taxing in" his guests after that fachion, makjog them strere, and eajoying thoir aerpetee. Palated frames to detached pioteres hageg upon a wall are junt as prepocterome as real ploture frames of the neall hiad would be for paistinge arecated opon the walls, instend of olther archltectunal monldiags aroand them, or clee paluted berdert. Deoorative pribting choald aever be permitted to aim at more that mere pettern in colours-aot at roflef or the initation of actual carviog. Paloted mouldiags or other architeotaral members-and instasces there have been of paiated ajohes and ctatwes-are in vile taste, because the deeeption so prodeced can be ooly momeptary, the artifice, if zach it oan be oalled, beiog detooted atter the firet giance, and proolaining that the deooretion 80 almed at could mot be aftorded. With fritative macerlal the cace is altogether and widely dinereat: the semomblence may be oo perfoot that the mont experienced oyo say eot be abie to dotect it, and provided it mown Juct the ane to the eye, it prodeces an eficet fully equal to what the roal material woald do. Every one knewn, for fartione, that gilded ornameats are not of the solid motel, bot merely oovered with
 sardth of an ioch t-what theat the appearance is producod, and It in with mppearance, and appearanoe olly, that embellichment has to comoera itede. I, for ces, am umble to sympathice with thoee who areet to be shocked at the ingentoan iminations and decoptions of art, reprobating thein as If they werv downight finads and ofiepces agtint common hooenty. Were any one to eoll, or rither mempt to vell, a plester east made to ing tate marble, for a real pleee of sculptere of that material, be would, no
 placing reb casts on the top of bookcence, or th other altuations where they mat pen for belog of marble, which lest matertal woold produce only just the same ofect.-What matters to to you or mo, ${ }^{\prime \prime}$ I onco heard a perion cay to another, mpenktrg of a lady, "whether she rouges or not Grantiog that the bleom of her complezion may be artitatal-and you onily sucpeot th-I take the beaty of it to bo juct the sume as If If was roul : a dfference of course there is ; buth that is her alialr, thertofore a truce with your preeohfog." - Value of matorid adde mothing to the morlt of deaigoof the architect's owe share In the work, who, if he be an artith, whil dispiay tuleat and prodace exoct with the hoccoliont and choapent materiale,
 chow the rery beat rateriais to diandractage, aod reador than lean valatio than they were butove being mad, or we bay tay thased, by being applied to houdiun dealpas.
VII. Eisy has had a Hit at Bang's dacorattoms in the Royal Rrehance, which be has the deliency, however, not to memtion ly mame, ooptreting
 trike. "Our guncil meowledge," be obmerves, "evea of the propriety necescary to the obeerved in deoortionen to $t 0$ fiur below the requitito

 at tilnd or fourth had from a ballding devoted to the private lexery of as anctent loman, alopied as a malle thyle for the finterior of an arcade

 tive incomgrity than thic, jet it hat been commitud th owo of ear greationt antional edifoes, amatat all the agitation that exicte in regard to antional advancemont is the at of oromectil design." The ceapore is perfectiy just : the mintrike there combeitted is ruch an obvions and palpable ane, that it is extracrdinery it shoold have bees allowed to bo perpetreted. Were it ponaible to entertain 50 strange a suspleion, we might imagioe thets this apeoimen wes inteaded to saliafy the public moet effeoteally oee wey, mamely, by cloying thon and slakening them at ooce, and so preveratics all further outery for similer emballiahment in oar publio baildingleas to "the agitation that exists in regand to mational advascement, fro.;" there is a good deal of humbug in it-far more of oant than of sincerity of perpoee; or If there be the sincerity, the knowledre which ehoald aceompeny it is wanting. Lord Morpeth-or if it was not Morpeth, it was Lord Somebody-elee-is reported to have sald in the Hoome, he thooght the poblio would be retiated with Backinghan Paleo-the malocky Palace sain I bat it can't be belped-after Mr. Blore'n alterntions-his lordehip was two conscientions to make use of the word "jmprovemente." But what a mean opinion then matt be antertain of the public tanta, and how vers little regard meat he have for its "advancement,"-lhat is, mappeains him not to be bimeelf an otter norice in matters of art, and to have had no angpicion of what a belanm desige be was recommeoding to the " House," pro bano publice; a deaigu which now makes the Palace look almoet twin. brother to the Barrecks jost by, in the Birdeage Walk, with which Blope
 from it-Werily, it was not without reacon that some ome lately quoted, of pretended to quote, the following diotiah:
" Unhappy Brtaln I dooned to be do ilnem
VIII. Errors of the press are, if generally provoking, comediane excoedingit diterting, as , for instance, that of a certain " priat" which has tranaformed the a Army and Nevy Clubboneso into that of the wArmonery and Knivery," than which Mrs. Malaprop hervelf never atiered so amosing a blader. Thet there has been any sort of knevery in the mattior, we are bonad aot to tuspect; veverthelean, there is mach which looke life masoedvering. Noet asurediy it looks like any thing bat fair play on the part of the Clab to eniarge their atto after the fret competition, withort allowing the firt competitort-ithove who had tdaked their lageanity to provide the required accommodetion within a spaion which the Clab tivencelves have stmce virtrally deciared to have bees tmenficient-to takto thof obance in a mocond sompetition. Well, the refual miny bave been marey, ahbough, apperondy, ti doen not tay much for the libernlity of the "Armorry and Knevery." And what have they yot attor all by thete clever achoming?一why, a piracy from Samovino for their exterior, and for thour interior, a mont handrum, mauby-pamby plan, dovoid of all mavention, combrivemee, and olady of effectemerite whioh the "Armoary and Enavery" people bave perhaps no oosception, much loes any appriefation of For Clubboesen at leact, if not for private llooves, it might be emppoued that romediths more than mere contine plan vould begia to be thought of, for in thet direction, if no other, there in room for advance, and great acepe tor inprovement. Adraitting that componed forms of room ane meep experaive than the neral foor-alded ones, and that they also occucien ceme low of equet. coacequently are out of the question for honseat in temaral where eveneng as to both cont and apace must be ohlosy attended to, to fin stom boine en argament againat, it is a reion do piur for cuch form and pietanneme effects boing parpoeely introduced in Clubhowese and other howene of a saperior grade, jastead of four wall with a int oelling, and gutare a cove to it, being, as the Athenamin romarics, all the slomente onf of which their spartments are constitutod. Sareiy, ays the writer in titat Joursal, if it be worth while to expend so moch as is eorminat done epoe soperfioial and accescory embellinhmeat, it would be equally to to enine
 the charm of which in more lantigg than the gredication aforded by move ormanental detail. It is, indeed, greatiy to be lamouted thet mither ents toets nor their employers percoive-or even if thay do perocire, ease to turn to eccount the inflite resoarces for both design and efroct whiel pro.
 of plan, disposition, and forme in the intertors of boases, which mon pouvaly, to the exclusion of all individoal charnotar exoopt thit whioli ertem thos ormenentation alone.

 arran bungling, in poiot of deelfor, even in large and ax peocively fituod-ap

 regardod. Then that considoration of the eabject and actial dremememeon,
 to the oceasion, to altopether evadod, and the merent ordinary romitio is cabutitutind for artiette compotition and artiatio extert. In thet, the majority of theo who call themselves architects, appeer to heve yot so mode es any conceptioe of what artistic effeot in,-not oven so mech as to mato peet that it can have anything to do with thetr own art. The truth-and a sad troth it is, architects are not educated artistienlly : artints they may eveptanlly become, bat it mast be eatively by the promptinge of their'own mind, for by others they are not even $s 0$ much as put thto the way of becoming sacb-which is the ntmont that can be done by the very bout artiscic edocation. Well, therefore, was it said by one who valued his art, on being asked to take a lad as his articled apprentice: "I ane engaso to make your con a good practical builder, but as for architeot, you might at well ank mo to make him an archbichop !"-To dimim remarke of this kind, I retura to what occasioned them, by affirming that eflect-genaine artistio effoct-is generally the very last thing of all that is thought of in planning interions. It will, no doubt, be urged very mapiontly that effect adde nothing to convenience. Most asporedly not; but so neither does embellishment, which in only for the akke of that specion and degree of effect-cecrtaingy bot the mont valaable of all, that is to be so obtaised; it being, on the contrary, that which is moot eadily of all emsared. Coneoqweatly, if elecet be not worth the stady required for prodaciag its, 00 melther is decoration worth its coes, and the latter ming be, by very far, the smore contly of the two, because the other may sometimes be prodeced by the impleat means, without other expenditure than that of artistlo skill.
X. The name of Nash, of very questionable fane in John the architeot, is now hosoured by the talent of Josoph the artist, whowe mastery of power in the reprementation of architectural sahjecte, move particularis interiors, with all their manifold accessories, surpames all praise. Those of Wisder Cestle by him form a matchlees meries of arehiteoternl plotures, and completely refute the opinion-if anch opinion requises other refatation than its own absurdity and evident prajudice-that subjects of the kind, that in, mere roome and their furniture, capnot be rendered pictureequeat lenst, not if ropresented in all their freshnass asd bannty, and in perfeot order, withoat any of thone scoidents and disarrangements which are gemorally considered indispensabls excential to the pioturesque. Althongig it may not answer to the manal motion of the piotnraque, almoct agythine and be resdered piotaresque, of fat other words, hishly piotorial in reprosoutation, by boing tsonted pietaresquely, and in an ertindila menepe. Ereen what is fealpid in Itself, and viawed with parfeet indiriaroeec, may be rewcued from inupidity, and invested whth atmactiteaen, hy the power and exill of the peoch, -as in the oace, for tastance, whil paintiog of still-llfe, which are frequently compoesd of the moet trivial objeote-such es woald is their reality aot be looked at at all. fursely then, what is
 be equally beartifal and ploadag in roprocentation, and poosen betidee, the edditional charm imparted to it by the artite; that $t t_{1}$ auppoding the latuer to bevo soised vpon and blought out all the plquant point and qualltive of bis sabject. Arebltectural scones of the hind in gaestion posp
 betpg worke of art themeolver, they may to readered the vehich for ex-
 tapeatry, tec., admont any one of which would be an exoollent stillilif sabjeet. Buch veenee aro therefore fally worthy of the etmont finter of aseowthos: fa then trath of taitintion camot peaibly be curricd too far, wherea highly daborate execution teems quite thrown avay when beetowed, as it often in, upon the frodintle imotation of what may be soon tit any time, and is to trivial that when seen it is not moticed.-Nen's piotures-for they wro
 opective, and chlaroscoro, with a oaptratieg effect of general eonponition, thai plroes them fin a very hish male of art-at loust woold cocure for thom anch rack, werd if not for the pedantical and mosemsiond ellquotte that now regulated precedency in art. Art is aot to be manarred and raloed by the acre. Yot the verient mamby-pamby whoes mapoified to the difneptions of a cartoon pames for "uhigh ert" gome very etrony in starees of the dealen and powerices, marted by oetrageonaly bed draw-
lay, are alsoded by the oantoona salooted for tha reoeathy pabliched "ArtUation," oullise priats. I, bowrever, thowe prodeations do mot toad to en.
 might thoy be called IHeutrations of Humbag.

VENICE; AND HER ART8.

By Fredzaiok Lorf.

(Continmed from page 846.)

Pococke, in his " Deacription of the Rect," after fiving an socomat of a magnificent mosque, called Kubbe-el-Azab, or the cupole of the Ashbe, in Grand Cairo, atates, that there was one pirticular apertment more sumptaces than the reat, which was built by a grand vider, who deaired the fulten to give him leave to prepare a plece it to ofior him a sherbet in, on his return from Meect. There is every probability that a aimilit feeling wat enter. tained by the Venetians towards the grandees and merehant-princen of Cairo, Damascat, and other sinter cities, between whom a very active coimmeroe and intorcourse was carried on;-but whether anch a feeling existed or not, it in certain that the same Arabic iden and apirit of building prevailed in Fenice, and prompted the early buildert ; and the palacet, in which the Saracenic predominatee, seem to have been cotemporary with, and partly comstructed in imitation of, the moeques of the sultens of Cuiro. There wa mot-and there is not at the prement day-throughont all litaly a apot more in accordince with the tenten, or better accommodated to the bablet, of the orientalist, then the ald Piaste at San Maroo, before it wes deetroyed by Are, when it bore a clowe resemblance to the cowrt of a mosquo-m whown in the large and carion picture by Gentile Beilini (4.D. 1496), exhibited in the decedemian. The inspection of this production-which preserves, at in a rich cabinet, the ornamente, the "barbaric pearl and gold," and costarse of the period, and in which is 30 closely imitated the corioualy carred candolabre, crucifires, and reliques barne by the procention in their celebrition of the fentival which it representr-enables us to form a pretty correet idea of what muat have been lit original appearance. Then ambenadort and other pereonagen from foreifn countrien, sojourning in Vemice for the transsetion of commarrial aftirt, or.for the mere parpone of mitnetaing her civio or eccleainatical caremonien, munt have admitted Ite splendour, and been gratifed with ite many gorgeous epectaclen. Then it wat entirely Saracenic; the collonsades were Arabic, with borne-shoe archivalta; its cornices serreted, the detalle of the oriontal atato imitated, and it perement chequered with bright red and white marbles. The adjoining Piensetta, in iseelf, in its factarea, and is the views it embreced, wes, and even now in, equally oriastal. Here, the Ducal palaca, cae of the ment beantiful edticen in the wort, rears Itwelf,-and there coold mot, perhaph, be a finer and mere appropriato site celeated for it. It is eet of to the greatent advantage apon ite marbla. tarace or jeftif, stretching into the layoon : the pleturemace groupe of Armenians, Turke, gondoliers, and water-certiert, soattered-upon that verraco, and the lagoon verimgrated with many a gondole, paisted mil, and fruib-indan vemel, being in admirable keoping vith ita Eatern appearnoe. a It wat coastructed by Caleadario, is the middle of the 14th centery, and sums to have been a contemporary of the monqee of Sultas Hasan in Cairo, jout after the two great Kalsoas had added to many-magnificoat adifoes to that copital." In its fipades, we cameot bet admire the priveiplee ctadied by. the arohitect in the dotails, which tell with comiderable effect is thementwee, and at the same time contribute, in a great measure, to the grenderer of the whole; the harmoniaing contrast and rellof which the ourfons and elebrate tracory forms to the more diapla partis the opponition of uytht and thede
 abourdity, of inventing and applylog, in the place of thewe gentares which now oxiet, others more appropriate and expreaive. It wet a common praetheo anoers the Araby, to give alo the eficet of colout and lightanet to buflaling which powened a great mommere of colility, by meas of alabe of red and whit of green porpinyry, and other valathle marblen, arranged in.

artithe, since it tend to prevent an appenmace of heariaen and excent of woight, which might, but for thin precmution, resalt from those massen being above a light oorridor and perfortted gallery. We see this beantiful fature made as an accessory by Titian to his splendid picture of the "Prementation of tbe Virgin." And this ancient combination of bright red with polinhed white marble, seen in almost every moeque of Cairo at the present day, and which so frequently occurs in Venetion pavementa, was likewise imitated throughont great portions of Italy, \&ce, during the middle ages; and inscriptions on the walle, groteaque carvings, heraldic ornaments, and curions devices, baving some peculiar reference to the inventor or proprietor, which obtained among the moderns, may be traced back to a very remote period, and were considered an almost indiapencable decoration of ancient Arabian, Chinene, Persian, and Hindu architecture. A writer metes, that "in the triesen between the toors [of the Square of St. Mark] We see What at first aight appears to be the Sume, or lerge Arabic 'writing on the wall' of moeques; but as they conld not, in a Chrintian comatry, write sentences from the Koran, we fiad, on looking cloter, that the eharacters are figures of white camelopards (giraffes) on a red ground. These carry the mind to the Rast by more association than one; for their long legt and tapering necks have quite the air of Sulue writing."
"The original Merceria," remarke the same writer,* " with its pendant ahnttern, narrow crowded thoroughfares, and the wares of brilliant colour in fts dark, limpid ahades, mant have had very much the air of a bazaarwhich it has not lont even now. Cantar, rottalo, and other Venetian Weights, are still the tandards of quantity in the Lavant; and in the name of Campo, applied to all the khens of Aleppo, we find a Venetian exprension. There wore aeveral places in Venice in the form of a khan; one of which-the Campo St. Angelo-is etill remaining. The principal one-the Cempo dei Mori, or Khen of the Moors, at Madonna del Orto-has been taken down; but I still observed the stone figure of a Bedouin loading a camel, in alto-relievo on the wall next the canal.
"Several remarkable edifices of Saracenic architectare are yet visible on the Grand canal :—one of which in the Pondeco dei Tarchi. There is, howover, no conaexion between Its architectare and the aubsequent deatination whish gave it its name. It is supposed to have been built in the 12 th or 13th century, when the Saracenic taste was in full prevalence: and extracts from documents which were shown to me by Count Agostino Sagredo, the present accomplished president of the Academy of Fine Arts, show that it was given by the republic to the Duke of Ferrare, -after him passed through several hands to the Pesaro family, and in 1621 was let by them to the Turke. It in now in coarse of restoration and repair by the commane. The Palazzo Loredano, a peculiarly light and handsome specimen of Saracenic architecture, built since the invaion of the Italian atyle-and the calebrated Ca d' Oro, now the property of Taglioni-are both so well known as to require no further conaideration.
"No peinters caght the oriental costume nearly so well as the Venetiana; Fho, though ambaseadors, merohnnts, and slaves, had frequent opportunities of becoming eeqnainted with it. The oriental air and manner are better coized in Tintoretto's great pictore of 'the Miracle of Sto Mark,' or 'a Slave liberated from Bondage,' than in any pictare that I have ever seen. The keoncks were universally worn in the Eant in Tintoretto's time (and 20 very nearly in our own age); bat, with this exception, the figures might now be alive in Cairo and Damancus, without any one discovering any great pecolititity. Traces of the connexion with the East are constantly appearing in the Feattian pictures. In Giovanni Mansmeti's picturen we see segredies hang oud of the vindown; the scarf of Titian's Maddalens is evidently of Tripoli mannfeture ; and the 'Supper in the Howse of Levi'-where Paul Veronee is enthroned in all the daealing splendour and gorgeons magnif. cemen of his genius-has for its pringipal fgure green velvet hose, of a mont curtoos arabeeqne patiern."
Having pointed out some of the mons important relics of Seracenial and Arabic architectare and ornament in Venice, as showing her conacxion with the Rest, we shall new briefly describe its principal characteristicn.

The geatas of the Arebians and seracosa abounded in livelineas of fancy and in richnee of invention, which manifocted iteolf alike in thair paravits and in tholr poetry,-in thair learning and in their arts; in all of which they readered themetres remariable. Thas equally dietinguiabod themasalves by their werilite achievements; and the briamens and aotivity of thair tem. perament (whether the effect of the warmith of their chimate, tomperance, and constant axerclec), joined to their enthonianm, contantly stimulated them to great exertiona and extreordinary actlons. Their love of learning
and the arts was caltivated throughout the whole of their dominions, and was diffued abroad, being firat carried into Africa (where they erected a great many univeraitien), and from thence into Spain and other countriea; whilst they conquered Syria, Parxia, Rgypt, \&cn, and catablished themselves upon the rains of the Grecien empire." Such a city as Venica, and sach a people as the Venetinas, was much enriched, therefore, by its intercourse and dealings with the polinhed Saracens. The atyle of thair architectare is generally regarded as the immediate precursor of the Gothic. To the Gothic (if we may uea the tarm) of some conntries it is more closely allied than that of others; and juat as the character of the Gothic raried in different localities and countries, according to the Roman and other stylen with which it was brought in contect, and with which it was sometime amalgamared, $s 0$ We may observe the Saracenic wat more or leas pure, and underwent different changes at it was translated into different conntries. "The Sara cens, in their buildings in Efypt, appear to heve availed themelves in a small degree only, of the style of the aboriginal inhabitants, and are distingrished by the lofty boldneas of their vanitings, the slenderness of columns, the variety of capitals, and the immense profosion of ornaments. The greatest peculiarity, however, lies in the amall clustered pillars of pointed archen, formed by the segments of two intersecting circles. The EgYptian Saracenic varies from the Spanish chiefly in the form of the arch, as will be apparent from comparing the gate of Cairo with that of the Alhambra in Grenada, or the great charch at Cordova."

As examplea of Saracenic decoration In Fenice, incinding among them the Brantine, we refer more eapecially to St. Mark's and the adjoiaing palace; where, notwithstanding the intermiztare of tbese and other styles, we may discern the diatinctive feature of each :-lst. The blending of tho pointed arch, ornate alial, and crocket-work of the Gothlc, with the horseshoe scrolls and richly multiplied geometrical patterns of the Moorinh orna. ments; forming whet the Italisns call the Arabo-Tedesco. 2nd. In the feqade of St. Mark: the clustering domes and minarets; the tubernacies terminating in pointed pinnacles; and the circolar gables, fringed with a most beantiful arabeaque foliage. 3rd. The tarned wooden grates ovar that great gates, and the ornamental fang to the window, of the very patteras wsed to this day in Cairo-and which, in the 15th centary, were all gill. 4th. In the laterior: the twisted colamns, of which there are four, two of oriental alabaster-the workmanahip impated to the time of the soccesson of Constantine; the horse-shoe archen ; and the variety of capitale, ceulptared with grotenque imagery, where the bell in cometimea coverod over with a sort of basket-work of true lovers' knots; and where the scroll, the pineapple, palm-branch, and acanthas-leaf, are placed amongat lions' heads, maske, and half-Aguren fiddling, te. Some are beentiful; all are curione; and although the denigus might be considared great oorruptions and med departnres from the "correct" tate of the Ionic or Corinthian, is the opinion of those who would bring them to the standard of the "fre ordern,"- jet the invention and originality diaplayed in some of these capitals must be scknowidged by every unprejudioed obsarver. In lieu of the volutes in some, pigeons are placed in the angles; in othera, rams, fich thetr feet resting on a tier of leaves. The flutes and fillets. tristing roand the thafts of the colnmns in a apiral manner, are frequent in the Venctian peleces. Many other Byrantine, Moorish, and Saracenic featares in St. Mark's have already been mentioned. 5th. The portal, called Porta della Oarla, opening info the Cortile of the Doge's palace, facing the Giant'sthatrs, the statuea and foliage of whioh we class under the Saracenic, as partakiag mach of its character, although mid to have beon the work of Bartolomeo Buono, of the 15 th century. Wood, in his "Latters," says of it :-NThe arehes here, and indeed th all tho perth, are vary much broken and confued; the arehitoct appearing to have a great horror of a continned line, whether atriggt or ourred," it is to this lattor circumatance, we thisk, that it owes all its miggular beanty. 6th. The Cortile iteclf; the arcades anreouding which, and the sharsetar imparted to it by the two elogently chased broses reserveirs in the marble areas, reminding us of those uptendid conrts erected by the 8paninh Moars to their Aleozaris and Alhansbre. 7 fh . Newriy all the details of the Ducal palecer-But the peculinition of the armapion abeve enumorated conntanty oomar in tho early edifion of tbe Venettaps.

We will now tanta a naw ort that dawned upon Venice, and, with the rise of new thoughts, other stylea which Were introduced in, and which comaldarably altered the appearanco of, the capital; a shange, however, Which, on many scoonnte, increand rather then diminished its charm and celebrity. The edifices of the earlier and of the later apocha (the last wa
shell now conalder) -the formar we might term Eroric-the latter, as more ismodintoly the growth of Italy, Natyonal-smaited and were identified with the two distinet countries in which they originated. The modifeations and improvements of which these were ansceptible, and the perfection to thich the latter was earried, prevented the city anvouriog of any degree of monotony; and, indeed, it is in the varion phates of style and diverity of character in this city of paleces-faroured as it is in this reapect by the views, the mest tempting to the painter, which a labyrinth of eorpeatias streate and camale contionally proeent-whioh appeal with $s 0$ much intareat to the historian, erehseologist, and axtint ; and constitute the great oharma of the picture of Cenaletil.

If the Italinns exhibited, in their revived architecture, low of the pmaion for the pictarenque than their prodeowesors, they achieved grander remalts then hed been accomplishod ing them; if in thoir worts there was lew imagiaetion-that is, lem of a capricions kind-there was more reason; if leat to win apon the feelings of the pont, thore was mone to antisfy the individual whoee view were moulded and shaped by regulation and rale;bot rarion camea provent all analogy in the two cases; thelr beoutien and defecte are in no way rafarable to the aame standard; and henoe it in we entirely domur to that one-aded and partial obervation whlch denian may merit to exiat in ons atyle of architectura, boceuse it difiern from another wo rather like to anjoy their weparate benuties and featuren; and allow, at least, the aristeace of fitness, propricty, and every easential of beanty, in all workn, however opposite they may be in character, which are in harmony with the tastet and requiraments of the nationis and times that prodeced them Bet we may remark, in a comparison of the Arabic with the Italtan stylea, that whereas the former, by the manner of the diviaion and moltiphcation of the parte, prodaced a degree of variety that at Arst coosoed alnest confuaion ; in the lintter, thone parts being lew minutaly divided, fewer, and larger, simplicity resplted; beftre, it seemed scarcely an if they were undar the gridance of any sound canons or fixed principles, where the chief objeot was to give the freest acope and play to the fanoy: bat, tow, the precepts and principlen, al derived more immadiately from a greater considering intelloct and a leas indulging imagination, wave etern, severe, mod sattled, the fancy being reined in-wher movements restrained by the cooler dictates of the underatanding $;$ yet the infaence of a favoured climate uhed ite elegency and refinement over the minds of the Italien artista, imbsaing them with that poetic feeling which made their worky look noble, elamic, and stately -and far, vary far, from cold or proasic, though they might not boant of the laxuriant profonion of thair predecemorn, the Moont end Arabiane.

hydraulic log.

The common \log is in nimple apparatas, fumiliar to all who have been within the riew of the Enciriling horizon; and, were its aecuracy equal to its asm plicity, it चould undonbtedly be a parfect inatrament. Snch, however, is not the case,-hasee varions contrivences bave been proposed: Manery's patent log, and Cave's apparatus for indicating the speed of a reseel, are both very ingenious contrivances, but apparontly too complioated to answer the perpowe intended. The former will answer tolerably well within a limited ragge of the apead to which the driving-cone is adjusted, bat at any considerable variation from that speed its correctnean is not to be depended on. Perbape, it may be said that the common \log is anfficient for its purpone, because it has nover jet been superseded; true, it has not boen superseded, and why ?-because nothing hat jet been introduced baving the two neceasary qualities, otmplicity and aceuracy combined. I leave the queation of the euffiency of the common log to those who bave practical experieace oo the matter, and who, I am anre, will appreciate an inatrament which may at all times be relied upon. And though it matters not mach when the arrioss of the common \log can be corrected by obsarvation, yet, whan the otate of the weather and atmoapbere for several dayi, or weaks, do sot admit of obecrvations being takan, it becornes a matter of groet importance to know the actual diatance the rensel has traverned.
The inatrument I propose for this purpose" in free from mechanical somplexity, dependiag for its accuracy eatirely npon tbe nataral law and bydrodynamic property of flafd, and having come aimilerity to a common barometer.

A reference to the anmexed diagram will explaia the construction of the

instrument. The figurea are drawn to a scale of two inches to a foot. Fig. 1, in a plan; fig. 2 , tsa a side eleration; ifg. 3 , is an end elevation; and $\mathbf{6 g}$ 4, is a broken section of the pipe f, and month-piece g. a a in a frame o_{x}° atand; b, is a bracket, forming with the piece c, a univeral joint d, is a glase tube haring a bulb at its lower end for the purpone of holding mercury and with which it ahould be rather more than half gilled; this tuhe mant be Armly fixed in the piece c; e, is another glay tabe, with a amall bore, paniag through, and within an eighth of an loch of the bottom of, the former, its upper end being open to the mmonphere, bal communication wibl the latter and the intarior of the tube d, ie provented by making its pamage threugh the pisce c, air-tight ; f, in a pipe, of aboot half an inct bore, peening through the uhip's bottom, as sear midshipa manvenient ; g, is a mouth piece or cover, having an apertare parallel with the koel; n, is another pipe similar to the innt, bat withont the mouth-piece g, (or the two pipes may be made In one, like a donble barrel gan, in the pasage through the ship's bottom); i, ta an elatic tabe of ralcanised india-rabber, completing the connexion of the apparatus.

The instrument being underatood, its action will ratidily be parceived. As the month-piece g, is tarned in a direction with the remel's mation it is evident that an upward premare in the tube f, will tako pisce in proportion to the relocity of the raselal ; and an this upward promare will be axovted on the top of the mercury, if follown that the hether will rise in the amall tabe ex. actly in the atme proportion, and will iadiecta, by means of a gradual seale, the aumber of miles and any fractional parts thereof into whioh the acale may be divided. In fixing the apparatus, eare mast be taken to keep the bulb of the tabe d, a few inches below the light-draft water-ilne. Now, when the veacel in deeply immerned, the colamn of mercory vill rise in the amall tube to conateract the pressare of the water (about foar-afths of an inch for esech foot of immersion), consequently the scale muat be made to alide on the tabe d; the pipe h, and cock h are for the purpose of adjusting the acale with the depth of inmerniton, and in effected thas :- bhut the cock h, and opan the cosk l, and the mercary will adjast itecif to balance the
apecific grovity of the water above the mercury fin the balb. Sot 0 , of the scale to thie point, and open the cock k, and ahat the other, and the inatrument is reedy to indicate the apeed of the vessal.

I subjota a teble foanded apon a seriou of experimenta fantitated with a view of accertaining the resistance on a plane in etill watar at various relocicien, the result of whiah I have given in a pamphlet, enttiled, "Practieal Obearrations on the Stean Bagine." This acale, however, must be tested by further exporimenta to ensure perfoet necurncy.
Column 1, representa natical miles, and column 2 the height of a column of meremy in inchet and decimals.

		Nantical mileen.	$\begin{array}{\|c} \text { Halght in lyehen, mad } \\ \text { doclimales } \end{array}$
	0.050 0.110	9.0 9.5	3.968 4.420
8	0-188	10.0	$4 \cdot 898$
$8 \cdot 5$	0.306	10.5	B.400
$8 \cdot 0$	0-440	11.0	6.056
8-5	0.600	11.5	6.478
10	0.784	12.0	7.058
$4 \cdot$	0.992	12.5	7.654
50	1.226	13.0	$8 \cdot 212$
$5 \cdot 5$	1.484	13.5	8-928
$6 \cdot 0$	1.764	14.0	9.612
6.5	2.070	14.5	10.302
$7 \cdot 0$	$2 \cdot 400$	$15 \cdot 0$	11.036
$7 \cdot 5$	2.754	$15 \cdot 5$	11.774
80	3.136 3.538	16.0	12.556
$8 \cdot 5$	3.538		

Nowember, 184%.
G. V. Gueramber.
entirely of cast-iron riveted in parts, but the inereased weight and addi. thomal cost would render such a structure inedmeelible for such a parpoes.

Coat of Staphenson and Fedrbairu's wrought-iron bridge.

Three wrought-trou girdere, each esfert loug, riveted complete, weight 30 toas, at 802 . per ton, 900%, which in the sam required for the girdert, oxeluaivo of the crose beans and road way as beforo.
The comparative value of the two bridges will therefore be as 9 to 14. irrespective of the saperior atrength add mearity of the former to that of enstiron, in whalever form it may be epplied.

The plan has already been adopted by Mesara. Stephenson, Cabitt, Vigwoles, Bidder, and othern, and Mr. Fairbairn during the earijer alages of the experimente engaged, at the requent of Mr. Vigaoles, to construct two bridges of this kind-one to be erected over the canal and the ouber over the turapike-road on the Bleckbore and Boitoa railway. Theme bridges were the first construoted for the support of a railway; and although they are probably not so well proportioned as others now in proo grose, they neverthelese exhibit anch extraoplidery powers of reaimance is not ouly to ensore complete succes, but to head to now and futare dovalopment in what may probably be considered a sew era in the bistory of bridges. Viewing the sabject geacrally, we feel ascared, from what hac already been done coajointly by Mr. Stepheoson and Mr. Pairbaira, that the present diecovery is ouly a beginaing of an extensivo application of thls ucofol art.
Sinee the complotion of the Arst experiments on sheefiron tabeen, otbers of a more cosclasive character, and apon a mach larger seale, have bees mado. Thay indionte ceveral now and important facta; aod from the greaty increased alse of the modal tube, with its rectangular cells, greety auperior powers of realetance have been obtained by a coasiderable laeremes to the aree of the bottom. The ratio of that part to the celluler topp, will mom atand as $10: 12$, iastend of $8: 5$, as formorly indicated ta the experiments with the corragated top.
Through the kindsose of the Editor of the Railcray Chronicle, we have been enabled to give drawinge and an coocunt of one of the bridges, thet over the canal on the Blackburn and Boiton Raliway.
"Fig. 1, represents an elevation of the side girders, each 66 feet boag, with a span of 60 foet. Fig. 2, a trabsverse section of the bridge. Fig. 8 . a side view asd section of the crowe beams; and fig. 4, a section of ope of the shde girders, including ite saupended crose beam and plationa.
"The thickness of the plates ased in the conpetruction of these girders was half an linch for the sides and top, and inch for the bottom ; the whole firmly riveted to angle iruo, as shown in the sections.
"On referring to the sootions it will be obeerved that the wood crome. beame, D_{1} D, for supporting the rondway and rails, are serewed op to the bottom of the hollow girders by the atrapi $e a$, and the vertical both b, which perforatoe the top coll through the tube 6 , and answers as a stay for coonecting the upper and lower aides of the cellular top. Since these bridgae were finiahed, a better and more efficient :mode of construction has been adopted, by forming a longitadiaal shelf of plate-iron along the bottom of each girdor, to recelvo the crome beams, avd also to atrengtheo the bottom in its resistance to a tensile straln. In this constraction it will be observed that the arose beams may be formed of ajlher cast-iron, wroaght-brom, o wood, as may be deemed expedient."
This Blackbura and Bolton bridge has already been sabjected to sewro tests, Before the live was opened to the public, three locomotive engions eareh of 20 tona, and covering the upan of 00 feet, were rua together an a train, at ratoe varying from 5 to $\mathbf{2 5}$ miles per bour. The defleetion produced by a weight of 60 tons was -025 of a foot. This seemed to be with. out any sensible alteration from the difference of velocities. Captain Cod. dington, the government inapector, and Mr. Flannigan, the eugineer, lbea placed on the rails, in the middle of the bridge, two wedges of the beight of one inch, acting as inclined planes. The engines dropping from thin helght when at a speed of 8 to 10 miles per horr, caused a total defection of 035 of a foot. With wedges of an inch and a half tbickneses, the total defection bocame 0.45, Whioh is pearly hals an lach. Allogether, it bes boen fally proved thet the bridges are strong enough to bear any force to whick they may be unbjected, whether brought by a dead woight or by impact.

[^42]HISTORY OF ARCHITECTURE IN GREAT BRITAIN.

$$
\begin{aligned}
& \triangle \text { Brief Sketck or Epitome of the Rise and Progrene of Architecture } \\
& \text { in Great Britaln. By JAMss ELMes. } \\
& \text { "Epitomes are holpfal to the memory, and of good private uso." } \\
& \text { SIR HEnEY Wotion. }
\end{aligned}
$$

(Comahuded from page 341.)

A celebrated politician in the latt centary acquired the name of Singieapeech Hamilton, from the oireamatance of having delirered an oration of mach promise and great ability, and never again opeaed his moath in parliament : so likewise may tho architect of one of the moot original and tastefal balldings in London be designated by the title of Slagie-bouse Wyatt, from his only public work, the Trinity-hoase, on the north side of old Tower-hill, dow called Trintty-square. If John Nash be more poiystructural than Samael Wyatt, the latter may plead that althougt his progooy be not numerons, his single production is a lion.
This bnilding is a handsome stone and brick edifice, and exteads from Cooper's-row on the enat to Savage-gardens on the west, with extenalve jateral froats to both of these stroets, and consinte of a main body and two wiags. The principul story is of the Iooic order, raised apon a rasticated gronnd atory. Above the windows are some beautifally sealptared medallion portraits of George III. and his queen, eculptnred paneis in low roliof representing genll with nautical instruments, and four of the priscipal light. houses on the coast. These seniptores are so boanufal in atyle and erecution, as to deserve being monlded, and cests made from them by the Royal Acendemy for the ase of their stadeats. The atyle of architectare uned in this buildiag is neither so pure as that selected by Staart for the internal portal of the chapel at Greenwich, so pedantic as that copied by Wilkins in bis portico of Downing-college, Cambridge, nor to fazciful as that used by the Adams in the Adelphi; but is a suecensfol adaptation of the Ioolo order to proportions of his own, with too much elaboration of foliage in the capitals, treaching on those of the Corinthien. The mechanical execotion of every part of this elegant bnilding cannot be too mach admined; as beantifal is the masoory and the brickwork of ite exterior, that the best workmen both in hrick and stone would find models for imitation. The first stone was laid September 12, 1793, by the master, assistod by the deputy-master and elder brethren of the corporation, and the offices opened for business in 1705.
A mong the later cotemporaries of Chambers, Wyalt, and Taylor, wereThomas Leverton, who held an office onder the Iate Mr. Fordyce, in the Crown-lands' Revence department, and is best known by the extensive and cabstantial mansion called Wotton-wood-hall, in Hertforduhire, which he deaigned and built for the late Paal Benfield, Eaq., and Grocers'hall, in the cits;-Richard Jupp who held the important office of architect and surveyor of bnildings to the Enst India Company;-and one or two others of lester eminenco. The north front of the East Iadia-honse in Leaden-hall-street is a plensiog inatance of Mr. Japp's tante and akill in his profeceston. It is of conciderable extent in front, and of greater dimensions in depth; the whole bailding, or werles of buildings, cover a large area of gronod fncting Lime-atreet on the east, and Leadenhall-market on the west. The prinoipal front is composed of a aix-columned Ionic portico, slightiy projecting from two lateral wings. The narrowness of the atreet in froat, and the great value of the ground on which the building is erected, compelled the arebiteat to adopt this fat rolief of his principal front ; hat he has overcome this difficulty with great ability, by constructing a doeplyreceding porch or inverse portico behind the colvmas, which gires a depth α shadow and a bold relief to the denign, while it affords a goodly sheiter to the directors and other members of the establishment from the easterly and westerly winds whilst waitiog for their carriages. The capitale, beantifnlly carved by an onele of Sir Richard Westmacot, our emin ont English aculptor, are a free and artist-like imitation of the temple of A polloDldymeas. The triaogle of the pediment is alled with scuiptures in entire relief by Banks, of which it is not too mach to say that they exceed any figures in guch a situation that have yet been executed in Eagland. The aobject is George III. in Romen imperial azmour, protecting the commarce and late.
reste of the company. The klag is exteadtag his ahleld, pleced on the right arm, over the principal figure, and reating with hif lefl on a abeathod Roman aword. This circumstance gave rise at the time to an opinion that tho artist had worked from an inverted tracing of a design made by an eminent paintor, who was well known to have faraishod designs for many of the sculptors of his time. The artist, however, defended bimself by ascerting that the king being ropresented in protecting the Arta and Peace, the attitade was correct. Cresar, bowever, did not enter the sonato-house with the calrass, sandals, aword, and shield of the warrior, but in the peacofal toga and laurel crown, with which it is aaid he covered his baldness. On the upper acroteriom of the pediment is a atatue of Britannia, and on the two lower, Ggures of Europe and Asia.

A very pretty four-colamned Doric portico, in a pare Greek atyle, forma a suitable sub-entrance, through a weil proportioned hall, to the minor ofices in Lime-street, and shows how quickly this architect imbibed the pare atyle then rocently introduced by 8tuart,-for he bad been origimally educated in a thorough Roman achooi. Mr. Jupp's portions of this beilding were began in 1799, and finiahed about 1805. The alerations of the gigantic warehouses which be erocled in many of the eastern parts of the metropolis are very hemonioas in their proportiona, and exhibit great akill in the use of his very simple matorials; geteways, warehonse doont, wibdows, and piers constructed of simple brick and stose.
The elder Mr. Dance, whoee principal works have been before deecribed, left an able succoseor to his place of arohitect to the city of London, and to his profesalonal basiness, in his son, George Danve the younger, whe received the hononrable addition of I. A. to his name from the Rloyal Academy of Arts, and was appointed to the chair of Regias Profemor of Archilecture in that inatitation ; but whe too fond of eajoying his atiem cus dignitate, evor to impart his knowlodge to the mombers and etadeate of the Academy. The family of Dance bold an huoourable station in Eaglish history; for, in addition to the two architecta, one of theran was an ablo comedian in the time of Garrick, particularly colebrated for his permone. tion of Falstaff and other fat beroes of the baskin, to which his corposvity, like that of the coiebrated Stephen Kemble, lent an eid that no atofing could accomplinh. Another, Natbaniel, became ominent at a portrait painter, and was, like his younger relative, an R.A. His portraits for identity of resemblance and character of the person represented by his peacil, take a place between those of Reynolda and Rompey; lees gracoful and nataral in coloaring than the former, be equalled the latter in all the beat qualities of a portrait painter. This gentleman resigned his diploma and bis palette for a baronotcy, a fortane, and a change of name, as Sir Nathaniel Dance Holland. A nother member of this family added a singolar triamph to the naval gloties of his country, by saving a lerge and valuable homeward bound East India teet, onder his command as senior captain, and therefore commodore, of this mercantie squadron. He manceavred bis onweildy and richly-laden ships with sach pantical akill and dexterity, when attacked by a superior French deet of moa-of. war and frigates onder the command of Admiral Linois, defending himaelf with sucb gallantry and well-directed broadsides, though manned by a company of merchant seamen and Lascars, sufficient oaly to work and not to Gg bt hin shipt, that the French admiral retired from the content with serious ioss and discomfture. This gallent action, which stands completely by itcelf in naval history, procured for its hero the honour of knighthood and per. sooal thenks from his sovereign, a vote of thanks and an bonourable roward from the East India Company, and the acclamations of all bis admiring countrymen. The English have a propensity to give fumiliar titfon to their farourites, naming one the Hero of Acro, another Nelsan of the Nile, the Cock of the Rock to the galiant defender of Gibraitar ; so they maned Sir Nathaniel Dance the Fightiag Ingy (India) man.
To retara to our subjeot, the younger Mr. Dance denigned, amorg otber buildings of leseer note, two prisons for the corporation of London-New. gate, and Giitapor-street Oompter ; the former is situated at the corser of Newgate-atreet and the Old Bailey, and derives its name from the aocieat city gate so called, whioh stood across Newgate-street, between Aldergate and Ladgate. It was a prison of great anliquity, and as late as last, Newgate, and not the Tower, wes the prison for the nability and greas offleers of state. Being mach damaged by the fire of London, it was ropaired and beantified by Sir Cbristopher Wren, in 1679. In ose of the aiches was a fgare, reprosenting Liberty, with the word Liberten laseribed apon ber cap, and with a cat at her foet, in allusion to the atory of Sir Richard Whitington, who bequeathed a suffoient som to rebaild thle gave, which wes satiofectorily done by his execotors in 1428. This etaluo, with
another of ofnilar radi womlpture, wre preserved in two sfohes in the OXd Balley fromet of the preseat britding.

On the removal of all the city gates exeept Templo-har, the corporation of Eondon resolved on building a now and moro onpactone prison, in the reon of Newgate aod Lodgate, the lattor of which wes appropriated solely for debtors who were eitizens of London. The dety devolved opoe Mr. Dance, the elty surveyor, who acoordingly prepared bie desigea, and the Arat atone wes laid on Miay 98, 177e, by the lord mayer (Aldermen Beokford.) This was the last priblic wot of this amieent and patriotio cilisen. The prison was broken into by the rioters in 1780, the prisoeers set free, and the interior burned. It was epeedily repaired, and after coveral recent Improrements and alterations has beoome the city and connty felons' gaol. On a contionons rasticated ground story are oreoted a ceatral building and tro wings, deeply recessed from each other, and producing thereby an barmonious proportion of light and shade. Tho governor's house and ofices, some of which have been occaslonally used firy itate priconers under puaishment for political offences, oocapies the central building, and in the solid wall between it and the wings are conetructed doors of solemin and sloomy aspect, leading to the two different departmeols of the prison. Orer these doors are representations in scalptore of fetters, chains, and haodcuffs, such as were formerly in use for folons. These, with the eatrancedoors and wiadews to the governor's bouse, are the oaly apertures next the street, and, with the comrso ohamferred rusticated stosee of which the brilding is composed, and the massive modillion cornice and plain blocking cosme with which it is enrmonnted, give an air of sombre melaneboly sppearasoe to the ballding, traly aharectaristic of the parpoee for which it wes ereoted. Indeed, it may be coanidered as one of the most obaracteriotio dealgas that ever emeneted from an architect's miod. Whea viewed from the wesiert oud, from whioh the lateral froat wext Newgato-atreet being that of the rorth Fing, with Its doep recesces tormbating with the couth wing aext the conrt-yand, which soparates it from the sesaions-honee, the merits of the desige are pecoliarly striking.

The other prison, that ealled Glitepar-street Compter, owes its origin to the same canse as the former, and was erected in the stead of two or three smallor, dilapidated, and less commodious houses of detention. It is situated on the eastern side of Giltspur-street, in a line northmard of Newgate. The elevation is composed of a ceatre and two wlage projectiag from the mein body of the building, which is of Portin ad stone, lald in ruatioated conrses, and as it is more a bouse of correction for misdemennors, and for the deteation of untried prisoners till taken before a magistrate, than a pepal gaol, it has a series of small remicircular headed windows, and a cingle central door sest the street. For the same reasons, the design is less gloony, and also leas picturesque, than its more solemn neighbour; jet it is an excellent asd very appropriate design.

The Lanatie Asglom of 8t. Lake's, Middlesen, is another work of the anme architeot, the original balldiag, whioh was etablithed by voluntary coatribations, as an improvemeat apoa the royal bospital of Bethiebem, being takea down to make way for the new square and other buildiege on the Fiambery eatate of the corporation of Loodon. It staods on the nerth side of Oldestreet-roed, and is an extenelve and lofly buiiding, consiating of a contro and two wings, bearing a jnat and harmoaions proportion to anch other, and to the buildings which anite them. They are divided into a cerien of cemiciroular recemes and piers. The semioircular part, whioh in sear the oolligg of eech otory, givee light and air to the cells without expoeing the anhappy inmetes to the gare, and often derision, of the malthtode, as wres the case in the old hospital is Moorfiolds. Its whole aspeot in commanding and highly charscteristio of the wee to which it ts desigoed, and shows how far genias may nee ovea the plaiacst materials-this bulldtas beiog, like meny of Palladio's, plaio brick and a few simple atone drmaing; and is is not too mach to any thet fow baidings in onr motropolis, or pretupe in Europe, suxpase this for unity and approprtatanea of style.

The Reyal College of Sargeone, on the noath side of Lincola's-ine-fields, in asother axample of the groios of this tacteful architeot. The bailding it very extemive, cocnpying a large frokege mext Liesola'm-inn-felds, and a sreat dopth to the equth fromt in Portagal-etreet. The primipal froit is decorated by a dr-colemaed porition of the Ioaie order, testafuily adapted trem the Ilinan, with a proper entablature and acrotaria. In the friese ia issoribed-" Collegion Regale Chirogecme."

Upon the acroteria above the eatablatare ure a rov of antigue bromese efipods, attribater of Apollo Medicas, the ancient tatalary pod of argery.

Orer the centre intercolomefatios is a manive shield, on which is ceelptared the armorial beariage of the colloge, sapported by two clasaical fgores of Eecolaping, with his olub and myatic cerpent. In the iaterior are a spacions and handeome museam, board and conncilrooms, librariee, coevorsation rooms, a havdsome hall, and domestic apartments.

The Royal Acadeny thonght so well of the principal front of this beilding, as to propose it as a fit anbject for the compotition of its architecturel stodente, who were required to present two drawinge, one in oulline, igured from actual measuroment, and the other meded and tiated; wher theix first silver medal was awarded for the beat drawinge to Mr. George Allen, whose prematore death was meationed in these pages a few months since.

The college have receally made large additions and improvemonts to this building, by adding two columos to the portion, an additional length oa the front, and many alterations in the interior, nader the direction of James Barry, Esq., R.A., architect of the new Houses of Parliament.

The gallery of the British Inetitution, in Pall-Mall, is another instavee of this arebitect's taste and iovestion. The principal froot is ameanble to no arebitectaral law; yet it is a beaviful architectural compoalion. The picture galleries are harmoaious in proportion and well Hghted. It was origivally bailt for the firvt Alderman Boydel, for the reception of the pletures that were palated at his expense, for his aplendid edition of 8 hatsspeare; aed whes called, natil its prement occupacoy, "The Bhakspeare Gallery." Its use was indicated by one of the mont elegent pieces of coulp. ture ever axecuted in modern tisee, ropresenting the apotheosis of Shak speare, by Beaks.

The sonth front of Gaildhall, another work of this architect, has received mach censare from not having fallen within the rules of any atyle of Pointed architectore bitherto esecnted. That Mr. Dance was not igaorant of tho proportions of Gothic architectnre, although be might not worship it with all the fervorr of the black-latier Dr. Dryaedaste, may be proved by his able restoration of the ancient church of St. Bartholomew the leas, before the robailding of the interior by Mr. Hardwick. The fagade of Guildhall beloags to no style, and is amearble to no laws; but may be considered as a fanoifal dream of its invector, composed of civic ornaments of swords aod maces, cape of maintenance, shields, and other civio heraliry, embelliched with wiadows neither Gothio nor Hiadtstance, hat a mistore of both, as If anme of the piutares of his eastern frieods, Hodges and Dealells, with some of Wrea's, had been floatiog before his eyes like diecolving viewh. The porch is surmonated by a row of queeralookie: ornamente, resemblist aothing 20 mach as the beck laps of George the Thind's lifo-guards. It is, however, a pictareaque and most original eompoltion. Whatever fanlts may be attributed to Mr. Dance's front to the Geildhall, they are mon than compensated for by his well-proportioned, original, and alegant chamber erected for the meetings of the commos council of the city of Loodon. The room is of the proportion of two cabes, the centre being given to the body of the court, on the floor of which are rangee of seats for the comemovers. The western half-oube is raised above the level of the court, aod is approprtated to the chair of the lord major, a bench on either side for the aldermen, recorder, and aheriffi, with a seat and table below for the acoommodation of the town-elert, the common crier, and the clerk of the conrt. The eastern half-cube is separated from the bods of the court by a bar, at which counsel, petitionors, and other persons who have to addrees the court, appear. From the door below the bar is a passege leading to a commodions reporters' box at the furtber end; and at the eastern end of the chamber is a epacious gallory for permons wishing to hear the debales, which is free to every one so long as there is room. The ceatre of the court is covered by an elegantly-proportioned spherical capola, aupported on four segmental arches, and lighted from above by a capacious circular lantern. In the epandrels under the capola were formeriy four allegorleal Ifgree, painted by Richard Weatall, R.A., but being mach injured by damp were removed. At the upper end of the chamber over the lord major's chalr is a fine marble statue of George III., exeented by Chantrey, at a cost of upwards of $s, 0001$. Uader each pendentive of the eupola is a marble bust on a lofty pedestal of Nelson, Wellington, and Granvill Sharpe. The walin are decornted wht several fine bistorical pletures and portraits, many of which were the gift of the Arst Aldorman Boydeh.

One more building of this Mr. Dance mast be mentioned, for the bold ortginality with which he violated ome of the firat primeiples of his art, and whioh wey be coodemsed by Palledian pedante, at the Dryaeducts have his Guildhall-Gothio-namely, the little ohurch of 8t. Alphage, in Londoawall. The ancient charch on this apot esoaplag the are of Londoa, became, aboat the time the additions to Grildhall wore proceeding, so dilapidated, that it was rebaill from this archilect's doaiges. The eingi-
karity above alloded to consints in having ellfptical colnmns, inetead of ciroular, where, betag attached to the wall in a very narrow atreet, great projection conld not be obtained ; and consequeatly prodnce a better effect of light and shade, from the depth of the anderentting, than either pilasters or semicirenlar colamns.

Althongh Carlton-honse, the palece of George IV. when Prince of Walen, has been removed, and the Theatre Royal Drury Lano which pre* ceded the present one hes been burnt down, they both possessed architectural qualitios too grest to suffer the name of their architect, Henry HolLand, to pass nnnoticed. The former consisted of a centro and two projecting wings; the portico was six-columned, of the Coriathian order, selected from the temple of Jupiter Stator at Rome, the capitals of which are singalar for the intertwining of the inner volates. This portico was presented by George 1V., on the taking down of Carlton-house, to the trustees of the Netional Gallery, and were adapled by Mr. Wilkins, the architect of thet edifice, to the central building. Drury Lane Theatre, that whe celebrated for the trinmphs of Mrr. Siddons, the Kembles, and Sheridan, its taleated proprietor, was, in their opinion, and that of ali theatrical critios, the very bean ideal of a dramatic theatre; nor has its equal been since erected in England. On the summit of this stapendons edifice, the architeet had erected a lofty octagon tower, somewhat resembling the Temple of the Winds at Athens, the apex. of which he surmounted by a colosal atatre of Apollo with his lyre, as the god of music and dramatic poetry. It is aingalar that, at the awfui conflagration. which consumed this traly national strocture, and caused the Hoose of Commons to adjourn its proceedings is pity to the misfortanes of their brother senator, eonsidering it a general calamity, -the statue of the god, burrounded by flamet thet reached far above its head, and looking as if in the crater of a volcano, was almost the lat object that fell with a death-like crash amidst the fery mass that was biazing in the pit of this once elegant theatre. This architeot also bailt the firat Pavilion at Brighton, for the Prince of Wales. It wes a neat, unassuming, sea-side villa, decorated with a fow Ionic columns, like those of the Ilisens. This bnilding also met the fate of Carltor-house, and was taken down to make way for the present heterogeneous stracture.

One of his buildings, bowever, did escape dentruclion-Melbeurnehovee, Whitehall. It occuples a large apace of ground between the Horse Guards and the Treasury, with two fronto-ane towards the public stroet, Wblteball, and the other facing the Mall in Bi. James's-park. The entrance-froal, next Whlteball, is decorated by a fonr-colameed Ionic portion, of the Ilissus order, which, extending to the curb-stone of the footpath, allows carriages to come close to its plinths, and set down visitors under its roof. The footpath is con tlnued uader it, which often affords to pascengers a friendly shelter from the rain. Right and left of the portico are columas of the same height and proportion, detached from the wall, with projecting entablatares prufled over them, which, with the great projection of the portico, give a play of light and shade too seldom found in the street-fronts of our public buildings. This front has no other aperture but the eatrance-door, which opens into a apacions hall, covered by a spherical oupola, which leade to the internal apartments of the man. sion. It was buiit for the late Duke of York, and, from the circumatance of the comewhat overwhelming appearance of its huge cupola, which seems almost to crash the little portico beneath, it gave rise to a ludicrous Eaying, that Mr. Holland bad lodged the Duke of York in the ronndhouse, and the Prince of Wales in the pillory. The latter remark alluded to the long Ionic screen that separated the coartyard of Carlton-house from PallMall, through which the portico and the two winge seemed to peep like the head and two hands of a prisoner in that instrument of panishment. On the nothing-to do appearance of these colnmas, an Italian architect, the elder Bonomi I believe, inscribed the following epigrammatic question and answor: addresaing oue of the isolated trucks, he asko-" Cara co. lonma che fate qua $?^{"}$ to which he makes the stone reply-" Non capiamo in verilal" I quote from memory and bearsay, and know not into what Charivari of the Jay to refer for a correct version, if in error. Mr. Holland's ather works wore on and about the great bailding apecalation of Bloene-ntreot and its neigbbourbood, and may be regarded in a nimilar light, as to arehiteotural ehayacter, to those of the Adams io the Adelphi.

As it bas been castomary to give additions to the names of emioent priuces, such as Louia the Great, Charles the Bald, Aichard the Lhenhaerted, 20 a cotemporary biographer of the Brunswick fumily propoees
to call the mocooser of George III. "George the Magnikeent," Ae regent and eovereign of these kiggdome, he exhibited a love for erabitectalar apleadonr more capricious than tanteful. Gatediness was more eateemed than elegance, and George the Magnificent delighted move in the contly extravagance of the Dioclesian school, than in the tastefal grasdear of Periclos and Phidins. John Nash was erectly the arohiteot to the regent's mind; and gilded profusion usarped the place and overiaid the purer taste that had been iatroduced by Chambers, Wyatt, Btaart, Dance, and Holland. Hence, George IV. preferred the gorgeons profusion of the Roman school in its decline, to the sublimer truths of the Atherias in ite greatest purity; hence, he preferred the pretty beanties of the Duich and Flemiah manters, to the sober and less apparent magniticence of the Roman achool; hence, he preferred cabinets and bijouteric to works of aterling merit; hence, he preferred Canova to Phidias; and hence, all the bad tante that amanated from the petronage of George the Fourth. He decorated all the lower apartmeats of Carlton-house, low in height as well as in situation, with Corinthian columas, redolent with burniahed goid from abacus to plinth; 20 bright, indeed, that their proportions could not be scanned, and their only excelleace wera thelr extrome cont. This suite of apartments, which were level with the gardens nest \$L. James's.park, and beneath the spleadid suite of state apartmeats designed by Hollend for levees and other regal purpores, were furnished, by the architect, the cabinet maker, the carver and gilder, the upholsteror and carpet maker, with almost Tiberian luxury, for the personal use and comfort of the regent and his favonrites, who could make their exlts and entrances by the back way in the park, without ever goisg up to the public and royal part of the regent's palace. This costly aod, as Holland left it, lastefal edifice, be awepl away, and palled down Buckingham house, the favourite residence of his father, to make way for the present Buckingham-palace, which all the patchings of Blore have not been able to lick into deceat shape: nelther has it a tasteful exterior nor a comfortable interior, at the oomplaints made to Parliamert, of the want of domeatic accommodation, fully prove. He removed the pretty Paviiion at Brighton for the capricions nondescript which now so expensively occupies its plaee. Before the removal of Carlton-honse, when George IV. entertained the greateat assemblage of princes and warriora that, perhaps, ever met together at the Euglish court, witer the great and terrible trinmph of Waterioo, the enter. tainments were both extravagant and childish. A canal, flied with real water and living fish, meandered among the tureens and plateaur of the dinner table, till the nofortunate sufforers were killed and nearly cooked by the beat of the soups, the viands, and the entrées. There was also erected in the gardens a circular revolving temple or tent, moved by invisible machinery, designed by the chief architect whom the prince deigned to honour, for the admiration of the imperial, royal, and gallant visitors to the regent of England. This buildiog is now applied to a very useful purpose, being the model-room at Woolwich-arsenal. There was also a fragile Chinese bridge thrown over the canal in St. James's-perk, which, had it been consumed by the illominating lamps that showed its barbaric proportions to the gazing multitude, as it was threatened, it would bave been spared the disgrace of a sarcetm and an ourly deatruo. tion from premature decay. When Canova, shortly afterwards, viejted this conntry, parly to view our metropolis, and prinelpally to feast his eyes upon the unequalled beauties of the Elgin marbles, be was accompanied in most of bis perambulations by an amiable and eminent livisg architect, whose name I may not mentlon wlthoot permighloo. He was wo delighted with the simplicity and dorabie conatroction of Waterioo-bridge, that be demanded of bis gaide if it were not batlt at the publle expease $?$ He was informed that it was ereoted by private, untitled iudivideals; bat, if he wonld accompany hlm a chort distance, be woold show him cose buitt by royal command at the publle expense, a from the desigas aod uoder the superintendence -to borrow i favonrite expresston of our craflof the ohief archilect to the crown. He took his frtend Cavova fo St. Jamesiepark, he pointed with supreme derision to the pagodis bridge, end ex-claimed-" Behold the work 1 "

Nesh must not, however, be Judged by these royal pueriltites; for wo man should be estimated by the worst, but by the best of his worts, vileme the former so far proponderate as to overwbelm the ialter. Regent-atreet and the Regeot's-part will carny the names of George IV, and John Naeh, as patros and architect, with comaiderablo applanse to a late posterty. The clearing away of the marrow stroets, dirty alleys, mad fithy coerth, withont sewers or andergrouad water-coames-a very honeycomb of cesepools, and hive of sordid abominations-ehat existed between Orfordrirest and Pall-Mall, to make way for a broed, haadsone, and verited
thoronghtire, from the Newrond, Margleboes, throegt the handsome cwid de ace, Porthod-piece to 8L James'b-park, is not colly a work of grent sanitary welfare to that portion of the metropolin, and has opened a neoseary thorooghfare from Westminster to the woalthy district of Marylebooe, but is one of the greateat architectaral improvements that have taken place to the metropolis between the reigas of Charies II, and George IV. The great cewer alone tbat exteods from Portand-place to Whitehall, and porifies, by its varigus brasches, portion of the metropolis equal in astent to many a city, would have dowe honour to the pames of Agrippa and Cato the Cemsor.

The expense of parcbasing the gronnd and property, and interents apon th, was enormons; but the calcalations of the architect, and the powerful oupport be received from his royal patrop, eaabled him to accomplish, after many and annoying obstructions, this vast undertaking. When the plan for the street and the sewer was completed, the ground was offered to pablic bodié or indivituala, under severe reatrictions as to external design and quality of materiale, at beavier ground reats than had over before been paid for bouses of retail business. Sites for public and private buildings were taken, as the speculators or builders reqnired; and as fast as porLions of the majin street were finished, and became consected with lateral screets, they were opened to the public.

Nasb did not compel any of the lesses to employ him as their archi. tect, but left every one to make their own choice, reserving to himself and the commiscioners for carrying the works into execution a right of rejecting such plans as did not accord with the inteaded style of the street. From this canse arises the pleasing variety that distingaishes Regent-street from the monotoey of many of its more opulent northern neighbours. Inctead of single houses, it consists of many fine rows of honses, some of which would not disgrace a palace or royal residence, and might be taken for such did not the subdivisions of the shope or offices thow their applicaLion. Many of these, as Waterlou-plece, the Quadrant that leads from it to Regent-street, the mansion that be built for himaelf on its eastern side and some of the best connected series of honses, and the two Circusses, that connect the great croseinge of Piccadilly and Oxford street by a continnation of the main atreat to Langham-place, are from the designs of Nash. Some of these, to hasten the completios of the work, he ondertook himeelf as building speculator, which neither amended his fortune nor increased bis comforts; but Nash was a bold, paterprising man, and had a spirit aot eanily danated by difficulties. The other architects who principally contribated to this great undertaking were Soase, who will be mentiomed herpafter, C. R. Cockerell, the younger Repton, Decimas Barton, the two Smirkes, and the elder Abrabam, who being happily in the land of the living, their works do not come into this portion of our bistory, which will clowe with the works of onf respected predeceacors.
Nagh's orber great work, the Reyent'z-park, shows the talent of this embent artist to great advantage. The arrangement of the romd, canal, Jake, and plantatione, which were all fniabed and in a growing state before acarcely a hoace was erected, exhibits the power of Nash's mind in grasping a whole, aod his taste as a landecape artist to great advantage. So litile did be care about the mivor details of bis art, that he either knew eot or contemsed the differences between the echoois of Greece and Rome; for once, when eogaged in a conference with him, relative to the galleries of the Bocioty of Britich Artists, which he built from my derigns, he ivquired why 1 spoke dieparagingly in the "Anale of the Fine Arts," of his architectural tante, -he was asked if he really preferred the mean and meagre capitals that he had empioged in the exterior of his own honec in Dover-atreet, and in the porticoes of Waterloo-place, over those of the Ilisass 1 He replied, that an Ionic was an Ionic, and he did not cars which his draghtsmed need. But it is remarkable that he ever after emploged the latter, as may be seen in the before-mentioned two Cirensess, and some of the more northern boildings of this street.
This beautifal and highly-decorated park bears teatimony to the liberality of Nach'a great patron, who nol ooly dedicated this portion of the crown lands, previously known as Marylebone-park, to the public, but preseated the mefnificent royal library of his facher to the British Mnseam, asd a splendid collection of easts from some of the fineat antiqne stataes in Bame to the Royal Academy, for the nee and benefil of the Britich pablic. The Regent's-park is bonaded on the sonth by the New-rond, from which it han ive entrances, two between the eant and west sides of Park-square, opposite Park-crescent, Portland-place; ope between Uistertecrace and York terrace ; one opposite Marylobone chorch, called Yorkgetw ; and another opposite Baker-atreet, between Cornwail-terrace and Ciarence-lerruce; - 0 the west by a mev rond leading to Lisson-grove;
on the sonth by Primnone-hill ; and on the went by streets reaching to the Hampateed-roed. The Regent'm-anal enciroles nearly the merthern half, earried throegh a beantifully-planted valley. In the contre is a circular road, called the Ring, within which are the beantifal gardens of the Loedon Botanical Sooioty.
The priscipal terracen and buildisge that surroond or stend within the park are ohiefly from the designs of Nash himself, and two or three by liviag archltects ; bat the limite of this work do not permit more then a brief meation of come of the beat, which are-York-gale and terrace; Snstex and Clarence terraces, named alter two of the prince regent's brothers; Cornwall-ierrace, numed after the second tille of the heirapparent to the Britich throne; Hanover-terrace, after the reigning family; the menagerie and gardens of the Zoological Society; the royal boapital of 8t. Kutherine, remored from the site now occupied by the 8t. Katherine's.docks; the Coloscenm, a building more resembliag the Pantheon of Agrippa than the gigantic atructure whose name it assumes; the Diorama, and the villas of the late Marquis of Hertford, Bir Herbert Taylor, Lady Arbuthnot, and that of the late Mr. Burton, called the Holme, beavitiflly overtooking the spacions lake, and a fow others of leas distinction. Of Mr. Nach's other works, which are tolerably nomeroas, the limits Ared to this concise biatory will not allow me oven to name: many of them are some extenaive mansions asd villas, town-halls, and similar buitiage, priscipally in Kent and samex, which are all aarked by his peculiar tante, which was meilier pore by natore nor rofined by stedy. He was rather a great building projector than a tanteful artirt. Hia taste in landscape gardeaiog, which combines the beanties of Kent asd Brown, founded upon the parest Eaglish models, wes lees artificial than those of Le Nots and other manters of the Franch cohool, whoee formalities are proverbial. Naab lived to a Neatorien age, and, if valike Wren in anything else, be died, like him, veglecled.

A few works of some celabrity mast be jatrodnced rather parenthetically, and more briedy than I coold have wished. The Avction-mart at the bottom of Bartholomew-lane, opposite the north-east corner of the Bank of Eagland, oceuples a situation too public for its alender protenaions to either tate in design or skill in adaptation; the atairoase, which leads from the hall to the namerons pablic anction-rooms in the opper stories, is narrow, steep, and dangerong to a fanlt-in that portion of a public building which, above all others, ought to be capacions and aasy of access. It was erected from the designs of the late Mr. Joho Walters, who obrained the honour of being selected from a aumber of his cotemporary architects, as the anthor of the bent desigr submitted to a committee of ano tioneers. Thia architect also denigned Stepaey new chorch, situated at the rear of the London-hoepital, Mile-end. It is in the later Yointed style, which appenre more congeaial to the architect's taste than thowe of Greece and Rome, for it is altogether better an a work of art than the preceding. It has large tramesers windows at ach end, asd amaller ones of a similar character in the sorth and matb sides. Being finiabed with octagonal terrets and pinnaclat at each ead, without eitber tower or apire, it bears a greater resemblance to a collogiate ohapol than to a parish ahurch. The palpit, gallerien, altar-piece, roof, and pewinge are of colid oak, carved, moulded, aod panelled; resembling in durabillity of materials the beat works of our beat church architects. It wad erected in 1819, bat its amiable architect died juang, and moch lamented, before its complotion.

The offices of the Board of Control, Cannon-row, Wentminster, bailt originally for the Board of Ordnance, by the late William Athjnsoo, Esq., it an extensive bailding with two fronts, one faciog the river Thamen, and the other naxt the before mentioned atreet. The Ionic portico of its principal froat is one of the best proportioned and moat aptly applied in the metropolis. It is four-columaed, with a pediment after the beat cavon of the order-that of the Iliseus. The entablature is eontinued on each side of the portico, and terminatea at the angle of the priacipal froat.

The iate King Wiiliam IV., althoggh never anpiring to the title of a connoissenr in art, yet showed a sound jndgment in selecting for his chief arohitect the lato Mr. Jeffrey W yett, to eviarge and embellish the ancient royal palece at Windior, which had been patched by Wren, added to by Jemes W yatt, and botched by Nash. The additions made by William IV. werv extensive, jodioions, and In good tagte. He axpresced his views to his arohiteot, and lett him to complete them. He honoured him with knigbthood, and, to sive him a dletinction among the mamerone fanily of ble name, be angmented his patronymic to Wyattoille; and Air Jetirey of that aume beoane distingulahed by the favont of his soveroign, aod by the taste he exhbited in his additloes to Wiedror-cantle. He cumplededine
 Wyath, and known ta Georgo the Third's talrcase; liaisbod some and added otbert to the noble selte of domentio and state mpartments, wheh are mow so gecorally admired. He rebuitt and added to masy of the ex. ternal towers and other boildiage on the prineipal terraon; and broaght then whole exterier into a valty of deaift, that it never poreared siace the daye of William of Wykeham, its original arohitect. He aloo raised the Ecep, or Roonad-tower, eearly 100 fcet above its former altituce; and readered the whole mase of baildinge of which this magalfioent royal palace is oemposed, to a vaity of design that its former beterogemeors minture of styles epparently bade definces to
 haviog practisot the more protiable besiness of a builder at the westorn and of the matropolis. He, howover, showed a great love for art from the cartiest pertod of his life, and oten exblbited designa, of great taste, in the annal exhibitions of the Royal Acadeny :-one, a ploture la oil of Prita's palece, as described by Homer, showed inventive talent of the nigbeat order. Bir Jaftroy publehed a beantiful sories of his works at Windeor-eactio, which oeght to be in the hande of every lover of this nolle art,

Dowaing-oolhge, Cenbridge, Halleybury-ooflege, Hexford, Uaivernitycollege, Londen, and the buildiage comtaining the Natlonal Gellery and the Royal Acedomy, on the nowthern-side of Trafalgar-square, aro from the deajges of Willian Wllkins, R.A., formerly Regies Profensor of Arobitectere is the Rogal Aeadeany, and author of sovoral wrorks and delineations. These balldings are all of one family, one sobool, one atylopedantry. Grecian art, inataad of giviag froedom and beacty of atyle to the desiges of this arthe, Minerva soome to have frowen up all bis facaltios by the torrort of her agis. So much Greek, so mach gold, whe a maging of Samuel Johneon; and so mach Greok, 50 muoh cold, wes the practise of William Wilking,-for no kberty woaid he give er take, no line or member wrold be ree but for whial be conld not find a precedent in mome amcteat Greok beilding-and the older and mone formel tt was the better. Ho wras a Grook puritan asd an archaic methodiet. The Oorinthtas portioc of the Natioal Crallery is Hotlaed's, or it would not have treen so lozoriant in ite foltage. Bat he has frosee the entablature by his Helleale coldaces. Hed he been a sculptor, be woald here out of the Hyeeinthian lookes of the god of Day; he would have deprived Jupiter of his aubiosial ourls, as Doliah did Baspeon, and seat them both iato OHympus like a conple of Hoandheeds. At to the interior of the bailding, the Boyal Acadomy may well regret the greater dimeasions and feer proportioss of the large exhibition-room aod weld-proportioned consoll-chamber, deaigned for thea by Chambers, and decorated by the peaoil of Reyuohds. The exbibition-rooms of the National Gellery are uaworthy of the name, and some of onr anctioneers and pioture-denlers have better. As to the portico, it is, from its cituation, but of litile une; and the Royal Acendeny are obllged, daring their exhibitions, to ereot a temporary wooden one bencath and withont it, for shetier and shade. At Carlion-honeo, it was a usoful addition to the bailding: in this gleos, it is a usolens epplotion, atack ap for the admiration of gaving cabaen and haokney-conchmen, whilst loitering apoe their stand.

The portico at University-collogo stands in the same category-aseleas, and, therefore, an unneeeneary appendage to the building. The arohitect has aleo mistakenly placed the staircases to the principal story ontaide of the stroctare, instead of within its walls, like espiss chalet. Should the Emperor of Rumin, in imitation of the Empress Catherine, orect another ice palece at Poterabergh, mo man could have oreonted the freening mak so woll at the cold and chaste arohitect of Downiag-coliege.

Yet Mr. Wilkins was a learned man, wat a gradeace of the Univertity of Caubridge, an secompliehed Greek echolar, and, perhaps, the beat cdacated claticic that has honoured the profeasion of architectare since Bir Christopher Wrea. Hed the taleats of Mr. Wilkins been direoted solely to litertare, Grecian archabology, the higher branches of mathematics, or to an scourate delineation of thoe ankiquities which he soproforndiy admired, he would have obtained a higher standiag astong the great met of his conntry, thas be doen among lis architeets; laching, me be doen, the arehitect's greatest qualition-invention, and freedom from pedantry. Hed be been sole diotaior of art, no atyle woald have paseed carreat in his realm, bat the hard, dry, cold Groek of the oldest thaes, withoats a shadow
 cold, as lifolow, and as muoh bound up by the bands of precedeat. It is the Greak atyle of Mr. Willhan that bas wreried so many of fts wertent admiters.

The Bank of Eagiand, the new Treastry-ohambers, before their recoat alteration by Mr. Barty, the royal eatrance to the old Boase of Lorda, affeot edly called by tis architect "La acale reggia," and some others of his earlier works, show the exubernace of the fancy, while the sound judgmeat and good taste that acknowlodge the rales and precepts of the greatest meaters of the art, place Blr Jobs Boane on a level with any Eoginh architect aince the days of Jones and Wren. Whilst the prorilitios and freaks of faney indulged is in bit own howee and museum, Linceta's-lonfielde, the Dalwich-gallery, the new buildingt at Cbolseehomptial, and the Netional-debt-ofice, in the Old-Jewry, exhibit a wild exaberance of noveity, onchasteaed by the sober rales of art, it has stamped tham with the ohamoter of what the Italiasa would call Capriceies, ather than woven compositions. His greatent work, the Baak of England, whother taken as a whole, or comaidered as a serien of detached baildiags, orected at several periods, and sabeequentiy brought into a whole by the hagd of taste, is a wort of aingular and atering merit. The long north front aent Lothbary, is simple, grand, and tmposing, and is among his oarlieat and best productions. The wreat front, next Princes-atrest, whilst the estien of all forms in architecture, an acute angle, which the juaction of the two fronts form, is overcome in an original and manterly manner. This is me aged by cutting off a considerable portion of the unjightiv angle, and converting it into a slight recoss ; and the two fronts are gracofally ocoaected by a circalar portico of colvmns and pilasters, the ontablatne of which is surmounted by a beavilfal acroteriam, over the obtase anglo at the back of the portico, ander which is an onocouped niohe, cerresponding with thoee in the Lothbary froat. Soune, uadoubtedly, had in hle mind the somieiroolar porticoes of the worth and south transopts of St. Paul's (of which he has often expresced to me his most ardent admiratlon), when be placed this segment of the oircular temple at Tiroll to conceal this nity corner. Ho has, by this moans, not ouly overcome ata unforvecea difieculty, but coaverted what would have been a blemish in common handa tato a positive beauty. Bo original, so happy, and mo beantifal, is this gem of our art, that the committee of architeotural etodents of the Royal Ace demy made it the reverve of their medel, which they struck in homont of their eminent professor, and presentan to him before his rotirement from poblic life. It has been proposed, and the thought is a happy oee, that a atafue of the arthitect should be placed in this racant niote, and thes supply all that fs wanted- figaro to this aniquo design. The anall gagdrangle called the Loftenory-court, is a desiga of surpanaing teavty ead olegance. A reomed portico on the right hand, and on the lent lead to the bullion-ofice aed other important offices of the Bank; whilet fone doteched columns of the same orier, supporting atatues of the foar quatrtert of the globe, coaduct, through a semicircalar-beaded gateway, to the interior apartments of the edifice. That portion of the quadrangle weich immediataly feces the great entrance gates, possesses a magaitode and beanty suficient for a triumphal arch. The arohtteot was so joitly prode of this deatgn, that he erected a copy of the columoar portion of lt, apoa a smaller soale, as a decoration to the front of his own vilis at Esiliag. Its ample rolauda, formerly used as a mtock-ezobange, bot bow a one of the dividend-paying-ombea, is a grand, aimple materpiece of ert; the is the large ofroe at the morth-wert corner of the bolldiag, decorated with lonty Ionic colamas of beantiful Greek proportions, with a varlted ceilthgThese beantifal and correct works are among Soano's firat and beet prodeotions. The front next Bartholomew-lane was next in polat of tine, and shows a greater tendency cowards an excess of ormament than the procediag ones. This elovation abalted for tome time upon Sir Robert Taylor's Corinthian pavilioss, which were afterwards takea down, and the Boanolan style carried on in Threndneedle-streot, from both eads, till they joined the centre of the original bwilding, ereoted by George Bernpcon, in the retga of William III. Thls, banily, gave way to the premet now centre, whifh is by no means the happteat of Soane's designa. That tho Bants beoame complotoly isolteled, and has but one entruse in each streat:-chat in Lothbory has bean before desoribed; the one in Barthoto. mewrlane loads to the roterdie and other public ofices for the paymeat of divideads and tranafor of stock; the three pext Threadneedio-street, whech may be considered but as one, iend through a epecions oourt to the hath, the front and interior of whioh oxhibit a fatr specimen of sampeowfe itive a an architieck. The entrance sext Pripees-atreet is, I believe, aever opened. Thue there aro but three ontrances to this imenense trvelume of oacrmona Weilth; nor oun a are appropriate boilding for anch a purpose be imagised. The order nsed is that of the ofrealar temple at Itroth,

Venta, of to the albyl to woll keown in ancivat Ioman hintory. Someo Whe the first archisect who over ased this rich aed beantifal rariation of the Coriathian order since the daye of its original zoventor.
I am sorry that ay proceribed limits have compelled neo to treat the works of meay of our greateet architecte, particularly Wren, Nech, aad Boase, with sooh brevity; but as 1, et presout, propose to ealarge this Momoir, and to illestrite it by ongerviags of the beat works of overy period, I reapeetfully bid farowell to ay friondly readers.

James Rlme,

THE BRITISH MUSEUM.

> No. V.

The Egyptian rematos avo particularly intereating, as they show the state of manuficturing art in a conatry whioh wes the great contre and sobool of art for many ages. Witt Egypt the Phocaiciens traded, ex. abeogugg the prodactions of that cosatry for those of Greece, the Lovmat, aed the Weat Meditorranean. The Egyptians were not food of the men, and the outward trade was alwaye in the haods of atreogern, first Phooniciass, and then Grooks. This was a oircinmatance which fivoared the Pboenioiane, for it prevented the rivalry of the most advanoed coonatry, at a time when the mations in the Mediterrameen were all la a state of barbarism. It is to this trade of the Pbconiciaas that we, pertape, owe the specimest of Chiseen workmanebip which have been forod in $\mathrm{E}_{8 \mathrm{y}} \mathrm{pt}$, and nome of which are sow preserved in the Britinh Maseam. The trade to the Irdies loag pased through EgJpt, bet it is asoortain whether the traffic carrted oa by the Phceniciana, and Solomon, king of the Jows, from Eston Gebor, on the gulf of Akeba, is the Red Sea, was anterior to that of the Pbeeniciana or not. From Egypt the asefol arte were earried direet to Greece, and in all probability to Ecruria and Italy ; an enterprise not more diffiouth then the interoourne betweon Tyre and Carthape. The traditions of Gramoe afford many examples of the inflience exercieed by the poliched setives of Egypt; and the latter conntry was loag regarded with revarnace as the eroat sat of learning. The Jews meem to have acknowledged the same soperiority in the craflemen of Esfypt.
Egypt had particular adruntages in thome days at a manufectoring conatry. It had good suppliten of flax, the matorial of the groat woven manofactures; and it had a large workiag popalatios, supported at a choap rate. It searne likewise to have been free from home war. Bgypt wat defonded by its deserts, its soas, its awolion rivor, and its many cuasle, more than by the conrage of its inhebitants, or by the pomesalom of large mpaterial revources. It is true, Esypt fell ander the rale of the Perdines asd the Greeke, bat these oases of groat invaions were difereat in their effocts from that of frequent and barracing ware, or the polty wars currind oa batween the towns of Greeve. The history of Egypt in this respect is like that of Chins, which, althoogth it has avecumbed to suocosive Tartar Larraions, tas enjoyed a settied state at bome. The great oities of Menphis and Thebes had greater populations than the mont Gonriakjag and powerful Greek atalea, and secumatated on small apots a large bedy of artisans, who were favoarably placed for carrying out a mbedivision of employmant. Many manufectures, were thus earried to a groas pitoh, as there is witness asough in the Britinh Maseum to prove to us. Indeed, down to the latest period of what may be called "aotiguity," Egypt wes e creal swat of manufsetares.

The Engptian oolloctions have been meah improved of late by the addition of propar labola, giviog as good an interprotation as pocitible of the anmes of the chief personages reprosented. These collections are the more pleasing, an they contain sufficient to stre a very good idea of the publio and private life of the Egyptiase. The coloceal hoeds of Rameses are frir speaimane of thoir large works; white the cossmon tools, instrasents of the Loilet, or articles of drestes, illastrate thair noore trialing parenits. Admirable es is the Greek colloction for its works of art, it is waatiog in the emeltor apecimens. The Roman collection is deficient in larger artiales. The Etrescen gives ua representations instead of the objecte themeeives.

The Rowetin btome (No. 24) it what first deserves attention, as it may be segarded as the key of the whole syetom. This monument seems to have beee placed in a temple at Rosette, dedicaled by Necheo to Atum. It in of besalt, asd contains three inscriptions on the same sabject, one in Efyptian bieroglyphics; a second in Egyplian demotic or enoboreal charcoter, a more familiar character of mode of writing $;$ and a third is Groek. The
incoriptions are matheted, and reved the services which Pickeny the Fitth had readerved to his conatry. They weve engraved by order of the. high prients, when acembled at Memphis for hiv isctalletion. The anme of Oleopatre likewte occara. The tablet has intely been pat in a. frame.
It will be mamebered that from this tablet Dr. Young derived his theory of hienoglyphic interprotation, which be tated by its meane As the neme. of Ptolveny wonrs so froquently in the Greok, Dr. Yoang thought thet the correspondiog group is the hieroglyphice would be found meariy an often. This proved to be the case, bat affionded oaly ono result-ibe diecorery of the rame of Ptolemy. The name of Cieopatra likewise was foand, and. Dr. Yoong thoaght it worth while to aramine whether the pieroglyphice forming the anme correaponded to the letters or aylables of the Greek. If so, the groaps anawering to Ptolems and Cleopatra would to some extent correspond, as each oostaise the P, T, and L. Dr. Yoang foand this to be the oase, and thus obtained the elements of an ulphabet, which bas been oxtended and applied to anch extent, that the dictionary of hieroslyphles sow inclodes many thousand worde.
The results of this diceovery were not confined to thetr operation on Egyptian hieroglyphites, bat have had an infuence on anothor recoodite. departant of learaing- ibe interpretation of the arrow-heeded charscters, which, like that of the Egyptian hieroglyphice, so loag befled ingniry. The possession in maserms of a fow billogual inseriptions in Arrow-hended and Elieroglyphies was of no avall, so long as both remained nedecipbornd; but with the nalocking of the searot of hieroglyphics, theoe insoriptions have aoquired great importance. The namee of Xerres, Artazerien, aod other Perchan kiege, havo been reoogrised oe thowe monamente, the Egyptian oartocobes having beon interproted, and thus give meteriale for analphabet of the arrow-hended eharnoter, which now engages the alteotlon of meay able and persorering atrdeota.
The tablet of Abydos (No. 117) is another valuable mosu weat. It was fonnd by Mr. Baoke, in a obanber of the temple of Abydos, in 1818, and it mas pablished by M. Calliead in 1898, and by Mr. Consul 8ealt in 1885. It whe convoged to Frasce in 1807, and at the aslo of M. Mimant's col. lection, it was boaght for the Britiah Muceam. It represento an offering made by Ramoses zed or 3rd, of the 18th or 10th dyancty, to his predeocseors in the kiogdom of Esypt ; bet it is not yot accertained whether thelist of kinge be chroeological or gesealogionl. Origtanlly, k hold the names of Aty-two kings, arranged in the two apper lisen, or tweoty-six in each lina. The fint twolve mares of the frot line and the first elght mames of the sooced lloe, have been destroyda. It still has the marmes of many kinge; and it is probeble that the diecovery of other monamente will give amplo meteriale for a sound ajolem of Esyptian ahromology, a mattor of come artibic firportance, as it will give us exeot ideas of the relative agtes of the worke which we poceese, and will throw wry great light on the history of asoinet oivilimation.

We may oberre, by the by, that in the procecation of hieroglyphic resconeben, it is wery likely that in late monomoste and incoriptions, Greek asd Latil terms and wreds will be foand inseribed in hierorfy phic characters, for wook la other cases is what may be termed a dot urasual philo. logical phenomenen.

Two eot the least intorectiog thestrations of Egyptian art are andonbsediy the two colosenl heads in the Graed Contral Seloon, and in the vertibrale of the Esyptian Room. The former is a plastor east of the face of the northern Colemsas at the rook tomple of Ipeambal, and representes the kiog Remeses sed. The other is likemise a plactor cand of the same mooarch, but the conatenasoe does not seem to be the aame. These heeds, of coloseal proportioos, raised so higb, and sonted as it were ou terrainals, giviag some idea of the uruak, are no lees remarkable for thetr vact aive thas for the harmony of thair expresion. To give a full iden of their ortgieal grandoor, they choald be placed still higber; bet as it in, their effect is moet tmpociag, and fally juclibes the artiatic conceptions of the Igypthans in their eoloseal morks. To the valastructed moltilude, the coutsom. plation of these figares, godike in form, mast have been impreacive of awa. They welked, as it were, anoag the gode apon earth, who were present in all the oublimiky of bearonily forma, clothed with all the terrors of superatitioa, and armed wht all the weapons of haponture; matues of a huodred feot in moigtht, which might be well eapposed to beer their rotaries, when, as in the cese of the rooll Memson, they were known to have the power of public apeoel. Indeed, wo can searcely contemplate anmoved the mighty rolios sow bofore as.

The artist will admive that in works 50 greal, breadih and amoothnoest should be so well proserred, and be will not fall to recogoise the hadede of
great maters. We cannot understand Egyptian art, onleas we 800 it in its bolder works, and then we acknowledge its aublimity. The amaller tablets and statues, the lises of bieroplyphics, and the grim tgares, would give us too low a tandard of Egyptian skill. In these smaller works thoy show only their weakcess; in the larger works they ehow their mength; and they have lef few rivala. Bach a work as the Alexander statue at St. Potersburgh, siaks into insignificance in the presesce of the vast outlines of a Rameses, or a Benontris ; and what we now call colossal, measured by the latter mtinderd, become anworthy of the name.

The history of some of the moantmanls in the Museam has ofton points of interest. Thns, No. 2s, the ahest of a large sarcophages of Hapimen, a royal scribe, was brought from Grand Cairo, where It was naed by tho Turks as a cistarn, and named "The Lovers' Fonntain." Death had eviciently loat its terrors, and in the lapee of ages awe had given way to love. The orlgin of the modern legend would be curions if it could be traced. The coloseal scarabsens (No. 74), removed from Egypt to Constentinople, was brogght by Lord Elgin to London. Thisscarabesus was sacred to the god Tore or Cheper, and was at a later period the emblem of the world. It is a right kiagly emblem for the modern Babylon. No. 10, a large chest of the marcophagus of the king Necht-her-hebi, Her-necht-hebi, or 4 myrtmus of the 28th dynaty, was at one time in the mosque of Seiat Athanasius, at Alezandria.

Beaeath Ne. 43, is one of the caaing stonas of the great pyramid at Gizeh, showing the angle of inclination of the sides and the material. It is a calcareous stone. It was brought home by Colonel Howard V suo in 1838.

What cannot fail to be noticed in many of the larger monnments, is the high polish of the gratite, porphyry, or serpentine, which has been well preserved during so muny ages. It excites woader thet mo much should have been done with the rude means at the command of the Egyplinns.

The namber of aepalchral moanments beionging to the Egjptians has afforded large anpplies for the Museum. These rerord priests, judgen, scribes, and offcers of ali kinds, and are rather of an inscribed then of an artistical character, though they supply many useful illusirations. A modern cannot but be atruck on seeing such proofs of the respect paid by the Egyptinns to their dead, of how much behindband are the Eaglish in this reapect. Large sums are lavished by us on the idlest and moaneat shows; the hire of black carriages with hemethbrushes on their topa, or bleck horses with long tails, and of bleokgaards of druaken and diseolute appearance; while the object fur whom this oupicturesque and unmeaning procession is got op is conaigned to a common grave, and len without the alighteat memorial of his exiatence, of of the regard of his friends. So far is this real disrespect of the dead carried, that the metropolitan cemetery companies have been obliged to put a check on an economy of the rites of sepolchre, which is exercised at their expense and in favour of the andertakers; for it was no ancommon event for a procession of mates, bearses, carriagea, and borses, to consign a bedisened coffin to a common grave.

The moneg which is spent ou funeral show is one of the greatest op prescions of the widow and orphan, who, in compliance with the conventions of society, in order to do as their neighbours do, are forced to spend money on cloaks, feathers, hat-bands, and cofin-trimmings, which they cac worst afford in the momeat of their severest bereavement. The abolition of this show by those who are above the fear of idle clamonr, would render a great service to those olasees of the community whove means are limited, while it would allow of the disposal of funds in a manner much more respectful to the deceesed, and muoh more neefol to society.

Whoever has observed, bas bad reason to regret that in lator times sepul. chral memorials of individuals, even of eminence, are rare in England, and this at a time when there is enough of publicand private wealth. Our great show tomb-houses of Westaninster and St. Paul's, fatter as that we are not wholly forgetful of duty towards the departed; but we have ouly to iook elsewhere to witness the keneral disregand of eepalchral monuments: old ones are snffered to fall into decry, and new ones are not raised. The peer, the bishop, or the judge, ieaves large wealeb behind him, and angrateful heirs. It is true, public feeling hae been better shown towards public men, and officers of the army raise regimental monuments to their decensed brethren; but there is no proper public provision for monumental commemoration, and little private feeling in its favour, although the cemeteries have oude some improvement. We want, first of all, a public fund for monuments, and we want next the disbursement by the weulthy classes of some portivn of thowe moneys now wasted upon andertakers. This applied in monaments would give us many raluable works of art, and wonld
be a most laudable exercise of patronege in favour of sculpture, a branet of the arts mach and ondeservedly neglected in this country, though ita caltivation is to be dealred. The succesfal stedy of eculpture woald not ooly give an impulso to architectional dwooration, bat it woold bave fis pecuniary bearing on our pottery, our glase manafectures, and on many branches of trade in which the platic arts oxerciec an indrence.

In-the upper Egyptian Room the viaitor has bis attention dratro to the many articles of glase or glased waro. As the Elruscans are ebarneterined by their painted vases, so may the Eyjptinn be by their blue glazed were. The cases are filled with figures of this material, which are fonnd by thousands in the tombs, belog attaohed to the network or the necklaces of mummies. This alone mast have constituted a large branch of manoface ture ; but the ornaments in the oases in the middle of the room are no less remarkable. Beads and drops, of clear and coloured glags, formed a great part of Egyptian joweltery, and there are many good designs of bead and bugle work, which might be thbught to be modern, so neally are they carried out. Although light blue or blaish greed is the favourite coloar, yet there are beads of bleck, white, red, yellow, and scarlet, allowiog of great variety in the pattorns and deaigns as worked. The beads and bugles are likewiec of many sizes, from the smalleat beed now made to a large bugle or cardrop.

The oases in the upper room contain a great varioty of objocts; they form, indeed, an othnographic museam of the Egyptians, affording specimens of many domentic objects-indeed, as copious illastrations of Egyptian life as the general stadent could well desire. The practical man will likewise fod particular interest in the tools and materials here collected, and which ahow the advanoement of the Egyptians in many branches of manufacture, not generally supposed to have been then successfully eultivated. In some, the workmen seem not to be surpaseed in modern timee, and they certainly procecntod with anceess most of the aseful arts.

The general character of Egyptian workmanaip is neatacas, and this will be seen in the wove cloths, mats, beadwork, fewellery, oabinet-mukiag, glase-vork, and other articies. The Egyptians were very precise in repeating a pattern, 80 that some complicated desigas aro carried out with all the accaracy of modern machinery. In this respoct the Greeks and Romans wore not so proficient ; noither are other modern nations 60 protcient as the English. Even the mat-work is well finished, and the cloth is as well woven as could be desired. Some of the mummy cloth in very good. The inlaying in the ohairs and other cabiact work is very fairly dune, and the wood wort is well finished off in most cases. The metal wares are likewise well wroaght, and the bronme ketties are as fuely turaed as conld be desired by the most fastidions. Alabaster vases formed - very gucceasfui branch of Exyptian menufacture, and the many which are to be seen in the Museam ara oleanly finished inside and out, seemingly by the lathe. The Egyptians aupplied plaja and coloured glase to the Greeks and Romans, and there are some botlles in the Maseom, with broad bottoms, which are of very fair sine. The glase arficles are, however, generally amall, being phials, beads, and articles of orpament. The specimens of Egyptien cryatai in the Museam are not so good as those is the Roman collection, but which it may be presumed are likewite of Fgyptian workmaoship.

Bome of the specimens of enamelled portraits are among the motiater. enting relics of Egyptian art, and it is to be regretted that we have not more of these relica, which are of a durable character. One fgure, in low relief, in which the colours of the head dreas are wrell barnt in and enemelled, is particulariy to bo admired.
The glased eartheaware figures are generally covered with hieroglyphies in black, and glazed with bluc. The Egyptians had the moans of boginning the porcelain manufacture in Europe, bat though there are apeotmens of plates with desigas, the Egyptians did not proeecate this mesen. facture to eny eztent, or the demand for decorated pottery would bave been large among the Romans. It was left for modern times, after the introduction of Chinese porcelain into Europe, to carry ont the porcelaia manufacture. As the Egyptian decoration was chlety confined to hiaroglyphics, there seems to have been no demand for their glazed agares among other mutions.

NEW LIGHTHOUSE APPARATUS.

Mr. Aloxander Gordon has for many years directed his talents and attention to lighthones, and, after extensive experience in fittiag and improving the lights, has at length prodaced, under the bighent anspices, a aystem of lights \mathbf{s} powerfolly concentrated es to promise in their adoption a very great advaotage to ocean and river navigation. One of these lights was exhibited lately at Measm. De Ville and Co.'s manafactory, 807, Btread.

Fia. 2.
Previonaly to deacribing the new light, we will give a short historical acconnt of lighthouse lights. Aboat the year 1792, glass refractors, five iaches thick and twenty inches diameter, were substitated for rellectors, the focal point being nineteen inches distant; and they were to be seen in use in an English lighthouse as late as the year 1832. Buffon had propoeed to reduce such a refractor is thickneas, by cutting the lens into steps, 20 as to absorb lewn light. In 1811, it occurred to Sir David Brewster
that a lent, or set of lenses, might be built of separate pieces of glass: In. 1810, the late M. Freanel proposed that the generating sections of the riags not oaly ought not to have the same centre, but even that the different cootres should not be situated os the same axis of the lens. A few yearn afterwards, M. Frespel engaged M. Soleil to construct eight snob lenses for the lighthouse of Corduan. In 1887, the Trinity Board witnessed some experiments with a lens of the kind, which had been made by Mr. Gilbert, ander the direction of Sir David Brewster. In 1898, that board imported a Iens from France. In 1838, Mr. Gordon introduced a polyeonal arrangement (both dioplric and catoptric), constructed by M. Maritz, of the Hagee. And, sobsequently, the Trinity Board, and particulerly the Conmissioners of Northern Lighte, at the instance of Mr. Alan Stevenson, introduced the French eyatem extenaively in England and 8cotland. In 1840, Mr. Gordon constructed a revolving light for Jamaica, with Hod. dart's reflectors, and without refractort. In 1843, the Bermuda lighthouse tower, constructed by Mr. Gordon, was lighted by Fresnel's system, contrary to Mr. Gordon's desire, who recommended very large prolate reflectors. In 1846, he introduced a fixed light for the Point de Galle lightbouse.

The new nystem of lights exbibited by Mr. Gordon is a followiag out of his prolate refleotors, as applied to the Cojlon lighthouse, by saving the radiuted light which formerly eacaped past the lips of the reflector. This Latter portion of the light, which was formerly lost, is now bent down and thrown into the beam, as uhowa in the annexed engraving.

The specimen light exhiblted was a single one, of great concentrated power; and althongh the light was only abont an jach in diameter, from a common Argand lamp, its daceling brilliancy vas scarcely subdued at a distance of 50 yards. In thls light, Mr. Gordon has combined a very proIate reflector and the refractor of Sir David Brewster deprived of its central portion; and by this system he is enabied to throw into a beam nearly ${ }^{7}$ the of the whole light generated by an Argand lamp. The parabolic or conio reflector is Exed horizontally, and opens at isis inches from the light; at a diameter of 151 incher, and at 14 inches from the mouth of the refiector; are fixed glass zones used as the refractors, being composed of four circles (each in three pieces), varying in size and thickness,-the inside face being even, and the ontside of the glass cut away into curved atops, to prevent nseless portions from absorbing any of the light, as shown in the engraving, fig. 1 .

Mr. Gordon proposes to ase these new " syatems" in some lighthouses $^{\text {n }}$ immediately,-For Revolving Lights: To use one or more of these systems, each furnished with an Argand burner, on one or more revolving faces, according to the size of the required beam.-For Fized Lights: To ase such a number of these systems as will light the circle (of $\mathbf{8 6 0 ^ { \circ }}$), or any required portions of the circle; twenty-forr systems, each wlth its own Lamp, for the whole circle, and iwelve syatems for the half circle, and so on : one system to 15°.-For Flashling or Intermitting Lights: Such combination of these systoms as the sitnation may require.-For 8team-ship Lights, or Railway Lights: A similar but smaller system; the source of light being any that is known and conveaient for the required purpose.

RAILWAY EXTENSION FOR SPEEDY TRAVELLING.

If there be one thing that has more than another served the purpose of retarding railway progress, it is to be found in the dogma so atudiously put forward on all occasions by "authorities"-meaning thereby railway makers-that "Speed is Weight," even though weight be not always speed. Whether on the hroad gange or on the narrow, welght has been constantly increasing in the process of competition; though it was evident to all who took the trouble to examine, that speed was not increaning in proportion to weight. Let any one examine or watch the rails on any railway while an engine, with from six to nine tons on each driving-wheel, is passing over them, 一let any one watch the deflection of the rail, whether on the continuous bearing of the broad gange or the bridge rail of the narrow, -and he will be satisfied that the process, even on the nominally level line, is realls that of asceuding a constant gradient, varying from 1 in 30 to 1 in 70. The process is that of driving a wave of rail before the driving- wheels of the engine, Just as the bows of a steam-vessel drive a wave of water before them. We believe, in short, that the process of propulsion on railways is analogons to skating-that the adhesive impulses are given at intervals on hard points, such as well-packed sleepers; and it is ou this principle only that the constant, irregular action of the draw-
springe can be accounted for. As regards dorability, there can be no question that the continnons bearer of the broed gauge is far superior to the bridge rail of the narrow, -and probably that may acconnt for much of the alleged advantage in working expenses. The want of continuons bearing in the mode of laying rails in chairs on cross-sleepers is a serions evil. At the joint chairs the strength of resistance is not one-third that of the intermediate chairs, and therefore it is that the passenger connts every joint as he passes over them. The crosesleepers at the joints are beaten down, and the ground is bollow beneath them. Watar gets in, and "maintenance of way" increases in amount. The rail hammer in the chairs, the keye get loose, and danger becomet imminent. If there be one rule more important than another in "maintenance of way," it is that of making the whole road, both rails and substructare, of equable resisting power throaghout. It were better and safor to have a fiexible rail throughout, than one alternately hard and flexible; and therein is the prominent advantage which the strncture of the broad gauge has over the narrow,-though probably, taking the weight of the engines into comparative account, the rails of the narrow gauge are better proportioned as to size than those of the broad. The importance of this question will be obvions to every mechanical mind. Kqual movement in all moving machinery is the thing aimed at in every case where darability is desired. Why else are fiy. wheelg-and why are blocks of iron placed on engine wheels to balanoe them? Why is it songht to keep locomolive cylinders as close as possible to the central line of the train? What bat for equal movement? And yet the rail is so oontrived as to produce continually-recurring blows at every joint. This mast be amonded before economy can be obtained.

That the railvay dogma, "Weight is Speed," is a fallacy, may be gathered from the whole animal creation. The swift eagle, when divested of his wings and feathers, is reducible to a very small bulk of body. The slow goose or duck is chiefiy body, with but small wings. The swift Arab horse is light, but muscalar, like a donble-cylinder engine, working by pure elasticity. The slow Fl anders hores is like an atmonpheric engine of the olden time, the muscles only serving to put the gravity in action. Who ever draamed of applying a Flauders horse to a fast coach? Who ever dreamed of applying an Arab steed to draw a coal-wagon? Yet this is what railway competitors have been doing up to the present time. Elephaots, leviathans, were a fitter term than horses. We have heard that there are existing engines weighing 85 tons, and that engines yet in embryo will, when they achieve their monstroas birth, weigh 40 tons. It is some yeara since a strange nondescript, called Harrison's Patent, was produced on the broad gange. It madoa trial-but all its try ended in standing still. We asked a "rude unlettered driver of the rail" why it did not answer. The enswer was concise,-" It weighs forty tons." That reason is fast getting to be obsolete. If the proportion of engine weight to train weight continnes to increase as it has done for some time past, the horse will soon cut up the carriage. As a rough and ready acquaintance re-marked,-"The trajn is nothing; anything can draw these carriages, so loog as the engines oan draw themealves."

Many men have had thoir doubts of the trath of the railway dogma, "Weight is Speed." One man-a railway oficer-was found bold enongh, after some preliminary thinking, to put the dogma to the test of experiment. Having had constructed for him a manumotive carriage, he fonnd that considerable speed could be attained with a light vehicle, but the speed was limited by the limited strength of man. To get a steam loco. motive constructed for a speed of twenty miles per hour, and weighing only 5 cwt., was his next problem,-the object being to lift it of the rails to get out of the way of fast trains. Builders were found to undertake this: the axles were made as light as those of a pony gig, the wheels of wood, and all parts reduced to the minimum. It worked, and would ascend an inclive of 1 in 19; but the boiler was not well arranged, and the arles were too clome together for steadiness. It was taken in again, the asles set ten feet apart, and a now boiler applied. But there were two serious defects : the axles were too light for the increased weight, and the wheel tyres were too narrow for the "points." It was evideat that, as in most cases of alteration, the parts were not fitted to each other. The second trial was made, and it soon became evident that the ongine woold go, but not for any length of time. As predicted, the engine went off the ralls at the points, strained the axles, and again came into dock. New wheols, of iroo, were applied, and stronger axles; and those who predicted, first, that the ongine would not go, and, cecondly, that it would fy eff the ruils by reason of its lighteese, were out in thoir calculations in
both cases. The maximom speed attained was 47 miles per hour- 40 miles the average of 56 miles from Londos to Cambridge. The total weight, with fael and water, was 22 cwt ., and the namber of passengers wore eight, inclading the driver. On that memorable day the dogma, "Weight is Speed," was extingnished for ever. One hnadred-woight was ound equivalent to thirty hundred-woight, and the vohicle was steadier at maximum speod than a first-class carriage.

The railway officer who established this fect, of measureless importance to all future railway progress, is Mr. Samnel, the resident engineer of the Eastern Connties railway. The bailders of the ongine are Messrb. Adams, of Fairfeld Works. The draughteman of it in its original tiny form is Mr. Rejnolds, of the Eastern Countios, and formerly a pupil of the Fairfield Works.

We have not given the working drawings of this remarkable production of foresight and perseverance, as the engine, though a practically asoful machine, and money-saviog to the Company, will not be a paltern, but will be far eclipsed by its anccessor. We give the general form and dimensions, as being all that the intelligent mechanic would really desire to know.

An oblong box, the frame being of angle-iron, measuring 14 ft . in length, by 4 ft 4 in . in width, is suspeaded by acle girders in epiral springs, beneath the axles of and within side four wheels, ouch 8 ft .10 in . in diameter, the axles being 10 ft . apart. The axles are three inches in diameter. One of the axles is double-cranked at right angles, in the ugual mode, and to this the consecting rods of a pair of ateam cylinders are applied to prodece motion, also in the usual manner. The oblong bor is divided abont midway by a partition. At the front ond of the box thus divided, is placed a vertical boiler and the machinery, with the driver, the whole being oontained within the base of the four wheele, and supported below the leral of the axles. In the hinder part of the boz are placed seats for sevon passengers, some along the sides and some above the axle, which passos through the box, the entrance being behind. The crose-sent for the driver has the water-tank witbin it. The cylindors are 31 inches diameter, with a 6-iech stroke. The reversing gear and link motion are as usual. The diameter of the boiler is 1 ft .9 in.; the tabes are ia number. It has been proved by cold-wator pressure to 200 lb . on the inch. The consumption of coke is 2 lb. per mile, and the total expense for driver, colce, and oil is under ona penay per mile. It will be obrions to every one that, with a pressure of only siz to seven handred weight an each driving-wheel, " maintenance of way" need not be taken into the account, as where six to nine tons are placed on each driving. wheel ; and, also, that an no defieution of the rall tates place, there will be no slipping.

Changes, howrever, cannot take place rapidly, and, ae matter of courve, those who proponnded the dogma that "Welght in Bpeed," are not likely to acknowledge their error off-hand.

But onr business is with the question, commercially and mechanically. The press teems with complaiuts of the absorption of money by the extension of railways; and either railways must stop progress, or they must be produced at a far cheaper outlay than hitherto.

As regards passengers, speed is the object : as regards goods, weight is the object more than speed; but when goods are borne on the same rails as passengers, they must, for the most part, travel at the same rate of speed. Differing speeds on the same line of rails, ualeas with long intervals, are a fruitful mource of collision.

On the main lines of rail the traffic is stated to be to exormons, that goode wagons are constandy in arrear.

If, therefore, the passenger traffic coold be transferred to other lines, exclnsively devoted to passenger trafic at great speeds, it would be a very considerable advantage to the public, both in point of cafety and rapidity, and also in the forwanding of goode.

At such a proposition the short-sighted amonget exletiog rail way owners will take the alara, for fear of the depreciation of their property. Howover, we do not see how their alarm conld benelit them. The best way is to look all dangor ateadily in the face, when, where, and how it may occur. But, fortanately for them, the denger in the present case is paraly imaginary.

It will, wo believe, be a conceded point, that the public would prefer frequent trains carrying small numbers of persons, to unfrequent trains carrying larger numbers, and woald also prefer lacreased speeds. And, provided it can be made apparent that thoy can thas be carried also mose cheaply, we presume that both directors and mareholders would agree as to its dealrability.

Now, in the firit place, a large train involves the use of a heary engine,
as at present managed. It alno involves an amount of atation-room and corvante, bolh at the termini and intermediato stations, proportioned to the nambers of the panengers. Thin large mwount of property and persons are exployed all at once, but with long intervals.

In the second place, the large train involves great momentam and greatlyincreased dead weight to support shocks. It also involves the use of much heavier rails and roadway, bridges, embankments, viaducts, \&c. It also tovolves mooh greater risk to pamengers, by the great space taken to aheck the momentam and bring the train under the control of the breaks in case of sudden stoppage. And the slower the movement the larger mnst be the amount of atock.

With light trains all these conditions are reversed. A small station and a small namber of servants, constantly occupied, will do the whole of the work; and thus a comparatively small ontlay of capital is required, and a smaller amount of wages has to be atruck off the general receipts.
With light trains the momentum is lessened, and less power is required both to stop and start. In case of impending coliision, the risk in case of shock is lessened, and the space required to bring up in is comparatively emall- 60 to 60 yards would probably be enough. The amall engine we have been deacribing will bring np from speed in abont 50 yards.
Rails and roadway of far lighter structure will suffice for light trains-mo much lighter as to seem almost an imputation on our "beary-coach" railway makers. Yet, after all, the error they have committed has been in making their rails too light for their loads, and thas wasting engine power. And the greater the speed the smaller the amonnt of stock.

All this is to be accomplished, not by runding trains on railways, or steam-carriages on highways, but by runingg ateam-carriages on railuonys; in other words, by puttiog the load on the engine, instead of drawing it behind or propelling it before; thus increas ing the adheslon of the drivingwheels in proportion to the inorease of the lond-getting rid of a large amonnt of dead weight on the wheels and carriages usually driven behfor. And such light engines may have their adbesive power still further increased by a single carriage propelled before or driven behind, making such car riages rest a portion of their weight on the engine frame.

If we be told that such steam carriages do not yet exist, we can bnt refor to the practical demonstration of the engine already built, and state that we have now before us a practical tender, from persons fally competent to carry the plan into action, to fornish steam-carriagen, rails, and timberwork ready for use, provided the land be delivered lovelled and ballasted, ready for the permanent way, at the price of Two thousand ponnds per mile of single way, the carriage to travel 50 miles per hour, and carry 1,000 persons per day of twelve hours, over a line of twenty miles in length, with greater safety than by the present system. The railway may be laid in ballast, or carried on piles.

On reverting to our description of the present engine, lt will be seed that the gravity is chiefly below the axles and within the base of the wheels. Only those who are fimiliar with engines and wheel-carriages can folly estimate the importance of the principle bere involved. With a pendulumbalance the weight is always seeking to be verlical. With a prop-balance the weight is aivass seeking to deviate from the vertical line. With a carriage moved by external power the adhesion of the wheels is lessened and ivereased from one to another by oscillation, and this while increasing the risk and light draught. With an intoroally-moved carriage, adhesion is required for the purpose of propalnion, and the pendulam action is the best adapted for it, as well as for safety. In short, the same quallites are required in a locomotive engine as in a ship, to ensure steadinass and swiftness,-"u a low and a long hull."

The engine about to be constructed will have fis frame not more than nine inches from the rails, all four wheels drivers, and will carry twenty ot thirty passengers, as may be preferred.
The railways we have been describing may be laid either on piles, over fields, or on river banks, or on the surface of existing highways, inasmuch as the steam-carriages will ascend inclines of one in ifty, or pass round curves of two huudred feet radius with great facility. The weight of the engine will be about $2 \frac{t}{\mathrm{t}}$ tons, that of the passengers about the same, making up altogether 5 tons, or 14 tons per wheel. Supposing it desirable to convert such eogines to goods traffic, a wagon of five tons might be applied before and behind, pressing on the engine to increase the adhesion with a reduced speed. By this system, the old highways might be brought back to their former state of prosperity, and property along their borders actually increased in value.

Do railway owners see in this any deterioration of their propertyt We do not. If it be so, do they think they can keep it back when once shown
to be a public advantage? Do they think the landholders, who were strong enoogh to dictate terms to railway makers for their own benefit, and drive them away from the vicinity of the old highways-do they think they will be loss powerful to intermarry their highways with railways-to make railways over their land, when they are bronght within the compass of their own means? We do not

But railway men need not fear the result. The railways will ever have the same advantage over the highways that they ever have had, In better gradients and atraighter lines; and they have, moreover, a source of profit that they have never set looked to-ibe capability of makiag four lines of rail complete, with the exception of tonnels, road bridges, and stations. For the light engines and mode of transit we have been describing, the slopes and embankments aro perfectly eligible. For example, in the onter fence of the railway, which is to be made anfficieotly strong for the pur* pose, an edge timber is to be laid, and on that a light rail. A similar rail is to be lald on the embankment, and the two connected by the rails. The level of the rails is about a foot below the main rails. In cuttings, the reverse mode mast be adopted, with the rails about a foot above the main rails. To wide bridges, a light wooden frame may be nsed. At tunnels, in vertical chalk or rock cuttings, at stations, and at level road bridges, points must be made for the main line. With light engines, capable of sixty miles speed, tbis would be no serious objection. With the main lines thus reliered of the fast-train passenger trafic, a mach larger amount of goods and slow passongers might be oarried. It is not on the Eustern Counties line, from which railtray improvements have of late so largely emanated that thene considerations will be lost sight of, and the Directors bave done well and wisely to forter the mechanical aptitudo amongst theic officers for the production of railway improvements, that must tell mont beneficially on their shereholders' pockets.

The amonnt of good that must result from this new systom of railway transit, wherein the proportion of dead weight per paseenger, at increased speed, is reduced from abont 9 cwt to $1 \frac{1}{\mathrm{f}}$, must be enormous. And to be achieved at the rate of $£ 2,000$ per mile, minus land and levelling! We have only regarded the question in the aspeat of rapid passenger transit, but if the speed be rednced, the power becomes available for larger loads. We see in this system a means of effecting transit even to the wildest conotries-a means of crossing the Isthmuses of Suer and Darien, even by Individual capitalists-a means of penetrating to the southern point of Italy, and shortening sea transit without coming to England for capitala means of regeneraling Spain and making it a nation, instead of a bundle of quarrelling provinces-a means of lastructing all the innumerable branches of the main lines of railway already constructed throughout Enrope-a means whereby almost any individual landholder may make his own railways through his estates, and thos achiere a system of agricolture of threefold produce-a means whereby Ireland may casily be intersected and civilised, and the reproach taken away from us, that a wild people, knowing no law but the ci wild justice of revenge," still dwelis within the borders of our island domain.

The principle herein enunciated is that of ioducing adbesion and pro. pulsion by the agenoy of the load on a self-moving machine, in opposition to that of making an enormons machine to produce its own adhesion, independently of the load, and therefore requiring a machine always of the marimum weight, even with a minimnm load.

We invite our readers, who may be interested in this branch of science to inventigate the data as patiently as we have done. The proposition to carry a first-class load of passengers on a self-contained machine, weighing ooly half the weight of an ordinary first-class carriage, and at a greatly increased speed, is a matter deeply touching the welfare of all who are connected with railways. Wo aball retors to this importat question at a future opportunity.

Photography.-M. Niepce de St. Victor, in making some experiments in photography, finds that if a sheet of paper on which there be writing or printed characters or a drawing be exposed for a fow minutes to the vapour of iodine, and there be appilied immediately afterwards a coating of atarch moistened hy silghtly acidolated water, a failhfuk- tracing of the writing, printing, or drawing will be obtained. M. Niepce bias also dls. covered that a great number of substances, such an oitric ecid, phosphoric acid, chlorurets of lime and mercury, \&ec., act in a similar manner, and that varions vapours, particulariy those of ammonia, havo the effect of virfying the imagen that are obtained by photography.

PNEUMATIC PILE-DRIVING.

Pile-driving is a process of great importance to the hydranlic engineer, and the means of facilitating it have engaged the atteation of many. To drive by the common monkey is a clumay operation, becanse the power in brought to bear on the subatance of the pile rather than on the soil in which it is to be driven, and because the depth to which a pile can be driven it limited by the length of timber of which piles can be made. The effective power brought to bear has been increased by the American and other ptoam pile-driving machines, bat wlthout materially redacing their costo Within the last two yaars a new process, called Dr. Potts'a, has been introduced, which has been already applied by Mr. Robert Stephesson aod other eminent ongineers.

Althoagh Dr. Poten's process is very simple, it is so different in its effects from what is imagined, that it is necessary to speak of it rether fully, in order to give a precise iden to thoee who, by forming quick preconceptions, may misa the principle. We have already iatimated that in the common solid tlmber pile, power is applied to the head of the pile, and not directly to its bese, or the soil into which it is to be driven, whereas Dr. Potus's pile is hollow, and the power is brought to bear immediately on the soil in which the pile is to be fixed. This is done by making the pile hollow, by exhansting the air from it, and so drawing up the soil from below the pile, whereby it is made to sink. The pile is not driven down, as most would think, by the sole pressare of the atmosphere on the top of the pile, but the shingle, gravel, or sand being removed into the pile at the air is exhausted, the soil is constanaly excavated beneath the bottom of the pile, and driving and excavating proceed at the mame time. This we look apon as the real diatiaction betwoen the old and new process, and the point in favour of the lattar, while the power is further economised by being applied direct to the true scene of action.

Our ebgraving represeats the pier sopported on paeamatio piles, lald down by Mr. Robert Stephensol on the Chester and Holghead railway in the coarse of this snmmer, being one among the many novel and curions works on that great public undertaking, and illustrating the enterprise of ifs eminent engineer. The vieduct is skew, and is carried over a branch of the sea, in the island of Anglesey, and consists of two land plers built is the usual way, and of this centre pler, laid on a sand bank. It is 36 feet long and s feet wide, and is built on 19 cast-iron tubes, each 16 foet loog and 1 foot dianeter. The tabes wore sunk by meaps of a small
 of stroke, worked by four men; the pumps were placed on the laad pier, and a half-inch lead pipe was carried from the pumps on to the water at The place of driviag.

Each tube was placed perpendicular orer the apot on whloh It was to
be sunk, and then a squate fron cep placed on the top, with the halifach leaden tube juat described passiog through it ; at every atroke of the permp the air wat exhassted from withinside of the tubo, and as the exbanating process proceoded, the pile or tribe mande its way dowowards, and the seil displaced at the bottom paseed into the lower part of the tube, and thas the operation was continued antil the pile wes sunk to the required depts When the whole of the vineteen piles were sunk to one level, as shown in the annezed engraving, a cast-iron plate, weighing 9 tone, was placed over them, just on a level above the surface of the water, and formed the fonadation upon which the superstracture wes bailt.
The pumps were brought down by coach, pat together, worked, umshipped, and sent back again, all within a few days, so that nothing cumbroos in the way of apparatas is involved in the application-and, indeed, the alr. pump can be carried where the pile-driving machine canoot. The piles were driven at the rate of half-m-minute per foot for the firte six feet, and at abont three minutes to the foot for the remajader.
The arches are 20 feet wide on the square, and 26 feet oo the skew; and the piers 8 feet wide on the square, and 3 ft .10 in . on the skew.

In July 1845, a pile of cast-iron, of 2 ft .6 in . diameter, was drivea imto the Goodwin Sands by the eagiseers of the Triaity House. The rive of the tide and the state of the weather prevented the minterropted prograse of the work, and It was enaroidably divided into three soparate periods, which gave the following resalts:-

July 10	in 8 hours,	drived $88 \mathrm{ft}$.0 in.
21	1 "	10
28	11	7

The total depth driven below the sarface of the sand wes therefore 85 ft .7 in . This is oaly one of many experiments performed by the Trinity Board, who have a license for the application of the patent, and have used it in many of their smaller works.

In the antumn of this year, the Trinity Board erected a beacon, by the preumatic prooess, on the South Calliper of the Goodwin Sands-a very dangerous spot. The centre column is a tabe of cast-iron, 2 ft .6 in . die. meter, put together in 10 and 90 feet lengths, and inserted 39 feet doep in the mand. Around if are four other cast-iron tubes, each of 15 inchee, diameter, the whole braced together, and supporting a cage on the top, which is 56 feet above the aand level. In the great storm in October, this work was broken; but this failare hed nothing to do with the pilo-drivins process, which was efficiently carried out, the piles boing driven 82 feet, whereas, in Admiral Beanfort's experiments on the Grodwin, he could only drive a steel bar 8 feet with a sledge hammer; and Captain Bullock, R.N., found that a pointed iron rod of 3 inches diameter, when driven 18 feet in the same sands, took 46 blows of a monkey weighiog 1 cwh , and with a 10 -feet fall, to drive it one lach. It should be observed, the belcon on the Good win was of cast-iron only.

Dr. Potts's plan allows the application of cast-iron tabes of any diameter and any length, whereas wood pile-driving is limited by the scantling of the timber, and timber piles of a large scanting are very expanaive. Two feet six inches, used on the Goodwin, is an unerampled diameter for a pile, but there are no such narrow limits to the new process. Metal or wood may be used for the tubes, and they may be made of staves hooped. The patentee offers to put down small fishing and bathing-houses and atations in the sands, at very moderate rates, and the plan is likely to be applied for colnmaf for carrying electric telegraphe over rivers, and for piers or towers of suspension bridges.

It should be noticed that a cyllodrical tnbe, placed vertically on a body, of sand and water, cannot be made to descend without great pressure, and then only a few loches; but by exhausting the air from the tube and draw. ing op the soil from the botlom it sinks most rapidly.

It is found in practice that not merely will sand, shingle, mud, bog, and clay be carried op the pile, but even large stones are carried in suspoasion. so that every kind of soil can be mustered except rock-and there it is not wanted, because there is a solid foundation.

The hydraulio engioeer will at once appreciate the utility of this inven. tion for river and sea-walls, plers, and breakwaters; but its applications are very nomerons, and, at it can be most economically used, it will lead to many new classes of works, for it extends the range of engineering. Mr. Alezander Gordon, in laying down one of his new colonial lighthounea, proposes the application of this plan, of the precticability of which be speaks from experience, and in a paper published by him on the subject. he writes warmly in favour of trying it in other situations. Mr. Robert Srephenson has, however, been the frat to apply the plan on any considerable scale, though what has been done hitherto by all parties is far from enough to make it generally known among the profession. Those of oar
reeders who fed an latereat is maeing the plan in working, should visit what any be called the masegm of the patantee, at No. 9, Backiaghametreet, Straod, where a great many models bave been exhibited and experiments anade, and which ase really deserving of inspection by professional men, especially those praclically angaged, as momy are, in mydraulle englneeriag.

REGISTER OF NEW PATENTS

HYDRAULIC AND PNEUMATIC MACHINERY.

Joan Walcer, of Crooked-lane, Londod, for "Improvements in eortain hydraulic and pmewnatic machinery, and in the application of sleam or otber ponvere therelo."-Granted April 20; Eurolled October 20, 1847. [Reported in the Mining Journal.]
This invention, which is comprised under two heade, consists of the following arrangements and combinations of parts-the first is as follows :-lio the accompanying drawing, A A, marks a metal tank, havjog three sluice-doors B, covering openings therein, either of which may be covered or uncovered at pleasure. Such tank is supported by a atrong framing of wood, and upon the top of this tank are strong metal framings, C, which support and carry the several working parts

of the machine, of whleh D D marks a ateam cylinder, and there are two, placed side by side, fitted with suitable piston, E, and pistonrodu F; to the upper part of these piston-rods, a cross-hesd, G, is afteobed, from each end of which there depend two rods, H H-the
lower ends whereof are attached to a cross-head, $I_{\text {, from }}$ which there depende, in a similar manner to the cross-head, G, two rods, \mathbf{K}; the lower ends of the last-mentioned rods are securely fixed to a cruci-form-shaped piece, L, to which piece there are fixed four rods, M with their upper extremities attached to a valve-piston, N , of peculiar conatrucion, hereafter mentioned and exhibited in transverse and vertical section. O, marks a water cylinder; there being two of them placed side by aide, and fixed to the framing, P, as is the case with the steam cylinders, D D. The water cylindera, $O O$, are furnished at their upper ends with valves, Q, similar in construction to those in the pistons, N_{i} and such valves are arranged and combined as fol-lows:-a marks a grating, upon the outer edge of which there is shrunk a wrought-ring, b; and the lower edges of the bars, c, which form this grating, are made wider than the upper part, or seat, for the valves, d, to allow the water to pass freely-such valves being composed of metal tubes, plugged with wood; and they have free liberty of vertical movement, and are guided in their proper course by cross pieces e, which embrace their ends; and immediately above the valvea, Q, which are fixed at the tops of the cylindert, O, there is a box, R, furnished with a cover, S, over each valve; and to this box is attacbed a pipe, T, which terminates in a box, U, having three clacks, or sluice-doors, V, which can be opened or closed at pleasure. W marks a slide for regulating the admission of steam through the pipe, X, to the two cylinders, D D, alternately. \mathbf{Y}, the eduction pipe, to which is attached a rectangular-ahaped box, Z, arranged in the following manner:-11 mark a series of pipes, which extend to within a short distance of the bottom of the bor, Z -the opper ends of such pipes being fixed in a partition-plate, 2 , as also is the eduction pipe, 3. The operations of this machine are as follows:-Steam, of the pressure of about 25 lb . to the square inch, being admitted to the under side of one or other of the pistons, E, will cause it to ascend, and thereby impart mofion to a craak-ebaft, through the medium of a connecting-rod, G, and the upward movement of one piston will cause the downward movement of the other-the cranki upon the shalt being suitably placed to effect the samo-and the beated air will pass alternately from one cylinder to the other by a valve, which connecte the two cylinders together; and auch movement of the pistons will impart motion to the valve-pistone, N , in the water cylinders, O^{4} through the agency of the rods and cross-heads before mentioned; and, asauming the tank, $A_{\text {, }}$ to be charged with water, and one of the vulve-pistons, N, to be at the top of the water cylinder, the descent of such piston will cause the valves, or tubeen, d, to be raised, and the water below them will pass until the piston has completed its downward stroke. The quantity of water which passes will depend upon the velocity of the piston, which, for raising water, the inventor states, be has found 70 revolutions per minute of the crank shaft to auswer.

The piston is now ready to perform the upward atroke, by which movement the tubular valves, d, will be closed, and the body of water above them will be thereby raised, and forced through the opeuing in the valve, Q, the downward stroke of the piston causing the tubular valves in the valve-seate, Q, to be closed; and this will continue so long as the water in the tank is not lower than the bottom of the water cylinders. The water thus raised may be passed off through ond or other of the sluice-doors in the boz, according as the machinery is required to be used either for draining, irrigating or raising water. The waste steam from the cylinder puspes into the box, Z, and the water from the cold-water pump passes through the pipe, 4 , into the said box. The cold water, as it passes down the pipes, 11, becomes beated to the boiling point, or nearly 80 , in which state it is forced into the boiler by the hot-water pump, which receives motion from the orank-slaft. The inventor states that, in adapting this macline for pneumatic purposes, the cistern and box may be dispensed with; and the position of the piston and valve must be reversed, aud the velocity of the crank-shaft should nut be less than 120 revolutions per minute.

The second part of this invention consists in the application of vanes, mounted upon a spindle in sets, each set being placed iu aa opposite direction to the other. The inventor states that, although lie has used lat vanes, he does not confine himself to them, as, in some instances, he prefers using vanes forming the segment of a screw. simllar to those used for propelling boats. These vanes are mounted upon each end of a spindle, the periphery of which fits into a short cylinder, the ends wliereof being open; and such cylinder is fixed within a box or cistern, at one side whereof is a suction-pipe; and, at the top of the open cylindar, there is attached a pipe, which is the exit-pipe for the passage of water, or air. The said spindle may receive motion from manual or steam power; and the motion of the vanes in one direction wiil caure the water to be raised up one pipe, and a reverse movement of the ranes will raise it up the other pipethe water, in the firat instance, passing the openiuge between the
vanes, through the open ends of the short cylinder, and, in the latter case, passing out at the ends of the cylinder, and down the suctionpipe. The velocity of this machine, when employed for ralsing water, sbould not be lers than 150 revolutions per minute; and, when employed fnr poeumatic purposes, abont 1400 revolutions per minule.
The inventor claims the combination and arrangement set forth as constituting improvements in certain hydraulic and pneumatic machines; and secondly, the combinations and arrangement of a bighpressure engine for such parposes.

COPYING PRESSES.

Wimham Henry Kempton, of South-street, Pentonville, gentleman, for "Improvements in copying presses."-Granted Marcl 23 ; Earolled Sept. 23, 1847.
This invention consists of a copying press so arranged that the act of shutting a lid or cover acting on a bed or surface is, by the resistance of a spring or springs, caused to produce the requisite pressure for copying letters or other documents, as shown in the annexed engraving. Fig. 1 is a plan of the copying press open, and fig. 2 a secFg. 1.

FIg. 2.
tion thereof, the lid or cover being closed. a, the frame; b, the bed, constantly pushed upwards by a spring or springs, c, for giving the requisite elaaticity between the bed b, and the lid or cover e. f, stops to prevent the bed or surface, b, rising too high. The letter or other document with damped paper and otber materials, as in other flat copying presses, are to be placed on the surface of the bed b, and then the act of closing the lid e, will cause the bed b, to be preased downwards, and the Ild is to be retained shnt by a boit g, for a short time, when the desired copyright will be obtained.

OIL-CAKE PRESSER.

Jamms Rosson, of Dover, Kent, engineer, for "a new and improved inetrument to be used in expressing oil from wegetable and other substances, and in making oil-cake, $\frac{5}{9}$ c."-Granted April 15 ; Ebrolled Oct. 15, 1847.

When manufacturing oil-cake, it is usual to employ instrumente made of horse-bair, called "hairs," for enclosing the flannel bags containing the substance to be pressed; but, in consequence of the horsehair fabrlc soon becoming clogged, the patentee substitutes an instrument constructed of metal, as shown in the annezed engravinga.

FIg. 1.

Fig. 1 is the interior view, and fig. 2 the exterior of the instrument. in an open or extended state ; fg. 3 a longitudinal section, and fig. 4

a transverse section, of the instrument. a, b, are two metal plates or flaps, corresponding to those hitherto made of borse-hair cloth; bnt the shape may be varied. c, is a leather hinge, connecting the two plates; and d, a handle. Along the sides of the plater, and at the end of the plate b a rim is formed, to prevent the material from being pressed beyond the edges of the plates. Across the inner side of each plate, a series of ridges and depressions are mede, in such a manner that when the instroment is closed, the ridges on the plate a, will come opposite the depressions in the plate b; and through the sunken portions of each plate a series of boles h, are formed opening into grooves i, across the back of the plates : these holps may be one osixteenth of an inch in diameter, and half an inch apart; but the patentee does not confine himself to these dimensions. The linseed or other matter to be pressed is prepared and placed between the plates, and pressed in the same way as when using a like fibetrument made of bair.

RAILWAY CHAIRS AND FASTENINGS.

Charlis May, of Ipswich, Snfolk, civil engineer, for "Improvements in railvay chairs, the fastenings to be used therenith, and in trenails."—Granted March 27; Enrolled September 27, 1847.

The first part of this invention consists of improvements in manufacturing railway chairs. In performing this part of the invention the mould is formed in a similar maoner to that described in Ransome and May's patent of Feb. 1841, in which side plates of metal are used to form part of the mould and for guiding the core. This part of the invention consists of forming the core for the interior of the jaw of a chair, with sand upon a metal interior, or core-bar, combined with the using of metal side-plates or surfaces as part of a moold, and as supports to the core. This part of the invention also consists of having a crose-bar attached to the flask, into which the tail-end of the core projects. And further, it consists of using metal cores for casting the holes for the trenails or fastenings.

Fig. 2.
Fig. 1, shows a longitudinal section; fig. 2, a plan of a flask, with a sand-mould representing a chair cast on to a core, the cop side of the monld being removed. To produce a clean or chill surfoce in certain parts of the chair, the iron part of the core is left to come in contact with the melted metal, as is shown at a, Gg. 1 ; the extent and portion of this clean or chill surface may be raried. To produce clean or chill holes for the trenails, the metal cores at b, b, are used; c, is
cross-bar fixed across the fask, so as to receive the tall-end of the core in such manner as to ensure its correct placing and holding when in the sand-mould, which cross-bar will be found arlvantageous (when casting railway chairs) for holding the core used, whether employed separately or in conjunction with the side-plates shown.

The second part of the invention consists in so arranging apparatus that a rammer, or rammers, worked by meclanical power, may be employed in ramming the sand into a core-box, 80 as to make suitable cores for casting railway chairs.

The third improvement relates to combining a process for preserving the wood used for fastenings of railway chairs and trenails with the process of compression, that for preserving the wood being first performed, and then the compreasion:-Take the beavy oil of coal-tar, called creosote, and pass through it, in a close vessel, a ctream of steam from a boiler capable of sustaining from 80 to 100 lb . pressure; the pieces of wood prepared for the trenails or wedges are placed in a vessel also of great strength, and the combined vapour of water and oreosote allowed to act upon them for some time (half an hour to an hour) ; this combined vapour penetrates the wood effectually, and when it is desirable to combine more of the creosote with the wood, it is subjected to the vapour of creosote only, without the vapour of water. The patentee states that such modes of impregnating wood with preservative matter is not claimed by him, the same being old and well known. The process of compression is to be perfurmed (when the wood is dry) as described in the said former specification.

The fourth improvement relates to the manufacture of wood fastenings used with railway chairs, and of wood trenails. In practice, such fastenings as are described under the said former patent are liable to exposure to moisture before inserting them, of applying them to the purpose for which they are intended, and they thus frequently be. come avrelled, And it has been found desirable to retard this swell. ing process, which the patentee accomplishes by covering with any repeliant of water, as varnish or grease; but it is not intended that this shall permanently repel moisture, as they are required to swell after driving. It has been found that a thin solution of common resin in oil of turpentine answers very well, which is used as a coating to such fastenings as soon as they are made.

LUBRICATOR FOR MACHINERY.

Javes Carter, of Oldham, Lancaster, painter, for "an Improved lubricalor."-Granted Dec. 14, 1846; Enrolled June 14, 1847. [Re. ported in Nerton's London Joumal.]

This improved lubricator is for lubricating shafts, bearings, axles, and working surfaces of machinery generally, and is intended to furnish a certain quantity of oil or other lubricating matter to the surfaces at determinable intervals, which may be varied and regulated at pleasure.

The annexed engravings show a lubricator as applied to a bearing, and are calculated to furnish the oil or lubricating matter once in every 5,200 revolutions of the shaft. Fig. 1 is a side elevation of the ap.

Fis. 1.

Hg. 2.
paratus; and fig. 2 a transverse section. a, is the shaft to be lubricated; b, the journal carrying the same; and c, the cap or top-plate of the bearing. To the top of the cap c, a box d_{1} is attached; to which is fixed a bracket e, for carrying the shafts f, and g. Upon the shaft a, is keyed a worm k, which is cast in two pieces (for the convenience of faligg on the shaft), and fastened together with small screws. This worm actuates a worm-wheel i, of twenty teeth, keyed to one end of the shaft f, which, at ite other end, carries a worm j, in gear with a worm-wheel k, also of twenty teeth, keyed to the slaft g, which also carries a worm l, for driving a worm-wheel m, having twenty-geven teeth. This wheel m, fs fixed at the upper end of a hollow plug n_{3} which is ground trae, and revolves in the box d. To
the top of this hollow plug π_{r} is fixed the cup or vessel $o_{\text {, which con- }}$ tains the lubricating matter. The plug n, is open at top and bottom, and has two openings, p and q, one at each side ; it is also provided with a midfeather, extending above the opening p, and below the opening g. As the plug n, revolves, the opening q, coming opposite to the screw r, allows the oil to fill the space between the plag and the end of the screw r. The revolution of the plug then brings the opening p, opposite the screw r, and allows the oil left in the space between the screw and plug to pass through the lower part of the plug n, on to the shaft a; at the same time the opening q, comes opposite to the screw 8 , and fills the space between the end of the same and the plug n. Thus it will be seen, that the quantity of oil left in the spaces at the ends of the screws r and s, is furnished to the shaft a_{n} twice in each revolution of the plug n; and as the wheel m bas twenty-seven teeth, and the wheels i and k have each twenty teeth, then $20 \times 20 \times 27=10400$; therefore, the oil is furnisbed twice in 10,400 revolutions of the slaft a, or, as above stated, once in 5,200 revolations. It will of course be evident that the quantity of oil may be regulated by means of the screws r and s; and the intervals between each supply may also be regulated by altering the relative proportions of the gearing. It will also be evident, that the same arrangements of mechanism may be applied, with a slight variation, to lubricating flat surfaces, such as substituting a ratchet-wheel and click, or other suitable contrivance, for the worm h.

The patentee claims the construction and arrangement of mechanism consisting of the box d_{1}, and plug r, as sbown in the drawing, and above described, when applied to the purpose of lubricating; without confining himself to the particular mode of actuating the mame, or to the exact proportions or dimensious of different parts of the same.

A Catechism of the Sleam-Engine, illustrative of the scientific principles upon rhich its operation depends, and the practical details of its structure, in its applications to mines, mills, steam navigation, and railmays, wilh various suggestions of improvement. By John Boorne, C.E. London : Williams, 1847. 12mo. pp. 276.

Mr. Bourne is already known as the editor of a quarto treatise on the steam-engine, published in parts, and bearing the name of the "Artizan Club." The present work has much the same merits and defects as its predecessor-it displays, on the one hand, the same diligence and care in collecting important facts and original experimental information; on the other, it displays the same want of care and diligence in arranging these valuable materials. This "catechism" is not, as far as we have been able to discern, arranged on any definite plan, and the order of the various topics has apparently been left to chance. This, however, is not a very great disadvantage in a work dealing principally with facts, and not professing the character of a systematic exposition of the general theory of the steamengine. The scientific principles are, for the most part, tolerably accurate, but they are scattered ap and down the book \rightarrow not connected by a logical chain of reasoning, of which every single link is necessary for the continuity of the whole. It may even be doubted whether the construction of such a chain be yet possible-whether we yet posaems body of facts respecting the operation of the steam-engine sufficiently copious and precise to permit their reduction to one general code of lawh. Mr. Bourne has not attempted here this perilous enterprise, but has acoomplished a task less ambitious, but far more useful-that of collecting in a compendious form a great number of experimental observations, practical details, and dimensions and minutize of the construction and management of engines of various kiods. This practical information will render his book one of real and direct atility to a large class of our readers.

Some, however, of the doctrines laid down by our autbor require elucidation; the following is one of them:-
"Q.-By what considerations is the momentum proper for the fiy-wheel of an engine determined ?
"A.-By a reference to the power prodaced every half stroke of the engine, joined to the consideration of what relation the energy of the igyWheel rim must have thereto, to keep the irregularities of motion within the limits which are admissible. It is foasd in prastice, that when the power romident in the $\mathbf{f y}$-wheel rim, when the engine moves at its average speed, is from two-and-a-half to four times greater than the power generated by the ongine in one half-stroko-the variation depending on the momentum inhorent in the maniuery the engine has to drive and the equability
of motion required---Lhe esgive will work with sulficieat regolarity for all ordinary purposes."
The last paragraph is rendered ambiguons hy the vague use of the word "power." The "power resident in the fly-wheel," we presume to mean lts vis eiva, or mass multiplied by the square of its velocity -infact, there can be no other measure of the power of a fy-wheel. The "power generated by the engine in one half-stroke," probably signifies "work done," or the pressure on the piston multiplied by the distance through which it acts. This "work done" is always equivalent to a determinate amount of ois viva; that ir, if it acted on a body or bodies subject to no prejudicial resistances, would produce a certain calculable velocity, such that the vis viva would be the same, whether the mass acted on were small or great. Consequently, Mr. Bourne's rule may be stated thus:-when the engine is in its normal state of working, the vis viea of the fy-wheel must be two* andaa-balf to forr times greater than the vis viva which the engino would produce during a half-stroke. For example, if the mass of the 环-wheel (supposed to be collected at its rini) were M, and V the linear velocity with which it generally moved, M V ${ }^{\mathbf{3}}$ would be its actual vis viva. Suppose that if the enpine could act on the fly-whee! exclusiotly for a balf-stroke, the velocity generated would be 0 ; the corresponding hypothetical vis visa would be $M v^{2}$; and adopting the bighest of Mr. Bourne's ratios, we should have

$$
4 \mathrm{M} \mathrm{~V}^{2}=\mathrm{M} v^{4} \text {, or } 2 \mathrm{~V}=v_{1}
$$

which wonld reduce tha rule to a simpler form, as follows:- the mase of the fy-wheel must be so chosen, that the velocity which the engine soould prodace in it by acting on it exclusively for half a atroke may be half its actual velocity when the engine is in its ordinary state of working.

We bave endeavoured to develope the rule in the above manner, not from its intrinsic value, but merely to illustrate the extreme im: portance of adhering, in all mechanical disquisitions, to measures of force about which there cannot be any possible ambiguity. The use of vague phrases to indicate the various effect of turces is the true cause of the difficulty of the subject. If a precise, systematic nomenclature were universally understood and adopted, there, would be far fewer of the idle discuasions of principles with which we and our contemporaries are bored, and far less money would be spent in securing by patent the exclusive right of effecting impossibilitien.

With respect, however, to the intrinsic value of the above rale respecting the $l y$-wheel, it is to be observed that it can only apply to engines performing a particular class of duties. The duties may task the engine in such an equable and aniform manner, that no fly-whepl need be required. Or, again, the resistances may be capable of such great fluctuations, that a fly-wheel of enormous dimensions may be required. The variation of resistances is not taken into account in Mr. Boume's rule. \mathbf{A} fly-wheel is a kind of bank in which force is treasured up in times of abundance, to be redistribnted in times of scarcity. The greater the superabundance at one period, and deficiency at another, the greater must be the capacity of the bank.

Another doctrine adopted in this treatise, and which seems liable to lead to erroneous conclusions, is the following:-
"Setting aside lose from frietion, and supposing the vacuam to be a perfect one, there would be no benefit arising from the use of steam of a high pressare in coodensing engines, for the same weight of ateam used without expansion, or with the same measure of expansion, woald produce at every pressare the same amount of mechanical power. A pistor, with a square foot of area, and a stroke of three feet with a pressure of one atnomphere, woald obviously iift the same weight through the same distance, as a cylioder with half a square foot of area, a stroke of three feet, and a pressure of two atmospheres. In the one case, we have throe cabic foet of steam of the pressore of ose atmosphere, and in the other case $1 /$ cabic feet of the pressure of two atmospheres. But there is the same weight of steam, or the same quantity of heat and water in it, in both cases, so that it appears a given weight of steam would, noder such circumstances, produce a definite amount of power, without reference to the prossure."

This reasoning seems to overlook the gain of mechanical effect resulting from the employment of very high-pressure steam used with a great degree of expansion. Theoretically, the higher the steampressure, the greater will (by working expanslvely) be the power ubtained from a given quantity of fuel. It may be assumed that a pound of coke or coal will evaporate the same quantity of water at any pressore. The steam produced, therefore, will, while acting at full pressure, or unexpassively, effect the same amount of work iu both cases. But when the steam is cut off and expanded, more woik will be got out of the high-pressure steam than the low-pressure; for the former may be expanded to a greater degree than the latter, before it become so weakened as to be incapable of further useful effect. The use of high-pressure ateam is not so indifferent a matter as the above quotatiou seems to suggest. Setting aside the question of
safety, the higher the prescure of the ateam the greater will be the economy of fuel, supposing the expanion alweys carried to that poiot where the steam ceases to act beneficially. A mistake on this point seems to bave led Mr. Bourne to asy further on, that " the anperior economy of the Cornish boiler is not derived from any peculiarity of form and arrangement, but from the immense extension of healing surface."
In treating of the resistance to the motion of railway trains, Mr. Bourne fulls into the common error of assuming that the rapid increate of resistance resulting from the increase of velocity is due to the action of the air. This resistance is only one item in the calculation, and is ofter (we are inclined to think) a very small one. The defieetion and vibration of the rails, concussions at their joints, straine from the wheels or axles being slightly twisted, and the thousand-aind-ons jolts, jars, rattlinge, and vibrations inseparable from rapid motion absorb the greater part of the power required at high velocities.
In alluding to one or two deficiencies in the present treatise, we would by no means have it inferred that they are semples of the whole book. On the coatrary, the infurmation conveyed seems generally very trustworthy, and it has the advantage of being communicated io an intelligent manner. Had we space to dilate on the clief merils of this work, we might have chosen nomerous texts for the purpone-among others, the excellent account of the present state of knowledge respecting the performance of marive screw-propelleth and the clear descriptions given of various details of the mechaniam of locomotive engines.

A History of the Architecture of the Abbey Church of St. Alban, with especial Reference to the Norman Structure. By J. C. Bocruer and C. A. Bucricr. London: Longmans, 1847.

We had hoped to have had more space for our notice of the valuable work of Messrs. Buckler, but we find that with the close of our volume, we have too many subjects claiming our attention, and yet we do not like to delay what is an act of justice towards the authors. We cannot but feel that the design of the work, that of giving a complete sccount of the Norman architecture of the Abbey at SL. Alban's, is highly praiseworthy, and is carried out in a conscientious spirit of labour. The historv of Matthew Paris has been particularly valuable to the authors, and they bave made very good use of it, the old monkish annalist having shown an earnest desire to commemorate everything of interest in coonexion with the building and its abbots. He lived, $i 00$, at a time when the mont important works were carried on for its adornment, and we can herdly help wishing be had given og still more information as to details, though really we owe him, as it is, a large debt for what he has so copiously recorded.
By a careful coliation of such records with the present building, Messrs. Buckler have been able to reproduce the old Norman etructure, and to give us a lively picture of such a building in its pristine and palmy state. This makes the work, what naturalists wonld call a monograph - a well described account of a fine specimen, and is therefore very useful to practical men, who have occaaion to study or apply the Norman style.

The Norman abbey church is one of the first class as to size, for its length from east to west was 440 feet, forming a long Latio cross, and having a transept of 176 feet in length, and a lofty lantern tower io the choir. The long nave of thirteen bays may be considered one of the grandest parts of the stracture, though perhaps the breadth was too small for the vast length. The uuthors remark that particular regard seems to have been paid to laying out the plan of the church, and fixing the positions of the piers. Measurement has proved the extreme accuracy of this part of the work. There is not, however, such comformity in the superficies of the walls and pilasters, and their retreating members, though the appearance of the building generally is correct. When we consider the imperfect organization of labour and machinery in those days, the merit is very greal.
The materials employed being chiefy from the remains of the Roman city of Verulamium, give a peculiar character to the bailding. and the mure particuiarly gy the want of ytone in the neighbourhood led to the nse of cement as a covering in some places. Where this has been stripped off, the appearance of the building is mucb injured: but it has enabled Messrs. Buckler to give many interesting drawings illinstrative of the details of construction.

It is noticed that the upright line of the walls is preserved throughout their height, which measures 68 feet 3 inches from the origunal pavement in the nave. I'here is, however, a deviation in the exterior of the lautern tower, which bas pyramidal sides up to the belfry stage, above which they are perpeadicular, while the contignation is arraigned as being abrupt, and not altogether pleasing.

One peculiarity pointed out is that the remaining abutment piers on the exterior of, the upper vall of the sonth aisle take their places beyond the lines of thome below, and are based on the brick vaulting with perfect security. The reason of this is not explained, nor is it obvious.

Messrs. Buckler have observed that many of the smaller arches in the building are irregularly curved, and indeed distorted. This is mot uncommon in Norman buildlags of elaborate desigu and costly material, and is supposed to arise in some cases from the arches being turned over the openings withont the help of wooden centrings, or with rough frames.

In this church the system is fully seen which was adupted by the Norman architects of building walls across all the openings, 50 as to tie the whole of the work together for greater security. Ihe extent of this underground work as discovered by Messrs. Buckler within the eastern aisle is said to be truly astonishing. The systom was sometimes imitated by the architects who made addilions to the boilding:

Of the columns of the nave it is remarked that there is far leas balt and appearance of casing than in those of Winchester cathedral, as greater dependence could be placed upon the strength of the brickwork core, than upon that of rabble-work.

The weat front was 155 feet in its extreme breadth, being flanked by two lofty towers, measuring 40 feet in the square on the outside, and being planted on maseive stone and brick foundations.

With an opinion of the anthors, in reference to another subject, we cannot but concur. They observe that in Herefordshire, the greater mumber of church towers are characterised by slender spiren, constructed of timber and covered with lead. They regret that these should ever be removed, as they so often are for the value of the lead. Though the spires may be less ancient than the towers, their age is still great, and their deatruction cannot but be considered an act of berbarism.

In conclusion, we cordiaily recommend this work to the libreries of our readers, to whom its moderate size and price offer an additional inducement.

An Easy Introduction to Railmay Monuration. By E. V. Gardwer, C.E. London: Weale, 1847.

The idea of this book is a good one, and, once conceived, it was easy for Mr. Gardner to carry it out; while as a special work, it is likely to pay well. It consists chiefly of working plans and forms from the Brighton Railway, the South Westera, the Farnham and Alton Synton and Peterborough, and Salisbury Brapch Extension Railways. The book is therefore practical enough, and, by having a number of ruled pages, can be studied and worked up at the same time.

Among the illustrations are a specification, small barrel culverts, large culvertn with wing walls, open culverts, bridge, occupation road, occupation bridge, akew bridge, viadnot, timber viaduct, another with iron tension•rods, sec. There are likemise plans and sections with curves set out, off-sets for unsoiling, outside fencing, and ditches, \&c. Mr. Gardner says euough about tunnelling to enable the student to understand the mode of mensuration, and how to set off the ranging line from above to below. Fuil directions are given as to the mean urement of cuttings and embankments.

Mr. Gardiner recommends that the number of parts measured should always be placed first, to prevent error of quantity, auch as occurred a few years since in the erection of a new church a few miles from Londoa, where the gallery was measured and not twiced, thus leaving one gallery wholly out of the quantities, which could hardly have happeded had the No. 2 been placed first. In all casea, even in cubing the dimensious given for practice, Mr. Gardner urges that overy dimenaion should be checked, to prevent error; and before beginaing to measure, to well study and understand the plan.

We think the work will be found useful by the parties for whom it is designed.

Plane and Splerical Trigonomatry. Part I. containing rules, examplet, and problems. Parl lI. containing the principal formule, mith excrcises and examples ; the proofs of the rulee in logarilkme and trigonometry, and the construction of logarilkmic tablea. By H. W. Jrans, F.B.A.s., Royal Naval Colloge. London: Longmanis, 1847. 2 vols. pp. 124 each. 12 mo.

The first of these little volumes contains a oollection of rules for applying logarithma to geometry, pavigation, \&ec. The seoond volume gives separately the demonstrations of the rulen. This separation may be usefal to thoee who are required to deal rather with resulte
than principles - whose occupations render it necessary for them to oblain arithmetical resulte, by processes of which they are unwilling or unable to comprehend the logical accuracy. We do not much admire the learning-made-easy syitem; it minses all the adrantages of mental discipline, and fosters mere superficial attainments. The knowledge-doctors are the professed apologists and coadjutors of shallow-headed students;-their very trade is to coat ignorance with a varnish. However, there are certain cases in which it is absolutely necessary to set people in the way of working problems without understanding the principles of them; for instance, it would appear, from the work before us, that this necessity exists at the Royal Naval College.
The rules are concisely and clearly expressed, and are accompanied by numerous example: fully worked out.

Elementa of Geometry. By'J. D. London: Longmans, 1847.

What the object of this pamphlet may be we cannot make out. The author introduces new and complex processes, without any preface; and he gives new definitione, which are no more definite than the old ones, and much less philosophical.

GROLOGICAL LBCTURBS,

By Profacor Anatid. Dolivered at Kiag's Colloge, London-Sension, 1847. Geological Conciderations affocting Agricultwre.
After some prefatory observations, Profeseor Ansted proceeded to explain the points in which the practice of agricalture was affected by geological connderations and knowledge. They were two in number-first, that which related to maferials, taking one of the divisions of the subject mentioned in the preceding lectures: under this head they would have to consider the nature, use, and way of modifying those materials. Secondly, considering the earth as the hasis of operations, they wrould have to observe how agriculture was affected by the arrangement of materials; and how, by certain laws, affecting the structure of the earth, the soil might be readered more fertile, by aupplying water where needed, or by removing it by drainage when the land was fooded. Certain mineral enbatances were necestary for the growth of plants; and hence, if they took any of the vegetable substancea in common use by man, and exposed them to a high degree of heatthus getting rid of the carhon, oxygen, vitrogen, hydrogen, and some other elements of the plant-there always remained a residuam of ashes, which contained the mineral substances necessary in the growth of the plant consumed. If, for inatance, they took any of the cereals, such as wheat, and burnt its atraw, ear, and corn, they would find in the ashes which were left a considerable portion of silica; and in other plants there would be cartain quantitios of potash, coda, lime, and magnesia, not unfrequeatly a little iron, and sometimes, but not often, phosphorus. All these, then, were materials neceasary for the growth of plants, and it was useful to know whether any particular spot where these plants were intended to grow, posseased the meterials neceanary for their health and anatenance. A knowledge of the "chemical composition" of soile was, therefore, hirhly important, as some of the above subatances, occurring in certain proportions of the soil, might be noxions, and even poisonons, to some plants; while to others they might be indiapenable. There was, in fact, no universal poison. It was also necessary to know something of the "condition" in which theme constituents were present in the soil. Supposing, for instance, there were potash, soda, and phosphoras, it was well to know whether these materials possesced a greater affinity for the substancee with which they were already combined than the plant was able to overcome, at, in that case, they would not beaefit it; or, if those materials or constituents were free, whether they were so much soparated as to render them not only necless, bat noxious and mischievous. It was also exceedingly useful to know the "mechanieal condition" of the soil. Plants throw out roote and rootlets, not only to imbibe nourishment from the soil, but to form a wide-apread basis to anpport the upward growth of the stems, and to enable them to expose themselver to the weather, or to connect themelves with other plants, according to their peculiar habite. In all cases, it would be useful so know whether the surface of the soil was likely to afford this mechanical apport.

In considering the natare of the soil, with reference to plante, it was necessary to do so partly in respect to ite composition, and partly as to its dee rivation. They had nothing to do, at geologitat, with the organic subutance contained in the soll, which consisted chiefy of carbon in the tate called humas-that belonged to the agricultural chemiat, rather than to the geoloolat ; but it was neceasary that the latter should know what were the mineral ingredients of which the soil was made up, and how far they wero capable of adapting themealves to its organic portions. They had nothing to do with the organic portion of the soil itself, but they hed a great deal to do with ite relation to the inorganio, or earthy, conatituents. The three principal incredients of all coili were eilica, alamina, and lime, Which mostis ordsted in the three conditions of sands, clays, and limentonen. There were

 of rdurivalion. wate matem to Thich he draw perticalar citention. They werm derised by the chomital desomporition and mechanicel ditintegration of rockn; for the soil wes conneeted with and derired from the rook wrags, cithon direetly on indirectly. [Tbo lecturer hera referred to several dingrape on which were depicted the acile, as they appeared in the coorte of derivation from the fundamental rock.] In these casen the deriration was direct ; but, in athers, when the material wa brought from a great distance, it wis indirect It was not, for jnstance, difficult to divine the way in which the weather acted on the surface, or to understand how fragments of rock might be removed great distances, and deposited many miles from thair orfginal beds. Every year vast quantitien of matarial were deposited in the Atlantic, brought by icebergs from the Polar regions, and the materials for future soils were thos obtained indirestly; what they had most to do with was, hoverac, obtained directly, as almont all sails in Bngland,except grapel, were obtatimed directly. Soild varied in thickness, from a few finches tor 100 frets or 290 fati $;$, buth, ardinarion were fromin few inches to $3,4,0 e 5$ feet in depth. The momopil alu, varied a good deal in dapth, which. deponded
 gram of a road section near Peprbyn. The foundetion was detorrock, and over that was a kind of rubble, into which the rock was decomposed. Rubble was a general term used to describe any rough disintegrated mixture of rock, or broken fragments, with andi, and from the rubble wat derived the subsoil, and from that the soil on the surface. In anotber section, of which a diagram was exhibited, the slate at its asual depth lay in the ordinary direction; but, near the surfnee, it was " "bant onen:" On this the lectorer remarked, that it was jmposible ever to. determine tha true dip of beda clasa to the arfice, as it was a common thing to find it altered at the surficebroken, in fact, a iA bf womerneebsion forem, and ofterizolined at a considerable angle to the underlying bed, This often helped in the formation of woils; for.the braken portions became mired with and and silt, and formed rahble, from whonce the soil whe dirootly derived. In the diagram alluded to, the:naxt bed to the rabble was a lonmy clay, which cantained abont 50 per cent. of sand. This, however, was not silles, and though it put on the shape of clay, neither was it pure alumina ; but a silicate of alnming, mixed with sand. Clay generally contained a good quantity of free sand, and wheu mixed. rith ahout 50 per ceat. of that substance, became loamy clay. In that state it was better fitted for agricultaral parpotes, thengh itatill requirad mone carbonined matter to maire it into soil. In the diagram, there was abont 2 feat of this loamy clay, which was called, the subsoll, and ahove that the true aoil, which, in this case, was of a boamy natare, and contained a rather large quantity of asad. Here, then, was the aoil and subsoil directly derived from the rock. The lectarer also further illustrated this point by otber diagrams, in which granite wat the bace from whioh the rabble waf formed.

Sails varied much in malue acoording to their different deptha, and the testares of their materiala. When-the depth was small they were liable to becarried away, or to be saon exhausted by the growth of vegetables on.it; and tben those particular ingrediente, on which the vegetables subsinted, were reguired. to be replaced, or a further decomposition of sail, at a more rapid rate than ordinary, became necesary. The application of other aub, tances from a distance was thus sometimes necessary; but, for this, some chemiea, as well as geological, knowledge was indiapensable, or mora harm than good might be done. The texture of moiln differed very much. Some were expeedingly depec and heavy, and would not beensily wathed away, ar diaplaced; bnt, though permanent, they were often very difficult to be managed, particularly when they were so dease as scarcely to allow the roots of plante to penetrate. Othars, again, were so imperfectly madr up, and so. large and coarse, at almost to preclude the uae of the ordinary instruments oftillage. Some suila contnined a great deal of clay, and were so tenacions, as, scarcely to allow the plongh, or even the spade, to act upon them. These were exceedingly unmanagesble, for though.it might be thought that a legge admixtura of sand would leasen this adbesirencas, it was generally found that the saod, after a time, formed hard mases, andiwas apt to collect the clay into lumpa, instead of making it more loose. Some mile poremed a large absorbent. parrer; While others would allorm water to pase through them Fer. readily. In soils of the latter kind valuable. manures wera soon washed through, thern, vithout producing much effect. In theme oases, a remedy might be found in the practical application of geological knowledge, au, fur instance, liming the land, by putting on unharnt limentone in amall lumpa, instead of slacked lime, and trusting to the alow decomponition of the lime. stane by expoanue to the weather. There were many ather circumstances of a, aimilar aature, auch at the eapillary powers of the soil, or its eptitade to crack and.form great yawning chams in times of dronght; the relations of the eoil with regard to hent, as ita soan becoming bot like annd, or-remain. ipg cool. or trasemitting beat slowly, like clay. These points depended almast as much on the aubatence that wes below it, an on the textare of the soil itself.

The lecturer then proceeded to deacribe the soils derived from the varions geological formations in different parts of England. The districts, which cuhiluited chiefly the igneous rockn, फere the western parta of Cornwall, some portions of Wales, and the greater part of Scotland, in all of which existed apme geological conditions, to be conaidered in reference to agricalure. In componition theat rocka were chiefly granitic, or, as it was called, porphyri.

 exdited in very dinerent condition, dopmonens pifaipally wpen the fore valenoe of the diferent ingredioats, and their different deopapondilits First, they had the quartz, often in compact masses, and so hard, that is wa
 not much modifed, it presented smont mnfopournblo-conditing for agriman ture, and indeed whalmont hopeless, is it wat natit to imponsible to grat it dinintegrated by any matural axpoare. When mixad with felpar, homenem the case was different, for that mineral contained anbstances of the greatent importance in the composition of plantr. When the felapar in granite docomposed readily on exposure, it often formed a very valuable sail. Mueh of the best soil in Cornwall was in this condition, perticularlif tiat on the lower bills, which, being most exposed to the operatlon of the weather, contained the greatest quantity of gramite in a decomposed state. They worlat alvays find that the mos: fertlle granite contained a good deal of decomposing feispar. On the condition of the mica alto might depeni moch of tive diaintegrabillty of the granite.

The next rock, be would consider, was gopiss, which contained the mater riale of granito in mechanian condition. These would aiverform a feitile soil; bot they might eafely conchade, if it were hard ood compect, thats a goadicoil manld not ba likoly tor be furmed. In the Hishlande of Scocieodin there was a vast quantity of gnciss and mien hate, and theos the eapotry wat unitomply bersen an-the bill, thongh thea were epote which had bena mado.produotive. Tha wholedintriot, heweven, might be deacribed a barren, affording support to little vegstable prodtuce beaides beather.

Another olnas of igneans zacks were thome which were forced up from he neath others, and wers called intrnsive rocks. Of this. kind were the Baealts in Ireland; and the enormous mases of India, where there wera 200,000 equare miles covered with.scarcely anything, else. These rocks were nothing more than liva, or melted rock; poured out opon the surfice; thry wert readlly decomposatle, and among. thie mont usefur and important ingredifert of'soil they were not the leant viluable. From these rocies were obtahnel rich and fertile soile, wis wes exemplifedi'by the districts in which Indiac cotton was grown. These rocks, which in Bggland were ofen called meppeav, mad which wore probably poured ont millfone of yeare ago, were cape
 many of the materials most required by vegetables. Clay-slate was whith was called a metamorphic rock, and was, when in its simple and mont characteristic form, too little mixed with samh, and contained too few of the materials required by plants to be a valuable substance for solls. It contained, homerar, a Fille iren, and morneting a litele soda, and, other like ingretionth, but not in such a state at would readily mis with carbon, and the faroons products.necesnary for plants.

Besides thesa, there were the oldeat rockef or Sllurian rocks, which were formed in Whale, twisted and contorfed in every possible way. The-lower portions of these rocks were erninently siliceove; with a very emall quandibs of alamina, cerbon, and limestome, ands little potanh mad sede Other part of the Stlarisar roels bed a great aduristare of shclea, with madules of lisme stone and large leaticuler mamen, distinctly traesabla to lanal cmane. Then rocke could be:mede fartile by cenceful admixturect

The Silarim rocke wace macceaded by tro other formptionas. Tha firto of theee wis the old red caadetome; whioh wan found in. Scathend, and in copreaponding bade in Harofordmice. This, when nomixed, was a very barren rook, and eftentimes formed. hills. perfoctly nakod. Ascimed, bowrever, with the calonreous lomps called corm, stonen, it formod somotimes a rich cors land. It rat aleo well adapted for the growth of fruit trees; and prodnced. tha apples and pears from which the famous cider aud perry of Ferefordsblte was made. Devonshite, which was also noted for cider, possessed the same kind of soil, though of'a different geological period.

The Davonian rocks, containing a large guantity of silicibet matter and schints, which prevailed in Coraweh and the north-eatern parte of Dovenuhire, were atso capable of beins mized with other mbotences, and rendured fertile. These correapondedir age with theo old red madatomet but dicerest is mectranient condition,

Nert to theot maceedod the chrbonifasens reck, of which there meve

 andinoti amily decompred if sot diviotegrated, eovered manily, mith a very thin soil, and well adapted for the purpose of ahoep, and other animaly which preferred.a chuce fine grats. Bich. acils werg seldom obtained hy at mixture with rocks of this kind. Next, there was the millatone grit, zotw 00 coarse a conglomerate as the old red sandstone, and commonly better adapted. by mechanical condition for agricultural purposes ; bat not often forming a rich soil, though covering a wide extent of country. And, lastly, there were the coal messures, of which the vegetable prodtace beneath the surfoce wis of far greater importance than the agricultural' excellemee of the sebl. thlnd class of carboniferous rocks were met with in the mortheres and a countiet, and in Sorth Whles.

The next in mecescion were the permite rocks, consinting of this y sian limestone, which gentrally coasted the cand meanuren. Thde. ny y could pever be wfely uatd as a lime manure-caustio magmesia bater mischievous, The aoil derived from these rocks was not remartarif richness.

Then cane the new red andstone, which wis necesanlly $\boldsymbol{t} \boldsymbol{p}$ sisting of unmixed loose sand, but which wat often maver
cidorable quandit of rad marl, contrining a large propertion of calemeons end argillecounsmatter, and this, when brought to the surface, made a mont erallent soil. The sich grazing lands of Davonubire and Cheahire, and ather papts of Kgeland, were constitated of this kind of soil. It was almo mangeable from its reedy drainget, and valnable from the ant obtained chan it.

Tre maxt anbalance was lias, and then the whale saries of politen. Lias manimed of thiek beds of argillaceors matter, which wat more axtanaively neen in phins and relleys. It formad a wery naluable soil, asd migitt be meen shrowhent Buglend. Lies matained a geod deal of.calcareors mat-
 - idst hover ands of itho colites on thecother. The eolite were large -on, whigh empplind in their lemer porthom a great quentity of ballding

 and exbeaded threust Ergound to Foritshite.

Gealerical Science applied to the Nixiure of Soils, and to Draining for Agrutultwral Purpases.

Professor Ansted prefaced his momarke, upon the abovomentioned highly interesting topics, by some observations upon the formation of soils from certain rocks, which, in his previous lecture, he had but just glanced at; and, first, as to the cratacoose, er ahalk formation, which cxtended from the weatern coast of England, commenciog near Portand Island, in Dorsetshire, and ruaning in a north-east direction, through Buckingham-
 formation was divided into two kinds; the most important of which, in some respects, was that known as the lower green sand series. This sand, in Bedfordshire, and some other places, ras of a rery dark red colour, mbieh, by itzelf, wee liable to be zery barren; but, when mised with alay, if made a very sioh soil, partionlarly if the clay coalajnod a praper.
 Kimmeridge clay, corered up wioh the ganlt, whioh, In Carabridgentire madielawhere, formed a etiff clay. In cithor come, the malerials would dear mixing with the gmea sand, and gemally produced rich ead producthes soilo-this formation wa, thorefore valabble. The apper areincoons werde opotained carbonale of lime in 100 pare a state to farning of itself a gend egricultural soll. Ia this wety, the chaik coold not be comidered as
 ande co. It wes, ho weotr, maluable a grasing soll for sheop, prodroing enthort fine, gray ; but the quantity of surface required for the sapport of enall aumber of amimals-dimistahed its ralae in this reapect very conaidembly.

He aetit referred to the sertiary beda, phich, in Eagland, embraced only e eomperatirely small sories. The Lepdon thy formed the great mene of Ale tertiary deppofict it was foand princigally in the neighbourteed of the thones, emd in Heam polire. The Leadion chay wes geoerally uoderkaid 2 y mope platio viag, and corered with easd. This was particularly the
 try de Seath Dociern Haikngy a ad those whe had travolled opon that The would have reanked that it passed forithe reet pitit threngh a poor
 pebine end cend, it was repoblo of beconing lower in the rextum, and of faing made toofe arailable wil, Ard, iccleed, a valmate one, by meome of a geiat deal of mamary. The betiery bods, howretor, could ned be oforadrored netarully malabile for agrionhare, although they were oftan made solfom bead circomerneen. The tertiery doponits of Sufork and Envex
 twily shelly. This was pertionlasty onpeble of beles mado a good soil, mivaranded with the eloges avar is.

Thowe were other bedr, metcty, Eseolegists, they twere bound to oco. nidop-momety, thene which were hacown by the geveral geme of gravel, Anich ares a minlure of pobbles asd cand, ench, being liable to acgumalate iarevery farearsble lopality, whe met. with everywhere; it was, in fnet,

 - tholy, the faest anad would the feuted minsed mith the comrsest pebbles; in otbor camon it meght coptaina a great doal of ciay; mod in obberm, cilt. Thece farmed mances, whioh required elvere to be coapidered. in rogerd to Mapr tocel mations. Graval eapstituted not a bad soil for egricultare, as at wras readily dratoed; bet it chapooded on what was aear it or with it, arherert it could be made a good one.

All the oinommanaos cemocted with the farmation mad aatert of soils gracegionlly $=$ wot be tateo into aceowat when the egrioulturalist studiod Ghat noent japerteot enhject, the improvement of the soil by admistures of Ahe soik. This wes a qoection which required the ment oareful hand-
 to ghe spechlative eheages without a geoul chemical knowledge. To

 weon paply yeologival.

In therfirat place, it wes importent, if .the .epil atet the anface wes ant pood, and it zas sought. to bo improred by a.mirceres to aonailer its yet logical ralations, the circumslances under which it was prosented, and, the way in which it was ascociated with the eurrounding material. Tha pearance of the anziace, the structure of the country, the war the beds succeaded each other, and their inclination, ought to be familiar to the goological agricolturalist; and, when it was nol so, that knowledge oqght to be grained, in the first instacce, by nections and models. This knovind ge was indiapesable.; for, without it, they would neither know where to find the material required, ner, when foand, be able to get it. Then, again, it was vory importast to ksow noder what cirammetayces oertain rocite, known to be valmable, might be expected to oecur in matume. For inatase, there were certain igneops rocks, of volcanic origin, which were vatio valuable bases for soile, and equally valuable for mixing with othesp Thesethad, probably, bean produced during a voleapic distarbance, hy wobich they had been forced up in a melted shate to the saiface, and had, perhapar not only filled up a crevice, but had aleo sun over.jo a aboet like Law. Now, it wes quite alear that a person ignorant of ils reolegieal relalions, winhing to obmin this.material, would be.pazaled hy its depertore from the ondinary phenomena of atrata, and be might waste both time and mones, wisheat sacceeding at last in reeching the wabuble enck. Welomeic.rocks of this kind might thus die either verticelly or horizontally; bat is asath be obsions, that wery different operations would be required in each cace to oblain them A diffically in obtaining them, ariaing from fechogical ignorance, wee the frequent cquce of many valeable ivoins ot igseove rock being neglected, or moknown. The mixtere of them Folentic rocke, with othars chat were atralified, alment always improved the soil; bat pot inmariably, as these wers. some axceptione to the almont aniveral rala, of their being easily decocuposable by axposare at theosorface.

Thowe whe ane jupostant prosese in egricalture, oftan ande nie if,
 procem, the soll-at the angher was mised with them beparthit, and a twrye propertion of the sabeoll brogght to the surfasa. This was mometines

 beagofal, or obbewing. Generally speaking, it. Whe asefal, beca moer be eof was ordincrily derived frem the mboil ; mal if the seil ware good,
 Tits, bew

 treatinept of the Eoil might, he provienaly detarmiaed. [The learmed pionfoser.illusterted this point by a reference to sovenal diagrasos, in which the subeoil wes represented as derived from verious materials.]

The nert part of the subjeot was the soil as cosocested whit water; and there were two casees, in which agrienkurally mope geokogivel knowledge on this point was importarit-htre oae wes, when moe much friter whs prevent ln the soii, bud it was vecessary to set rid of it; and the ohter was in the way of intgetion, where soite receired too hille water, or laid not retain a sublidiency for the purpeses of vegotation. Plarts aficred ecormously as to the quwithty of water they required. Bolle, which, in this respect, were admirably edapted for one lind, were ntterly nuft for mother specien-some phanis grew well on solls. where otbers woold mos grow at all. In these questions, then, a consid wation of the neture of the crop desired, and the elfmate in whith'lt trad to be grown, was jodithperse
 and deop draituge ; and the methods of obtining s mpply of whter, being depezdent on Dre vature of the earth's curst, were equally cenaleeted with that setence. Dratunge twotred one or two other points. 'When it refated to the drairage of ferge dlatriots, it was a solbleol of the decpest inhportance, and then it aaturally cane more under the head of engineertag than agricultare. Both dralnivg on a farge scale, amd the obtaintog of water on a large scale, for the supply of our towns and cinies, were sutbfects of the greatest engheeting importance; but he ioteatided gow rather to consider the general subject ofith referevee to agrtcultere. In the first place, then, be would toach open the wee of weiter to plants, which was Tery stmpie and casily anderstood. Platss ceald mot Itve wlithout it, and they derived it parily from the air and purty from the earot. They also obraitued with tho water ofter sotetances, which were muportant. Nowe of the plants, which were of value to the agriculturalist, would bear'a continual exposire to the presovee of water. A great deal of mischief resulted from too much water, altheogh injury was also the regalt of a want of it. Thts elenredt carwo excienively from the olowds in the shape of rain, of smow. The rreiting of the show on the mouratins, and tributary Tills prodoced by matural dralnage, formed broohs and atreans, and ultimately itvers. Bprings osine out opon the sariace, without being appurently conaceted whth the fall of rain, but they wero derived from tit. The rain was absorbed by certmin beds, and oter ceerged at a great dis. tance, in obedience to certan mechutideal iaws. [The formation of eprings was tren HJustrated by reference to a namber of diagrams; and, by the satne meaco, Professor Ansted showed in what memer irregutarities of surface (ithe permeable beds Jytog in a favorrable direction) produced natural tratnage.]

Where there was no patural drainage, the artificial operation conaeated itelf inevitably with the circumstancea under which the supertaity of water cocurred. One of two things ordinarily woold liave to be dope; they would either have to.get rid of the superficlal marface-wator, and that
which might arise from spriags, or they would have to get rid of floods produced by the overfowing of rivers. In either case, the superfuity chould be got rid of in a netural way; and, looking at the general character of a district, this would be easy or difficult, according to circumetances. But, whatever the nature of the effect to be produced, a knowledge of the peculiar structure of the district was indispensable; and a practical application of geological knowledge would often help to produce a perfect drainage, by taking advantage of the formation of the earth's crast. Where beds of clay, or other impermeable soils at the sarface, rested on beds of sand, the upper beds might be drained by means of perforations, ualess it bappened that the sand, or gravel below, contained an excess of water, in which case the attempted draining would increase, rather than lesses, the water surface. This condition of the lower beds would, however, be detected by the geologist by a reference to the ontural ontlet. Another simple and efficacions mode of draining a district, laid ander water by springs, was that of cutting a trench along the strata from which the springs arose on their natural ontcrop, and thus conveying the water a way. The drainage of the surface, however, and cutting off springs, were very difforent things, and belonged to entirely different conditions of struc. ture.

The subject of drainage on a large acale was one of great importance ; and though the drajnage of the fen lands was a work generally intrasted to the engineer, rather than to the geologist, yet a knowledge of the principles of drainage was necessary to the agriculturalist, if he wished to take a fall advantage of the work of the engineer. The principal works of this kind were in England and Holland. In Lincolnshire and Cambridgeshire, there was a vast tract of land nearly level, composed of a tough clay, quite impermeable to water. It was partially drajned by a number of streams which ran across it; but which also drained the higher lands and bille, by which the fat country was hemmed in on the land side. These streams brought down a large body of muddy water, and their tendency was to spread the mud over the low country. When there was a broad expanae of fat land, and a quantity of water thus running over it, the fall being slight, a litte thing served to check the passage of the dran.ing streams. In the present inatance, the Ouze, the Nene, the Glen, anu the Welland, and their tribotaries, all ran along the surface of the clay; and if any accumalation of silt were allowed to remain at their mouths, and they could not with facility empty their waters into the ocean, the movement of the stream would be checked. If any foreign body should accidentally fall into the stream, a portion of the bank ou the other side of the obstacle would be carried away; and thus, supposing the water ran in a straight line at first, it world, in a short time, deviate from that straigbtness, and those meanderiogs which were so admired in other rivers, but which were so fatal in these, would be caused. The more tortuous the course of the stream became, the slower would be its pace, and the less effective its power as a draining agent. At the same time, the gradually increasing accumulation of silt at the mooth would stop the ocean out, and the lush of water from the river would be thrown back upon the land, and thus the low lands would eventually become a swamp. All this, however, might be easily counteracted by keeping clear the streams, and removing the obstructions at their mouths; but, supposing that the natural drains, the rivers, were not sufficient to carry off the whole surplus water, some furiber operations were necessary, such as artificial cuttings. One of the results of draining being to make the land lower, embankments to keep out the sea were required, and ateam-engines, to pump the water from the drains over the embankments into the ocean. The selection of the line of these drains, and the carrying into effect the plans suggested by the circomstancey, were operations which had to be performed by the engineers.
Of the fen districts of England, a great deal had already been dove towards their drainage-badly at the commencement of the undertaking, but stili a great deal also bad been well done, and whole districts were now in the course of being drained satisfactorily. The fen district was divided into several sections, known by the names of the streams whicb intersected them. The priacipal of these were, the Ouze, the Nene, the Glen, and the Welland. The lower part, called the Great Bedford Level, in which the operations had heen conducted in the most perfect manner, and at a very enormous expense ; the drainage was partly effected by two great cuttings, parallel to each other, from St. Ives to Downham, not far from the place where the Ooze ran into the sea. The tract between the cuttings, which comprised 5,000 acres, was used for the purpose of holding the surplus water, and so preventing it from running over the draiaed land without the embankuents of the two cuttings. In making canals of this kiud, the first and principal thing to be done was to construct safely the embankments on either side, the water being lifted over from the ordinary drains by means of steam power. But tbe case was different when the sea had a tendenoy to inundate a whole country, and required to be kept out by embankments along a line of coast. This was the case of Holland, of the delta of the Rhine, and of river deltas generally. Deltas consisted of the land formed by deposits of mud at the mooths of rivers. There was often a considerable quantity of organic matter in this mud, secreted by animalcula, which were killed by the action of the salt water upon them. The difference between the condition of Holland and the fen lands of England was thlo-in Holland, the soil was being dails added to by deposits of river mud just at or below the level of the sea; while, in England, it was land already formed, and just above the level of low water-so that all they had to do was to keep it so. To maintain tbeir position in Holland, draining operations, of the most gigantic extent, had constantly to ba kept going on, at a corresponding magnitude of cost.

The geological conditions necessary to produce fon land were theee:-A river coming through a fat country tended to form a delta, which, is it increased in size, became dry, or might be made so by draining. This Fis one method; but sometimes it happened that a stream ran throggh flat clay lands near the sea level, when it naturally had no indacement to move otherwise than sluggishly; while, on the least opposition, its bants became washed away, and its watere spread over the adjacent lowiands. It was not, in this case, difficult, by direct cuttings and embenkments, and a few steam-engines, to drain the country, and, by certain operations, to clear the mouths of the rivers. On flat coasts a good deal might be, aed actually was, reclaimed from the sea by such means. It was propoeed at the present time to take in most of the enormons tract of land, now forming the great bay called The Wath, simply by embankmonts, and, taking advantage of natural advantages, narrowing the ontlet of the rivers-anabling the sea to form its own embankment by silt-and pomping out the anperfuous water. In Holland, they had to pump ont the water from lands below the level of the sea : in this case, the embankment to keep out the sea woold alone be necessary, and there would be no great danger from the eea, except at extraordinarily high tides. With regard to books on this subject, there were many Dutuh, and some English ones. The lat part of the Agricultural Journal, vol. viii., containjig an account of the present state of the English fens; M. De Beaumont's Leposs de Geolegy Pratique, givipg a long account of the deltas of most of the European and other rivers; Johnstone's Lectures on Agriculuural Chemistry and Geolagy, and some other works on general drainage, were laid on the table at the close of the lecture by Professor Ansted.

PROCEEDIDGS OF BCEREMLPLO BOCEEMEFE

DECORATIVE ART SOCIETY.

Mr. Dwyer read a paper on the 13th October, before the Society, on the following questions :-W hat is high art? historical art? fide art? \&ec Under what conditions do these become identical \boldsymbol{q} and what is the relative value of each for the purposes of decorative art?
Mr. Dwyer complained of the mysticiam and want of definition in all writers treating of what they call bigh art. For the most part, bowever, we shoald find that the study of nature is beld to be the starting-poini from which we are to be led away into a complexity of technicalities and metaphysical reasonings. As in writings, so it would be found in works. The architect, scolplor, painter, and poet, each attempts a myaterious grappling of mind with matter of fact, occasionally developing a high dogree of intellectuality with much that is either unmeaning or not easily understood. Then there is the continually varying misapplicution of technical terms in art, arising from an absence of principle in giving fixed names to definite things, which renders it a matter of difficulty to understand the proper limits and distinctions which exist between oven ovoh terms as high art, bistorical art, fine art, \&c. He had sought for precise definitions from living artists of good repute and long standing, bot obtained none; he had heard much of reasoning, in small circles as it were, which convinced him that a more general and comprebensive knowledge of art in its various phases would be usefol, indeed, among its professon. The ordinary criticisms of the day opon art were to him vague and mean. Jngless, and would generally, if diveated of doabtful techaicalities and expressed in plain English words, expose their flimsy construction. In tracing the progress of art, Mr. Dwyer felt that it had been strangely bandled, not alone from the restless ambition of some of its votaries and professors, but still more so by the wanderings of others after the indefnite. Princes and popes have at certain periods patronised its works, but he considered that the attention at present directed towards art, throughout Europe, would probably promote an unprecedented Progress. Nevertheless, be beld art in itself to be capable only of slow progress, simply becanse that must arise solely from a succession of improvemente in imitative skill. A parallel to the present demand for variety of style and character had not, be said, existed in any previous period. In painting, sculpture, and architectore, we may learn to discover distinctive features marking a period, and most clearly showing the development of progression. Mr. Dwyer contended that the sameness of treatmeot in the works of most artists testl. fies to the tenacity with which copying or imitation clings to all, and that therefore it is essential to reflect and know, how far the different schools of art have relatiou to each other in respect of imitation,-how moch an artist has been indebted to previous examples,-before we can adjudge to him a qualitative rank. Mr, Dwyer then enumerated celebrated works by Greeks, Romans, Italians, Venetians, French, Flemish, and Dotch, wbich were, he maintained, in barmony with the tastes and moral dispositions of the respective nations at the time they were produced, and also that art is in a great measure localised-dependent on certain rolea, as developed by existing specimens, and by the position these held in the public estimation, -that it is essentially a thing of time, place, and circumstance. By judging of works of art apon a particular consideration of beanty, and by admitting one class of production as soperior in rank to another, withoot reference to a comprebengire view of art generally, \boldsymbol{t} great injustice has been engrafted on our recejved opinions apon art. Distinctive ranks in the departments of art, Mr. Dwyer contended, were a
great evil, and to equalise them would be a great good achieved. Until The difficulties attendant upon the operations of art are understood, and onjust prejudices remored-antil painters in oil, water, encanstic, and fresco, cease to disparage each other's work, and to exaggerate the importance of their own, ontill all aristocracy in practice of art shall be dissipated, and art, in humble garb of plaster and clay, be looked upon as kindly as if in marble, antil some new energy shall have swept away these prejudices, as uareacosable as unjust, end a combination of artists in one emulative conrse of comprehensive inquiry and dispasslonate reeconing, sball contribute to that one great parpose called art-we must not, it wes contended, look for a positive and marked progressive feature to be developed in onr times. It was then explained, that art being essentially based upon ideaiity, with an accurate presentment of effects in form and colour, after nazure, is constituted and regulated by certain principles in harmony with the prevailing taste, edacation, or fashion, so as to oxcite pleasing omotions; and that it is therefore necessary to specially advance education and train the mind, before the really beautifol in art can be properly appreciated, or the genius erinced receive a just and fair criticism. Severai instances were referred to, showing the power of art in expressing clearly and intelligibly to all whatever sentiment it is intended to impart,-as the "Langhing Faun" and the "Dying Gladiator," in scolpture; or the "Creation of Adam," by Michael Angelo; the "Transiguration," by Raffaelle ; and the "Least Supper," by Leonardo da Vinci, in pictures. These examples, it was said, testify to a mental or reasoning ideality, combined with a skill in depicting the easence of things material, and should therefore rank far abore imitative skill in the abstract. Ideality is yet more severely tasked in connecting the several ideal embodimento into a grand Whole, or complete picture, as in the "Last Judgment," by Michael Angelo. Art such as this, he said, might be called kigh art; but the qualification ought not to be altached to the works of an ordinary artist, whose vanity leads him to lay a surreptitious claim to take rank noder such a banner.
The characteristics of Greek art, it was stated, are quite distinct from the examples last mentioned, although both have received great and weli deserved admiration. The Greeks, however, approached only to a perfect embodiment of physical beauty, without evolving the attributes of the higher powers of mental reasoning : this would arise simply from their progressive refinements being based cbiefy on skilful imitation. Art had undoubtedly been extensively encouraged by the Greeks, from the great number of their works; and if, instead of pursaing the heroic rein, they had sought to impart a mnral purpose (expressions to be taken in their broadest sense), then, jadeed, would their productions have attained to a troly glorions eminence. It was Mr. Dwjer's opinion that their wonderful skill, when receiving additional purpose and meaning, would bave created much nobler works throngh their embodiment of mental attributes. The frieze of the Parthenon, he contended, while he had the fullest appreciation of its beauties, ought not to be viewed in any other light than as a production in imitatire art. Nature, he said, bad been so faithfully studied and delineated, that very few inaccuracies could be discovered; but be deduced from this and the pervading similarity of features and vacant expression, not only that the models must have been of a superior class, but also that the Greek artists had relied upon their powers of imitating objects as they were seen hy them.

The second part of this paper was read by Mr. Dwyer on October 27. His plan of treatment sought rather to euibody generally, than to judge of art in its details. Simplicity with purpose constitutes perfection in art; and although these are the most rarely developed, they are most readily recognised by the public. What constitutes bistorical art? Is it represented by battje scenes, massacres, processions, or reviews? He thought we ought to find a combination of characteristics in persons, time, and place, harmonising with the event represented, and with mental attribotea commanding reverential attention, and exciting a feeling of emulation in the spectator. In painting, the accredited substitutes are too commonly portraits and gatherings from old pripss. The recent exhibition at Westminster Hall, professedly of historical art, was in point. The painting of "Alfred the Great inciting the Saxong to prevent the Landing of the Danes," displayed a high purpose, -an attempt to show in a simple fact what our navy once was, and lead us to respect him who by his genius improved the bulwarks of our conatry, and laid the foundation of our present mercantile greatness. On the other hand, "The Battle of Meeanee" conld only excite a feeling of horror, and was better filted for the Horse Guards than for a decoration in the new palace at Westminster. A moral lesson might be discovered in "Richard Coevr de Lion furgiving Bertrand de Gourdon,"-an embodiment of a noble principle in Cbristianity. On the other hand, "Edward's generosity to the People of Calais during the Siege of 1346," is too problematical. He called attentiou to a scriptural picture, by Mr. Riviere, relating to the "Seven Acts of Mercy," in Which the conditions of sickness, buager, and the houseless, were expressed through the means of English associations-appealing in English garb to English understandings, and thus rendering art more sympalhetic.

The decorations for the new palace at Westminster, according to the comprehensive system laid down by the Commissioners of Fine Arts, afford an unexampled opportanity to artists to gratify the desires of all who venerate painting only in its noblest workings. He hoped the term "decoration"" would not continue as hitherto to be misunderatood and restricted ia its meaning, hy artists generally, and that the time had returned when all branches of the arts wonld be considered bonoured in their application as decorations. W'hat has lately been the general entimation of a painting on a wall i why, mere ornamentation, whereab, if removed from
such a position and framed as a picture, it is recognised as of fine art, or high art. He further remarked that artistic works in metal, such at jewellery, \&cc., would, if in marble, take rank as tine art. These faleo distinctions, he contended, had led to an overflow of followers into certain divislons of art called professional, while in others, deemed industrial, a ecarcity equally ovident prevails. A akilful designer for manufectarers is as much an artist as the painter of landscapes or portraits, and the dosigner requiree for his parpose abilities both mentally and manipulatively snperior to the other. He pointed out Holbein, who, as a portrait puinter, imitated admirably, but as a designer, he invonted nobly. He also named Quentin Matsys. Succesaful works in art emanate only from a congenial source, and the taste of a nation must always infuence their production. Whatever is truly great or practically aseful is always based upon simplicity. The simple outlines of Greek and Etruscan vases, bave cansed, perhaps, more abstruse geometrical investigations into conic sections than even the planetary systems; yet, he thought, geometry had not beon brought to assist art in their formation.

ROYAL INSTITUTE OP BRITISH ARCHITBCTS.

Nod. 1.-Sampel Angell, Esq., V.Pi, in the Chair.
The Chairman addressed the meating on the occusion of the opening of the new Session, and alloded to the generally improved character and style of many new buildings in progress, and to the sanitary measures that now so properly engage much of the public attention. He adverted to the loss the Institute bad sustained byithe death of Mr. George Allen, Fellow, and likewise to the recent death of Mr. L. N. Cottingham, an arehitect whose talents had juatly brought him into considerable notice.

A paper was read by Matthew Dicay WYatt, Esq., on "Mosaics as applied to Architectural Decoration," which be illastrated by a large collection of prints, and his original drawings and sketches of mosaics in various Italian charches, some rare Roman and Florentine mosaics, and a variety of specimens of those of modern manufacture by Messrs. Minton and Co., Mr. Alfred Singer, and Mr. Jeakes.

Not. 15.-Charles Fowler, Esq., Vice. President, in the Chair.
Mons. Firmin Epellet, and Major-General Howard Vyse, M.P., were elected honorary and corresponding members. Mons. Epellet is the architect of the department of the Pas de Calais, and he has recently completed the town-ball of St. Omer.

Mr. T. L. Donaldson remarked on Mr. Knowles's plan of the Parthonon, which was among the drawings exhibited, that it showed a jointia the pavement under the centre of each column of the naos, which is quito contrary to modern practice. Mr. Donaldson always considered that there must have been some communication between the naos and the opisthodomos, for the latter was used as the treasury, and it was necessary that the priests should have access without baving to go round to the outside and other end of the building.

Mr. Penrose did not think that this hypothesis could be established, for there were no signs of such a doorway in the remains of the Parthenon.

Mr. C. H. Smith gave an account of a kind of trapor porphyritic bailding stone used in Devonshire, where Crediton church was built of it. He presented specimens to the Institute. It belongs, he said, to the iggeous formations, and is formed chiefly of melted felspar, but having many bubbles, afterwards alled up with carbonate of lime. Its colour and durability vary very much. That of a light grey colour is least to be depended upon. The line of hed could not, he observed, be detected, so as 10 afford any inference as to its indication of the durability of the stone. He took the opportunity of remarking that with respect to limestones, such as Bath stone, the oolites, Caen stone, \&c., setting them in the line of their beds made no difference; it was only in the case of sandstones that any beneft was gained. It is quite impossible for any person to say from an inspeotion of a block of Caen stone, what is the way of its bed. The best looking stone is the least durable, and the darker the most durable; and generaily speaking, the finer grained colites are the least durable, and the coarser grained the most durable.
Mr. Grozge Godwin called the attention of the meeting to some experiments on Caen stone at Mr. Cobitt's. Without reference to the action of the weather, a piece of Caen stone of the size of a brick, laid with the bed parallel to the pressing surfaces, required a crushing force of 50 tons; another piece laid with the bed perpendicular to the pressing surfaces was crushed by a force of 30 tons only.
Mr. Ambrose Poynter thonght it well worthy of notice that the mallions in the windows of Henry the Seventh's Chapel stood, throughout, contrary to the way of the bed, and yet they are in the best state of preservation.
The Vice-President thought this statement of Mr. Pognter's might be reconciled with the experiments detailed by Mr.Godwin, for the mullions had little or no weight to carry, and consequently no crushing force, while they were best preserved from absorbing wet, by having the bed-line of the stone placed vertically instead of horizontally.
In the conrse of the discussion it was remarked that Caen stone was very variable, containing bidden veins and faults, and nodules of clay, which were liable to be affected by frost.
Mr. Donaldson laid before the Institute an account of the church of Santa Maria del Fiore, at Florence, and of the design for completing the
, Eapede, mout to the Institute by Caraliere Nicoalo. Matal The dome is one-e the oarlient madern domet, and aescod in sive onhy to BL. Pater's, at Primelint oldor.

Gemp disenciea took, plane on the propriety of the mecting eoming to atofhrad wete, topeoving of the deatge of Caralinso Matan, and at langh trumbilte wat appinted toreangine and sepoit

ON MODYL EXPRRMENRS.

In the last number of the Jowrnal we obtained formule for the comparinow the meiphete enpable of being suatained by similar ginders; we now proceed to apply our formule to the terparimente 50 athy onadmeted by Mr. Hodgkinton, with reference to the proposed bridge over the Menai Straits. A report of thene experiments will be found in the May nomber of the Joumal for $\mathbf{4 8 4}$, 'from which we extract the'following'table and explang-tion:-

 itrength from 'owe itze to wather, 'with more certainty than hifierto, as wrintioned before. Another objoet, not far purrued, was to seek'Yor the 'proper proportion'of metal in the top and bottom of the tabe. Wach more is required in this atreetion.
'Ta'the three entes of experiments matle, the traben were reataryidar, and the thimentions and other vituea are given betow.

Length.			$\left\lvert\, \begin{aligned} & \text { Othtance } \\ & \text { between } \\ & \text { supports } \end{aligned}\right.$	Prytht.	Thick. Teme of Pincee	$\left\lvert\, \begin{gathered} \text { hesh obr } \\ \text { perved } \\ \text { Pefiec. } \\ \text { tigal. } \end{gathered}\right.$	Correapeating cight.	$\left.\begin{gathered} \text { Brenk. } \\ \text { Wefight. } \end{gathered} \right\rvert\,$	Valae of f, for Crushata Surala.
fi. in.	In.	In.	f. in.		Inch	Yat	To	To	
क1 6	24	56	80	448	-596	30	$0 \cdot 8$	57. 5	$19 \cdot 17$
21	4	18	80	21	-32	138	20	82\%\%	14.47
316	24	16	800	$10 \quad 1$	-124	1.20	5104	8153	774
82	6	4		1b. 78 78 18	-188	-43	9.4.6		2017
82	6	4	76	3811	${ }^{0} 085$	-82	2,600	.	1514
82	6	4	76	-.	.-	-•
- 4	8	2	39 30	1012 10.6	- 4	$\frac{486}{-18}$	2, 660	$\begin{array}{r} 2-404 \\ 472 \end{array}$	9+68

The tube placed first in each series, is intended to be proportional in every imading Mmaneina, as distamee betrreen mpporta, bratith, dopth, and thicknew of molith, and acy verintiom, ere allowied for in the epropertellon. Thas - Ale there firut tubes of moh revies are intended to be sizailar; and to the sme sonmar of the other tubes, sace."

Tivere it will be observed that in the firat set the dimensloms are four times the dimensions in the second set nearly, and the dimensions in the second ast are very nearly twice those in the first. Comparing the first of the anound and thind cats, we fud in the fret of the sccond set the woight of the trove 78 lb .18 oz., and the brenking weight $9,976 \mathrm{lb}$. end im the firt of the third att, the weight of the tube 101 b .12 os ., aud the breaklog weight $2,464 \mathrm{lb}$. Now, by the formula deduced in our lat paper, if w be the imposed breaking weight, to the maight of a girder in selele 1 , the breaking .weight of a similar girder in scale 4 will be $\left(\frac{2 w-(\pi-1)}{2}\right) \omega^{2} \omega^{2}$.
Here $(u-1)=1 ; w^{\prime}=10 \mathrm{lb} .12 \mathrm{oz}. ; \quad u=2 \mathrm{lb} . ; \omega=2,464 \mathrm{lb}$. ;

$$
2 v-(u-1) w^{\prime}=4918 \mathrm{Ib} . \text { pently } . \cdot \frac{2 \pm-(v-1) v^{0}}{2} \times u^{2}=9836 .
$$

This, as win the aeen, is only 140 lb . less than the breaking weight as found by experiment. It will be olserved, moreover, that the tube in the eacond set is rather more than twice as thick as that in the first, which isufficiently maonate fur the alight discrepanoy. Comparing now the finst exporiment of the fint and ateond sele, we thall And the valoc of the breakigy weight in the yirst, dedeed by the formale from the second-too great :

$$
\text { putting } u=4 \mathrm{lb} ., v^{\prime}=78 \mathrm{lb} .13 \mathrm{oz}, v=9,976 \mathrm{lb} .,
$$

the treaking welght were $=70$ toms, -an excess over expeximent of nearly 13 tons. The reasan of this difference in obivons: cur formula appposes that tha breaking teneion per equars inch, in ell the modele compored by it, is constant. This, no doubt, would bave been the one in the model tribes of Mitr. Modgkinson, had they been constructed of one unlform plate of mett, and not rivetted. The necessity of rivething is one graat oanse of the

to show a fow number back, in a.paper on the anme of the dratinge of the

 tenalon per square Inch onesilh, in the firt of the first set of experimetta as eompared with tha first of the hat nat how tavah that eftet menithe

 yruge.

We truft, in the mannwhile, thatMr. Fedgkinsen will continue his lavers

 be apprebended is not of a statical but djnamioal character,-the coastant

GITY OF LOFFON 'UNON 'WONKROUSE COMAENTIOA.
A conlroversy is going an as to the competition for this builling-whech
 are informed, are ibsern.

Thersurveyor whe momored the groand for the guatilims is matued as the favoured caudidate, and by a majority of two obtaing the avand ar the first premium. He has resorted to the extraordinary-maneme of aenily reand to the guandiane a plan and particolers of his own decian, medro
 charged whith travirg taiten 17 foet more grount to mifth thma ls sillowed to the other competitors, the presence or absence of whlch wonld milec a great difference in the accommodation, as the epace of fround is ameonmonly parrew.

Hed the mattor mated merely with the board of gmordian, wo eonn mot :hace interfired anth a tectsion had been given; bot as the ourveyor bas pleaded to the jurisdiction of the public, we feel that we have a fill right to institute sucha comparison between his and the ancood, plan, as will shos that there are no sufficient reawons for the selection; mod ander.tie
 bet look with enepicion en the proment mate of the capo.

The comparison, unforluately, is of the difects of the surreyor's plan, from which the other is free. Only eight day roons are provided for 1,000 iomates,-but then the surveyor seys that two "work rooms" gre day peonn, mod two "dhetary wome" in the taonment are sey ivones, having, consequently, two surk areas as atriog yards. 'No'separation fis yace of aged women, mothers with children, and prostitutea, who are to be placed in one day noom. The rooms for aged coup lee are medo talleak ent on a clead wall clow by, baving privies end urtalig beweath. The fafratary dees dot contain sufificient accommodation. The Poor.Lew'Commisshomers have wisely protested against dormitories on the fromideopr, but the survejor has providod them. The paceages ere toeathem, aod many of them will require gas in the daytiere.

At the strip of grownd is long and narrow, the surveyor has made his buildings to stretch acroas it, so that they can be built apinst ate fatere time, and light and air excluded.

As to the icoign of the ehepel whteh he thas tent rount, wererubut but thiak it too orocte and preposterous as applied to such a builidigg.

The other plan rums in one compact blook along the gronad in.ian gratest length, having wide spaees on emoh side fer courts and yarils, mheh can nevar be interieved with by any buildfoge ou elther stide. Ore eofrilor is carrived through the butting from end to end, proper access it provided, fourteed liay rooms are laid down, no commanication can take pheco be

 plan and.egelingt that of tise sorveyor, and it is oettafin that the latter will be rajected by the Poor-Law Commissioners. Whether the board of gaardians, who are friends to the surveyor, will dare to pems hit plen ager the discussion which has taken place, roneins to meaner; tat tif theyralo, we shall certaialy not fail in oer endeavorrs to do juntion to the ertidecetural profesmion.

SYDNEY SMITHS PATENT STEANE INDICATOR:

At the third quarterly meeting of the Institution of Meetanical Ethincers; heft at Birmingham on October 29th., a new steam indicator, patented by Mr. Sydney Smith, was explained to the meeting: is comaiks of a diad sir inches in diameter, and the body four inetres deep, and it ahy about tea inctiea highy as ahown in the annexed. engraming: -

The details of the invention were not given but from what could be gatbered there appeare to a tube of cold water communicating at one end with a steam syphon attached in the usual manper to the boiler, and the other end of the tube is attacted by a flange to the fange a of the indicator; nt this point there is an elatic web of india reaber, which cuts off the communiention of the cold water in the tube; on the top of this elastic web there is a vertical rod, which, as it rises or falls, actm an a waigited pendulum fasteued on to the axie of a pinion, gearing into other wheels that communicate with the lande of the indicator. It will thus be seen that as the steam in the boiler inoreases in presura, it prenses upon the surface of the cold water in the syphon, and comsequently the pressure is transferred through the tube of water to the elatic meb, and reiser the vertical rod, whiols actuates the gearing of the dial. The only use of the colt water is to keep the india rubber wet cool. It does not matter what length the tube may be,-if the indicator be sarewed on to one of the lege of the syphon, 18 inahes to 2 feet long it will be sufficient.

She apparatus is out of the reach of the engineer, and the value of the invention is entrancod by the aceuracy of the indications not being aftected by the distance at which the dial plate may be from the boiler. For example, in marine boilers the indicator may be alongside the compass, and be as fultless a guide of the pressure of the steam; as that instrument is of the course of the vensel.
Mr. George Stephenson considered it a most valuable invention, and stated that he had had one put up at bis collieries at Tapton:-"It is plaed some distance from the boiler, and in another house, and works most beautifully, showing the rise and fall of the steam in the mown deticate manner. The iodicator is like the face of a olook, with a pointer, making one revolution in measuring from $1 / \mathrm{lt}$ to 100 lb . upon the square-incli of the pressure of steam; it is quite from under the centeot of the engineep, or any othex person, so that its indications may be relied upon, and the construction is so simple that it is scarcely. posuithe for it to get out of order."
"The Indicator" is adapted alike to high or low-pressure engines.
 sure from Ilb . to 50 Hb upon the square inch.

One of these indicators has been fixed to a boiler at Messrs. Miller and Ravenhill's manufactory, Glass-house-fields, Ratcliff; another in the Ant ocmaner; and ene at the Polytechnic Latitution.

LIGHT FROM ELEGFRICITY.

Mrs Staite deliwared a lecturs at Newcaatle on-Tyne, on his "Nen Mode of Lighting by Electricity."
Dhr. Staire having first debribed bis galvanic battery and other ap. paratos, which are on an entirely new principle of his own maturing, and whine monot bo vell, dascribed without diagrama, observed, that the prodaction of light from electriofy wats dot a new. thing per m. The orpert. mest of the chareoal points, mod the pheromona of the woiltaic arc, with powerful batteries, were well known. The difficulies hitherto experienced had tien- L. The economical production and application of the electric corrents.-2. The disoovery of a suitable material for the development of tha hiedr.--3. The reederivg of the light permanent (the grealest dificulty of all). By what means, aod to what anient, he bad overcarne these dititioatelen, Mr. 8taite ibformed bis eudience. Ho produced, under a glase recejver, a brilliant light; before which the gas jets of ibe lecture-room turded, not pale, but yellow. "The peculiar characteristics of the electric light (zaid Mr. Staite) were ito purity and volume. The most delicate shades of colour might be detected, while the eye was not distreased by its effects. The same quantity of jight, developed by gas, or any other known memns, would be absolufels woendurable. That the light was not the result of combustion, striclly speaking, was evident. There could be no combustion without the presence of oxygen; and, as the light was developed

 to do. With the riakten" The light in frot, the lectoren remaribet, could' be prodoced as readily in water as out of it He showed its pocoline ap-
 He then came to the comparative cost of the electric and other lightse With a battery conaiating of fanr amall cells, a light was davelaped equad to 380 monld ceadles (sixes), or 300 wax candlas, or 64 cabic feet of the beat gas, burat in the standard burner. This was effeated by a conaumgx tion of ziace equal to $0: 77$, or 77-100ths of a pound, being little noore than $i \mathrm{Ib}$. of zinc per hour. When the light, however, was brought to its. maximum, by increasing the distance of the electroids to their limit, the light was increased nearly threefold, whilst the current itself was redocad. to about thres. ifihs in quantity. "This curians fact (continued Mr. Staito) I have frequently observed before. So that the light, when developed onder the best circamstances consistent with its permanence, was produced by a consumption of a gerenth part only of a pound of sino per hour-med that hight equal to 380 thllow candles, Assuming that the sino so con. sumed was worth one halfpenay, and that the cost of the working colution, deducting the ralue of the products (sulphate of zion, \&tc.), wan manch more, we havo the following comparative result :-Klectrio ligbt, 1d. Pe hour; gas light, equal theroto, 6d. to 8d.; tallow candes, 7s. ed.; waz, 12s. 6d." [But, in addition to the zioc and sointion, an allowance mastbe. mude for apparatos, skill, laboar, \&c., as in the manufactem of other hegbe. -gas, wax, tallow, \&cc.] In conelusion, Mr. S. observed, ${ }^{\mathrm{w}} \mathrm{By}$ a oarofat comparison of all modes of effecting artificial infumination, I think I am justified in saying that there is no light so chenp as that evolved by voltive curronts of elfotrioity; and there is cortainly mone whiah eabibits guch pure andbrilliant resulta. The absence of all emote asd flame, ned peripen. gapers-the pon-eonsomplion of oxygen-the impossibitity of ita ignitiong.
 recommendations for the adoption of the light in all places. whemp pmity. and bridisoce, and mafoly, ami moonomy, are sought, foc."
Le the cauree of his address, Mr. Staite truly observed, in. refereace to the alleged jealouny of coal-awnera, gacmakera, sic, that it was idle to. throw obstacles in his way; if his electric light had saperior merit on its side, it woold come into nse in. apite of any local opposition; if, on the contrary, in practical ralue it was inferior to others, it would fall inta oblivion.

NOTES OF THE MONTH.

 of Mr. Hosking, Mr. Poynter, and Mr. Shatr, the ofinemil reforees ; Mor Pownall and Mr. Aitcison, district surveyors; and Mr. Biers and Mr, Piper, bullders, has been appointed; for the parpose of considering the objeafionable parts of the prenent act, with a view for amendmant in the prowept momion, of Purliament.

Tidal Harhour Board.-Capt. Betham, R.N., Capt. Washington, R.N., and Capt. Vetch, II.E., have been appointed to form a "Tldal Harbour and Conservancy Board," under the jurisdiction of the Admiralty, each to recoimo a salery of EBOR par enasm-How is it thare is anta C.E. in the appointmeat?

The Nelson Column, Trajalgar Square.-Mr. Carew, the scalptor, hat just completed the model of the priacipal bas-relief, for the conpartment of the base facing Whitelall. The group is taken from Southey's "History of the Battie of Trafalgar,"" wore it is stated that Nolson, abserving "they, hed dowe for bim at lats," ordered new tiller repes to be nove as the othema were destroyed. There are, in all, fifteen figures, above seven feet high, the centre group taking Lord Nelson to the cockpit.

The School of Desigr at Somerset House bas been re-modelled. The general direction, hitherto vested in the Board of Trade, has beina congmed
 cote. The council of all classes of persons has bean supplameded by a courcil of three, consisting of Mr. Richmond, the painter; Bir R. Weatmacott, the scalptor; and Mr. Ambrose Poynter, the architect. Mr. Wilson, the late director, has had assigned to him the sappriateqdeace of the proviacial schoola ; and two of the late matern, Masirs. Townshend and Horslef, bave beon appointed professone in the motool. There is ton be a third professor, but the appointment bas not yet been Aliled up.

Cape Town Gas. Works.-In consequence of an article whlch Rppeared in our Journal some tiane siace, stating that the apparatus for lighting ug Cape t'own wish gas wan then beipu obtained in. England, a corkespondent writes us wrond from the Cape-st It may be gratiofieg to some of your readers to know that the works have since been erected and in operation now twelvemonths, to the surprise as well as gratifcation and enlighlenment of the inhabicants here, who have most liberally encouraged the undertaking, the works having now nearly ca0 lights to supply, with a steady, increaniag demand, mad whick suceasa. mast be maioly atribuled to the ability sad persenering energy of the eagineer, Mn Alazeader Wilson, formerly of the London Jmperial Gas-Works, and to whom the grenteat credit is dne for the mauner in whleh the works have been cartied out and conducted, - but it must pot be omitled to mention the able ma. naging dimedor it hambit in the Lute lamented F. S. Watermeyor, Eagh, uroogh whose instrumentality the company wail frot formed.*.

College of Surgoons.-The College have bought Alderman Copeland's house in Lincoln't-ind-fields, for $\mathbf{£ 1 6 , 0 0 0}$, so se to emable them to ealarge the library and Honterian museam. This is likely to make more work for Mr. Barry.
Royal Acndemy,-Mr. Sydney Smirke and Mr, F. R. Pickersgill have beec olected Associates.
Highton's Electric Telegraph.-The electric telegraph on the Baden Railway, opened on the 15th of October last, is worked by Highton's Patent Gold Leaf Telograph, the practical working of which gives the highest satisfation. Professor Eisenlohr, of Carisruhe, appointed by the government to saperintend it, states that, with one woire only, information is being trasmitted at the rate of 20 letters a minute; whilst the most complicated apparatus, and one that costs ten times as mach, and requires a much more powerful current of electricity, gives not more than 60 or 70 lettors per minute, and is not so certain in its action.

China Grase Rope.-A rope has been lately manofactored from a new China Grase Kope.-A rope
material, called "China Grass," at Manchester, by Mr. Thomas Brigge, of Selford, expressly for the iron-works of the Earl of Fitzwilliam, at Elseger; it is 600 yards long, and weighs 14 cwt .8 qrs. and 14 lb . Ropes grade from China grass are atatod to be moob stronger and more durable than those composed of hemp, bot are more expensive. Before manufactaring ropes of a large size from this material, Mr. Briggs had sume small ones' made, which he tested by working in blocks on his own concerns he foond them to work well, aleo to be very strong, and of greal darability In coal-pits and mines, where ropes of great strength are required, those made from China grass are much sought.

Twrkich Honowrs.-Tribute to Britich Sciencefrom the Sullam Maiknowd. -Mr. Fairbairn, of Manchester, has been prosented with a decoration of one of the Turkish orders, in consideration of the valuable services performed by bim in his capacity as engineer to several oxtensive works, undertaken at the desire of the Sultan.
Professor Willis has undertaken the editorship of Mr. Parker's new edition of the "Gloseary of Terma in Gothic A rchitecture." This engage ment will ensare the work being bronght out with success.

GRAMTED iא ENGLAND fROM Octobse 22, To Nbvember 25, 1847.

Sir Monthe allowod for Buroiment, walese otherwise expreceod.

VIItem KIrrage, of Warner-place, Beclaney-rond, Middienes, for "an Improved empbination of mitertal for building purpoees, and a new application of certatn matarial for bullding parpoese."-Gealed October 22. Two monthis.
Edward Barker, of Budieigh Balterton, Devon, fentlemen, for " certaln Improvemeate In the preparation of manure."-October 28.

Villiem Thomas, of Cheapelde, merchant, for ${ }^{44}$ certain Improvements in the compracthon of otays, and in machinery for manufacturing stays; parti of which machlpery are applicable to other spectes of weaving."-October 28.
George Petrie, of 14, Mountford-ifiret, Whiteohapel, Middiesex, for "certala Improvemente in ilectinc telegraphle apparatus."-October 20.

Charles Carey, of Charchyard-row, Newington Butta, Burrey, genileman, for "Improvementis is obealniog infulons or tatracts from confee and other matters."-October
.
Meyer Meyer, of Artillery-plece, Finstury, Middeaex, for "certain Improvemente in the manufacture of nombreilas and parasole. "-November 2.
Jemes Walker, of Clagow, gentleman, for "Improvemente is weaving."-Nov. 2.
Thomas Dunn, of the Windsor-bridet Iron Works, Manchenter, for " Improvementa in the manafacture of raltway-wheals and axles, and in machinery and apparatos for placing carriages on to a line of ralle, for remoring them from one line of rails to another and for turning them."-Nov. 2.
 provements in draught harness."-Nor. 2.
Jean Charié Vietor Coullon, of Auxerre, Prance, for "Improvements in propellipes racels."-Nor, 2
Bernard Von Rathen, of Putney, Eurrey, ctvil endeget, for "Improvementit In obtaina In and applying motive power."'Nov. 2.
Whifam Longmaid, of London, Eentleman, for "Improvementie In the manufacture of alichli and chlorime."-Nov. 8.
Thoman Langton, of Brillivell, peer Nottingham, for "Improvementis in the marufactore of knitied inbrics. ${ }^{\circ}-$ Nov. 2.

James Murdoclr, of 8taple Inn, Middlesex, for "an Improved caprole or amall care for protectios matteris encloped thereln from the action of the air, and an lorproved material to be ned in the manufictare of the rald capenles."-Nov. 2 .
Thomas Eancoek, of Etole Newington, Middleaex, for " Improvementin is fabrica elattheated by gutta perchim or may of the varleties of chontchowc."-Nov. i^{2}.
Zichaid Laming, of Clichy Is Garenne, France, for "certatn Improvemente In mann scturing and purffing comi gas, and in tratios a reddual prodact of euch mannfacture,
 Nov. 4.
Chariee Iow, of Roweberry-place, Dalaton, Middieser, gentlenan, for "Improvementa in the mmatheture of sinc, copper, tin, and other motals. in-Nov. 4

Cyprien Marie Jeacie Da Molhy, of Paris, gentleman, for "Improvemente in inlaying

John Lawtion, of Palaley, North Britain, for "Improvements is machlaery for mpe-
 -NIov. 4
Gorpe Welle, of 7. Penton-place, Walworth, for "a machine for the purpoe of cerpe

 netne withoet eyelet holen."-Nov. 4
Jashua Procter Weathead, of Manchenter, for "Improvements in the manufieture ef treetting of indie-rubber,"-Nov. 4.
 engines, and in propelilige"-Nov. 6 .
Robert Davieon, of Broad-ntreet, City, and Wilitam Byrulngton, of the eame place, for "certala Improveroehts in the application of hate to the preparation, deciection, and preservation of bread-atufit, confectionary, paise, meati, vagetablet, and other edible prestances."-Nov. 6.
Geerge Eienry Buraill, of Elornvey-roed, Middlesex, and Joweph Eadford, of Matde Eill, gentleman, for "Improvementa in envelopen, wrappers, and covers, and in machinery and apparatus for the manufactore thertor."-Nov, 6 .

John Roberteon, of Tweed-month, Berwiek', gentleman, for "Improvements in erchitecture; the elementiry method of formetion employed in the ame; atoo further apptcable for barmonialog formation, as of urne or vasea."-Nov. 9 .
Eenry Pielder, of Carilon-rtilas, Maids Vale, Middlesex, for "Improwerrente in the copstruction of íron beams or girders."-Nov. 9 .
Deaben Dyer, of Boston, Lineoln, brewer, for " Improvenenter epplicabie to two and foar wheel carriages." - Nov. 9 .
Fdward Wand, of Bradford, Yorkehire, eptnner, for "certaln Improvements in the construction of machlaery for proparios and splaning alpact, mohalr, wool, fax, and construction of machinery for pt
George Bicaton, of Blrmitagham, for "Improvements in locomotive engtom,"-Now. 9.
Henry Krebs Claypole, of Uverpool, gencleman, for "eertain Improvemente in the procear, apparatios, and machimery for maldog tugar." (A eommonication.)-Now. 9 .
Joaeph Jean Baranowald, of 8, Eue Neave Clichy, Paris, gentitamen, for a retyreckoning mechlne."-Nov. 11.
Ispel IInoman, of Ladgate Shill, In the Chty of London, merchant, for " Improvements In the constraction of rotery enginet to be worimed by titeem, air, or other eliatic findis." (A eommunlcation.)-Nov. 11 .
Frederick Collier Bekewell, of Bampatead, Middiesex, gentleman, for "certaln Improvements in machiners or apparatus for maling or manofneturing oudi mater, and provements in machinery or apparatas for mo
other aeraled wasers, and Bquids."- Nov. 11 .
Bamuel Salonon, of Houndeditich, for "Improvements in repdedng certaln materinle applicable as a aubalitele for leather, paper, papler mecho, and ull cloth, in various artcles of manufacture." (A communicetion.)-Nov. 11 .
George Jame Sownad, of Bantley-meret, Bedfoyd-equere, Middienes, bullder, Br I Improvemente In mapending wiodow-saches, ahntters, and bilads, and in the confirection of the framee for the seme."-Nov. 11.
Chariea Blackford Manatield, of Clare-hall, In the Unfverathy of Cambridge, esqu for is an Improvement in the manufecture and purfication of apfrituons rabatarices, and our applicable to the purposes of articial light, and rarioas ugeful arts ; and in the applles applicable thereof to such parpoeet, aod in the construction of lampe and burnars appleable to the combustion of ench eubetances."-Nov. 11.
George Taplor, of 2, Bartholomew-place, Kentigh-town, geatlemen, for "certate IT,
 lues, draing, and other places, "-Nov. 13
James Chesterman, of Bhefield, machinlat, for "certain Improvements in tape meacures, and in cases used for contifing the came; and in the mbehloery or epparbteif for mannfacturing or maldigs sueh meagares and cases, or curtain parta thertof.v-Nov. is.
Geongt Price 8imeox, of Kiddermingter, for "Improvements in the mannfecture of capets, and ofler almilir articlea."-Nov. 16.
Whliam Bdward Newton, of Ohancery-lane, for "Improvements in the mode or modias of manufacturlog or preparing certala matters to be employed as plapente." (A colle. munication.)-Nov. 16.
George Plillips, of Pert-ntreet, Itington, chemist, for "certain Improvementis in the purficition of certiln olis and spirlis."-nov. 16 .
William Birmpre, of Sonthdown, Cornwail, for " Improvements in amelthy cepper and other ores."-Nop. 16.
WIlinan Brunton, jan., ctill englaeer, of Poole, Cornwell, tor "certals epperatere fer drentag ores or minerals."-Nov. 16.

Plere Armand Le Comit de Fontilomortan, of 15, New Broed-etreet, city, for a Improvemente In menufacturing bralds, plata, fingen, gimps, and other timilar articles. Nov, 18.
 and ofher tubes or plpes." (A communleation.)-Nov. 18.

Whillam Rocke, of Dudley, Worcesterthle, for " a new mode of heation and applyters Woughtulrog.' Nov. 18.
Alemander Parkee, of Birmiogham, for "Improvameate in the manafecture of metale, and in comelng firon and ateel."-Nor. 18.
Thomes Nartn, Junep of New-crose, Deptford, machine makyr, for ${ }^{4}$ Improvemente in the mannfucture of draln tilen, and tubee, aed other articlen from platic materinis. ${ }^{\text {mo }}$ Nov. 18.
Thomas Walker, of Banley, Stafiordehing, for "I new and valuable mode of deecration urticlee of earthenivare and china."-Nov. 20.
Willim Reid, of Univerity-itreet, Middiesex, for "certaln Improvements is ena monicating latellifence by electricity, and in the instrumentin apif apparatis empioned theratn, "Hov, 2%.
 provements in the manufecture of gelintmon, subatances, and in the apparstus to be anet phereln." \rightarrow Nov. 24 .
Bichard Cond, of Seanington, Surty, chemiet, for "Improvemente in the comburetens of fuel, and in applytut the hed $e 0$ obtatned."-Nov. 25.

Pdwin Travern, of Oldham, Lanceghire, cotton-splaner, for "certala Improverempe in looms for weadne."-Nov. 25 .

 Improviments In power locment "-Nov. 25.

$$
k \neq k s
$$

-

[^0]:

[^1]: - As at the Insulention of Citil Enginemen.

[^2]: - This sentense is eopled frop the written tran of the opeech. Bir J. Eerschal appeared to euppoee that the mentence hed not been reported in the pablic jouranky as spoken. Idid, bowrev, tet is 60 reported in an Rogith newipeper, to which I had eccest on the coptinats

[^3]: * Eellealka. 1846. p. 1-89.

[^4]: - Or Ie not Calgula's Bridge a sulfient reat of time t-Ed. C. E. a A. Journal.

[^5]: - Pourt Bembl epistol. Leonin I., P. M. Lagdun. 1558. 8vo. p. 246.

[^6]: - The account of the mortis of Cologne Cestbedral will be continged, whet additione
 Xagrainga: for the one nou prosentur to our rende

[^7]:

[^8]: - One, is the Romen eaptral, from Macedoris; a moond at Pontas; and the third at ornces.,-CAc. to Vef.. 2, Ub. Iv.
 + Plia. Mat Hiah, llb. 24, e, 22.

[^9]: - Br reterence to the coal account, duning the lant eighteen monthe, 1 find that a anrtate of 100 tens of conls han been eftectiod within that period, by wortios the wheel in praxection with the criluder engine, whilat the powtr recorered from the cylnder engibe bee been more than equal to the duty performed by a separate engine, previoualy employad for that parpoee only. And 1 also underriand that the Rotary has not cont bs. in res purt during that tane; that the packing, in the stafing boxet of the a heel-arle, hat 6and bat oace repewed; and that nothing hat occurred to require the case to be opeped.

[^10]:

[^11]: - This agatem whi letterly alwaye adopted by Rearie and Tolford to prefireace to the
 suif wharerer it ins been properlf carried luto rebesto

[^12]: - Floating bromiwaters of timber have latterify been tried, as a arhatiate for more solld consuructions, but thej have not bitherto tucceeded.

[^13]: - Theae observations are all made with reference to an mecurate plan, abowing, in detail, the princtple and construction, elevation, plav, and end ylew of tha seddles on the lope of the plese; the strders, we coupling bolu, and anspeanfor rodn, the tooldiog down gheren, de.; and very sceurate observations have been mede, by which it oppears tha

[^14]: *The plers rent upon the mataral gravelly bed of the rivet, Ulie thowe of Weatminater bridgel gurrounded by sheet pling driven, it is suid, filven feet; an expedient which has not, however, prevented the subsidence and rain of the two main plers of Weatmin ster brdge. Though the towns of Hangerford bridge were erected in cofferdam, there is no plling underpesth.
 © A Sumser in Western Prance, vol, 2, p. 259.

[^15]: "This description of M. Naviers' bridee in taken from an accurate pinn in my pomens slon, showing, In detall, the conatraction and dimenalosi of its geveral parts. The troe cances of tie deatruction were, the tnequality of the angies formed by the chatina, whth the vertical Hoen, at the towers, and the invumelency of theoe at the abutments; both of which defecti exint in contiderable degretes in Hungerford bridge.
 gented for dimiolahing the borlsopial straln on the plores

[^16]: 1 See C. E. \& A. Jourani, YoL, ©, 1843, P. 196, 2VoL, 4, 1841, p. 883.

[^17]:

[^18]: - An abridged scrount of thle painat was etven tin the Jourall for september lant, Mehoat dramioga.

[^19]: - This evening't proceeding ware aceldeatally omitted in last moath's Journal.

[^20]:

[^21]: IV Forts on ths Cutcriug, which is beipg prioted, and wid sbonly be prbliahed. in dua

 O. 8.

[^22]: Eecporation of Water.-A paper wae read at the Acedemy of 8od. sacen, Paris, respeoting the quantity of beat annaally applied to the evaporation of the water on the surface of the globe, ud of the dynamic force of the strenmes of continents. M. Daubrée asserts that the evaporation employs a quantty of heat about equal to ose-third of what is received from the sun, or in other words, equal to the melting of a bed of ice of mearly 85 feel in thicknems if apread over the globe. The motive force of the atreams in Earope is, according to M. Danbrbe, equal to between $372,508,074$ and $\mathbf{3 6 4}, 678,620$ bortes working lacescanuly duriag the whole pertive of the year.

[^23]: - a The committee will very fodly explann to Capt. Warnez that it is pot dedred chat he should reveal his seoret, or any part shereof; but if in the coume of proeactiaf he
 stand thet this will not establith any cinm on the government for remunetation's a

[^24]: - Perhs ps the real difurepce may lite in our difermally upderstanding the word moreas. tam. My understanding of the term is at least a practleal oue, vis.: that it means the whonnt of power whilh can be compunaleaced to a body by putian it in motson, and

[^25]:

[^26]: * Wright in tons, a the area of the lower flayge in aguare lachen, d the total depth © the giricer in loches, and I the length in feet in ciear of the bearipgs.

[^27]:

[^28]: - It ta meepseary that the radias of curvature of the roomeolre bo made wibla curtata Hneita, deperdiof on the depth of the vousporst and the redtus of the arch; if too menel curveture be tiven. the grch will fill, before the polate of contact ces tare up secha peallions, at to colocide with the tise of refiltapes.

[^29]: C. FrWarem, Beriti: Groptat, 184, Ovo

[^30]: * Moas utrange to may, Woods dimmisces this extraordinary architectaral monument at once, by merrip ansaring na that "it poasesset little laterett as an object of archluesure" 1 |-although it is an edifice of moat alogular character.

[^31]:
 pabric.]-2a. C. E. \& A. Journal.

[^32]: " Obeervatiqn: on the motyes, erroth, and tendency of M. Oarioth princlplat of Cefence, showntig the defecte of his new syitem of fortifcation, and of the eltornotione bo has proposed with a view to improve the defence of existing places. By Colond Btr Hownd Dougles, Bart., E.S.C. C.B. P.R.S., Iospeotor.Generni of the Ropul Milktary
 Whiteball. 1819;"

[^33]: Wofortunate, too, it to that that of the Biver Iront of the Palace of Wentulnater, ard of the new Treatiory bulldinge fo just the same; mor, althongh diferent, to that of the Cinb-boume in Pall-Mall mrich better. Howevar sood they may be in shemeelves, baildings 80 ctrcumetanced may be compared to good picturta hunt in a wory bud Hght. We may percelve what the details are, bet they do not prodoce the interded efect, not that which thay do when the san does fall upoe them, which for ebout ope half of the year it does nof do at all at any time of the day. Aspect, howerer, motwithetandint all thet it lald abopt it, doee pot ceem to be thaten Into eccorng at all-pot aven 20 puch ay
 fronts fally exposed to the oun, tad there ornament would consequenty thow Iteelf well, we somotimet ape s grat deal of sxeellent detall almot all bet quite thrown away ypon olhers where oning to want of requilte litht it does mot peoduce any adequate dempo of errect.
 t We have now before ne apon peper three oeverel kice, all ndely dinititas is other respects, but all asreelag in proviling a striling degree of efoct of the kind mentioned. One of them extemds the fyyade ar far ay the axtreenty of the preant weali Doric colonnades, 80 as to obtaln a corpa de logis' north and south, of ahout 200 feet frontag, and connects thow two masees of habinble building by a magnitienat Cortathlan 60 . Lonvade on the lovil of the state foor, entrely open in lts apper pert, bet hevipe the intereolumon thed is, both towarda the court and the Park, for rather more than half thot height, by befng glased with brllitant statiod slece, the efect of which, with the gin on the oppotice atde, conid pot sill to be mont spleodid. Interally, that part would forma

 traneparevert

[^34]: *The most comprivenalre wort on the raliject that we have meen is "A Photogente Manlpulaton" priblished by Memers Kalgat and sons, Which wibla it amall comperes
 to the uninltioned.

[^35]: - Por come accoant of him we refor our remders to what can be more eally referred to
 compagios the deeription of the very difice whlch has now beem repeated in Pall. Mal
 tare and Imilationa of it.

[^36]:

[^37]: A new Life boot was recently tried at Cowes, in the presence of several officers in the navy. The boat was boilt by Mesars. White and Sons, of Cowes ; it is 30 feet long, 9 feet beam, has double sides, and air-tight onds. 185 men were placed io her, and ahe took to all the water that she conld granwale under, and when she righted gave a ffeen-foch aide; in fact, it Fars fonod imposaible to sink her. She sails very fast, atays in thirty-two seconds, and weighs only seventeen hundred woight. She will carry in ber lockers a month's provision for fify men. The movelty is priocipally in her form.

[^38]: - All the carronades are to be mounted on Sir Thoo. Hardy's compremor caniagea.
 t As the weight and length of the gaps will alwaps be ragulated with etrict unfionmity; ts will be nanecestary to reppat these trems to each ctecs. An, howrerer, shore are evernil clases of thinty-twoporgoder gras to be used in the nary the frure (1) apmared will show the gin to be one of 50 cwt .9 fivet; (2), one of 45 cwt .8 ft .6 joch. 1 aod ($(\mathrm{B}$, ooe of 42 cwt .8 ieet. Where thit rale is departed from, the eraet langth and wright are given.

[^39]: - [We think Mr. Layd muat bere allade to tow-prepsare bollert, where the ateam it

[^40]: - Brevinat chap, 87 .

[^41]: - "Lectorse on Bealpture."
 + Of the cappbility of mopale to prodace all the tones and creduttoms of hitht and ahade equally with the brash, we have conviacing proofs in the copy of Rhphaelis
 Mori in eufect to, the onition

[^42]:
 arree the Loodot and North. Wrethre Ballway at Camdon Town.

